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We propose a method of manipulating selectively the symmetric Dicke subspace in the internal degrees of
freedom of N trapped ions. We show that the direct access to ionic-motional subspaces, based on a suitable
tuning of motion-dependent ac Stark shifts, induces a two-level dynamics involving previously selected ionic
Dicke states. In this manner, it is possible to produce, sequentially and unitarily, ionic Dicke states with
increasing excitation number. Moreover, we propose a probabilistic technique to produce directly any ionic
Dicke state assuming suitable initial conditions.
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I. INTRODUCTION

Multipartite entangled states play a fundamental role in
quantum information, where these states are used for differ-
ent applications including the improvement of spectroscopy
towards the Heisenberg limit �1�. In this sense, general se-
quential techniques for building entangled multipartite states
have been recently proposed �2�. In Ref. �3�, an experiment
is described where the robust one-excitation symmetric
Dicke states �4�, called W, of N�8 ions are prepared in their
electronic levels with the aid of N entangling pulses. Also, a
maximally entangled �Greenberger-Horne-Zeilinger �GHZ��
state with six ions has been experimentally realized �5�.
From a theoretical point of view, adiabatic ground-state tran-
sitions were proposed for generating GHZ states and sym-
metric Dicke states with N /2 excitations in N ions �6�. More
recently, a method for generating multiqubit entangled states
via global addressing of an ion chain in the frame of the
Tavis-Cummings model has been discussed �7�. A four-qubit
W state with two excitations has already been realized in
linear optics �8�, which may present astonishing multipartite
properties �9�, and more general proposals may be consid-
ered �10�. It is well-established that a physical system must
fulfill several requirements in order to qualify as a potential
candidate for quantum computing tasks �11�. Among them,
overcoming decoherence and scalability considerations may
require not only efficient single- and two-qubit gates but also
the availability of collective multipartite operations in suit-
able subspaces.

In this paper, we consider a system composed of N
trapped ions addressed collectively by two laser fields in a
global lambda-type excitation scheme. We will introduce a
method for tailoring the Hilbert space in order to restrict the
quantum dynamics to the symmetric Dicke subspace. As we
show below, this method allows a different and useful way to
manipulate selectively the collective ionic-motional system.
In particular, these multipartite selective interactions will
permit the generation of ionic Dicke states with any number
of excitations in a sequential manner or, through a probabi-
listic technique, in a single-shot measurement. This method
is based on global selective interactions characterized by a
proper tuning of collective motion-dependent Stark shifts.

Selective interactions with a single atom have been proposed
in the realm of cavity QED �12� and trapped ions �13,14�.
Furthermore, it has been demonstrated that they also allow
the generation of arbitrary harmonic oscillator states �15� and
their measurement via instantaneous interactions �16�.

II. MODEL

Let us consider a Raman laser excitation of N three-level
trapped ions as shown in Fig. 1. We will make use of these
internal levels and the collective center-of-mass motional
mode associated with the frequency �. A traveling-wave field
excites the transition between the states �gj�↔ �cj�, with cou-
pling strength �2j =�2j�r� j� and detuning �����2j�. Simi-
larly, a standing-wave field excites off resonantly the transi-
tion between the electronic internal states �ej�↔ �cj�, with
position-dependent coupling strength �1j =�1j�r� j� and de-
tuning �+���1j. This scenario is described, after a first
optical rotating-wave approximation �RWA�, by the Hamil-
tonian
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FIG. 1. N three-level ions in a linear Paul trap where the energy
diagram of the jth ion is displayed.
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Ĥ = ��â†â + ��e�
j=1

N

�ej��ej� + ��c�
j=1

N

�cj��cj�

+ �	cos�k1ẑ�ei�1t�
j=1

N

�1j�ej��cj�

+ e−i�k2ẑ−�2t��
j=1

N

�2j�gj��cj� + H.c.
 . �1�

We go then to an interaction picture inside the Lamb-Dicke
regime: 	i

�n̄
1, where n̄ is the average phonon number and
	i�ki

�� /2m� are the Lamb-Dicke parameters. In this way,
we can adiabatically eliminate levels �cj�, obtaining the blue-
sideband second-order effective Hamiltonian

Ĥeff = − ��̂ + ��â†J̃
ˆ+ + âJ̃

ˆ−� , �2�

where J̃
ˆ+=� j=1

N �eff
j �̂ j

†, with �eff
j =2i	2�1j�2j

* /�, �̂ j
†= �ej��gj�,

and

�̂ =
1

�
�
j=1

N

�1 − 	1
2�2â†â + 1����1j�2�gj��gj� +

1

�
�
j=1

N

��2j�2�ej��ej�

�3�

is the motion-dependent ac Stark shift. In this case, we can
discard terms involving level �cj� by assuming no initial
population. The phonon-number dependence of the Stark
shift �3� is due to the standing-wave Raman laser, which
together with the traveling wave produce the dynamics of
Eq. �2�. Note that ac Stark shifts have already been used for
experimental realization of two-qubit gates and multipartite
entanglement �17�.

The detuning �̂ can be corrected by a fixed position-
dependent quantity �0

j via dc Stark shift or retuning of the
lasers frequencies. In this manner, Hamiltonian �2� can be
written as

Ĥeff = − ��
j=1

N

�0
j �n̂ − �0

j ��gj��gj� + ��â†J̃
ˆ+ + âJ̃

ˆ−� , �4�

where �0
j =2	1

2��1j�2 /�. It will be convenient to rewrite the
Hamiltonian of Eq. �4� in the interaction picture with respect
to the first term, where it reads

Ĥeff
I = ��

j=1

N

�eff
j â†�̂ j

†e−i��0
j �n̂−�0

j �+�k�j�0
k�gk��gk��t + H.c. �5�

III. SELECTIVE CONTROL IN THE HOMOGENEOUS
COUPLING CASE

A. Generalized selectivity

In order to illustrate how selectivity appears in the N-ion
case, let us study the special situation of the N ions coupled
homogeneously to the Raman lasers where �eff

j ��eff
=2i	2�1�2

* /�, �0
j ��0=2	1

2��1�2 /�, and �0
j ��0. In this

case, the interaction part in Hamiltonian �4� corresponds to

an anti-Tavis-Cummings model �18�, a spin j=N /2 generali-
zation of the Jaynes-Cummings model �19�. In this case,

J̃
ˆ+→�effĴ

±, and the new collective terms Ĵ± can be consid-
ered as angular momentum operators, establishing a permu-
tation symmetry on the ionic subsystem dynamics. That
means that if the system is found at any time inside the
symmetric Dicke subspace �4�, associated with total angular
momentum j=N /2, it will stay there along its evolution, re-
ducing the Hilbert space dimension from 2N to N+1. Under

this plausible assumption, the collective operators Ĵ± can be
effectively and exclusively rewritten in the symmetric Dicke
subspace via the following assignments:

�
j=1

N

�gj��gj� → �
k=0

N−1

�N − k��Dk��Dk� ,

Ĵ+ → �
k=0

N−1

fk�Dk+1��Dk� . �6�

Here,

�Dk� = 
N

k
�−1/2

�
k

Pk��g1,g2, . . . ,gN−k,eN−k+1, . . . ,eN��

�7�

are the symmetric Dicke states with k excitations, �Pk� is the
set of all distinct permutations, and fk=��k+1��N−k�. It is
noteworthy to stress that in the assignments of Eq. �6� we
have omitted the nonsymmetric components due to the as-
sumed initial symmetric conditions. In this case, and under
homogeneous driving, we can derive from Eq. �4� an analog
to Eq. �5�,

H̄
ˆ

eff
I = �â†�eff�

k=0

N−1

fke
i�0�−n̂+N−1−k+�0�t�Dk+1��Dk� + H.c.,

�8�

a compact expression that will prove useful to study selective
interactions inside the symmetric subspace. Let us consider
the system prepared in the initial state �N0��Dk0

�. Then, the
suitable choice of laser frequencies �0=k0+N0−N+1 yields
a selective resonant coupling inside the subspace
��N0��Dk0

� , �N0+1��Dk0+1��. Moreover, provided that �0

��eff, all other subspaces will remain off resonance obtain-
ing an effective two-level dynamics. That is, by selecting a
determined subspace the Hamiltonian �8� can be written as

H̃
ˆ

= ��N0 + 1�eff fk0
��̂N0

+ Ĵk0

+ + �̂N0

− Ĵk0

− � , �9�

where Ĵk0

+ = �Dk0+1��Dk0
� and �̂N0

+ = �N0+1��N0� are effective
spin-1 /2 operators stemming from the reduced Hilbert space
of the collective ionic state and the bosonic field, respec-
tively. As we will se below, this selective global interaction
will allow us to move comfortably inside the symmetric
Dicke subspace with high precision �20�.

Considering experimental parameters of ion experiments
at NIST �Boulder, CO� �21�, we could achieve an effective

LÓPEZ, RETAMAL, AND SOLANO PHYSICAL REVIEW A 76, 033413 �2007�

033413-2



coupling �eff�105 Hz, which produces population inversion
in the subspace ��N0��Dk0

� , �N0+1��Dk0+1�� in a time 

�0.1 ms, shorter than the typical motional decoherence time

d�10 ms.

B. Applications of generalized selectivity

We discuss now some applications of our method for se-
lectively manipulating the Dicke subspace. Let us consider
the initial state ���0��= �0��g¯g���0��D0�. Tuning into
resonance the subspace transition ��0��D0� , �1��D1��, the evo-
lution of this state is given by

���t�� = cos��N��eff�t��0��D0� − iei� sin��N��eff�t��1��D1� ,

�10�

where �eff= ��eff�e−i�. The one-excitation Dicke state �D1� is
also a W state

�WN� =
1

�N
��eg ¯ g� + �geg ¯ g� + ¯ + �g ¯ ge�� .

�11�

This N-partite entangled state has great importance in quan-
tum information theory due to its persistent entanglement
properties, as long as more operational effort is needed to
disentangle this state �22�. If this interaction is turned on for
a time 2�N��eff�t=� and �=� /2, then Eq. �10� becomes

���t�� = �1��D1� � �1��WN� , �12�

yielding state �WN� in the metastable N two-level ions. If the
system evolves for a time such that cos��N��eff�t�
=1/�N+1, then

���t�� = �WN+1� , �13�

where the �N+1�th qubit is the reduced bosonic spin-1 /2
system.

Once the system is prepared in the state given in Eq. �12�,
and tuning to resonance the red-sideband subspace transition
��1��D1� , �0��D2��, a pulse with Rabi angle 2�N��eff�t2=�
will lead to

���t2�� = �0��D2� . �14�

In this manner, it is clear that a successive application of
collective blue- and red-sideband interactions can produce
deterministically and sequentially all symmetric Dicke states
�Dk� with number of excitations k.

Another interesting application of multipartite selective
interactions is the possibility to discriminate between ionic
states with a different number of excitations. Suppose we
have an ionic state prepared in a superposition of states with
a different number of excitations �k=0

N ck�Dk�, with �k=0
N �ck�2

=1. For example, this state can correspond to an atomic co-

herent state �23� given by exp�i�Ĵx��g¯g�. Note that an in-

teraction proportional to Ĵx can be generated by applying a
Raman laser field tuned to the carrier transition on the N ions
collectively and homogeneously. The center-of-mass mode is
initialized in the state �N0� and we consider an �additional�

ancillary qubit in the ground state �g�A. We tune then to
resonance the collective blue-sideband subspace
��N0��Dk0−1� , �N0+1��Dk0

��, where �Dk0
� is the state with k0

excitations we want to discriminate. In this way, after a col-
lective �-pulse on the ions, we obtain a state of the form

��1� = 
ck0−1�N0 + 1��Dk0
� + �N0� �

k�k0−1

N

ck�Dk���g�A.

�15�

Now, a �-pulse with the laser field tuned to the first red
sideband on the ancillary qubit leads to ��2�
= �ck0−1�Dk0

��e�A+�k�k0−1
N ck�Dk��g�A��N0�. Then, if we mea-

sure the ancilla in the excited state �e�A, the collective ionic
state will collapse into the Dicke state �Dk0

� with k0 excita-
tions. Remark that the projection on ancillary state �e�A, that
should happen with a probability �ck0−1�2, can be done with
high precision via well-established electron-shelving tech-
niques.

On the other hand, it has been shown that the use of
selective interactions in a single trapped ion can lead to de-
terministic and universal manipulation of the motional state
�15�. Along these lines, similar manipulation could be imple-
mented here to grant access to arbitrary states inside the sym-
metric Dicke subspace. In this case, the motional Fock states
would be replaced by symmetric states in the internal ionic
degrees of freedom with a fixed number of excitations.

IV. SELECTIVE CONTROL IN THE INHOMOGENEOUS
COUPLING CASE

In the more general case of ions interacting inhomoge-
neously with Raman lasers, we cannot discriminate prese-
lected symmetric Dicke states. However, multipartite selec-
tivity will still allow us to manipulate ionic number states,
that is, ionic states with a determined number of excitations
but not necessarily symmetric. For example, if laser fields
interact inhomogeneously with initially deexcited trapped

ions in a carrierlike excitation of the form U=exp�−i�Jx̃
ˆ �,

where Jx̃
ˆ

= J̃
ˆ++ J̃

ˆ−, this will not lead to a superposition of
symmetric Dicke states. On the opposite, this will lead to a
superposition of nonsymmetric collective number states aris-

ing from the action of the operators J̃
ˆ+ and J̃

ˆ− on the collec-
tive ionic states. It is known that to deal with the unitary
evolution of high-dimensional inhomogeneously coupled
systems is extremely difficult �23–25�. In this case, instead of
writing the Hamiltonian �4� in the basis of the symmetric
Dicke states, as in Eq. �8�, we should write it in the corre-
sponding basis of nonsymmetric collective number states

�D̃k
�� with k excitations. In this way, we may look for condi-

tions to set into resonance a determined subspace. States �D̃k
��

appear naturally from successive applications of J̃
ˆ+ and J̃

ˆ− on
a given initial collective state. The index � accounts for the
fact that, depending on the number of ionic excitations, there
could exist more than one nonsymmetric collective state with
a determined number of excitations. In the same spirit of Eq.
�2�, we can write the associated Hamiltonian
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H̄
ˆ

eff
I = − ��

k,�
�D̃k

���̂�D̃k
���D̃k

���D̃k
�� + �â†�

k,�
�̃eff

k,��D̃k+1
� ��D̃k

��

+ H.c. �16�

Here, �̃eff
�,k is the new effective coupling constant, which in

the homogeneous case corresponds to �eff. As in the homo-

geneous case, if �0��̃eff
�,k, we can tune to resonance a de-

termined subspace, for example, the inhomogeneous blue-

sideband doublet ��N0��D̃k0

� � , �N0+1��D̃k0+1
� ��. In this case,

from Hamiltonian �16� in the interaction picture, we can de-
rive that the condition to tune to resonance this subspace is

�D̃k0+1
� ��̂N0+1�D̃k0+1

� �− �D̃k0

� ��̂N0
�D̃k0

� �=0. This condition can be

fulfilled by compensating the detuning �̂ through shifts in
the lasers frequencies for fixed values of �0

j , depending on
the subspace we want to select. This procedure is similar to
the homogeneous case, but now �0

j will be inhomogenously
distributed, that is, different for each ion.

V. CONCLUSIONS

In conclusion, we have introduced a selective technique
that allows a collective manipulation of the ionic degrees of
freedom inside the symmetric Dicke subspace. We have stud-
ied the homogeneous and inhomogeneous cases, showing ap-
plications in both cases, mainly related to the generation and
control of number states in the ionic external and internal
degrees of freedom. We believe that the introduced concepts
may inspire similar physics in other quantum-optical setups
with diverse applications, and that they might even be help-
ful to transfer collective atomic number states to propagating
fields.

ACKNOWLEDGMENTS

C.E.L. is financially supported by MECESUP USA0108
and CONICYT, J.C.R. by Fondecyt 1070157 and Milenio
ICM P02-049F, and E.S. by DFG SFB 631, EU EuroSQIP
projects, and the German Excellence Initiative via the
“Nanosystems Initiative Munich �NIM�.” C.E.L. also thanks
DIGEGRA USACH and Jan von Delft for hospitality at
Ludwig-Maximilian University �Munich�.

�1� D. Leibfried, M. D. Barrett, T. Schätz, J. Britton, J. Chiaverini,
W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, Science
304, 1476 �2004�.

�2� C. Schön, E. Solano, F. Verstraete, J. I. Cirac, and M. M. Wolf,
Phys. Rev. Lett. 95, 110503 �2005�.

�3� H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-
kar, M. Chwalla, T. Korber, U. D. Rapol, M. Riebe, P. O.
Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, Nature
�London� 438, 643 �2005�.

�4� R. H. Dicke, Phys. Rev. 93, 99 �1954�.
�5� D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad,

J. Chavierini, D. B. Hume, W. M. Italo, J. D. Jost, C. Langer,
R. Ozeri, R. Reichle, and D. J. Wineland, Nature �London�
438, 639 �2005�.

�6� R. G. Unanyan and M. Fleischhauer, Phys. Rev. Lett. 90,
133601 �2003�.

�7� A. Retzker, E. Solano, and B. Reznik, Phys. Rev. A 75,
022312 �2007�.

�8� N. Kiesel, C. Schmid, G. Tóth, E. Solano, and H. Weinfurter,
Phys. Rev. Lett. 98, 063604 �2007�.

�9� D. Kaszlikowski, A. Sen�De�, U. Sen, V. Vedral, and A. Win-
ter, e-print arXiv:0705.1969 �2007�.

�10� C. Thiel, J. von Zanthier, T. Bastin, E. Solano, and G. S. Agar-
wal, e-print arXiv:quant-ph/0703137, Phys. Rev. Lett. �to be
published�.

�11� D. P. DiVincenzo, Fortschr. Phys. 48, 771 �2000�.
�12� M. F. Santos, E. Solano, and R. L. de Matos Filho, Phys. Rev.

Lett. 87, 093601 �2001�.

�13� E. Solano, P. Milman, R. L. de Matos Filho, and N. Zagury,
Phys. Rev. A 62, 021401�R� �2000�.

�14� E. Solano, Phys. Rev. A 71, 013813 �2005�.
�15� M. F. Santos, Phys. Rev. Lett. 95, 010504 �2005�.
�16� M. F. Santos, G. Giedke, and E. Solano, Phys. Rev. Lett. 98,

020401 �2007�.
�17� F. Schmidt-Kaler, H. Häffner, S. Gulde, M. Riebe, G. Lan-

caster, J. Eschner, C. Becher, and R. Blatt, Europhys. Lett. 65,
587 �2004�.

�18� M. Tavis and F. W. Cummings, Phys. Rev. 170, 379 �1968�.
�19� E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 �1963�.
�20� We have carried out ab initio numerical tests with realistic

parameters to prove the validity of Hamiltonian �9� under all
relevant approximations, as well as ulterior claims stemming
from possible applications in the homogeneous and inhomoge-
neous cases.

�21� C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer,
C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J.
Wineland, and C. Monroe, Nature �London� 404, 256 �2000�.

�22� H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910
�2001�.

�23� F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys.
Rev. A 6, 2211 �1972�.

�24� C. E. López, H. Christ, J. C. Retamal, and E. Solano, Phys.
Rev. A 75, 033818 �2007�.

�25� C. E. López, F. Lastra, G. Romero, and J. C. Retamal, Phys.
Rev. A 75, 022107 �2007�.

LÓPEZ, RETAMAL, AND SOLANO PHYSICAL REVIEW A 76, 033413 �2007�

033413-4


