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Motivated by recent experiments, we study the dynamics of a qubit quadratically coupled to its detector, a
damped harmonic oscillator. We use a complex-environment approach, explicitly describing the dynamics of
the qubit and the oscillator by means of their full Floquet state master equations in phase-space. We investigate
the backaction of the environment on the measured qubit and explore several measurement protocols, which
include a long-term full readout cycle as well as schemes based on short time transfer of information between
qubit and oscillator. We also show that the pointer becomes measurable before all information in the qubit has
been lost.
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I. INTRODUCTION

The quantum measurement postulate is one of the most
intriguing and historically controversial pieces of quantum
mechanics. It usually appears as a separate postulate, as it
introduces a nonunitary time evolution.

On the other hand, at least in principle, qubit and detector
can be described by a coupled many body Hamiltonian and
thus the measurement process can be investigated using the
established tools of quantum mechanics of open systems.
Even though this does not lead to a solution of the funda-
mental measurement paradox, such research gives insight
into the physics of quantum measurement.1–6

This basic question has also gained practical relevance
and has become a field of experimental physics in the con-
text of quantum computing. Specifically, superconducting
qubits have been proposed as a building block of a scalable
quantum computer.7–10 In these systems, the detector is based
on the same technology—small, underdamped Josephson
junctions—as the device whose state is to be detected. Thus
these circuits are an ideal test bed to investigate the physics
of quantum measurement. Implementing a measurement
which is fast and reliable, with a high �single-shot� resolution
and high visibility, is a topic of central importance to the
practical implementation of these devices.

The basic textbook version of a quantum measurement is
based on von Neumann’s postulate.11,12 The state of the sys-
tem is projected onto the eigenstate of the observable being
measured corresponding to the eigenvalue being observed.
This is not the only possible quantum measurement and has
been generalized to the idea of a positive operator-valued
measure.13

From the microscopic, Hamiltonian-based perspective, in-
tensive research has been done on the measurement of small
signals, which originated in the theory of gravitational wave
detection.14 The main challenge has been to identify how
signals below the limitations of the uncertainty relation of
the detector can be measured—a regime in which the de-
tector response is also strictly linear. This work has re-

sulted in the notion of a quantum nondemolition �QND�
measurement,14 which is the closest to a microscopic formu-
lation of a von Neumann measurement. This result has been
generalized to many other systems, prominently atomic
physics, and also found its way to the superconducting qubit
literature. Here, the analogy of a tiny signal is the limit of
weak coupling between qubit and detector. Another body of
work2,3 takes a more general starting point and discusses the
relevance of pointer state and environment induced superse-
lection.

The measurement techniques used in superconducting qu-
bits are covering many of the mentioned situations. Weak
measurements can be performed using single electron tran-
sistors. Based on weak measurement theory, this is well un-
derstood �see Ref. 7 and the references therein� but only of
limited use for superconducting qubits. There the measure-
ments are far from projective, their resolution is in practice
rather limited, and the whole process is very slow. In the case
of qubit, the task is not to amplify an arbitrarily weak sig-
nals, but to discriminate two states in the best possible way.
If the detector can be decoupled from the qubit when no
measurement needs to be performed, this discrimination may
involve strong qubit-detector coupling.15

An opposite, generic approach is to perform a switching
measurement—the detector switches out of a metastable
state depending on the state of qubit. Switching is a highly
nonlinear phenomenon, so this type of detection is far from
the weak measurement scenario. In most of the early generic
setup, this process is a switching of a superconducting de-
vice, e.g., a superconducting quantum interference device
�SQUID�, from the superconducting to the dissipative
state.16–19 This technique goes a long way, and some experi-
ments have proven that the switching type of readout can
achieve high contrast.20,21 It has the drawback that it is not a
projective readout and during the switching process hot qua-
siparticles with a long relaxation time are created. This limits
the time between the consecutive measurements. Parts of this
technique are well understood, such as the switching
histogram,22 the premeasurement backaction,23 and the influ-
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ence of the shunt impedance to the SQUID,24,25 but there is
no full and single theory of this process on the same level of
detail as the weak measurement theory.

Recent developments of detection schemes have led to
vast improvements based on two innovations: instead of di-
rectly measuring a certain observable pertaining to a qubit
state, one uses a pointer system, and measures one of its
observables influenced by the state of the qubit. The obser-
vation is usually materialized in the frequency shift of an
appropriate resonator, whose response to an external excita-
tion links to the measurement outcome.26–29 These measure-
ments offer good sensitivity, high visibility,30 and fast repeti-
tion rates. They also allow one to keep the qubit at a well-
defined operation point, although not always the optimum
one. In many cases, the resonators in use are nonlinear—
based on Josephson junctions. Thus, at stronger excitation,
generic nonlinear effects can be exploited. These nonlinear
effects go up to switching, which in contrast to the critical
current switching is between two dissipationless states.31

Due to this performance and versatility, these devices also
offer an ideal example for investigating the crossover be-
tween weak and strong measurements and the role of nonlin-
earity.

Analyzing the properties of quantum measurement is an
application of open quantum system theory: the backaction
contains a variant of projection which can be viewed in an
ensemble as dephasing. The resolution is determined by the
behavior of the detector under the influence of the qubit
viewed as an environment. For open quantum systems, a
number of tools have been developed. Most of them, promi-
nently Born and Born-Markov master equations �see, e.g.,
Ref. 32 and references therein for a recent review�, assume
weak coupling between qubit and environment and are hence
a priori unsuitable for studying strong qubit-detector cou-
pling. Tools for stronger coupling have been developed33,34

but are largely restricted to harmonic oscillator baths and
hence unsuitable to treat the generally nonlinear physics of
the systems of interest. The Lindblad equation35 is claimed to
be valid up to strong coupling; however, due to its strong
Markovian assumption it is unsuitable for strongly coupled
superconducting systems.

In this paper we present a theoretical tool allowing us to
describe dispersive measurements involving nonlinearities.
The tool is developed alongside the example of the experi-
mental setup studied in Ref. 26. It is based on the complex-
environment approach similar to what is used in cavity
QED36 but also in condensed-matter open quantum
systems.37–39 The idea is to introduce the potentially strongly
and nonlinearly coupled component of the detector as part of
the quantum system and only treat the weakly coupled part
as an environment. In other words, we single out one promi-
nent degree of freedom of the detector from the rest and treat
it on equal footing with the qubit. This “special treatment” of
one environmental degree of freedom is an essential point of
this approach because it allows us to describe the dynamics
of a qubit coupled arbitrarily strong to a non-Markovian en-
vironment. On the other hand, it enhances the dimension of
the Hilbert space to be captured. This technical complication
can be handled using a phase-space representation of the
extra degree of freedom—in our example, a harmonic oscil-
lator.

In Sec. II we derive the model Hamiltonian motivated by
Ref. 26. For this Hamiltonian we derive in Sec. III a master
equation and present a phase-space method which enables us
to analyze the dynamics of an infinite level system. In Sec.
IV we demonstrate that our method enables us to extract
information about the measurement process of the qubit,
such as dephasing and measurement time and also present
three different measurement protocols.

II. FROM CIRCUIT TO HAMILTONIAN

We consider a simplified version of the experiment de-
scribed in Ref. 26. The circuit consists of a flux qubit drawn
in the single junction version, the surrounding SQUID loop,
an ac source, and a shunt resistor, as depicted in Fig. 1. We
note here that we later approximate the qubit as a two-level
system. The qubit used in the actual experiment contains
three junctions. An analogous but less transparent derivation
would, after performing the two-state approximation, lead to
the same model, parametrized by the two-state Hamiltonian,
the circulating current, and the mutual inductance, in an
identical way.17 The measurement process is started by
switching on the ac source and monitoring the amplitude
and/or phase of the voltage drop across the resistor.

The SQUID acts as an oscillator whose resonance fre-
quency depends on the state of the qubit. When the measure-
ment is started, the qubit entangles with the resonator and
shifts its frequency. The value of the oscillator frequency
relative to the frequency of the ac driving current determines
the amplitude and phase of the voltage drop across the resis-
tor.

The detector �voltmeter� contains an internal resistor. This
is a dissipative element connecting the quantum mechanical
system �qubit+SQUID� to the macroscopic observer. The re-
sistor is needed for performing the measurement, defined as
the transfer of quantum information encoded in a superposi-
tion of states to classical information encoded in the prob-
abilities with which the the voltmeter shows certain values,
e.g., voltage amplitude or phase. Note that practically this
resistor may be the distributed impedance of the coaxial line
connected to the chip.

FIG. 1. Simplified circuit consisting of a qubit with one Joseph-
son junction �phase �, capacitance Cq, and inductance Lq� induc-
tively coupled to a SQUID with two identical junctions �phases �1,2

and capacitance CS� and inductance LS. The SQUID is driven by an
ac bias current IB�t� and the voltage drop is measured by a voltme-
ter with internal resistance R. The total flux through the qubit loop
is �q and through the SQUID is �S.
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In this section we derive an effective Hamiltonian for this
system. Our starting point is a set of current conservation
equations for the circuit of Fig. 1.

The total magnetic fluxes through the SQUID and the
qubit loops can be divided into screening �s� fluxes produced
through circulating currents and external �x� fluxes from out-
side sources �S=�S

�x�+�S
�s� and �q=�q

�x�+�q
�s�. Generally,

Ampere’s law for a system of current loops can be repre-
sented in matrix form

��q
�s�

�S
�s� � = − � Lq MSq

MSq LS
��Iq

IS
� , �1�

which can be inverted as

�Iq

IS
� = −

1

M�
2 � LS − MSq

− MSq Lq
���q

�s�

�S
�s� � , �2�

where MSq is the mutual inductance and M� is the determi-
nant of the inductance matrix M�

2 =LqLS−MSq
2 �0. The cir-

culating current through the SQUID loop is given by the
difference of the currents through the two branches IS= �I1

− I2� /2 and the bias current is I= I1+ I2. The fluxoid
quantization40 in the two loops reads

�− = �1 − �2 = 2�
�S

�0
mod 2� , �3�

� = 2�
�q

�0
mod 2� , �4�

where �0=h /2e is the magnetic flux quantum for a super-
conductor. To obtain the equations of motion for the phases
�, �± with �±=�1±�2 we start from the current conservation
in each node.

Ij = IcS sin � j + V̇CS = IcS sin � j + �̈ j
�0

2�
CS,

j � �1,2� . �5�

Here we assume that the two junctions have identical critical
currents. This symmetry, as will be discussed below, has the
consequence that at zero bias current through the SQUID, the
qubit will be isolated from its environment. In experiment,
the two SQUID junctions will of course not be identical. For
an asymmetric SQUID the qubit can be protected from en-
vironmental noise41 by applying an appropriate dc bias.

Using Eqs. �2� and �5� for the circulating current, we ob-
tain

IcS cos
�+

2
sin

�−

2
+ �̈−

�

4e
CS =

1

M�
2 �MSq�q

�s� − Lq�S
�s�� .

�6�

Considering the analogy between Josephson junctions and
inductors we introduce the Josephson inductance LJS
=�0 / �2�IcS� and rewrite Eq. �6� using the fluxoid quantiza-
tion �3� and �4�

1

LJS
cos

�+

2
sin

�−

2
+ �̈−

CS

2
=

1

M�
2 �MSq� − Lq�−� + 	1,

�7�

where the influence of external fields is captured in 	1

= �2� / ��0M�
2 ���−MSq�q

�x�+Lq�S
�x��.

For the bias current we have I+ V
R = IB�t� and from Eq. �5�

we obtain

1

LJS
sin

�+

2
cos

�−

2
+ �̈+

CS

2
+

1

4R
�̇+ =

�

�0
IB�t� . �8�

For the circulating current in the qubit loop it follows
from Eq. �2�:

Iq = Cq�̈
�

2e
+ Icq sin � = −

1

M�
2 �Ls�q

�s� − MSq�S
�s�� . �9�

Using LJq=�0 / �Icq2��, Eq. �3�, and Eq. �4�, this becomes

Cq�̈ +
1

LJq
sin � = −

LS

M�
2 � +

MSq

M�
2 �− + 	2, �10�

where we defined 	2= �2� / �M�
2 �0���−MSq�S

�x�+LS�q
�x��.

From Eqs. �7�, �8�, and �10�, we observe that �+, the
phase drop across the SQUID, serves as a pointer: it couples
to the qubit degree of freedom � and is read out by the
classical observer, which appears in the classical equation of
motion �8� as a dissipative term. Without bias current IB=0,
the classical solution for this degree of freedom becomes
�+=0 independent of the internal degree of freedom �− and
the qubit. It follows that, in the absence of IB, there is no
coupling between the quantum mechanical system and the
environment, as the pointer is decoupled from the observer.

We start the derivation of the system Hamiltonian sup-
pressing the dissipative term in Eq. �8�. It will be later rein-
troduced in the form of an oscillator bath. Starting from the
equations of motion �7�, �8�, and �10� for �± and � we first
determine the Lagrangian such that dt���̇L�=��L and
dt���̇±

L�=��±
L. We introduce the canonically conjugate mo-

menta p=��̇L=�2Cq�̇ /e2 and P±=��̇±
L=�2Cs�̇± / �2e2� and

finally derive the Hamiltonian using H= �̇p+ �̇−P−+ �̇+P+
−L. This leads to

H = �P+
2 + P−

2

Cs
+

p2

2Cq
� e2

�2 − � 2

LJS
cos

�−

2
cos

�+

2
+

MSq

M�
2 ��−

−
Lq

M�
2

�−
2

2
+ 	1�− +

1

LJq
cos � −

LS

M�
2

�2

2
+ 	2�

+
e

�
IB�t��+��2

e2 . �11�

Now we proceed to simplify this Hamiltonian using the as-
sumptions that LJS
LS, which applies to small SQUIDs as
the ones used for qubit readout, and that the driving strength
is small enough to remain in the harmonic part of the poten-
tial 	IB	� IcS. Using the latter assumption, we can expand the
potential energies to second order around the minimum and
obtain two coupled harmonic oscillators ��+ and �−� with
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greatly different frequencies. �− evolves in a much narrower
potential ��1/LS� than that of �+ ��1/LJS�. Therefore we can
perform an adiabatic approximation and substitute �−
through its average position. We obtain the following poten-
tial for the remaining degree of freedom �+:

U = U0 +
1

4LJS
cos�	1

M�
2

2Lq
+ �

MSq

2Lq
�



�+ −
IB�t�
IcS

1

cos�	1
M�

2

2Lq
+ �

MSq

2Lq
��

2�2

e2 . �12�

In the next step, we perform the two-state approximation of
the qubit along the lines of Refs. 33 and 42, reducing its
dynamics to the two lowest energy eigenstates. This space is
spanned by wave functions centered around two values �̂
=�0�̂z �� either in the left or the right well of the potential�.
While the manipulation of the qubit is usually performed at
the optimum working point,18 the readout can and should be
performed in QND measurement, i.e., in the pure dephasing
limit. This reduces the qubit Hamiltonian to �0�̂z. We allow
for a significant off-diagonal term ��̂x to have acted in the
past in order to prepare superpositions of eigenstates of �z.
Physically, this situation is achieved by either making one of
the qubit junctions tunable, or imposing a huge energy bias
to the qubit.

We note here that if, opposed to the case we will discuss
in the following, the measurement interaction would not
commute with the qubit Hamiltonian, a full analysis in terms
of quantum measurement theory would be required. Similar
to Refs. 43 and 44 the action on the system given by each
measurement result would need to be determined in order to
quantify the information that the observer can obtain about
the initial state of the qubit, as well as the state following the
measurement.

After these approximations the qubit-SQUID Hamiltonian
reads

ĤS = ��t��̂z +
P̂+

2

2m
+

m��2 + �2�̂z�
2

x̂2 − F�t�x̂ , �13�

where x̂ corresponds to the external degree of freedom of the
SQUID �+ and F�t�=F0 sin��t� originates in the ac driving
by a classical field. The conversion of the parameters to
circuit-related quantities can be found in Appendix A. Here
� is the quadratic frequency shift.

An important property of this Hamiltonian is the absence
of the commonly used linear coupling between the two-level
system and the harmonic oscillator.17 In our case the qubit
couples to the squared coordinate of the oscillator, which
leads to a qubit dependent change in the frequency of the
harmonic oscillator instead of the shift of the potential mini-
mum.

Because of the coupling to the driven oscillator the qubit
energy splitting becomes time-dependent ��t�=�0+�IB

2�t�.
To model the dissipation introduced by the resistor we

follow the standard Caldeira-Leggett approach33,45–47 and in-
clude an oscillator bath to our Hamiltonian

�14�

with J���=�i�i
2� / �2mi�i����−�i�=m������−�c� /�,48

where � is the Heaviside step function and �= �s−1� the pho-
ton loss rate. The cut-off frequency �c is physically moti-
vated by the high frequency filter introduced by the capaci-
tors.

III. METHOD

Our goal is to analyze the resolution and measurement
time and investigate the backaction on the qubit. The former
requires tracing over the qubit and discuss the dynamics of
the pointer variable of the detector, and the latter requires
tracing over the detector degrees of freedom.

It is well established how to do this, in principle, exactly33

when the qubit couples to a Gaussian variable of the detector
�i.e., sum of quadratures of the environmental coordinates�.
A method to map a damped harmonic oscillator to bath of
uncoupled oscillators with a modified spectral density49,50

also exists. In our case, due to the quadratic coupling be-
tween the qubit and the damped oscillator �13�, any such
normal-mode transform does not lead to the usual Gaussian
model and thus cannot use many of the methods developed
for the spin-boson model.

There are several approaches to dealing with this chal-
lenge. As long as the coupling is weak, ���, one can still
linearize the detector dynamics and make a Gaussian ap-
proximation as it was done in Ref. 28. Nevertheless, weak
coupling decoherence theory as reviewed, e.g., in Refs. 7 and
32 builds on two-point correlators and cannot distinguish
Gaussian from non-Gaussian environments.

In this work we describe arbitrarily large couplings be-
tween qubit and oscillator going beyond the Gaussian ap-
proximation. The only small parameter we rely upon is the
decay rate of the oscillator �. This is justified by the fact that
dispersive measurement only makes sense for large oscillator
quality factors Q�1. We treat a composite quantum
system—qubit � oscillator—weakly coupled to the heat bath
represented by the resistor. This complex-environment ap-
proach resembles the methods of, e.g., Refs. 28 and 37.

We start with the standard master equation for the reduced
density operator in Schrödinger picture and Born-Markov
approximation,32,51 assuming factorized initial conditions
��0�=�S�0� � �B�0�

d

dt
�̂S�t� =

1

i�
�ĤS, �̂S�t��

+
1

�i��2

0

t

dt� TrB�ĤSB,�ĤSB�t,t��, �̂S�t� � �̂B�0��� ,

�15�

where ĤSB�t , t��= Ût�
t ĤSBÛt

t� and Ût
t�=T exp��t

t�d��ĤS

+ ĤB� / ��i�� and T is the time-ordering operator. In thermal
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equilibrium there will be correlations between the main os-
cillator and the oscillators of the bath, so the initial state is
not strictly speaking factorized. In the low � limit here, these
correlations will affect the dynamics only in higher order �2

and can hence be neglected. This is a standard assumption in
the perturbative treatment of open systems where here � is
the perturbative parameter, see, e.g., Ref. 32. This approach
is valid at finite temperatures kBT
��, for times
t
1/�c,

32,52 which is the limit we will discuss henceforth.

We assume unbiased noise �ĤSB�=0. The Hamiltonian �13�
describes a driven harmonic oscillator, therefore the Floquet
modes �see, e.g., Refs. 53 and 54 for a short review� form the
appropriate basis in which we express the master equation.
For a driven harmonic oscillator the Floquet modes54 are
given by

�n�x,t� = �n„x − ��t�…exp� i

�
�m�̇�t�„x − ��t�… − Ent

+ 

0

t

dt�L�t���� ,

=�n�x,t�e−iEnt/�, �16�

where En=���n+1/2�, �n�x� a number state, ��t� is the clas-

sical trajectory, and L�� , �̇ , t� the classical Lagrangian of the
driven undamped oscillator

��t� =
F0 sin��t�

m��2 − �2�
, �17�

L��, �̇,t� =
1

2
m�̇2�t� −

1

2
m�2�2�t� + ��t�F�t� . �18�

We also define the operator Â as the annihilation operator
corresponding to a Floquet mode

â = Â + ��t� , �19�

where ��t�=� m
2�� (i�̇�t�+���t�) so that Â�n�x , t�

=�n�n−1�x , t�. After some algebra we obtain

x̂ =� �

2m�
�Â + Â†� + ��t� , �20�

â�t,t�� = ei��t−t��Â + ��t�� . �21�

Equation �21� has been obtained by calculating
â�t , t���n�x , t�, where ��n�x , t�� build a complete set of func-

tions at any time t. Here one can interpret the sum Â+ Â† as
the deviation of x̂ from the classical trajectory ��t�.

Since we are describing a composite quantum mechanical
system, the operators in Eq. �15� can be written in the qubit
�̂z basis as follows

�̂S = ��̂↑↑ �̂↑↓

�̂↓↑ �̂↓↓
�, ĤS = �ĤS↑ 0

0 ĤS↓
� �22�

Â = �Â↑ 0

0 Â↓
�, â�t,t�� = �â↑�t,t�� 0

0 â↓�t,t��
� ,

� � �↑ ,↓� , �23�

where all the matrix elements are operators in the oscillator
Hilbert space

ĤS↑,↓ = ± ��t� + � P̂+
2

2m
+

m��2 ± �2�
2

x̂2 − x̂F�t�� , �24�

â��t,t�� = Â�e
i���t−t�� + ���t�� , �25�

and Â↑,↓ is the annihilation operator of a Floquet mode with
frequency �↑,↓=��2±�2. The functions ��t� and ��t� also
depend on the frequency of the harmonic oscillator; there-
fore, they become 2
2 diagonal matrices.

As we observed in the previous section, as long as IB=0
there is no direct coupling between the qubit and the oscil-
lator in the second order approximation and thus no coupling
to the environment. Therefore, at t=0, before one turns on
the ac driving, the harmonic oscillator has the frequency �
independent of the qubit. Therefore the initial condition for
the density matrix �̂S is �̂S�0�= �̂qubit � �̂HO

���.

We introduce also the annihilation operator Â0 for the

Floquet modes with frequency � which relates to Â� as fol-
lows:

Â� =
1

2
„Â0

†�f� − f�
−1� + Â0�f� + f�

−1�… − ��
*�t� + Re �0�t�f�

− i Im �0�t�
1

f�

, �26�

where f�=��� /�.
Using the operators introduced above in Eq. �15�, we

obtain

�̂����t� =
1

i�
ĤS��̂����t� −

1

i�
�̂����t�ĤS�� +

1

�i��2

0

t

dt�

0

�

d�J�����ei��t−t��n��� + e−i��t−t��
„n��� + 1…��g�

2�â� + â�
†�„â��t,t��

+ â�
†�t,t��…�̂����t� − g�g��„â��t,t�� + â�

†�t,t��…�̂����t��â�� + â��
† �� − �g�g���â� + â�

†��̂����t��â���t,t�� + â��
† �t,t���

− g��
2

�̂����t��â���t,t�� + â��
† �t,t����â�� + â��

† ���e−i��t−t��n��� + ei��t−t��
„n��� + 1…�� , �27�

PHASE-SPACE THEORY FOR DISPERSIVE DETECTORS… PHYSICAL REVIEW B 76, 104510 �2007�

104510-5



where g�=�� / �2m��� and n��� is the Bose function. We
observe that the equations of motion for the four components
of �̂S are not coupled to each other. This is the consequence
of neglecting the tunneling in the qubit Hamiltonian Eq. �13�.
While the two diagonal components fulfill the same equa-
tions of motion as in the case of the well-known damped
harmonic oscillator, each of them with a different frequency,
the two off-diagonal elements of the density matrix have a
more complicated evolution. Specifically, they are not Her-
mitian and do not conserve the norm. This is to be expected,
as the norm of the off-diagonal elements measures the qubit
coherence, which is not conserved during measurement.

One can handle master equations in an infinite-
dimensional Hilbert space with the aid of phase-space
pseudoprobability distribution functions,55–57 which encode
any operator with a finite norm56,58 into a phase-space func-
tion. Here, we choose the characteristic function of the
Wigner function  �! ,!* , t� to represent the density matrix

�̂����t� =
1

�

 d2! ����!,!*,t�D̂�− !� , �28�

where D̂�−!�=e−!Â0
†+!*Â0 is the displacement operator. By

replacing this representation of �̂��� into the master equation
�27� we obtain partial differential equations for the charac-
teristic functions  ����! ,!* , t�. Note that here 	!� is different
from the coherent state as it is composed of Floquet modes
instead of Fock states, i.e.,

	!� = e−	!	2/2�
n

!n

�n!
	�n�t�� . �29�

IV. RESULTS

A. Measurement

In this section we propose three dispersive measurement
protocols, all based on the detection of the oscillator momen-
tum, from which the state of the qubit can be inferred.

We start by computing the measured observable of the
detector, the voltage drop V across the SQUID. In our nota-
tion, the operator is found as the oscillator momentum, V

= iV01̂qubit � �a−a†�, and involves a trace over the qubit. Here
the momentum p̂ is 2 meV /�. Thus, we obtain the diagonal
characteristic functions  ��. For �=�� we obtain from Eqs.
�26�–�28�, a Fokker-Planck equation59

 ̇���!,!*,t� = ��!�−
�

2
+ i�̃�

+� + !*�−
�

2
+ i�̃�

−���!

+ �!*�−
�

2
− i�̃�

+� + !�−
�

2
− i�̃�

−���!*

− �1 + 2n��
���

4�
�! + !*�2 + �!

+ !*�f��t�� ���!,!*,t� , �30�

where

f��t� =
iF0„cos��t��� + sin��t����

2 − �2�…
�2m����2 − �2�

, �31�

and �̃�
± = �±�2+��

2� / �2��. Note that we must express the

operators in Eq. �15� in terms of Â0 corresponding to fre-
quency � as the oscillator has initially that frequency, in a
particular case the thermal state of frequency �. Equation
�30� is consistent with the property  ����!�= ���

* �−!� origi-
nating in the hermiticity of the density matrix. We perform
the variable transformation �! ,!* , t�→ �z ,z* ,s� defined by
means of the following differential equations:

�s! = !��

2
− i�̃�+� + !*��

2
− i�̃�−� , �32�

�s!
* = !*��

2
+ i�̃�+� + !��

2
+ i�̃�−� , �33�

s = t . �34�

The solutions of these coupled differential equations will de-
pend on some initial conditions, i.e., !�s=0�=z and thus we
obtain the transformation !→!�z ,z* ,s�. This transformation
conveniently removes the partial derivatives with respect to
! and !* in Eq. �30� and we are left with

�s ���z,z*,s� = „!�z,z*,s� + !*�z,z*,s�…f��t�

− �1 + 2n��
���

4�
„!�z,z*,s� + !*�z,z*,s�…2,

�35�

which can be directly integrated. After performing the trans-
formation back to the initial variables  ���! ,!* , t� we can
calculate the probability density of momentum P�p0 , t�
=��m� /2���p̂− p0�� where the qubit initial state is q↑	↑ �
+q↓	↓ � and

P�p0,t� = " �
���↑,↓�

	q�	2

2�2 
 dkeik„�̇�t�m−p0…



 d2! ���!,!*,t�



 d2#�#	e−k"�Â0
†−Â0�D̂�− !�	#� , �36�

" =��m�

2
. �37�

Evaluating the integrals in Eq. �36� we obtain for the prob-
ability density of momentum

P�p0,t� = �
���↑,↓�

	q�	2

�4�B��t�
exp�−

„p0 − C��t�…2

4"2B��t� � . �38�

Here, assuming the oscillator initially in a thermal state, we
have
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C��t� =
F0�

�2�2 + ��2 − ��
2�2�cos��t����

2 − �2� + sin��t���

+ e−�t/2 cos��̄�t�
�2��2 + �2� − ��2 + �2���

2 + ��
4

�2 − �2

− e−�t/2 sin��̄�t�



�„��

4 + �2��2 + �2� + ��
2��2 − 3�2�…

2�̄���2 − �2�
� , �39�

B��t� =
1 + 2n����

2

��

� �1 − e−�t��
2

�̄�
2

+ e−�t cos�2�̄�t�
�2

4�̄�
2

+ e−�t sin�2�̄�t�
�

2�̄�

� −
1 + 2n���

2


e−�t
−
��

2

2�̄�
2
�1 +

��
2

�2� + cos�2�̄�t�




��
2�1 +

��
2

�2� − 4�̄�
2

4�̄�
2

+ sin�2�̄�t�
�

2�̄�

� , �40�

and �̄�=���
2 −�2 /4. One can see that B�t� evolves from

B��0�=1/2+n��� to B����= (1/2+n����)�� /� and for �
=���p̂���t�=C��t� becomes the momentum of the classical
damped oscillator with the initial conditions ṗ�0�=
−F0�� / ��2−�2� and p�0�=F0� / ��2−�2�. Note that the
value B���� is independent of the initial B��0�. Therefore the
long time value of B is the same also for ground and coher-
ent states.

In the following, when analyzing different types of mea-
surement protocols, we have to differentiate between dis-
crimination and measurement time. Measurement time is the
total time needed to transfer the information from the qubit
to the observer. In a sample-and-hold protocol, one imprints
the qubit state into the oscillator, then decouples the two, and
observes the latter. The time needed for the first step is called
discrimination time.

1. Long time, single-shot measurement

In the measurement scheme of Ref. 26 one needs the volt-
age amplitudes corresponding to the two qubit states. For
this one must wait until the transients in the momentum
�voltage� oscillations have died out. From the amplitude of
momentum one can then determine the state of the qubit.

Following Ref. 26 we define the measurement time as the
time required to obtain enough information to infer the qubit
state

�m =
SV

�V↑ − V↓�2 , �41�

where V� is the amplitude of the voltage for the qubit in the
state 	�� and SV=2kBTR is the spectral density of the detector

output. This is the time needed for discriminating two long
time amplitudes relative to a noise backgroud given by SV.
Therefore, in our notation,

�m =
b

��A↑ − A↓�2 , �42�

where

A� =
�

��2�2 + ��2 − ��
2�2

�43�

and b=kBTCs / IB
2 . Note that in this type of amplitude mea-

surement it is advantageous to drive far from resonance,
since at resonance the amplitudes A� become identical for
the two qubit states. Off-resonance �m is a monotonically
falling function of �, i.e., larger coupling leads to faster mea-
surement. Close to resonance �m grows again for large values
of �.

It is known that, when a harmonic oscillator is driven
close to resonance, a phase measurement reveals most of the
information about the oscillator frequency and leads to the
best resolution and quantum limited measurement. Along the
lines of Ref. 60 one can suppose that, for measurement clos-
est to the quantum limit, the conjugate observable to the one
being measured should deliver no information. In our case,
for off-resonant driving and amplitude measurement, most of
the information about the qubit is contained in the amplitude
and almost none in the phase.

2. Short time, single-shot measurement

In the measurement protocol of the previous section and
Ref. 26 the desired information is extracted from the long
time C�= �p̂���t�. The method has the advantage of being
single shot, but disadvantages resulting from long time cou-
pling to the environment such as dephasing, relaxation, and
loss of visibility.61,62

In this section we present a different measurement proto-
col. It is based on the short time dynamics illustrated as
follows: for the qubit initially in the state 1 /�2�	↑ �+ 	↓ �� the
probability distribution of momentum is plotted in Figs. 2�a�
and 2�b�.

In Fig. 2 one can see that the two peaks corresponding to
the two states of the qubit split already during the transient
motion of �p̂��t�, much faster than the transient decay time. If
the peaks are well enough separated, a single measurement
of momentum gives the needed information about the qubit
state, and has the advantage of avoiding decoherence effects
resulting from a long time coupling to the environment. Nev-
ertheless the parameters we need to reduce the discrimination
time also enhance the decoherence rate.

We define in this case the discrimination time as the first
time when the two peaks are separated by more than the sum
of their widths, i.e.,

	C↑��discr� − C↓��discr�	 $ 3�2m����B↑��discr� + �B↓��discr�� .

�44�

A comparison between discrimination and dephasing rate
will be given in Sec. IV C.

PHASE-SPACE THEORY FOR DISPERSIVE DETECTORS… PHYSICAL REVIEW B 76, 104510 �2007�

104510-7



Because of the oscillatory nature of C��t� the problem of
finding the first root of Eq. �44� is not trivial. We solve it by
semiquantitatively probing the function 	C↑�t�−C↓�t�	
−3�2m����B↑�t�+�B↓�t��; therefore, the plot ist not very
accurate. Nevertheless it gives a good idea about the depen-
dence of �discr on �.

We observe in Fig. 3 that �discr is a discontinuous function
of the coupling strength �, such that small adjustments in the
parameters can give important improvement of the discrimi-
nation time.

For this type of measurement we are interested in the
transients of C��t� and we observe that the difference
	C↑�t�−C↓�t�	 increases for values of the driving frequency �
close to resonance. For the � far off resonance the splitting of
the peaks is increased by stronger driving.

The discrimination time discussed here is not to be con-
fused with the physical measurement time. In particular, the
discrimination time remains finite even at vanishing � and
when the off-diagonal elements of the full density matrix in
qubit space �22� still have finite norm at this time. The dis-
crimination time is the time it takes to imprint the qubit state
into the oscillator dynamics. For completing the measure-
ment the oscillator itself needs to be observed by the heat
bath and, as a consequence of that observation, the full den-
sity matrix will collapse further.

We note that in this kind of sample-and-hold measure-
ment, the qubit spends only the discrimination time in con-
tact with the environment. Keeping the discrimination time
short may be of advantage in limiting bit flip errors during
detection. We do not further describe such error processes in
this paper.

As a technical limitation, it should be remembered that
our theory is based on a Markov approximation for the
oscillator-bath coupling, hence it is not reliable for discrimi-
nation times lower than the bath correlation time.

3. Quasi-instantaneous, ensemble measurement

In this section, we are going to take this idea to the next
level and analyze a measurement protocol that is based on
extremely short qubit-detector interaction. In Refs. 63–65 it
has been shown that one can measure several field observ-
ables through infinitesimal-time probing of the internal states
of the coupled qubit. In this section, we apply the same idea
to the opposite setting. We show that the information about
the state of the qubit is encoded in the expectation value of
the momentum of our oscillator at only one point in time,
leading to a fast weak measurement scheme.

We rewrite the Hamiltonian �14�

a)

b)
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0
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p 0,t)
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FIG. 2. Probability density of momentum P�p0 , t� �a�, snapshots
of it at different times �b�, and expectation value of momentum for
the two different qubit states �c�. Here �� / �kBT�=2, � /�=0.45,
� /�=0.025 and �� / �kBT�=1.9, and p̄0 is the dimensionless mo-
mentum p0 /�kBTm.
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FIG. 3. Discrimination time as function of the coupling strength
between qubit and oscillator. Here �� / �kBT�=2, � /�=0.025, and
�� / �kBT�=1.95.
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Ĥ = ���â†â +
1

2
� + F�t�� �

2m�
�â + â†� + ��t��̂z

+ �̂z
��2

4�
�â + â†�2 +

��â + â†�
2�m�

�
i

�i�b̂i + b̂i
†�

�mi�i

+ �
i

��i�b̂i
†b̂i +

1

2
� . �45�

In Schrödinger picture we have

�̇̂ =
1

i�
�Ĥ, �̂� , �46�

which leads, for any observable, to

�t�Ô� = ��tÔ� +
1

i�
��Ô,Ĥ�� . �47�

Setting Ô= â− â† we obtain

�t�â − â†� =
1

i�
����â + â†� +

��2

2�
�̂z�â + â†�

− 2� �

2m�
F�t� − 2� �

2m�i
�i�b̂i + b̂i

†�� .

�48�

We assume unbiased noise and the qubit in the pure initial
state q↑	↑ �+q↓	↓ � which leads to

�̂qubit�0� = �	q↑	2 q↑q↓
*

q↑
*q↓ 	q↓	2

� . �49�

For t=0 Eq. �48� becomes

	�t�â − â†�	t=0 = − i�â + â†�t=0�� +
�2

2�
��̂z��

− 2� �

2m�
F�0� , �50�

��̂z� = 2	q↑	2 − 1. �51�

If �â+ â†�t=0�0, the ensemble measurement of 	�t�â
− â†�	t=0 is sufficient to determine the state of the qubit.

In our case the oscillator is initially in a thermal state and
�â+ â†�t=0=0. Nevertheless, calculating �p̂� from Eq. �38� we
obtain for the center of the Gaussians corresponding to the
two qubit states C� of Eq. �39�

�p��t� = C↓�t� + �C↑�t� − C↓�t��	q↑	2, �52�

which is valid for all times. If C↑�t��C↓�t� we have

	q↑	2 =
�p��t� − C↓�t�
C↑�t� − C↓�t�

. �53�

At t=0 we have like in the exact case C↑�0�=C↓�0� indepen-
dent of system parameters. This is again the consequence of
the thermal initial state. Therefore one cannot infer from
�p̂��0� the state of the qubit. For infinitesimal ��0 we have

C↑����C↓���. Therefore quasi-instantaneous measurement
of momentum still delivers the necessary information about
the qubit, if the measurement is made at an infinitesimally
small ��0.

At t=0 also the first derivative of C↑�t�−C↓�t� is 0 due to
the thermal initial state. A series expansion of Eq. �39� gives
the short time result

C↑�t� − C↓�t� =
2�F0�2

�2 − �2 t2 + O�t3� . �54�

This gives a criterion for �discr, independent of �, similar to
observations of previous section, i.e., for short discrimination
times we need large � and strong, close to resonance driving.

Moreover, it is sufficient to measure the expectation value
of momentum, and not the first time derivative. The reason
for this is the oscillator evolution, mediated by the interac-
tion with the qubit, into a state with finite expectation value
�a+a†�, in other words the system is automatically creating
its own measurement favorable “initial” condition. This is
visible in Eq. �54� where the part of the signal proportional
	q↑	2 increases like t2 which, for short times is slower than t,
as it would be in the case where the favorable initial condi-
tion already exists.

This method leads to shorter discrimination times than the
protocols presented in Secs. IV A 1 and IV A 2 which are
independent of � and �. Again, the readout of the oscillator
in the end will be a separate issue and ultimately take a time
��−1.

On the other hand, in order to establish the expectation
value with sufficient accuracy, this scheme requires a large
ensemble average. According to the central limit theorem the
uncertainty of the ensemble measurement is

�y

�y�
=

1
�N

�p

�p�
, �55�

where y is the ensemble averaged value of the measured
momentum and N the number of measurements. For a given
precision we have N� ��p / ��p���2; therefore, the number of
measurements necessary to reach a given precision depends
on � and time t. We have

N =
�y�2

�y2

	q↑	2	q↓	2�C↑ − C↓�2 + m�� �
���↑,↓�

	q�	2B�

� �
���↑,↓�

	q�	2C��t��2 .

�56�

Equation �53� shows that we need C↑�C↓ in order to deter-
mine the state of the qubit. At the same time, the number of
measurements N necessary for high precision measurement
of momentum is significantly reduced when C↑=C↓ �the two
Gaussian distributions overlap completely�. This reflects the
tradeoff between the number of measurements and the signal
strength C↑−C↓ which provides information about the qubit.

B. Backaction on the qubit

In order to complete the study of the measurement proto-
cols presented in the previous section, we need insight into
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the measurement backaction on the qubit. Since we are
studying the QND Hamiltonian �13�, the qubit decoherence
consists only of dephasing. We start with the qubit in the
initial pure state �	↑ �+ 	↓ �� /�2 and study the decay of the
off-diagonal elements of the qubit density matrix. Such a
superposition can be created by, e.g., rapidly switching the
tunnel matrix element from a large value to zero,66 or by
ramping up the energy bias from zero to a large value. We
compute the qubit coherence

C�t� = Tr��̂x � 1̂�̂S�t�� = 2 Re Tr �̂↑↓�t�

= 2 Re
 dx�x	�̂↑↓�t�	x� = 2 Re
 dx
 dpW↑↓�x,p,t�

= 2 Re
 dx
 dpeix0eip0W↑↓�x,p,t� = 8� Re  ↑↓�0,0,t� ,

�57�

where W��� is the Wigner function

W����x0,p0� =
1

��

 dy�x0 + y	�̂���e

−2iyp0	x0 − y� . �58�

We extract the dephasing time �% from the strictly exponen-
tial long time tail of C�t�.

We rewrite the master equation �27� for ���� using Eqs.
�26� and �28� and obtain a partial differential equation for the
characteristic function  ↑↓ as follows:

 ̇↑↓�!,!*,t� = �„!�k1 + i�� + !*k1 + B sin��t�…�!

+ „!*�k2 − i�� + !k2 − B sin��t�…�!*

− i
�2

2�
��! − �!*�2 + �! + !*�f↑↓�t�

+ F�t� + p�! + !*�2� ↑↓�!,!*,t� . �59�

The coefficients can be found in Appendix B. Equation �59�
is a generalized Fokker-Planck equation where the total norm
is not conserved, i.e., �d2! ↑↓�! ,!* , t� is not a constant of
motion.

1. Solution of the generalized Fokker-Planck equation

Generalized Fokker-Planck equations �59� cannot in gen-
eral be solved analytically with the established tools.59 In our
case, we are not interested in a fully general solution of the
differential equation, but in the initial value problem where
the  ↑↓�! ,!* ,0� is a Gaussian function, which covers ther-
mal and coherent states of the oscillator. In this case one can
show that  ↑↓�! ,!* , t� remains a Gaussian at all time. This is
the consequence of the QND Hamiltonian �13�. We make the
ansatz

 ↑↓�!,!*,t� = A�t�exp„− M�t�!2 − N�t�!*2 − Q�t�!!* + R�t�!

+ S�t�!*
… , �60�

and obtain for the time-dependent parameters of the Gauss-

ian a closed system of nonlinear differential equations of the
first order, thus proving that our ansatz is correct and com-
plete if the initial characteristic function is a Gaussian.

We assume the oscillator initially in a thermal state
 ↑↓�! ,!* ,0�= �1/4��exp(−�1/2+n����	!	2) and obtain for
the parameters of the Gaussian ansatz following equations of
motion

ȦE�t� = B sin��t�„R�t� − S�t�… + F�t� +
i�2

�
�M�t� + N�t�

− Q�t� −
„R�t� − S�t�…2

2
� , �61�

Ṙ�t� = �k1 + i��R�t� + k2S�t� − B sin��t�„2M�t� − Q�t�…

−
i�2

�
„R�t� − S�t�…„Q�t� − 2M�t�… + f↑↓�t� , �62�

Ṡ�t� = �k2 − i��S�t� + k1R�t� + B sin��t�„2N�t� − Q�t�…

−
i�2

�
„S�t� − R�t�…„Q�t� − 2N�t�… + f↑↓�t� , �63�

Ṁ�t� = 2�k1 + i��M�t� + k2Q�t� +
i�2

2�
„Q�t� − 2M�t�…2 − p ,

�64�

Ṅ�t� = 2�k2 − i��N�t� + k1Q�t� +
i�2

2�
„Q�t� − 2N�t�…2 − p ,

�65�

Q̇�t� = �k1 + k2�Q�t� + 2k1M�t� + 2k2N�t�

−
i�2

�
„Q�t� − 2M�t�…„Q�t� − 2N�t�… − 2p , �66�

where A�t�=eAE�t�. This system of equations can be solved
numerically, for example, using a Runge-Kutta algorithm.

Reference 67 gives an elaborate analysis of the various
dephasing mechanisms in the case without driving and the
parameter regimes where they come to play. There the weak
qubit-oscillator coupling �WQOC� regime is associated with
a phase Purcell effect68 where the dephasing rate 1 /�%

�1/�. Beyond the weak coupling, Ref. 67 explores a strong
dispersive coupling regime with fundamentally different ori-
gin where the dephasing rate is proportional to �.

In the following we want to apply and extend this result to
the case of actual measurement, i.e., when the oscillator is
driven in order to measure its frequency and from this infor-
mation, to infere the state of the qubit.

2. Qubit dephasing

We start by studying the dependence of the qubit dephas-
ing on the parameters of the oscillator driving field.

In Fig. 4 we observe that the dependence of the dephasing
rate 1 /�% on F0 is quadratic. For values of � belonging to
strong and weak coupling regime at F0=0 we obtain the
same driving contribution to the dephasing rate, proportional
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to �F0
2, see the inset of Fig. 4. Here only the contribution of

driving is shown. We have substracted from each curve the
initial value of �% at F0=0. We observe that the decoherence
rate must be of the form

� 1

�%

=
1

�%
�

F0=0
+ ct.F0

2� , �67�

for both the weak and strong coupling regimes.
This was to be expected since the qubit couples to the

squared coordinate which �at least in the classical case� is
proportional to F0

2. In both regimes, the driving leads to a
contribution to the dephasing rate that is proportional to �
because the driving leads to classical motion relative to the
heat bath, which is fixed in the x̂-coordinate space. This mo-
tion enhances the effect of the bath the stronger the friction
coefficient � is. Consequently, even if in the undriven case
the dephasing rate scales as 1 /�, strong driving can in prin-
ciple cross it over to a decay rate ��. This crossover from
1/� to � inside the WQOC regime happens at either very
strong driving or when the driving � frequency approaches
one of the system resonances ��.

The dependence on the driving frequency has also been
analyzed in Fig. 4. Here we observe two peaks at �↑ and �↓.
At �=� the classical driven and undamped trajectory ��t�
diverges. In terms of the calculation this means that the Flo-
quet modes are not well defined when the driving frequency
is at resonance with the harmonic oscillator—we have a con-
tinuum instead. Physically this means that at t=0 our oscil-
lator has the frequency � because it has not yet “seen” the
qubit, and we are driving it at resonance, and by amplifying
the oscillations of �x̂� which is subject to noise we amplify
the noise seen by the qubit. The dephasing rate is also ex-
pected to diverge. The peaks at �↑ and �↓ show the same

effect after the qubit and the oscillator become entangled.
The dephasing rate drops again for large driving frequencies
to the value obtained in the case without driving.

C. Comparison of dephasing and measurement times

In this section we analyze the measurement times neces-
sary for the measurement protocols described in Secs. IV A 1
and IV A 2 and compare them with the dephasing times of
the qubit obtained for the same parameters.

1. Long time, single-shot measurement

For the long time measurement protocol �Sec. IV A 1� we
observe that 1 /�m�F0

2�4+O��8�.
Comparing 1/�% and 1/�m we find that the measurement

time depends more strongly on the driving strength F0 than
the dephasing time.

As one can see for the parameters of Fig. 5, in the WQOC
regime the measurement time is longer than the dephasing
time. Their difference decreases as we increase � due to the
onset of the strong coupling plateau in the dephasing rate,
approaching the quantum limit where the measurement time
becomes comparable to the dephasing time. Note that, for
superstrong coupling either between qubit and oscillator or
between oscillator and bath, corrections of the order �� /�↓�2

of the dephasing rate gain importance. These corrections are
not treated in our Born approximation. Therefore the regions
where the dephasing rate becomes lower than the measure-
ment rate, in violation with the quantum limitation of Ref.
14, should be regarded as a limitation of our approximation.

The inset in Fig. 5 shows the dephasing and measurement
times as function of �. Again we observe improvement of the
ratio of measurement and dephasing time as we increase �.
On the other hand, if the tunning of � should be easier to
achieve experimentally, we also see that at given � one can
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make use of the phase Purcell effect, which reduces the
dephasing rate as 1 /� while the measurement rate increases
like �. This goes along the lines of Ref. 67 where it has been
shown that strong � implies WQOC, i.e., phase Purcell ef-
fect.

2. Short time, single-shot measurement

As already mentioned, for the short-time, single-shot
measurement strong, close to resonance driving is needed for
the rapid separation of the peaks. While the discrimination
time is not very sensitive to the change of �, we observe in
Fig. 6 that one needs relatively strong coupling (� /�
� �0.03,0.1�) for the discrimination time to become shorter
than the decoherence time. The picture of the dephasing rate
is also qualitatively different from the case without driving
or with far off-resonant driving, since for � /��0.4, �↑ be-

comes resonant with the driving frequency. In this region our
numerical calculation also becomes unstable. Nevertheless,
as one can see in Fig. 6, the dephasing rate is proportional to
�. Thus, by reducing the damping of the oscillator, one can
extend the domain of values of � where the measurement
can be performed. We also observed that by further reducing
� the discrimination rate suddenly drops to zero, i.e., for too
small � the two peaks in Fig. 2 will never be well enough
separated to allow a single-shot measurement. �See Table I�

In this protocol what we call “discrimination time” is ac-
tually the time when the system becomes measurable, i.e.,
one can in principle extract from a single measurement the
needed information about the qubit �and consequently col-
lapse the wave function�. We do not further describe this
collapse here.

V. CONCLUSION

We have presented a phase-space theory of the measure-
ment and measurement backaction on a qubit coupled to a
dispersive detector.

We have studied the qubit coupled to a complex environ-
ment �weakly damped harmonic oscillator� with a quadratic
coupling, which does not have to be weak. We solved the
problem by considering the prominent degree of freedom of
the environment, i.e., the main oscillator as part of the quan-
tum mechanical system and explicitly solving its dynamics.
Only at the end of the calculation we traced over this last
degree of freedom of the environment in order to obtain the
qubit dynamics.

We presented three measurement protocols and compared
the measurement and decoherence times. The protocol of
Sec. IV A 1 requires long measurement time, such that the
measurement can only be preformed in strong coupling re-
gime, with far off-resonant driving. The protocol of Sec.
IV A 2 has the advantage of short discrimination times com-
pared with the dephasing time, requires strong qubit-
oscillator coupling, and also close to resonance driving. Both
these protocols can be performed as a single-shot measure-
ment, and thus may be useful as a readout method for the
scalable architecture with long range coupling using super-
conducting flux qubits.69 The quasi-instantaneous measure-
ment protocol of Sec. IV A 3 has the advantage of the short-
est possible discrimination time and no restriction for the
qubit-oscillator coupling, with the drawback that one needs
to repeat the measurement a large number of times to obtain
the momentum expectation value.

We expect our results, with minor adaptations, to be ap-
plicable to various cavity systems, e.g., quantum dot or
atom-based quantum optical schemes.70,71 The dispersive
coupling of Hamiltonian �13� could have implications for the
generation of squeezed states, quantum memory in the frame
of quantum information processing, measurement, and post-
selection of the number states of the cavity.
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2e2 �̇+=
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Position x �+

Damping constant � 1/ �2RCS�
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APPENDIX A: PARAMETER CONVERSION

Here we present the parameter conversion from the actual
circuit to our model Hamiltonian. From the relation f��̂�
= f��0�̂z�= 1

2 (f��0�+ f�−�0�)+
�̂z

2 (f��0�− f�−�0�) we have

f1 =
1

2
�cos�a + b�0

2
� + cos�a − b�0

2
�� ,

�f1 =
1

2
�cos�a + b�0

2
� − cos�a − b�0

2
�� ,

a = 	1
M�

2

2Lq
=

2�

�0
�− MSq�q

�x� + Lq�S
�x��

1

2Lq
,

b =
MSq

2Lq
,

� =
1

4LJSIcS
2 �f2,

�f2 =
1

2
��cos�a + b�0

2
��−1

− �cos�a − b�0

2
��−1� .

APPENDIX B: PARAMETERS FOR THE GENERALIZED
FOKKER-PLANCK EQUATION

k1,2 = −
�

2
± �

�1 + 2n↑��↑ − �1 + 2n↓��↓

4�
,

p = −
�

8�
„�↑�1 + 2n↑� + �↓�1 + 2n↓�… −

i�2

8�
,

B = −
2iF0�2

�2m����2 − �2�
,

F�t� =
iF0

2�2

2m���2 − �2�2„cos�2�t� − 1… − 2
i

�
��t� ,

f↑↓�t� =
�F0

�2m��
�sin��t�� �2

2��2 − �2� �
���↑,↓�

���1 + 2n��
�2 − ��

2

−
��2�1 + 2n��

��2 − �↑
2���2 − �↓

2�� +
i�

�2 − �2 cos��t�� .
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