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We propose the implementation of a strongly driven one-atom laser, based on the off-resonant interaction of
a three-level atom in � configuration with a single cavity mode and three laser fields. We show that the system
can be described equivalently by a two-level atom resonantly coupled to the cavity and driven by a strong
effective coherent field. The effective dynamics can be solved exactly, including a thermal field bath, allowing
an analytical description of field statistics and entanglement properties. We also show the possible generation
of quantum superposition �Schrödinger cat� states for the whole atom-field system and for the field alone after
atomic measurement. We propose a way to monitor the system decoherence by measuring atomic populations.
Finally, we confirm the validity of our model through numerical solutions.
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I. INTRODUCTION

In cavity quantum electrodynamics �CQED� the interac-
tion between atoms and photons can be investigated experi-
mentally under carefully controlled conditions, and described
by relatively simple models �1�. These features make CQED
an almost ideal framework to investigate the foundations of
quantum mechanics and their application to quantum infor-
mation �2�. For instance, two-atom entanglement �3� as well
as the entanglement between an atom and a photon �4� have
been recently demonstrated. On the other hand, the basic
interaction between a two-level atom and a cavity field
mode, as described by the Jaynes-Cummings �JC� model �5�,
leads to nonclassical effects carefully tested in recent years
�6�. Furthermore, it allowed the implementation of the mi-
cromaser �7� and the microlaser �8� in the strong coupling
regime of CQED, in the microwave and optical domain, re-
spectively. Further efforts led to the implementation of a
trapped ion as a nanoscopic probe of cavity field modes �9�.
More recently, a single trapped neutral atom in a high-Q
optical cavity �10� allowed the implementation of a one-atom
laser �11�, i.e., lasing with only one intracavity atom. These
systems can exhibit features that are not present in standard
macroscopic lasers such as thresholdless generation and sub-
Poissonian photon number distribution �12�.

Another milestone in CQED experiments was reached in
Ref. �13�, where a “Schrödinger cat” state of the cavity field,
a mesoscopic superposition of two coherent states, was real-
ized. There, the field decoherence was monitored through
atom-atom correlation measurements �14�. State reconstruc-
tion of nonclassical intracavity fields was also possible
through atom-cavity dispersive interactions �15,16�. More re-
cently, a remarkable proposal for the resonant generation of
Schrödinger cat states �17� was implemented in the labora-
tory �18�, and tested with the help of a quantum spin-echo
technique �19�. The understanding of entanglement in atom-
cavity systems was enhanced when an additional driving
field acting on the cavity mode was added on top of the

atom-cavity JC interaction �20,21�. In this respect, recently,
an elegant analysis of a driven cavity containing a two-level
atom explained the absence or increase of entanglement in
the transient of the atom-cavity dynamics �22�. Unfortu-
nately, most realistic models including dissipative processes
require numerical analysis, or ideal theoretical conditions for
the sake of semianalytical derivations.

In this work, we introduce an integrable model of a
strongly driven one-atom laser �SDOAL� operating in the
optical regime of CQED, where the coherent driving field
acts directly on the atom. We consider a realistic model con-
sisting of a three-level atom in � configuration placed inside
a single-mode optical cavity, coupled off-resonantly to three
coherent laser fields. We show that this model can be reduced
to two atomic levels coupled to a cavity mode and a strong
classical driving on the atom. In this strong-driving limit
�23�, we solve the full system dynamics �24�, in the transient
and in the steady state, providing one more of the few ex-
amples of an exactly solvable open quantum system. In pre-
vious works �25,26�, we developed related results for micro-
wave cavity fields and two-level Rydberg atoms, not a good
model for a field in the optical regime and fast decaying
atomic dipolar transitions. Here, we solve analytically the
master equation for the full atom-field system in the SDOAL
model. Next, we exploit the obtained solutions for the analy-
sis of atom-field entanglement and the decoherence of atom-
field superposition states �Schrödinger cat states� via the
measurement of atomic populations. In addition, the genera-
tion and the decoherence of cat states of the cavity field
alone is described. Finally, we present numerical results con-
firming the validity of the approximations made to derive the
effective master equation of the SDOAL model.

The paper is organized as follows. In Sec. II, we introduce
the integrable model of a SDOAL. In Sec. III, we solve
analytically the master equation for the atom-cavity dynam-
ics. In Sec. IV, we consider the dynamics of the cavity field
and atom subsystems. In Sec. V, we describe entanglement
properties and the environment-induced decoherence of the
SDOAL, presenting a scheme to monitor decoherence via
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atomic populations measurements. A numerical analysis that
confirms the validity of the model is presented in Sec. VI.
Conclusions are reported in Sec. VII.

II. STRONGLY DRIVEN ONE-ATOM LASER MODEL

We consider a three-level atom �ion� in a � configuration
trapped inside an optical cavity �Fig. 1�. We assume that the
transition �1�↔ �2� is quadrupolar and, hence, the metastable
states �1� and �2� cannot be coupled directly, but only via the
level �3�. The level �3� can decay via spontaneous emission
and, therefore, the external lasers and the cavity field are all
far detuned with respect to the corresponding transition fre-
quencies. We suppose that the atom interacts off-resonantly
with a single mode of a cavity field of a frequency � f on the
transition �3�↔ �2�. The same transition is coupled off-
resonantly to a coherent field of a frequency �2�. The remain-
ing atomic transition �3�↔ �1� is coupled off resonance to
two lasers of frequency �1� and �. The different frequency
detunings, � and ����, of these two � processes prevent
the system from undesired transitions.

We assume, without loss of generality, that both the cavity
mode coupling frequency g and the associated laser Rabi

frequencies � ,�1� ,�2� are real. The Hamiltonian Ĥ�t� for the

whole system can be written as Ĥ�t�=Ĥ0+Ĥ1�t�, where

Ĥ0 = ��3Ŝ33 + ��2Ŝ22 + ��1Ŝ11 + �� fâ
†â , �1�

Ĥ1�t� = �g�â†Ŝ−
23 + âŜ+

23� + ���e−i�tŜ+
13 + ei�tŜ−

13�

+ ��1��e
−i�1�tŜ+

13 + ei�1�tŜ−
13� + ��2��e

−i�2�tŜ+
23

+ ei�2�tŜ−
23� . �2�

Here â �â†� is the cavity mode annihilation �creation� opera-
tor and, following the notation of �27�, we define the atomic
operators as follows:

Ŝ+
23 = �3��2�, Ŝ−

23 = �2��3�, Ŝ+
13 = �3��1� ,

Ŝ−
13 = �1��3�, ŜJJ = �J��J� �J = 1,2,3� . �3�

We rewrite the Hamiltonian Ĥ�t� in the interaction picture
leaving the unavoidable time dependence in the term related
to the laser Rabi frequency �

Ĥi�t� = − ���Ŝ22 − ���Ŝ11 − ��� − ���â†â + �g�	â

+
�2�

g

Ŝ+

23 + H.c.� + ��1��	1 +
�

�1�
ei��−���t
Ŝ+

13

+ H . c.� . �4�

If �� ,�� , ��−���
� �g ,� ,�1� ,�2�
, the unitary dynamics of
the atom-field system in Eq. �4� can be described by an ef-
fective Hamiltonian for a two-level atom coupled to the cav-
ity mode and in the presence of a classical driving field. This
is due to the fact that, under these conditions, the energy
diagram of Fig. 1 can be understood as composed by two
independent � schemes. In this case, it is straightforward to
prove that we can build the second-order Hamiltonian

H̄ˆ eff� = − �ḡeff�â†Ŝ+
12 + âŜ−

12� − ��̄eff�Ŝ+
12 + Ŝ−

12� , �5�

with ḡeff=g� /� and �̄eff=�1��2� /��. In Eq. �5�, as is usually
done, we have assumed the compensation of constant ac
Stark-shift terms by a proper retuning of the laser frequen-
cies. The Stark-shift term depending on the intracavity pho-
ton number can be neglected if ��g. In the strong-driving

limit, �̄eff� ḡeff, as explained in Ref. �23�, we can derive the
final effective Hamiltonian

H̄ˆ eff = − �
ḡeff

2
�â† + â��Ŝ+

12 + Ŝ−
12� . �6�

We have tested numerically the above analytical consider-
ations and proved, in fact, that Eq. �6� describes the correct
effective dynamics. However, we want to show here that we
can go beyond the limit of uncoupled � schemes and obtain
a similar dynamics with less demanding conditions on the
experimental parameters. To prove this statement we exploit
the small rotations method of Ref. �27�, which is essentially
a perturbative method for deriving effective Hamiltonians.
First, we introduce the operators of an SU�3� deformed al-
gebra,

X̂+
23 = 	â +

�2�

g

Ŝ+

23, X̂−
23 = 	â† +

�2�

g

Ŝ−

23,

Ŷ+
13 = btŜ+

13, Ŷ−
13 = bt

�Ŝ−
13, �7�

where bt=1+ �� /�1��e
i��−���t. Using the identity relation Î

= Ŝ11+ Ŝ22+ Ŝ33, we can rewrite the interaction Hamiltonian
Eq. �4� in the compact form,

Ĥi�t� = − ��� + ���Ŝ33 − ��� − ���â†â + �g�X̂+
23 + X̂−

23�

+ ��1��Ŷ−
13 + Ŷ−

13� . �8�

We can eliminate the dependence of Ĥi on the upper level �3�
by applying two consecutive small rotations. The first unitary

transformation Û13=exp���Ŷ+
13− Ŷ−

13�
, with �=�1� /���1
and the condition �� /���2�1, allows us to eliminate the

FIG. 1. Atomic energy levels and the applied fields. � and ��
denote the frequency detunings, � f is the frequency of the cavity
mode, and �1�, �2�, and � are the frequencies of the lasers applied to
the associated transitions.
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dependence on operators Ŷ±
13. The second unitary small rota-

tion, given by Û23=exp���X̂+
23− X̂−

23�
, with �=g /��1 and
the conditions ��2� /��2�1, ���−��� /��2�1, can be used

to eliminate the dependence on X̂±
23. After some lengthy al-

gebra, we derive the effective two-level Hamiltonian

Ĥeff� = ��� − ���Ŝ22 + ��� − ���â†â − �geff�â†Ŝ+
12 + âŜ−

12�

− ��eff�Ŝ+
12 + Ŝ−

12� , �9�

where we introduced the effective coupling and driving fre-
quencies geff=g� /�� and �eff=��2� /��. Note that the
above derivation does not depend on the order of the two
small rotations. The effective Hamiltonian �9� is exact to
zeroth order in the diagonal terms and to first order in the
other ones. From now on, we shall consider the case of small
detuning difference ��−��� /��1, such that the diagonal
terms are negligible. This will allow us to obtain an exactly
solvable model of system dynamics even in the presence of
dissipation, that is a one-atom laser. Hence the initial model
described by the Hamiltonian of Eqs. �1� and �2� reduces to a
Hamiltonian that exhibits an effective coupling of the states
�1� and �2� to the cavity mode in the presence of a classical
external field driving the atomic transition. Now we can ap-

ply the unitary transformation Û=exp�−i�eff�Ŝ+
12+ Ŝ−

12�t
 to
obtain �23�

Ĥeff� = − �
geff

2
��� + ��+ � − �− ��− � + e−2i�efft� + ��− � − e2i�efft�− �

	�+ ��â† + H . c . � , �10�

where we used the eigenstates �± �= ��1�± �2�� /�2 of the op-

erator Ŝx� Ŝ+
12+ Ŝ−

12. In this way, we put in evidence fast ro-
tating terms in Eq. �10� and, after applying the RWA with
�eff�geff, we obtain the final effective Hamiltonian

Ĥeff = − �
geff

2
�â† + â��Ŝ+

12 + Ŝ−
12� . �11�

This Hamiltonian has the structure of resonant and simulta-
neous Jaynes-Cummings and “anti–Jaynes-Cummings” inter-
actions �23� and its dynamics is better understood in terms of
Schrödinger cat states than Rabi oscillations, as will be dis-
cussed later. Note that the Hamiltonian of Eq. �11� is similar
to the one of Eq. �6� but with a more relaxed set of param-
eters. Furthermore, the dynamics is fully confirmed by nu-
merical simulations.

To describe the open atom-cavity system dynamics we
must include the dissipative effects due to the coupling of the
cavity to the environment. We note that the decay of the
upper level �3� can be neglected because of the elimination
procedure described above. Therefore, the system dynamics
can be described by the following SDOAL master equation
�ME�


̇AF = −
i

�
�Ĥeff,
AF� + L̂
AF, �12�

where the dissipative term is the standard Liouville superop-
erator for a damped harmonic oscillator

L̂
AF = −
�

2
�â†â
AF − 2â
AFâ† + 
AFâ†â� . �13�

Here, � is the cavity photon decay rate and we consider the
limit of zero temperature because the system operates in the
optical regime.

III. ANALYTICAL SOLUTION OF THE SDOAL MASTER
EQUATION

The time evolution of the atom-field system is described
by the density operator 
AF�t�, which is the solution of the
ME in Eq. �12�. In order to solve it, we introduce the follow-
ing decomposition:


AF�t� = � + ��+ � � 
1F�t� + �− ��− � � 
2F�t� + � + ��− �

� 
3F�t� + �− ��+ � � 
4F�t� . �14�

Here, 
iF�t� �i=1, . . . ,4� are operators describing the cavity
field defined as


1F�t� = �+ �
AF�t�� + �, 
2F�t� = �− �
AF�t��− � ,


3F�t� = �+ �
AF�t��− �, 
4F�t� = �− �
AF�t�� + � . �15�

Then, the master Eq. �12� is equivalent to the following set
of equations for the operators 
iF�t�


̇1,2F = ± i
geff

2
�â† + â,
1,2F� + L̂
1,2F, �16�


̇3,4F = ± i
geff

2
�â† + â,
3,4F
 + L̂
3,4F, �17�

where brackets �,� and braces �,
 denote the standard com-
mutator and anticommutator symbols. In order to describe a
one-atom laser dynamics we assume that the initial atom-
field density operator is 
AF�0�= �1��1� � �0��0�. Therefore,
operators 
iF�0� read


iF�0� =
1

2
�0��0� �i = 1, . . . ,4� . �18�

This choice is suitable in the optical regime of CQED also
because the generation of coherent states is difficult due to
the very fast decay of the cavity mode. Nevertheless, from a
theoretical point of view and for an extension to the micro-
wave regime of CQED it is possible to generalize the follow-
ing analysis to the case of a field prepared in a coherent state.
The results in Eqs. �31� should be modified by redefining the
form of the function ��t�.

In order to solve Eqs. �16� and �17�, we map them onto a
set of first order partial differential equations for the func-

tions �i�� , t�=TrF�
iF�t�D̂����, i=1, . . . ,4, where D̂��� de-
notes a displacement operator. The functions �i�� , t� cannot
be interpreted as characteristic functions for the cavity field,
because the operators 
iF�t� do not exhibit all required prop-
erties of a density operator. As a consequence the functions
�i�� , t� do not fulfill all conditions for quantum characteristic
functions. Nevertheless, they are continuous and square-
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integrable, which is enough for our purposes. From Eqs. �16�
and �17� we obtain the following set of partial differential
equations:

��1,2

�t
= 
 i

geff

2
�� + ����1,2 −

�

2
���2�1,2 −

�

2
	�

�

��

+ ��
�

���
�1,2, �19�

��3,4

�t
= ± igeff	 �

��
−

�

���
�3,4 −
�

2
���2�3,4 −

�

2
	�

�

��

+ ��
�

���
�3,4. �20�

To solve these differential equations we use the method of
characteristics, for which it is useful to rewrite them in terms
of the real and imaginary parts of the complex variable �
=x+ iy,

��1,2

�t
= 
 igeffx�1,2 −

�

2
�x2 + y2��1,2 −

�

2
	x

�

�x
+ y

�

�y

�1,2,

�21�

��3,4

�t
= ± geff

��3,4

�y
−

�

2
�x2 + y2��3,4 −

�

2
	x

�

�x
+ y

�

�y

�3,4.

�22�

If in the equations for �3,4 we introduce the shifted variable
ỹ=y
2�geff /k�, the above equations can be written as

��1,2

�t
+

�

2
	x

�

�x
+ y

�

�y

�1,2 = H1,2�x,y��1,2, �23�

��3,4

�t
+

�

2
	x

�

�x
+ ỹ

�

� ỹ

�3,4 = H3,4�x, ỹ��3,4, �24�

where H1,2�x ,y�=x�F1��x�
F2��x��+yG��y� and H3,4�x , ỹ�
= ỹ�E1��ỹ�
E2��ỹ��+xD��x�. There, we have also introduced
the derivatives of the following functions:

F1�x� = −
�

4
x2, F2�x� = igeffx, G�y� = −

�

4
y2,

E1�ỹ� = −
�

4
ỹ2, E2�ỹ� = 2geff	geff

�
ln ỹ + ỹ
 ,

D�x� = −
�

4
x2. �25�

With these definitions, together with the initial functions
�i,0�x ,y�=�i�x ,y ,0� associated with the ones in Eq. �18�, we
can write the time-dependent solutions as

�1,2�x,y,t� =
1

2
exp�−

x2 + y2

2

 2i

geffx

�
�1 − e−�t/2�� ,

�26�

�3,4�x,y,t� =
f�t�
2

exp�−
x2 + y2

2

 2

geffy

�
�1 − e−�t/2�� ,

�27�

where

f�t� = exp�− 2
geff

2

�
t + 4

geff
2

�2 �1 − e−�t/2�� . �28�

The most striking feature of the solutions for �3,4 in Eq. �27�
is the presence of the factor e−�2geff

2 /��t, in contrast to the so-
lutions for �1,2 in Eq. �26�. This factor leads to the vanishing
of functions �3,4 for sufficiently long times.

To better understand the solutions �26� and �27� we re-
write them in terms of the complex variable �

�1,2��,t� =
1

2
exp�−

���2

2
± �����t� − ����t��� , �29�

�3,4��,t� =
f�t�
2

exp�−
���2

2

 �����t� + ����t��� , �30�

where we have introduced the complex time-dependent func-
tion ��t�= i�geff /���1−e−�t/2�. We immediately recognize that
the operators 
iF�t� corresponding to the functions �i�� , t�
are


1F�t� =
1

2
���t�����t�� ,


2F�t� =
1

2
�− ��t���− ��t�� ,


3F�t� =
1

2

f�t�

e−2���t��2
���t���− ��t�� ,


4F�t� =
1

2

f�t�

e−2���t��2
�− ��t�����t�� . �31�

We describe now the generation of Schrödinger cat states for
the whole atom-field system. Actually, in the limit of �t�1,
when the unitary dynamics dominates over the incoherent
cavity dissipation, f�t��e−2���t��2, so that the state of the
atom-field system is well approximated by

���t��AF =
1
�2

�� + ���̃�t�� + �− ��− �̃�t��� , �32�

with �̃�t�= i�gefft /2�.
On the other hand, the steady state of the atom-field sys-

tem is the mixed state


AF
SS = � + ��+ �
1F

SS + �− ��− �
2F
SS

=
� + ��+ ���SS���SS� + �− ��− ��− �SS��− �SS�

2
, �33�

with �SS= igeff /�.
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IV. CAVITY FIELD AND ATOM SUBSYSTEM DYNAMICS

We consider the reduced density operator for the cavity
field 
F�t�=TrA�
AF�t��=
1F�t�+
2F�t�, where TrA denotes
the partial trace over the atomic variables. From Eq. �31� we
obtain


F�t� =
���t�����t�� + �− ��t���− ��t��

2
�34�

and we see that it is always a mixed state. The cavity field
mean photon number after an interaction time t is

�N̂��t� = TrF�â†â
F�t�� = ���t��2 =
geff

2

�2 �1 − e−�t/2�2. �35�

In the steady state the cavity field mean photon number is

given by �N̂�SS= �geff /��2, that is, the squared ratio between
the effective coupling frequency and the cavity decay rate,
which rule the coherent and incoherent regimes of cavity
field dynamics, respectively. The time-dependent photon
number distribution pn�t� is given by a Poissonian distribu-
tion

pn�t� =
���t��2n

n!
e−���t��2. �36�

Hence, at any time, the photon number distribution of the
SDOAL is that of a coherent field, a natural consequence of
tracing orthogonal atomic states �± �. Certainly, this will not
be the case if we make a projective atomic measurement in
the bare basis ��1� , �2�
 at a time t during the transient. Actu-
ally, after the atom measurement, the cavity field is in either
of the pure states


F
�1,2��t� =


1F�t� + 
2F�t� ± �
3F�t� + 
4F�t��
2p1,2�t�

, �37�

where p1,2�t� is the probability to find the atom in the state
�1�, �2�, respectively, at a time t �see below�. The correspond-
ing photon statistics are

pn
�1,2��t� = �n�
F

�1,2��t��n�

=
1

1 ± f�t�
e−���t��2 ���t��2n

n! �1 ± �− 1�n f�t�

e−2���t��2� .

�38�

In the transient dynamics, for times kt�1, ��t�= �̃�t� and the
cavity field states are even and odd cat states

���t��F
�1,2� =

��̃�t�� ± �− �̃�t��
�2�1 ± e−2���t��2�

. �39�

As is well known �28�, states as in Eq. �39� can exhibit
quantum effects including oscillating photon statistics, sub-
Poissonian photon statistics, and quadrature squeezing. In
Fig. 2 we show the time behavior of the Mandel-Fano pa-

rameter Q= ��N̂2�− �N̂�2� / �N̂�−1 in both cases of an atom
detected in the lower �Q�1��t�� and upper �Q�2��t�� state and
for different values of the steady state mean photon number.
We see that Q�1��t� and Q�2��t� exhibit super- and sub-

Poissonian photon statistics, respectively, before approaching
the steady state Poissonian distribution.

Now we consider the reduced density operator for the
atom 
A�t�=TrF�
AF�t��. From Eq. �31� we derive the follow-
ing density matrix in the basis ��+ � , �−�
:


A
±�t� =

1

2
	 1 f�t�

f�t� 1

 . �40�

From this atomic density matrix we can derive the probabili-
ties p1,2 to find the atom in the lower or upper state,

p1,2�t� = �1,2�
A�t��1,2� =
1

2
�1 ± f�t�� . �41�

We observe that in the steady state the atomic population of
the upper level �3� is zero and those of the lower and inter-
mediate levels are both equal to 0.5. The physical intuition
behind this result is the orthogonality of coherent states
���t�� and �−��t�� when t→�. We will employ these results
in the following section to study the entanglement properties
and the decoherence of the system.

V. ENTANGLEMENT AND DECOHERENCE ANALYSIS

In Sec. III, we presented a new scheme for generating
atom-field superposition states �see Eq. �32�� in the transient
regime and we described the steady state of a SDOAL. Now,
we evaluate atom-field entanglement properties and show
how to monitor the decoherence toward a steady state. We
have shown that the state of the whole atom-field system is
almost a pure state on a time scale much shorter than the
cavity decay time 1/k. Therefore, in this case, we can use the
entropy of entanglement E��� as an entanglement measure.
It can be calculated in a straightforward way using the equal-
ity �2�

E��� � SA = SF, �42�

where SA and SF denote the von Neumann entropy of the
atomic and field subsystems, respectively. The atomic en-
tropy reads
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FIG. 2. Mandel-Fano parameter Q for the cavity field versus
dimensionless interaction time in the case of an atom detected in the
lower �Q�1��t�� and upper �Q�2��t�� states. We consider different val-

ues of the mean steady-state photon number �N̂�SS: �a� 1, �b� 2, �c�
5, and �d� 10.1 cm.
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SA = − �1 log2 �1 − �2 log2 �2, �43�

where ��1 ,�2
 are the eigenvalues of the reduced atomic
density matrix 
A�t�. In the limit �t�1, the atomic density
matrix in Eq. �40� can be approximated by


̃A�t� =
1

2
	 1 e−2��̃�t��2

e−2��̃�t��2 1

 , �44�

whose eigenvalues are

�1,2�t� =
1

2
�1 ± e−2��̃�t��2� =

1

2
�1 ± e−�N̂�SS��t�2/2� . �45�

In Fig. 3 we plot the time evolution of the von Neumann
entropy SA for different values of the steady-state mean pho-

ton number �N̂�SS. We see that the system gets more en-

tangled for larger values of �N̂�SS, i.e., when the ratio geff /k is
large.

The next question is how to monitor the decoherence of
the whole atom-field system, that is, the reduction from a
pure state to a statistical mixture. The environment-induced
decoherence of a cavity field prepared in a superposition
state has been both theoretically and experimentally studied
in the case of high-Q microwave cavities �13,14�. We remark
that the cavity field reduced density operator does not depend
on the decoherence function f�t�. However, a simple way to
monitor the decoherence of the atom-field system is to mea-
sure the atomic populations p1,2�t� of Eq. �41�. In fact, the
atomic inversion I�t�= p1�t�− p2�t� is exactly the function f�t�
�Eq. �28�� that can be rewritten as

f�t� = exp�− 2�N̂�SS�t + 4�N̂�SS�1 − e−�t/2�� . �46�

In Fig. 4 we illustrate the time evolution of the atomic inver-

sion I�t� for different values of �N̂�SS showing that the deco-
herence dynamics is rather complex.

For dimensionless times �t�1 the inversion I�t� shows a

Gaussian falloff as exp�−�N̂�SS�2t2 /2
, independent of the
cavity field decay rate k. We recall that in this limit the
interaction generates the atom-field catlike superposition as

in Eq. �32�. After this transient, the effective decoherence
process begins in correspondence to the inflection point at
time:

tF = −
2

�
ln	1 +

1 − �1 + 16�N̂�SS

8�N̂�SS

 . �47�

For �N̂�SS�1, corresponding to effective strong coupling

conditions, we have tF�1/���N̂�SS=geff
−1 and the decoher-

ence function f�t� can be well approximated by

I�tF�exp�− 2��N̂�SS�1 − e−�tF/2��t − tF�
 . �48�

Hence we can introduce the decoherence rate

�D = �
�1 + 16�N̂�SS − 1

4
� ���N̂�SS = geff. �49�

We note that the decoherence rate is given by the effective
coupling constant and hence it is independent of cavity dis-
sipation.

In the opposite limit of small �N̂�SS we have tF�k−1; the
system is close to the mixed steady state and we recover an

exponential decay with a decoherence rate �D� =2��N̂�SS. This
is the standard decoherence rate for cat states of the cavity
field alone �14�, which can be generated in our system after
an atomic measurement.

VI. NUMERICAL SIMULATIONS

In this section, we discuss the theoretical approach pre-
sented in the above sections from a numerical point of view.
In fact, by means of a first order perturbative approach we
have reduced the full three-level system dynamics to an ef-
fective two-level one described by the ME in Eq. �12�. We
now discuss the validity of that approximation for both
Hamiltonian and dissipative dynamics.

In the numerical analysis we need to solve the full system
ME
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FIG. 3. Von Neumann entropy SA for the atom-field system ver-
sus dimensionless time for different values of the steady-state mean

photon number �N̂�SS: �a� 0.25, �b� 1, �c� 5, �d� 10, and �e� 20.
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FIG. 4. Atomic population inversion I versus dimensionless

time evaluated for different values of �N̂�SS: �a� 0.25, �b� 0.5, �c� 1,
�d� 5, and �e� 20.
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̇AF = −
i

�
�Ĥi�t�,
AF� + L̂
AF, �50�

where the system Hamiltonian is given in Eq. �8� and the
dissipative process is ruled by the Liouville super operator in
Eq. �13�. To solve Eq. �50� numerically we consider the di-
mensionless time t̃=�t and the following dimensionless pa-
rameters:

�̃� =
��

�
, g̃ =

g

�
, �̃ =

�

�
, �1� =

�1�

�
, �2� =

�2�

�
,

�̃ =
�

�
, g̃eff =

g̃�̃

�̃�
, �̃eff =

�̃2��̃

�̃�
. �51�

In order to solve the ME by means of the Monte Carlo wave
function approach �MCWF� �29�, we rewrite the ME in the
Lindblad form to identify the collapse and the “free evolu-
tion” operators


̇AF = −
i

�
�Ĥe
AF − 
AFĤe

†� + Ĉ
AFĈ†, �52�

where the non-Hermitian effective Hamiltonian Ĥe is given
by

Ĥe =
Ĥi�t̃�

�
−

i�

2
Ĉ†Ĉ , �53�

and the only one collapse operator is Ĉ=�k̃â. The system
dynamics can be simulated by a suitable number of trajecto-
ries, i.e., stochastic evolutions of the wave function ���t̃��, by
means of the following main rule:

���t̃ + �t̃�� =�
�1 − i

�Ĥe�t̃����t̃��
�1 − �p�t̃�

if �p�t̃� � Nrnd,

Ĉi���t̃��
��p�t̃�

if �p�t̃� � Nrnd,�
�54�

where �t̃ is a suitable small time interval, �p�t̃� is the collapse
probability at time t̃, and Nrnd is a random number generated
from a uniform distribution in �0,1�. We note that the col-
lapse probability depends on the cavity field mean photon

number �N̂��t̃� and can be evaluated as �p�t̃�=�t̃k̃�N̂��t̃�. In
the simulations we must consider parameter values in agree-
ment with the theoretical conditions required by the two
small rotations.

First we discuss the full three-level system Hamiltonian
dynamics �k=0� in order to confirm the validity of the effec-
tive two-level Hamiltonian of Eq. �11�. We consider the time
evolution of the cavity field mean photon number and of the
atomic populations, and we compare the numerical results

with the theoretical expressions �N̂��t�=geff
2 t2 /4 and p1,2�t�

= 1
2 �1±exp�−geff

2 t2 /2��, p3�t�=0. As an example, we show in
Fig. 5 a case where the ratio of the effective parameters is
�eff /geff=25. We see a good agreement for the mean photon

number �Fig. 5�a��. The theoretical functions p1,2�t� fit the
envelopes of the numerical fast oscillating populations �Fig.
5�b��. In fact, in the numerical analysis, we do not take into
account the RWA approximation. In particular, the popula-
tions of levels �1� and �2� approach the expected value of 0.5,
and the population of the upper level �3� is always negligible.

In addition, we tested the prediction that the effective dy-
namics allows one to generate cavity field cat states when the
atom is measured in level �1� or �2�. In Fig. 6 we show the
Wigner function that describes in phase space the cavity field
state prepared by an atomic measurement in level �1� and we
see the typical features of a cat state.
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FIG. 5. Hamiltonian dynamics of the full three-level system for

the parameters ��˜ =0.9, g̃=0.004, �̃=0.1, �1�=0.05, and �2�=0.1.
�a� Cavity field mean photon number vs dimensionless time: Nu-
merical value �solid line� and theoretical value �dashed line�. �b�
Atomic populations: Numerical values �solid lines� and theoretical
values �dashed lines�.
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FIG. 6. Wigner function for the cavity field state after detection
of the atom in the ground state �1�. The parameters are as in Fig. 5
and the dimensionless time is �t=7160.
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Now we consider the full dynamics including dissipation
of Eq. �50�, for the same parameters as in Figs. 5 and 6, and

with k̃= g̃eff, so that we expect that the steady state value of
the mean photon number is one and it is reached in a time
that is twice that of the atomic populations. In Fig. 7�a�, we
compare the numerical results for the time evolution of the
cavity field mean photon number to the theoretical behavior
predicted by Eq. �35�, showing that there is a good agree-
ment. In Fig. 7�b�, we consider the numerically simulated
time evolution of the atomic populations pj�t� �j=1,2 ,3�
compared to the theoretical functions in Eq. �41�.

We remark that the population of the upper level p3�t�
always remains negligible, the populations p1�t� and p2�t�
reach the steady state value of 0.5, and the theoretical curves
fit the envelopes of the fast oscillating functions. The above
results provide a clear demonstration of the validity of the
two-level approximation developed in Sec. II, which is at the
basis of the subsequent theoretical developments.

VII. CONCLUSIONS

We have introduced a solvable model of a strongly driven
one-atom laser in the optical regime of cavity QED. We have
shown analytically and numerically that the complex dynam-
ics of a three-level atom, dispersively coupled to an optical
cavity mode and to three laser fields, can be well approxi-
mated by a two-level atom that is resonantly coupled to a
cavity mode and a strong coherent field. The effective cou-
pling constant is a combination of the atom-cavity field cou-
pling constant, the amplitude of one of the external lasers,
and the detuning parameter. The initial transient regime
shows that the system is approximately in an entangled
atom-cavity field state, a Schrödinger cat state, and we show
that the amount of entanglement depends on the steady state
mean photon number that is the ratio between the effective
coupling constant and the cavity decay rate. In addition, we
propose a scheme for monitoring the whole system decoher-
ence based on atomic population measurements. We find
that, for large values of the steady-state mean photon number
�i.e., in the strong coupling regime�, and for time larger than
the inverse of the effective coupling constant, the decoher-
ence behavior can be well approximated by an exponential
decay whose rate is given by the effective coupling constant.

The cavity field subsystem is always in a mixed state
whose photon number distribution is Poissonian, while the
atomic subsystem can exhibit coherences. If we measure the
atomic state at a given time, we can project the cavity field in
a cat state with sub-Poissonian or super-Poissonian photon
statistics depending on the detected atomic state.
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