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Abstract. A non-perturbative treatment is developed for the dephasing
produced by the shot noise of a one-dimensional electron channel. It is applied
to two systems: a charge qubit and the electronic Mach–Zehnder interferometer
(MZI), both of them interacting with an adjacent partitioned electronic channel
acting as a detector. We find that the visibility (interference contrast) can display
oscillations as a function of detector voltage and interaction time. This is a unique
consequence of the non-Gaussian properties of the shot noise, and only occurs
in the strong coupling regime, when the phase contributed by a single electron
exceeds π. The resulting formula reproduces the recent surprising experimental
observations reported in (I Neder et al 2006 Preprint cond-mat/0610634), and
indicates a general explanation for similar visibility oscillations observed earlier
in the MZI at large bias voltage. We explore in detail the full pattern of oscillations
as a function of coupling strength, voltage and time, which might be observable
in future experiments.
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1. Introduction

Decoherence, i.e. the destruction of quantum mechanical interference effects, is a topic whose
importance ranges from more fundamental questions like the quantum-classical crossover
to possible applications of quantum coherent phenomena, such as sensitive measurements
and quantum information and quantum computing. In mesoscopic transport experiments,
decoherence (also called dephasing) is responsible for the nontrivial temperature- and voltage-
dependence of the electrical conductance in disordered samples (displaying weak localization
and universal conductance fluctuations) and solid-state electron interferometers.

The most important paradigmatic quantum-dissipative models (‘Caldeira-Leggett’[1, 2] and
‘spin-boson’ [3, 4]) and many well-known techniques used for describing decoherence assume
the environment to be a bath of harmonic oscillators, where the fluctuations obey Gaussian
statistics. This assumption is correct for some cases (e.g. photons and phonons), and generally
represents a very good approximation for the combined contribution of many weakly coupled
fluctuators, due to the central limit theorem. However, ultrasmall structures may couple only
to a few fluctuators (spins, charged defects, etc), thus requiring models of dephasing by non-
Gaussian noise. Such models are becoming very important right now in the context of quantum
information processing [5]–[14].

Moreover, the quantum measurement process itself is accompanied by unavoidable
fluctuations which dephase the quantum system [15]–[18], while dephasing itself can conversely
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be viewed as a kind of detection process [19, 20]. Therefore, ‘controlled dephasing’ experiments
can be used to study the transition from quantum to classical behaviour, e.g. by coupling
an electron interferometer to a tunable ‘which path detector’ [21]–[27], which produces shot
noise by partitioning an electron stream [28]–[32]. In previous mesoscopic controlled dephasing
experiments the coupling between detector and interferometer was weak, requiring the passage
of many detector electrons in order to determine the path. Under these conditions, the phase of
the interfering electron fluctuates according to a Gaussian random process.

Recently, a controlled dephasing experiment was performed [33, 34] using an electronic
Mach–Zehnder interferometer (MZI) [35]–[37] coupled to a nearby partitioned edge-channel
serving as a detector. Its results differed substantially from those of earlier controlled-dephasing
experiments. The interference contrast of the Aharonov–Bohm (AB) oscillations, quantified by
the visibility v = (Imax − Imin)/(Imax + Imin), revealed two unexpected effects.

1. The visibility as a function of the detector transmission probability T changes from the
expected smooth parabolic suppression ∝ T (1 − T ) at low detector voltages to a sharp
‘V-shape’ behaviour at some larger voltages.

2. The visibility drops to zero at intermediate voltages, then reappears again as V increases,
and vanishes at even larger voltages, thus displaying oscillations.

As estimated in [33], three (or even fewer) detecting electrons suffice to quench the visibility.
For this reason, one suspects that these effects may be a signature of the strong coupling between
interferometer and detector. Indeed, that coupling has already been exploited to entangle the
interfering electrons with the detector electrons, and afterwards recover the phase information
by cross-correlating the current fluctuations of the MZI and the detector [33], even after it
has completely vanished in conductance measurements. The dephasing in the MZI system
is caused by the detector’s shot noise, which is known to obey binomial, i.e. non-Gaussian,
statistics. Thus, earlier theoretical discussions of dephasing in the electronic MZI, based on
a Gaussian environment [38]–[43], are no longer sufficient (see [44, 45] for a discussion of
Luttinger liquid physics in an MZI). At the same time, a nonperturbative treatment is required, to
capture the non-Gaussian effects. Higher moments of the noise become important, and dephasing
starts to depend on the full counting statistics (FCS), which itself represents a topic attracting
considerable attention nowadays [42, 46, 47]. The relation between FCS, detection and dephasing
has been explored recently by Averin and Sukhorukov [47]. There, the dephasing rate and the
measurement rate were considered, i.e. the focus was placed on the long-time limit, similarly to
other calculations of dephasing by non-Gaussian noise [5, 7, 10], [12]–[14]. In contrast, we will
emphasize the surprising evolution of the visibility at short to intermediate times.

The main purpose of this paper then is to present a nonperturbative treatment of a theoretical
model that explains the new experimental results, and provides quantitative predictions for the
behaviour of the visibility as a function of detector bias and partitioning. Furthermore, we will
show how the approximate solution for the MZI is directly related to an exact solution for the pure
dephasing of a charge qubit by shot noise, where the time evolution of the visibility parallels the
evolution with detector voltage. In conclusion, it will emerge that the novel features observed in
[34], and the results derived here, are in fact fundamental and generic consequences of dephasing
by the non-Gaussian shot noise of a strongly coupled electron system. As a side effect, this may
indicate a solution to the puzzling observation of visibility oscillations in a MZI without adjacent
detector channel [36].
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The paper is organized as follows: we first describe dephasing of a charge qubit, being the
simpler model that can be solved exactly. After introducing the model in subsection 2.1, we
derive the exact solution (subsection 2.2). We briefly discuss the relation to FCS (subsection
2.3), and provide formulae obtained in the well-known Gaussian approximation (subsections 2.4
and 2.5) for comparison, before presenting and discussing the results obtained from a numerical
evaluation of the exact expression (subsection 2.6). In section 3, we then go on to introduce
a certain approximation that keeps only the nonequilibrium part of the noise and allows an
analytical discussion of many features, some of which become particularly transparent in the
wave packet picture of shot noise (subsection 3.2). In section 4, we briefly contrast the features
of our solution with those of the well-known model describing dephasing by classical random
telegraph noise. The MZI is then described in section 5, by first solving exactly the problem of
a single electron interacting with the detector (subsection 5.1), and then introducing the Pauli
principle (subsection 5.2). The visibility in the MZI is derived independently from that in the
charge-qubit system (see especially the discussion around equation (60)), yielding a very similar
expression. The results are discussed (subsection 5.3) and compared against the experimental
data (subsection 5.4). Finally, we briefly indicate (subsection 5.5) a possible solution to the
puzzling visibility oscillations observed in the MZI without detector channel.

Our main results are: the exact formula for the time-evolution of the visibility of the charge
qubit given in equation (19), and the formula for the effect of the nonequilibrium part of the noise
on the visibility of qubit (37) or interferometer (65). Their most important general analytical
consequences are derived in subsection 3.1, including a detailed discussion of the visibility
oscillations.

2. Charge qubit subject to non-Gaussian shot noise

Interferometers may be used as highly sensitive detectors, by coupling them to a quantum system
and reading out the induced phase shift. Here we focus on a set-up like the one that has been
realized in [25], where a double dot (‘charge qubit’) has been subject to the shot noise of a
partitioned one-dimensional (1D) electron channel. However, we note that the strong-coupling
regime to be discussed below yet remains to be achieved in such an experiment.

2.1. Model

We consider a charge qubit with two charge states σ̂z = ±1. It is coupled to the density fluctuations
of non-interacting ‘detector’ fermions

Ĥ = Ĥqb + Ĥ int + Ĥdet, (1)

with Ĥqb = ε

2 σ̂z,

Ĥdet =
∑
k

εkd̂
†
kd̂k, (2)

and

Ĥ int = σ̂z + 1

2
V̂ . (3)
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Figure 1. Schematic drawing of the models considered in the text: a detector
channel with shot noise coupled to (a) an interferometer channel or (b) a charge
qubit. (c) The interaction potential u(x) defines the phase function w(x), whose
height gives the dimensionless coupling constant g, see equation (18). (d) Sketch
of the time-evolution of the oscillations in 〈σ̂x(t)〉, indicating the visibility v(t) as
the magnitude of the oscillation envelope. In this schematic example, the visibility
itself oscillates—this is impossible in models of Gaussian noise but a direct feature
of the non-Gaussian nature of the shot noise, in the strong coupling regime g > π

(see text and following figures).

This coupling is of the diagonal form, i.e. it commutes with the qubit Hamiltonian, thereby
leading only to pure dephasing and not to energy relaxation (the populations of the qubit levels
are preserved). The derivation of the exact expressions to be analysed below depends crucially
on this type of coupling. Physically, a coupling of that form will arise if the tunnelling barrier
between the two quantum dots forming the charge qubit is raised to suppress tunnelling and
thereby place the qubit in the ‘idle’ state. Models of this kind have been studied quite intensively
in the past for coupling to harmonic oscillator baths (Gaussian quantum noise). This has been
the case because of their experimental relevance, the realization of ‘pure’ dephasing (without
relaxation), and due to the possibility of obtaining exact solutions. Here we will extend those
studies to dephasing by nonequilibrium, non-Gaussian quantum noise. We note that dephasing
of a quantum dot by shot noise has been analysed previously [21, 22, 24, 26], but those studies
do not discuss the specific features arising from the non-Gaussian nature of the noise and tend
to focus on the long-time limit.

The fluctuating quantum noise potential V̂ introduced in (3) is related to the density of
detector particles in the vicinity of the qubit, see figure 1:

V̂ =
∫

dxu(x)ρ̂det(x) =
∑
k′,k

uk′kd̂
†
k′ d̂k. (4)
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Here, u(x) is the arbitrary interaction potential (whose details in a realistic situation will be
determined by the screening properties of the environment), ρ̂det(x) = ψ̂†(x)ψ̂(x) is the detector
density, and ψ̂(x) = ∑

k φk(x)d̂k is the expansion in terms of the single-particle eigenstates of the
detector. At this point we do not yet specify the nature of the detector, as some of the following
formulae are valid in general for any non-interacting fermion system. However, ultimately the
evaluations will be performed for a 1D channel of fermions moving chirally at constant speed,
representing our model of a ‘detector edge channel’. This was implemented in the integer quantum
hall effect 2D electron gas [25, 33, 34] and can presumably be realized in other 1D electron
systems as well (e.g. electrons moving inside a carbon nanotube).

We stress that we are treating the detector channel as noninteracting. Calculations of the
dephasing rate obtained for a self-consistent treatment of the Coulomb interaction between
conductors exist within the approximation of Gaussian noise. In this regard, we refer the reader
particularly to the work of Büttiker [24, 48, 49].

We are interested in describing the outcome of the following standard type of experiment
in quantum coherent dynamics: suppose we prepare the qubit in a superposition state of |↑〉 and
|↓〉 at time t = 0, and then switch on the interaction with the detector electrons. In effect this can
be realized by applying a Rabi π/2 pulse to the qubit that is initially in the state |↓〉. During the
following time-evolution, the off-diagonal element ρ↑↓(t) will be affected by the coupling to the
bath, experiencing decoherence. Its original oscillatory time-evolution is multiplied by a factor,
that can be written as the overlapD(t) = 〈χ↓(t)|χ↑(t)〉 of the two detector states χ↓(t) and χ↑(t)
that evolve under the action of Ĥdet and Ĥdet + V̂ , respectively. In this way, the relation between
decoherence and measurement becomes evident [19]:

D(t) = 〈e+iĤdet t e−i(Ĥdet+V̂ )t〉. (5)

Note that we have set h̄ ≡ 1. This can also be written as

D(t) =
〈
T̂ exp

(
−i

∫ t

0
dt′ V̂ (t′)

)〉
, (6)

where V̂ (t′) is the fluctuating quantum noise operator in the Heisenberg picture with respect
to Ĥdet, and T̂ is the time-ordering symbol. The magnitude of this time-dependent ‘coherence
factor’ defines what we will call the ‘visibility’

v = |D(t)|. (7)

The visibility (with 0 � v � 1) determines the suppression of the oscillations in any observable
that is sensitive to the coherence between the two levels, e.g. 〈σ̂x(t)〉 = Reρ↑↓(t). This is depicted
in figure 1(d).

2.2. Time-evolution of the visibility: general expressions

The average in the coherence factor D(t) displayed in equation (5) is taken with respect to the
unperturbed state of the detector electrons, which may refer to a nonequilibrium situation. We
will assume that this initial state can be described by independently fluctuating occupations d̂†

kd̂k
of the single-particle states k. This assumption covers all the cases of interest to us, namely the
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equilibrium noise at arbitrary temperature, as well as shot noise produced by transmission of
particles through a partially reflecting barrier, leading to a nonequilibrium Fermi distribution.

The average (5) can be evaluated in a variety of ways, e.g. using the linked cluster expansion
applied to a time-ordered exponential. However, here we make use of a convenient formula
derived by Klich [50] in the context of FCS. Denoting as �(A) ≡ ∑

k′,k Ak′kd̂
†
k′ d̂k the second-

quantized single-particle operator built from the transition matrix elements Ak′k, we have [50]
(for fermions)

tr
[
e�(A)e�(B)

] = det
[
1 + eÂeB̂

]
, (8)

where Â is the operator acting in the single-particle Hilbert space. In general, this formula allows
us to obtain the average of the exponential of any single-electron operator with respect to a many-
particle density matrix that does not contain correlations. Indeed, for a state with independently
fluctuating occupations, we can write the many-body density matrix in an exponential form that
is suitable for application of equation (8):

ρ̂ = 	k[nkd̂
†
kd̂k + (1 − nk)(1 − d̂

†
kd̂k)], (9)

= 	k(1 − nk) e
∑
k d̂

†
kd̂k ln[nk/(1−nk)], (10)

where 0 � nk � 1 is the probability of state k being occupied (formally it is necessary to consider
the limits nk → 0 and nk→1 if needed). Inserting this expression into (8), and defining the
occupation number matrix nk′k = δk′knk, we are now able to evaluate averages of the form

tr
[
ei

∑
k′,k Ak′kd̂

†
k′ d̂k ρ̂

]
= (	k(1 − nk)) det

[
1 + eiÂ n̂

1 − n̂

]
, (11)

= det
[
1 + (eiÂ − 1)n̂

]
. (12)

The average (5) then can be performed by identifying the product of time-evolution operators as
a single unitary operator, of the form given here. Thus, we find

D(t) = det[1 + (Ŝ(t)− 1)n̂], (13)

where the finite-time scattering matrix (interaction picture evolution operator) is

Ŝ(t) = eiĥdet t e−i(ĥdet+û)t . (14)

Here û is the interaction from (4), and ĥdet is the single-particle Hamiltonian of the detector
electrons that is diagonal in the k-basis: [hdet]k′k = εkδk′k. In principle, equation (13) allows us
to evaluate the time-evolution of the coherence factor for coupling to an arbitrary noninteracting
fermion system.

In practice, this involves calculating the time-dependent scattering of arbitrary incoming
k-states from the coupling potential u(x), i.e. determining the action of the scattering matrix.
Note that in the case of fully occupied states (nk ≡ 1 for all k), the operator n̂ becomes the identity
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and the determinant reduces to the product of scattering phase factors that can be obtained by
diagonalizing the scattering matrix. More generally, the contributions to D(t) from states deep
inside the Fermi sea always only amount to a phase factor, which will drop out when considering
the visibility v = |D(t)|.

In the remainder of this paper, we will focus on the specific, and experimentally relevant,
case of a 1D channel of fermions moving at constant speed vdet (i.e. using a linearized dispersion
relation). We will employ plane wave states inside a normalization volume L and first assume a
finite bandwidth k ∈ [−kc,+kc]. At the end of the calculation, we will send L and kc to infinity
(see below).

The equation of motion for a detector single-particle wavefunction ψ(x, t) in the presence
of the potential u(x) is

i(∂t + vdet∂x)ψ(x, t) = u(x)ψ(x, t), (15)

which is solved by

ψ(x, t) = exp

[
−i

∫ t

0
dt′ u(x− vdett

′)
]
ψ(x− vdett, 0). (16)

This corresponds to the action of exp(−i(ĥdet + û)t) on the initial wavefunction. Applying
exp(iĥdett) afterwards, we end up with the same expression, but with the replacement
x 
→ x + vdett everywhere on the right-hand-side (rhs). In other words, the action of the scattering
matrix is to multiply the wave function by a position-dependent phase factor:

[Ŝ(t)ψ](x) = e−iw(x)ψ(x), (17)

where the phase function w(x) is related to the interaction potential, as seen above:

w(x) =
∫ 0

−t
dt′ u(x− vdett

′). (18)

The phase function is depicted in figure 1(c). Two remarks regarding the finite band-cutoff kc

are in order at this point: as argued above, states deep inside the Fermi sea only contribute a
phase factor toD(t). This is the reason we obtain a converging result for the visibility v = |D(t)|
when taking the limit kc → ∞ in the end, whereas D(t) itself acquires a phase that grows
linearly with kc. Moreover, strictly speaking the relation (17) only holds for states ψ(x) that are
not composed of k-states at the boundaries of the interval k ∈ [−kc,+kc], since otherwise the
multiplication by e−iw(x) will yield contributions that are cut off as they fall outside the range of
allowed wavenumbers. Nevertheless, for the purpose of calculating the visibility, this discrepancy
between the operators Ŝ(t) and eiw(x) will not matter, as those states only contribute phases to
D(t) anyway. Thus, we are indeed allowed to write the visibility as

v(t) = |det[1 + (Ŝ(t)− 1)n̂]| = |det[1 + (e−iŵ(t) − 1)n̂]|. (19)

This is the central formula that will be the basis for all our discussions below.

New Journal of Physics 9 (2007) 112 (http://www.njp.org/)

http://www.njp.org/


9 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

We briefly discuss some general properties of the phase function w(x) and its Fourier
transform. The matrix elements of ŵ are given by the Fourier transform wk′k = 1

L
w̃(q = k′ − k)

of w(x). Thus, they are connected to those of the interaction potential u(x) via

w̃(q) =
∫

dx e−iqxw(x) = 1 − e−iqvdet t

iqvdet
ũ(q), (20)

where ũ(q) = ∫
dxe−iqxu(x).

At times vdett � σ, the phase function w(x) has the generic form of a box with corners
rounded on the scale σ of the interaction potential, see figure 1(c). The phase fluctuations are
then due to the fluctuations of the number of electrons inside the interval of length vdett. The
most important parameter in this regard is the height of w(x) inside the interval. This defines
the dimensionless coupling strength g, given by

g ≡ w̃(q = 0)

vdett
= 1

vdet

∫ +∞

−∞
dyu(y). (21)

The coupling strength determines the contribution of a single electron to the phase (in a regime
where we are allowed to treat that single electron simply as a delta peak in the density). We will
see that all the results can be expressed in terms of the dimensionless quantities g, eVt, Vσ/vdet,
and the occupation probability T of states inside the voltage window (as well as the temperature,
Tσ/vdet, for finite temperature situations).

2.3. Relation to FCS

In the context of FCS [46], one is interested in obtaining the entire probability distribution of
a fluctuating number N of particles, e.g. the number of electrons transmitted through a certain
wire cross-section during a given time interval, or the number of particles contained within a
certain volume. Usually, it is most convenient to deal with the generating function

χ(λ) =
∑
N

PNeiλN. (22)

The decoherence functionD(t), and thus the visibility v = |D(t)|, are directly related to a suitably
defined generating function. In the limit σ → 0, the phase functionw(x) becomes a box of height
g on the interval x ∈ [−vdett, 0]. Then

∫
dxw(x)ρ̂(x) is gN̂, where N̂ is the number of electrons

within the box. Thus we find for the visibility

v = |χ(g)|, (23)

in terms of the generating function χ for the probability distribution of particles N. For a finite
range σ of the interaction potential, we are dealing with a fluctuating quantity that no longer just
takes discrete values.

We emphasize, however, that our main focus is different from the typical applications of FCS,
where one is usually interested in the long-time limit and consequently discusses the remaining
small deviations from purely Gaussian statistics. The long-time behaviour of decoherence by
a detecting quantum point contact has been discussed in [47], where formulae similar to (19)
appeared. In contrast, we are interested in the visibility oscillations as a most remarkable feature
of the behaviour at short to intermediate times. In other words, the kinds of set-ups discussed
here in principle offer an experimental way of accessing such short-time features of FCS, which
are otherwise not detectable.
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2.4. Gaussian approximation

Before going on to discuss the visibility arising from the exact expression (19), we derive the
Gaussian approximation to the visibility. We will first do so in a general way and later point out
that the same result could be obtained starting from equation (19). If V̂ were a linear superposition
of harmonic oscillator coordinates, and these oscillators were in thermal equilibrium, then
its noise would be Gaussian (i.e. it would correspond to a Gaussian random process in the
classical limit). This kind of quantum noise, arising from a harmonic oscillator bath, is the one
studied most of the time in the field of quantum dissipative systems (e.g. in the context of the
Caldeira–Leggett model or the spin-boson model). In that case, the following expression would
be exact. In contrast, our present model in general displays non-Gaussian noise, being due to
the density fluctuations of a system of discrete charges. Thus, the following formula constitutes
what we will call the ‘Gaussian approximation’, against which we will compare the results of
our model:

DGauss(t) = exp

[
−i〈V̂ 〉t − 1

2

∫ t

0
dt1

∫ t

0
dt2〈T̂ δV̂ (t1)δV̂ (t2)〉

]
. (24)

Here δV̂ ≡ V̂ − 〈V̂ 〉. If we are only interested in the decay of the visibility, we obtain

vGauss(t) = |DGauss(t)| = exp

[
−1

2

∫ t

0
dt1

∫ t

0
dt2

1

2
〈{δV̂ (t1), δV̂ (t2)}〉

]
, (25)

i.e. the decay only depends on the symmetrized quantum correlator. Introducing the quantum
noise spectrum

〈δV̂ δV̂ 〉ω =
∫

dteiωt〈δV̂ (t)δV̂ (0)〉, (26)

we find the well-known expression

ln vGauss(t) = −
∫

dω

2π
〈δV̂ δV̂ 〉ω 2 sin2(ωt/2)

ω2
. (27)

This result is valid for an arbitrary noise correlator. Inserting the relation between V̂ and the
density fluctuations (4), we have

〈δV̂ δV̂ 〉ω = 2π
∑
k′,k

|uk′k|2 nk(1 − nk′)δ(ω − (εk′ − εk)) (28)

for the spectrum. In the following, we specialize to the case of 1D fermions moving at constant
speed (εk = vdetk). Then we find:

lnvGauss(t) = −1

2

∑
k′,k

|wk′k(t)|2nk(1 − nk′), (29)

where the matrix ŵ corresponds to the potential u(x− vdett
′) integrated over the interaction time,

see equations (18) and (20). We could have arrived at this formula equally well by using (19)
to write

v = exp [Re tr ln(1 + (e−iŵ − 1)n̂)], (30)

and expanding the exponent to second order in ŵ. Equation (29) will be used for comparison
against the full results obtained from (19) numerically below.
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2.5. Results for the visibility according to the Gaussian approximation

We now discuss the results of the Gaussian approximation for certain special cases. For
definiteness, here and in the following, we will assume an interaction potential u(x) of width σ,
which we will take to be of Gaussian form wherever the precise shape is needed:

u(x) = u0√
πσ

e−(x/σ)2, ũ(q) = u0e−(qσ/2)2 . (31)

Other smoothly decaying functions do not yield results that deviate appreciably in any
qualitatively important way. The coupling strength (21) then becomes

g = u0

vdet
. (32)

At zero temperature, in equilibrium, the evolution of the visibility is determined by the well-
known physics of the orthogonality catastrophe, which underlies many important phenomena
such as the x-ray edge singularity or the Kondo effect [51]: after coupling the two-level system to
the fermionic bath, the two states |χ↑〉 and |χ↓〉 evolve such that their overlap decays as a power-
law. The long-time limit of a vanishing overlap is produced by the fact that the ground states of
a fermion system with and without an arbitrarily weak scattering potential are orthogonal. The
exponent can be obtained from the coupling strength g. We find, from (29) and (20),

vT=V=0
Gauss (t) = constant

(vdett

σ

)−(g/2π)2
, (33)

in the long-time limit. Only the prefactor depends on the precise shape of the interaction u(x).
We note that the result diverges for σ → 0. The reason is that a finite 1/σ is needed as an effective
momentum cutoff up to which fluctuations of the density in the Fermi sea are taken into account.
In any physical realization the fluctuations will be finite, since then the density of electrons is
finite and there is a physical cutoff besides 1/σ.

After applying a finite bias voltage, the occupation inside the voltage window is determined
by the transmission probability T of a barrier (quantum point contact) through which the stream of
electrons has been sent: nk = T for vdetk ∈ [0, eV ]. Then, equation (29) yields two contributions,
one of which is the equilibrium contribution we have just calculated. As a result, the visibility
factorizes into the zero voltage contribution and the extra suppression resulting from the second
moment of the shot noise:

v
T=0,V �=0
Gauss (t)

v
T=0,V=0
Gauss (t)

= exp

[
−T (1 − T )

( g
2π

)2
F(eVt)

]
. (34)

The function F(eVt) is given by

F(eVt) =


(eVt)2

2
(eVt � 1 and eVσ/vdet � 1),

πeVt (eVt � 1, σ = 0).
(35)

Here the low-voltage (short-time) quadratic rise is independent of the shape of the interaction
potential u: only low frequency (long wavelength) fluctuations of the density are important, and
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Figure 2. Time-evolution of the visibility (coherence) v = |D(t)| of a qubit
coupled to quantum noise from a non-interacting 1D electron channel, at
zero temperature, after switching on the interaction at t = 0. The curves have
been obtained by direct numerical evaluation of (19). Left panel: decoherence
by equilibrium noise, for increasing coupling strength g (top to bottom
curve), displaying the power-law decay (33) expected from the physics of the
orthogonality catastrophe (inset: log–log plot, with dashed lines indicating the
expected exponents (g/2π)2). Right panel: decoherence by shot-noise (at a finite
voltage eVσ/vdet = 1). Beyond g = π, the visibility displays a periodic pattern,
with zeroes and coherence revivals, as a result of the non-Gaussian nature of
the noise. Dashed lines indicate the Gaussian approximation. The transmission
probability of the barrier generating the shot noise equals T = 1/2.

thus only the coupling constant g enters, being an integral over u(x), see (21). At large voltages
there is, in general, an extra constant prefactor in front of F that depends on σ and the shape
of u. However, in contrast to the equilibrium part of the visibility (33), the limit σ → 0 is finite,
and we have evaluated this limit in the second line of (35).

Finally, it is interesting to note that for the present model the fermionic density can
be expressed as a sum over normal mode oscillators (plasmons) after bosonization. Thus, in
equilibrium, the Gaussian approximation is actually exact. However, once the system is driven
out of equilibrium by a finite bias voltage and displays shot noise, the many-body state is a highly
correlated non-Gaussian state, when expressed in terms of the plasmons, even though it looks
simple with respect to the fermion basis, where the occupations of different k-states fluctuate
independently.

2.6. Exact numerical results for the visibility and discussion

In the following, we plot and discuss the results of a direct numerical evaluation of the determinant
(19) that yields the exact time-evolution of the visibility of a charge qubit subject to shot noise.
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Figure 3. Evolution of the visibility (density plot) as a function of coupling
constant g (vertical) and time eVt (horizontal). Visibility oscillations start beyond
g = π. Note the unequal spacing between zeroes: the first zero occurs at a time
eVt1 = 2π2/g for large g � 1, see (42). The spacing of subsequent zeroes is
given approximately by δ(eVt) = 2π for the regime of couplings considered here.
Further parameters: T = 1/2 and eVσ/vdet = 1. The red dashed lines indicate the
expected location of visibility zeroes, according to the approximation v′(t) for
the nonequilibrium part (37), in the limit σ → 0.

We focus on the zero temperature case, although the formula also allows us to treat thermal
fluctuations which lead to an additional suppression of visibility. The most important parameters
are the dimensionless coupling constant g (21), the transmission probability T , and the voltage
V applied to the detector channel. We will also note whenever the results depend on the width σ
or shape of the interaction potential u(x).

In figure 2, we have displayed the time-evolution of the visibility v = |D(t)| as a function
of vdett/σ, for different couplings. In equilibrium, the curves derived from the full expression
(19) coincide exactly with those obtained from the Gaussian theory (29), as expected. The long-
time behaviour is given by the power-law decay (33) arising from the orthogonality catastrophe.
However, at finite voltages, with extra dephasing due to shot noise, the Gaussian approximation
fails: in general, it tends to overestimate the visibility at longer times and larger couplings
(dashed lines in figure 2, right panel). The most prominent non-Gaussian feature sets in after
the coupling g crosses a threshold that is equal to g = π, as will be explained below: for larger
g, the visibility displays oscillations, vanishing at certain times (for a barrier with T = 1/2)
and showing ‘coherence revivals’ in-between these zeroes. The zeroes coincide with phase
jumps of π in D(t) (see figure 4). We will discuss the locations of these zeroes in more detail
below.

Such a behaviour of the visibility can only be explained by invoking non-Gaussian noise. In
every Gaussian theory, we can employ 〈eiϕ〉 = e−〈ϕ2〉/2 � 0, which directly excludes the behaviour
found here (regardless of noise spectrum and coupling strength), even though it is still compatible
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Figure 4. Effect of the transmission probability and phase evolution. (a)Visibility
v = |D(t)| as a function of time for different transmission probabilities T (where
g = 5 and eVσ/vdet = 1). (b) Corresponding evolution of the phase, i.e. the
argument of the complex coherence factor Dr(t), where the subscript indicates
that the phase evolution for T = 1 has been subtracted as a reference.

with a non-monotonous evolution of the visibility. The simplest available model of dephasing
by non-Gaussian noise will be compared with the present results in section 4.

In order to obtain insight into the general structure of the solution, we first of all note that the
qualitative features (in particular the zeroes of the visibility) depend only weakly on the width
σ or the shape of the interaction potential. In fact, these features are due to the non-equilibrium
part of the noise, and the Gaussian approximation suggests that the limit σ → 0 is well-defined
for that part. This is the reason why, in the following, we will plot the time-evolution as a function
of eVt (instead of vdett/σ), which is the relevant variable.

In figure 3, we display the time-evolution versus the coupling g. The threshold at g = π

is clearly noted. Furthermore, the first zero occurs at a time t1 = 2π2/(eVg) which shrinks with
increasing coupling (provided g � 1, see discussion in the next section and equation (42)).
In contrast, subsequent zeroes have a periodic spacing that appears to be roughly independent
of g, given approximately by δ(eVt) = 2π for the small values of g plotted here.

Finally, in figure 4, the effects of the transmission probability T on the evolution of the
visibility and the full coherence factorD(t)have been plotted, indicating the phase jumps obtained
at T = 1/2 whenever v = |D(t)| vanishes.

All of these features will now be analysed further by restricting the discussion to the effects
of the nonequilibrium part of the noise.
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3. Nonequilibrium part of the noise

3.1. General properties

Within the Gaussian approximation, we noted that the visibility at finite voltages factorized into
one factor describing the decay due to equilibrium noise and another part describing the effect
of nonequilibrium shot noise (34). More precisely, the nonequilibrium part of the visibility can
be calculated from (29) by simply restricting the matrix elements of wk′k to transitions within
the voltage window: k, k′ ∈ [0, eV/vdet]. This has the physical interpretation that only these
transitions contribute to the excess noise in the spectrum 〈δV̂ δV̂ 〉ω of the fluctuating potential.
In addition, since the equilibrium noise comes out exact in the Gaussian theory, we can state that
all the non-Gaussian features are due to the nonequilibrium part.

Based on these observations, we now introduce a heuristic approximation to the full
non-Gaussian theory, which works surprisingly well. We will factorize

vT=0,V �=0(t) ≈ vT=V=0(t) · v′(t), (36)

where v′ is the visibility obtained from the full expression (19) after restricting the matrix elements
of ŵ in the fashion described above. We will denote the restricted matrix as ŵ′. Note that the
restricted matrix depends on the voltage, in contrast to ŵ itself.

Since the occupation probability is constant within the voltage window,nk = T , the matrices
n̂ and ŵ′ now commute. This allows a considerable simplification, yielding a visibility that can
be written in terms of the eigenvalues ϕj of the matrix ŵ′:

v′(t) =
∏

j
|R + T e−iϕj |. (37)

Thus, the dependence on the transmission probability has been separated from the dependence
on interaction potential, time, and voltage, contained within ϕj. The results obtained from the
exact formula are compared against this approximation in figure 5(a). We observe that all the
important qualitative features are retained in the approximation. Furthermore, the locations of
the zeroes come out quite well, while the amplitude of the oscillations is underestimated.

We will now list some general properties of the matrix ŵ′ that determines the visibility
according to (37).

1. The sum of eigenvalues is∑
j

ϕj = trŵ′ = g

2π
eVt. (38)

2. For a non-negative (non-positive) phase function w(x), the matrix ŵ′ is positive (negative)
semidefinite: we can map any wavefunction |ψ〉 to another state |ψ′〉 by setting ψ′

k = ψk
only inside the voltage window, and ψ′

k = 0 otherwise. Then

〈ψ|ŵ′|ψ〉 = 〈ψ′|ŵ|ψ′〉 =
∫

dx|ψ′(x)|2w(x) � 0, (39)

for a non-negative function w(x), and analogously for a non-positive function w(x).
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Figure 5. Left panel: contribution v′ of the nonequilibrium part of the noise
(i.e. the shot noise) to the suppression of the visibility. The full lines have been
obtained from the exact result (19) by dividing by the result at zero voltage,
vV �=0(t)/vV=0(t). The dashed lines represent the approximation of restricting
matrix elements of ŵ to the voltage window, see (37). We have set eVσ/vdet = 1 in
this panel. Middle panel: universal curves for the eigenvalues ϕj of the restricted
matrix ŵ′ entering the visibility v′(t) in equation (37), plotted as a function of eVt
in the limit σ → 0. Right panel: locations of the zeroes in the visibility v′(t) as a
function of coupling g (compare figures 3 and 6). These curves can be obtained
from those on the left by taking (2n + 1)π/(ϕj/g), withn = 0, 1, 2, 3, 4, . . . (from
bottom to top). The blue dotted line corresponds to the first curve displaced by 2π,
indicating the periodicity observed for small couplings g. In both left and right
panels, the green dashed line shows the short-time behaviour ϕ1 = geVt/2π.

3. Following the same argument, we can prove that the largest eigenvalue of ŵ′ is bounded by
the maximum of w(x), if maxw(x) � 0:

〈ψ|ŵ′|ψ〉 =
∫

dx|ψ′(x)|2w(x) � 〈ψ′|ψ′〉maxw(x) � maxw(x). (40)

Analogously the smallest eigenvalue is bounded from below by the minimum (if
maxw(x) � 0).

At small voltages (short times) (where eVt � 1 and eVσ/vdet � 1), the matrix elements
are constant inside the voltage window, w′

k′k = 1
L
w̃(q = 0), yielding only one nonvanishing

eigenvalue, given by (38):

ϕ1 = g

2π
eVt. (41)

As a consequence, at sufficiently large g � 1, the first zero in the visibility v′(t)will occur when
ϕ1 = π, implying

t1 = 2π2

geV
. (42)

Assuming now that w(x) is non-negative (as is the case in our example, if g > 0), we can
immediately deduce the following general consequences from properties (i) to (iii): all of
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Figure 6. Nonequilibrium part of the visibility, v′, as a function of coupling
strength g and time (or voltage) eVt. The lines of vanishing v′ are those plotted in
figure 5. The structure will be distorted for σ > 0, and the full visibility v will be
further suppressed at higher couplings by the dephasing due to equilibrium noise,
see (36).

them taken together imply that the rise of the first eigenvalue must saturate below maxw(x)
(which approaches g for times vdett � σ). Thus, other eigenvalues must start to grow, in order
to obey the sum-rule. If (and only if ) the coupling constant is large enough, this may lead to an
infinite series of zeroes in the visibility (see below). Therefore, we are dealing with a true strong
coupling effect.

We have not found an analytical way of obtaining ϕj at arbitrary parameters. However,
all relevant features follow from the foregoing discussion and may be illustrated by numerical
evaluation of the eigenvalues.

We note that the limitσ → 0 is well-defined, and we will assume this limit in the following, in
which results become independent of the shape of the interaction potential. This limit represents
a good approximation as soon as the time is sufficiently large: vdett � σ. In that limit, the
eigenvalues have the following functional dependence:

ϕj = g · ϕ(g=1)
j (eVt). (43)

Thus the complete behaviour at all coupling strengths can be inferred by numerically evaluating
the eigenvalues once as a function of eVt. This has been done in figure 6.

At T = 1/2, the visibility v′(t) will vanish whenever one of these eigenvalues is equal
to (2n + 1)π, where n = 0, 1, 2, . . .. Thus, the locations of the zeroes can be obtained from
the equation (2n + 1)π = ϕj, or equivalently g = (2n + 1)π/ϕ(g=1)

j . The latter equation has the
advantage that the rhs is independent of g. It has been used in the right panel of figure 6. These
curves have also been inserted into figure 3, for comparison against the results from the full
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theory. In particular, the first zero is reproduced very accurately, while there are some quantitative
deviations at subsequent zeroes.

The full pattern of the visibility, as a function of interaction time and coupling strength, can
become very complex due to the large number of lines of vanishing visibility v′. This is depicted
in figure 6. However, we emphasize that the complex shapes at higher coupling strengths will
be difficult to observe in experiments dealing with a charge qubit subject to the shot noise of a
detector channel. This is because the nonequilibrium part of the visibility depicted in figure 6
still has to be multiplied by the equilibrium contribution that decays strongly as a function of
coupling strength. In addition, numerical evaluations of the full result indicate that the deviations
from the approximation discussed here become larger as well in that regime.

The analysis in the next section indicates (and the numerical results displayed in figure 6
confirm) that the spacing between the subsequent zeroes in the visibility is no longer determined
by g, but rather given by 2π/eV (with deviations at higher g). As we will explain in the next
section, this corresponds to one additional detector electron passing by the qubit during the
interaction time.

3.2. Wave packet picture

Following Martin and Landauer [52], we introduce a new basis of states inside the voltage
window, whose width in k-space is set by �k ≡ eV/vdet:

|ψn〉 =
(
�k

2π/L

)−1/2 ∑
k∈[0,�k]

e−ikn�x|k〉. (44)

In real space, these states represent a train of wavepackets, spaced apart by �x = 2π/�k =
vdet�t, corresponding to time bins of duration �t = h/eV = 2π/eV . Taking the limit L → ∞,
we have

ψn(x) =
√
�k

2π
ei(�k/2)(x−n�x)sinc

(
�k

2
(x− n�x)

)
, (45)

where sinc(y) = sin(y)/y. These packets move at constant velocity, ψn(x, t) = ψn(x− vdett).
Their advantage is that they are localized in space and therefore well suited for calculating
matrix elements of the phase function w(x) (or its restricted counterpart ŵ′). From

〈ψn′ |ŵ|ψn〉 =
(
�k

2π/L

)−1 ∑
k,k′∈[0,�k]

ei(k′n′−kn)�xwk′k, (46)

we find

〈ψn′ |ŵ|ψn〉 = �k

2π

∫ +1

−1
dq̃eiπ(n+n′)q̃Gn′−n(|q̃|)w̃(q̃�k), (47)

where

Gn′−n(|q̃|) =



sin (π|q̃|(n′ − n))

π(n− n′)
for n′ �= n.

1 − |q̃| for n′ = n.

(48)
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These formulae enable a very efficient numerical evaluation. In general, for large |n| and |n′|
the corresponding wave packets lie outside the range of w(x) and therefore the corresponding
matrix elements are small and can be neglected. In the limit of small voltages, the matrix ŵ′ is
already diagonal in this basis (compare (41)):

〈ψn′ |ŵ|ψn〉 ≈
[
geVt

2π

]
δn′0δn0. (49)

Moreover, the wave packet basis permits a very intuitive interpretation of the results in the
Gaussian approximation: first, let us assume that the number of contributing wave packets is
large, N ≡ eVt/2π � 1. The wave packets are orthonormalized, and the phase function w(x) is
smooth on the scale �x = vdet�t = v2π/eV of these packets (for sufficiently large voltages).
As a result, we find that the matrix ŵ is diagonal in this basis, up to terms of order 1/N:

〈ψn′ |ŵ|ψn〉 ≈ δn′nw(x = n�x) +O

(
1

N

)
. (50)

Therefore, in any sum over the eigenvalues ϕj, these can be approximated by the values of w
taken at the centres of the wave packets. Assuming further that the coupling g � 1 is weak, each
of the ϕj is small. This allows us to expand the visibility reduction due to nonequilibrium noise:

v′(t) =
∏

j
|R + T e−iϕj | ≈ 1 − 1

2
RT

∑
j

ϕ2
j + . . . . (51)

That is the expected result, which has the form of ‘phase diffusion’, with a contribution from
the variance of the phase shift exerted by each detector electron. In the limit of σ � eVt, we
get ϕj = g for approximately N wave packets, and zero otherwise. Then we reproduce equation
(35) in the long-time limit:

∑
j

ϕ2
j = Ng2 = t

�t
g2 = eVt

2π
g2. (52)

More generally, for any shape of w(x) we can replace

∑
j

ϕ2
j ≈

∑
n

〈ψn|ŵ|ψn〉2 ≈ 1

�x

∫
dxw2(x). (53)

Defining the effective width of w(x) as

leff ≡ [
∫

dxw(x)]2∫
dxw2(x)

, (54)

we can set the total number of wave packets to beN = leff/�x. Defining the average phase shift
induced by a single detector electron as ϕ̄ = ∫

dxw(x)/(N�x) = (geVt/2π)/N, we can write
∑
j

ϕ2
j ≈ Nϕ̄2. (55)

Note that in the case of a constant w(x), we have leff = vdett, and therefore N = eVt and ϕ̄ = g,
so we are back to (52).
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4. Comparison with dephasing by classical telegraph noise

In this section, we compare and contrast the results we have obtained in the rest of this
paper against the simplest possible model displaying non-Gaussian features in dephasing:
pure dephasing of a qubit by classical random telegraph noise. There, visibility oscillations
are observed once the coupling strength becomes large as compared to the switching rate of the
two-state fluctuator producing the telegraph noise. In the limit of a vanishing switching rate,
the visibility in that model is the average of two oscillatory phase factors evolving at different
frequencies, corresponding to the two different energy shifts imparted by the two-state fluctuator:

vtel.noise(t) = |(1 − p) + pe−iδωt|. (56)

If the occupation probability of the two fluctuator states is p = 1/2, this leads to visibility
oscillations vtel.noise(t) = |cos(δωt)|, roughly similar to those found in our full quantum theory
of dephasing by shot noise. The decaying envelope of these oscillations is then produced by a
finite switching probability.

It is instructive to set up a rough correspondence between that simple model and the one
considered here, and see how far it takes us (and where it fails): according to the well-known
semiclassical picture of binomial shot noise [32], during the time-interval�t = h/eV = 2π/eV
a single detector electron arrives with a probability T . It imparts a phase shift g within our
model. Thus, the fluctuator probability p would equal T , the mean time between telegraph
noise switching events would be taken as �t, and the frequency difference δω would have to
be set equal to g/�t. This analogy partly suggests the right qualitative behaviour, namely a
threshold in g that is independent of voltage (independent of �t). This threshold turns out to
be g = 1 in the telegraph noise model, and for larger g the visibility oscillates with a period
4π�t/

√
g2 − 1 (if p = T = 1/2). Although this correctly suggests that the first zero occurs at

a position t ∝ 1/(eVg), it predicts all subsequent zeroes to occur at the same period, which
is not compatible with the actual behaviour (see figure 3). These discrepancies are not too
surprising, since the two models certainly differ even qualitatively in the following sense: in
random telegraph noise, the switching occurs in a Markoff process, i.e. without memory. In
contrast, in the semiclassical model of binomial shot noise the electrons arrive in a stream
of regularly spaced time-bins of size �t = h/eV . We have not found any reasonable way of
incorporating this fact into a simplified semiclassical model, since it is unclear how to treat
‘fractional time-bins’ within such a model.

5. Electronic MZI coupled to a detector edge channel

In this section, we will show how to explain the surprising experimental results that have been
obtained recently in a strongly coupled ‘which-path detector system’ involving a MZI coupled
to a ‘detector’ edge channel. We will present a nonperturbative treatment that captures all the
essential features due to the non-Gaussian nature of the detector shot noise. Our approximate
solution for this model is directly related to the exact solution of the simpler charge qubit system
discussed above.

A simplified scheme of the experimental setup is presented in figure 1 (see [33, 34]. Both
the MZI and the detector were realized utilizing chiral 1D edge-channels in the integer Quantum
Hall effect regime. The MZI phase was controlled by a modulation gate via the AB effect.
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The additional edge channel was partitioned by a quantum point contact, before travelling in
close proximity to the upper path of the MZI, serving as a ‘which path’ phase-sensitive detector
[25]. For a finite bias applied to the detector channel, the Coulomb interaction between both
channels caused orbital entanglement between the interfering electron and the detecting electrons,
thereby decreasing the contrast of the AB oscillations. This contrast, quantified in terms of the
visibility v = (Imax − Imin)/(Imax + Imin), was measured as a function of the dc bias V applied at
the detector channel, and of the partitioning probability T of the detector channel.

As noted already in the introduction, two new and peculiar effects, which will be explained
here, were observed in these experiments.

1. Unexpected dependence on partitioning: the visibility as a function of T changes from the
expected smooth parabolic suppression ∝ T (1 − T ) at low detector voltages to a sharp
‘V-shape’ behaviour at some larger voltages, with almost zero visibility at T = 1/2 (see
figure 3 in [34]).

2. Visibility oscillations: for some values of the detector QPC gate voltage (yielding T ≈ 1/2),
the visibility drops to zero at intermediate voltages, then reappears again as V increases, in
order to vanish at even larger voltages (see figure 4 in [34]). For some other gate voltages
it decreases monotonically (see figure 2 in [33]).

In [34], we showed that a simplified model involving a single detector electron can provide
a qualitative explanation for the experimental results listed above. However, it has clear
shortcomings, both quantitative and in terms of the physical interpretation. The natural reason
for these shortcomings is that detection in the experiment is due to a varying number of electrons,
not just a single one. Then two questions arise: (i) how many electrons dephase the MZI as the
detector voltage increases, and (ii) how much does each electron contribute to dephasing. These
questions will be answered by the following model.

5.1. Solution of the single-particle problem

The main simplifying assumption in our approach will be that it is possible to treat each given
electron in the MZI on its own, as a single particle interacting with the fluctuations of the density
in the detector channel. Making this assumption is far from being a trivial step, as it effectively
neglects Pauli blocking, and we will have to comment on it in the next section. For now, however,
let us define the following model as our starting point:

Ĥ = vMZp̂ +
∫

dx′ u(x′ − x̂)ρ̂det(x
′) + Ĥdet. (57)

Here x̂ and p̂ = −i∂x are the position and the momentum operator, respectively, of the
single interfering electron under consideration (travelling in the upper, interacting path of
the interferometer). We have linearized the dispersion relation, keeping in mind that the
interferometer’s visibility will be determined by the electrons near the MZ Fermi energy, traveling
at a speed vMZ. The Fermi energy itself has been subtracted as an irrelevant energy offset, and
likewise the momentum is measured with respect to the Fermi momentum. TheAB phase between
the interfering paths would have to be added by hand.

We thus realize that the situation is analogous to the model treated above, involving pure
dephasing of a charge qubit. The two states of the qubit correspond to the two paths which the
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interfering electron can take. The following analysis explicitly demonstrates this equivalence and
arrives at an expression for the visibility which is the analogue of equation (6). The only difference
will be the replacement of vdet by the relative velocity vdet − vMZ, which can be understood by
going into the frame of reference of the MZ electron.

Let us now consider the full wavefunction |�total(t)〉 = e+iĤdet t e−iĤt|�total(0)〉 of MZI and
detector, expressed in the interaction picture with respect to Ĥdet. One can always decompose the
full wavefunction in the form |�total(t)〉 = ∫

dx |x〉⊗|ψ(x, t)〉. Here, we focus on the projection
|ψ(x, t)〉 ≡ 〈x|�total(t)〉 onto the MZI single-particle position basis. This is a state in the detector
Hilbert space, with 〈ψ(x, t)|ψ(x, t)〉 giving the probability of the MZI electron to be found at
position x. It obeys the Schrödinger equation

i
∂

∂t
|ψ(x, t)〉 =

[
−ivMZ

∂

∂x
+ V̂ (x, t)

]
|ψ(x, t)〉, (58)

where the fluctuating potential V̂ (x, t) ≡ ∫
dx′ u(x′ − x)ρ̂det(x

′, t) is in the interaction picture
with respect to Ĥdet. The exact solution of equation (58) that follows from the Hamiltonian (57)
reads:

|ψ(x, t)〉 = T̂ exp

[
−i

∫ t

0
dt′ V̂ (x− vMZt

′, t − t′)
]

|ψ(x− vMZt, 0)〉. (59)

Thus, at a given space-time point (x, t), the ‘quantum phase’ in the exponent is an integral
over the values of the fluctuating potential at all points on the ‘line of influence’ (x′, t′) with
x− x′ = vMZ(t − t′). If the potential were classical, the exponential would represent a simple
phase factor. Here, however, the interfering electron is not only acted upon by the fluctuations
but also changes the state of the detector. The state |ψ(x, t)〉 contains all the information about
the entanglement between the MZI electron and the detector electrons.

We will now determine the visibility resulting from the interaction between interferometer
and detector channel.At the first beam splitter, the electron’s wave packet is decomposed into two
parts, one of them travelling along the lower (l) arm of the interferometer, the other one travelling
along the upper (u) arm. These are described by states |ψl(x, t)〉 and |ψu(x, t)〉, respectively, which
obey the Schrödinger equation given above, albeit in general with a different noise potential for
each of them. The visibility is determined by the overlap between those two states, taken at
the position x = vMZt of the second beam splitter (where t is the time-of-flight through the
interferometer):

v = |〈ψl(x, t)|ψu(x, t)〉|. (60)

The fact that the suppression of the interference term is determined by the coherence between
waves travelling through the lower and the upper arm of an interferometer has been derived and
exploited in previous works as well, using different methods (see e.g. [19, 41]). In a MZI set-up
with 50/50 beam splitters, the current in one output port is then of the form I0(1 + v cos (φ − φ0)),
where φ is the AB phase controlled by the magnetic flux through the device and φ0 some
fixed phase shift (including a phase contributed by the overlap of ψl and ψu). The experimental
definition of the visibility, (Imax − Imin)/(Imax + Imin), is thus easily seen to coincide with the
visibility derived here.

Taking into account that |ψl,u(0, 0)〉 = |�det〉 is the detector’s initial unperturbed state, and
realizing that the interaction takes place only in the upper arm, we find that the visibility is
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determined by the probability amplitude for the electron to exit the MZI without having changed
the state of the detector [19]:

v =
∣∣∣∣
〈
�det

∣∣∣∣T̂ exp

[
−i

∫ t

0
dt′ V̂ (x− vMZt

′, t − t′)
]∣∣∣∣�det

〉∣∣∣∣ . (61)

The initial detector state |�det〉 itself is produced by partitioning a stream of electrons.
The last step consists in representing equation (61) as an expectation value of a unitary

operator:

v = |〈�det|e−i�̂|�det〉|, (62)

where �̂ is defined as the operator in the exponent of (61). We have been allowed to drop the time
ordering symbol because the density fluctuations in the 1D detector channel are described by
free bosons: [ρ̂(x, t), ρ̂(x′, t′)] is a purely imaginary c-number. The time-ordered exponential is
by definition a product of many small unitary evolutions sorted by time. Hence, using repeatedly
the Baker–Hausdorff formula eÂeB̂ = eÂ+B̂e[Â,B̂]/2, which holds since [Â, B̂] commutes with Â
and B̂ in this case, we can collect the operators at different times into the same exponent. The
remaining c-number exponent only contributes a phase, so it does not lead to a reduction in
the visibility and we can disregard it.

The phase operator �̂ in (62) is therefore a weighted integral over the density operator:

�̂ =
∫ t

0
dt′V̂ (x− vMZt

′, t − t′) =
∫

dx′w(x′)ρ̂det(x
′) dx′ =

∑
k,k′
wk′kd̂

†
k′ d̂k. (63)

The phase function w(x) is the one that has been introduced before, in equation (18), with the
exception that the detector velocity has to be replaced by the relative velocity: vdet 
→ vdet − vMZ.
It can be viewed as a convolution of the interaction potential u(x)with the ‘window of influence’
of length l = |(vdet − vMZ)t| defined by the traversal time t and the velocities.

5.2. Approximate treatment of Pauli blocking

The loss of visibility is due to the trace a particle leaves in the detector [19]. If the detector (or, in
general, the environment) is in its ground state initially, this means that the detector has to be left
in an excited state afterwards. Energy conservation implies that the energy has to be supplied by
the particle itself. This is no problem if the particle starts out in an excited state. An example is
provided by a qubit in a superposition of ground and excited state, which can decay to its ground
state by spontaneous emission of radiation into a zero-temperature environment.

However, in electronic interference experiments such as the one considered here, we are
interested in the loss of visibility with regard to the interference pattern observed in the linear
conductance. At zero temperature, this implies we are dealing with electrons right at the Fermi
surface which have no phase space available for decay into lower-energy states, due to Pauli
blocking. Only an environment that is itself in a nonequilibrium state (e.g. the voltage-biased
detector channel) can then lead to dephasing. This very basic physical picture has been confirmed
by many different calculations. While it is, in principle, conceivable that subtle non-perturbative
effects might eventually lead to a break-down of this picture, we are not aware of any unambiguous
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and uncontroversial theoretical derivation of a suppression of linear conductance visibility at zero
temperature, for an interferometer coupled to an equilibrium quantum bath.

The main difficulty in dealing with an electronic interferometer coupled to a quantum bath
thus lies in the necessity of treating the full many-body problem. Any model that considers only
a single interfering particle subject to the environment will miss the effects of Pauli blocking,
and thereby permit unphysical, artificial dephasing by spontaneous emission events that would
be absent in a full treatment. In [41, 43], it was shown how to properly incorporate these effects
into an equations-of-motion approach similar to the one described above (with the fermion field
ψ̂(x, t) taking the role of the single-particle state |ψ(x, t)〉). The main idea was that the state
of the detector, and therefore the noise potential V̂ , will itself be influenced by the density in
the interferometer, leading to ‘backaction terms’ (known from the quantum Langevin equation
for quantum dissipative systems) that ultimately ensure Pauli blocking. However, in order to
be able to solve the equations of motion of the environment, it was crucial to assume Gaussian
quantum noise, and even then the solution for the visibility was carried out only to lowest order
in the coupling. Thus, this approach is not feasible for the present problem, where we want to
keep non-Gaussian effects in a fully nonperturbative way. Nevertheless, the underlying intuitive
physical picture remains valid: if both the interferometer and the detector are near their ground
states, the interfering electron will get ‘dressed’ by distorting the detector electron density in its
vicinity, but this perturbation is undone when it leaves the interaction region. Therefore no trace
is left and there is no contribution to the dephasing rate.

We therefore resort to an approximate treatment (applicable to the zero-temperature
situation), suggested by the general physical picture described above. We will continue to use
the single-particle picture for the interferometer, but keep only the nonequilibrium part of the
noise, thus eliminating the possibility of artificial dephasing for the case when the detector is
not biased. In fact, within a lowest-order perturbative calculation, this scheme gives exactly the
right answers: firstly, dephasing by the quantum equilibrium noise of the detector channel is
completely eliminated by Pauli blocking, as follows from the analysis of [41, 43] (at T = 0,
for the linear conductance). Secondly, the remaining nonequilibrium part of the noise spectrum,
corresponding to the shot noise, is symmetric in frequency, and thus equivalent to purely classical
noise whose effects are not diminished by Pauli blocking (see discussions in [43, 53]).

The analysis in subsection 3.1 has demonstrated that all the non-Gaussian features are due
to the nonequilibrium part which we retain. Therefore, we expect that the present approximation
should be able to reproduce the novel features observed in the experiment, which is confirmed by
comparison with the experimental data. We emphasize once more that it is crucial to supplement
the single-particle picture by taking care of the Pauli principle afterwards.

Thus, we shall restrict the matrix elements in equation (63) to the voltage window, replacing
wk′k by the restrictedw′

k′k, according to the notation introduced in subsection 3.1. All that remains
to be done to calculate the visibility is diagonalizing the operator �̂, which is achieved by
switching to the basis of eigenstates of w′,

�̂ =
∑
j

ϕjĉ
†
j ĉj, (64)

where ϕj are the eigenvalues and ĉj is the annihilation operator for eigenstate j of w′. The
occupation operators ĉ†

j ĉj fluctuate independently, and all states j have the same occupation
probability T , just like the states in the original basis. This is a consequence of the occupation
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matrix being proportional to the identity matrix, as pointed out near equation (37). Therefore,
equation (63) reduces to

v′ = |〈e−i�̂〉| = |〈�det|	je
−iϕjĉ

†
j ĉj |�det〉| = 	j|R + T e−iϕj |. (65)

This formula is our main result for the visibility of the MZI, valid at zero temperature. It gives
a closed expression for the reduction of the interference contrast in the AB oscillations of
the MZI, as a function of detector bias and partitioning probability T . It has been calculated
nonperturbatively within the approximation discussed above, i.e. employing a single-particle
picture for the interfering electron and simultaneously retaining only the nonequilibrium part of
the detector noise. At any given detector voltage V , there exists a basis of states in the detector,
which, when occupied, contribute to the MZI phase by different amounts ϕj. These occupations
fluctuate due to the partitioning at the detector beam splitter. The visibility then is the product of
all those influences.

5.3. Dependence of visibility on detector voltage and detector partitioning

The visibility for the MZI subject to the shot noise in the detector channel may thus be calculated
in the same manner as the visibility for the charge qubit treated above, if the restriction to the
nonequilibrium part of the noise is taken into account. The main difference is that in the MZI
the interaction time t is dictated by the set-up. However, in the limit σ → 0, the visibility v′

only depends on the product eVt. Thus the plots above (figures 5(b, c) and 6) also depict the
dependence of v′ on the voltage at fixed time t.

At small bias voltages, only one eigenvalue is nonzero and grows linearly with detector
voltage, according to equation (41): ϕ1 = geVt/2π ≡ γV . Thus, the visibility is

v′ = |R + T e−iγV |, (66)

where the proportionality constant γ may be measured from the voltage-dependent phase shift
obtained for the non-partitioned case, T = 1. Equation (66) represents the influence of ‘exactly
one detecting electron’.

One can obtain (66) as an ansatz, by postulating that exactly one detector electron interacts
with the interfering electron [34]. Here, we obtained it naturally as a limiting case of our full
expression. It has to be emphasized that this result is highly counterintuitive: naively, one would
assume that each detector electron induces a constant phase shift that is set by the coupling
strength and does not depend on the detector voltage. The voltage V should only control the
frequency at which detector electrons are injected. However, to the extent that we identify each
eigenvalue ϕj with one detector electron, we have to conclude that this naive picture is wrong.
Formally, only a single, very extended detector wavepacket of size ∝ V−1 interacts with the
quantum system, i.e. the charge qubit or the interfering electron (see subsection 3.2). As the
interaction range is fixed and limited, this means that the phase shift (basically the expectation
value of w(x) in terms of this wavepacket) then shrinks with V . The linear dependence of the
phase shift on voltage thus may be rationalized by taking into account energy conservation:
at lower detector voltages V the phase space for scattering of detector electrons gets restricted
severely, and thus the effective interaction strength is diminished. Likewise, the spatial resolution
of this which-path detector becomes very poor, as is apparent from the large extent of the
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Figure 7. Dependence of the visibility v′ on the partitioning probability T of
the detector current, for different voltages, using equation (65). The ‘V-shape’ is
clearly observed. Inset: visibility at T = 1/2 as a function of eVt. The locations
corresponding to the curves in the main plot are indicated. Other parameters g = 5
and temperature T = 0.

wavepacket: detection at a high spatial resolution would prepare a localized state that contains a
lot of energy, more than is available in the detector-interferometer system.

Regarding the dependence on the transmission probability of the detector channel (figure 7),
we note that there are strong deviations from the smooth dependence exp [−CT (1 − T )]
expected for any Gaussian noise model (where C would depend on V, t, g, . . . but not on T ).
These deviations are particularly strong near the voltages for which the visibility becomes zero
at T = 1/2. Indeed, if only one eigenvalue contributes and is equal to π, equation (66) yields a
‘V-shape’ of the visibility, v′ = |1 − 2T |, as indicated by the dashed line in figure 7.

5.4. Comparison with experiment

In this section, we briefly discuss the results obtained by fitting the present model to the
experimental data. This follows our discussion in [34], where the reader may find the relevant
figures.

At the outset, we note that the visibility in the real experiment is also suppressed by
external low-frequency fluctuations, beyond the detector-induced dephasing discussed here. They
contribute an overall voltage-independent factor that has to be introduced as a fitting parameter
when comparing against theory.

First, we consider the approximation (66) obtained for low voltages, involving only one
detector electron. Since the constant γ was measured, this formula does not contain any free
parameters, and can be compared directly with the experimental data. As shown in figure 3
of [34], it fits very well to the data at low V and qualitatively reproduces the novel effects
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mentioned at the beginning of section 5. In particular, it predicts the change from a smooth
shape to a V-shape in the dependence of visibility on partitioning probability, as well as the
non-monotonous behaviour with increasing V . However, according to (66) these effects should
occur when γV = π, which does not agree with the experimental observations, where the zero
in the visibility is shifted to a detector bias that is larger than this estimate by about 40%. Hence
at this detector bias (66) fails to quantitatively reproduce the experimental results. The reason
of this discrepancy must be the onset of the contributions from other detecting electrons. Once
other eigenvalues become slightly nonzero, the first one is smaller than γV , because of the sum
rule (38) and the non-negativity of the eigenvalues, (39). This is clearly apparent in figure 6. The
visibility then vanishes at larger values of the detector voltage V , in agreement with experiment.
At even larger voltages, near ϕ1 ≈ 2π, the visibility will have again a maximum (coherence
revival). However, it will be smaller due to the dephasing by the other detecting states (other ϕj),
again in contrast to the simplified formula (66). These two effects have both been seen in the
experiment (figure 4 in [34]).

Finally, in [34], we fitted the experimental data by using, for simplicity, a Lorentzian shape
as an ansatz for the Fourier transform of the phase function:

w̃(q) = w̃(q = 0)

1 + (qvdet/eV∗)2
(67)

Here V∗ has the dimensions of a voltage and turns out to be V∗ ≈ 6.2µV . Within this fit, the first
eigenvalue is ϕ1 ≈ 0.8π at V = 9.5µV , where γV = π. This implies that almost the full phase
shift of π is contributed by a single electron, indicating very strong interchannel interaction.

5.5. Relation to intrinsic visibility oscillations

While the earliest implementation of the electronic MZI [23] displayed a rather smooth
monotonous decay of the visibility with rising MZI bias voltage, this is no longer true in a more
recent version [36]. There, the visibility displayed oscillations, much like the ones observed
here, except they occurred as a function of MZI bias voltage, in the absence of any detector
channel. The present analysis may lead to a possible explanation for these initially puzzling
observations: the intrinsic intra-channel interaction may cause the interfering electrons to be
dephased by their own (non-Gaussian) shot noise, if the bias is large enough. We note that a
similar explanation was put forward in a recent preprint of Sukhorukov and Cheianov [45], who
considered a model where two counterpropagating edge channels interacted with each other.
Though their model is therefore different from ours, we have seen that the visibility oscillations
are a generic consequence of dephasing by non-Gaussian shot noise, and therefore it is hard to
distinguish experimentally (at this point) between the different models.

6. Summary and conclusions

We presented a nonperturbative approach to the dephasing of a quantum system by an adjacent
partitioned 1D electron channel, serving as a detector. Our treatment gave an exact expression
for the time-evolution of the visibility of a charge qubit coupled to such a detector. Moreover,
within a certain simplifying approximation, it can be used to describe a ‘controlled dephasing’
(or ‘which path’) set-up where a MZI is coupled to a detector channel.
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The main features of our results are the following: the visibility may display oscillations as
a function of time or detector voltage, vanishing exactly at certain points and yielding ‘coherence
revivals’in-between those points. This behaviour is only observed if the coupling strength crosses
a certain voltage-independent threshold, corresponding to a phase-shift of g = π contributed by
a single electron. It is impossible to obtain that behaviour in any model of dephasing by Gaussian
noise, regardless of the assumed noise spectrum. The location of the first zero of the visibility
(in detector voltage or interaction time) is proportional to 1/g for large couplings g, while the
spacing of subsequent zeroes is approximately independent of g and corresponds to injecting one
additional detector electron during the interaction time. When plotted as a function of detector
transmission probability, the visibility differs from the smooth dependence on T (1 − T ) expected
for any Gaussian model, rather displaying a ‘V-shape’ at certain voltages.

All of these features have been observed in the recent Mach–Zehnder experiment [34].
Challenges for future experiments include more quantitative comparisons against the theory
presented here, as well as finding ways of tuning the interaction strength g, to switch between
the strong and weak coupling regimes. In addition, we hope that the strong coupling physics of
dephasing by non-Gaussian shot noise will be seen in future experiments involving various other
kinds of quantum systems as well.
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