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Not all unitary operations upon a set of qubits can be implemented by sequential interactions between
each qubit and an ancillary system. We analyze the specific case of sequential quantum cloning, 1! M,
and prove that the minimal dimension D of the ancilla grows linearly with the number of clones M. In
particular, we obtain D � 2M for symmetric universal quantum cloning and D � M� 1 for symmetric
phase-covariant cloning. Furthermore, we provide a recipe for the required ancilla-qubit interactions in
each step of the sequential procedure for both cases.
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Multipartite entangled states stand up as the most ver-
satile and powerful tool to perform information-processing
protocols in quantum information science [1]. They arise
as an invaluable resource in tasks such as quantum com-
putation [2,3], quantum state teleportation [4], quantum
communication [5], and dense coding [6]. As a result, the
controllable generation of these states becomes a crucial
issue in the quest for quantum-informational proposals.
However, the generation of multipartite entangled states
through single global unitary operations is, in general, an
extremely difficult experimental task. In this sense, the
sequential generation studied by Schön et al. [7], where
at each step one qubit is allowed to interact with an ancilla,
appears as the most promising avenue. The essence of this
sequential scheme is the successive interaction of each
qubit initialized in the standard state j0i with an ancilla
of a suitable dimension D to generate the desired multi-
qubit state. In the last step, the qubit-ancilla interaction is
chosen so as to decouple the final multiqubit entangled
state from the auxiliary D-dimensional system, yielding
[7]

 j�i �
X

i1���in�0;1

h’FjV
in
�n� � � �V

i1
�1�j’Iiji1 � � � ini: (1)

Here, the Vik
�k� are D-dimensional matrices arising from the

isometries (unitaries) V�k�: hA � �j0i� ! hA � hBk , with
hA � CD and hBk � C2 being the Hilbert spaces for the
ancilla and the kth qubit, respectively, and where j’Ii and
j’Fi denote the initial and final states of the ancilla,
respectively. The state (1) is, indeed, a matrix-product state
(MPS) (cf., e.g., [8], and references therein), already
present in spin chains [9], classical simulations of quantum
entangled systems [10], and density-matrix renormaliza-
tion group techniques [11]. Moreover, it was proven that
any multiqubit MPS can be sequentially generated using
the recipe of Ref. [7]. Notice that in this formalism, the

mutual qubit-ancilla interaction in each step k completely
determines the matrices Vik

�k�, ik � 0, 1, whereas we enjoy
some freedom to build such an interaction from a known
Vik
�k�. This freedom stems from the fact that in the proposed

scheme only the initial state j0i for each qubit is relevant.
In this Letter, we consider the possibility of implement-

ing quantum cloning based on a sequential protocol with
the help of an ancillary system. This problem is certainly
far from being an application of Ref. [7], given that the
initial and final states are unknown. In this sense, any
proposed strategy will be closer to the open problem of
which global unitary operations (certainly not all of them)
can be implemented through a sequential procedure.
Despite the fundamental no-cloning theorem [12], stating
the impossibility to exactly clone an unknown quantum
state, there exist several cloning techniques with a given
optimal fidelity [13]. These procedures differ either from
the initial set of states to be cloned or from symmetry
considerations. In general, an optimality condition of the
cloning procedure is obtained via the maximization of the
fidelity between the original qubit and each final clone
state. We will show how to perform sequentially both the
universal symmetric [14,15] and the economical phase-
covariant symmetric quantum cloning [16,17] from one
qubit to M clones. In the first case, a global unitary evolu-
tion transforms any input state j i in a set of M clones
whose individual reduced states �out carry maximal fidelity
with respect to j i: F1;M �

2M�1
3M . This cloning procedure

is fully described by the evolution
 

j i � jBi ! jGMM� �i 	
XM
1

j�0

�jj�M
 j� ; j 
?iS

� j�M
 j
 1� �; j �?iS; (2)

where jGMM� �i stands for the state produced by the
Gisin-Massar cloning procedure [15], that results in M
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optimal clones of j i from the initial blank state jBi, �j ���������������������������������������������
2�M
 j�=M�M� 1�

p
, and j�M
 j� ; j ?iS denotes the

normalized completely symmetric state with (M
 j) qu-
bits in state  and j qubits in state  ?. Notice the presence
of M
 1 additional so-called anticlones. They are neces-
sary in order to perform this cloning procedure with the
optimal fidelity. The anticlone state  � refers to the fact
that they transform under rotations as the complex con-
jugate representation. For concreteness sake we have
chosen j �i � cos�=2j1i � e
i� sin�=2j0i in coincidence
with the seminal paper by Bužek and Hillery [14], whereas
j i � cos�=2j0i � ei� sin�=2j1i. In the second case, mo-
tivated by quantum cryptoanalysis, the goal is to clone only
those states belonging to the equatorial plane of the Bloch
sphere, i.e., those such that � � �=2. Furthermore, we
have only focused upon the cases where no anticlones
are needed (hence the term economical). Under this as-
sumption, imposing the purity of the joint state, the number
of clones M must be odd [16]. The cloning evolution is
now given by

 j i � jBi !
1���
2
p �j�k� 1�0; k1iS � e

i�jk0; �k� 1�1iS�;

(3)

where k � �M
 1�=2 and where we have followed the
same convention as above.

The basic idea is to express the final states (2) and (3) in
its MPS form, as given in Ref. [10], by performing n
 1
sequential Schmidt decompositions

 j�i �
X

�1...�n
1

j’�1��1 i��1��1
j’�2��1�2i � � ���n
 1��n
1

j’�n��n
1i;

andthenwriting theunnormalized Schmidtstates in thecom-
putational basis for the corresponding qubit j’�l��l
1�li �P
l��l�

il
�l
1�l jili. Then, j�i �

P
i1...iN ci1...iN ji1 . . . iNi, with

 ci1...iN �
X

�1...�n
1

��1�i1�1��1��1
��2�i2�1�2��2��2

. . . ��n�in�n
1 :

(4)

We identify the matrices Vik
�k� by matching indices in ex-

pressions (1) and (4). The indices �j run from 1 to �, where
� � maxP f�P g, �P denoting the rank of the reduced
density matrix �P for the bipartite partition P of the
composite system [10].

In order to employ the sequential ancilla-qubit device as
a quantum cloning machine we will first elucidate the
minimal dimension required for the ancilla. To clone an
arbitrary input qubit state j i � �j0i � �j1i, we exploit
linearity and determine the minimal dimension D0;1 of the
ancillas to perform the cloning for the states j0i and j1i and
then combine both results in a single ancilla of minimal
dimension D to be determined. Let us focus upon the
symmetric universal cloning of j0i. To determine the mini-
mal dimension D0 of the ancilla we need to compute �,

which can be done without the exact MPS expression for
the state.

Let us denote by P � AjB the partition into two sub-
systems, one with the first A qubits, the other with the
following B qubits, and CAjB the corresponding coefficient
matrix. For definiteness,CAjB� � � �ci1...iA;iA�1...iA�B�, where
i1 . . . iA is treated as the row index, whereas iA�1 . . . iA�B is
treated as the column index, and ci1...iA;iA�1...iA�B denote the
coefficients of state j i. Now, the Gisin-Massar state
cloned from j0i can be written as
 

jGMM�0�i � SM � SM
1

XM
1

j�0

�jj�M
 j�0; j1i

� j�M
 j
 1�1; j0i; (5)

where SA is the normalized symmetrizing operator for A
qubits, so that SM � SM
1 is an invertible local operator
for the partitionMjM
 1. Because of the orthonormalities
among the states on the rhs, their CMjM
1 can only have M
different rows, whereas the rest are all null; hence,
r�CMjM
1� � M. As SM � SM
1 amounts to local changes
of basis within both partitions only, they cannot change the
rank of the density matrix �MjM
1, so that the rank of the
coefficient matrix of (2) is also M. We now consider the
partition kj2M
 k
 1, where k � 1; . . .M
 2. The ma-
trices Ckj2M
k
1 are obtained from the CMjM
1 by adjoin-
ing rows and columns to make them longer, but—as there
are only M different rows in CMjM
1, the rest being all
null—this reordering procedure cannot increase the for-
mer rank. Finally,

 r�Ckj2M
1
k� � r�CMjM
1� � M: (6)

From the results above, it follows that � � M, i.e., that
the minimal dimensionD0 to clone the j0i state isD0 � M,
namely, the number of clones to produce. Repeating the
same argument for the initial state j1iwe also conclude that
the minimal dimension of the ancilla to clone the j1i state
is D1 � M, as expected. Now we must combine both
results to find D for an arbitrary unknown state j i �
�j0i � �j1i. It is a wrong assumption to think that it
should also be D � M and, consequently, a different
scheme must be given. The MPS expression of (2) for
the original state j0i determines the D-dimensional matri-
ces Vik0�k�, whereas the corresponding MPS expression for

the original state j1i determines Vik1�k�,

 jGMM�0�i �
X

i1...in�0;1

h’�0�F jV
in
0�n� . . .Vi10�1�j0iDji1 . . . ini;

jGMM�1�i �
X

i1...in�0;1

h’�1�F jV
in
1�n� . . .Vi11�1�j0iDji1 . . . ini:

(7)

Here, j’�0�F i and j’�1�F i can be calculated explicitly and
will play an important role below.
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We propose now to double the dimension of the ancilla,
CD ! C2 � CD, in order to implement a deterministic
protocol of sequential quantum cloning.

Protocol 1.—(i) Encode the unknown state j i in the
initial ancilla state j’Ii � j i � j0iD. (ii) Allow each
qubit k to interact with the ancilla according to the
2D-dimensional isometries Vik

�k� � j0ih0j � V
ik
0�k� � j1i


h1j � Vik1�k�. (iii) Perform a generalized Hadamard trans-
formation upon the ancilla

 j0i � j’�0�F i !
1���
2
p �j0i � j’�0�F i � j1i � j’

�1�
F i�;

j1i � j’�1�F i !
1���
2
p �j0i � j’�0�F i 
 j1i � j’

�1�
F i�:

(8)

Note that the choice CD ! C2 � CD (based on pedagog-
ical reasons) could be changed, equivalently, to CD !
C2D. In this way, Eq. (8) would not display entangled states
but simple linear superpositions. (iv) Perform a measure-
ment upon the ancilla in the local basis fj0i � j’�0�F i; j1i �
j’�1�F ig. (v) If the result is j0i � j’�0�F i (which happens with
probability 1=2), the qubits are already in the desired state;
if the result is j1i � j’�1�F i (probability 1=2), perform a local
�-phase gate upon each qubit, then they will end up in the
desired state.

Proof.—After the first two steps, the joint state of the
ancilla and the qubits is ��j0i � j’�0�F i� � jGMM�0�i �

��j1i � j’�1�F i�jGMM�1�i, where originally j i �
�j0i � �j1i. After the Hadamard gate in (iii), this state
becomes

 

1���
2
p �j0i � j’�0�F i� � ��jGMM�0�i � �jGMM�1�i�

�
1���
2
p �j1i � j’�1�F i� � ��jGMM�0�i 
 �jGMM�1�i�:

The remaining steps follow immediately from this expres-
sion and from linearity [15]. �

Notice that despite the measurement process in step (iv),
the desired state is obtained with probability 1, while the
fidelity of each clone is optimal, F1;M �

2M�1
3M , as in

Ref. [15]. In summary, the minimal dimension D of the
ancilla for cloning M qubits is D � 2
M; i.e., it grows
linearly with the number of clones even if their Hilbert
space grows exponentially (2M).

It can be checked straightforwardly that if one had to
clone a d-dimensional system, the minimal dimension for
the ancilla would be D � d
M, an obvious generaliza-
tion of the preceding argument.

For the symmetric phase-covariant cloning, the same
arguments can be reproduced. For example, the first term
on the right-hand side of Eq. (3) can be cast in the form of
the state in Eq. (2)

 

j�k� 1�0; k1iS �
Xk
j�0

	jj�k� 1
 j�0; j1iS

� j�k
 j�1; j0iS; (9)

where 	j � 0 for all j, and similarly for the second term.
Thus for symmetric phase-covariant cloning the minimal
dimension for the ancilla is D � 2�k� 1� � 2M�1

2 �

M� 1. We see that the dimension of the ancilla D also
grows linearly with the number of clones, although it is
now lesser than above. This is a direct consequence of the
reduction in the set of possible original states to clone.

For the symmetric universal cloning we give in detail in
Table I the 2D-dimensional matrices Vik

�k� driving us to a
concrete sequential scheme, and where

 C �i; j� �

�������������������������������������������������
1

�i�ji �

XM
1

k�j

j�kj
2

�
M
k
i

��
k
j

�
�
M
i�j

�
vuuuut ;

 

p
q

� �
� 0

if q > p and 1< n � M
 1. Furthermore, we also have

Vik1�k� � V
�ik
0�k�, where by �i we indicate �i � i

L
1 (mod 2).

They coincide also with the ones for the symmetric phase-
covariant cloning just by doing the substitutions M ! M�1

2
and

 �j ! 	j �

����������������������
k�1
k�1
j

��
k
j

�
�

2k�1
k�1

�
vuuuut :

It can be readily verified that the minimal dimension for the
ancilla is 2M. When sequentially applying these matrices
to the initial state j’Ii of the ancilla, one can check, as
expected, that if we were to stop at the Mth step, the M
clones would have already been produced with the desired
properties, although in a highly entangled state with the
ancilla. To arrive at a final uncoupled state, the remaining
M
 1 anticlones must be operated upon by the ancilla.
Note the exponential gain achieved with this protocol;
despite the 2M-dimensional Hilbert space of the M clones,
we just need a 2M-dimensional ancilla. This is a conse-
quence of the Matrix-Product decomposition of the Gisin-
Massar universal cloning state. The proposed schemes can
be implemented in a variety of physical setups: microwave
and optical cavity QED, circuit QED, trapped ions, and
quantum dots, among others. As a paradigmatic example,
the clone could be codified in a photonic state and the
ancilla in a D-level atom [7], and the sequential operations
carried out by Raman lasers would produce unitaries asso-
ciated with the isometries Vik

�k� appearing in Table I. These
and other required unitary operations, as local Hadamard
gates, are standard in most of the above mentioned physical
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setups, making our proposal suitable for future imple-
mentation.

In conclusion, we have shown how to reproduce sequen-
tially both the symmetric universal and symmetric phase-
covariant cloning operations. For the universal cloning we
have proved that the minimal dimension for the ancilla
should be D � 2M, where M denotes the number of
clones, thus showing a linear dependence. The original
state must be encoded in a 2M-dimensional state. For the
phase-covariant case, the required dimension D of the
ancilla can be reduced to D � M� 1. In both cases, the
ancilla ends up uncoupled to the qubits. Along similar
lines, this sequential cloning protocol can be adapted to
other proposals, such as asymmetric universal quantum
cloning machines or other state-dependent protocols.
This procedure can have notable experimental interest,
since it provides a systematic method to furnish any multi-
qubit state using only sequential two-system (qubit-
ancilla) operations.
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TABLE I. Matrices for the universal symmetric cloning protocol.

k � 0 k � 1

�Vk0�1��ij �

(

ijC�2
 i; i
 1� 1 � i; j � 2
1��
2
p 
ij otherwise

(

i;3
jC�2
 i; i
 1� 1 � i; j � 2
1��
2
p 
ij otherwise

�Vk0�n��ij �

8<
:
ij

C�n�1
i;i
1�
C�n
i;i
1� 1 � i; j � n

1��
2
p 
ij otherwise

8>>><
>>>:

1��
2
p i � 1; j � n� 1


i;j�1
C�n
j;j�

C�n
j;j
1� 2 � i � n� 1; 1 � j � n
1��
2
p 
ij otherwise

�Vk0�M��ij �
�

ij

�i
1

C�M
i;i
1�
�������
� Mi
1�
p 1 � i; j � M

�

i;j�1

�j

C�M
j;j
1�
�����
�Mj �

p 1 � i; j � M

�Vk0�M�n��ij �

8>>><
>>>:

i;j
1

���������
i

M
n

q �
1 � i � M
 n
2 � j � M
 n� 1

0 i � M
 n� 1; 1 � j � M
1��
2
p 
ij otherwise

8>>><
>>>:

ij

�����������������
M
n�1
i
M
n

q
1 � i; j � M
 n

0 i � M
 n� 1; 1 � j � M
1��
2
p 
ij otherwise
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