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We present a method of measuring the quantum state of a harmonic oscillator through instantaneous
probe-system selective interactions of the Jaynes-Cummings type. We prove that this scheme is robust to
general decoherence mechanisms, allowing the possibility of measuring fast-decaying systems in the
weak-coupling regime. This method could be applied to different setups: motional states of trapped ions,
microwave fields in cavity or circuit QED, and even intracavity optical fields.
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Measuring the quantum state of a harmonic oscillator,
or, equivalently, its associated Wigner function [1], is a
fundamental task of quantum physics. Some proposals
allow a direct measurement, such as propagating optical
fields tested with homodyning techniques [2]. Others, due
to problems of accessibility, require indirect measurement
schemes via interaction with a probe. This is the case of
microwave fields in 3D cavities [3], circuit cavity QED
with superconducting qubits [4], or the motion of trapped
ions [5]. Different as they are, known techniques share a
common problem: the noisy action of decoherence due to
the probe-system finite interaction times.

Recently, the reconstruction of a Wigner function in
microwave cavity QED (CQED) was successfully realized
[6] with the aid of a dispersive probe-system interaction
[7]. Unfortunately, dispersive coupling is known to be
slow, and the required interaction time allows decoherence
processes to disturb the measurement. In Ref. [8], a reso-
nant method was proposed, but the Wigner reconstruction
depends on the possibility of monitoring a few Rabi cycles,
adding up to long probe observation periods. In the case of
trapped ions, the measurement techniques are quite similar,
and a recent experiment [9] made use of numerical inte-
gration over several Rabi cycles to achieve the goal. These
long interaction times are particularly harmful in the case
of fast-decaying systems. For example, state reconstruction
of intracavity optical fields has not been experimentally
attempted, to our knowledge, due to their weak coupling
with atomic probes.

In this Letter, we present a method to measure the
quantum state of a harmonic oscillator through instanta-
neous probe-system interactions [10,11], preventing deco-
herence from disturbing the measurement. The harmonic
oscillator is allowed to interact with a two-level probe for
an arbitrarily short time via a selective interaction [12–14]
in the Jaynes-Cummings (JC) model [15]. The information
is then collected from the second time derivative of the
probe population at zero interaction time. The scheme
permits one to measure the population field distribution

and, with the support of coherent displacements, the asso-
ciated Wigner and Q functions at any point in phase space
with arbitrarily small influence of decoherence. From these
data, the full Wigner function can be reconstructed by a
simple fit as in Ref. [6] or by more sophisticated techniques
[16], e.g., involving maximum likelihood estimation [17]
and taking into account the imperfections of the measure-
ment process [2].

Typically, a selective interaction can be built when a
three-level probe, driven by a classical and a quantized
field, is reduced to two metastable states after adiabatic
elimination of the third level, allowed by a large detuning
�. The associated Hamiltonian reads [12,13]
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Here fjgi; jeig are the (metastable) ground and excited
states, respectively, of the two-level probe, fâ; âyg are the
harmonic oscillator annihilation and creation operators,
respectively, and � � �1�2=� is the effective JC cou-
pling strength. The first and second terms on the right-hand
side of Eq. (1) are ac-Stark shifts associated with each of
the probe levels, the second one depending on the number
of oscillator excitations. This means that any effort at
tuning the JC coupling to resonance will succeed only for
a selected JC doublet H N: fjgijNi; jeijN � 1ig, leaving
all other doublets, for which n � N, slightly or completely
off-resonance. It can be shown that, under proper tuning of
the excitation fields, the condition �2 � �1

����
N
p

assures
neat selectivity in the JC model, where resonant Rabi
oscillations will happen only inside the subspace H N . In
this case, Eq. (1) turns into the selective Hamiltonian
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��jgihej � jNihN � 1j � jeihgj � jN � 1ihNj�;

(2)
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describing the flip-flop interaction of two effective
spin-1=2 systems fjgi; jeig and fjN � 1i; jNig. Specific
implementations have been proposed in microwave
CQED [12] and in trapped ions [13], but other systems,
such as an atom inside an optical cavity or a superconduct-
ing qubit coupled to a coplanar waveguide resonator, can
also enjoy a similar behavior.

From the unitary time evolution of the total density
operator _̂� � 	ĤN; �̂
=i@, the first and second time deriva-
tives of the expectation value of a time-independent probe
operator B̂ can be expressed as
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dt
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We study here a more general case, allowing decoherence
in the (field) system but disregarding decoherence in the
probe. We do that based on the fact that most physical
setups use probes with long lifetimes compared to the ones
of the systems to measure. Under this assumption, we
consider the most general master equation _̂� � L�̂ in
the Lindblad form [18]
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where �m express decay rates and Lindblad operators Am
and Aym are associated with the (field) system.

We calculate first
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�̂ÂymÂm
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The second term on the right-hand side can be rewritten
under the trace as

 Tr
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and, since 	B̂; Âym
 � 	B̂; Âm
 � 0, we have
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In this expression [see similarity with Eq. (3)], the
dynamics of probe operator expectation value hB̂i does
not seem affected by the system decay. This is certainly
not the case, as the time-dependent expectation value on
the right-hand side of Eq. (6) will, in general, be suscep-
tible to decoherence: The calculation involves time-
dependent ��t� following Eq. (5). However, at t � 0 the

noise terms vanish identically; i.e., the time derivative of
any probe expectation value at t � 0 is independent of any
field-decohering Lindblad environment. For this particular
time, choosing a probe operator B̂ � jeihej and probe-
system initial state ��0� � jgihgj � �f, we obtain
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with dimensionless time � � �t and Pe��� � hjeiheji. For
the second derivative, we obtain
 

d2hB̂i

dt2
�

1

�i@�2
h�	B̂; ĤN
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This is a different situation and the trace will not vanish, in
general, as before. However, considering again the observ-
able B̂ � jeihej and probe-system initial state ��0� �
jgihgj � �f, it follows that the second term in Eq. (8)
vanishes again, and we have

 

d2Pe���

d�2

����������0
� PN: (9)

Here PN � Tr	�fjNihNj
 is the probability of finding Fock
state jNi in the initially unknown harmonic oscillator state.

Equation (9) describes a remarkable result; it shows that
the curvature of the function Pe���, at vanishing � � 0,
contains undisturbed information about PN . This valuable
field information is encoded correctly in the level statistics
of the two-level probe even in the presence of a field
reservoir of a general kind. Needless to say, all previous
results hold when the usual thermal bath is considered as a
reservoir for the harmonic oscillator. At zero temperature,
for example, Lindblad operators Âm and Âym would have to
be replaced by â and ây, respectively, and � would repre-
sent the decay rate of the single field mode. The counter-
intuitive results of (6) and (9) are of an infinitesimal nature
and, without harming their theoretical importance, should
suffer high-order corrections when dealing with a discrete
sampling of interaction times, as will be explained later.

In order to measure the complete field population Pn,
8 n, one just needs to tune resonantly the other selected
subspaces H n and follow a similar procedure. The mea-
surement of all Pn allows the estimation of the complete
Wigner function W��� of �, conditioned to the realization
of previous arbitrary field displacements D���� in phase
space. For that, we have to recall that the Wigner function
can be expressed [1], among other possibilities, as

 W��� � 2
X1
n�0

��1�nPn����; (10)
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where Pn���� stands for the field population after a dis-
placement D����. Another rather original manner of re-
constructing the quantum field state in phase space is via
the instantaneous measurement of the Q function [1],
defined as Q � h�j�fj�i. It can be shown that
 

Q��� � Tr	D�����fDy����j0ih0j


� Tr	�f����j0ih0j
 � P0����: (11)

This means that, following Eq. (9), measuring instantane-
ously the probability of having Fock state j0i after field
displacements D���� amounts to a full measurement of
the Q function. Note that this will require only the tuning
of a single selective subspace, reducing enormously the
experimental efforts when compared to the case of the
Wigner function. Typically, coherent displacements can
be realized at a very high rate, depending mainly on the
intensity of the excitation fields, so this is not a critical
issue.

From a fundamental point of view, our proposal suggests
that, no matter how short the lifetime of a certain system is,
there would always exist the possibility of encoding its
quantum information in two-level probe statistics at infini-
tesimal interaction times. In other words, measuring quan-
tum states may not require long-living systems or strong
probe-system coupling, against common belief. In this
work, we have not proved this conjecture in general.
However, we have given a particular example, the case of
a quantum harmonic oscillator or a single mode field, that
is applicable to many physical setups.

Turning to more practical considerations, we stress that
our scheme employs exclusively, as a final readout mecha-
nism, the measurement of the population of the excited
state of a two-level probe at different times. This probe
population is measured directly by ionization, in the case
of cavity QED or fluorescence, for trapped ions and atoms,
with suitable additional fields, different from the ones used
in Eq. (1). This is a standard measurement in many
quantum-optical experimental setups of interest and has
been realized routinely with high accuracy and efficiency
[6,9,19].

Estimating derivatives from a finite-time experimental
sampling will produce higher order corrections and an
overhead in the number of repetition measurements. As a
consequence, the benefit of instantaneous measurements
demands an improved measurement accuracy, which can
be seen as follows. To determine the discrete second de-
rivative in Eq. (9), �Pe�0�, we measure Pe at 0, �, and 2�, for
small �, and calculate

 

Pe�2�� � 2Pe��� � Pe�0�

�2
� �Pe�0� � o���: (12)

The measurement results are scattered around each Pe with
variance �2

e � �2
q ��2

t , referring to quantum-mechanical
and technical noise, the latter arising from imperfections in
preparation, timing, and measurement. For small values of

� and probe operator B̂ � jeihej, we have �2
q��� � hB̂

2i �

hB̂i2 � Pe��� � Pe���2 � PN�2, following the Taylor ex-
pansion of Pe��� around zero time. Performing M mea-
surements at each of the 3 times of Eq. (12), we can reduce
the uncertainty in the three expectation values by a factor
of 1=

�����
M
p

. Thus, our estimate for the second derivative
comes with an error variance

 �2 �
6PN�2 � 4�2

t

M�4 ; (13)

while the signal is�PN . Then, in order to achieve a signal-
to-noise ratio larger than unity, PN=�> 1, we need a
number of measurements

 M> ��2 � �2
t ��4; (14)

approximately. In this way, as we reduce � by a factor of f,
in order to improve the approximation of �Pe�0�, we need to
increase the number of measurements by f2 (or f4 if
technical errors dominate) to maintain the desired signal-
to-noise ratio. Consequently, the total probe-system inter-
action time M� summed over all measurements increases,
while each measurement outcome represents the effect of
an arbitrarily short interaction time �. Although this is a
high price to pay, contamination of the oscillator by deco-
herence can be kept arbitrarily small, no matter how fast it
is.

Quantitatively, the determination of �Pe�0� is associated
with an error �P

:::
e�0�� due to the finiteness of �. In this

case, we can use Eq. (5) to obtain an expression for P
:::
e�0�

and observe two contributions: a unitary component,
present even in the absence of noise, and an additional
term / �=� due to the noise [20]. In order to determine
�Pe�0� to accuracy q, we need � < q=P

:::
e�0�. This, in turn,

requires M> q�2P
:::
e�0�

2 for ideal measurements and M>
q�4P

:::
e�0�

4�2
t in the case of technical-dominated errors.

Hence, the number M of required measurements increases
polynomially with � (in the case �� �, like �2, respec-
tively, �4). Remarkably, no matter how strong � is, we can
always make sure that it does not affect the measurement
result by shortening �. This procedure finds its natural limit
� >�=!, where ! is the smallest dominant frequency of
the specified dynamics (! � �2

2=� in our example, which
implies � >�1=�2). Note that we need to know only an
upper bound of the decoherence rate to perform an accurate
measurement, while alternative methods involve specific
decoherence models.

The proposed method can be applied to any physical
system enjoying JC selective interactions and may allow
for the complete measurement of elusive fast-decaying
systems, as is the case of intracavity optical fields, among
others. Furthermore, since the scheme is based on infini-
tesimal transfer of information, this method could observe
initial state conditions. For example, it could be used to test
the initial purity of a system, as well as its unavoidable
entanglement with external degrees of freedom at zero
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interaction time. This may prove useful for testing the
validity of usual assumptions taken in decoherence theo-
ries, such as the system and environment being initially in a
separable state or Markovian dynamics.
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