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We present a method of generating collective multiqubit entanglement via global addressing of an ion chain
performing blue and red Tavis-Cummings interactions, where several qubits are coupled to a collective mo-
tional mode. We show that a wide family of Dicke states and irradiant states can be generated by single global
laser pulses, unitarily or helped with suitable postselection techniques.
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I. INTRODUCTION

Multipartite entangled states play an important role in
quantum information. They are useful in various quantum
information applications, such as in Heinsenberg-limited
spectroscopy �1�, secure communication �2�, and various
schemes related to “one-way” quantum computing �3�. Fresh
theoretical developments on the generation of multipartite
entangled states show that sequential techniques may prove
to be general and practical for building arbitrary multiqubit
states �4�. For instance, a recent experiment �5� has realized a
W state of eight qubits, encoded in the internal ionic levels,
by performing a sequence of two-qubit gates on different ion
pairs. However, given a set of available interactions in a
physical system, there are particular families of entangled
states that could be built globally and in fewer steps �6�. In
the context of cavity QED �CQED�, for example, the cou-
pling of a single-cavity mode with a two-level atom, the
Jaynes-Cummings �JC� model, can be extended to the
N-atom case, leading to the Tavis-Cummings model, with
different dynamics and entanglement features �7,8�.

In this article, we study methods of generating specific
classes of multiqubit entangled states in trapped ions with
collective interactions, which are potentially faster and more
efficient than individual techniques. They consist of two key
ingredients: first, the use of global rather than individual ad-
dressing of ions and, second, the presence of invariant
subspaces—i.e., combined �vibronic� internal and motional
finite subspaces that are closed with respect to certain dy-
namical operations.

In Sec. II, we describe realistic collective vibronic inter-
actions coupling the internal degrees of freedom of N ions
with a collective motional mode. Specifically, we consider
the blue and red excitation versions of the Tavis-Cummings
model, taking distance from usual predictions in the Dicke
model. In Sec. III, we study the invariant subspaces, associ-

ated with the proposed interactions, in the search of classes
of multipartite entangled states that may be efficiently gen-
erated. It will turn out that one of them is the family of
symmetric Dicke states �9–11�, from which the W state is
just a one-excitation particular case. In Sec. IV, we consider
the family of entangled states that could be generated by
means of purely unitary global operations and, in Sec. V, the
ones that could be generated by using postselection.

II. COLLECTIVE MAPS

Let us consider N ions in a linear Paul trap, cooled down
to their collective motional ground state. We will not concen-
trate on a specific experimental setup �12�, and our deriva-
tions could be applied to any ion-trap device. The free-
energy Hamiltonian H0 describing the N two-level ions and
their motion around their equilibrium positions is

H0 =
��0

2 �
n=1

N

�z
n + ��

j=1

N

� jaj
†aj . �1�

Here, �z
n are z components of Pauli spin vectors describing

the two levels with energy gap �0, while aj and aj
† are the

annihilation and creation operators for the normal modes
with frequency � j. The interaction between the internal de-
grees of freedom of each ion and a collective motional mode
can be induced by laser light of frequency �, yielding �13�

Hint
n = ��n�x

n cos�kxn − �t + �n� . �2�

Here, �n is the coupling strength between the laser and the
nth ion, �x

n are x components of Pauli vectors, k is the laser
wave vector, xn is the displacement operator with respect to
the equilibrium position, and �n is the phase of the laser at
the location of the nth ion.

We will study the case of homogeneous laser excitation,
�n=�, ∀ n, and of near-resonant coupling, ���0. For the
sake of simplicity, we will also consider all �n=0, although
this may play an important role when making experimental
considerations. In this case, the Hamiltonian in the interac-
tion picture, after a rotating-wave-approximation �RWA�
with respect to the two internal levels, reads �13,14�
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HI =
��

2 �
n

�+
ne−i�t exp�ik�

j

bnj� �

2m� j
�aj

†ei�jt + aje
−i�jt�	

+ H.c., �3�

where bnj denote the amplitudes of the jth normal mode of
the ion chain in the position expansions, �=�−�0, and m is
the ion mass. In the Lamb-Dicke limit, where all Lamb-
Dicke parameters 	 j =k� �

2m� j
are small, the exponential can

be expanded and set for a RWA with respect to the phonon
field. In that case, when the laser frequency is tuned to a
particular collective motional sideband frequency, �
=�0±� j, we obtain blue and red sideband transition Hamil-
tonians

Hblue
j = ��̃ j�

n

bnj��+
naj

† + �−
naj� , �4�

Hred
j = ��̃ j�

n

bnj��+
naj + �−

naj
†� , �5�

where �̃ j =	 j� /2. The interaction of Eq. �5� appears naturally
in the context of CQED, where a bunch of atoms interact
inhomogeneously with a cavity mode and the counterrotating
terms are neglected in the RWA. The dynamics in Eq. �4� is
not usual in CQED but can be easily engineered in trapped
ions. Only when � j corresponds to the center-of-mass �COM�
mode frequency �1 do we have bn1=b1 and we can define the
collective angular momentum operators L+=�n�+

n and L−
=�n�−

n. In that case, we could rewrite the Hamiltonians of
Eqs. �4� and �5� as

Hblue
1 = ��̄1�L+a† + L−a� , �6�

Hred
1 = ��̄1�L+a + L−a†� , �7�

where �̄1=b1�̃1. The dynamics associated with the Hamil-
tonian of Eq. �7� is named after Tavis and Cummings �7�,
who developed the first analytical solutions for this model.
When we consider a motional mode different from the
center-of-mass one, we could always define L+

j =�nbnj�+
n and

L−
j =�nbnj�−

n, but these operators do not satisfy the usual an-
gular momentum algebra. If we define Lz
�n�z

n and L2�j�

Lz

2+ 1
2 �L+

j L−
j +L−

j L+
j �, with j=0,1 ,… ,N−1, we get

�Lz,L±
j � = ± L±

j ,

�Lz,L
2�j�� = 0,

�L±
j ,L2�k�� � 0, �j,k� � 0. �8�

In fact, L±
j can still be used to lower and raise the quantum

numbers of Lz, but they do not commute with L2�j�. For the
case of the center-of-mass mode, where all commutations
relations are satisfied, we shall denote the eigenstates of
L2�1� and Lz by 
l ,m�, with l=N /2 ,N /2−1, . . . , l
0, and
−l�m� l. States 
l ,m� are known as the Dicke states �9–11�.

III. INVARIANT SUBSPACES

The Hamiltonian Hred
j conserves the total number of spin

and phonon excitations, and commutes with the excitation

number operator R̂
�mam
† am+Lz+N /2, while the Hamil-

tonian Hblue
j conserves the difference between the spin and

phonon excitations; hence, it commutes with B̂
�am
† am

−Lz+N /2. It is therefore possible to consider vibronic sub-

spaces with a fixed number of excitations associated with R̂

or B̂. If we concentrate on the case H=Hred
j , we have the

eigenstates 
r ,�� of R̂, where r=0,1 ,2 ,… and � denotes
other degeneracy lifting quantum numbers. We then obtain
the block diagonal structure Hred

j = � r=0
r=
Hred

j �r�. The dynami-
cal evolution that is generated by Hred

j leaves the subspaces
invariant.

We proceed to discuss certain examples of such invariant
subspaces—for example, the one associated with the case j

=1. The smallest eigenvalue of R̂, r=0, corresponds to the
state Hr=0= �
l=N /2 ,m=−N /2�
0��—i.e., all atoms in their
ground state and no phonons in the system. For the case r
=1, we have

Hr=1 = Hl=N/2 � Hl=N/2−1, �9�

where

Hl=N/2 = �
N/2,− N/2�
1�, 
N/2,− N/2 + 1�
0�� �10�

and

Hl=N/2−1 = �
N/2 − 1,− N/2 + 1,� = 1�
0�, . . . , 
N/2 − 1,− N/2

+ 1,� = N − 1�
0�� . �11�

The quantum number �=1, . . . ,N−1, lifts the �N−1�-fold
degeneracy of the states with l=−N /2+1. Hence, values of �
enumerate the different angular momentum multiplets. It is
important to stress that Hred

1 does not mix the different mul-
tiplets and, since L−
N /2−1,−N /2+1,��=0, there are no
further transitions. This does not follow merely from the con-

servation of R̂, which does not forbid transition between the
state 
N /2−1,−N /2+1,��
0�, which has terms with one ex-
cited atom and a state with one excited phonon. This non-
mixing property of the multiplets reflects the effect of quan-
tum irradiance �9,15,16�. The construction of higher
r-number subspaces is straightforward. For instance, for r
=2 we have Hr=2=Hl=N/2 � Hl=N/2−1 � Hl=N/2−2, etc.

A key point in the present work is the use of subspaces
which are bidimensional. In this simple case, the evolution of
the system resembles that of the well-known Rabi oscilla-
tions. For example, let us consider the r=1 invariant sub-
space Hr=1,l=N/2. We can start with the nonentangled state
containing one phonon and with all the internal spins in their
ground states. When we turn on the Hamiltonian Hred

1 we
obtain an oscillation between the states:


N/2,− N/2�
1� ↔ 
N/2,− N/2 + 1�
0� . �12�

State 
N /2 ,−N /2+1� is a symmetric combination of N terms,
�
↑ ↓ ↓¯�+ 
↓ ↑ ↓¯�+¯
¯↓ ↓ ↑ �� /�N, known as the W
state. Similarly, we could make use of the invariant space
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Hr=1,l=N/2−1,� and, in that case, we would have the following
oscillation:


N/2,− N/2 + 1�
1� ↔ 
N/2,− N/2 + 2�
0� . �13�

In the general case, the invariant subspaces can be of higher
dimension; for instance, if we start with n phonons in the
multiplet l=N /2, the relevant states for r=n become, up to
rotations induced by Hred,


− N/2�
l� ↔ 
− N/2 + 1�
l − 1� ↔ ¯ ↔ 
− N/2 + l�
0� .

�14�

So far, we have discussed invariant subspaces which are
connected with the Dicke states and the collective angular
momentum operators with j=1. By tuning the laser to couple
other motional collective modes, we can access other j sub-
spaces. As we discuss in the next section, it is sometimes
helpful to combine several steps and in each step to couple a
different phonon normal mode. For instance, we can start
with the state that contains two different phonon excitations


↓↓ ¯ ↓�
1�i
1� j , �15�

couple first the internal levels with the phonon in mode i and
later with the phonon in mode j. This process connects us
with the state L+

j L+
i 
l=N /2 ,m=−N /2�. It is useful to see that

in this type of transitions we have

�16�
where in the last step we used the orthogonality of the nor-
mal modes.

IV. DETERMINISTIC CREATION OF ENTANGLED
STATES

With the use of Hred, many relevant states can be created.
We start with the state


N/2,− N/2�
1��1
= 
↓↓↓ ¯ ↓�
1��1

, �17�

where the jth mode is occupied by a single phonon and the
internal state is not entangled. A W state 
W1

N�

N /2 ,
−N /2+1� can be created by applying a single collective � /2
pulse on the state of Eq. �17�. This can be easily understood
by recalling that the above initial state belongs to the bidi-
mensional Hilbert space, Hr=1,l=N/2= �
N /2 ,
−N /2�
1� , 
W1

N�
0��. In principle, by precise control of the
duration and intensity of the laser pulse, a W state can be
created between a large number of ions. In fact, a W state
shared by eight ions has been created recently using a mul-
tistep sequential procedure based on individual ionic ad-
dressing �5�. In the present proposal, we would require the
previous preparation of a single phonon in the COM mode
and the application of a single homogeneous global laser
pulse. A related scheme in the context of quantum dots was
discussed recently by Taylor et al. �17�.

It is also possible to generate deterministically higher-
excitation Dicke states using other bidimensional invariant

subspaces. The r=2 subspace Hr=2,l=N/2−1,� is a two-
dimensional space that is spanned by the states 
N /2−1,
−N /2+1�
1��W1

N and 
N /2−1,−N /2+2�
0��W2
N. The first

state above is equivalent, up to local operations, to the W1
N

= 
N /2 ,−N /2+1�, while the second state contains terms with
two excited atoms and is equivalent, up to local transforma-
tions, to the second Dicke state 
N /2 ,−N /2+2�=W2

N. The
construction of W2

N can therefore proceed as follows. We first
obtain as described above W1

N using a single pulse. In the
second step, we transform W1

N→ 
N /2−1,−N /2+1� by
changing locally the phases of each ion. This step requires
local addressing implementing local rotations. In the final
step, we add a single phonon and apply again Hred

1 to obtain
W2

N, the second member of the subspace r=2. Unfortunately,
it seems that for higher-excitation Dicke states—e.g.,
W3

N—this “climbing the ladder” method requires also some
interaction between the qubits. To overcome this difficulty
we shall discuss other methods.

We consider next extended examples of coupling to other
modes and show that they can be used for generating irradi-
ant states �9,15,16�. We start with the state �0= 
N /2 ,
−N /2�
1��j

involving one phonon in the jth mode and all the
internal levels in their ground state; then, we apply the

Hamiltonian Hred
j . The conservation of R̂ restricts the pos-

sible evolution to the subspace of states with r=1—i.e., to
the states L+

j �0 and L−
kL+

j �0, with k=1,2 , . . . ,N. However,
we notice from Eq. �16� that only terms with k= j do not
vanish; hence, the evolution leads to Rabi oscillations in the
bidimensional Hilbert space ��0 ,L+

j �0�. In this way, we can
generate the family of entangled irradiant states of the form

L+
j 
↓↓ ¯ ↓�, j = 1,2, . . . ,N . �18�

Irradiant states are states that do not emit photons and are
thus more robust to decoherence than radiant states. In our
case, this property is due to the relation in Eq. �16�. Since the
coupling to the electromagnetic field is through the L± opera-
tors, as it is for the phonon field, the resultant states are
irradiant �9�. For the case of two spins, the resulting state is
the Einstein-Podolsky-Rosen �EPR� state. The experimental
feasibility of irradiance and superradiance in ion traps was
discussed and demonstrated by DeVoe and Brewer �15�.

Having produced certain irradiant states, we can use them
as a starting point for the deterministic generation of an ad-
ditional class of states. Irradiant states introduce other bidi-
mensional invariant subspaces. Since L−
�irr�=0, the sub-
space �
�irr�
1� ,L+
�irr�
0�� is an invariant subspace of
Hamiltonian Hred and, therefore, the second state can be pro-
duced by Rabi flipping. This is an entangled state which is a
superposition of states with two spins in the upper state,

�19�

For the case of four spins the outcome of this process is a
Greenberger-Horne-Zeilinger �GHZ� state. First, we apply
Hred

3 , which couples the internal states with the higher collec-
tive mode, j=N−1=3, and create the irradiant state
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L+
3
↓↓ ¯ ↓� = 
↑↓↓↓� − 
↓↑↓↓� + 
↓↓↑↓� − 
↓↓↓↑� . �20�

In the next stage, we apply the j=0 red Hamiltonian and get

L+
0L+

3
↓↓ ¯ ↓� = 
↑↓↑↓� − 
↓↑↓↑� , �21�

which is, up to a local operation, a GHZ state.

V. CREATION OF ENTANGLED STATES WITH POST-
SELECTION

In the previous section, we have discussed deterministic
schemes for producing irradiant states as well as the lowest
Dicke states �including the W state�. However, the full family
of Dicke states could not be generated using only collective
unitary transformations. In the present section, we present
another approach which is useful for producing the full set of
Dicke states

�22�

The properties of the Dicke states may be of considerable
interest in quantum information and have been discussed re-
cently by different authors �2,10,11,18,19�. It can be shown
that the von Neumann entanglement entropy, with respect to
a bipartite split of N qubits in a Dicke state, increases with k
and saturates gradually for large k values. The behavior of
the �mixed state� entanglement between two qubits �19� can
be evaluated by considering, for example, the negativity
which increases, almost linearly with k.

The basic idea behind our approach is that while a collec-
tive unitary transformation cannot be used to create any
Dicke state, a suitable choice of the initial phonon state can
bring us very close to our goal. In this scheme, however,
there will be always a small error due to mixing with other
states. Therefore, unlike the previous examples, we propose
to postselect the phonon state in order to be certain that the
desired Dicke state was produced.

In order to create the Dicke state Wk
N, we begin by pre-

paring the initial state 
N /2 ,−N /2�
k��0
. We then apply the

time evolution of the Hamiltonian Hred
j , which takes this state

into the r=k invariant subspace. It turns out that at a certain
time the probability distribution will be sharply peaked
around a state with zero phonons and Wk

N for the internal
levels. By measuring the number of the phonons it is then
possible to remove the admixture of Wk

N with other states. A
procedure to create and measure the number operator in an
ion trap was introduced by different authors �20–22�. Experi-
mentally, motional Fock states were already produced in the
laboratory �23�, although those techniques required a series
of consecutive Rabi flips.

The crucial ingredient in our proposed mechanism is that
the purity of the state, prior to post-selection, is high. The
fact that the state containing zero phonons in Eq. �10� is
produced with high probability is shown numerically below.
The intuition behind this is that there is an analogy between
these subspaces and the angular momentum subspaces of L2,
though the commutation relations are different. The Lx op-
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FIG. 1. Population of various states in Hilbert space as a func-
tion of time for 100 spins and 40 phonons. It can be seen that the
population of the last state is maximal.
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FIG. 2. The entropy of the internal degrees of freedom as a
function of time for 100 spins and 40 phonons. It can be seen that
the final state is nearly pure �see Fig. 1�.
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RETZKER, SOLANO, AND REZNIK PHYSICAL REVIEW A 75, 022312 �2007�

022312-4



erator rotates the spin about the x axis, producing states with
Lz= ± l with a probability 1. In order to model this dynamics
an analogy could be made between this dynamics in Hilbert
space and the dynamics of a particle traveling between sites
with different coupling strengths. Since the couplings are
higher at the middle and lower at the edges, the probabilities
are maximal at the edges; see Figs. 1 and 2. We therefore
expect the Hamiltonian Hred to rotate the state between the
first and last state in Eq. �14� with a probability close to
unity.

We make now some further considerations concerning our
scheme based on post-selection. The only states which are
created with high probability are 
lz=m�, where m is the
number of phonons. This is due to the fact that the last state
is created with high probability; therefore, the number of
phonons in the first state determines the final state. The
population of states in the subspace of Eq. �14� starting with

−2�
2� is shown in Fig. 3, where we observe that for specific
times the desired state is obtained with high probability. A
similar thing is observed in Fig. 4 starting with 
−5�
5�. In
spite of the fact that the number of excitations is not negli-
gible compared to the number of spins, the purity of the final
state is considerably high. This observation may prove very
useful for generating Wk

N states.

In order to increase the purity of the final state the number
of phonons has to be measured and the vacuum state post-
selected. To achieve that goal, we consider a recently pro-
posed technique �22� for sorting a desired motional Fock
state 
N� out of any motional distribution. This technique is
based on a suitably designed vibronic scheme in a single ion,
allowing for a restricted dynamics inside a chosen selected
JC subspace �
g�
N+1� , 
e�
N��. To adapt it to our present
work, we would need an additional idle ion inside the chain,
coupled to the motional mode of interest and specifically
assigned to postselection purposes. Together with the addi-
tional necessity of individual ion addressing for the sake of
manipulation and measurement, these requirements for the
idle ion are at reach by the state-of-the-art present technol-
ogy in trapped ions �5�. The proposed scheme described hith-
erto can also be applied to create motional number states via
the Hamiltonian Hblue, which will rotate the state in the
proper subspace. Post-selecting the spin state will yield the
Fock state 
N�, and the number of spins measured up would
indicate the number of motional excitations, N.

VI. CONCLUSIONS

In conclusion, we have presented methods of producing
entangled states using homogenous global laser coupling in
trapped ion systems. We have considered two schemes, one
based on purely �deterministic� unitary operations and the
other one based on an ulterior �probabilistic� post-selection.
Both schemes use the fact that the Tavis-Cummings model,
in its blue- and red-excitation versions, possesses invariant
subspaces. In the deterministic case, the global laser pulses
produce the desired entangled states after rotations in the
associated bidimensional invariant subspaces. In the proba-
bilistic case, the allowed rotations produce edge states that
are very close to the desired entangled states, requiring a
highly efficient post-selection technique. We believe that all
proposed schemes are realistic and at within reach using
present state-of-the-art technology in trapped ions.
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