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Zusammenfassung

Die theoretische Beschreibung zeitabhéngiger Phanomene stellt nach wie vor
eine grofle Herausforderung dar, zumal in den letzten Jahren deutliche Fort-
schritte bei Experimenten zur Nichtgleichgewichtsphysik erzielt wurden. In die-
ser Arbeit wird die numerische Methode der adaptiven zeitabhéngigen Dichte-
matrix Renormalisierungsgruppe (adaptive t-DMRG) entwickelt, die uns die
Moglichkeit eroffnet, zeitabhédngige Phéanomene in stark korrelierten eindimen-
sionalen Quantensystemen zu untersuchen. Die neue Methode ist eine Zusam-
menfithrung der Ideen des ’finite-system DMRG’ Algorithmus und des ’time
evolving block-decimation’ Algorithmus (TEBD). Sie beruht auf der Reduktion
des Hilbertraumes auf geeignet gewahlte Unterrdume, die zur Beschreibung der
zeitlichen Entwicklung schrittweise adaptiert werden.

Wir zeigen die Anwendbarkeit, Effizienz und Genauigkeit der adaptiven t-DMRG,
indem wir die zeitliche Entwicklung drei verschiedener Systeme diskutieren: ein
bosonisches, ein fermionisches und ein Spin-System. Wir benutzen die Existenz
einer exakten Losung fiir das X X-Modell einer Spin 1/2-Kette, um eine detail-
lierte Fehleranalyse durchzufiihren. Der gesamte Fehler setzt sich aus zwei
Beitragen, dem ’truncation’ Fehler und dem Suzuki-Trotter-Fehler zusammen.
Die Anzahl der Zusténde und die Grofie des Suzuki-Trotter-Zeitschritts geben
eine gute Kontrolle iiber die Genauigkeit der Methode. Fiir typische Werte
dieser Parameter finden wir, dal der Suzuki-Trotter-Fehler bei kleinen Zeiten
dominiert, wohingegen fiir lange Zeiten der akkumulierte ’truncation’ Fehler
iiberwiegt. Wir erwarten, dafl dieses Verhalten sich auch auf andere Falle
iibertragen 1af3t.

Die adaptive DMRG ist somit eine gut kontrollierbare und sehr effiziente Me-
thode zur Behandlung zeitabhangiger Phéanomene.

Die Ergebnisse der Anwendungen konnen wie folgt zusammengefafit werden:

Ultrakalte Bosonen Motiviert durch die groflen experimentellen Fortschrit-
te, die kiirzlich auf dem Gebiet der ultrakalten Atome in optischen Gittern
erzielt wurden, haben wir die adaptive t-DMRG auf diese Systeme angewen-
det. Die Realisierung optischer Gitter eroffnet die Moglichkeit, Probleme aus
der Festkorperphysik in einem System zu untersuchen, dessen Parameter bes-
ser vorgegeben und zeitlich variiert werden kénnen. Zunéchst untersuchen wir
den Einfluf} des in den quantenoptischen Systemen unvermeidlichen Einschluf3-
potentials. In einem solchen Potential kénnen gleichzeitig eine superfliissige
und Mott-isolierende Phase raumlich voneinander getrennt auftreten. Wir
zeigen, dafl eine Charakterisierung dieser Phasen durch die zuvor skalierte
Einteilchen-Dichtematrix moglich ist. Die skalierte Einteilchen-Dichtematrix



zeigt, wie schon die Einteilchen-Dichtematrix im homogenen System, einen
algebraischen Zerfall in der superfliissigen Phase und einen exponentiellen in
der Mott-isolierenden Phase. Zur experimentellen Unterscheidung der beiden
Phasen ist insbesondere eine Signatur in der Halbwertsbreite der Interferenz-
bilder geeignet. Diese wurde inzwischen durch Experimente bestétigt.

Als zeitabhéngiges Phénomen untersuchen wir die Ausbreitung von Dichte-
storungen. Insbesondere berechnen wir erstmalig die Schallgeschwindigkeit fiir
beliebige Wechselwirkungsstarken der Bosonen und zeigen damit die Grenzen
der Giiltigkeitsbereiche existierender Néherungen. Aus den Rechnungen fiir
Dichtestorungen von unterschiedlicher Starke und Form kénnen wir eine lineare
Abhéngigkeit der Geschwindigkeit von der Hohe der Stérung ableiten. Diese
Abhéngigkeit hat Effekte wie Aufsteilung und Schockwellenformation zur Folge.
Wir zeigen, dafl diese Storungen schon mit den jetzigen experimentellen Mitteln
mit Hilfe einer 'time-of-flight’-Messung detektiert werden konnen.

Ultrakalte Fermionen Eindimensionale Quantensysteme zeigen einige aufler-
gewOhnliche Phanomene als Konsequenz der starken Quantenfluktuationen.
Fines davon ist die Spin-Ladungstrennung. Nach der Luttinger-Fliissigkeits-
theorie entkoppeln Spin- und Ladungsanregungen in eindimensionalen wechsel-
wirkenden Systemen bei niedrigen Energien und breiten sich mit unterschied-
lichen Geschwindigkeiten aus. Wir untersuchen die Spin-Ladungstrennung an-
hand des 1D Hubbard Modells erstmals mit Realzeit-Rechnungen fiir Systeme,
deren Groflen den experimentellen entsprechen. Wir zeigen, dafl die Spin-
Ladungstrennung als charakteristische Eigenschaft eindimensionaler Systeme
weit tliber den Bereich niedriger Energien hinaus erhalten bleibt. Auf diese
Ergebnisse aufbauend, schlagen wir ein Experiment vor, das es erlaubt, die Spin-
Ladungstrennung in ultrakalten Fermionen zu beobachten. Unser Vorschlag
basiert auf der unterschiedlichen Ausbreitung von Spin- und Ladungsanregungen
in der flissigen und Mott-isolierenden Phase. Damit werden Probleme ver-
mieden, die den heutigen experimentellen Vorschldgen anhaften. Ein experi-
menteller Aufbau dieser Art kann auch fiir die Unterscheidung eines Mott-
Isolators von einem Bandisolator verwendet werden.

Spin-1/2 Kette Der Spintransport zwischen zwei spinpolarisierten Reservoiren
ist eine Konfiguration von besonderem Interesse im Bereich der Spintronik.
Wir modellieren dieses System durch eine Spinkette, die sich anfianglich in
dem Zustand ‘ T .07 o > befindet. Die Kopplung beider Reservoire
ist durch die Spinwechselwirkung auf der Kette gegeben. Wir interessieren
uns insbesondere dafiir, wie das Langzeitverhalten des Spintransports zwischen
den beiden Reservoiren von den Eigenschaften des Systems abhingt. In dem
Bereich schwacher S,5,-Wechselwirkung ist der Transport fiir lange Zeiten un-
abhéngig von der Dimerisierung ballistisch, wie es schon fiir verschwindende
Wechselwirkung und Dimerisierung bekannt war. Wir finden eine drastische
Anderung im Langzeitverhalten in der Nihe des Phaseniibergangs. Hier, fiir
starkere Wechselwirkungen ist der Magnetisierungstransport nicht mehr bal-
listisch, sondern oszilliert um einen konstanten Wert. Aus diesen Ergebnissen



konnen wir schlieffen, dafl das Langzeitverhalten des Transports in diesem Sys-
tem nicht alleine durch Systemeigenschaften —Integrabilitat, Kritikalitdat und
Erhaltungsgrofen— bestimmt wird. Die abrupte Anderung des Verhaltens am
Phaseniibergang erkliren wir durch die Ahnlichkeit des Anfangszustandes mit
dem Grundzustand in der ferromagnetischen Phase.

Die guten Ergebnisse der in dieser Arbeit dargestellten Anwendungen lassen
erwarten, dafl mogliche Generalisierungen der adaptiven Methode geeignet sind,
zukiinftig weitere interessante Fragen der Festkorperphysik und der quanten-
optischen Systeme im Wechselspiel beider Gebiete zu bearbeiten.
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1. Introduction

In recent years an increasing number of experimental results on time-dependent
phenomena has been achieved in condensed matter and quantum optical sys-
tems. In the area of condensed matter physics great experimental progress on
the study of these phenomena has been made, e.g., in nanophysics and spintron-
ics. It allowed to investigate the transport behaviour through low dimensional
structures of various geometries such as quantum dots or quantum wires and
the response of such systems to external potentials. In the area of quantum
optics one prominent example for time-dependent phenomena is the realization
of a driven quantum phase transition in ultracold bosons confined by an opti-
cal lattice [1]. Time-dependent variations of the optical lattice depth allowed
to drive the transition between a superfluid (metallic) and a Mott-insulating
regime.

Despite the recent progress on the experimental side the theoretical description
of non-equilibrium phenomena is still lacking. In this work we develop a new nu-
merical method, the adaptive time-dependent density-matrix renormalization-
group (adaptive t-DMRG), which turns out to be very well suited to investigate
time-dependent phenomena in one-dimensional strongly correlated systems. We
show its applicability to different physical systems: bosonic, fermionic and spin
chains.

Adaptive t-DMRG  As for static phenomena, the fundamental problem for the
treatment of time-dependent quantum phenomena is the large size of the Hilbert
space required. In the case of low-energy equilibrium properties the invention
of the density-matrix renormalization-group method (DMRG) brought decisive
progress. It iteratively decimates the Hilbert space of a growing quantum sys-
tem such that the state of interest, say the ground state, is approximated in
a space of reduced dimension having a maximum overlap with the true state
[2, 3, 4]. For time-dependent phenomena, very often a fixed reduced space of
practical size cannot cover the whole time evolution of the system. The re-
duced space has to be adapted in time to give a good description of the time
evolution of the state of interest. This was first realized in the time evolving
block-decimation (TEBD) procedure by G. Vidal [5], an algorithm to simu-
late slightly entangled quantum systems. As it is best seen in the language of
matrix-product states, the TEBD and the DMRG are closely related. Thus, as
will be shown in chapter 2, generalizing the original DMRG can be generalized
by incorporating the idea of the TEBD algorithm. This results in a very efficient
algorithm, the adaptive t-DMRG [6, 7], which can treat time-dependent phe-
nomena with remarkable success. This can be seen from the applications of the
adaptive t-DMRG described in this thesis which are concerned with ultracold
bosons, fermions and spin transport in one-dimensional chains.
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1. Introduction

Ultracold Bose gases in optical lattices The first application of the adap-
tive t-DMRG presented in this work is from the area of ultracold bosons. In
recent years the experimental progress in these systems initiated a connection
between quantum optics and condensed matter systems. The pioneering work
was the experimental achievement of the Bose-Einstein condensate [8, 9, 10],
which opened the way to numerous exciting experiments directly probing fun-
damental effects of quantum mechanics. Up until the last few years most phe-
nomena experimentally exploited could be described theoretically by consid-
ering the dynamics of weakly interacting Bose gases in the framework of the
Gross-Pitaevskii equation and the Bogoliubov theory [11, 12]. More recently a
new regime, the regime of strong interaction, became experimentally accessible
[13, 14, 15]. From the many-body point of view this is a more sophisticated
regime, since interaction induced many-body effects have to be taken into ac-
count. The experiment which illustrated best the presence of ‘real’ many-body
effects was that of Greiner et al. [1] in which they managed to realize the
quantum phase transition from a superfluid to a Mott-insulating phase in a
system of ultracold atoms confined to an optical lattice. This experiment has
attracted a lot of attention, since it realizes of one of the most prominent phase
transition in condensed matter systems, thereby showing the possibility to re-
alize and clarify solid-state phenomena in a new context. In contrast to most
condensed matter systems, these systems of ultracold atoms have the advan-
tage that many parameters can be experimentally controlled very precisely and
rapidly changed. Thereby, it opens up a whole new area of non-equilibrium
phenomena, the theoretical description of which is very demanding.

In this thesis we show how the new adaptive t-DMRG allows us to study some of
these phenomena. But before this, we discuss the consequences of the presence
of an external trapping potential on the static properties of the system (chapter
3). The trapping potential is one of the main differences between the quantum
optical systems and the condensed matter systems. One of the consequences is
the possibility of the spatially separated coexistence of the superfluid and the
Mott-insulating phases. The question arises which properties of their homo-
geneous counterparts survive in these coexisting states. We show that after a
simple scaling procedure the one-particle density-matrix can be used to charac-
terize the state of the system just as for homogeneous systems. We confirm the
application of the widely used hydrodynamic approach for the system with the
parabolic trap in the limit of weak interactions by comparing it to the DMRG
results. Further we discuss how the different states can be distinguished ex-
perimentally. Hereby we present results for the interference pattern and point
out that the experimental quantity which reveals most about the state of the
system is the half width of the interference peak.

In chapter 4 we turn to the evolution of density perturbations in a gas of ul-
tracold bosons subjected to an optical lattice. We investigate the propagation
of density-wave packets in a Bose-Hubbard model using the adaptive t-DMRG.
Until now the propagation had only been studied for the case of very broad
and weak perturbations in the presence of weak interactions. In contrast, here
we discuss the dependence of the velocity and of the decay of the amplitude on
density, interaction strength and the extent and height of the perturbation in
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a numerically exact way, covering a wide range of interaction and of perturba-
tion strengths. By comparing our results for the sound velocity to theoretical
predictions, we determine the limits of a Gross-Pitaevskii or Bogoliubov type
description and the regime where repulsive one-dimensional Bose gases exhibit
fermionic behaviour. In addition, we investigate the effect of self-steepening due
to the amplitude dependence of the velocity and discuss the possibilities for an
experimental detection of the moving wave packet in time-of-flight pictures.

Ultracold fermions As a second application of the adaptive t-DMRG, we in-
vestigate the phenomenon of spin-charge separation and propose an experimen-
tal setup for its observation in cold Fermi gases. The spin-charge separation
— the complete decoupling of spin and charge excitations at low energies — is
one of the key features of one-dimensional quantum physics. It is in striking
contrast to Fermi-liquids, where elementary quasi-particles exist which carry
both charge and spin. Using the adaptive t-DMRG for the 1D Hubbard model,
the splitting of local perturbations into separate wave packets carrying charge
and spin is calculated in real-time. We show the robustness of this separation
beyond the low-energy regime by studying the time evolution of density wave
packets of finite strength and at length scales down to a few lattice spacings.
A striking signature of spin-charge separation is found in 1D cold Fermi gases
in a harmonic trap using the different propagation properties of the liquid and
Mott-insulating phases. We give quantitative estimates for an experimental
observation of spin-charge separation in an array of atomic wires.

Spin transport The third application relates to the area of spintronics. A
simplified model for the magnetization transport between two coupled reservoirs
with opposite spin polarization is studied. This is done by calculating the trans-
port properties of a spin-1/2 chain which is initially in the state | T...70... 0 >,
with all spins pointing up in the left half of the system and all spins pointing
down in the right half. Thus, each half of the system corresponds to one spin-
polarized reservoir. The coupling within and between the reservoirs are both
given by nearest-neighbour spin interactions. We focus our study on the long
time behaviour of the system. In particular, we investigate whether a sim-
ple long time limit for the spin transport exists and if so, how it depends on
the properties of the system such as integrability and criticality. Time-scales
accessible to us are of the order of 100 units of time measured in h/J while
maintaining insignificant error in the observables.

Additionally, we perform a detailed analysis of the error made by the adaptive t-
DMRG using the fact that the evolution in the X X-model is known exactly. We
find that the error at small times is dominated by the error made by the Suzuki-
Trotter decomposition whereas for longer times the DMRG truncation error
becomes the most important, with a very sharp crossover at some “runaway”
time. Overall, errors are extremely small before the “runaway” time.

13



2. The adaptive time-dependent
density-matrix
renormalization-group method

2.1. Can DMRG be applied to time-dependent
phenomena?

Over many decades the description of the physical properties of low-dimensional
strongly correlated quantum systems has been one of the major tasks in the-
oretical condensed matter physics. In most cases the problem is that due to
the large size of the Hilbert space no exact solution of the quantum systems
is possible. In low dimensional systems, in general, this task is complicated
further by the strong quantum fluctuations present in such systems which are
usually modeled by minimal-model Hubbard or Heisenberg-style Hamiltonians.
Despite the apparent simplicity of these Hamiltonians, few analytically exact so-
lutions are available and most analytical approximations remain uncontrolled.
Hence, numerical approaches have always been of particular interest, among
them exact diagonalization and quantum Monte Carlo.

Decisive progress in the description of the low-energy equilibrium properties of
one-dimensional strongly correlated quantum systems was achieved by the in-
vention of the density-matrix renormalization-group method (DMRG) [2, 16].
It is concerned with the iterative decimation of the Hilbert space of a grow-
ing quantum system. The Hilbert space of this system would otherwise grow
exponentially, when the system is enlarged linearly. The DMRG constructs a
reduced space of fixed dimension and approximates the quantum state of in-
terest, say the ground state, in that reduced space with a maximum of overlap
with the true state.

While the DMRG method has yielded an enormous wealth of information on
the static and dynamic equilibrium properties of one-dimensional systems [3, 4]
and is one of the most powerful methods in the field, only few attempts have
been made so far to determine the time evolution of the states of such systems,
notably in a seminal paper by Cazalilla and Marston [17].

In the quite different context of quantum information science G. Vidal has
recently developed an algorithm for the simulation of slightly entangled quan-
tum computations [18] that can be used to simulate time evolutions of one-
dimensional systems [5]. This new algorithm, henceforth referred to as the
time-evolving block decimation (TEBD) algorithm, considers a small, dynam-
ically updated subspace to efficiently represent the state of the system. It was
originally developed in order to show that a large amount of entanglement is
necessary to make quantum computations whereas any quantum evolution in-

14



2.1. Can DMRG be applied to time-dependent phenomena?

volving only a “sufficiently restricted” amount of entanglement can be efficiently
simulated in a classical computer using the TEBD algorithm. The above con-
nection between the amount of entanglement and the complexity of simulating
quantum systems by classical computers is of obvious practical interest in con-
densed matter physics. For instance, in one dimension the entanglement of
most quantum systems happens to be “sufficiently restricted” precisely in the
sense required for the TEBD algorithm to yield an efficient simulation.

In this thesis the TEBD algorithm is reexpressed in a language more familiar to
the DMRG community than the one originally used in Refs. [5, 18], which made
substantial use of the quantum information parlance. This reformulation turns
out to be a rewarding task since, as we show, the conceptual and formal simi-
larities between the TEBD and DMRG are extensive. Both algorithms search
for an approximation of the true wave function within a restricted class of wave
functions, which can be identified as matrix-product states [19], previously also
proposed under the name of finitely-correlated states [20]. The great advantage
of the TEBD algorithm lies in its flexibility to flow in time through the sub-
manifold of matrix-product states whereas the original DMRG only constructs
a fixed reduced space. In this chapter we show how the two algorithms can
be integrated [6]. We will describe how the TEBD simulation algorithm can
be incorporated into preexisting, quite widely used DMRG implementations,
the so-called finite-system algorithm [16] using White’s prediction algorithm
[21]. The advantage of the new algorithm is that it uses well-known DMRG
techniques, such as the handling of good quantum numbers. Therefore the net
result is an extremely powerful “adaptive time-dependent DMRG” algorithm
(adaptive t-DMRG).

The outline of this chapter is as follows: In section 2.2 the original DMRG
algorithm is reviewed. Further details on the DMRG algorithm can be found
for example in [3, 4, 22]. In section 2.3, the problems encountered in apply-
ing DMRG to the calculation of explicitly time-dependent quantum states are
discussed. Section 2.4 reviews the language of matrix product states. Then
both the TEBD simulation algorithm (section 2.5) and DMRG (section 2.6)
are expressed in this language, revealing where both methods coincide, where
they differ and how they can be combined. In section 2.7, the modifications to
introduce the TEBD algorithm into standard DMRG to obtain the adaptive t-
DMRG are pointed out. Section 2.8 we test the new algorithm at small bosonic
systems and compare it to previous proposals. In section 2.9 the sources of
errors are identified. A detailed error analysis is performed later in the context
of spin-chains 6.3.
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2. The adaptive time-dependent density-matrix renormalization-group method

2.2. ‘Original’ density-matrix renormalization-group
method

The density-matrix renormalization group (DMRG), which was developed by
White in 1992 [2, 16], is one of the most precise numerical methods to study
low-dimensional strongly correlated systems. Originally, it was introduced to
compute the ground state and low-energy spectrum of a quantum system with
short-range interactions.

l Renormalization
Figure 2.1.: Schematic plot of the real-space renormalization. [22]

The DMRG algorithm is based on the general concept of the ‘renormalization
methods’. Starting from some microscopic Hamiltonian, degrees of freedom are
integrated out iteratively, such that an effective description of the system is
obtained. Hereby the difficulty is to obtain an effective description which still
covers the essential physics. The DMRG-algorithm starts with a quantum chain
(also called “block”) of length [, that is sufficiently small to be represented nu-
merically on a computer (Fig. 2.1). Then, the chain is enlarged sequentially by
one site to increase the system size. In order to reduce the with [ exponentially
growing dimension of the Hilbert space, after each enlargement step the system
is projected onto a fized number m of relevant Hilbert space states sketched in
Fig. 2.1 by the block. All remaining states are cut off and neglected for the
next iteration step. Obviously the crucial question arises which states are in
that sense “relevant”.

White and Noack [3] found that keeping only the lowest lying energy eigenstates,
generally does not give a good decimation procedure. This can be understood
considering the toy model of a single non-interacting particle hopping on a
discrete one-dimensional lattice. If one starts with a small system, say block
A in Fig. 2.2, the lowest lying eigenstates (dashed curves in Fig. 2.2) for the
single particle in the box have nodes at the lattice end of block A. If the system
is enlarged by doubling the system to obtain the compound block AA, the new
lowest lying eigenstates have a maximum amplitude at the compound block
center. Therefore it cannot be approximated well by a restricted number of
block states, i.e. eigenstates of the two blocks which have nodes at the center
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2.2. ‘Original’ density-matrix renormalization-group method

of the compound block!. To avoid imposing the wrong boundary conditions by
considering separate blocks A, White [2] had the idea to embed the block A in
some environment to mimic a larger system from the beginning.

compound block AA

block A block A

Figure 2.2.: Two blocks A are connected to form the compound block AA. The
dashed lines are the lowest energy eigenstates of the separate blocks
A, the solid line sketches the lowest energy eigenstate of the com-
pound block AA.

The DMRG algorithm follows this idea using the so called density-matrix pro-
jection described in the next section as a procedure to select the relevant states
[2, 16].

2.2.1. Density-matrix projection

The idea of the density-matrix projection is to embed a small system into a
larger one to mimic a large system. Using the information given by the reduced
density-matrix of the small system (S) the information of the ‘environment’ (E)
is implicitly included to decide which are the relevant states to be chosen when
enlarging the small systems up to the desired length L.

Let us describe this procedure in more detail. Assume that we have reached
a chain of length [ with an m-dimensional Hilbert space with states {{w;i)}
To grow the system one new site is added, i.e. the basis of the new Hilbert
space Hg is given by {|w§ﬂl o)} = {{wﬁllﬂasﬂ, where |0%) are the Ny local
states of the new site. In order to avoid strong boundary effects the system (S)
is embedded into an ‘environment’ (E) which was constructed in the same way.
We denote its basis states by {‘wﬁl o >} We call the two parts the system and
the environment block, and both together the ‘superblock’ (Fig. 2.3).

The aim of the density-matrix projection is to determine a small set of m® <

k := dim’Hg states ‘w,smﬂ> € Hs (myy1 = 1...mS) which are important to

represent a certain state |¢>, e.g. the ground state, (also called target state) of

'Here we doubled the system size to make the point clear, whereas later on we only add
several sites.
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2. The adaptive time-dependent density-matrix renormalization-group method

superblock

system block environment block

Figure 2.3.: Schematic diagram of the superblock, that consists of a system and
environment block [22] and of the corresponding reduced spaces

the superblock

ms Nsite mF Nisite

W) = D2 D0 D0 X Ymosmios|wm o) wme”

my=1g55=1 mj=10F=1

Z% D i)

Here, we expanded ‘¢> into the orthonormal bases ‘2>S (t=1...k) and ‘]>E
(j = 1...k) of the system Hg and environment Hp, respectively. The ‘relevant’

(2.2.1.1)

states |wml 1> are the states which span the m°-dimensional subspace U C Hg,
such that the vector

- - g )
(2.2.1.2) V) = > Wmpyjlwn,, ) @)y € 4@ He,

mi41,J

minimizes the functional of the quadratic deviation

(2.2.1.3) S(19)) = lllv) = 19)°

In the following it is shown that the ‘relevant’ states ‘me > are given by the
eigenvectors to the leading eigenvalues of the reduced density-matrix

(2.2.1.4) ps = Trg |) (¢,

where Trp := idg ® trg labels the partial trace over the environment block.
We interpret the coefficients 1;; and ;; as k x k matrices ¢ = (1;;);; and

= (2/;”)” (where rank (1;) < m?¥), respectively. Then, the density-matrix pg

can be written as pg = 9! and the functional S (W))) can be expressed as

(2.2.1.5) S(h) =tr (¢ — ) (p — ) .

The functional .S can be related to the eigenvalues of the reduced density-matrix
by using the singular value decomposition theorem. According to this theorem
there exist two orthogonal matrices U and V of dimension k x k such that

(2.2.1.6) ¢ =UDV', where D =diag(\i,...,\).

18



2.2. ‘Original’ density-matrix renormalization-group method

The so-called singular values \; are the square roots of the eigenvalues of pg,
since we can write

(2.2.1.7) ps =UDD'UT =UD?UT .

Inserting (2.2.1.6) into (2.2.1.5) and using the cyclic invariance of the trace, we
obtain

(2.2.1.8) S(¢) =tr (D —D)(D - D) .

with D := UTV. In this form it can be seen that S is minimized, if D is a
diagonal matrix of rank m®, whose diagonal elements are given by the leading
singular values, i.e.

(2.2.1.9) D = diag(A1, ..., A\ps,0,...,0) .

Without loss of generality the A; were assumed to be sorted: Ay > Ag > -+ >
M. We can explicitly construct ‘¢> which minimizes S using the eigenvectors

!wﬁbl+1> to the leading m eigenvalues of pg :

(2211000) = S UDVIyli)s @iy

= Z Dml+17ml+1 (Z Uiml+1 ‘Z>S ) ® (Z Vj*mul ‘]>E )
7 J

mi41

S > E
‘mel ‘wml+1>

- Z )\ml+1|w7§11+1> ® |w§11+1>

my41=1

Note, that the same number of states has to be kept for the system and the
environment block, i.e. m := m® = mP. If the same projection is performed
interchanging the system and environment block, one finds that both reduced
density-matrices have the same non-zero eigenvalues even if system and envi-
ronment were different. This is also reflected in the guaranteed existence of the
so-called Schmidt decomposition of the wave function [23],

(2.2.1.11) 1) = Aalwi)|wh),  Aa >0,

which plays a key-role in the connection between the TEBD and DMRG. The
number of positive A\, is bounded by the dimension of the smaller of the bases
of system and environment.

To summarize, we have proven that the relevant states of the system block to
represent the target state, e.g. the ground state, of a larger quantum chain
including the environment are optimally given by the leading m eigenvectors of
the reduced density-matrix pg.

The performance of the method depends critically on the decay of the eigenval-
ues of the reduced density-matrix. Some insight into the quality of the trun-
cation approximation made by the projection can be gained by the so-called
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2. The adaptive time-dependent density-matrix renormalization-group method

truncated weight
m
(2.2.1.12) Pi=1-) X
i=1

which measures how much of the norm of ‘1/1> is lost. However, due to the
additional sources of ‘environmental’ errors — errors by the only approximate
similarity of the environment block to the ‘real’ environment— the total error
in the observables calculated are often much larger than the truncated weight.
A good control over the total error can in most cases be obtained by a careful
convergence analysis in the number m of states kept.

More information about the limits of the DMRG was obtained by [24, 25, 26, 27,
28, 29] by studying the ability of the DMRG decimation procedure to preserve
the entanglement of |1/1> between system and environment in the context of
quantum information science [23, 30]. By this a better understanding of the
reasons of the breakdown of the DMRG in two-dimensional systems has been
obtained in terms of the growth of bipartite entanglement in such systems
[27, 29].

More specifically, in quantum information the entanglement of |¢> between sys-
tem and environment is quantified by the von Neumann entropy of pg (equiv-
alently, of pg),

(2.2.1.13) S(ps) ==Y Nalogy A%,

a quantity that imposes a useful (information theoretical) bound m > 25 on
the minimal number m of states to be kept during the DMRG decimation
process if the truncated state is to be similar to |¢> Still more insight into the
power of the DMRG comes from arguments from field theory which imply that,
at zero temperature, strongly correlated quantum systems are in some sense
only slightly entangled in d = 1 dimension but significantly more entangled in
d > 1 dimensions: In particular, in d = 1 a block corresponding to [ sites of
a gapped infinite-length chain has an entropy S; that stays finite even in the
thermodynamical limit [ — oo, while at criticality S; only grows logarithmically
with [. It is this saturation or, at most, moderate growth of S; that ultimately
accounts for the success of DMRG in d = 1. In the general d-dimensional case
the entropy of bipartite entanglement for a block of linear dimension [ scales
as S; ~ 1971, Thus, in d = 2 dimensions the DMRG algorithm should keep a
number m of states that grows exponentially with [, and the simulation becomes
inefficient for large [ (while still feasible for small 7).

2.2.2. DMRG algorithm

In this section the two DMRG algorithms, the so-called infinite-system and
the finite-system algorithm [16] are introduced. Often, a combination of both
algorithms is applied to obtain an increased accuracy of the numerical results.
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2.2. ‘Original’ density-matrix renormalization-group method

Infinite-system algorithm

The infinite-system algorithm is designed for computing the ground state (or
low-energy spectrum) of a quantum chain in the thermodynamic limit (L — oo,
where L is the desired length of the system). It contains the following iterative
steps:

1. Construct a system of size [ with the Hilbert space H® = {{w;i»} with
dimension m® which is small enough to be treated exactly. The operators
used, including the Hamiltonian, are known in this basis. In the same
way construct the environment block.

2. Enlarge the system block by one site | @—@—@—@+@ |, i.e. the Hilbert

space becomes of dimension N S = mSNgje and is formed by the states
The environment block is enlarged, similarly. The added sites are often
called ‘free’ or ‘active’ sites.

3. Join the two blocks to form the superblock of length 21 + 2 (Fig. 2.3).
The dimension of the Hilbert space of the superblock is given by NSNF.

4. Determine the target state. If the target state is the ground state this
is done by determining the ground state of the Hamiltonian of the su-
perblock for example by the Lanczos algorithm [31].

5. Perform the density-matrix projection for the system, i.e. determine from
the reduced density-matrix pg as in Eq. (2.2.1.4), the eigenvalues, ordered
by their values, and the corresponding eigenstates. Form a new reduced
basis by taking only the m®° eigenstates |w,§”+1> corresponding to the

largest eigenvalues. Repeat this step to construct the reduced basis and

the projection matrix for the environment.

6. Project the operators of interest acting on the system and the environment
block, including the Hamiltonian, onto the new basis of the system and the
environment block, respectively. The projection matrix 7°F of dimension
NS/E 5« mS/F is given by taking the eigenvectors as columns. Repeat step
(2) to (6) until the desired final length L of the system is reached.

7. Calculate the physical quantities of interest, like expectation values for
the ground state energy, from the effective state obtained.

Obviously, the chain length [ grows successively by each iteration step until
it reaches the desired length, whereas the dimensions m of the system and
the environment block stay constant. By this infinite-system analysis, highly
precise estimates of various properties of the infinitely large quantum chain are
possible.

The scheme given above is only a rough sketch of the DMRG algorithm. An
implementation of a DMRG program generally facilitates various numerical
know-how to increase the performance and to save computer memory. E.g.
if some quantum numbers are conserved, the fact can be utilized to reduce
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2. The adaptive time-dependent density-matrix renormalization-group method

end of infinite Plock S 2ssites block E
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Figure 2.4.: Finite-system DMRG algorithm. Block growth and shrinkage.

operators to a block structure, such that vanishing matrix elements do not
have to be stored. The most time consuming part of the algorithm is found
in the computation of the ground state, step (4). Here, the Davidson [32] or
Lanczos [31] algorithm are typically used due to their high performance.

Finite-system algorithm

The infinite-system algorithm does not give satisfactory results in all cases of
interest. Problems arise if the environment in the early growing of the chain
does not resemble the system of final length closely enough, for example, if
the system is inhomogeneous. Then the states retained in the early stage do
not have to be important for the desired final state. Here the finite-system
algorithm helps out. The idea is to optimize the chosen basis for a system of
fixed length L by shifting the ‘free’ sites through the system. To do this the
system is built up to a desired length L with the infinite-system algorithm,
but in subsequent steps one of the blocks grows to the cost of the other block
shrinking (see Fig. 2.4). In each step the reduced basis transformation is only
performed for the growing block.

Assume the system block grows and the environment block shrinks. Then as
before in the infinite-system algorithm one site is added to the system block,
but at the same time one site is removed from the environment block, i.e. one
has to use the previously stored basis of the smaller block. When the environ-
ment block approaches the end of the chain it becomes at some step exactly
describable and the role of the shrinking and growing blocks are interchanged.
A complete shrinkage and growth sequence for both blocks is called a ‘sweep’.
The advantage of this algorithm is that the system has reached its final length
L and the chosen basis states can be optimized taking its full length into ac-
count. Usually the finite-system algorithm finds the best approximation to the
ground state, and only very rarely it is trapped into some metastable state.
Some of the problems encountered in inhomogeneous systems will be discussed
in section 3.5, when the Bose-Hubbard model is investigated with an external
parabolic trapping potential.
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2.3. Simulation of time-dependent quantum phenomena using DMRG

Hilbert space (b) Hilbert space

(©

@)

Hilbert space
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9 reduced spaces

reduced space reduced space

Figure 2.5.: Sketch of the different approaches to determine the time evolution
of a state |1/)0>: (a) the time evolution is performed in the fixed
reduced space obtained by the initial DMRG run, (b) the time
evolution is performed in an enlarged fixed reduced space, and (c)
the reduced space is adapted in time, while the state evolves. The
line sketches the ’real’ time evolution of the state ‘¢0>, i.e. the
time-evolution taking the full Hilbert space into account.

2.3. Simulation of time-dependent quantum phenomena
using DMRG

For the calculation of the time evolution of a quantum state using DMRG,
we have compared several possible approaches, schematically shown in Fig.
2.5 including our new adaptive t-DMRG [Fig. 2.5 (c)]. The first attempt to
simulate the time evolution of quantum states using DMRG is due to Cazalilla
and Marston [17]. Their idea was to determine the time evolution of a state
{¢0> in a reduced effective space constructed using the DMRG. It is sketched
in Fig. 2.5 (a). To do this they represented the initial state ‘¢0>, say the
ground state of some Hamiltonian H (t = 0), in an effective reduced space
obtained by a DMRG run. Then they calculated the time evolution of this
state |¢) subjected to a Hamiltonian H(t) = H(0)+ V(t) in the same reduced
space by projecting the time-dependent Schrodinger equation onto the effective
space and integrated it forward in time numerically. Hereby the Hamiltonian
is built by Heg(t) = Heg(0) + Veg (), where Heg(0) is taken as the Hamiltonian
approximating H(0) in the truncated Hilbert space generated by DMRG. Veg(t)
as an approximation to V(t) is built using the representations of operators in
the block bases obtained in the standard DMRG calculation of the ¢ = 0 state.
The projected time-dependent Schrodinger equation reads

(2.3.0.1) i%\weg(m = [Het (0) — Eo + Vet (1)]| e (1)),

where the time-dependence of the initial state |1/10> resulting of the initial Hamil-
tonian H(0) has been transformed away.

Sources of errors in this approach are twofold, due to the approximations in-
volved in numerically carrying out the time evolution, and to the fact that the
evolution is projected onto a fixed reduced Hilbert space. We have investigated
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2. The adaptive time-dependent density-matrix renormalization-group method

these two error sources in some detail and found that in most cases the first er-
ror (i) can be well controlled whereas the error introduced by the single reduced
space (ii) causes the breakdown of the method after a relatively short time.

(i) To minimize the errors induced by the forward integration in time, we com-
pared two different algorithms: the adaptive Runge-Kutta and the Crank-
Nicolson algorithm (see [33] and references therein).

The first order Runge-Kutta integration is based on the infinitesimal time evo-
lution operator

(2.3.0.2) |t +dt)) ~ (1 —1H(t)dt)](2)),

where the subscript is dropped denoting that we are dealing with effective
Hamiltonians acting on the reduced space only. As a first approach the fourth-
order adaptive size Runge-Kutta algorithm [33] was applied. Hereby unphysi-
cal asymmetries with respect to reflection about the center were generated in a
system with reflection symmetry. We have obtained a conceptually simple im-
provement concerning the time evolution by replacing the explicitly non-unitary
time-evolution of the Runge-Kutta algorithm [see Eq. (2.3.0.2)] by the unitary
Crank-Nicolson time evolution

1 —iH(t)dt/2

(2.3.0.3) [t +d) ~ T a2

().

To implement the Crank-Nicolson time evolution efficiently we have used a
(non-Hermitian) biconjugate gradient method to calculate the denominator of
Eq. (2.3.0.3). Comparing the Runge-Kutta and the Crank-Nicolson algorithm,
already the first-order Crank-Nicolson (with time steps of dt = 5 x 10~°h/J)
was found to be numerically preferable over the fourth-order adaptive Runge-
Kutta algorithm and well controlled by the parameter d¢. In particular, the
occurrence of asymmetries with respect to reflection in the results decreased.
Therefore, all static (non-adaptive) time-dependent DMRG calculations shown
here have been carried out using the Crank-Nicolson approach.

(ii) However, the the error induced by the truncation leads to more severe conse-
quences. The key assumption underlying the approach of Cazalilla and Marston
is that the effective fixed Hilbert space created in the preliminary DMRG run
is sufficiently large that |1/1(t)> can be well approximated within that Hilbert
space for all times, such that

(2.3.0.4) €(t) = 1= [((B)[thexact (£))]

remains small as ¢ grows. At the momentarily available computer resources
this, in general, will only be true for relatively short times. A simple picture for
the breakdown is given in Fig. 2.5 (a), where the real time evolution of the state
leaves the reduced space at some time, such that it cannot be approximated
well in the reduced space anymore.

A variety of modifications that should extend the applicability of the fixed
Hilbert space in time can be imagined. The underlying idea is to enlarge the
reduced space "along’ the path of the time evolution [as sketched in Fig. 2.5 (b)].
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2.3. Simulation of time-dependent quantum phenomena using DMRG

Typically these enlargements rest on the DMRG practice of “targeting” several
states: to construct a reduced effective space optimized to represent not only
one but several target states. To obtain this space the reduced density-matrix
is built out of a mixture of a small number of states, i.e.

(2.3.0.5) ps = Trp|)(b| — ps = TrEZai‘z/Ji><zpi|.

The reduced effective space is constructed as before by keeping only the m
eigenvectors with the highest weight. A simple choice uses the targeting of
H ”|1/10>, for n less than 10 or so, approximating the short-time evolution, which
we have found to substantially improve the quality of results for non-adiabatic
switching of Hamiltonian parameters in time: convergence in m is faster and
more consistent with the new adaptive t-DMRG method (see below).
Similarly, we have found that for adiabatic changes of Hamiltonian parameters
results improve if one targets the ground states of both the initial and final
Hamiltonian.

A more elaborate, but also much more time-consuming improvement still within
the framework of a fixed Hilbert space was proposed by Luo, Xiang and Wang
[34, 35]. Additional to the ground state a finite number of quantum states at
various discrete times should be targeted using a bootstrap procedure starting
from the time evolution of smaller systems that are iteratively grown to the
desired final size.

To illustrate the previous approaches and to test the quality of the performance
of the different algorithms, we show results for the Bose-Hubbard Hamiltonian,

U(t)

L—1 L
(2.3.0.6) Hpp(t)=-JY <b}+1bi + bjbm) + =~ > ni(ni — 1),
i=1 i=1

where the (repulsive) onsite interaction U > 0 is taken to be time-dependent.
This model exhibits for commensurate filling a Kosterlitz-Thouless-like quan-
tum phase transition from a superfluid phase for v < u. (with u = U/J) to
a Mott-insulating phase for v > wu.. For more details on the physics of the
Bose-Hubbard model see section 3.3. In the present section the instantaneous
switching from U; = 2 in the superfluid phase to Us = 40 in the Mott phase
at t = 0 in a small Bose-Hubbard system with L = 8 and open boundary con-
ditions, total particle number N = 8, J = 1 were used. We compare results
for the nearest-neighbour correlation <b;r»bj +1>, a robust numerical quantity, be-
tween sites 2 and 3. Up to 8 bosons per site (i.e. Ngte = 9 states per site)
were allowed to avoid cut-off effects in the bosonic occupation number in all
calculations in this section. In the following all times are measured in units of
h/J or 1/J, setting h = 1.

First we compare the results for different choices of a fixed reduced space. To
do this we target (i) just the superfluid ground state ‘¢0> for U; = 2 (Fig. 2.6),
(ii) in addition to (i) also the Mott-insulating ground state {¢6> for Uy = 40 and
H(t > 0)|¢o) (Fig. 2.7), (iii) in addition to (i) and (ii) also H(t > 0)2|¢0) and
H(t > 0)3|0) (Fig. 2.8). Time evolution is calculated in the Crank-Nicolson
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2. The adaptive time-dependent density-matrix renormalization-group method

(i) L=8, U1=2, U2=40, J=1

m=200 ——

nn—correlation

0
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time

Figure 2.6.: Time evolution of the real part of the nearest-neighbour correlations

in a Bose-Hubbard model (L = 8, N = 8) with instantaneous

change of interaction strength at ¢ = 0: superfluid state targeting

only. The different curves for different m have been shifted by one.

approach using a step width dt = 5-107°. We keep up to m = 200 states to
obtain converged results (meaning that we could observe no difference between
the results for m = 100 and m = 200) for ¢t < 4, corresponding to roughly
25 oscillations. The results for the cases (ii) and (iii) are almost converged for
m = 50, whereas (i) shows still crude deviations.

A remarkable observation can be made if one compares the three m = 200
curves (Fig. 2.9), which by standard DMRG procedure (and for lack of a better
criterion) would be considered the final, converged outcome, both amongst each
other or to the result of the new adaptive t-DMRG algorithm which is discussed
below: result (i) is clearly not quantitatively correct beyond very short times,
whereas result (ii) agrees very well with the new algorithm, and result (iii)
agrees almost (beside some small deviations at ¢ ~ 3) with result (i) and the
new algorithm. Therefore we see that for case (i) the criterion of convergence in
m does not give a good control to determine if the obtained results are correct.
This raises as well doubts about the reliability of this criterion for cases (ii) and
(iii).

The observation that even relatively robust numerical quantities such as nearest-
neighbour correlations can be qualitatively and quantitatively improved by the
additional targeting of states which merely share some fundamental character-
istics with the true quantum state (as we will never reach the Mott-insulating
ground state) or characterize only the very short-term time evolution indicates
that it would be highly desirable to have a modified DMRG algorithm which,
for each time ¢, selects Hilbert spaces of dimension m such that ‘1/)(75)> is repre-
sented optimally in the DMRG sense [compare Fig. 2.5 (c)], thus attaining at
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Figure 2.7.: Time evolution of the real part of the nearest-neighbour correlations
in a Bose-Hubbard model with instantaneous change of interaction
strength at ¢ = 0: targeting of the initial superfluid ground state,
Mott-insulating ground state and one additional state (see text).
The different curves for different m have been shifted by one.
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Figure 2.8.: Time evolution of the real part of the nearest-neighbour correlations
in a Bose-Hubbard model with instantaneous change of interaction
strength at ¢ = 0: targeting of the initial superfluid ground state,
Mott-insulating ground state and three additional states (see text).
The different curves for different m have been shifted by one.

27



2. The adaptive time-dependent density-matrix renormalization-group method
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Figure 2.9.: Comparison of the three m = 200 Crank-Nicolson calculations to
adaptive t-DMRG at m = 50: we target (i) just the superfluid
ground state |¢g) for Uy = 2 (Fig. 2.6), (ii) in addition to (i)
also the Mott-insulating ground state |¢6> for Uy = 40 and H(t >
0)|o) (Fig. 2.7), (iii) in addition to (i) and (ii) also H(t > 0)2|t)
and H(t > 0)3|t0) (Fig. 2.8. The different curves have been shifted
by one.
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2.4. Matrix-product states
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Figure 2.10.: Visualization the components of the matrix product states.

all times the typical DMRG precision for m retained states. The presentation
of such an algorithm is the purpose of the following sections.

2.4. Matrix-product states

As both the TEBD simulation algorithm and DMRG can be neatly expressed
in the language of matrix-product states, we briefly review the properties of
these states also known as finitely-correlated states [20, 19].

Consider a one-dimensional system of size L, divided up into sites which each
have a local Hilbert space, H;. For simplicity the same dimension Nt is taken
at all sites. The Hilbert space H of the whole system is H = ®]L:1Hj, with
dimension (Nsite)L. We can express a general state of the whole system as

W) = > torop|or) @o2) @ ... @ oL)

01,501

(2.4.0.7) = > Yolo),

where ‘aj> denote the basis states on site j. A matrix-product state is now
formed by only using a specific set of expansion coefficients ¢g. This set is
constructed in the following. To do this we define operators A; [0;] which corre-
spond to a local basis state |0i> at site ¢ of the original system, but which act
on auxiliary spaces of dimension m, i.e.,

(2.4.0.8) Ailoi] =Y Algloila)(8],
a,3

where ‘a> and ‘ﬁ> are orthonormal basis states in auxiliary spaces. There is no
a priori significance to be attached to the states in the auxiliary state spaces.
For visualization (Fig. 2.10), we imagine the auxiliary state spaces to be located
on the bonds next to site ¢. If we label the bond linking sites ¢ and 7 + 1 by
i, we say that the states |ﬁ> live on bond 7 and the states |a> on bond 7 — 1.
The operators A; [0;] hence act as transfer operators past site i depending on
the local state on site i.

On the first and last site, which will need special attention later, this picture
involves bond 0 to the left of site 1 and bond L to the right of site L respectively.
These bonds have no physical meaning for open boundary conditions. They are
identical and link sites 1 and L as one physical bond for periodic boundary
conditions. In general, the operators A; corresponding to different sites can be
different. If this is the case the resulting matrix-product state to be introduced

29



2. The adaptive time-dependent density-matrix renormalization-group method

is referred to as a position-dependent matrix-product state. We also impose
the condition

(2.4.0.9) > Ailoi)Alloi] = 1,

which we will see to be related to orthonormality properties of bases later.
An unnormalized matrix-product state in a form that will be found useful for
Hamiltonians with open boundary conditions is now defined as

(2.4.0.10) )y =>" <<¢L| ﬁAi[Ui]|¢R>> o),

o i=1
where ‘¢L> and ‘¢R> are the left and right boundary states in the auxiliary

spaces on bonds 0 and L. They act on the product of the operators A; to
produce scalar coefficients

L
(2.4.0.11) bo = (or| [ [ Ailoi|ér)

i=1

for the expansion of ‘1/;> (compare Eq. 2.4.0.7).

Several remarks are in order. It should be emphasized that the set of states
obeying Eq. (2.4.0.10) is an submanifold of the full boundary-condition inde-
pendent Hilbert space of the quantum many-body problem on L sites that is
hoped to yield good approximations to the true quantum states for Hamiltoni-
ans with open boundary conditions. If the dimension m of the auxiliary spaces
is made sufficiently large then any general state of the system can, in principle,
be represented exactly in this form (provided that ‘¢L> and ‘¢R> are chosen
appropriately), simply because the O(NgjLm?) degrees of freedom to choose
the expansion coefficients will exceed N, SLite. This is, of course, purely academic.
The practical relevance of the matrix-product states even for computationally
manageable values of m is shown by the success of DMRG, which is known
[36, 37] to produce matrix-product states of auxiliary state space dimension
m, in determining energies and correlators at very high precision for moderate
values of m. In fact, some very important quantum states in one dimension,
such as the valence-bond-solid (VBS) ground state of the Affleck-Kennedy-Lieb-
Tasaki (AKLT) model [38, 39, 40], can be described exactly by matrix product
states using very small m (m = 2 for the AKLT model).

We now formulate a Schmidt decomposition for matrix-product states since we
will use it later on. An unnormalized state {1/;> of the matrix-product form of
Eq. (2.4.0.10) with auxiliary space dimension m can be written as

(2.4.0.12) ) = Jad)|wd),
a=1

where we have arbitrarily cut the chain into S on the left and E on the right
with

04013 @)= 3 [<¢L\HA@-[aina>] o),

{05} i€S
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2.5. TEBD simulation algorithm

i] O;
operators Aa, I'OE_] 10'(_ Ag,
- - |
” e @ @ o
auxiliary states lo,_,> o, >
sites i-1 i i+1
Figure 2.11.: Visualization the components of the states used in the TEBD
algorithm.
bond 1
1S ——o Epg]
/ I+1

Figure 2.12.: Bipartitioning by cutting bond [ between sites [ and [ + 1.

and similarly |1D§ >, where { |oz>} are the states spanning the auxiliary state

space on the cut bond. Normalizing the states |1ﬁ>, zbg> and |1D§> we obtain

the representation

(2.4.0.14) ) = Aa|w)|w)
a=1

where in A, the factors resulting from the normalization are absorbed. The
relationship to reduced density-matrices is as detailed in section 2.6.

2.5. TEBD simulation algorithm

We now express the TEBD simulation algorithm in the language of the previous
section. In the original exposition of the algorithm [18], one starts from a
representation of a quantum state (Eq. 2.4.0.7) where the coefficients for the
states are decomposed as a product of tensors,

(2.5.0.15) Voy..op = Z I‘[OHUI)\EJI‘[OCQ}OQ A2 I‘Eﬂ .. Tz

g3 .
1027 02 2003 ar—1°
Q1,001

It is of no immediate concern to us how the I' and A tensors are constructed
explicitly for a given physical situation. We assume here that they have been
determined such that they approximate the true wave function close to the
optimum obtainable within the class of wave functions having such coeflicients.
In fact, this can be done within the framework of DMRG, or by a continuous
imaginary time evolution from some simple product state, as discussed in Ref.
[5].

A visualization is attempted in the following (Fig. 2.11); the (diagonal) tensors
A i=1,..., L—1 are associated with the bonds i, whereas ¥/, i =2, ..., L—1
links (transfers) from bond ¢ to bond 7 — 1 across site i. Note that at the
boundaries (i = 1, L) the structure of the I' is different. Each of the sums runs
over m states {ai> living in auxiliary state spaces on bond i. A priori, these
states have no physical meaning here.

31



2. The adaptive time-dependent density-matrix renormalization-group method

The I' and A tensors are constructed such that for an arbitrary cut of the system
into a part S; of length [ and a part Ej_; of length L —[ at bond [, the Schmidt
decomposition for this bipartite splitting reads

(2.5.0.16) ZAal\w wh Y,

with

(25.017) i)=Y > rhleall ot o) @@ o),

Q1,1 O15...,0]

and
jwary = S YD TRl
Q415X L—1 Ol 415--0L
(2.5.0.18) o) @+ @ |oL),

where ‘¢> is normalized and the sets of { ‘wgé )} and {|w0EélL ~')} are orthonormal.
This implies, for example, that

(2.5.0.19) > (=1

(&%)

We can see that (leaving aside normalization considerations for the moment)
this representation may be expressed as a matrix-product state (compare Fig.2.10)

if we choose for fli[ai] = zaﬁ Agﬁ[ai]‘axm
(2.5.0.20) i gloi] =LA
except for ¢ = 1, where we choose

(2.5.0.21) Alglon] = faT57 NS,
and for i = L, where we choose

(2.5.0.22) ALglor) =THor g,

The vectors f, and gz are normalized vectors which must be chosen in conjunc-
tion with the boundary states |¢L> and ‘¢R> so as to produce the expansion
(2.5.0.15) from this choice of the A;. Specifically, we require

(2.5.0.23) 6) = Y fala)
> 9518),
5

(2.5.0.24) |pR)

where |a> and | B> are the states forming the same orthonormal basis in the
auxiliary spaces on bonds 0 and L used to express Agﬁ. In typical implemen-
tations of the algorithm it is common to take f, = go = dqa,1. Throughout the
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2.5. TEBD simulation algorithm

rest of this section we take this as the definition for g, and f,, as this allows us
to treat the operators on the boundary identically to the other operators. For
the same reason we define a vector /\Le} = 0a,1-

In the above expressions (2.5.0.17-2.5.0.22) we have grouped I" and A such that
the A reside on the right of the two bonds linked by I'. There is another valid
choice for the Ai, which will produce identical states in the original system, and
essentially the same procedure for the algorithm. If we set

(2.5.0.25) Al gloi] = Ai-rlle

except for ¢ = 1, where we choose

(67

(2.5.0.26) 415[01] — far[ﬁl}m’
and for i = L, where we choose
(2.5.0.27) ALjlor] = AL oL g,

then the same choice of boundary states produces the correct coefficients. Here
we have grouped I' and A such that the A reside on the left of the two bonds
linked by I'. It is also important to note that any valid choice of f, and gg
that produces the expansion (2.5.0.15) specifically ezcludes the use of periodic
boundary conditions. While generalizations are feasible, they will not be pur-
sued here.

To conclude the identification of states, we consider normalization issues. The
condition (2.4.0.9) is indeed fulfilled for our choice of A;[o;], because we have
from (2.5.0.18) for a splitting at { — 1 that

a2 ) = ST Ao © )
[e7Xea}

(2.5.0.28) = S AL oo ® [wet),
[e7Xea}

E :
so that from the orthonormality of the sets of states { ‘waL_(l_l) . {|Jl>}fx$:“‘i

a=1>
and {|w5L_l> m

ST AfoAllon] = 0N AL [ (AL, o)) (8]
o) afy o1
= 2 (w M wa ) (9]
af
(2.5.0.29) = > dagla)(f| =1
af

After introducing the notation of matrix-product states we can now consider the
time evolution for a typical (possibly time-dependent) Hamiltonian in strongly
correlated systems that contains for simplicity only short-ranged interactions:

(2.5.0.30) H=Y Fan+ Y G,

i odd j even
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2. The adaptive time-dependent density-matrix renormalization-group method

F;;11 and Gj 41 are the local Hamiltonians on the odd bonds linking ¢ and
141, and the even bonds linking j and j+1. While all F’ and G terms commute
among each other, F' and G terms do in general not commute if they share one
site. The time evolution operator for a time step dt may be approximately
represented by a (first order) Suzuki-Trotter expansion as

(2.5.0.31) it = TT e irindt T e iandt 4 0(at?),

i odd J even

and the time evolution of the state can be computed by repeated application of
the two-site time evolution operators eXp(—iéj’j+1dt) and exp(—iF} ;;1dt). This
is a well-known procedure in particular in Quantum Monte Carlo [41] where it
serves to carry out imaginary time evolutions (checkerboard decomposition).
The TEBD simulation algorithm now runs as follows [5, 18]:

1. Perform the following two steps for all even bonds (order does not matter):

(i) Apply eXp(—iGl,l+1dt) to |1/1(t)> For each local time update, a new
wave function is obtained. The number of degrees of freedom on the
“active” bond thereby increases, as will be detailed below.

(ii) Carry out a Schmidt decomposition cutting this bond and retain as
in DMRG only those m degrees of freedom with the highest weight
in the decomposition.

2. Repeat this two-step procedure for all odd bonds, applying exp(—iﬁuﬂdt).

3. This completes one Suzuki-Trotter time step. One may now evaluate
expectation values at selected time steps, and continue the algorithm from
step 1.

After sketching the procedure we now consider its computational details.

(i) Consider a local time evolution operator acting on bond I, i.e. sites [ and
I+ 1, for a state ‘¢> The Schmidt decomposition of |1/1> after partitioning by
cutting bond [ reads

(2.5.0.32) ) = > A sty |war ).

alzl
Using Egs. (2.5.0.17), (2.5.0.18) and (2.5.0.28), we find
LN D DR DS e L AT TR
Q1 01014

(2.5.0.33) w3 |0 o Mwmts 0,

We note, that if we identify |w§l_1> and |wEL_(H1)> with DMRG system and

-1 [S7Em]

environment block states {wfﬂli& and ‘wﬁlﬂ% we have a typical DMRG state

for two blocks and two sites

(25034) ‘¢> = Z Z Z Z ¢ml,1olol+1ml+1{wil_1>{al>‘gl+1>{w§u+1>

mj—1 O] Oj4+1 M1
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2.5. TEBD simulation algorithm

with

(25035) wml—lo’lal-klml-kl Z )\7511 11A£TLL 10 [ ]Ai):—il_ml+1 [Ul+1]'

The local time evolution operator on site [,/ + 1 can be expanded as

(2.5.0.36) (717”1 = Z Z U;l;l:f‘afaf+1><alal+1‘

010141 02‘71/+1

and generates ‘1/)’> = Ul,l+1m>, where

LRSS DD DI

Q10441 10141 agogﬂ
l l l Si_ Eyr_
)\([Xl 11}14041 10 [ ]Aa—il_él+1 [U;+1]U;—-§l:-l/l:11 {wa’ﬁ—i > {O-l> {O'l+1> ‘wall-/kl(”ﬁl) >

This can also be written as

(2:5.0.37) Z Z @gzlaz;r&lﬂ War~ 1>‘Ul>|al+1>|w§i_1(l+l)>a

Q10141 O1014+1

where

(25038)  eaTaL, =M D0 AL o004, ona U

al—10¢l+1 Qo4 0l0l+1 N
O‘l‘7101+1

(ii) Now a new Schmidt decomposition identical to that in DMRG can be carried
out for ‘1/1’ >: cutting once again bond [, there are now mNge states in each
part of the system, leading to

(2.5.0.39) W) = > M|t |wa ).

In general the states and coefficients of the decomposition will have changed
compared to the decomposition (2.5.0.32) previous to the time evolution, which
means that the reduced Hilbert space has been adapted to the quantum state
at this time [compare Fig. 2.5 (¢)]. We indicate this by introducing a tilde for
these states and coefficients. As in DMRG, if there are more than m non-zero
eigenvalues, we now choose the m eigenvectors corresponding to the largest 5\[0@
to use in these expressions. The error in the final state produced as a result is
proportional to the sum of the magnitudes of the discarded eigenvalues. After
normalization, to allow for the discarded weight, the state reads

(2.5.0.40) Z A JwSy k.

;=1

Note again that the states and coefficients in this superposition are in general
different from those in Eq. (2.5.0.32); we have now dropped the tildes again, as
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2. The adaptive time-dependent density-matrix renormalization-group method

this superposition will be the starting point for the next time evolution (state
adaption) step.
To obtain the Schmidt decomposition reduced density-matrices are formed, e.g.

pe = Trs|[y/)(v']
= Z |o141) |wal+1><wa2+1 [{o141]

OL4107 1004107

/ *
010741 Ulol+1
(2.5.0.41) X § 6041 1al+1( 041—1042+1)
a;—10]

If we now diagonalize pf, we can read off the new values of Af;lrélﬂ [0141] because

the eigenvectors ‘waL ') obey

(2.5.0.42) EL l Z Altl (0141 |0'l+1 |wEL—(l+1)>‘

Qo4 [e7A |
Ol+1Q0+1

We also obtain the eigenvalues, ()\g}l)Q Due to the asymmetric grouping of I'
and A into A discussed above, a short calculation shows that the new values for

Alal L, 101] can be read off from the slightly more complicated expression
Si—
(2.5.0.43) = > AL el wa o).
x;—10]

The states ‘w§§> are the normalized eigenvectors of pg formed in analogy to
PE-

The key point about the TEBD simulation algorithm is that a DMRG-style
truncation keeping the most relevant density-matrix eigenstates (or the max-
imum amount of entanglement) is carried out for each local update at each
time step. This is in contrast with time-dependent DMRG methods described
in section 2.3, where the basis states were chosen before the time evolution is
performed, and did not “adapt” to optimally represent the time-evolved state.

2.6. DMRG and matrix-product states

Typical normalized DMRG states for the combination of two blocks S and E
and two single sites (Fig. 2.13) have the form

(2.6.0.44) Z ZZ Z wml lalal+1ml+1|wml 1 |Ul ‘UlJrl | ml+1>

mjp—1 O] Oj4+1 M1

which can be Schmidt decomposed as

(2.6.0.45) ) = A Jwf, ) wk ).
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2.6. DMRG and matrix-product states

block S 2 sites block E

[ Joo[ ]

Figure 2.13.: Typical two-block two-site setup of DMRG as used here.

It has been known for some time [36, 37] that a DMRG calculation retaining
m block states approximates ‘¢> by m x m matrix-product states. Consider
the reduced basis transformation to obtain the states of DMRG block S that
terminates on bond ! from those of the block terminating on bond [ — 1 and
those on a single site [,

(2.6.0.46) (wh,_ oilwy,) = AL, (o,

such that

(2.6.0.47) lwp) = D Al mlodwn, ) ® |on).
mp_10]

The reduced basis transformation matrices A'[o;] automatically obey Eq. (2.4.0.9),

which here ensures that {{w%»} is an orthonormal set provided {{w%l_1>} is
one. We may now use Eq. (2.6.0.47) for a backward recursion to express ‘w%l_1>
via ‘w;il_2> and so forth. There is a complication as the number of block states
for very short blocks is less than m. For simplicity, we assume that m is chosen
such that we have exactly Ns-jl\ge = m. If we stop the recursion at the shortest
block of size N that has m states we obtain

(26.048) Jwn,) = Y. >,

Mys...Mj—1 01...0]
A%;%N_H [UN+1] oes Almlflml [UlHUl ‘e O'l>7

where we have indexed the boundary-site states by m g = {o1...05} on the
first NV sites. Similarly, for the DMRG block E we have

(2.6.0.49) <w§u+101+1|w%> =AML o],

mymi41

such that (again having N boundary sites) a recursion gives

o) = > X

mi41..-Myp_ 5§ Ol4+1---0L

(2.6.0.50) A lowa] AN o glo o),

where the boundary-site states are indexed by m; 5 = {O-LquLl ...or} on
the last N sites. A comparison with Egs. (2.4.0.10), (2.4.0.12) and (2.4.0.13)
shows that DMRG generates position-dependent m x m matrix-product states
as block states for a reduced Hilbert space of m states; the auxiliary state
space to a bond is given by the Hilbert space of the block at whose end the
bond sits. This physical meaning attached to the auxiliary state spaces and
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2. The adaptive time-dependent density-matrix renormalization-group method

the fact that for the shortest block the states can be labeled by good quantum
numbers (if available) ensures through (2.6.0.46) and (2.6.0.49) that they carry
good quantum numbers for all block sizes. The big advantage is that using
good quantum numbers allows us to exclude a large amount of wave function
coefficients as being 0, drastically speeding up all calculations by at least one,
and often two orders of magnitude.

In this language the effect of the finite-system DMRG algorithm (see section
2.2.2) is to shift the two free sites through the chain, growing and shrinking
the blocks S and E as illustrated in Fig. 2.4. At each step, the ground state
is redetermined and a new Schmidt decomposition carried out in which the
system is cut between the two free sites, leading to a new truncation and new
reduced basis transformations (two matrices A adjacent to this bond). It is thus
a sequence of local optimization steps of the wave function oriented towards an
optimal representation of the ground state. Typically, after some “sweeps” of
the free sites from left to right and back, physical quantities evaluated for this
state converge. While comparison of DMRG results to exact results shows that
one often comes extremely close to an optimal representation within the matrix
state space (which justifies the usage of the DMRG algorithm to obtain them), it
has been pointed out and numerically demonstrated [37, 42] that finite-system
DMRG results can be further improved and better matrix-product states be
produced by switching, after convergence is reached, from the SeeE scheme
(with two free sites) to an SeE scheme (with one free site) and to carry out
some more sweeps. This point is not pursued further here, it just serves to
illustrate that finite-system DMRG for all practical purposes comes close to an
optimal matrix-product state, while not strictly reaching the optimum.

We will outline the calculation for shifting the active bond by one site to the
left since it will be used in the adaptive t-DMRG.

Starting from the wavefunction represented in the SeeE scheme,

(26051) |T,Z)> = Z Z Z Z ¢ml,1alal+1mz+1|w7€1l_1>|0'l>|0'l+1>|w§u+1>a
mi—1 01 0141 Mi41
one inserts the identity », {wﬁlxwﬁl{ to obtain
(2.6.0.52) ) = Z ZZ¢mlilglml|wil_1>|al>|w£l>,
mi—1 o my
where

l
(2.6.0.53) Vry_10im; = Z Z wmz—10101+1m1+1AWJ{l}m+1[UlJrl]-

mMi+1 0141

After inserting in a second step the identity Zm1720l—1 |w,§bl7201_1><w,§”7201_1 |,

one ends up with the wave function in the shifted bond representation:

(26054)  [¥)=> D > > Ymisor o [wi_,)lo1-1)|on) [wr,),

mi—201-1 01 My

where

-
(2.6.0.55) Vmy_s01_1om; = Z ¢m17101mlAml1_2ml_1[Jl—l]'

mip—1
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2.7. Adaptive t-DMRG

2.7. Adaptive t-DMRG

As the actual decomposition and truncation procedure in DMRG and the TEBD
simulation algorithm are identical, the idea of the TEBD algorithm can be car-
ried over to generalize the DMRG to give a very effective method, the adaptive
t-DMRG, to study time-dependent phenomena in strongly correlated quasi-one
dimensional systems. In the adaptive t-DMRG the finite-system algorithm is
used to carry out the sequence of local time evolutions after the initial state has
been determined. During each such a local time evolution the local evolution
operator is applied to the wave function ‘¢> in a two-block two-site configura-
tion such that the bond that is currently updated consists of the two free sites.
Then new block states — best adapted to a state at any given point in the
time evolution (hence adaptive block states)— are constructed by Schmidt de-
composition and truncation as in the TEBD algorithm, while maintaining the
computational efficiency of DMRG. Then to apply the next local evolution op-
erator the wave function |1/)> has to be transformed between different two-block
two-site configurations. In finite-system DMRG such a transformation, which
was first implemented by White [21] (“state prediction”) is routinely used to
predict the outcome of large sparse matrix diagonalizations, which no longer
occur during time evolution. Here, it merely serves as a transformation to the
reduced basis.

The adaptive t-DMRG algorithm using the first order Suzuki-Trotter decompo-
sition which incorporates the TEBD simulation algorithm in the DMRG frame-
work is now set up as follows:

0. Set up a conventional finite-system DMRG algorithm with state predic-
tion using the Hamiltonian at time ¢ = 0, H (0), to determine the ground
state of some system of length L using effective block Hilbert spaces of
dimension m. At the end of this stage of the algorithm, we have for blocks
of all sizes [ reduced orthonormal bases spanned by states ‘ml>, which are
characterized by good quantum numbers. Also, we have all reduced basis
transformations, corresponding to the matrices A.

1. For each Suzuki-Trotter time step, use the finite-system DMRG algorithm
to run one sweep with the following modifications:

i) For each even bond apply the local time evolution U at the bond
formed by the free sites to ‘1/)> This is a very fast operation com-
pared to determining the ground state, which is usually done instead
in the finite-system algorithm.

ii) As always, perform a DMRG truncation at each step of the finite-
system algorithm, hence O(L) times.

(iii) Use White’s prediction method to shift the free sites by two.

2. In the reverse direction, apply step (i) to all odd bonds.

3. As in standard finite-system DMRG evaluate operators when desired at
the end of a time step. Note, that there is no need to generate these
operators at all those time steps where no operator evaluation is desired.
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2. The adaptive time-dependent density-matrix renormalization-group method

The calculation time of adaptive t-DMRG scales linearly in L, as opposed to
the non-adaptive time-dependent DMRG which only depends on L indirectly.
The diagonalization of the density-matrices (Schmidt decomposition) scales as
Ns%tem?’; the preparation of the local time evolution operator as Ngte, but this
may have to be done only rarely e.g. for discontinuous changes of interaction
parameters. Carrying out the local time evolution scales as N1, m?; the basis
transformation scales as Ns%tem?’. As m > Nge typically, the algorithm is
of order O(LNS?’item3) at each time step. In most cases a speeding up of the
algorithm can be obtained using higher order Suzuki-Trotter decompositions
given in appendix A. In the applications presented in this work the second-

order and fourth-order Suzuki-Trotter decomposition are used.

2.8. Case study: time-dependent Bose-Hubbard model

Before we discuss the sources of error in the next section, we would like to
compare the new adaptive algorithm to the non-adaptive methods described
in section 2.3. To do this we present some results of calculations on the Bose-
Hubbard Hamiltonian introduced in section 2.3 which have been carried out
using modest computational resources and an unoptimized code (this concerns
in particular the operations on complex matrices and vectors). In the following,
Suzuki-Trotter time steps down to dt = 5 x 10~% in units of 1/J were chosen.
Applications to systems of realistic size are shown in the following chapters.
Comparing the results of the adaptive t-DMRG for the Bose-Hubbard model
with the parameters chosen as in section 2.3 with the static time-dependent
DMRG we find that the convergence in m of the adaptive algorithm is much
faster than for the static algorithm. For the nearest neighbour correlations it
sets in at about m = 40 (Fig. 2.14) for the adaptive algorithm compared to
m = 100 for the static method (Fig. 2.6-2.8).

This faster convergence in m enables us to study larger systems than would
be accessible with non-adaptive time-dependent DMRG (Fig. 2.15). In the
L = 32 system considered here, we encountered severe convergence problems
using non-adaptive time-dependent DMRG. By contrast, in the new approach
convergence sets in for m well below 100, which is easily accessible numerically.
Let us remark that the number m of states which have to be kept does certainly
vary with the exact parameters chosen, depending on whether the state can be
approximated well by matrix-product states of a low dimension. At least in the
case studied here, we found that this dependence is quite weak. We expect (also
from studying the time evolution of density-matrix spectra) that the system
dependence of m is roughly similar as in the static case.

Similar observations are made both for local occupancy (a simpler quantity
than nearest-neighbour correlations) and longer-ranged correlations (where we
expect less precision). Moving back to the parameter set of section 2.3, we find
as expected that the result for the local occupancy (Fig. 2.16) has converged
for the same m leading to convergence in the nearest-neighbour correlations. In
contrast, if we consider the correlation (b'b) between sites further apart from
each other the numerical results converge more slowly under an increase of m
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Figure 2.14.: Time evolution of the real part of nearest-neighbour correlations
in a Bose-Hubbard model with instantaneous change of interac-
tion strength using the adaptive t-DMRG. The different curves
for different m are shifted by one (parameters as in section 2.3).

L=32

nn—correlation

0 0.5 1 1.5 2
time

Figure 2.15.: Time evolution of the real part of nearest-neighbour correlations
in a Bose-Hubbard model with instantaneous change of interac-
tion strength using the adaptive t-DMRG but for a larger system
L = 32 with N = 32 bosons and remaining parameters chosen as
in section 2.3. The different curves for different m are shifted by
one.
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Figure 2.16.: Time evolution of the occupancy of the second site. Parameters

as used in section 2.3 (L = 8, N = 8). The different curves for

different m are shifted.

than the almost local quantities. This can be seen in Fig. 2.17 where the results
for m = 40 and m = 50 still differ a bit for times larger than ¢ ~ 2/.J.
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Figure 2.17.: Time evolution of the real part of the correlation between site 2
and 7. Parameters as used in section 2.3 with N = 8 particles.
The different curves for different m are shifted. Note that the
plot starts at ¢ = 1 (parameters were changed at ¢t = 0), since the
different curves agree for t =0 to t = 1.
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2. The adaptive time-dependent density-matrix renormalization-group method

2.9. Sources of error

After we have seen in the previous chapter that the developed algorithm per-
forms very well in describing time-dependent phenomena, let us discuss here
the approximations involved. Two main sources of error occur in the adaptive
t-DMRG:

(i) The Suzuki-Trotter error due to the Suzuki-Trotter decomposition. For an
nth-order Suzuki-Trotter decomposition [41], the error made in one time step
dt is of order d¢"*!. To reach a given time ¢ one has to perform t/dt time-steps,
such that in the worst case the error grows linearly in time ¢ such that the
resulting error is of order (d¢)"t. In our setup of the Suzuki-Trotter decompo-
sition, the error is expected to scale linearly with system size L for a generic
state, and overall it is of order (d¢)™ Lt for the times of interest. (Eventually, the
error generally saturates at a finite value, as measured quantities are typically
bound.)

(ii) The DMRG truncation error due to the representation of the time-evolving
quantum state in reduced (albeit “optimally” chosen) Hilbert spaces and due
to the repeated transformations between different truncated basis sets. While
the truncation error € that sets the scale of the error of the wave function and
operators is typically very small, here it will strongly accumulate in time as
O(Lt/dt) truncations are carried out up to time ¢. This is due to the fact that
the truncated DMRG wave function has norm less than one and is renormalized
at each truncation by a factor of (1 —€)~! > 1. Truncation errors should there-
fore accumulate roughly exponentially with an exponent of eLt/d¢, such that
eventually the adaptive t-DMRG will break down at too long times. A partial
compensation of errors in observables may slow down the error growth. The
accumulated truncation error should decrease considerably with an increasing
number of kept DMRG states m. For a fixed time ¢, it should decrease as
the Suzuki-Trotter time step dt is increased, since the number of truncations
decreases with the number of time steps ¢/dt.

At this point, it is worthwhile to mention that the error arising should also
be pertinent to the very closely related time evolution algorithm introduced
by Verstraete et al. [43], which differs from ours for the present purpose in
one major point: In our algorithm a basis truncation is performed after each
local application of UA'U_H. In their more time-consuming algorithm truncations
are performed after all local time evolutions have been carried out, i.e. after
a global time evolution using U= I UA'U_H. In our iterative procedure, the
wave function after such a full time evolution is not necessarily the globally
optimal state representing the time-evolved state. However, for small dt the
state update via the operators U, is likely to be small. We expect the global
optimum to be rather well approximated using the present algorithm, as seems
to be borne out by direct comparisons between both approaches. Errors should
therefore exhibit very similar behaviour.

A detailed error analysis of the influence of the Suzuki-Trotter error and the
truncation error on the total error can be found in section 6.3, where we compare
our DMRG results for the time evolution of an initial state in a spin-1/2 X X-
model to exact results.
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2.10. Conclusion

While exporting ideas from one field of knowledge to another may appear as an
exciting and often fruitful enterprise, differences in language and background be-
tween researchers in so far separated fields can also often become a serious obsta-
cle to the proper propagation and full assimilation of such ideas. In this chapter
we have translated the TEBD algorithm into the language of matrix-product
states. This language is a natural choice to express the DMRG algorithm —
which, for over a decade, has dominated the simulation of one-dimensional
quantum many-body systems. The translation of the TEBD algorithm to the
DMRG language has made evident that the TEBD and the DMRG algorithms
have a number of common features, a fact that was exploited in developing the
new method presented here. We have performed the corresponding modifica-
tion of existing finite-system DMRG codes to incorporate the TEBD leading
to the new adaptive t-DMRG algorithm. Even without attempting to reach
the computationally most efficient incorporation of the TEBD algorithm into
DMRG implementations, the resulting code seems to perform systematically
better than non-adaptive time-dependent DMRG codes at very reasonable nu-
merical cost. The adaptive t-DMRG converges for much smaller state spaces,
as they are adapted in time to track the actual state of the evolving system.
The new code by application of existing conceptual ideas, is significantly more
efficient than other existing embodiments of the TEBD, for instance thanks to
the way DMRG exploits good quantum numbers.

While we have considered bosons in the example, also fermionic (see chapter
5) and spin (see chapter 6) systems present no fundamental difficulties. Some
interesting topics which are best approached with the adaptive t-DMRG are pre-
sented in the following chapters to show the efficiency of the developed adaptive
t-DMRG. In chapter 4 the evolution of a perturbation in a bosonic system, in
chapter 5 the spin-charge separation in one-dimensional fermionic systems with
two species, and in chapter 6 a simplified model for spin transport between two
spin polarized reservoirs are discussed.
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3. Ultracold atoms in optical lattices

3.1. From Bose-Einstein condensation to strongly
interacting Bose gases

In 1995, the first experimental realizations of a Bose-Einstein condensation
(BEC) were achieved in rubidium [8], sodium [9] and lithium vapors [10]. This
was long after the theoretical prediction of this effect by Einstein 1924, who
investigated the ideal Bose gas based on the statistics introduced by Bose. The
main problem in the experimental realization of Bose-Einstein condensation
was that the cloud of atoms had to be cooled to ultra low temperatures in
the nano-Kelvin regime. To reach these low temperatures became possible
only after the development of laser and evaporative cooling techniques. In a
Bose-Einstein condensate a macroscopic number of bosonic atoms collectively
occupies the lowest energy state. Therefore, the Bose-Einstein condensates
provide the possibility to explore quantum phenomena on a macroscopic scale.
Examples are the interference between two condensates [44] or collective modes
[45]. In a Bose-Einstein condensate the ratio between the interaction energy
between the atoms and their kinetic energy is usually very low, of the order
of % ~ 0.02, and the theoretical description [12] of many properties is well
understood in the framework of the Gross-Pitaevskii and Bogoliubov theories.
From the viewpoint of many-particle physics the regime in which the interplay
between the interaction and the kinetic energy becomes important is even more
interesting than the weakly interacting regime. Fascinating many-body effects
like the quantum phase transition between a superfluid and a Mott-insulting
state occur. In this regime the Bose gas cannot be described by the Gross-
Pitaevskii theory anymore, since correlations between the atoms induced by
their interaction have to be taken into account. To reach this regime the in-
teraction energy per atom has to be at least on the same order or larger than
their kinetic energy. Experimentally this can be achieved either by increasing
the interaction energy or by further lowering the kinetic energy. Since bosons
usually interact via s-wave scattering, one way to achieve a strong coupling
regime by increasing the interaction energy is to tune their s-wave scattering
length to large values using a Feshbach resonance [11]. In ®Rb for example the
scattering length has been tuned over several orders of magnitude and collapse
and explosion of the condensate have been observed [13, 14]. The problem with
increasing the interaction to reach the strong coupling regime is that as the
interaction increases the three-body loss rate becomes very large and the life-
time of the Bose cloud decreases drastically. The complementary approach was
pursued in the experiments of Orzel et al. [15] and Greiner et al. [1]. Instead
of increasing the interaction energy the kinetic energy of the atoms is lowered
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3.1. From Bose-Einstein condensation to strongly interacting Bose gases

to achieve a high ratio of the interaction to the kinetic energy. The quenching
of the kinetic energy is realized by loading the Bose-Einstein condensate into
an optical lattice potential. The condensate is split up into separated lattice
sites and the motion of the atoms is frozen except for tunneling between neigh-
bouring sites. In this setup the kinetic energy of the atoms can be varied over
several orders of magnitude by tuning the height of the optical lattice potential
and therewith changing the tunneling probability. Hence, the regime of strong
coupling is reached without the problem of destabilizing the atom cloud by in-
creasing the three-body loss rate. This opens up the possibility to investigate
many problems from condensed matter physics in a new context. The advan-
tage of the system of ultracold atoms in a lattice compared to condensed matter
systems is its better tunability, in particular the rapid control of parameters in
time by which a whole area of new non-equilibrium phenomena can be explored.
Before we discuss some of these fascinating time-dependent phenomena in chap-
ter 4-5, we start here by investigating static properties of ultracold bosons in
an optical lattice. In the experiment of Greiner et al. [1] the quantum phase
transition between a Mott-insulating and superfluid state was realized experi-
mentally. However when analysing these experiments in contrast to condensed
matter systems the presence of a parabolic trapping potential must be taken
into account. This harmonic trapping potential causes a state in which the two
phases coexist [46], though spatially separated. Due to this inhomogeneity of
the system the usual characterization of the superfluid and the Mott-insulating
phase by the asymptotic behaviour of the one-particle density-matrix does not
apply here. The following sections are devoted to analyse the observed phase
transition and in particular to establish a characteristic to distinguish the aris-
ing states experimentally.

We start in section 3.2 by introducing the theoretical description of the sys-
tems of ultracold atoms in an optical lattice by the Bose-Hubbard model. In
section 3.3 we discuss the characteristics of the quantum phase transition in
a homogeneous system. In section 3.4 coexistence between different phases in
the harmonic trapping potential is shown. The application of the finite-system
DMRG to such a system with parabolic confinement is not straightforward. In
section 3.5 we point out the problems arising and how we overcome these. We
discuss in section 3.6 the behaviour of the one-particle density-matrix in the
system with a parabolic confinement in order to recover a characteristic for the
different states and to test the results of the hydrodynamical approach. Finally
in section 3.7, we present results for the Fourier transform of the one-particle
density-matrix —the experimentally most accessible quantity— for both the
system with and without parabolic potential and study the information it con-
tains.
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3. Ultracold atoms in optical lattices

3.2. Theoretical description: Bose-Hubbard model

Optical lattice potentials have nowadays been used in various experiments with
cold atoms (see [47] and references therein). These periodic structures can be
achieved using standing wave interference pattern of two counter propagating
laser beams. The atoms in such a system can be trapped in the intensity
maxima or minima of the off-resonance light field via the optical dipole force
(for details see appendix B and [48, 49] ). In the experiments [1, 50] simple
cubic lattices were created by superimposing three standing waves orthogonal
to each other. The laser beams used were far red detuned. Additionally to
the periodic potential, the Gaussian intensity profile of the red-detuned lasers
create a trapping potential.

Let us discuss in the following how these systems can be described theoretically.

Ultracold bosons with repulsive s-wave interaction can be described by the
Hamiltonian

(3.2.0.1) H = /d% Ui(2) (p® + Vext) U (2)
+ % 47;\3871 Bz U (2) 0T (2)U(2) U (2).
=g

Here W(x) is the bosonic field operator for the atoms and M their mass. The
first term contains the kinetic energy and the contribution of external potentials
Vext, like for example the lattice and trapping potentials. The second term
originates from the interaction of the bosons with each other. In the case of
ultracold bosons it is mostly well approximated by an isotropic short-range
pseudopotential and its strength is proportional to the s-wave scattering length
as. In the dilute gases without the lattice potential the ratio of the interaction
energy and the kinetic energy is typically around v := % ~ 0.02, i.e. the Bose
gases are only weakly interacting.

The presence of a periodic potential V},; changes the situation drastically. The
kinetic energy of the atoms is quenched, since their motion is frozen and only
tunneling between neighbouring sites is possible. The ratio between the inter-
action energy and the kinetic energy increases by an immense amount which
makes the strong coupling regime experimentally accessible (see [47, 51] and
references therein).

In the case of a periodic potential an energy band structure emerges (appendix
B.3.1) in which the gap between the lowest lying energy bands becomes larger
as the lattice depth increases. At some lattice depth the energies involved in the
dynamic of the system are smaller than this gap and the motion of the atoms
is confined to the lowest energy band. In this regime it is favorable to work in
the basis of Wannier functions wq of the lowest band neglecting higher bands.
The Wannier functions are a set of orthonormal wave functions maximally lo-
calized at the lattice sites (appendix B.3.1). The bosonic field operators can be
expanded in this basis and the continuous Hamiltonian (3.2.0.1) reduces to the
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3.2. Theoretical description: Bose-Hubbard model

Bose-Hubbard Hamiltonian (see appendix B.3.2 for a derivation):

1 PN «
(3.2.0.2) H=— Z Jj(b;r»bj_H + h.C.) + 5 Z anj(nj — 1) + Z(—,LL + €j)nj,
J J J

where b;r. and b; are the bosonic creation and annihilation operators and n; = b;r»b ;
is the number operator on site j. The first term, the hopping term, describes
the kinetic energy, the second term the interaction energy, and the third term
models the chemical potential y and external potential €. This Hamiltonian is
the simplest lattice Hamiltonian describing the interplay between the kinetic
energy, which delocalizes the bosons, and the onsite interaction of the atoms,
which has a localizing effect. At commensurate filling this interplay leads to a
quantum phase transition between a superfluid and a Mott-insulating phase at
some critical value (U/J),. =: u. [52]. We discuss the properties of the phases
in more detail below.

The Bose-Hubbard model was first considered in the seminal paper by Fisher
et al. [52] in the context of condensed matter physics. It has been used in that
area, for example, to study the adsorption of noble gases in nanotubes [53], or
Cooper pairs in superconducting films with strong charging effects [54, 55, 56,
57].

In the systems of ultracold bosonic atoms the parameter J can be related to the
height Vj of the lattice potential for Vo > E,., E, = % is the recoil energy,
(see appendix B.3.2, [51]) by

3

4 (Vo4
Furthermore, in the same limit the interaction strength U can be approximated
using a Gaussian form for the Wannier functions to obtain (see appendix B.3.2,

[51])

3 Vo \ ¥4
.2.04 E,.=4/— — .
(3 0 ) U/ T \/;kas <Er>

Although in a separable periodic potential the Wannier functions decay expo-
nentially in all directions rather than in a Gaussian manner, the approximation
is justified since one is mainly interested in the quotient w := U/J and J varies
exponentially with the lattice height, such that the small error introduced by
taking Gaussian form for the wave function does not matter much.

In Fig. 3.1 the numerically determined exact dependence of the ratio u on
the lattice height is shown for an isotropic three-dimensional lattice (dashed
curve). If the optical lattice is very high in one or two dimensions, quasi-two
and quasi-one dimensional systems can be experimentally realized [58, 59]. In
Fig. 3.1 as well the numerically determined dependence of the ratio u for a
lattice with a strong anisotropy in one direction is plotted (solid curve, marked
1d). The calculations show an exponential dependence between the experi-
mental and theoretical parameters, the lattice height Vi and the interaction
parameter « which stems from the strong quenching of the kinetic energy by
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3. Ultracold atoms in optical lattices

the periodic potential. Due to this exponential dependence, the parameter u
can be varied over several orders of magnitude by tuning the lattice depth Vj
in the experiment about one order of magnitude.
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Figure 3.1.: The depth of the optical lattice Vj; measured in units of the recoil

energy F, in the experiments can be related by band structure cal-

culations to the parameter u used in the Bose-Hubbard model (see

appendix B.3 and [46, 47] for 3d). For the quasi-one dimensional
case, the depth of the orthogonal lattice potentials is fixed to 50,

50



3.3. Quantum phase transition in homogeneous systems

3.3. Quantum phase transition in homogeneous systems

3.3.1. Limit of weak interaction: superfluid phase

One limit which can be easily described theoretically is the limit of vanishing
interaction. For vanishing interaction U = 0 the bosons become free bosons
and the Hamiltonian (3.2.0.2) simplifies to the quadratic Hamiltonian:

iy = = 0ty )+ (b))
J

Assuming a homogeneous system, i.e. €; = 0 for all sites j, the Hamiltonian
can be diagonalized by a transformation into Fourier-space. Here we consider a
fixed number of particles and set ;= 0. On a finite chain of L sites the single
particle eigenstates of the Hamiltonian are the momentum states to the energy

eigenvalues £, = —2Jcos(k,). The discrete momentum k, takes the values
ky = L”—fl with ¢ = —(L — 1),.., L. At temperature T' = 0 the ground state

of the Hamiltonian H},, of a system with IV bosons can be constructed from
the single particle states by occupying N-times the lowest state. Therefore, the
normalized ground state can be written as

o) = 5 0%,)]0)

where |0> is the vacuum state. For an infinite system the ground state reads
|¢0> x (> j b))V |O> All particles are in the same delocalized single particle
state and hence the system can be described by a macroscopic wave function
with a defined macroscopic phase, i.e. a Gross-Pitaevskii like description is
recovered.

A trivial consequence is that the momentum distribution of the ground state is
given by a high peak of weight N at the lowest possible momentum. Further
the delocalization of the particles shows up in strong fluctuations of the particle
number on each site, i.e. the variance of the particle number is of the order of
the particle number itself <n?> - <nj>2 = (n;)+ O(%). In an infinite chain the
excitation spectrum is gapless.

Even though interacting bosons behave often totally different from free bosons,
some of the characteristics for non-interacting bosons on a lattice carry through
to weak interactions (U — 0 but U # 0). For example the number of atoms
in the peak in the momentum distribution decreases, but stays macroscopically
occupied for weakly interacting bosons and the number fluctuations are still of
the order of the occupation itself. The spectrum of weakly interacting infinite
one-dimensional Bose systems is still gapless, but the system exhibits a sound
like mode with frequency w(k) = vsk. The dependence of the sound velocity v
on the system parameters will be studied in chapter 4.

In a one-dimensional Bose-system the superfluid phase shows several peculiar-
ities due to the presence of strong quantum fluctuations in low dimensional
systems. One example which we will meet in the following is the decay of the
one-particle density-matrix <b;rbi+d>: in an one-dimensional system it decays
algebraically with the distance d in the superfluid phase, whereas in higher
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3. Ultracold atoms in optical lattices

dimension true long-range order exists, i.e. the one-particle density-matrix ap-
proaches a finite value for d — oo. We will discuss the consequences of the
characteristic structure of the one-particle density-matrix on the time-of-flight
images in chapter 3.7

3.3.2. Limit of strong interaction: Mott-insulating phase

In contrast to the delocalization in the case of weak interaction, for strong
interaction fluctuations in the particle number become energetically costly and
the atoms localize at single sites. This limit is also called the ‘atomic’ limit [52].
If only the interaction is present, i.e. Hiy = & >_;Mj(f; — 1), the eigenstates
of the system are given by the Fock states |nj> Therefore, the single particle
ground states are highly degenerate.

Assuming a system with commensurate filling, say 7, the ground state factorizes
into single sites by ‘¢0> x H]Lﬂ(b})ﬁ‘@. In contrast to the superfluid limit,
here the particle number on each site is exactly determined, no macroscopic
phase coherence is prevalent in the system and the momentum distribution is
a constant for all momenta. The first excited state is a particle-hole excitation
with the energy Fy = U, i.e. an energy gap exists in this limit. These charac-
teristics carry through to finite but small hopping coefficient J, i.e. u > 1.
For non-commensurate filling no Mott-insulating phase exists at finite hopping.
To understand this consider a system with filling 7 = 1 in a Mott-insulating
state and add an additional particle. The naive picture is that the additional
particle delocalizes on top of a frozen Mott-insulating state to avoid the energy
loss by interacting with a localized particle. Therefore, a fraction of the system
remains superfluid for all interaction strengths. The true many-particle state
will be more complicated than this simple picture, but will still show a remaining
superfluid part.

3.3.3. Quantum phase transitions

If the strength of the interaction is increased one changes in the case of com-
mensurate filling between two very different phases, the superfluid phase and
the Mott-insulating phase. A quantum phase transition occurs at some criti-
cal value u.. The quantum phase diagram for the homogeneous Bose-Hubbard
model was first determined by a mean-field calculation by Fisher et al. [52].
Although there are considerable differences between the case of one, two, or
three dimensions induced by strong quantum fluctuations for lower dimensions,
the characteristic features are similar. A sketch of the phase diagram in a one-
dimensional systems calculated using DMRG [60] and Quantum Monte Carlo
[61] methods is shown in Fig. 3.2.

The phase diagram shows characteristic Mott-insulating lobes at small ! sur-
rounded by the superfluid phase. In these lobes the particle number is locked
to a certain integer value. In the superfluid phase different fillings can occur.
Hence the Mott-insulating phase is incompressible, i.e. 8—Z = 0, whereas the su-
perfluid phase is compressible. A signature to distinguish the phases is the de-
cay of the one-particle density-matrix with the distance: in the Mott-insulating
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Figure 3.2.: The phase diagram (chemical potential p versus inverse interac-
tion strength 1/u) of the one-dimensional Bose-Hubbard model is
sketched [60]. MI and SF denote the Mott-insulating and super-
fluid phase, respectively. The lines out of the tips of the lobes are
the lines of constant commensurate density.

phase it decays exponentially, whereas in the superfluid phase it decays al-
gebraically (1D) or shows true long range order (3D). In the phase diagram
two different phase transitions have to be distinguished: the incommensurate-
commensurate transition, where the number of particles changes going from one
phase to the other and the superfluid-Mott-insulating transition at commensu-
rate filling, where the number of particles stays constant, i.e. the transition
takes place at the tip of the lobes. By mean field approximations the tip of the
lobes is found to be u. = 5.8z for n = 1 and u. = 4zn for n > 1, where z is the
coordination number of the lattice. Fluctuation corrections to these results have
been considered for example by Freericks and Monien [62, 63]. In one dimen-
sion strong deviations from the mean field approximation occur: the superfluid-
Mott-insulating transition at the tip of the Mott-lobes is of Kosterlitz-Thouless
type and the critical value is found to be u.(n = 1) ~ 3.37 according to a
DMRG calculation [60].
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3.3.4. Gutzwiller approximation

To get a feeling about the importance of ‘real’ many body effects in the Bose-
Hubbard model, we compare results of the Gutzwiller approach [64], which
is often used to tackle in particular the system with the trapping potential,
to results of the DMRG [65]. The Gutzwiller ansatz is a variational ansatz
which reduces the wave function to a product of single-site wave functions,
|\Ifg> = Hf:1‘¢j>, where |<I>j> =3 £])|n> and fy(LJ) are constants. Such a
product wave function does describe the case at J = 0 exactly, but it cannot
describe well the remaining part of the one-dimensional Mott-insulator regime.
This can be shown by a perturbative study of the Gutzwiller ansatz where the
corrections of order O(J/U) are lost and all correlations become zero. However,
this ansatz gives reasonable results in the superfluid regime even in one dimen-
sion, where the (quasi-) long-range order is well described by |\IJ(;> In Fig. 3.3
the numerical results of the DMRG for the ground state energy, the nearest-
neighbour correlation, and variance of the particle number are compared to
the results of the Gutzwiller ansatz. The results of these ‘local’ quantities agree
quite well for small interaction strength well below the phase transition, but de-
viate considerably for strong interaction above the transition. In particular, the
variance of the particle number and the nearest-neighbour correlations vanish
above the critical value ug in the Gutzwiller ansatz. Note, that the Gutzwiller
ansatz cannot give the correct description for the one-particle density-matrix,
since in the Gutzwiller approximation it has no spatial dependence at all. This
shows how important it is in the treatment of these systems to capture the
non-trivial correlations.
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Figure 3.3.: (a) The ground state energy per site, &, (b) nearest-neighbour corre-

lation, ¢; = <b;r +1bj> , and (c) variance of the number of atoms per
site, defined by o = ((n; — n)?). Plot (b) and (c) are in log-log

scale.

Using filling factor n = 1, we show results for the Bose-

Hubbard model using the Gutzwiller ansatz (dots) and DMRG
(circles). Vertical dash-dot lines mark the approximate location

of the phase transition according to [66].
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3.4. Coexistence of phases in a trapping potential

In the remaining part of this chapter we present our results of DMRG calcu-
lations on the quantum phase transition in the presence of a confining poten-
tial [67]. The confining trap of the experiment [1] is approximately parabolic
(B.2.0.4). It consists of the magnetic trap and the confining component of
the laser which generates the optical lattice is approximately parabolic (cf.
B.2.0.4). In the following the trap is modeled by setting ¢; = Vtgap (aj — ajo)2
in Eq. (3.2.0.2). Here a is the lattice constant, j the lattice site, and jo the
central site of the lattice. We choose the strength of the trap proportional to
the onsite interaction, i.e. Vt(gap = voU, to reproduce the experimental setup. It
guarantees that when the optical lattice depth, corresponding to the parameter
u in the Bose-Hubbard model, is changed, the size of the atom cloud does not
vary much for a fixed particle number as observed in the experiment.

In the presence of a parabolic trap at average filling of approximately one par-
ticle per site, one can distinguish three states of the system (see [46, 68]):

(a) u < ucr: the particle distribution is incommensurate over the whole sys-
tem;

(b) w1 < u < wuee: regions with incommensurate and commensurate occu-
pancy coexist; and

(¢) u > uco: the main part of the system is locked to commensurate filling
and only at the boundaries small incommensurate regions exist.

A sketch of the state diagram for vg = 4/64 ~ 9.8 - 10~* is presented in Fig.
3.4 (A). The insets show the characteristic shape of the particle distribution
for the three states. Note, that the critical values u. and u.o depend on the
filling of the system and that for small particle numbers state (b) does not oc-
cur. A simple picture of a system with a parabolic trapping potential can be
gained by relating it to the situation in a homogeneous system by regarding the
chemical potential u to be space-dependent. For a parabolic confining potential
the chemical potential ¢ must then be inversely parabolic. The vertical lines
in Fig. 3.4 (B) indicate for three different parameters v how p would vary as
the trap is traversed from one side through the center to the other side. The
symbols in (A) and (B) mark corresponding points. For example, moving from
one edge of the trap through the center to the other edge [going from hexagon
to ellipse to hexagon in Fig. 3.4 (A) for state (b)], corresponds to increasing
w [going from hexagon to ellipse in Fig. 3.4 (B) for state (b)] and lowering pu
again [going back to hexagon in Fig. 3.4 (B) for state (b)]. The regions of
locked density correspond to being in the Mott-insulating region of the phase
diagram. The exact locations of the interface between the commensurate and
the incommensurate regions are difficult to determine. A good qualitative in-
sight can be gained using the picture of the spatially varying chemical potential
and determining the critical chemical potential with perturbation theory for the
homogeneous system [69]. The difficulty in the exact location of the interfaces is
due to the fact that these sites correspond, using terminology appropriate for a
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Figure 3.4.: (A) Sketch of the state diagram for vg = 9.8 - 107*. The insets
sketch the shape of the density distribution in the states. The
question mark stands for states with Mott-insulating regions at
higher filling. The crosses on the dotted horizontal line mark the
parameters chosen in Fig. 3.5. (B) Sketch of the phase diagram
of the homogeneous system: chemical potential p versus 1/u. The
different symbols in (B) mark the locations of the chemical potential
values in the local density approximation that correspond to the
locations in the density profiles marked in (A).

homogeneous system, to the critical parameter regimes at the phase transition,
where strong fluctuations and extreme sensibility to boundary conditions make
an investigation very demanding.

3.5. Moadifications to the finite DMRG treating
confinement potentials

To treat an inhomogeneous system with the DMRG —here the system with
the parabolic trap—, it is essential not only to use the infinite-system DMRG
algorithm, but the finite-system algorithm (see section 2.2.2). This gives the
effective description of the system the possibility to improve further under the
sweeps described in section 2.2.2 after the final length L of the system is reached.
For a confining potential additional problems arise at the boundaries since there,
due to the sparse filling, the information contained in the density matrix can
become insufficient for selecting the suitable reduced space. Assume for ex-
ample a chain of length L, on which the particles are confined to the central
region of length M < L. In the finite-system algorithm one block grows towards
the boundary, while the other block is shrinking at the same time. If now one
block becomes so large, that it contains all particles, no particles are left in the
shrinking block. The only state in the shrinking block similar to the desired
ground state is the state with zero particles, so that this state has almost unit

o7
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weight in the calculations in the reduced density matrix (deviations from unity
stem from numerical inaccuracies). The other eigenstates are more or less ran-
dom and do not resemble the ground state of the system. If one does not take
care one would loose the information about the state by keeping some of these
random states. We overcome this loss of information close to the boundaries
by filling up the subspace by retaining states of the previous steps transformed
to the new basis. We further adapt the number of states allowed on a site to
the expected occupation number of the latter. This is done by using for the
number of bosonic states allowed for a site the occupation expected from either
the Thomas-Fermi distribution in the case of low interaction and a constant dis-
tribution plus an additional offset for strong interaction. The numerical results
were tested to be convergent in the cut-off used for the length of the system,
the number of states kept for the reduced space, and the number of states al-
lowed per site. The numerical uncertainties given below were determined by
comparing data obtained for different parameter sets.

3.6. One-particle density-matrix

To get a better understanding of the three types of states (a)-(c) (cf. section
3.4), we study the properties of the one-particle density-matrix p(7,7) = <b;rbj>,
where 7 and j stand for the sites on the chain and <> denotes the expectation
value with respect to the ground state. Recall that for the homogeneous system
a signature of the superfluid and Mott-insulating phase is given by the decay
of the one-particle density matrix for long distances: it decays exponentially in
the Mott-insulating phase, p(j, j + d) o exp(—d/¢), and algebraically in the su-
perfluid phase, p(j,j+d) x d—K/2. We have calculated the values of the matrix
elements of the one-particle density-matrix for different interaction strengths
u and N = 50 bosons. The results are shown in Fig. 3.5. In addition, Fig.
3.6 shows the occupancy of the particles n; = p(j,j) and cuts for a particular
site ¢ of the data of Fig. 3.5. For the coexistence region in Fig. 3.6 we took
a shallower trap vg = 1.8 - 1074, such that the different regions are larger and
therefore better distinguishable.

For weak interaction (Fig. 3.5 and Fig. 3.6, u = 1) the values of most elements
of the one-particle density-matrix are relatively large, similar to the superfluid
phase in a homogeneous system. In fact the decay of p(i,j) with increasing
|i — j| is dominated mainly by the trivial reduction of the density n; and n; as
the outer regions of the trap are approached. Indeed, note that in Fig. 3.6 the
occupancy n; = p(j,j) (triangles down) acts as envelope for the decay with the
distance of the elements of the one-particle density-matrix and thus seems to
determine their long range decay. When the interaction strength is increased
(Fig. 3.5, u = 4) the off-diagonal elements become smaller, i.e. the decay of
the correlations with the distance between the sites becomes faster, while the
occupancy (values at ¢ = j) remains incommensurate over the whole system.
A further increase of the interaction, such that u.; < u < wu., favours the
formation of regions where the density is locked to commensurate filling (Fig.
3.5, u = 6 and Fig. 3.6, u = 10). In these regions the correlations decay faster
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u=1 u=4

Figure 3.5.: The one-particle density-matrix p(i,7) is shown in a system with
trap vg = 9.8 -107* and N = 50 bosons. (Site j is plotted on the
z-axis, site ¢ on the y-axis, i.e. the diagonal from bottom left to top
right corresponds to the particle density. The absolute uncertainty
for the data is about 1075.) The crosses on the dotted horizontal
line at N = 50 in the state diagram Fig. 3.4 (A) mark the position
of the parameters chosen here.

than in the rest of the system. For strong interaction u > u.2 the occupancy
in the system (except at the boundaries) becomes locked and the correlations
in the bulk decay rapidly (Fig. 3.5 and Fig. 3.6, u = 9) similar to the Mott-
insulating phase in the homogeneous system.

3.6.1. Scaled one-particle density-matrix

We now analyse the behaviour of the one-particle density-matrix for the system
with trap in more detail. Since we saw in Fig. 3.6 that it is strongly influenced
by the occupation, we focus on the scaled correlation functions:

(3.6.1.1) Ci(r) = (blby,, )/ /imier,

in order to divide out the leading density dependence of b; o< y/n;. (Note that
for the state in which the occupancy is locked to n; = 1, this scaling is trivial.)
In the absence of density fluctuations C;(r) is just the pure phase correlation
function <ei¢j e_i¢j+T>. At the two particle level, the step equivalent to the
scaling is going from the two-particle density p®)(21,22) to the dimensionless
two particle distribution function g (z1,z9) = p® (x1, 22)/[pM (z1)pM (z2)].
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Figure 3.6.: Different matrix elements of the one particle density matrix p(i, j)
are shown. In (a) and (c) the same parameters as in Fig. 3.5 are
used. In (b) we use the trapping strength vg = 1.8 - 10~* and
N = 180. The curve n; = p(j,j) shows the occupancy of the
particles, whereas the other curves give the correlations between
one fixed site ¢ and a varying site j. (The absolute uncertainty for
the data is about 1075.)

60



3.6. One-particle density-matrix

Remarkably, we find that by this simple scaling the signatures of the superfluid
and Mott-insulating phases in the homogeneous system, namely the algebraic
Ci(r) o« Alr| /2 and the exponential C;(r) < Ae~I"//¢ decay, can be recovered
approximately even in the presence of a parabolic confining potential. This
is illustrated in Fig. 3.7, which shows the scaled correlations C;(r) for three
different choices of site ¢ for three different interaction strengths. For weak
interactions [Fig. 3.7 (a)], i.e. u < u.1, they decay approximately algebraically
with distance r (neglecting the boundary regions). In the intermediate regime,
Ul < u < ug [Fig. 3.7 (b)], the decay in the regions where the density is
incommensurate is still algebraic (N = 70,90), whereas in the regions where
the density is locked, it shows an exponential behaviour (N = 21). Increasing
the interaction further (u > wu.2) [Fig. 3.7 (c)] the incommensurate regions
disappear and the correlations decay exponentially in the bulk.

In Fig. 3.8 we compare fits of the unscaled p versus the scaled correlations
C. We see that as the trap becomes more shallow [(a) to (b)] the unscaled
correlations show the algebraic decay over longer distances, such that in the
limit of a homogeneous system their algebraic decay (except at the boundaries)
is recovered.

3.6.2. Comparison to the hydrodynamical approach

It is instructive to compare the numerically exact DMRG results to a hydro-
dynamical treatment of the interacting 1D Bose gas [70] combined with a local
density approximation. In the hydrodynamical approach the low-energy fluctu-
ations of the system are described by two conjugate fields, the phase fluctuations
¢(x) and the density fluctuations (z). In a homogeneous system the density
fluctuations are chosen around the constant density. This approach can be
generalized to the case of inhomogeneous systems [71] by taking the density
fluctuations around a smooth, spatially dependent density profile n(x). * The
Hamiltonian becomes
H= Qi /dm {v7(2)(0:6)* + vy (2)[0:0 — wn ()]},

s

precisely of the structure as in the homogeneous case, except that n(x), and
therefore vy(z) = whn(z)/M and vy(z) = (ﬂ'h)_l(g%ﬂn:n(m), now depend
on z. To account for the inhomogeneity, the local density approximation
pun(x)] + V(z) = u[n(0)] was used to obtain the mean density profile [73]. In
the case of weak interaction i.e. v = #{‘;) < 1 it gives:

(3.6.2.1) n(z) = no(1 — (z/R)?),

where R is the Thomas-Fermi radius. Based on this approximation Gangardt
and Shlyapnikov [71] have shown that the normalized matrix elements of the
one-particle density matrix are given by:

(b (2)b(—2)) ( |22] >KW2
Ge ,

.6.2. C(z):=
(3.622) (=) n(x)n(—x) el

! An equivalent procedure was used for 1D Fermionic gases by Recati et al. [72].
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Figure 3.7.: Scaled correlations Cj(r) [Eq. 3.6.1.1] for different fixed sites j are
plotted as a function of the distance r for different values of w.
For the coexistence region (b) a shallower trapping potential is
chosen, such that the extents of both the incommensurate and the
commensurate region are large enough to allow identification of the

algebraic and exponential behaviour.
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Figure 3.8.: The decay of the unscaled and the scaled correlations and corre-
sponding algebraic fits. One can see that for the steeper potential
(a) the unscaled correlations show the algebraic decay only for in-
termediate distances. When the potential becomes more shallow
the behaviour of scaled and unscaled becomes more and more sim-
ilar also for longer distances.

where K is the parameter corresponding to the Luttinger parameter and [, the
longitudinal correlation length. Eq. (3.6.2.2) is derived assuming [2x]| > [..

Specializing to weak interaction, i.e. = = 1/dn < 1, the approximations
lo(z) = ,/nix) and K(z)~1/ (w«/dn(x)) hold, where d o a? /as is the char-

acteristic length of the interaction. d depends on the 3D scattering length a,
and the amplitude a; of the transverse zero point oscillation. The condition
|2x| > I. generally is fulfilled, but breaks down at the boundaries, where n(z)
vanishes causing a divergence in [.(x).

Comparing Eq. (3.6.2.2) to the quasi-exact results of DMRG, we show that
the local density approach describes very well the scaled correlations in the
inhomogeneous systems for v < 2. To this end we fitted the function C(z),
(b ()b(—))
n(j)n(—7)
fitting parameter [Fig. 3.9]. We find very good agreement in the bulk of the
superfluid regions in both, the purely superfluid state [Fig. 3.9 (a)] and the
coexistence state [Fig. 3.9 (b)]. The quality of the agreement is somewhat
surprising, because the pure state (7 = 0.6) and the coexistence state (y = 1.7)
are in an intermediate regime between the Thomas-Fermi limit (y < 1) and
the Tonks gas (y > 1), where the density profile is no longer parabolic [73].

Eq. (3.6.2.2), to the corresponding DMRG results , using only d as
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Figure 3.9.: Quasi-exact DMRG results for C(j) (symbols) are compared to
equation (3.6.2.2) obtained by the hydrodynamical approach [71]
(lines). We used n(x) = no(1 — (v/R)?), where ng and R are de-
termined by fitting to the DMRG results (see insets). The uncer-
tainties are obtained by varying the fit range in the sensible region
away from the boundaries.

3.7. Connection to experiment

3.7.1. Interference pattern

In the experiments with ultracold atoms measurements are often performed by
taking time-of-flight images. To do this the atoms are released suddenly from
all external trapping potentials and evolve freely for a certain time, the so called
time-of-flight. After this time the column integrated density of the expanding
cloud is measured by light absorption imaging. In many cases of interest the
interaction between the atoms can be neglected after switching off the external
potentials and the density of the evolving cloud is given by [74, 75]

(i(r)), = (S| U (1) T (r) T (r)Up(t) | ).

Here {d)> is the state of the system before it was released from the trapping
potentials and Uy(t) is the free propagator. After a long time of flight the density
distribution becomes proportional to the momentum distribution in the system
before it was released, i.e. <ﬁ(7")>t ~ (M/ht)<ﬁq(r)>, where the correspondence
between the momentum in the trap and the position in the evolving cloud is
given by q(r) = Mr/(ht). Therefore, the measured distribution can as well be
expressed in the creation and annihilation operators of the lattice model

I(k) o [w(k)| p(k),

L
- _ 2 iG=")ak (3
(3.7.1.1) with p(k) = — e (blb.,),
j.i'=1
where L is the number of sites in the chain and N the total number of parti-
cles. The function w(k) is the Fourier transformation of the associated Wannier

64



3.7. Connection to experiment

function which varies only slowly in momentum space due to its localization in
space. Hence, the factor |w(l<:)|2 gives a slowly varying envelope. Therefore the
long-wavelength dependence of the interference pattern is mainly determined
by the function p(k) which we identify with the interference pattern in the
following. The measured distribution contains direct information about the
many-body state of the atoms before they are released from the trap. Let us
now investigate how information about the state of the system, in particular if it
is superfluid or Mott-insulating, can be extracted from the interference pattern
and how the interference pattern is influenced by the confining potential. For
the parameters studied here, the approximation of a negligible contribution of
the interaction energy to the time-of-flight images is valid for all momenta in the
second or in higher Brillouin-zones. Indeed, these momenta are of order 2hmq/L,

where g € Z and |g| > L. Thus the ratio of the energies after switching off the

o L 0
for n3p < 1.5/a® and as/a like in the experiment of Greiner et al. [1]. The
function p(k) has been studied for very small systems numerically [76], with
the hydrodynamical approach [77] for a 1D homogeneous system and for the
confined system in 3D [74] and 1D [78]. In Fig. 3.10 we plot the DMRG results
(symbols) for the function p(k) for several values of the parameter u, com-
paring the homogeneous system (¢; = 0) with open boundary conditions (A)
to the parabolic system (B). For the homogeneous system the chosen param-
eters correspond to the superfluid regime v = 2 < wu,, close to the transition
u = 3.5 = u., and the Mott-insulating regime v = 10 > u.. Additionally, in
Fig. 3.11 special properties of the interference pattern are plotted versus the
interaction strength. In the homogeneous system with commensurate filling,
n = N/L=1 [Fig. 3.10 (A)] we find a very sharp peak at small momenta for
u < uc. If u is increased the peak height decreases smoothly [Fig. 3.11 (A)] and
the background increases [Fig. 3.11 (B)] smoothly until they both saturate at
the filling factor for u — co. The half width w [Fig. 3.11 (C)], however, shows
a clear upturn. This upturn signifies a phase transition, since it stems from the
behaviour of the correlation length & (oc w™!), which diverges in the superfluid
phase (¢ o< L) and becomes finite in the Mott-insulating phase (¢ oc A~!, where
A is the energy gap).

confining potentials is very small given by

For the parabolic system [Fig. 3.10 (B)], the interference pattern for small and
large v is similar to the interference pattern in the homogeneous system. In the
intermediate regime, however, it has a more complex behaviour, which is most
clearly evident in the half width w [Fig. 3.11 (C)]. For small particle numbers
(N = 40), the half width w is very small for u < u. and rises continuously
for u > w1 similar to the behaviour for a homogeneous system in the super-
fluid and Mott-insulating phases, respectively. In contrast, for larger particle
numbers (N = 50) three different regimes corresponding to the three different
states shown in Fig. 3.4 are observed: (a) for u < w1, w is very small, (b) for
Ul < U < Ue2, w rises slowly, until at u ~ wue it shows a sudden jump-like
increase, (c) for u > uc9, it continues to rise strongly. That means that in the
superfluid (a) and the Mott-insulating (c) state the behaviour of w resembles
that of the homogeneous system. This is as expected, since the scaled correla-
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Figure 3.10.: Interference pattern for the system with (A) open boundaries and
with (B) parabolic trap for different values of u. Symbols are
the results of the DMRG (maximal uncertainty 0.1) and lines
the results of the approximations explained in the text. The in-
sets enlarge the scale of the y-axis. For a homogeneous system
uc(n = 1) ~ 3.37 is the critical value in the thermodynamic limit
according to [66].

tions show the same decay as in the corresponding homogeneous phases. In the
intermediate regime (b), however, it shows a new behaviour, a slow increase,
which is due to the coexistence of the superfluid and the Mott-insulating state.
The superfluid region determines mainly the height of the interference peak,
while its broadening is due to the presence of the Mott-insulating region. For
certain parameters (not shown here) in the crossover region between the totally
incommensurate and the coexistence region, the interference pattern has ad-
ditional oscillations with period 27 /I, where [ is the distance between the two
outer superfluid regions, due to the appearance of relatively strong correlations
between the latter?

Knowing that except for the scaling factors the behaviour of the one-particle
density-matrix is the same with and without trap we can investigate to what
extent the properties of the interference patterns in Fig. 3.10 can be under-
stood in terms of simple phenomenological approximations for <b;r»bj/> in the
homogeneous and the scaled correlations Cj(r) in the inhomogeneous system.

To illustrate this we show in Fig. 3.10 (A) in addition to the DMRG results

2Similar oscillations were seen in [78]. In smaller systems such as in [74] the effect is more
pronounced causing well-separated satellite peaks.
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Figure 3.11.: Properties of the interference pattern: (A) peak height, (B) back-
ground, and (C) half width of the central interference peak for
a system with open boundary conditions on the left and for a
parabolic confining potential on the right. The arrows on the left
mark the critical value of u in the thermodynamic limit of the
homogeneous system (blue/solid and green/dashed for n = 1 and
n = 2 respectively). The height of the peak decreases and the
background increases with increasing u. The arrows in (C) on the
right mark the three different regimes described in the text.
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(symbols), results (lines) obtained by approximating <b;r.bj,> in Eq. (3.7.1.1) by

Alj =g for j#4
3.7.1.2 bib.,) =
(3.7.1.3) and  (blb,,) = Be lI=I'1/¢,

for small and large u, respectively. The values of K and £ are determined by
fitting <b}bj,> to DMRG results (not shown here). The constants A and B
are chosen such that the value at £ = 0 agrees with the DMRG results. In
Fig. 3.10 (B) the approximation (lines) are obtained analogously by taking the
density scaling into account, i.e. replacing <b}b j/> by the algebraically and the
exponentially decaying functions times the scaling factor ,/m;m;

. g1—K . .
(3.7.1.4) (b)) = LAV =317 for £
7 n; for j=j

and <b}bj/> = \/WBG—U—j /€.

for small and large u, respectively. Hereby we use the density distribution
n; =no(l — (j — jo)?/R?) for w = 1, and n; = 1 for u = 9. The parameters
K and ¢ are determined by fitting the scaled correlation functions. Comparing
the DMRG data to the approximation we see in Fig. 3.10 that for both cases,
the homogeneous system and the system with trap, this simple approximation
works very well for small values of ka; in particular, it reproduces the correct
shape of the peak [even including the small non-monotonities which are due to
the finite sum in Eq. (3.7.1.1)]. Therefore, once the characteristic decay of the
(scaled) one-particle density-matrix has been identified (in this case by fitting
to DMRG results), our simple scaling procedure captures most of the essential
observable physics.

3.7.2. Comparison to experiment

Clearly our calculations in one dimension cannot be compared quantitatively
with the earlier experiments in a three-dimensional lattice [1]. Recently, how-
ever, an array of truly one-dimensional Bose systems has been created [59, 79].
Typically, this array consists of several thousands of parallel one-dimensional
systems, called tubes, with different fillings. The advantage of this setup com-
pared to a single tube (for example realized on an atom chip) is that the signal
is enhanced, but a disadvantage is that tubes with different fillings contribute
to the measured signal and smear out otherwise clear structures. This can
be seen in the experimental results [79] for the half width of the interference
pattern which was measured for different lattice heights in such an array fol-
lowing our predictions. In Fig. 3.12 the experimental result for the half width
is shown for one-dimensional tubes with 7 ~ 1.2 (solid squares), with 7 ~ 0.6
(open squares) and three-dimensional system 7 &~ 1 (triangles). Note, the pa-
rameter J used in Fig. 3.12 is the same as the one used in this work for the
one-dimensional tubes, but for the three-dimensional system the J in Fig. 3.12

68



3.8. Conclusion

£ 6ol ]

% 4

= 50 T-

LL B

£

S 40} | -

< A

(&)

3 o e _m— i

(<] ’_L.__':l""a

E 20_\ =) £ oy i

E il n " L 1 n L " |
1 10

u/J

Figure 3.12.: Experimental results for the half width of the central interference
peak at different interaction strength [79]. The different curves
correspond to one-dimensional tubes with 7 &~ 1.2 (solid squares),
with 7 =~ 0.6 (open squares), and a three-dimensional system 7 ~
1 (triangles).

corresponds in our notation to the sum of the hopping coefficient in all direc-
tions, i.e. Jo = 2(Jy + Jy + J>). In the case of a three dimensional system the
upturn at the transition is relatively sharp and lies approximately at U/J, ~ 6
in agreement with the predicted critical value U/J. = 5.8 of mean-field ap-
proximations. For the array of one dimensional tubes with filling 7 =~ 0.6 the
upturn sets in at about u ~ 4 and for filling 7 ~ 1.2 at v &~ 2. This is in good
qualitative agreement with our predictions. We found that for small particle
numbers (cf. N =40 in Fig. 3.11) the half width bends up at approximately the
critical value and for higher particle number (cf. N = 50 in Fig. 3.11) the half
width increases slightly before it bends up at a higher value of v than the curve
for the lower particle number. Due to the presence of the tubes with different
filling the upturn in the experiment is not as sharp as in our predictions and
quantitative comparisons are difficult, but it is still sharp enough to distinguish
the lattice height for which most of the system are in the superfluid-like state
(a) or Mott-insulating-like state (c), respectively.

3.8. Conclusion

We have shown that numerical calculations using the DMRG method in the
Bose-Hubbard model are well suited to correctly describe and predict exper-
imental quantities for ultracold atoms in optical lattices. We were able to
demonstrate that the complication introduced by the confining potential which
in the current experimental setups is unavoidably introduced by the intensity
profiles of the lasers producing the lattice can be overcome by a modified fi-
nite DMRG calculation. In particular, the characteristics of the one-particle
density-matrix known for the superfluid and Mott-insulating phase of the ho-
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mogeneous system can be recovered in the confined case using a scaled one-
particle density-matrix. Comparison with the local density approximation in
the weakly interacting regime showed good agreement with the DMRG calcu-
lation thus providing mutual confirmation. Investigation of various quantities
showed that the half width of the interference peak is best suited to identify
the Mott-insulating and superfluid phases in the experiment.
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4. Evolution of density wave packets in
ultracold bosons

4.1. Perturbations: experiments and theoretical
descriptions

In the present chapter our aim is to study the propagation of density wave
packets in a Bose-Einstein condensate confined to an optical lattice [80]. Quite
generally, the low-lying excitations in a Bose-Einstein condensate are sound-like
and correspond to fluctuations of the condensate phase [12]. The associated
sound velocity depends on both the density in the system and the strength of
the interaction between the atoms. Experimentally, density perturbations in
a Bose-Einstein condensate have been created by applying a localized poten-
tial to the Bose-Einstein condensate with a far detuned laser beam [81, 82].
Alternatively, a phase imprinting method can be used, which allows to create
solitonic excitations [83, 84]. Employing these experimental techniques for the
generation of a density perturbation in a setup of ultracold bosons in optical
lattices would make the investigation of the evolution of density waves in a
lattice Bose gas with different interactions strengths possible.

The theoretical description of these systems beyond the weak interaction limit,
where a Gross-Pitaevskii or Bogoliubov description applies, is very demanding
and very few results are available. In this chapter we use the adaptive t-DMRG
(see section 2.7) to calculate the time evolution of the density wave packets
[80]. This method allows us to find the time evolution for both weak and
strong interaction. In particular, it works best in an intermediate interaction
regime, where other methods are not reliable.

Most previous theoretical approaches were limited to the regime of weak inter-
actions [85, 86, 87, 88], describing properly systems with many particles per site.
In contrast to these, we focus here on perturbations in one-dimensional systems
at low filling, i.e. with approximately one or less than one particle per site on
average at different interaction strengths. This regime is of particular interest,
since it allows to study the behaviour of density waves near the transition from
a superfluid to a Mott-insulating phase or close to the Tonks gas regime, as has
been realized experimentally by Stoferle et al. [89] and in references [59, 90,
respectively. We focus our investigation on the sound velocity, i.e. the velocity
of propagation of an infinitesimal perturbation. In particular we discuss the
dependence of the sound velocity on the interaction strength and background
density. Further, we determine the velocity of propagation of a perturbation
with finite amplitude and the decay of the amplitude with time, thus analyzing
nonlinear effects which are difficult to discuss analytically.

To make the connection to earlier work we compare our numerical results in
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the limits of weak and strong interaction to different approximations: For weak
interactions a continuum description is applied, which leads to the Lieb-Liniger
model [91, 92], a system of bosons with d-interaction. We compare the resulting
sound velocity with our results and find good agreement up to intermediate
interaction strengths. A further simplification is obtained by treating the Lieb-
Liniger model in a hydrodynamical approach. The sound velocity determined
by this approach is that of a Gross-Pitaevskii type description. It agrees with
our result only for rather small interaction strengths. In the limit of strong
interactions and at low fillings, the Bose-Hubbard model can be mapped onto a
model of spinless fermions [93]. As expected, our numerical results for the sound
velocity in this limit smoothly approach the value predicted from this mapping
to fermions [94]. Thus the adaptive t-DMRG provides a unified description for
the whole range of interaction strengths.

This chapter is organized as follows: We start by checking the applicability
of the Bose-Hubbard model (Sec. 4.2) to describe density perturbations in a
system of ultracold bosons subjected to an optical lattice. Then we explain how
a density perturbation can be created in this framework (Sec. 4.3). Before we
discuss the evolution of the perturbation in Sec. 4.5, we introduce the analytical
approximations to which we compare our results in Sec. 4.4. In section 4.6 we
analyse the decay of the amplitude of the perturbation. Further the dependence
of the velocity, in particular the sound velocity, on system parameters like the
background density, the interaction strength (Sec. 4.7) and the height of the
perturbation (Sec. 4.8) are discussed. Finally in section 4.9, we study how the
presence of a wave packet can be detected experimentally from the interference
pattern in a time-of-flight experiment.

4.2. Theoretical description of the density perturbation

As seen in chapter 3 ultracold bosons in an optical lattice can be well described
by the Bose-Hubbard model (3.2.0.2), if the dynamics of the system is confined
to the lowest energy band induced by the lattice. Hence the additional energy
by the perturbation has to be much smaller than the level spacing of the energy
bands induced by the optical lattice. As we will see below this gives a constraint
on the strength of the density perturbation which can be described within the
Bose-Hubbard model. In the following we will investigate the time evolution of
density wave packets of approximately Gaussian form which is created at ¢t = 0,
ie.

(4.2.0.1) pi(t = 0) = po(1 + 2pe~7"/2%)),

Here pg is the background density, n the height of the perturbation, and o its
width. The energy change induced by such a density perturbation consists of
two contributions: (i) the change in the interaction energy and (ii) the change
in the kinetic energy.

(i) The change in the interaction energy can be estimated by taking the
‘mean’ interaction of the atoms in the system with the perturbation

72



4.3. Preparation of the density perturbation

into account by AFE; = 2pApU. Here we approximate the additional
density corresponding to the perturbation by the product of its width
and height Ap ~ no. The interaction strength is given by the integral
U= g [d®|w(z)|*, where w(z) is the associated Wannier function local-
ized around z = 0 (appendix B.3.2).

(ii) The kinetic energy is dominated by the fast density oscillations induced
by the periodic lattice potential as long as the density in the perturbation
varies more slowly than these oscillations. Hence an upper bound for the
change in the kinetic energy is given by AFEy;, ~ JAp.

The total energy change induced by the density perturbation is therefore given
by AE ~ UAp(J/U + 2p). On the other hand approximating the wells of the
lattice by parabolic potentials the energy level spacing v can be expressed by
the oscillator lengths a; and @) perpendicular and parallel to the quasi-one
dimensional system. The condition AE < v is obeyed for p ~ 1 and J/U <1

2
provided that no <« aits
that as long as the density perturbation is not too strong, the description of

the system by the Bose-Hubbard model is applicable.

~ 10, where ag is the scattering length. This means

4.3. Preparation of the density perturbation

To prepare a density perturbation as in Eq. 4.2.0.1 we apply a localized external
potential ¢; of Gaussian form [Eq. (3.2.0.2)],

(4.3.0.2) £(t) = —2fpe 112" 9(—1) .

This potential is assumed to be switched on adiabatically such that the system
is in its ground state at t = 0. We determine this initial state using a finite-
system DMRG-algorithm. For times ¢t > 0 the external potential is switched off
and the perturbation can evolve freely in the system.

For weak density perturbations, this potential creates an approximately Gaus-
sian density packet (Eq. 4.2.0.1). Note the difference between the parameters
6 and 7, which are used to describe the applied potential, and the parameters
o and 7, which determine the resulting density profile. For weak perturbations
o = &, and 7 is related to 7 via the compressibility 9p/0u ~ 1/U (p is the
chemical potential and p the filling of the system). The background filling pg
differs from the filling p not only by the effect of the perturbation but also by
boundary effects. Before we present our results on the time evolution of the
density waves, we briefly review in the next section 4.4 the analytical approx-
imation valid in the limiting regimes of very weak and very strong interaction
to which we compare our results.

4.4. Analytical approximations

For weak interactions, or quite generally for a description of the long wavelength
properties of a non-commensurate superfluid state, the continuum limit can be
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4. Evolution of density wave packets in ultracold bosons

performed by taking Ja? = const and a — 0. In this limit the Bose-Hubbard
model becomes equivalent to the Lieb-Liniger model [91, 92]

Hrer = / dr (ﬁ 0,0 ()| + V (2) U7 (2) ¥ (2)

g 2 2
(4.4.0.3) + @) (W) )

a bosonic model with J-interaction of strength g and external potential V. Here
¥ is the bosonic field. The hopping parameter of the lattice model is related to
the mass M of the atoms by Ja? = ﬁ and the onsite interaction strength to
the d-interaction strength by Ua = g.

Starting from this continuum model and considering the interaction in a mean
field approximation, the Gross-Pitaevskii equation can be derived [12]. Within
this approximation, the motion of density waves is described by the two coupled

equations [11]
op 9 (vp)
ot Ox

v 0 (M, 9 1 92 p\
Ma%—x(?” +V> i a(gp—m7>—0

Here p = |¥|? is the density and v = Qig\/[w the velocity field. This
equation gives a good description for systems in higher dimensions or one-
dimensional systems with many particles per site. Linearizing the equations
one recovers the results of the hydrodynamical approach [12].

We now turn to the opposite limit of strong interactions. For low densities p < 1
and strong interactions, the Bose-Hubbard Hamiltonian can be mapped onto
an effective model of spinless fermions with correlated hopping and attractive

interactions [93]:

(4.4.0.4)

2Jn;
Hrp = —JZ <c}+lcj — ch}Jrlcj_l + h.c.)
J
2J° . o o 3 /772
(4.4.0.5) —7 (anrl + njfl) n; + O (J /U ) .

J
Here c; and c;[ are the annihilation and creation operators obeying {c;, c}/} = 0j ',
and anti-commuting otherwise. 7, = c;r.cj is the density operator. Due to the
correction O (J 3/U 2), this mapping is only valid for v > 1 assuming J = 1.
In the following we use units in which the lattice spacing a = 1, the hopping
J =1, and h = 1. This means that times are measured in units of i/J and
velocities in units of aJ/h. In section 4.7 we compare the sound velocity of
these models to our results obtained by the adaptive t-DMRG pointing out the
different ranges of the validity of the approximations.

4.5. Evolution of the wave packet

Fig. 4.1 shows snap shots of the evolution of a density-wave packet created
at time ¢ = 0 obtained by the adaptive t-DMRG. The initially Gaussian wave
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Figure 4.1.: Snap shots of the evolution of the density distribution are shown
at different times. At ¢ = 0, a Gaussian wave packet is present in
the center of the system. It splits up into two packets which move
with the same speed in opposite directions.

packet splits into two packets, which travel with the same speed into opposite
directions. This is in agreement with the results obtained in the weakly in-
teracting regime from a hydrodynamical approach. Within this approach, the
evolution of an initially Gaussian wave packet of height n and background den-
sity p is determined by a linear wave equation, obtained by linearizing equations
(4.4.0.4). The initial density wave splits up into two waves of the same form
moving into opposite directions:

(4.5.0.6) plx,t) = p[l + n(ef(mfvty/zo? n ef(m+vt)2/20.2)]'

For stronger interactions this simple description is no longer valid. The form of
the initial density wave changes drastically as we will show in section 4.8.

In the finite systems of consideration the wave packets are reflected at the
boundaries and travel towards the center where they meet again and the cycle
restarts. The evolution of the density wave for up to four reflections is shown
in Fig. 4.2 by a density plot, i.e. the height of the density is encoded in a
grey-scale scheme (bright corresponds to high density and dark to low density).
The bright lines indicate the motion of the wave packet, which splits into two
packets moving towards the boundaries. After some time the pattern becomes
less pronounced and a substructure arises due to the reflection and scattering
of the wave packets.

Our numerical results for the time evolution of the density profile presented
in this chapter were obtained using chain lengths between L = 32 and L = 48
sites. We ensured convergence in the number of states kept in the reduced space
m (taken between m = 64 and m = 96), which means that the Suzuki-Trotter
error dominates the total error (see Sec. 2.9). The errors in the determined
observables are very small (of the order of 0.0001) for the used Suzuki-Trotter
time steps At = 0.01 — 0.05 and can safely be neglected. For bosons the num-
ber of allowed states on each site has to be limited for numerical calculations.
Typical values taken here are Ng = 6 and Np = 9.
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4. Evolution of density wave packets in ultracold bosons

L=32, u=3, N=32,71=0.3, 5 =2
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Figure 4.2.: The evolution of a density-wave packet is shown in a density plot.
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A linear grey scale is used, bright meaning higher densities. The
bright lines correspond to the wave packets first splitting up mov-
ing towards the boundaries, being reflected by the boundaries and
meeting again in the center of the system, where the cycle starts
again.



4.6. Decay of the amplitude

4.6. Decay of the amplitude

In the previous section in Fig. 4.2 we have seen that the Gaussian structure of
the wave packets at ¢ = 0 becomes less pronounced in time. This decay of the
wave packet is not only due to the reflection at the boundaries and the scattering
at the other wave packet, but occurs as well in a homogeneous infinite system.
In Fig. 4.3 this is shown by monitoring the maximal height of the density wave
over time for two different amplitude heights and widths before the density wave
reaches the end of the system. A decay of the amplitude is observed in both
cases; for small times (in (a) for ¢ < 1 and in (b) for ¢t < 2) a very rapid decrease
is seen, which is due to the splitting of the wave packet into two. For larger times
after the two wave packets are separated, the decay is approximately linear in
time (this might be just the first contribution of a more complicated decay). The
decay of the amplitude of the initially small height 7 =~ 0.1 and width ¢ ~ 1.4
[Fig. 4.3 (b)] is much slower than the decay of the amplitude of the initial height
7~ 0.3 and width & ~ 1 [Fig. 4.3 (a)]. The oscillations seen in the curve stem
from the discrete structure of the lattice, since we plot the maximum value of
the lattice occupancies over all lattice sites (and not the maximum of an fitted
continuous curve which could lie between two lattice sites). The behaviour that
the decay of the height of the perturbation becomes faster if (i) the width of
the perturbation is narrower, and (ii) if the amplitude of the perturbation is
higher is found at various parameters. It is in agreement with the qualitative
picture one can obtain from analytical approximations. Damski [85] has shown
that, neglecting the last term in the Gross-Pitaevskii equation (4.4.0.4), the so
called quantum pressure term, the amplitude of the perturbation stays constant
in time and equals p(1 + 7). A decay of the amplitude in this approximation
only occurs when the quantum pressure term becomes relevant. The quantum
pressure term arises from the kinetic energy term and describes a restoring
force due to spatial variations in the magnitude of the wave function of the
condensate. It becomes important if the length scale of spatial variations is
of the order of the healing length £ = 1/(1/27p), where v is the dimensionless
interaction strength defined by v = %. Hence a decay of narrow or high wave
packets is expected in agreement with our results.

4.7. Sound velocity

The sound velocity is one of the fundamental quantities of a Bose system. It is
defined as the velocity of an infinitesimally small density perturbation. Since
in our calculations we can only create perturbations with a finite amplitude we
use an interpolation procedure to determine the sound velocity: we create two
small density perturbations with low amplitudes, a “bright” one, i.e. n > 0, and
a “grey” one, i.e. n < 0, (|n] < 0.02) at approximately the same background
densities and interpolate between the two results for the velocities of these
perturbations > 0 and 1 < 0 linearly. This approach will be justified in section
4.8). The velocities for the bright or grey perturbations are determined from the
propagation of the maximum or the minimum of the wave packet, respectively.
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Figure 4.3.: The typical decay of the amplitude of the density perturbation. We

plot (pj)max — po, i.e. the difference between the largest discrete
site occupancy and the background occupation.

In the remaining part of this chapter we investigate the dependence of the
sound velocity on the interaction strength « and on the background density pg
and compare our findings with analytical approximations with the theoretical
predictions (compare section 4.4) from (i) a hydrodynamical approach or the
linearized Gross-Pitaevskii equation, (ii) the approximation for the continuum
gas by Lieb, and (iii) the results of the mapping onto a spinless fermion model.
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(i) The sound velocity determined by a hydrodynamical approach is given by

_ gp 8
(4707) v(p, g) = Mp = Ubare%a
where vpare = %/Ié is the analog of the bare 'Fermi’ velocity. Using the

relations of the continuum limit, the corresponding velocity in the lattice
is

(4.7.0.8) v(po; u) = 2po\/Mat-

As will be shown below, a much wider range of applicability than (i) is
obtained from the results of Lieb and Liniger for the continuous bosonic
model (Eq. 4.4.0.3) with J-interaction. They found two distinct modes of
excitations, the usual Bogoliubov mode and the Lieb mode, which is asso-
ciated with solitary waves [95]. At low momenta the dispersion relations
for both modes have the same slope, which means that they propagate
at the same sound velocity. The expression for the sound velocity can
be obtained from the thermodynamic relation Mv? = pOsp. Here p is
the chemical potential of the ground state, which is calculated within the
Bogoliubov approximation. This results in [92]

(4.7.0.9) v <1 ﬁ) v :

Vs = Ubare -
T 2



4.7. Sound velocity

In order to relate that to the Bose-Hubbard model, the expressions ob-
tained from the continuum limit, i.e. v — V1at and Vhare — Vbare lat = 270
are used. Within the continuum model, the numerical calculation of the
sound velocity by Lieb shows that expression (4.7.0.9) is quantitatively
correct up to v ~ 10. By contrast the hydrodynamical result Eq. (4.7.0.8)
is valid only up to v ~ 1.

(iii) For strong interactions the sound velocity obtained by a mapping onto a
spinless fermion model is given by [94]

8
(4.7.0.10) vl ~op <1 — —(po cos 7rp0)>
u

where the Fermi velocity of the lattice model is vp = 2sin 7pg.

In Fig. 4.4 we compare the predictions (i)-(iii) for the dependence of the sound
velocity on the interaction strength to our numerical results. To do this the
sound velocity is plotted as a function of the interaction strength at fixed back-
ground density pg ~ 0.52. (The background density cannot be fixed easily to a
certain value, since it depends on the total number of particles, the boundary
effects and the perturbation. In our calculations it deviates from pg at most
by 0.01. Note that for pg = 0.52 the relation u & 71,4 holds with y1,4 = u/2pg
being the lattice analogy of the dimensionless interaction.) We see that for
small interaction strength, u < 1, i.e. 7y, < 1, the curves obtained using (i)
and (ii) agree well with our numerical results. Around 71t ~ 1 the mean field
prediction (i) starts to grow too fast, while the approximation (ii) remains close
to the numerical results up to intermediate interaction strength v, =~ 4. For
even higher interaction strength also (ii) starts to differ significantly from our
numerical results. This means that the lattice model starts to deviate from the
continuum model, since (ii) was a very good approximation for the continuum
model up to v ~ 10. A breakdown of the continuum limit in this regime is
expected, since the lattice analog of the healing length, i.e. £1as = a/ (v2V1at00)
becomes of the order of the lattice spacing a and thus the discreteness of the
lattice becomes relevant (we restored here the dependence on the lattice spacing
a ). The sound velocity in the lattice model always remains lower than in the
continuum model [compare (i) and (ii)]. For higher interaction strength the nu-
merical results approach the asymptotic value of prediction (iii). Note, that the
prediction (iii) is only expected to become valid for even stronger interactions
than shown here, since it is an expansion in J3/U2. In Fig. 4.5 we see that our
numerical results up to intermediate interaction strength show the dependence
on the background density predicted by (ii) [cf. Eq. (4.7.0.9)]. Deviations
from the predicted form occur for v,y 2 2, depending on the particular set
of parameters u and pg. This dependence of the breakdown of the continuum
limit (§)as becomes of the order of a) is due to the fact that the healing length
&1t does not only depend on pg and w in the combination given by 7., but
§lat = a/\/upg. Therefore the deviations at smaller values of u arise for larger
background densities. Alternatively, this may be expressed in the form shown
in Fig. 4.5: the breakdown of the continuum limit occurs for larger u at smaller

MNat -
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L=32, p=0.52

Figure 4.4.: The dependence of the sound velocity at constant background den-
sity po = 0.52 on the interaction strength is shown (note u ~ 7iat ).
Our numerical results (+) are compared to (i) the results Eq.
(4.7.0.8) of the hydrodynamical approach, (ii) the sound velocity
determined by Lieb Eq. (4.7.0.9), and (iii) the results Eq. (4.7.0.10)
for strong interaction strength obtained by mapping onto spinless
fermions. The results of Eq. (4.7.0.10), i.e. (iii), should become
applicable for even stronger interactions than the ones shown here.
Recall that the velocities are measured in units of a.J/h.

To summarize, we find that the sound velocity as a function of the interaction
strength shows a crossover between (ii) [cf. Eq. (4.7.0.9)], where vs/po depends
only on the combination of pg and u given by a4, to a saturation at a value
given by (iii) [cf. Eq. (4.7.0.10)]. In fact, a completely analogous behaviour
appears in the average kinetic energy of the particles, allowing to identify the
Tonks regime for quasi 1D tubes of bosons which are radially confined by a 2D
optical lattice of increasing strength [90]. The breakdown of the prediction (ii)
[Eq. (4.7.0.9)] is due to the discreteness of the lattice model and takes place if
the healing length becomes of the order of the lattice spacing.

We add some more technical remarks on the determination of the sound velocity:
The uncertainties introduced in the determination of the density profiles are
negligible in comparison to the uncertainties introduced by the determination
of the sound velocity. Curve of the location of the maximum (minimum) of
the bright (dark) wave packet versus time is fitted by a linear fit to extract
the velocity. For small interaction strength the velocity is relatively low and
the movement over a long time can be fitted such that the accuracy of the
results is of the order of +0.01 before interpolation between 1 > 0 and 1 < 0.
For higher interaction strength, the uncertainty in the results for the velocity
increases (approximately O(20.05) for u = 6). This has two reasons: first, the
velocity increases such that the end of the chain is reached in a rather short
time. Moreover, oscillations in the density distribution induced at the end of
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Figure 4.5.: The dependence of the sound velocity on the interaction strength
and the background density is shown up to intermediate interaction
strength. To show at which values of 7,1 the break down of the
prediction (ii) (Eq. 4.7.0.9) occurs for different interaction strength

u, we plot the ratio vg/(2pg) versus 4 = u/(2pp). Recall that the
velocities are measured in units of a.J/h.
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4. Evolution of density wave packets in ultracold bosons

the chain due to the stronger interaction become more important and disturb
the free evolution of the wave packets.

4.8. Self-steepening

In the previous section we studied the sound velocity which is important since
it describes the elementary excitations in the system. In experimental se-
tups also perturbations of finite strength play an important role. To inves-
tigate these in Fig. 4.6 the dependence of the velocity on the height of the
initial density-perturbation amplitude is shown. The simulations were done
at fixed interaction strength v = 1 and different background densities po.
The dependence of the velocity on the density pg is taken out by dividing
by 1(po) = v2po(1 — %ﬁ)” 2 using our knowledge from the previous results
(cf. Eq. 4.7.0.9, with v = 12t = u/2pg, and u = 1). Some technical remarks
are in order: We determine the values for pg, 1, and o, by fitting the initial
wave packet at ¢ = 0 to the form given by Eq. (4.2.0.1). Such a fit is shown
in Fig. 4.1. We found that the errors made when reading off the parameters
from the fit are much smaller than the size of the symbols used for data points
in our plots (see for example Fig. 4.1). The error that results from assuming
a time-independent amplitude 7 is negligible for small amplitudes and broad
widths of the density perturbation, but should be taken into account for faster
decaying amplitudes.

We see that for small amplitudes 7, the dependence is approximately linear.
It may be parameterized by an + b where a = 0.8 and b = 1.1. This linear
dependence justifies the previously applied linear interpolation between 1 > 0
and 7 < 0 for the determination of the sound velocity.

As a consequence of the fact that the velocity increases monotonically with the
amplitude of the perturbation, the wave can undergo self-steepening and shock
wave formation can occur [85, 86]. One example where the phenomenon of self-
steepening can be seen for a “bright” perturbation is shown in Fig. 4.7 (a). The
form of the density wave becomes very asymmetric. The front of the density
wave steepens and the back becomes shallower. An additional dip arises at the
front of the density wave packet. This might stem from the discreteness of our
system. In the case of a “grey” perturbation [Fig. 4.7 (b)], the asymmetry
develops the other way round; the front becomes shallower and at the same
time the back of the wave steepens. It should be emphasized, however, that
the perturbations taken here are very narrow and high to obtain a clear signal.
The Bose-Hubbard model might not be quantitatively applicable to describe
such strong perturbations in the experiment as discussed in section 4.3.

4.9. Experimental observation

Experimentally, one way of detecting the density perturbation is to take time-
of-flight images. As shown in section 3.7.1 the interference pattern can be
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Figure 4.6.: The dependence of the velocity on the height of the amplitude
1. The velocity is scaled by I(pg) to remove its dependence on
the background density. Recall that the velocities are measured in
units of aJ/h.

determined from the Fourier transform of the one-particle density matrix

L
p(k) =1/N Y~ 009 (bl

J3'=1

neglecting its slowly varying envelope and the interaction between the atoms
after switching off the trapping potentials. In a homogeneous system without
a density perturbation a sharp interference peak appears at low interaction
strength due to the long range order in the one-particle density matrix (see sec-
tion 3.7). If the interaction increases beyond the point where a Mott-insulating
phase is present, this peak broadens and decreases. Finally, for very strong in-
teraction only a diffuse pattern is left. In the presence of a density-wave packet,
we find that a second interference peak appears at a finite momentum. In Fig.
4.8 we show the difference between an interference pattern at t = 0, where the
density wave is still in the center, and a later point ¢ = 5, where the wave
packets travel through the system. The possibility to resolve the second peak
in the experiments depends on the parameters of the system. Specifically, the
peak shown in Fig. 4.8 (a) was calculated for a high amplitude of the density
perturbation. This ensures that the mean number of bosons contributing to
the second peak in the interference pattern is a sufficiently large fraction of the
total boson number.

Comparing our results to future experiments one should keep in mind that
in the experimental realizations a parabolic trapping potential is present in
addition to the periodic lattice. As a result, the background density is no
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Figure 4.7.: The evolution of a narrow density-wave packet is shown for various
fixed times. The wave packets undergo self steepening. The lines

are guides to the eye.
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Figure 4.8.: On the left the interference pattern is shown for two different times.
At t = 0 only one sharp interference peak at k& = 0 exists. For
times ¢ > 0 further peaks at finite momentum k and —k arise which
correspond to the moving wave packets. Here only the region & > 0
is shown, exploiting a symmetry under & — —k. On the right the
difference of the interference pattern for ¢ = 5 and ¢ = 0 is shown.
Here the errors are of the order of a few percent.

longer homogeneous (see section 3). Since the sound velocity depends on the
background density, we expect it to vary for weak interactions according to Eq.
(4.7.0.9) and for strong interactions according to Eq. (4.7.0.10). In the region
where the trap varies slowly enough that the background density is almost
constant, we expect the trap to have negligible effect on the motion of the wave
packet such that we can directly compare our theoretical results to experiments.

4.10. Conclusion

We have shown that the adaptive t-DMRG allows us to study the motion of
wave packets in a Bose-Hubbard model far beyond the regimes where commonly
used approximations apply. This gave us the possibility to investigate the dy-
namics of density perturbations in ultracold bosons subjected to an optical
lattice in many experimentally relevant situations. By comparing our results
for the sound velocity to the results of different approximations we determine
the regime in which they hold. The hydrodynamical approach or the linearized
Gross-Pitaevskii equation agrees only well for rather weak interaction strengths
and the continuum model holds up to intermediate interaction strengths. In
contrast the fermionic model is only applicable for very strong interactions.
The investigation of perturbations of experimentally realistic strength showed
a decay of the amplitude and an approximately linear dependence of the veloc-
ity on the height of the amplitude. This dependence gives rise to interesting
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effects like self steepening and shock wave formation which remain to be studied
further. In the experiments the density wave may be detected as an additional
peak in the interference pattern.

Let us conclude by mentioning a few open questions: In the exact solution of
the continuum model by Lieb and Liniger there are in fact two independent
types of excitations. One of them exhibits a generalized Bogoliubov type dis-
persion, which is linear at small momenta and crosses over to a quadratic free
particle behaviour at large momenta. The other one only exists in a finite mo-
mentum range. It has been later identified as the solitary wave of the nonlinear
Schrodinger equation in 1D [95, 96]. As was shown by Lieb and Liniger, the
velocity of the dark solitons for repulsive interactions is always smaller than the
linear sound velocity, coinciding with the latter only in the limit of long wave
lengths. Experimentally, dark solitons have been observed in quasi 1D Bose-
Einstein condensates, and have been identified by the fact that their velocity
depends on the imposed phase gradient [83, 84]. In the case of a deep lattice
potential, as is studied here, solitary waves are predicted to appear in the weak
coupling regime u < 1 [97] and for sufficiently wide density perturbations which
can be described by the 1D nonlinear Schrédinger equation. In addition, the
presence of a lattice potential implies that atoms with momenta near a recipro-
cal lattice vector acquire a negative effective mass. This leads to the existence
of bright gap solitons, a subject of considerable current interest [98, 99, 75],
in particular in connection with instabilities for strongly driven optical lattices
[100]. In this work we focused our investigations mainly on the case of pertur-
bations with small momenta, for which the two modes cannot be distinguished
by their velocity. It is an open question to which extent the density waves in
our simulations, can be interpreted as solitary waves and in particular what
happens to these stable excitations in the regime of strong coupling, where the
nonlinear Schrodinger equation no longer applies.
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5. Spin-charge separation in cold Fermi
gases: a real time analysis

5.1. Fascinating physics in one dimension

In this chapter we turn to excitations in one-dimensional fermionic systems.
In striking contrast to Fermi liquids, where the elementary quasiparticle exci-
tations carry both charge and spin, the phenomenon of spin and charge sep-
aration is predicted for one dimensional systems by the Luttinger liquid pic-
ture [101, 102]. According to this picture - at low energy - the excitations of
charge and spin completely decouple and propagate with different velocities. In
condensed matter systems, numerous experiments have looked for spin-charge
separation e.g. in 1D metallic wires [103], in 1D organic wires [104], in carbon-
nanotubes [105], and in quantum wires in semiconductors, where the different
velocities have now clearly been observed [106]. In addition Recati et al. [72]
suggested to study the phenomenon of spin-charge separation using ultracold
fermions in atomic wires. The experimental realization is now in reach by the
recent creation of ultracold Fermi gases in an ’atomic quantum wire’ configu-
ration. This is an array of thousands of parallel atom waveguides, which are
created by a very strong two dimensional optical lattice [107]. The advantage
of the use of systems of ultracold atoms lies in the possibility of both the tun-
ing and the quantification of the interaction, allowing quantitative comparison
between theory and experiments. Moreover, using a very strong axial confine-
ment, for atomic wires 3D effects are negligible, thus avoiding the possibility to
mistake experimentally Fermi liquid collective spin and charge density modes
for the different ones in 1D. We will propose yet another experiment to ob-
serve spin-charge separation effects using these very clear and tunable systems
of ultracold atoms. Our proposal does not encounter the problems which still
trouble the approach of Recati et al. (see below).

The analysis of Recati et al. [72] is essentially based on the hydrodynamic
Hamiltonian of the Luttinger liquid. The inhomogeneity due to the presence of
a harmonic trap is treated within a local density approximation (see also [108]).
Clearly, such an approach is only valid at low energies. It requires very weak
perturbations and length scales much beyond the average interparticle spacing.
In reality, with typically less than 100 atoms per atomic wire [107], stronger
and more localized perturbations are required to produce observable effects. In
addition, the effect of boundaries, where the local density approximation breaks
down, are of crucial importance. For a quantitative description of spin-charge
separation in 1D cold Fermi gases, it is thus necessary to use a microscopic
description like the Hubbard model and to treat properly the inhomogeneous
case with realistic system sizes. Due to the short range nature of the interac-
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tions between cold atoms, the Hubbard model is indeed a perfect description
of a situation, in which there is an additional optical lattice along the weakly
confined axial direction (for bosons cf. section 3.2). Hereby the spin degrees
of freedom in the Hubbard model correspond to two different hyperfine levels
in the system of ultracold fermions, and the ’'charge’ density is the particle
density. Despite this we will use the terms of ‘spin’ and ‘charge’ also in the
context of ultracold fermions. For the realistic case of low filling, the hopping
matrix element J and the on-site Hubbard repulsion U can be straightforwardly
obtained from the known lattice parameters and the scattering length [cf. Eq.
(3.2.0.3) and Eq. (3.2.0.4)]. It is the aim of the present chapter to study the
phenomenon of spin-charge separation within a time-dependent calculation of
a microscopic model for parameters which would be realistic in an experiment
with cold atoms [109].

We start by introducing the one-dimensional Hubbard model (section 5.2) and
its phases (section 5.3), before we introduce in section 5.4 the phenomenon
of spin-charge separation. In section 5.5 we give details on the perturbations
considered. In section 5.6 we show our results for the real-time evolution of
spin and charge perturbations of finite strength. An experiment to observe the
effect of spin-charge separation in systems of ultracold fermions is proposed in
section 5.7, before we discuss in section 5.8 the parameters which need to be
achieved in such an experiment.

5.2. Hubbard model

Our starting point is the standard Hubbard model

H = —JZ <c§+1vacj70 + h.c.) + UZ ;11N |
A’ j

1,0
(5.2.0.1) +> Ejohje
7,0

the fermionic analog of the Bose-Hubbard model Eq. 3.2.0.2. Its parameters
are the hopping matrix element .J, the on-site repulsion U > 0 between fermions
of opposite spin ¢ =T, | at sites j = 1,..., L and a spin-dependent local on-site
energy €; ., describing both a possible smooth harmonic confinement and time-
dependent local potentials which allow to perturb the system. One introduces
a 'charge’ density n. = ny +n| and a ’spin’ density n, = ny —n|. Similar to
bosons in an optical lattice (section 3.2), the ratio u = U/J between the on-site
repulsion U and the hopping J can easily be changed experimentally by varying
the depth Vj of the optical lattice. We use units where both J and & are equal
to one; thus time is measured in units of i/J.

5.3. Quantum phase diagram

The ground state of the Hubbard model can be determined exactly by the Bethe
ansatz [110], but due to its complicated structure the evaluation of physical
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quantities like correlation functions remains quite involved. As in the Bose-
Hubbard model two different phases occur in the Hubbard model: a liquid
phase and a Mott-insulating phase. At half filling, i.e. n. = ny +n| = 1, even
an infinitesimal small interaction U causes a Mott-insulating state, whereas at
fillings different from half filling only the liquid phase occurs. Therefore only the
analogue of the commensurate-incommensurate phase transition of the bosonic
case (cf. section 3.3) exists.

The lowest excitations in the system are two collective modes, the spin and
the charge mode. In the liquid phase both of these are gapless with a linear
spectrum. In contrast in the Mott-insulating phase for the charge mode a gap
opens up which causes the insulating behaviour, whereas the spin mode stays
gapless. In the limit of infinitely strong interaction the two modes decouple not
only for low energies and the spin part of the Hamiltonian becomes equivalent
to the antiferromagnetic Heisenberg model with an exchange constant 4.J2/U.

5.4. Spin-charge separation

A simple picture for the effect of spin-charge separation can be gained consid-
ering a chain at half filling with very strong interaction U between the differ-
ent species. The strong interaction induces an antiferromagnetic behaviour as
sketched in Fig. 5.1 (a). Removing a fermion from the chain [Fig. 5.1 (b)]
changes both the spin and the charge quantum number. Two excitations are
created in this case:

(i) a holon [circle in Fig. 5.1 (c)], a charge is lacking, but the spin environment
is purely antiferromagnetic and

(ii) a spinon [ellipse in Fig. 5.1 (¢)], two neighbouring spins are aligned, but no
charge is missing.

In one dimension once created the holon and the spinon can move independently
and freely —without any additional cost in energy— through the chain, by first
and second order hopping processes, respectively. Thus any single-particle ex-
citation dissociates into these elementary excitations. In contrast if a fermion
is removed from a system of higher dimension the spinon and the holon are
held together by the frustration which is created by the neighbouring chains as
marked by the box in [Fig. 5.1 (d)]. A penalty in the energy has to be paid
if the spinon and holon separate. Therefore, the fermionic single-quasiparticle
excitation has a finite life time and does not split up immediately as in the
one-dimensional case.

More technically this phenomenon can be described by the hydrodynamical ap-
proach [70, 102], which covers the low energy properties of the one-dimensional
system. In this approximation the degrees of spin and charge decouple com-
pletely for any strength of interaction. This becomes obvious using these degrees
of freedom to express the Hamiltonian:

(5.4.0.2) H = H,+H. with

(5.4.0.3) H, 1/2/dx <uyKyax9,%+ %(axqbyy).
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Figure 5.1.: Left: Sketch of the splitting of a single-particle excitation [circle in
(b)] into a holon [circle in (c¢)] and a spinon [ellipse in (c)] in an
one-dimensional system. Right: In higher dimension (d) the spinon
and the holon are held together by the influence of the neighbouring
chains [block in (d)] and thus single-quasiparticle excitation have a
finite life time.

Here 0, and ¢, are bosonic fields describing the phase and the density fluctua-
tions of the spin ¥ = s and the charge v = ¢, respectively. The parameters u,,
are the ‘sound’ velocities, while K, are related to the low energy behaviour of
the correlation functions. Since the Hamiltonian splits into a charge and a spin
part, both modes are totally decoupled. The hydrodynamical approach there-
fore predicts the spin-charge separation for low energies. However, stronger
perturbation which are necessary for the experimental detection cannot be de-
scribed by this approach. It is an advantage of the adaptive t-DMRG that we
can study the dynamics of the Hubbard model using initial perturbations of
various strengths.

5.5. Preparation of the perturbation

In the investigation of the evolution of density perturbations we focus on three
different types:

(i) perturbations in the density of the T-fermions; thereby a perturbation in
both the spin and the charge density is created.

(ii) perturbations in the charge density
(iii) perturbations mainly in the spin density.

To prepare these different cases of perturbations we apply localized external
potentials of different type in Eq. (5.2.0.1):

(i) 3 (6) = £Gib),

(ii) £5,1(t) = &1 (t) = f(5,t), and

(iii) 5,1 () = —¢;,1(£) = F(5,1).

A Gaussian form of the perturbations is chosen

(5.5.0.4) F(j,1) oc exp~U=90)*/29%) g(_¢),
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with variance ¢ = 2 centered at site jo. The strength of the perturbation is
varied. For each case the external potential is assumed to have been switched
on slowly enough for equilibration and is then switched off suddenly at time
t = 0. We determine the initial state as the ground state of the corresponding
Hamiltonian (5.2.0.1) at t = 0 for an equal number of spin-up and spin-down
fermions, Ny = N| = N/2 using a finite-system DMRG-algorithm. For rela-
tively weak potentials the resulting density perturbations are approximately of
Gaussian form Eq. (4.3). The height of the charge and spin density pertur-
bations will be denoted by 7. and 7, respectively, and the charge background
density by ng.

In the experiments the perturbations (i)-(iii) may be generated by a differently
far blue- or red-detuned laser beam tightly focused perpendicular to an array
of atomic wires, which generates locally repulsive or attractive potentials for
the atoms in the wires. These perturbations due to an external laser field are
quite strong, typically of the order of the recoil energy F,.

In the calculations presented the lengths of the chains were chosen up to L = 128
sites, keeping of the order of several hundred DMRG states. DMRG error
analysis reveals that all density distributions shown here are for all practical
purposes exact, i.e. with controlled errors of less than O(1073).

5.6. Spin-charge separation: beyond small perturbations

In this section we study the propagation of spin and charge perturbations in a
homogeneous system, i.e. in a system without an additional trapping potential.
We investigate, in particular, the dependence of their propagation velocities on
the strength of the perturbation. In this section the perturbations are chosen
to be centered at jo = (L + 1)/2 to minimize boundary effects.

We start with a homogeneous system which is perturbed by a potential of
type (i) localized at the chain center. In Fig. 5.2 (a) the density distributions
close to the density distributions of the initial state are shown as obtained by
DMRG with the perturbation at the chain center. The external potential, Eq.
(5.5.0.4), generated a dominant perturbation in the {-Fermion distribution by
direct coupling and, indirectly, a smaller perturbation in the |-density due to
the repulsive interaction between the different spin species. Note, that due
to the presence of the spin perturbation a slight mismatch in the background
densities of the T- and the |- fermions is induced by the fixed number of the -
and the |-fermions. The wave packets in T- and |-density perform a complicated
time evolution [Fig. 5.2 (a)-(c)] which is due to their repulsive interaction.
In contrast, the resulting perturbations in the spin and charge density evolve
more or less as non-interacting perturbations. Both perturbations split into
two wave packets each of which moves outwards. Their respective velocities are
found to be different as indicated by the arrows in Fig. 5.2 (c). The charge
perturbation has moved out further than the spin perturbation at the same
point of time, such that spin and charge have separated. To our knowledge,
this is the first time that the different velocities of spin and charge are obtained
numerically in a microscopic model for systems of a size suitable for comparison
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with experiments.

It is always illuminating to compare numerical results to analytical solutions
when available. From the Bethe ansatz [110, 111, 112, 113, 114] both spin
and charge velocities are known analytically in the limit of an infinitesimal
perturbation much broader than the average interparticle spacing.

To compare our numerical findings to the exact charge velocity, we create pure
charge density perturbations, by applying the potential of type (ii), and calcu-
late their time evolution after switching off the potential. The charge velocity
is determined from the propagation of the maximum (minimum) of the charge
density perturbation for bright (amplitude n. > 0) and grey (n. < 0) pertur-
bations, respectively. In Fig. 5.3 the charge velocities for various background
densities ng and perturbation amplitudes 7. are shown. We find good agree-
ment between the exact result of the Bethe ansatz for the 'sound’ velocity of the
charge and our numerical results for the charge velocity, if we plot our results of
the charge velocity versus the charge density at the maximum (minimum), i.e.
ne = ng + 1e. The velocity of the maximum (minimum) of the wave packet is
therefore mainly determined by the value of the charge density at the maximum
(minimum), and not by the background density.

As we mentioned before in the experiment the perturbations generated by an
external laser field are quite strong. The theoretical description of the evolution
of these finite strength perturbations is not trivial at all and indeed, has never
been studied before. Numerically, we find that even for strong perturbations
Ne ~ +0.1 which corresponds to 20% of the charge density, the phenomenon of
spin-charge separation remains valid and the charge velocity only depends on
the charge density at the extremum of the perturbation n.. The charge velocity
is thus robust against separate changes of the background density ny and the
height of the perturbation ..

The uncertainties in Fig. 5.3 which are of the order of the symbols have their
origin not in the uncertainties in the evolution of the density distributions which
have controlled errors less than 1073, but stem mainly from the fitting of the
motion of the maximum /minimum and the presence of oscillations in the back-
ground density.

To study the behaviour of the spin perturbation we apply a local potential of
type (iii) which mainly generates a spin perturbation. In contrast to the charge
perturbation, we find in Fig. 5.4 that the velocity of a spin perturbation varies
strongly with its height ns. The velocity of the finite perturbation approaches
the ‘sound’ velocity of the spin, the solution of the Bethe ansatz, from below.
The interpolation to an infinitesimal spin perturbation has to be taken with care
due to the strong variation at low spin amplitude ns. These results show once
more the importance to investigate perturbations of finite strength in order to
obtain quantitatively reliable results for comparison with experiments.

It remains to be studied further, if the origin of the change of the velocity is
purely the height of the spin perturbation or whether the slight difference in the
background densities for - and |-fermions —induced by the fixed total number
of T- and |-fermions— contributes as well.
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Figure 5.2.: Snapshots of the evolution of the density distributions at different
times. At t = 0, a wave packet is present in the center of the system
in both the spin and the charge density. Each of these splits up
into two packets which move with the same velocity in opposite
directions. The velocity of the propagation of the charge wave and
the spin wave are different. U/J = 4, charge background density
ng = 0.78.
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Exact results for the charge velocity obtained by the Bethe ansatz
(lines) are compared to the numerical results of the adaptive
t-DMRG. The numerical results correspond to different heights
of the perturbations at various charge background densities ng. n.
is the charge density at the maximum/minimum of the charge den-
sity perturbation. The uncertainties are of the order of the size
of the symbols and stem mainly from the determination of the ve-
locity which is complicated by the presence of oscillations in the
background density.

u=1, n,=0.4, L=72

11 | DMRG &
Bethe ansatz x
> 095
8 o
(]
>
£ 09
o
7]
&
0.85 o
0 0.01 0.02 0.03 0.04

Ns

Spin velocity for different strength 7, of the spin density pertur-
bation. The cross marks the Bethe ansatz result for the ’sound’
velocity.



5.7. Proposed experimental realization

5.7. Proposed experimental realization

To study the separation of spin and charge experimentally in systems of ultra-
cold atoms, the first idea would be to perturb the system by a localized potential
and to observe the evolution of the perturbation by measuring the densities in
a certain region of the system. However, in a single one-dimensional system the
signal would be very low and in an experiment with arrays of parallel atomic
wires, the different filling in individual wires would lead to a signal broadening
due to the resulting differences in velocities. In order to avoid these problems,
we suggest to look for spin-charge separation in a completely different way. Our
proposal relies on the coexistence of a Mott-insulating state and a liquid state
in spatially separated regions of the system as it can be the case in the pres-
ence of a parabolic trapping potential ¢,,; = —V;a®(j — L/2 + 0.5)?E, (section
3.4, [115]). The idea is to use the very different behaviour of the charge and
spin degrees of freedom in the Mott-insulating phase. In this phase the charge
excitation spectrum has a gap, whereas the spin dispersion is still linear for
small momenta, and the spin velocity is finite. By contrast, in the liquid phase
both excitation spectra are linear for small momenta. To exploit this differ-
ence in the behaviour, assume the system of one-dimensional wires confined by
a trapping potential which is prepared in such a way, that a Mott-insulating
region is present in the center of most of the wires. In these Mott-insulating
regions the charge density is locked to half-filling, n. = 1. At the boundary
of the Mott-insulating regions liquid regions exist. A localized potential which
couples to one species [of type (i) section 5.5] in the liquid region will then cre-
ate spin and charge density perturbations. While the spin density perturbation
can evolve unhindered, the charge density perturbation cannot penetrate the
Mott-insulating region due to its gapped spectrum. This effect can be seen from
Fig. 5.5 in which calculated snapshots of the time evolution in such a situation
are shown. In Fig. 5.5 (a) the perturbation, centered around site 10 is clearly
seen in the spin density and in the density of the 1- and | - fermions. In the
charge density the perturbation enlarges the region where the charge density
is locked, i.e. n. = 1. We point this out by sketching the idealized charge
density profile without the perturbation in Fig. 5.5 (a). In Fig. 5.5 (b) and (c)
the density distribution at later times are shown. Evidently, the spin density
wave propagates into the Mott-insulating region, whereas the charge density
perturbation is almost completely reflected due to the charge gap in the Mott-
insulating region. The presence of spin density oscillations which are due to
the anti-ferromagnetic coupling induced by the interaction obscures the exact
evolution of the spin perturbation. However by averaging over several lattice
sites — as it is necessary within current experimental techniques, anyway — the
effect of spin-charge separation is clearly visible. In Fig. 5.6 examples for the
evolution of the sum of the charge and the spin number of particles between site
25 and 35, N, and N, are shown. It is clearly seen that the sum of the charge
occupation does not change, whereas the spin occupation shows the moving
wave packet. The average spin velocity can be determined from Fig. 5.6 if the
distance between the localized potential which generates the perturbation and
the center of the region over which the density is measured is known. Here, the
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Figure 5.5.: The time evolution of charge and spin density perturbations in the
presence of a parabolic trapping potential. MI marks the approx-
imate Mott-insulating region in the absence of the perturbation.
The line denoted by idealized is a sketch of the charge density
distribution without the perturbation. The presence of the pertur-
bation enlarges the region in which the charge density is locked to
n. = 1. The arrows show the approximate place of the spin per-
turbation, and the shaded region marks the region over which the
densities are averaged (cf. Fig. 5.6).
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Figure 5.6.: Time evolution of the charge and spin density summed over the
sites jo = 25 to j; = 35. Vertical lines correspond to the times of
the snapshots in Fig. 5.5

spin velocity is found to be vs &~ 1.1J/h which agrees nicely within the expected
accuracy with the value of vs(n. = 1) = 1.2J/h of the Bethe ansatz.

The very different propagation behaviour of charge and spin can as well be used
experimentally to distinguish between a Mott-insulator and a band insulator:
In a band insulator not only the velocity of the charge, but also that of the spin
would vanish, whereas, as used above, in the Mott-insulator the spin velocity
stays finite.

5.8. Experimental parameters

In order to quantify the requirements for an experimental observation of spin-
charge separation in cold Fermi gases, we discuss typical parameters which
need to be achieved in a setup with an array of atomic wires [107]. Such an
array consists of several thousand parallel wires with typically less than 100
40K atoms each. In addition to the smooth axial confinement potential with
frequency w, ~ 27 - 275Hz (corresponding to V; ~ —0.0035), the realization
of a 1D Hubbard model requires adding a strong periodic potential along the
tubes as it has already been realized for bosonic atoms. For 4°K and a standard
lattice constant a = 413 nm, the recoil energy is F, ~ TkHz. An optical lattice
of height V = 15F,. then gives an on-site repulsion U ~ 0.17E,., where we have
used a standard value for the s-wave scattering length as ~ 174ag between the
levels FF' =9/2 mp = —9/2 and mp = —7/2 [116]. The resulting ratio of the
interaction and the kinetic energy u ~ 22 leads to a central Mott-insulating
region in most of the tubes with a typical size of the order of twenty sites.
With these parameters, the time in which the spin wave travels 20 sites is of
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the order of a few ms. The creation of state selective potentials for two different
hyperfine states may be done by using laser light whose frequency falls between
the respective transitions. This might be difficult for the FF =9/2 mp = —9/2
and mp = —7/2 levels, but should be possible - for instance - using F' = 9/2
and F = 7/2 levels. The 1/e2-radius of the potential (Eq. 5.5.0.4) is taken to
be four lattice sites, which corresponds to a laser with an approximate 1/e2-
radius of 2.1um. Finally, to ensure that finite temperature does not destroy the
Mott-insulating behaviour by thermal activation, the energy scale kgT" should
be smaller than the Mott energy gap. In recent experiments the temperature
reached was about T' ~ 0.1TF , where T is the temperature set by the Fermi
energy. Approximating the Fermi temperature by Er ~ N/2w,, here N is the
particle number and w, the axial trapping frequency, the energy scale set by
the temperature is kT ~ 0.6FE,. This is about three to four times the gap in
the Mott-insulating phase U ~ 0.17E, for Vj = 15E,.. Therefore, already the
very first experiment of 1D fermions in an optical lattice [107] is very close to
matching those conditions. Improvements can be made, e.g., by reducing the
axial confinement frequency such we expect that the necessary regime can be
reached in near future.

5.9. Conclusions

We have performed the first numerical simulations of the time evolution of
charge and spin density perturbations in real time in 1D Hubbard systems
of sizes comparable to experiments. From this it becomes evident that the
separation of spin and charge is a generic feature of 1D interacting fermions,
far beyond the low-energy regime where a Luttinger liquid description applies.
This opens the possibility to observe spin-charge separation experimentally in
systems of ultracold atoms. We propose an experiment in which the differ-
ent propagation behaviour of spin and charge perturbation in the liquid and
the Mott-insulating phases is used to observe the spin-charge separation in
an array of one-dimensional systems of ultracold fermions. We expect that
the experimental parameter regimes necessary will become accessible in near
future. Thus the experimental evidence for the existence of spin-charge sep-
aration could be strengthened considerably relating the experimental findings
to theoretical predictions. Hereby the good control and microscopic knowl-
edge about the parameters like the interaction strength make the systems of
ultracold fermions advantageous. Further the same experimental setup could
distinguish a Mott-insulator and a band insulator, one very important proof
for the importance of the interaction in these systems. Let us mention that a
modification of this setup by creating an excitation with single-particle charac-
ter instead of the density perturbation would allow to contrast the behaviour
in one and three dimensions. Whether such a single-particle excitation can be
created and detected experimentally in these systems, remains to be shown.
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6.1. Introduction

The transport properties of spin chains have attracted much attention recently,
due to the possible applications to information storage, spintronics, and quan-
tum information processing. In this chapter, we study a highly simplified pic-
ture for spin transport between two coupled reservoirs of opposite spin polar-
ization [117]. This is done by investigating the time evolution of an initial state
{ T...70... 0 >, i.e. with all spins on the left half of the chain pointing up
along the z-axis modeling one of the reservoirs, and all spins on the right half
pointing down modeling the second reservoir. The spins are coupled by nearest-
neighbour spin interaction (see Eq. 6.2.0.1) [117]. We are mainly interested in
the following questions: Does the state evolve into a simple long time limit? If
80, how is this limit reached? On what properties does the long time behaviour
depend?

Analytical results for this problem are essentially restricted to the X X-chain
with and without dimerization which is amenable to an exact solution [118, 119].
In Ref. [118], a scaling relation for the long-time limit was found. However,
it is presently not known whether this relation is general, or whether it relies
on special properties of the X X- model. If a long-time limit exists for other
models as well, the question arises which of its characteristics are universal, and
which depend on certain system properties. We will address these questions in
the following.

As so far no detailed error analysis of the adaptive t-DMRG has been performed,
an important aspect of the present chapter is that besides their own physical
interest, spin-1/2 chains provide an excellent benchmark for the adaptive t-
DMRG, because of the nontrivial exact solution for the X X-model, against
which the method can be compared. This allows to analyze the accuracy of
the adaptive t-DMRG explicitly, namely to address the questions what kinds
of errors can occur in principle, which ones of these dominate in practice, and
how they can be minimized.

The outline of the chapter is as follows: In section 6.2 we introduce the model
and its characteristics. In section 6.3 a detailed error analysis is performed. In
section 6.4 we present our results for the long time limit of the time evolution
for different interaction and dimerization strength.

6.2. Model and initial state

In this chapter we analyze the dynamics of the inhomogeneous initial state
{ini> = ‘ T...70 .00 > on the one-dimensional spin-1/2 chain with interactions
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Figure 6.1.: Quantum phase diagram of the Heisenberg model, Eq. (6.2.0.1).
See [120, 121] for details.

given by the Heisenberg model

(6.2.0.1) H = Z Tn(SnS1 + 818+ J8050 1) = Z hn.

Here, §n is the spin operator on site n, and J,, J, are interaction constants.
Note, that in this chapter n denotes the site of the chain to make an easy
connection to references [117, 118]. We consider dimerized models where J?*
does not depend on the site n and J,, = (1 + (—1)"0),  being the dimerization
coefficient. For § > 0, the “strong bond” with J, = 14§ is chosen to be at the
center, where the spin flip of the initial state is located.

We have chosen our energy unit such that J, = 1 for the homogeneous case
d = 0. We also set i = 1, measuring time in units of 4/J. The quantum phase
diagram of this model at zero temperature is well known (see [120, 121]) and
sketched in Fig. 6.1. For the homogeneous case, § = 0, the ground state has
ferromagnetic / anti-ferromagnetic order with a gap in the excitation spectrum
for J, < —1 and J, > 1, respectively. The gap closes if |J,| approaches 1 from
above, and the model becomes critical for —1 < J, < 1, i.e. gapless in the
thermodynamic limit, with correlation functions showing a power-law decay.
The model at the point J, = § = 0 is known as the X X-model. It has the
special property that the spin-current operator J = ) j, is conserved, i.e.
[J,H] = 0. Here j, = J,Im(S;S, ) is the current operator on the bond
between site n and n + 1. For finite dimerization, § # 0, the spectrum is again
gapped for all values of J,.

It is often useful to map the Heisenberg model onto a model of spinless fermions:

1
H = Z Jn |:§(Cilcn+1 + CL+1Cn)
n

1 1
(6.2.0.2) +J, (c;rlcn - §> (cILJrlanrl - 5)] .

Here CIL and ¢, are the fermionic creation and annihilation operators. In this

picture, the first two terms describe nearest-neighbour hopping of fermions,
whereas the third term (the one proportional to J.) describes a density-density
interaction between nearest neighbours. In particular, the case J, = 0 describes
free fermions on a lattice, and can be solved exactly [122].
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6.2. Model and initial state

The time evolution under the influence of a time-independent Hamiltonian H
as in Eq. (6.2.0.1) is given by:

(6.2.0.3) [w(t)) = U(t)|ini) with U(t) = exp(—iHt).

In most of the phases shown in Fig. 6.1, the state |ini> = ‘ T.o..TL ] >
contains many high-energy excitations and is thus far from equilibrium. In the
following, we briefly discuss these phases separately.

— Deep in the ferromagnetic phase, J, < —1, |ini> corresponds to a state with
one domain wall between the two degenerate ground states. For J, — —oo it
is identical to the ground state in the total magnetization sector S = 0 and
with boundary conditions given by { T > and { i} > at the left and right end of
the chain respectively. It is therefore stationary. For finite J,, it is no longer
identical to the ground state, but still close to it [123].

— In the anti-ferromagnetic phase, J, > 1, the state ‘ini> is highly excited. One
could view it as a state with almost the maximum number of domain walls of
staggered magnetization.

In this context, it is interesting to note that the sign of J, does not matter for
the time evolution of physical quantities, as long as the initial state is described
by a purely real wave function (which is the case for our choice of |ini>), since the
sign change in J, can be compensated by a gauge transformation that inverts
the sign of the terms S*S®, SYSY in Eq. (6.2.0.1) and together with complex
conjugation of Eq. (6.2.0.3). In particular, the time evolution of the low-energy
one domain-well state in the ferromagnetic is the same as the evolution of the
high-energy many domain-walls state in the anti-ferromagnetic. We therefore
restrict ourselves to the case J, > 0, since both cases can be dealt with by the
adaptive t-DMRG equally well.

— In the critical phase 6 = 0 and |J.| < 1, the ground state is a state with
power-law correlations in the xy-plane of the spins. Here, the state ‘ini> is
not close to any particular eigenstate of the system, but contains many excited
states throughout the energy spectrum, depending on the value of J,: The
energy expectation value of ‘ini> is low as J, — —1 and high as J, — 1. For
J, = 0, the time evolution of the system can be solved exactly. For example,
the time evolution of the magnetization profile for the initial state |ini> reads
[118]:

n—1

(6.2.0.4) S.(n.t) = (w(0)] Sz|o®) = -1/2 3 2(e),

j=1-n

where J; is the Bessel function of the first kind. n =...,-3,-2,-1,0,1,2,3,...
labels chain sites with the convention that the first site in the right half of the
chain has label n = 1.

— In the dimerized phase, § # 0, the mentioned characteristics remain un-
changed. However, here the delocalization becomes confined to pairs of neigh-
bouring sites in the limit § — 1. For § = 1 there exists only a coupling on every
second bond.

We finally note that the total energy and magnetization of the system are
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6. Transport in spin-1/2 chains

conserved at all times, such that even for long times the state cannot relax to
the ground state.

The initial state |ini> is prepared as the ground state of a suitably chosen Hamil-
tonian Hip; (which does in principle not have to have any physical significance).
Such a choice is Hini = ), BpS7, with B, < 0 for n on the left, B,, > 0 for
n on the right half of the chain. In this case, a physical picture for Hjy; does
exist; it corresponds to switching on a magnetic field that aligns the spins and
that is strong enough for all interactions in Eq. (6.2.0.1) to be negligible.

6.3. Accuracy of the adaptive t-DMRG

As so far no quantitative analysis of the accuracy of the adaptive t-DMRG
has been given in the literature, we provide a detailed error analysis for the
time evolution of the initial state !ini> in a spin-1/2 quantum X X-chain, i.e.
J, = 6 = 0. This system is an excellent benchmark for the adaptive t-DMRG
due to its exact solution [118] that can be compared to the DMRG results. The
exact solution reveals a nontrivial behaviour with a complicated substructure
in the magnetization profile. From a DMRG point of view this Hamiltonian
J, = 0 is not too specific in the sense that the experience from static DMRG
suggests a relatively weak truncation error dependence on J,. We therefore
expect that the main findings of the error analysis hold more generally.

6.3.1. Error analysis for the X X-model

In this section, we analyze the errors from the adaptive t-DMRG in the time
evolution of the X X-model by comparing it to the exact solution [118], with
the ultimate goal of finding optimal DMRG control parameters to minimize
the errors. Recall that the errors introduced in the adaptive t-DMRG have
two main origins: the truncation of the Hilbert space and the Suzuki-Trotter
decomposition (see section 2.9). In the following we mainly use two measures
for the error:

(i) As a measure for the overall error we consider the magnetization deviation
err(t) the maximum deviation of the local magnetization found by DMRG from
the exact result,

(6311) err(t) = maanSfL,DMRG(t» - < Z,exact(t»"

In the present study, the maximum was typically found close to the center of
the chain.

(ii) As a measure for the truncation error which excludes the Suzuki-Trotter
error we use the forth-back deviation FB(t), which we define as the deviation
between the initial state {ini> and the state |fb(t)> = U(—t)U(t)‘ini>, i.e. the
state obtained by evolving ‘ini> to some time ¢ and then back to ¢ = 0 again.
If we Suzuki-Trotter-decompose the time evolution operator U(—t) into odd
and even bonds in the reverse order of the decomposition of U(t), the identity
U(—t) = U(t)~! holds without any Suzuki-Trotter error, and the forth-back
deviation has the appealing property to capture the truncation error only. In

102



6.3. Accuracy of the adaptive t-DMRG

L=100, m=50

0.01

e—e————————————

00001 |/ T

30

S, deviation
=
oI
o
(3]
=3
1
o
o

20

runaway time

-12 dt=0.025 ------ 10
10 | dt=0.005 dt
runaway time o 0.02 0.04 0.06

10 I I I I I
30 40

time

Figure 6.2.: Magnetization deviation as a function of time for different Suzuki-
Trotter time steps dt and for m = 50 DMRG states. At small times
(region A in the inset), the deviation is dominated by the linearly
growing Suzuki-Trotter error for small times. At later times (region
B in the inset), much faster, non-linear growth of the deviation sets
in at some well-defined runaway-time tg. As shown in the inset, tg
increases with increasing dt.

contrast to the magnetization deviation, the forth-back error does not rely on
the existence of an exact solution.

As our DMRG setup does not allow easy access to the fidelity |<ini‘ fb(t))|, we
define the forth-back deviation to be the Lo measure for the difference of the
magnetization profiles of !ini> and ! fb(t)),

1/2
(6.3.1.2) FB(t) = <Z ({ini| 82 |ini) — { fb(t)|S?| fb(t)>)2> .
n

In order to influence Suzuki-Trotter and truncation errors, two DMRG control
parameters are available, the number of DMRG states m and the Suzuki-Trotter
time step dt. We start studying the effect of different dt. The magnetization
deviation for different dt¢ is shown in Fig. 6.2. Two main observations can
be made. At small times (regime A), the magnetization deviation decreases
with dt and is linear in ¢ as expected from the Suzuki-Trotter error. Indeed,
as shown in the upper part of Fig. 6.3, the magnetization deviation depends
quadratically on dt for fixed ¢ as expected for the used second order Suzuki-
Trotter decomposition. The Suzuki-Trotter error dominates over the truncation
error. At large times (regime B in Fig. 6.2), the magnetization deviation is no
longer linear in ¢, but grows much more rapidly. It also does no longer show
simple monotonic behaviour in d¢: The magnetization deviation in this regime
is no longer dominated by the Suzuki-Trotter error, but by the accumulated
truncation error.

The two regimes A and B are very clearly separated by some runaway time
tr, with regime A for t < tg and regime B for ¢t > tr (a precise procedure

103



6. Transport in spin-1/2 chains

0.005

0.004

0.003 | A

error

0.002

0.001

L error  + |
0 ‘ ‘ ‘ ‘ _ quadratic fit —

t=30
0.01+

0.008 |

error

0.006

0.004

0.002 |
L

error + |
0 ‘ ‘ ‘ ‘ | Quadratic fit—

0 0.1 0.2 dt 0.3 0.4 0.5

Figure 6.3.: Magnetization deviation as a function of Suzuki-Trotter time step
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dt (system size L = 100, m = 50 DMRG states) at times t = 5 (up-
per figure) and t = 30 (lower figure). For ¢t = 5, the magnetization
deviation is quadratic in dt as expected from the Suzuki-Trotter
error. For t = 30, at small d¢ the magnetization deviation is no
longer quadratic in dt and larger than the Suzuki-Trotter error
would suggests. This is a signal of the contribution of the accumu-
lated truncation error.
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Figure 6.4.: The forth-back error F'B(t) for t = 30 and ¢ = 50, as function of
dt. Here, L = 100, m = 50.

for its determination will be outlined below). The runaway time tp increases
when dt is increased: Because the total number of Suzuki-Trotter time steps
t/dt is decreased, the accumulated truncation error decreases, and the Suzuki-
Trotter error increases, hence the time tp where the accumulated truncation
error becomes of the order of the Suzuki-Trotter error is even longer. This
dt-dependence of tp is also seen in the lower part of Fig. 6.3, where the dt
dependence of the magnetization deviation is plotted at some larger time (¢ =
30) than in the upper part. ¢ = 30 is larger than the runaway time (i.e. in regime
B) for dt < 0.05, in regime A otherwise. We see indeed for dt > 0.05 (region
A) the familiar quadratic Suzuki-Trotter error dependence. For small d¢ < 0.05
(region B), the deviation is dominated by the accumulated truncation error that
increases as dt decreases. This is reflected in the growth of the magnetization
deviation as dt is decreased.

The very rapid growth of the truncation error with the number of Suzuki-Trotter
steps can also be seen from the forth-back deviation that is not susceptible to
the Suzuki-Trotter error. In Fig. 6.4, we show the forth-back deviation FB(t)
for t = 30 and ¢ = 50 as a function of the Suzuki-Trotter time step dt. FB(t)
increases as a consequence of the higher accumulation of the truncation error
with decreasing Suzuki-Trotter step size dt and hence an increasing number of
steps t/dt.

The influence of the dependence of the magnetization deviation err(t) on the
second control parameter, the number m of DMRG states, is shown in Fig.
6.5. Here err(t) is plotted for a fixed Suzuki-Trotter time step d¢ = 0.05 and
different values of m. In agreement with our previous observations, some m-
dependent “runaway time” tpg, separates two regimes: for ¢ < tp (regime A),
the deviation grows essentially linearly in time and is independent of m, for
t > tr (regime B), it suddenly starts to grow very rapidly. The onset of a
significant m-dependence has indeed been our operational definition of tr in
Fig. 6.2 and Fig. 6.5. In the inset of Fig. 6.5, ti is seen to increase roughly
linearly with growing m. As m — oo corresponds to the complete absence of
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Figure 6.5.: Magnetization deviation AM (¢) as a function of time for different
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numbers m of DMRG states. The Suzuki-Trotter time interval is
fixed at dt = 0.05. Again, two regimes can be distinguished: For
early times, for which the Suzuki-Trotter error dominates, the er-
ror is slowly growing (essentially linearly) and independent of m
(regime A); for later times, the error is entirely determined by the
truncation error, which is m-dependent and growing fast (almost
exponential up to some saturation; regime B). The transition be-
tween the two regimes occurs at a well-defined “runaway time”
tr (small squares). The inset shows a monotonic, roughly linear
dependence of tp on m.
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Figure 6.6.: The forth-back error FB(t) for L = 100, m = 40, d¢t = 0.01 and
dt = 0.05, as function of t.

the truncation error, the m-independent bottom curve of Fig. 6.5 is a measure
for the deviation due to the Suzuki-Trotter error alone and the runaway time
can be read off very precisely as the moment in time when the truncation error
starts to dominate.

That the crossover from a dominating Suzuki-Trotter error at short times and
a dominating truncation error at long times is so sharp may seem surprising
at first, but can be explained by observing that the Suzuki-Trotter error grows
only linearly in time, but the accumulated truncation error grows much faster in
time. The latter fact is shown in Fig. 6.6, where the forth-back deviation F B(t)
is plotted as a function of ¢ for some fixed m. The effects of the truncation error
are below machine precision for ¢ < 10 and then grow very rapidly in time up
to some saturation.

In Fig. 6.7 FB(t) is plotted as a function of m, at ¢ = 30 and ¢ = 50. An
approximately exponential increase of the accuracy of the method with growing
m is observed for a fixed time. Our numerical results that indicate a roughly
linear time-dependence of tg on m (inset of Fig. 6.5) are the consequence of
some balancing of very fast growth of precision with m and decay of precision
with .

Before concluding this section, let us briefly consider a number of other pos-
sible effects that might affect tr. One might alternatively conceive that the
well-defined runaway-time tp results from a sudden failure (of stochastic or of
fundamental nature) of the truncation algorithm to capture one important ba-
sis state. It can be refuted on the basis of Fig. 6.4, Fig. 6.6 and Fig. 6.7:
Such an error should manifest itself as a pronounced step in F'B(t), depending
on the time evolution having gone past ¢tz or not. However, such a step is not
observed.

tg might also be thought to reflect a fundamental DMRG limit, namely a growth
of the entanglement within the time-evolved state which the limited number of
DMRG states m is not able to capture adequately at ¢ > tr. This scenario can
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Figure 6.7.: The forth-back error F'B(t) for ¢t = 50 and ¢t = 30, as function of
m. Here, L =100, dt = 0.05.

be excluded by observing the strong dependence of tg on the number of time
steps, which this scenario cannot explain. Indeed, a study of the entanglement
entropy between the left and the right half of the chain

(6.3.1.3) Se(t) = Trplogyp,

p being the reduced density matrix of the left (or equivalently the right) half of
the chain, confirms this view: As shown in Fig. 6.8, S¢(t) is only mildly growing
with time after its first increase and is well below the maximum entanglement
entropy Smax ~ logom that DMRG can reproduce.

Therefore, we conclude that the error at short times is dominated by the Suzuki-
Trotter error, which is independent of m and approximately growing linearly
with time. At some runaway time, we observe a sharp crossover to a regime
in which the m-dependent and very rapidly growing truncation error is domi-
nating. This crossover is sharp due to drastically different growth of the two
types of errors. The runaway time thus indicates an imminent breakdown of the
method and is a good, albeit very conservative measure of available simulation
times. We expect the above error analysis for the adaptive t-DMRG using the
X X-model to be generic and also applicable for other models. The truncation
error will remain also in approaches that dispose of the Suzuki-Trotter error;
maximally reachable simulation times should therefore be roughly the same or
somewhat shorter if other approximations enhance the truncation error.

6.3.2. Optimal choice of DMRG parameters

How can the overall error — which we found to be a delicate balance between
the Suzuki-Trotter and the accumulated truncation error — be minimized and
the important runaway time be found in practice? From the above scenario
it should be expected that the truncated density matrix weight at each step
does not behave differently before or after the runaway time and hence is no
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Figure 6.8.: Entanglement entropy S, from Eq. 6.3.1.3 between the left and
the right half of the chain as function of time.

immediately useful indicator to identify the runaway time. This can in fact be
seen from Fig. 6.9, where the truncated weight is shown for the same parameters
as in Fig. 6.2. Also, it is not obvious to extract a precise relationship between
the truncation errors at each DMRG truncation and the accumulated errors.
Instead, a precise convergence analysis in m or dt seems to be more telling and
is therefore recommended.

In practice, it is desirable to choose the number of kept states m as large
as possible within the constraints regarding the available computer resources.
This choice having been made, the runaway time ¢ is determined for different
Suzuki-Trotter time steps d¢ by comparing different values of m (analog to
Fig. 6.5, but using only the knowledge about curves for different m). Only
two slightly different values of m are sufficient for that purpose. Now the
Suzuki-Trotter time step df is chosen such that the desired time ¢ is just below
tr. This way, the optimal balance between the Suzuki-Trotter error and the
truncation error is found, which corresponds in the lower part of Fig. 6.3 to
the minimum of err(¢) on the border between regime A and B: The total error
would increase at larger dt due to the Suzuki-Trotter error, and at smaller dt
due to the truncation error.

Thus, it is a good practice to choose for small times rather small values of dt
in order to minimize the Suzuki-Trotter error; for large times, it makes sense
to choose a somewhat coarser time interval, in order to push the runaway time
to as large values as possible.

In terms of numbers of time steps, we conclude from Fig. 6.2 that for the present
model and our parameters (lengths L = 100—200), the adaptive time-dependent
DMRG seems to be able to perform about 1000-5000 time steps reliably even for
m = 50, depending on the desired level of accuracy, corresponding to O(100/.J)
in “real” time. We note that this is a very small value of m by DMRG standards,
and that using an optimized code, one should be able to increase m by an order
of magnitude, and hence access much longer times (by an order of magnitude)
if so desired.
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Figure 6.9.: The lost weight in the density matrix truncation, summed over
time intervals At = 0.1, is shown for the same parameters as in
6.2. A comparison with Fig. 6.2 reveals, however, that both values
are not useful criteria for the DMRG truncation error and are in
particular not suited to reveal the runaway time tpg.

6.4. Long-time properties of the time evolution

The time evolution of the initial state ‘ini> on the X X-chain at temperature
T = 0 was examined in the long-time limit using the exact solution [118, 124].
The question we would like to address in the following is how the long-time
properties of the system changes if the spin interaction in z-direction is chosen
to be finite, i.e. J, # 0. To do this we briefly summarize the findings for the
X X-chain, before we discuss our results for finite .J,.

For the X X-chain it was found that the magnetization S.(n,t) given in Eq.
(6.2.0.4) can be described for long times in terms of a simple scaling function,
S.(n,t) = ® ([n — n]/t), where n. is the position of the chain center. The scal-
ing function is the solution of the partial differential equation 9;S,+09,5(S,) =0
with the magnetization current j(S,) = 1/mcos|mS,| which has been shown
to describe the macroscopic time evolution of the magnetization profile [118].
The characteristics, i.e. the lines of constant magnetization S,, have a slope
v = sin |7S;|. The magnetization profile ® ([n — n.]/t) has a well-defined front
at (n —n.)/t = £1, i.e. is moving outwards ballistically with velocity v = 1.
On top of this overall scaling form an additional step-like substructure arises,
which was analysed in detail in Ref. [124]. It was found that while the step
width broadens as t'/2, the step height decreases as t~/3, such that the inte-
grated transported magnetization within each step remains constant at 1. It
was suggested that each of these steps corresponds to a localized flipped spin
flowing outwards.

The X X-model, however, has several very special properties: It corresponds
to a free-fermion model and is therefore exactly solvable; it is critical; and its
total current operator J =) j, commutes with the Hamiltonian, [J, H] = 0.
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Figure 6.10.: Left: Time evolution of the absolute value of the local mag-
netization [(SZ(t))| for the X X-model as a density plot, where
the local magnetization itself is exactly antisymmetric with re-
gard to the chain center. The lines of constant-magnetization
(SZ) = £0.2,£0.4 are shown as solid lines (S, = £0.4 can hardly
be seen). As an illustration, local magnetizations (SZ(t)) for the
time slices ¢ = 0 and ¢t = 40 are shown explicitly. The symbols
mark the values (S7) = £0.2,£0.4. A step-like substructure can
be seen for t = 40 in perfect quantitative agreement with the exact
solution. Error bars are below visibility.

One may ask whether the above findings are due to any of the particularities
of the X X-model or more generic.

The adaptive t-DMRG allows us to study the long-time evolution of |ini> in
different coupling regimes of Hamiltonian (6.2.0.1). We chose two extensions of
the X X-model, namely a S?S5%- interaction, and dimerization.

S%S*-interaction In Fig. 6.10 and Fig. 6.11, we visualize the time evolution
of the local magnetization obtained from the adaptive t-DMRG in density plots,
with site index n on the x-axis, time ¢ on the y-axis. Here, the absolute value of
the magnetization is shown as a grey-scale and in lines of constant magnetization
at |<Sz>| = 0.2, 0.4. In Fig. 6.10, the relation between the density plots and
the actual magnetization profile for the X X-model is shown at two times, ¢t = 0
and t = 40. The exact solution is perfectly reproduced, including the detailed
substructure of the magnetization profile.

In Fig. 6.11, density plots for various values of .J, between 0 and 1.1 are shown.
For small J, (J, < 1), we observe ballistic transport of the magnetization. This
regime is characterized by a constant transport velocity of the magnetization,
hence the lines of constant magnetization shown in Fig. 6.11 are approximately
straight for J, < 1. The magnetization front propagation slows down as J,
increases, and almost comes to a halt when J, > 1. Although the sharpness
of this crossover at J, = 1 is surprising, its general nature can be understood
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Figure 6.11.: Density plots of the magnetization |(SZ(t))| as in Fig. 6.10, the
values of J, being (from left to right, top to bottom) 0, 0.3, 0.6,
0.9, 1.0, 1.1, and 6 = 0. For better visibility of the profile, the
grey-scale mapping of |(SZ(t))| was chosen differently in each plot
as indicated by the legends. Solid lines: lines of constant mag-
netization (S7?) = 0.2, 40.4; these allow for a direct comparison
of the magnetization transport between different J,. The ray-like
structure indicates the “carriers”.

from the limits J, < 1 and |J,| — oo: For small J, < 1 the S*S*- and
SYSY-interactions dominate. Being spin flip terms, they smear out the initially
hard step profile in the z magnetization. For large J,, on the other hand, the
S%S%-interaction dominates. This term does not delocalize the step profile, and
in the limit |J,| — oo, the initial state is even a stationary eigenstate of the
Hamiltonian.

Besides the structure of the overall front, we also observe for J, # 0 remnants of
the steplike substructure from the X X-model, individual pockets which trans-
port magnetization at velocity 1, which we call “carriers”. As J, is increased,
these carriers keep the velocity v = 1, but are increasingly damped and thus
less and less effective in transporting magnetization.

In order to put the above observations on a more quantitative footing, we plot
in Fig. 6.12 the integrated flow of magnetization through the center,

L

(6.4.0.1) AM(t):/O (Jro(t'))dt" = Z ((Sz(t)) +1/2).

n>L/2

This quantity has the advantage that unlike the lines of constant magnetization
in Fig. 6.10 and Fig. 6.11, it shows the overall spin transport without being
too much biased by single “carriers”. We observe in Fig. 6.12 a roughly linear
behaviour of AM (t) for |J,| < 1, which suggests ballistic magnetization trans-
port at least on the time scales accessible to us. As J, increases, magnetization
transport slows down until around J, = 1 the behaviour changes drastically:
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Figure 6.12.: The change in the magnetization AM (¢) is shown. The curves
are plotted in the order J, = 0; 0.3; 0.6; 0.9; 1.0; 1.1; 1.5, where
J, = 0 is the steepest. The curves J, = 0; 0.3; 0.6; 0.9 show the
same linear behaviour for the observed times, i.e. up to t = 60.

For J, > 1, AM(t) seems to saturate at a finite value, around which it oscil-
lates. Thus on the time scales accessible to us, we find a sharp crossover at
J, =1 from ballistic transport to an almost constant magnetization.

This crossover is even more clearly visible in Fig. 6.13, where we plot the
exponent a of the magnetization, AM (t) o t*, for values J, between 0 and
1.5. Here, the exponent a is close to 1 for J, < 1, confirming the roughly linear
transport, and quickly drops to zero in the regime of constant magnetization for
J, > 1. Fig. 6.14 illustrates how the exponent a was obtained, for the special
case J, = 1. Here the exponent a = 0.6 + 0.1 indicates that the magnetization
transport is clearly not ballistic anymore. In fact, we find from a scaling plot
Fig. 6.15 that for long times the magnetization collapses best for a scaling
function of the form S, (n,t) ~ ¢(n/t’6) with an uncertainty in the exponent of
approximately 0.1, indicating superdiffusive or diffusive transport in the time
range under consideration.

The proposed crossover from ballistic to almost no transport is also visible
in the expectation value of the current j, between site n and site n + 1, i.e.
jn = Jplm (<Sﬂ[ g+1>). For J, = 6 = 0, it is known [118] that the current
at the middle of the chain approaches a finite value as ¢t — oo. This is only
possible for ballistic transport. In the case of (sub- / super-) diffusive transport
or constant / oscillatory magnetization, on the other hand, the central current
must fall off to zero as the magnetization gradient flattens or must even become
negative to allow for the oscillations.

This expected behaviour is seen in Fig. 6.16, where we plot the current at the
center of the chain as a function of time for various values of J, between 0
and 1.1. We averaged the current over the 5 middle sites in order to filter out
local current oscillations. We observe that for relatively long times, the current
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Figure 6.13.: Best fit for the exponent a in AM(t) o t%, for the data shown
in Fig. 6.12 using times between ¢t = 20 and ¢t = 60. We estimate
the uncertainty in a to be of the order of 0.1 due to the limited
time available (cf. Fig. 6.14). It was not possible to fit the slow
oscillations for J, = 1.1. To the eye, however, the curve in Fig.
6.12 suggests slow oscillations around a constant value, hence we
included in the data point a = 0 for J, = 1.1 by hand (encircled).
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10

.1 /)" N L
0 0.1 1 10
time

Figure 6.14.: J, = 1: The change of the magnetization in a double logarithmic
plot with an algebraic fit.
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6.4. Long-time properties of the time evolution

Figure 6.15.: J, = 1: Collapse of magnetization for different times ¢ using the
superdiffusive scaling form (z/t%).

current on middle 5 sites

Figure 6.16.: Current, averaged over the 5 sites around the center, for various
values of J, between 0 and 1.1.
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6. Transport in spin-1/2 chains

approaches a constant value for |J.| < 1, whereas the current falls off rapidly
and then seems to exhibit damped oscillations around zero for |J,| > 1. This
strengthens our previous conclusion of a crossover from ballistic transport to a
more or less constant magnetization at |J,| = 1.

Remarkably, this crossover for the behaviour of a high-energy quantum state
{ini> is found at the value J, = 1 of the quantum phase transition from the
critical phase to the Néel anti-ferromagnetic state (see Fig. 6.1), a priori a low-
energy event. To understand the subtle connection between the time evolution
of |ini> and the phase transition, we exploit the fact that the time evolution
does not depend on the sign of J,, as discussed in Sec. 6.2. Therefore the
time evolution of the high-energy state {ini> for J, > 1 is identical to the
time evolution for J, = —J, < —1, where |ini> is a low-energy state. At the
quantum phase transition from the ferromagnetic state to the critical phase at
J. = —1 the ground state, a kink state for J, < —1 (if we impose the boundary
condition spin up on the left boundary and spin down on the right boundary)
[123], changes drastically to a state with no kink and power-law correlations for
J., > —1. Therefore, our initial state is very close to an eigenstate — the ground
state — for J, < —1, but not for J, > —1. Thus, the harsh change in the time
evolution of the high-energy state |ini> at J, = 1 can be explained by the severe
change in the ground state properties at J, = —1, and the crossover is linked
to the quantum phase transition at the value J, = —1 in the phase diagram.

Dimerization We now study the influence of a nonzero dimerization § in the
Hamiltonian (6.2.0.1.) We restrict our analysis to the case J, = 0. The dimer-
ized models can still be described in terms of the free-fermion picture and are
exactly solvable (for static properties see [121]). The current, however, is not
conserved for nonzero dimerization and the energy spectrum has a gap. This
example will shed light on the question whether the long-time limit depends on
current conservation, on the presence of a gap, or on the free-fermion property,
or another special properties of the system. As the dimerized case is also ex-
actly solvable, the results could have been obtained also analytically, for exam-
ple by utilizing the results for the Fourier transformation of the magnetization
(S2(q,t)) of Ref. [119]. We expect two obvious effects of nonzero dimerization:
Firstly, the overall front velocity should slow down, because the magnetization
now propagates faster on half of the links, but slower on the other half, the net
effect being a reduction of the total velocity. Secondly, we expect oscillations
with a period of two lattice sites. This is obvious in the limit § — 1, where each
strongly coupled pair of sites can be viewed as an almost isolated subsystem,
in which the magnetization oscillates back and forth. We expect remnants of
this behaviour also at dimerizations |§| < 1. The data for the magnetization
shown in Fig. 6.17 confirms this expectation qualitatively, but does not reveal
any other qualitative change of the long-time limit for nonzero dimerization.
For 6 = 1, the system is trivially given by isolated pairs of neighbouring sites,
therefore the propagation velocity drops to zero.

Fig. 6.18 and Fig. 6.19 reveal explicitly that no qualitative change occurs in
the transport behaviour as the dimerization is switched on: the change in mag-
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Figure 6.17.: Density plots of the magnetization (S?Z(t)), for dimerization (from
left to right, top to bottom) 6 = 0;0.2;0.4;0.6;0.8;1.0, and J, = 0.
The grey-scale mapping is different in each plot as indicated by
the legends. Solid lines: lines of constant magnetization (S7Z) =

+0.2, +0.4.
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Figure 6.18.: Change in magnetization AM (t) for different dimerizations, from
top to bottom: § = 0, 0.2, 0.4, 0.6, 0.8, 1.0.
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Figure 6.19.: Best fit for the exponent a in AM (t) o t*, for the data shown in
6.12 and for times between ¢t = 20 and ¢ = 40.

netization AM (t) still shows the linear behaviour typical of ballistic transport.
For increasing § — 1 oscillations on top of this linear behaviour arise. We find
that also for nonzero J, (not shown) switching on finite dimerization does not
change the long-time behaviour of the time evolution. In particular, the time
evolution here is drastically influenced by the transition at J, = 1 as in the case
0 = 0 discussed above.

To summarize, we find the same long-time behaviour using ‘ T...70 ... ] >
as initial state in the dimerized system — a system with gapped excitation
spectrum and which is exactly solvable — as in the system with small 575%-
interaction, |J,| < 1 — a system which is critical — whereas the behaviour
changes drastically for larger S#S?-interaction, |J,| > 1. Hence we cannot at-
tribute the ballistic transport of the magnetization to the specific properties
of the X X-model; neither to be exactly solvable, nor to the continuous spec-
trum nor to the conserved current in the X X-model. The drastic change at
|J.| = 1 stems from the special property of the initial state to resemble the
ground state in the ferromagnetic phase and the highest energy state in the
anti-ferromagnetic phase.

Finally, let us include a note on the errors in the analysis presented here. A con-
vergence analysis in m as in section 6.3 shows that the errors and the runaway
time are roughly the same as for the X X-model. The plot in Fig. 6.11 goes up
to time t = 95, whereas the runaway time ¢ty is somewhat earlier, tp ~ 60 — 80,
depending on the precise value of J,. Indeed, a convergence analysis in m
reveals that the accuracy in the central region decreases for t > tg. For dimer-
ized models the runaway time tp is somewhat shorter (between tg = 40 and
tr = 80 for m = 50, depending on the dimerization). This fact reflects the need
of keeping more states in the DMRG algorithm when dealing with inhomoge-
neous systems as already seen in chapter 3. As always, it is possible to increase
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tr by increasing m.

6.5. Conclusions

We modeled two coupled spin-polarized reservoirs by a spin-1/2 system with
the initial state ‘ T...70 ... ] > and have investigated its time evolution under
the effect of nearest-neighbour interactions with the adaptive t-DMRG.

For weak S#S*-interaction, i.e. |J,| < 1in Eq. (6.2.0.1), and arbitrary dimeriza-
tion, 0 < § < 1, we find that for long times the transport of the magnetization is
ballistic as it was found for the X X-model [118]. For stronger S*S*-interaction,
i.e. |J,| > 1, even in a homogeneous system without dimerization § = 0, the
long-time evolution is completely different. The magnetization transport is no
longer ballistic, but shows oscillatory behaviour around a constant value. Hence
our results suggest that the ballistic transport at long times is not an artefact
of the X X-model. The drastic change or the long time behaviour at the phase
transition J, = 1 can be attributed to the close resemblance of the initial state
to the ground state of the ferromagnetic phase (J, < —1).

Our error analysis for the adaptive t-DMRG using the exact solution of the X X-
model showed that for small times the error is dominated by the Suzuki-Trotter
error whereas for long times the truncation error becomes the most important.
We expect this finding to be general and hold for non-exactly solvable models
as well, and therefore it should allow to control the accuracy of the results of
adaptive t-DMRG in general models. Overall, we find this method to be very
precise at relatively long times.
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In this thesis we developed a powerful new computational tool, the adaptive
t-DMRG. It is based on the existing finite-system DMRG, modified to incorpo-
rate the TEBD algorithm. The new method is applicable to simulate the time
evolution of one-dimensional strongly correlated quantum systems. The idea of
DMRG, to construct a specially chosen reduced space of states to describe the
physics one is interested in, has been extended for time-dependent phenomena.
Unlike traditional DMRG, where the reduced state space is fixed, the adaptive
t-DMRG adapts the state space at each time step to cover the evolution of the
system. Even without attempting to reach the computationally most efficient
implementation of the new algorithm, the resulting code seems to perform sys-
tematically better than non-adaptive time-dependent DMRG codes, in which
a fixed reduced space is kept for all time steps. The new algorithm allows for
much smaller state spaces, because the state space changes in time and is well
chosen to track the actual state of the system at any given time. The new
method is also significantly more efficient than other existing embodiments of
the TEBD due to well-known DMRG techniques, for instance the way DMRG
exploits good quantum numbers. Therefore, it can describe the time evolution
of one dimensional quantum systems at very reasonable numerical cost.

We tested the applicability, efficiency, and accuracy of the new adaptive t-DMRG
algorithm addressing questions in different physical systems: a bosonic, a fermi-
onic, and a spin system. We used the spin system to perform a detailed error
analysis. Overall we saw that this method gives precise results for relatively
long times. The results of the applications presented in this work can be sum-
marized as follows:

Ultracold bosons Motivated by recent progress in producing ultracold atoms
in optical lattices, we applied the adaptive t-DMRG to analyze experimentally
realistic situations. Ultracold bosons in optical lattices can be described by
the Bose-Hubbard model. Due to the presence of a trapping potential in the
experiments, we first had to investigate the influence of such a trapping poten-
tial on the static properties of the system. In these systems a superfluid-like
and Mott-insulating-like phase can coexist. We found that in a parabolically
confined system the one-particle density-matrix, after a remarkably simple scal-
ing, can be used to characterize the occurring phases. This scaled one-particle
density matrix shows for the superfluid-like and Mott-insulating like phases
approximately the algebraic and exponential behaviour familiar from the one-
particle density-matrix in the respective phases in the homogeneous system.
We also investigated the applicability of the hydrodynamical approach to such
an inhomogeneous system and found good agreement with the DMRG results
in the limit of weak interaction. Moreover, we saw that if the experimental

120



system consists of one-dimensional tubes with a small variance in the average
filling, the half width of the observed interference peak can be used to distin-
guish the different types of states that occur experimentally. In the meantime
the experimental results observed in [79] confirmed our theoretical predictions.
Turning to time dependent phenomena, we investigated the motion of density
perturbations, which are the lowest lying excitations of the system. By compar-
ison to our numerical results, we showed that in the limit of weak interaction
the motion of relatively broad and small perturbations can be described well by
the hydrodynamical approach or the linearized Gross-Pitaevskii equation. For
intermediate interaction strength, however, the mean-field description breaks
down while the result obtained from the corresponding continuum Lieb-Liniger
model remains valid for somewhat stronger interactions. For very strong inter-
actions, we found that the sound velocity is well approximated by a mapping
onto a spinless fermionic model. The adaptive t-DMRG also allowed us to de-
termine the sound velocity in the crossover region between these two regimes,
which could not be done before. In addition, we found a linear dependence of
the velocity on the height of the perturbation amplitude. This dependence gives
rise to effects such as self steepening and shock wave formation. We have fur-
ther shown that a density wave may be detected experimentally as an additional
peak in the interference pattern.

Ultracold fermions: spin-charge separation One key feature of the physics of
one-dimensional quantum systems is the phenomenon of spin-charge separation.
At low energy the excitations of charge and spin are predicted to decouple in
one dimensional systems and propagate with different velocities. To study this
phenomenon we have performed numerical simulations of the time-evolution
of charge and spin density perturbations using the 1D Hubbard model. To
our knowledge these are the first real-time calculations showing spin-charge
separation explicitly in systems of experimentally accessible sizes. We clearly
observe the separation of spin and charge as a generic feature of 1D fermions,
far beyond the low-energy regime where a Luttinger liquid description applies.
Based on these results, we propose an experimental setup which should allow
the observation of this phenomenon in cold gases by exploiting the different
propagation behaviour of spin and charge density perturbations in the liquid
and Mott-insulating state. This proposal avoids the problems arising from
the different densities in an experimental array of parallel atomic wires. We
performed quantitative calculations of the experimental requirements which
seem to be within reach today. The different propagation behaviour can also
be used to distinguish experimentally between a Mott- and a band insulator.

Spin-1/2 chain  'We have investigated a simple model for the spin transport
between two spin polarized reservoirs a configuration of considerable interest
in spintronics. To do this we have studied the evolution of the initial state
| T...70 ... > under the effect of nearest-neighbour interactions using the
adaptive t-DMRG. For weak S?S%-interaction and arbitrary dimerization, we
find that for long times the transport of the magnetization is ballistic, similar
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to the case of the X X-model (no S#S#-interaction) [118]. This finding suggests
that the ballistic transport for long times is not an artefact of the X X-model.
For stronger S*?S*-interaction, even in a homogeneous system a completely dif-
ferent result is obtained by the adaptive t-DMRG in the long-time evolution.
The magnetization transport is no longer ballistic, but shows oscillatory be-
haviour around some constant value. We found that the change in the long
time behaviour takes place abruptly at the phase transition between the (anti-)
ferromagnetic phase and the critical phase. This drastic change can be at-
tributed to the close resemblance of the initial state to the ground state of the
ferromagnetic phase.

Error analysis Using the exact solution for the X X-model we performed a
detailed error analysis for the adaptive t-DMRG. We find that the error intro-
duced in the adaptive t-DMRG decomposes into the Suzuki-Trotter error and
the truncation error, and can be controlled well by the size of the Suzuki-Trotter
time-step and the number of states kept. Our error analysis using typical val-
ues for the Suzuki-Trotter time and the number of states further shows that
for small times the error is dominated by the Suzuki-Trotter error whereas for
long times the truncation error becomes the most important. We expect this
finding to be general and to hold also for other models not exactly solvable.

Outlook In this thesis we showed the successful application of the adaptive
t-DMRG to calculate the time-evolution of quantum states which are initially
far from equilibrium focusing on equal time correlation functions. The general-
ization of the method to problems with explicitly time-dependent Hamiltonians
and to correlations functions at different times [7] is straightforward. Thus the
advantages of the adaptive t-DMRG can be exploited for a wide range of non-
equilibrium phenomena and dynamical quantities like the dynamical structure
factor can be calculated. This might in many cases be a more efficient way
than for example using the ’dynamic DMRG’ (see reference [4] and references
therein).

So far we considered systems at zero-temperature, since in most situations
mentioned here low enough temperatures can be reached in experiments. A
generalization to the simulation of mixed states [125, 126, 127] is possible at
the cost of introducing an auxiliary space. The method then becomes applica-
ble to a large field of dissipative systems and non-dissipative systems at zero
and finite temperature. Presently very little is known about the detailed per-
formance of such generalizations, but early signs look promising. As shown
by the applications in this thesis the adaptive t-DMRG can address a number
of problems which could not be treated previously. We are confident that by
some generalizations the method can be taken beyond the field of applications
studied so far. Indeed it shows potential to address many interesting questions
and problems in the areas of condensed matter and quantum optics systems,
providing for mutual benefit and cross-fertilization to both area.
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A. Higher order Suzuki-Trotter
decompositions

To implement an nth-order Suzuki-Trotter decomposition into the adaptive
t-DMRG algorithm is very easy and at hardly any algorithmic cost. A second
order Suzuki-Trotter decomposition reads for example [41]

(AOOl) efif{dt — efif{odddt/2e*iﬁevendte*iﬁodddt/2 _|_ O ((dt)«?)) ,

where all local Hamiltonians on odd and even bonds have been grouped into
H,44 and H’even, respectively. At first sight this seems to indicate that at each
Suzuki-Trotter time step three (instead of two) moves (“sweeps”) through the
chain have to be carried out. However, in many applications at the end of
most time steps, the Hamiltonian does not change, such that for almost all
time steps, we can contract the second e~ Hoaadt/2 from the previous and the
first e~10aadt/2 from the current time step to a standard e Hodddt time step.
Hence, we incur almost no algorithmic cost. This is also standard practice in
Quantum Monte Carlo [128]; following Quantum Monte Carlo, second order

Suzuki-Trotter evolution is set up as follows:

1. Start with a half-time step e~ 1Hodadt/2,

2. Carry out successive time steps e Hevendt and e=1Hodadt,

3. At measuring times, measure expectation values before a e Hoaadt time
step, and again before a time step e Hevendt and form the average of the

two values as the outcome of the measurement.

4. At times when the Hamiltonian changes, do not contract two half-time
steps into one time step.

In this way, additional algorithmic cost is only incurred at the (in many appli-
cations rare) times when the Hamiltonian changes while strongly reducing the
Suzuki-Trotter decomposition error.

Even more precise is the fourth order Suzuki-Trotter decomposition [129, 130]
(we skip the third order here since this is as costly as the fourth order):

3 1
(AOOZ) efint ~ H efiajHodddtefiijevendt H efiajHodddtefiijevendt

j=1 7j=3

with ay = Bo¥I9 g — 20-TVI9 0 (1 94; —2a,)/2, by = 2/5, by = —1/10,

and by = (1 — 2b; — 2by)/2. Therefore, eleven sweeps have to be performed
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per Suzuki-Trotter time step, but since accuracy grows with the fourth power
and not only quadratically as for the second order decomposition, the number
of time steps, which have to be performed to reach the demanded accuracy,
decreases considerably.
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B. Ultracold atoms confined in optical
lattices

In this appendix the principle by which optical lattices are generated is ex-
plained.

B.1. Interaction of neutral atoms with light fields

The interaction of neutral atoms with light fields consists of two parts, a con-
servative and a dissipative part [131]. The dissipative contribution is caused
by the absorption of a photon by the atom and the subsequent spontaneous
emissions. On this principle the widely used laser cooling is based. The other
contribution which is used for the realization of optical lattices, stems from the
fact that the light field induces a dipole moment in the atom which results in a
shift of the energy levels, called the ac-Stark shift.

ac-Stark shift Let us assume that the light field couples only two levels of the
atom, say ‘g> and |e>. If these levels have different parity a dipole moment can
be induced by an external light field E, i.e. in general <g‘Hdip|e> = <g|dE|e> # 0,
where d = —er is the dipole moment of the atom. This coupling between the
light field and the atom can cause a shift in the energy spectrum of the system.
In the following we derive this shift in the so called dressed atom picture in
which the atom is coupled to a quantized light field, i.e. Highy = hwr, (ata+ %)
The system of the decoupled atom and light H = Hgatom + Hijgns is taken as
a starting point and the atom-light interaction is considered as a perturbation
which shifts the energy levels of the system. The energy levels of the decoupled
atom-light system are depicted in Fig. (B.1). The bare levels of the atom are
shifted by the energy quantum hwy, for each light quantum present. Only levels
like g,n> and |e,n — 1> [ellipse in Fig. B.1] are coupled by the atom-light
interaction. Here g corresponds to the first level and e to the second level of
the bare atom and n labels the number of light quanta. The shift of these levels
can be determined in second order perturbation theory and is simply given by

‘<e,n—1‘d
A

2
(B.1.0.1) AE,,_ =+ 9:m)| B2

The + and — label the two states | g, n> and |e,n — 1>, respectively. A denotes
the energy difference between these two unperturbed states which is given by
the detuning of the laser, i.e. Ey — E_ = nhw;, + Eg — (n — 1)hw; — E. =
hA. Using that the laser intensity is given by I(r) = %606|E(I‘)’2 and that
the on-resonance damping rate I' is related to the dipole matrix element by
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Figure B.1.: Energy levels for an atom and a quantized light field. The atomic
levels are shifted by Aw;, times the number of light quanta present.
One level pair coupled by the atom-light interaction is indicated.

3

I = #00&3 ‘<e,n — 1|d|g,n> 2, hwy is the energy difference between the levels

in question, the shift can be written as

3nc? T
B.1.0.2 AE /,_(r)=®*——%— .
(3.102) /-0) = g 2 10)
The resulting effective dipole potential acting on the atom, which is mainly in
the ground state, is dominated by the light shift to the ground state energy,
i.e. Vgip(r) = AE(r) and its magnitude is proportional to the intensity of the
light field.

Multi-level atoms In the case of multi-level atoms like the experimentally
widely used 8"Rb isotope transitions to all excited states should be taken into
account. In particular in the case of 8"Rb the Dy and D; line [47] should be
considered. But if the laser detuning is large compared to the fine structure
splitting and the polarization of the laser is linear, the effective dipole potential
can again be approximated by the two level result with a detuning relative to
the center of the Dy and D; line.

B.2. Optical lattices

The proportionality of the effective dipole potential and the laser intensity can
be used to create spatially varying potential landscapes. In the experiments
[1, 50] simple cubic lattices were created by superimposing three standing waves
orthogonal to each other. The laser beams used were far red detuned. Addi-
tionally to the periodic potential, in experiments the Gaussian intensity profile
of the red-detuned lasers create a trapping potential. The effective dipole po-
tential close to the trap center can be approximated as a contribution of the
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periodic lattice potential and an additional external harmonic confinement:

(B.2.0.3) V(r) = Viat(r) + Viap(r) with
(B.2.0.4)  Wiu(r) = Vpsin®(kx) + V,sin®(ky) + Vs sin?(kz) and
M
(B.2.0.5) Vigap(r) = 7(%263:2 + waQ + w?2?).
Here M is the mass of the atoms, V, , . are the potential depths of the three
superimposed standing waves. In the case of an isotropic lattice we denote it by
Vo. The parameter w; , . are the effective trapping frequencies of the external
harmonic confinement given by
4 (v, V,
w2 =— <—y + —z> and cycl. perm. for w

x 2 2
M \wy  wz

2
y7Z.

The period of the lattice is determined by the absolute value of the wave length
A and the wave vector k of the laser light by a = A\/2 = 7k, respectively.
In the experiments by Greiner et al. [1] the period of the optical lattice is
approximately a = A/2 = (850/2)nm. The height V, , . can experimentally be
tuned very well by the intensity of the laser light. The potential depth of an
optical lattice which is created by a far detuned laser can be evaluated by:

2M 3w 2PT
B.2.0.6 V, E, =
( ) v/ Br h2k2 2w8’ A?TU}(Q]

Here P is the total power of the laser light and FE, = h2k?/2M the recoil energy.
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B.3. Theoretical description of bosons in optical lattices

In this appendix the description of the ultracold bosons in an optical lattice by
a lattice model, the Bose-Hubbard model is derived.

B.3.1. Influence of periodic structures

In the case of a periodic potential an energy band structure emerges. One way

to determine this energy bands is to use Bloch’s theorem which states that the
2

eigenstates of the Hamiltonian Hpepiodic = 3= + Viat() can be written as a

product of a plane wave and a function with the lattice periodicity, qbgn) (x) =
eiqmugn)(x), where ¢ = i—’;j with j = —=L/2,...,0,...,L/2 — 1 (L is the even
number of the sites in the lattice) is called the quasi-momentum and is chosen
to lie in the first Brillouin zone. The quantum number n counts the energy
bands. The functions u((ln) (x) are periodic functions with lattice period a and
obey the equation

(B3.1.1) (5 0+ 1° + Vi) ) () = B 0)
The energy bands are now obtained solving these equations in the Fourier space.
Examples for different energy structures are shown in Fig. B.2 for different
heights of the lattice potential. If the lattice depth vanishes (Fig. B.2 (a)), the
energy ‘bands’ correspond to the parabolic energy of free particles, if the lattice
becomes deeper (Fig. B.2 (b)) band gaps open. For deep lattices the lowest
band becomes flat and the width of the first band gap corresponds to the level
spacing hw one would get assuming a harmonic potential V = %uﬂ (x— CL‘]')Q at
each lattice site. In contrast to the completely delocalized Bloch functions qS((In)
a set of wave functions which are maximally localized at the lattice sites x; can

be defined by
(B.3.1.2) w( — ;) = % Zq: 1971 6 (z).

Here Z is the normalization. These functions are called Wannier functions.
Generally, the Wannier functions show the behaviour one expects for particles
in the lattice in the sense that they become stronger localized as the lattice
potential becomes deeper. Therefore, they offer an ideal tool for the discussion
of phenomena in which the spatial localization in the periodic potential plays
an important role.

B.3.2. Bose-Hubbard model

If the motion of the atoms is confined to the lowest energy band, it is favorable
to work in the basis of Wannier functions wqg of the lowest band neglecting
higher bands. The bosonic field operators can be expanded in this basis:

(B.3.2.1) V() =Y wolx — )b,
j
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Figure B.2.:
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The different energy bands are shown without (Vp = 0) and with
(Vo = 20) a lattice potential.

where b; is the bosonic annihilation operator on site j. In the following the index
0 for the lowest band will be skipped. Inserting the expansion Eq. (B.3.2.1)
into the Hamiltonian (3.2.0.1) one obtains the discrete lattice model:

(B.3.2.2) H = Hkin+Hint+Hpot with
A o 1 ot
Hin = Zijjbjbj, Hmt—2~Z Us;abib;bjby,  and
35J 35350
Hyor = > eblb,.
J
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The coefficients are given by the expressions
3 1 s ~
Jii = /d zw'(r — ;) (Wv + stt(@) w(z —xj) for j#j

—h?
€j = —/d?’ﬂ: U]*(‘T—l‘]) <Wv2+‘/ext(m)> ’U)(SL'—.'EJ) and

Usin = 9 / A3z w*(z — z3)w*(z — zpw(z — zj)w(z — z;)

The main contribution to the kinetic energy is given by the terms with ‘ J— ﬂ =
1, whereas in the onsite interaction term the most important term is the term
where all the creation and annihilation operators are taken on the same site
(see below). Neglecting all other terms, the continuous Hamiltonian (3.2.0.1)
reduces to the Bose-Hubbard Hamiltonian [46]:

1 IR A
(B.3.2.3> H=- Z Jj(b;r-ijrl + h.C.) + 5 Z anj(nj - 1) + Zf:‘jnj,
J J J

where b;[ and b; are the bosonic creation and annihilation operators and 7n; =

b;r-bj is the number operator on site j. This Hamiltonian is the simplest one
describing the interplay between the kinetic energy (first term) and the on-
site interaction of the atoms (second term). In the following we discuss the
contribution of the different terms in more detail.
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Trapping potential The contribution of the trapping potential can be approx-
imated by

/d?’x w (@ — 23)Virap () w(z — ;) = 65 Virap(z;).

Here we used the fact that the trapping potential varies slowly compared to the
periodicity of the system and that the Wannier functions are localized at the
lattice sites and orthonormal.

Hopping coefficients The hopping elements can be related to the energy
eigenvalues of the system. This can directly be seen expressing the Wannier
functions by Bloch functions

1 : s 1 p2
3 yo—ig'z;
Jpj = =0piVarap(ey + 5 [ @ DTN @) (St Ve (@) ) 6y (2)
; m
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Figure B.3.: The dependence of the hopping elements J on the height of the
lattice potential Vj is shown for different distances |j — j'| on a
logarithmic scale.

In Fig. B.3 the dependence of the hopping elements on the height of the lat-
tice potential is shown for different distances |j" — j|. The nearest-neighbour
hopping element, i.e. |j' — j| = 1, is found to be an order of magnitude larger
than the remaining except at very small lattice potentials. Therefore, only the
nearest-neighbour hopping term is considered in the Hamiltonian (3.2.0.2) with
Jj = Jjjt+1. For a homogeneous system and Vy > E,, an analytical approx-
imation of the parameter J can be obtained from the asymptotic solutions of
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the Mathieu equation [132] for the band gap

(B.3.2.4) J/E, = % (%) ! exp(—2v/Vo/Ey)

The exact numerical solution is compared to this approximation in Fig. B.4.
0.25 4

02k e numerical data
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— i

0.15 11\

JIE

011 "

0.05 |

5 10 15 20 25 30
VB,

Figure B.4.: Comparison of numerical and analytical result for J.

Interaction terms For the interaction term the term in which all the creation
and annihilation operators are taken on the same site is the most important,
due to the localization of the Wannier functions at the lattice sites:

Uj = Ujjjj = g/d?’ﬁv w(z —z;)[*

The parameter U can be evaluated numerically. An analytical approximation
is obtained, if the form of the Wannier functions is approximated by a Gaussian
function. This can certainly not describe the decay of the Wannier functions
at large = correctly, but gives a reasonable approximation for the interaction
parameter U. The difference between both results is negligible if the depen-
dence of the ratio U/J on the lattice height is considered, since J depends
exponentially on the lattice height.
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