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We perform a nonperturbative analysis of a charge qubit in a double-quantum-dot structure coupled to its
detector. We show that a strong detector-dot interaction tends to slow down and halt coherent oscillations. The
transitions to a classical and a low-temperature quantum overdamping �Zeno� regime are studied. In the latter,
the physics of the dissipative phase transition competes with the effective shot noise.

DOI: 10.1103/PhysRevB.75.165308 PACS number�s�: 73.21.La, 72.70.�m, 03.67.Lx, 05.40.Ca

The study of fluctuations and noise provides deep insights
into quantum processes in systems with many degrees of
freedom. If coupled to a few-level system such as a qubit,
fluctuations usually lead to destabilization of general qubit
states and induce decoherence and energy relaxation. One
important manifestation is the back-action of detection on
qubits.1 This topic has been extensively studied in the regime
of weak coupling between qubit and noise source.2 It has
been shown that the qubit dephases into a mixture of qubit
eigenstates �dephasing�, whose classical probabilities ther-
malize to the noise temperature at a longer time scale. An-
other recent work3 looked into a strong-coupling situation in
a single degree of freedom between a driven qubit and its
detector, which in turn has been weakly coupled to a heat
bath. Unlike this setup, we will examine in the following a
qubit that is uniformly strongly coupled to a nonequilibrium
heat bath. Mesoscopic charge detectors such as quantum
point contacts4 �QPC’s� and radio-frequency single electron
transistors5 �rf-SET’s�, whose low-temperature noise is shot
noise,6,7 are particular powerful detectors as they provide
high resolution8 and potentially reach the quantum limit. A
particular attractive regime for qubit applications is the quan-
tum nondemolition �QND� regime, realized if the qubit
Hamiltonian and the qubit-detector coupling commute.1,9

We study a quantum point contact potentially strongly
coupled to the coordinate �left or right� of a double-quantum-
dot charge qubit10,11 by a nonperturbative approach involving
Gaussian and noninteracting blip approximations. We ana-
lyze the qubit at the charge degeneracy point, where the two
lowest-energy eigenstates are delocalized between the qubits.
In the weak-coupling regime, low-temperature relaxation
would thus always delocalize charge. We show that, in strong
coupling, the qubit state gets localized in one of the dots.
Localization is manifest by a suppression of both the coher-
ent oscillations and the incoherent tunneling rate. This
“freezing” of the state also occurs at high bias and can, e.g.,
lock an excited state. Thus, in the strong-coupling regime,
the environment naturally pushes the effective dynamics
naturally to the QND limit even though the bare Hamiltonian
is not QND, because the qubit Hamiltonian and the qubit-
detector coupling do not commute in the model under con-
sideration. With QND dynamics, we refer to the case of no
error-inducing transitions between the qubit eigenstates and
no oscillations of the measured observable even if the mea-
surement takes significant time—both satisfy the require-
ment that the measurement can be repeated over and over

without deteriorating the result. We point out the analogy of
this physics to the case of the dissipative phase transition in
oscillator bath models,12 which in the QPC competes with
the nonequilibrium induced by the voltage driving the shot
noise.

We consider the case of a degenerate two-state system
�TSS�, realized by the charge states in a double quantum-dot-
structure �see Fig. 1�. For this approximation to hold, all
energies quoted henceforth should be lower than the double-
dot charging energy. These charge states can be read out by
the current through a nearby quantum point contact. The
Hamiltonian for the TSS with time-dependent fluctuation
�̃�t� reads

Hsys =
�

2
��̃�t� �

� − �̃�t�
� → H̃sys =

��

2
� 0 ei�

e−i� 0
� . �1�

In the last step of Eq. �1�, we applied a Polaron
transformation13 introducing the fluctuating phase �
=�tdt��̃�t��, with �̃�t�=�+���t�, for the tunneling matrix el-
ements in the qubit. The microscopic foundation of the noise
term ���t� for a QPC is given in Refs. 6 and 14 and for an
SET in Refs. 15–18.

Without loss of generality, we assume ��̂z�0��=1. We can
now formally solve the Liouville equation. The expectation
value of �̂z, the difference of occupation probabilities of the
dots, satisfies a closed equation

��̇̂z�t�� = − �2�
0

t

dt� cos	��t − t��
Re	�ei���t�e−i���t�����̂z�t���


= − �2�
0

t

dt� cos	��t − t��
eJ�t−t����̂z�t��� , �2�

where the first step of Eq. �2� is formally exact and the sec-
ond step is equivalent to the noninteracting blip approxima-

FIG. 1. �Color online� Schematic view of the double-dot system
analyzed; see, e.g., Refs. 4 and 5. The QPC and rf-SET detectors
can be used alternatively; both options are discussed in the paper.
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tion �NIBA� usually obtained by path integrals.19,20 This au-
tomatically includes a Gaussian approximation to the shot
noise.6 This approach is nonperturbative in � and a good
approximation in the two cases �=0 and ������.

We start with the charge-degeneracy case �=0. Here, we
can solve Eq. �2� in Laplace space and find

L	��̂z�t��
 =
1

s + 	�s�
, �3�

with the Laplace-transformed self-energy 	�s�
=�2�0


dte−steJ�t�. The phase correlation function J�t� as seen
by the dots reads6

J�t� =
2�

�RK
�

−





d�
�Z����2

�2 SI����ei�t − 1� , �4�

where SI��� is the full current noise in the QPC that for
sufficient environmental impedance greater than RK is given6

by

SI��� =
4

RK
�
m

N

Dm�1 − Dm�
 �� + eV

1 − e−
���+eV� +
�� − eV

1 − e−
���−eV��
+

4

RK
�
m

N

Dm
2 2��

1 − e−
�� �5�

and the transimpedance Z��� between qubit and point con-
tact. In Eq. �5�, V is the bias voltage of the QPC, RK is the
quantum resistance, and Dm is the transmission eigenvalue of
the mth conductance channel. We observe that the finite volt-
age enhances the noise at low frequencies ����V for both
signs of �, which can be interpreted as the occurence of hot
electrons.

Semiclassical limit: We now discuss the resulting dynam-
ics in a number of limiting cases. We start by first taking the
limit �→0. This corresponds to �� ,���eV ,kBT; i.e., the
qubit probes the shot noise at energy scales much lower than
its internal ones. Here, the noise expression 	Eq. �5�
 be-
comes frequency independent.7 We can then compute the
semiclassical spectral function Jc�t�=−�ct. Here, we have as-
sumed a frequency-independent transimpedance controlled
by a dimensionless parameter �, �Z����2��2RK

2 and �c

=2�2�2RKSI�0� /� with SI�0�= 4
RK

�m
NDm�1−Dm�eV coth� 
eV

2
�

+ 4
RK

�m
NDm

2 2

 ·SI�0� represents the shot noise of the QPC in the

low-frequency regime.21 The self-energy is then readily cal-
culated and analytical, so we can go back from Laplace to
real time and obtain

��̂z�t�� = �cos��eff,ct� +
�c

2�eff,c
sin��eff,ct��e−��c/2�t, �6�

where �eff,c=��2−
�c

2

4 . We observe that the coherent oscilla-
tions of the qubit decay on a time scale �c

−1 and get slowed
down. At �c=2�, the damping becomes critical and the os-
cillations disappear, ending up with a purely exponential
overdamped regime at �c�2�. This crossover corresponds
to the classical overdamping of a harmonic oscillator. Even
in the overdamped regime, the qubit decays exponentially to
��̂z�t��→0 at long times; e.g., it gets completely mixed by

the shot noise, whose noise temperature is high, kBTnoise
�max�eV ,kBT����. Note that it is possible to discuss the
overdamped regime, where �c is not a small parameter and
our theory is also non-Markovian 	see Eq. �2�
, capturing the
necessary time correlations arising in strong coupling. Addi-
tionally, changes in the QPC transmissions �and therefore the
Fano factor� do not play any role other than entering the total
noise level.

Quantum limit: Now, we let T→0 and leave � arbitrary.
SI��� reads in this limit

SI��� =
4

RK
��

m

N

Dm�1 − Dm����� + eV����� + eV�

+ ��� − eV����� − eV�� + �
m

N

Dm
2 2�������� .

�7�

This shape is dominated by two terms, which resemble
the Ohmic spectrum at low T, S������� with shifted ori-
gins of energy. For computing the quantum correlation func-
tion Jq�t�, an ultraviolet cutoff �c has to be introduced, which
physically originates either from the finite bandwidth of the
electronic bands in the microscopic Hamiltonian or from the
high-frequency limitations of the transimpedance Z���. We
end up with the long-time limit for Jq�t� applicable at ��
�eV:

Jq�t� = − �1 + �2 ln�� eV

�
�F 1

�c
tF−1� − �qt + i�3. �8�

This holds for any number of channels. for simplicity we
concentrate henceforth on the single-channel case. The Fano
factor then is given by F=1−D. Here, we can introduce �2
=g=16��2D, the dimensionless conductance as seen by the
qubit, �1=g�D, �3=�g /2 and �q=�g�1−D�eV /2�. The re-
sulting self-energy is now nonanalytical:

	�s� = �eff
2 �s + �q�gD−1

� eV

�
�gD ei�g/2, �9�

where we have introduced the effective tunnel splitting �eff
2

=�2e−�gD� eV
��c

�g
��−gD+1�. In our regime �c�eV /��1/ t

��, this expression resembles the renormalized � of the
spin-boson model19 and we have �eff��. This is a sign of
massive entanglement between system and detector.22,23 Note
that similar to the adiabatic scaling treatment in Ref. 12, the
NIBA is compatible with forming entangled states between
system and bath. This has been numerically confirmed, for
the spin-boson model, in Ref. 22. An elegant approach to this
system reflecting entanglement and use of the measurement
result in the perturbative regime has been given in Ref. 24.
The main difference in our shot noise case is that the infrared
cutoff entering the renormalization and controlling the final
expressions is V instead of �. In particular, �eff grows with
eV, which indicates that the hot electrons in nonequilibrium
shot noise compete with the spin-boson-like suppression.
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The self-energy is analytical only at F=1, which corre-
sponds to the no-noise case D=0. Due to the generally
nonanalytic self-energy, it is difficult to compute the full
real-time dynamics by back-transformation to the time do-
main. The structure of the result will be ��̂z�t��= Pcut�t�
+ Pcoh�t�+ Pincoh�t�.19 For our case of �=0, there is no inco-
herent exponential decay Pincoh. Pcut is a nonexponential
branch cut contribution. In the following, we concentrate on
the coherent part Pcoh�t�, given through the poles si

=−�eff± i�eff of 	 with finite imaginary part, and hence this
leads to damped harmonic oscillations with frequency �eff
and decay rate �eff.

Close to D=0, we can characterize these poles perturba-
tively. We find a renormalized oscillation frequency �eff:

namely, �eff=Re	��p
2�1+ i�

2 g�−
�q

2

4

 whereas �eff

=
�q

2 � Im	��p
2�1+ i�

2 g�−
�q

2

4

. Here, �p

2 is defined as �p
2

=�2	1+g ln� eV
��c

�
.
For arbitrary F or D, we can solve the pole equation nu-

merically: see Fig. 2. With the numerical results from Fig. 2,
one can again calculate the Laplace back-transformation,

where the two residues of the kind a−1=
esit�si+�q�

si�2−gD�+�q
have to be

summed up. This leads finally again to decaying oscillations
as already mentioned above. Note that the strong coupling
does not only influence the dynamics in the form of a large
decay rate but also through a strong renormalization of the
effective tunnel coupling �eff. In fact, we will discuss later in
the quantum regime how the decay rate becomes small and
can even vanish even though the qubit-detector coupling is
strong.

We see that at sufficiently strong coupling to the detector,
a finite Fano factor can lead to a complete suppression of the
coherent oscillations, whereas the decay rate increases. Both
these tendencies together show that a finite Fano factor
brings the system closer to charge localization.

In fact, for sufficient damping, we can tune the tunneling
frequency all the way to zero by increasing D. On the other
hand, also �eff can become very small—in these points the

detector completely localizes the particle up to nonexponen-
tial contributions. At other values of D, unlike the dissipative
phase transition in the spin-boson model, the hot electrons
driving the shot noise again drive the relaxation rate close to
its bare value, and thus this resembles the classical over-
damping case.

This scenario is not limited to �=0. The NIBA permits
one to reliably study the opposite regime ��� as well. As
already shown in Refs. 12 and 25, the resulting dynamics is
dominated by incoherent exponential relaxation dominating
over Pcoh and Pcut. The relaxation rate is

�r = 2 Re		�i� + 0�
 = 2�eff
2 Re� �i� + �q�gD−1

�eV�gD ei�g/2� .

�10�

This again demonstrates the slowdown �through �eff� of the
decay to the other dot due to the interaction with the detector.
Notably, this rate does not display standard detailed balance
at T=0; rather, around �=0, the rate is smeared out on a
scale of �q, reflecting the role of the nonequilibrium shot
noise temperature. We have plotted this result in Fig. 3.

Another view of this is that the effective size of the non-
commuting term between qubit and detector, given by �eff, is
reduced; hence, the strong interaction brings the effective
Hamiltonian closer to a QND situation.

On the other hand, such dynamics is known as the quan-
tum Zeno effect. Note that unlike standard derivations,1,9,26

we have derived our result in a nonperturbative way which is
consistent with the necessary strong coupling and which re-
tains the non-Markovian structure. The main difference be-
tween our work and the already mentioned references1,9,26 is
that in our self-energy 	�s� also higher orders in the cou-
pling �between qubit and detector� are included.

Summarizing the QPC results, we can observe that, on the
one hand, the system shows traces of the physics of
environment-induced localization, which competes with

FIG. 2. �Color online� Quantum limit: imaginary parts of the
numerically determined poles as a function of the QPC transmission
D. The other parameters are eV=102�� and �c=1012�. Inset: real
parts of the poles as a function of the QPC transmission D.

FIG. 3. �Color online� Quantum limit: relaxation rate �r as a
function of the QPC transmission D. The other parameters are �
=10�, �=1.524�109 1/s, eV=102��, and �c=1012�. Inset: re-
laxation rate �r as a function of the qubit bias �. Other parameters
as above, but with D=0.5.
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classical overdamping by effectively “hot” electrons at finite
voltage and somewhat reinforced at finite Fano factor. This
can be understood as follows: the dissipative phase transition
occurs when the environmental noise is highly asymmetric in
frequency and when the full bandwidth plays a role. At high
voltage, the asymmetry of the shot noise spectrum is
reduced.6 In fact, the �qt contribution in the correlation func-
tion Jq�t� resembles the finite temperature term in the corre-
lation function of the Ohmic spin-boson model—both terms
originate from the zero-frequency part of the noise.

A similar analysis on back-action by strong coupling of a
QPC to a quantum device—there an Aharonov-Bohm
experiment27—has been done in Ref. 28. That work concen-
trates on a stationary situation and weak hopping into the
dot, whereas in our case the dots are not connected to leads.
The interdot interaction, however, is strong, and we concen-
trate on the real-time dynamics.

These results can be extended to shot noise sources other
than QPC’s. In fact, it may today be quite challenging to
reach � values high enough, such that slowdown and local-
ization can be observed, when the noise source has only a
few open channels. An attractive alternative is given by read-
out using metallic SET’s fabricated on another sample layer;5

see Fig. 1. In these devices, there are a number of rather
opaque conductance channels.

In that case, we use the expression15–18 of the voltage
noise of the SET �only valid for small frequencies�:

SV��,�I� = 4
ESET

2

e2

4�I

�2 + 16�I
2 , �11�

where ESET= e2

2CSET
is the charging energy of the SET and

�I= I /e is the tunneling rate through the SET. Then the final
result for ��̂z�t�� is again the same as in Eq. �6�. The differ-

ence, of course, is that �c is now defined as �c=
2�2�2ESET

2

�RKe2�I
. The

full quantum mechanical analysis in the low-temperature re-
gime works along the same lines as the QPC case but goes
beyond the scope of this article.

We performed a nonperturbative analysis of the quantum
dynamics of a double-quantum-dot coupled to shot noise. We
analyzed the crossover from underdamped to overdamped
oscillations in the classical case. In the quantum case, we
demonstrated that at strong coupling the oscillations show
the same behavior, competing with a critical slowdown simi-
lar to the dissipative phase transition. This can be interpreted
as the onset of a Zeno effect.
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