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Measuring Non-Gaussian Fluctuations through Incoherent Cooper-Pair Current
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We study a Josephson junction (JJ) in the regime of incoherent Cooper-pair tunneling, capacitively
coupled to a nonequilibrium noise source. The current-voltage (I-V) characteristics of the JJ are
sensitive to the excess voltage fluctuations in the source, and can thus be used for wideband noise
detection. Under weak driving, the odd part of the I-V can be related to the second cumulant of noise,
whereas the even part is due to the third cumulant. After calibration, one can measure the Fano factors
for the noise source, and get information about the frequency dependence of the noise.
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FIG. 1. Noise measurement circuit. The voltage noise at point
A, driven with VN , induces voltage noise at point B through the
capacitor Cm and in this way affects JJ. JJ is in a highly
resistive environment, R> RQ � h=�4e2�. Fa;bn are the Fano
factors for the nth cumulants in the noise source. The noise is
read by investigating Im�Vm�, as explained in the text.
The current in electric circuits fluctuates in time, even
when driven with a constant voltage. At equilibrium or in
large conductors, this current noise can be quantified
using the fluctuation-dissipation theorem (FDT), which
relates the magnitude of the fluctuations to the tempera-
ture T and the impedance of the circuit. Moreover, in
large wires, the current statistics is described by a
Gaussian probability density which has only two nonzero
cumulants, the average current and noise power. This
situation changes for small, mesoscopic-scale resistors
exhibiting shot noise [1,2]: The noise power at low fre-
quencies is proportional to the average current. Further,
the statistics of the transmitted charge is no longer
Gaussian: higher cumulants are finite, and the probability
density is ‘‘skew,’’ i.e., odd cumulants do not vanish.

For small samples, the frequency scale for the shot
noise is given by the voltage, eV= �h. Shot noise has been
measured at low frequencies in many types of mesoscopic
structures (see the references in [1,2]). However, there are
only a few direct measurements of shot noise at high
frequencies !� eV= �h [3], and only one of the higher
(than second) cumulants [4] (at !� eV= �h). One of the
main reasons for the shortage of such measurements is
the difficulty to couple the fluctuations to the detector at
high frequencies, or to devise wideband detection, as
required for the third and higher cumulants [4,5].

In this Letter, we analyze an on-chip detector of volt-
age fluctuations, based on capacitively coupling a noise
source to a small Josephson junction (JJ) in Coulomb-
blockade [6]. There, the current can flow only if the
environmental fluctuations provide the necessary energy
to cross the blockade. In this way, the current through the
small JJ provides detailed information of the voltage
fluctuations in the source over a wide bandwidth. This
information includes effects of a non-Gaussian (‘‘skew’’)
environment on a quantum system. For the measurement
of the second cumulant, its characteristics compare well
with the other suggested on-chip detectors [7–11], based
04=93(24)=247005(4)$22.50 24700
on various mesoscopic devices and techniques. The de-
tectors proposed in [10,11] detect the non-Gaussian char-
acter of the noise, but mapping the output back to the
different cumulants has not been carried out. The on-chip
scheme presented here is the first to directly measure the
third cumulant of fluctuations. In the Gaussian regime,
our analysis of the noise detection resembles that of
Ref. [8], but probes the noise at low measurement
voltages.

We investigate the system depicted in Fig. 1. The part
indicated by the dashed lines represents the noise source,
and the other part is the detector. The excess voltage noise
at point A, induced by driving the source (VN � 0), gives
rise to voltage noise at point B, and the latter can be read
by examining the current Im�Vm�. There is also another
source of noise: the equilibrium fluctuations in the whole
circuit, described by FDT. As shown below, the two types
of fluctuations can be treated separately.

In the regime of incoherent Cooper-pair tunneling, the
I-V characteristics of the detector can be described by a
perturbation theory in the Josephson coupling energy EJ.
This yields for the current through JJ [12,13]
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Im�Vm� �
�eE2

J

�h
�P��t��2eVm� � P���t���2eVm��: (1)

Here P��t��E� 	
R
dteiEt= �hhei��t�e�i��0�i=�2� �h� describes

the Cooper-pair tunneling through the JJ due to the
fluctuations ��t� of the phase difference across the junc-
tion. This result makes no assumptions about the form of
the phase fluctuations - only that they do not modify EJ
itself. As these fluctuations are connected to the fluctua-
tions �VB�t� of the voltage over the JJ via the Josephson
relation, ��t� � ��0� � 2e

R
t
0 dt

0�VB�t0�= �h, Im�Vm� pro-
vides information on these fluctuations. Note that,
although the coupling capacitance acts as a high-pass
filter for voltage noise, the conversion to phase noise
allows to transmit noise down to low frequencies. This
way the device can be operated nonhysteretically [10] and
in Coulomb-blockade.

One can identify P��E� as the Fourier transform of the
moment-generating function ��� � � he ��t�e� ��0�i of
��t� ���0�, evaluated at  � i. This can be expanded
in the cumulants C�n �t�, ��� � � exp� 2=�2!�C�2 �t� �

 3=�3!�C�3 �t� � � � ��. These cumulants are defined such
that ��t� is ordered before ��0� in the expectation value.
The expansion defines a function J��t� � ln����i�� �
J2�t� � J3�t� � � � � , where for stationary fluctuations
J2�t� � h���t� ���0����0�i and J3�t� �

i
2 h��t����t��

��0����0�i, etc. In the Gaussian limit, J��t� � J���t� �
J2�t� coincides with that applied in Ref. [12].

The odd cumulants of the fluctuations in the source
break the symmetry between the positive and the negative
Vm. To separate the non-Gaussian effects, we consider the
even and odd parts of the I-V, IS=A�Vm� 	 �Im�Vm� �
Im��Vm��=2. The odd part IA�Vm� describes the general
behavior mostly due to the even cumulants [cf. Eq. (6)
below], and the even part IS�Vm� [Eq. (7)] responds to the
odd cumulants, vanishing if C2n�1 � 0. We show below
that tuning the voltage Vm and measuring IA=S�Vm� gives
access to the frequency dependence of the lowest cumu-
lants at large bandwidths.

We have to take the additional Gaussian fluctuations
JD��t� from the total impedance of the setup into account,
as they will inevitably influence the measurement. Thus,
we split the fluctuations as parts J��t� � JD��t� � JS��t�
with the excess fluctuations due to the driven source
denoted by JS��t�. The latter includes the non-Gaussian
effects for which JS�� � JS�. We also define PD=S� �E� 	R
dteiEt= �hheJ

D=S
� �t�i=�2� �h�. Using detailed balance [12], we

obtain for the current ID�Vm� 	 Im�Vm; J
S
� � 0� �

�eE2
JfP

D
��2eVm��1� exp��#2eVm��g= �h. In the presence

of the excess noise, the current is given by

Im �

� ID�
E
2e�

1� e�#E
� �PS��E� � e#�E�2eVm�PS����E��

�
; (2)

evaluated at E � 2eVm. Here #�1 � kBT and � denotes
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the convolution over the energy. Thus, the detector char-
acteristics, described by PD��E�, do not need to be known
exactly, but they can be calibrated by measuring the
current ID�Vm� in the absence of the additional noise.

For connecting the fluctuations at the JJ and the
source, we relate the mutually uncorrelated intrinsic
fluctuations �Ia, �Ib, and �Im through the resistors Ra,
Rb, and R to the voltage fluctuations �V at point B,
�V�!��R���Im�!��i!CmRS��Ib��Ia��Im��=G�!�
through circuit analysis. Here G�!� � 1� i!�RC�
RSCm� �!2RCJRSCm, C � Cm � CJ and RS � �R�1

a �
R�1
b ��1. The equilibrium fluctuations in the source are

present even for VN � 0, and they can be included in the
calibration through the FDT. The excess fluctuations due
to driving produce excess phase fluctuations, character-
ized by the nth order correlators h��!1� � � ���!n�i 	

2���!1 � � � � �!n�Sn�� ~!� [14],

Sn�� ~!� � 'n
(n

en
SbnI� ~!� � ��1�nSanI� ~!�

Gn� ~!�
; (3)

where ~! � �!1; . . . ; !n�, ' � �RSCm=�RQC�, RQ �

h=�4e2�, ( � RC, Gn� ~!� � G�!1� � � �G�!n�, and
h�I�!1� � � ��I�!n�i � 2���!1 � . . .!n�SnI� ~!�. Thus,
we find that the excess phase noise and its cumulants
are governed by powers of ', the current IN(=e and the
bandwidth of the current correlators, times (. In the
absence of the source (Cm ! 0), the detector phase fluc-
tuations JRC�t� have been calculated in [15] (see also
Fig. 11 of [12]). The equilibrium fluctuations in the source
slightly modify this behavior [16]. If RSCm � RCJ, the
resulting JD�t� is close to JRC�t�, with the capacitance
given by Cm � CJ and resistance by R, hence the JJ is in
the insulating state for R> RQ. Below, we concentrate on
this insulating parameter regime.

Now assume the source is driven weakly, such that
JS�t� � 1. In this case, one may expand the exponential
eJ

S�t� � 1� JS�t� [17]. Then,

PS��E����E��
S2��E=�h�

2��h
� ~S2��0���E��

K��E=�h�

4��h
����:

(4)

Here S2��!� is the driven phase noise spectrum induced
by the source, ~S2��t� its inverse Fourier transform, and

K��!� �
1

�

Z 1

�1
d!0ImS3��!;!0;�!�!0� (5)

describes the third cumulant of phase fluctuations. In the
derivation of this form for K�, we used the Hermiticity of
��t� and the stationarity of the fluctuations. In what
follows, we cut the expansion in the third cumulant [17].

Let us first concentrate on the antisymmetric part of
the detector current. In the first order in JS�t�, it only
probes the even cumulants. In this case, it can be ex-
pressed as IA�Vm� 	 ID�Vm� � �IA�Vm�, where for sym-
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metric S2I�!� � S2I��!� [18], using Eq. (3),

�IA�Vm� �
Z 1

�1

d!
2�

DA�!;Vm��Sb2I�!� � Sa2I�!��: (6)

Here DA�!;Vm� 	 '2(2fID�Vm � �h!=�2e�� � ID�Vm �
�h!=�2e�� � 2ID�Vm�g=�2e

2G2�!�� characterizes the fre-
quency band for the detection of S2I�!�. This band can be
tuned by tuning the bias Vm (see Fig. 2).

The even part of the detector current can then be
related to the odd cumulants of phase fluctuations. For a
weakly driven source, assuming K���!� � �K��!�
(see below), it is given by [18]

IS�Vm� �
Z 1

�1

d!
4�

ID

�
Vm �

�h!
2e

�
K��!�: (7)

In this way, IS�Vm� probes the frequency dependence of
the third cumulant of source fluctuations (cf. Fig. 2).

Let us now analyze �IA�Vm� for the noise source shown
in Fig. 1. The frequency dependence of the nonsymme-
trized noise SI�!� is derived, e.g., in Ref. [8]. This deri-
vation holds provided that the Thouless energy ET for the
resistors greatly exceeds eVN . Subtracting the fluctuations
at VN � 0 we get the excess noise Si2I�!� � Fi2S�Vi�=Ri,
where i � fa; bg, Vi � RiVN=�Ra � Rb�, and

S �V� �
eV sinh�eVkT� � 2 �h! coth� �h!2kT�sinh

2� eV2kT�

cosh�eVkT� � cosh� �h!kT �
: (8)

An example of the frequency dependence of S2I is plotted
in Fig. 2. Note that it is symmetric with respect to the sign
reversal of !. This property can be traced to the fact that
in our example the source impedance, characterizing
quantum fluctuations, stays constant. Now, S2I can be
substituted to Eq. (6) to find the effect of the driven noise
on the detector current. Figure 3 shows an example of
�IA�Vm�, i.e., the probed shot noise, for a few bias voltages
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FIG. 2 (color online). Left: characteristic function
DA�!;Vm� of the excess noise measurement [cf. Eq. (6)],
probing the spectrum S2I�!� of current fluctuations. The dotted
line shows the frequency dependence in S2I�!� (arbitrary
units), for T � 0 and V � e=C. Right: function fID�Vm �
�h!=�2e�� � ID�Vm � �h!=�2e��g=2, characterizing the mea-
surement of the third cumulant. The frequency dependence in
K��!� (arbitrary units) is shown in black. In the limit eVN �

�h=(, the width of K��!� is given by 1=(. Here, EC 	 2e2=C,
R � 6RQ, Ra � Rb � 0:1RQ, and Cm � 10CJ. Changes in Cm
do not essentially affect the figure.
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VN . For VN � �h=(, shot noise is essentially white over
the detector bandwidth (Fig. 2) and thus the signal is
linear in VN . In this case, IA�Vm�=IN (Fig. 3 inset) de-
pends only on the factor DA�Vm�, which can be related to
the calibration measurement, and the Fano factors Fa;b2 ,
which can thus be measured from this curve.

Next, consider the detection of the third cumulant of
current fluctuations. Its frequency dependence has been
described in various limits for different systems in
Ref. [19]. At T � 0, the third cumulant at zero frequency
is of the form S3I � F3e

2IN , and its dispersion occurs on
the scale !c � min�eV= �h; ET= �h; I=e�. For RsCm � RCJ
and a frequency independent S3I within the detection
bandwidth, the resulting K��!� at T � 0 is given by

K��!� � 2('3�Fb3 � Fa3 �
IN
e=(

!(

4� 5�!(�2 � �!(�4
: (9)

This is an antisymmetric function of !, due to the simple
form assumed for S3I, and its frequency scale is given by
1=(. With the knowledge of the detector calibration cur-
rent ID�Vm�, plugging K��!� into Eq. (7) allows us to
calculate the response of the symmetric detector current
IS�Vm� to the third cumulant in principle for any type of
resistors Ra and Rb. A few examples of IS�Vm� are shown
in Fig. 3. As for the second cumulant, following
IS�Vm�=DS�Vm� allows one to measure the Fano factors.

The general measurement scheme is valid at a finite
temperature as long as the Coulomb-blockade condition
T & EC=kB is satisfied. The effects of T > 0 are illus-
trated in Fig. 4. Compared to the previous example, two
corrections arise: the function ID�Vm� characterizing the
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FIG. 3 (color online). Antisymmetric �IA�Vm� (solid, left
axis) and symmetric part IS�Vm� (dashed, right axis) of the
detector current variation. Dotted lines are expansion results
[cf. Eqs. (6) and (7)]. Parameters are as in Fig. 2. The source is
assumed to consist of a mesoscopic (Fan � 0) and a macro-
scopic resistor (Fbn � 0) for which SnI�! � 0� � en�1FnIN .
Inset: �IA�Vm � e=2C� (solid) and IS�Vm � e=2C� (dashed)
as functions of IN . Scaling parameters are D � Fa2DA 	
eFa2

R
d!DA�!;Vm�=�2�� for the antisymmetric part, and

D � Fa3DS 	 Fa3 �(
3=2�e�'3 �

R
d!ID�Vm � �h!=2e�!�4 �

5�!(�2 � �!(�4��1 for the symmetric part.
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FIG. 4 (color online). Antisymmetric (solid) and symmetric
(dashed) detection currents �IA�Vm� and IS�Vm� for the same
parameters as in Fig. 3 but with a few different temperatures at
fixed VN � 2e=C, i.e., IN � 60e=(. For IS�Vm�, we neglect the
temperature dependence of the intrinsic fluctuations.
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detector becomes smoother and its amplitude decreases,
and the form of the source excess fluctuations changes.
The two are characterized by different temperature
scales, EC=kB and eVN=kB, respectively.

Measuring the calibration current ID�Vm� along with
the antisymmetric and symmetric currents, �IA�Vm� and
IS�Vm�, allows one to find the second and third cumulants
of excess current fluctuations in the source within the
bandwidth described in Fig. 2 (for typical parameters
[10], in the range of 100 GHz) to an accuracy limited
mostly only by the resolution of the current measurement
(resolution of 0.1 pA yields �100 �fA�2s for the second
and �0:01 �fA�3s2 for the third cumulant [7,10]). In the
limit Cm � CJ, RSCm � RCJ, the only information re-
quired about the setup are the resistances Ra, Rb and R,
and the sum capacitance Cm � CJ, all of which can be
measured separately. Thus, the scheme allows an accurate
determination of the second and third cumulants over a
large bandwidth and for the third cumulant, overcomes
the bandwidth problems encountered in Ref. [4].

In summary, we show in this Letter how incoherent
Cooper-pair tunneling in small JJs with a high-
impedance environment can be used for accurate and
wideband detection of voltage fluctuations. Via the sym-
metry of the detector output current, one can identify the
contributions from the second and third cumulants sepa-
rately. While the presented example is on the measure-
ment of fluctuations in samples exhibiting no Coulomb
blockade, this is not a limitation of the scheme itself.

We acknowledge the useful discussions with W. Belzig,
P. J. Hakonen, G.-L. Ingold, M. Kindermann, R. Lindell,
and E. B. Sonin, and the support by the EU-IHP ULTI III
(HPRI-1999-CT-00050) visitor program.

Note added.—After this manuscript was submitted, we
became aware of Ref. [20], which points out that the Fano
factors F3 for the third cumulant depend on the definition
of the measured observable. Given that F3 are related to
the nonsymmetrized observable, our results remain valid.
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