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Abstract. – We study fermions in a Mach-Zehnder interferometer, subject to a quantum-
mechanical environment leading to inelastic scattering, decoherence, renormalization effects,
and time-dependent conductance fluctuations. We present a method to derive both the loss
of interference contrast as well as the shot noise, using equations of motion and leading-order
perturbation theory. The dependence of the shot noise on the Aharonov-Bohm phase acquires
an unexpected average phase shift, due to correlations between the fluctuating renormalized
phase shift and the output current. We discuss the limiting behaviours at low and high voltages,
compare with simpler models of dephasing, and present implications for experiments.

Introduction. – Quantum interference effects and their destruction by scattering play a
prominent role in mesoscopic physics. In contrast to the usual Aharonov-Bohm ring setups, the
recently introduced Mach-Zehnder interferometer for electrons [1] offers an exciting possibility
to study an ideal two-way interference geometry, with chiral single-channel transport and in
the absence of backscattering. The loss of visibility with increasing bias voltage or temperature
has been observed, and the idea of using shot noise measurements to learn more about potential
dephasing mechanisms has been introduced.

On the theoretical side, the loss of interference contrast in the current had been studied for
the Mach-Zehnder setup [2] prior to this experiment. More recently, the influence of dephasing
on shot noise has been analyzed [3], revealing important differences between phenomenological
and microscopic approaches. However, both of these works treat a classical noise field acting
on the electrons, and thus they are dealing essentially with a single-particle problem. There-
fore, experimentally observed features such as the increase of the dephasing rate with rising
bias voltage could not be studied, as this effect is due to lifting the restrictions of Pauli blocking
on the scattering of particles, representing a many-body effect absent for classical noise.
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Fig. 1 – (Color online) Left: schematic of the Mach-Zehnder setup. Right: particle- and hole-scattering
processes contributing to the dephasing rate, see discussion after eq. (14).

In this work, we study the influence of any true quantum bath (phonons, Nyquist noise,
etc.) on a fermionic Mach-Zehnder interferometer (fig. 1). Besides its experimental rele-
vance [1], this setup represents an ideal model problem in which many of the features of a
quantum bath acting on a fermion system can be analyzed more easily and/or thoroughly
than in more complicated situations such as weak localization [4, 5]. We fully account for
Pauli blocking in a nonequilibrium transport situation (i.e. arbitrary bias) and derive both
the dephasing rate, as well as the effects on the current noise. We introduce a physically
transparent equations-of-motion approach that is analogous to the case of classical noise, but
keeps the Pauli principle via the back-action of the bath onto the system. The evaluation will
be performed perturbatively, to leading order in the system-bath interaction.

The model. – We consider a model of spinpolarized fermions, moving chirally and without
backscattering through an interferometer at constant speed vF . The two beamsplitters A and
B connect the fermion fields ψ̂α of the input (α = 1, 2) and output (α = 3, 4) channels to
those of the left and right arm (α = L,R), which we take to be of equal length l:

ψ̂L(0, t) = rAψ̂1(0, t) + tAψ̂2(0, t), (1)

ψ̂R(0, t) = tAψ̂1(0, t) + rAψ̂2(0, t), (2)

ψ̂3(l, t) = rBe
iφψ̂L(l, t) + tBψ̂R(l, t), (3)

ψ̂4(l, t) = tBe
iφψ̂L(l, t) + rBψ̂R(l, t). (4)

The transmission (reflection) amplitudes tA/B (rA/B) fulfill t∗jrj = −tjr∗j due to unitarity, and
we have included the Aharonov-Bohm phase difference φ. The input fields α = 1, 2 obey〈
ψ†

α(0, 0)ψα(0, t)
〉
=

∫ kc

−kc
(dk) fαke

−ivF kt (note h̄ = 1), with a band-cutoff kc. We use the
notation (dk) ≡ dk/(2π).

The particles are assumed to have no intrinsic interaction, but are subject to an external
free bosonic quantum field V̂ (linear bath) during their passage through the arms L,R: Ĥint =∑

λ=L,R

∫
dx V̂λ(x)n̂λ(x) with n̂λ(x) = ψ̂

†
λ(x)ψ̂λ(x).

General expressions for current and shot noise. – We focus on the current going into
output port 3, which is related to the density: Î(t) = evF n̂3(t) with n̂3(t) = ψ̂

†
3tψ̂3t, where
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we take fields ψ̂αt = ψ̂α(l, t) at the position of the final beamsplitter B (except where noted
otherwise). In the following we set e = vF = 1, except where needed for clarity. We have〈

Î
〉
= RB

〈
ψ̂†

Lψ̂L

〉
+ TB

〈
ψ̂†

Rψ̂R

〉
+ eiφt∗BrB

〈
ψ̂†

Rψ̂L

〉
+ c.c. (5)

We have set TB = |tB |2 and RB = 1 − TB. Without bath, the interference term is given
by

〈
ψ̂†

Rψ̂L

〉
(0)

= rAt∗A
∫
(dk)δfk = rAt∗A(eV/2π), where we define δfk ≡ f1k − f2k and f̄k ≡

(f1k + f2k)/2 for later use, and eV = µ1 − µ2.
The zero-frequency current noise power is

S ≡
∫ +∞

−∞
dt

〈〈
Î(t)Î(0)

〉〉
, (6)

where the double bracket denotes the irreducible part. The dependence on φ and TB , RB is
explicit,

S = RBTBC0 +R2
BC0R + T 2

BC0T +
+2Re

[
eiφ(t∗BrB)(RBC1R + TBC1T )− e2iφTBRBC2

]
(7)

with the coefficients following directly from inserting eq. (3) into (6), for example C2 =∫
dt

〈〈
ψ̂†

Rtψ̂Ltψ̂
†
R0ψ̂L0

〉〉
. C0(R/T ) are real-valued, the other coefficients may become com-

plex. The free values correspond to the result given by the well-known scattering theory of
shot noise of non-interacting fermions [6, 7]:

S(0) =
∫
(dk)(f2k + δfkT )(1− (f2k + δfkT )) , (8)

where T (φ) = TATB +RARB +2t∗ArAt
∗
BrB cos(φ) is the transmission probability from 1 to 3.

Symmetries of shot noise. – For our model, the full shot noise power S may be shown to
be invariant under each of the following transformations, if the bath couples equally to both
arms of the interferometer: i) tA ↔ rA, φ �→ −φ; ii) V �→ −V, φ �→ −φ; iii) tB ↔ rB . As
a consequence, C1T = −C1R. Note that the free result (8) is invariant under φ �→ −φ and
V �→ −V separately, but these symmetries may be broken by a bath-induced phase-shift.

Equations of motion. – Here we introduce an equations-of-motion approach that is set
up in analogy to the simpler case of classical noise [3] but keeps many-body effects such as
Pauli blocking. We start from Heisenberg’s equations of motion for the fermions and the bath.
The fermion field in each arm obeys (omitting the index L/R for now):

i(∂t − vF∂x)ψ̂(x, t) =
∫

dx′K(x− x′)V̂ (x′, t)ψ̂(x′, t) , (9)

where V̂ evolves in the presence of the interaction, see below. The kernel K(x − x′) =
{ψ̂(x), ψ̂†(x′)} 
= δ(x − x′) appears because we have to consider states within a finite band.
Nevertheless, for the purpose of our subsequent leading-order approximation, it turns out we
can replace the right-hand side by V̂ (x, t)ψ̂(x, t) (neglecting, e.g., velocity-renormalization in
higher orders). The corresponding formal solution describes the accumulation of a random
“quantum” phase:

ψ̂(x, t) = T̂ exp
[
−i

∫ t

t0

dt1 V̂ (x− vF (t− t1), t1)
]
×

×ψ̂(x− vF (t− t0), t0) . (10)
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In contrast to the case of classical noise [3], the field V̂ contains the response to the fermion
density, in addition to the homogeneous solution V̂(0) of the equations of motion (i.e. the free
fluctuations):

V̂ (x, t) = V̂(0)(x, t) +
∫ t

−∞
dt′DR(x, t, x′, t′)n̂(x′, t′) . (11)

Here DR is the unperturbed retarded bath Green’s function, DR(1, 2) ≡ −iθ(t1 − t2)
〈
[V̂ (1),

V̂ (2)]
〉
, where V̂ -correlators refer to the free field. This (exact) step is analogous to the

derivation of an operator quantum Langevin equation [8]. Together with (10), it correctly
reproduces results from lowest-order diagrammatic perturbation theory.

Accounting for cross-correlations between the fluctuations in both arms is straightforward
for a geometry with symmetric coupling to parallel arms at a distance d (assuming d � l).
Then, in the following results (e.g., phase shift and total dephasing rate Γϕ), we have to
set

〈
V̂ V̂

〉
=

〈
V̂LV̂L

〉
−

〈
V̂LV̂R

〉
and DR = DR

LL − DR
LR. These correlators derive from the

three-dimensional version, e.g.
〈
V̂L(x, t)V̂R(x′, t)

〉
=

〈
V̂ (x, y + d, z, t)V̂ (x′, y, z, t′)

〉
.

Interference term, renormalized phase shift and dephasing rate. – The loss of interference
contrast, as observed in ref. [1], is a way to quantify “dephasing” also in a nonequilibrium
situation (|V | > 0). In order to obtain the interference term in the current, we expand the
exponential (10) to second order, insert the formal solution (11), and performWick’s averaging
over fermion fields, while implementing a “Golden Rule approximation”, i.e. keeping only
terms linear in the time-of-flight τ . Then we obtain the following leading correction to the
interference term:

δ
〈
ψ̂†

Rψ̂L

〉
= rAt∗A

∫
(dk)δfk[iδϕ̄(k)− Γϕ(k)τ ]. (12)

Here the effective average k-dependent “renormalized” phase shift induced by coupling to the
bath is

δϕ̄(k) = τ(RA − TA)
∫
(dq)(ReDR

q,q −DR
0,0)δfk−q , (13)

which vanishes for TA = 1/2, since then there is complete symmetry between both arms. The
interference term is suppressed according to the total dephasing rate Γϕ(k) = ΓL

ϕ(k) +ΓR
ϕ (k),

with

ΓL
ϕ(k) =

∫
(dq)

[
1
2
〈
V̂ V̂

〉
q,q

+ ImDR
q,qfLk−q

]

= −1
2

∫
(dq) ImDR

q,q

[
coth

βq

2
− (fLk−q − fLk+q)

]
. (14)

The “back-action” ∝ DR is crucial, since it introduces the nonequilibrium Fermi functions
(fL = RAf1 + TAf2, fR = TAf1 + RAf2) which capture the physics of Pauli blocking: Large
energy transfers vF |q| � eV, T are forbidden for states k within the transport region. As a
result, the interference contrast becomes perfect for V, T → 0. On the other hand, increasing
the bias voltage diminishes the contrast (as observed in the experiment [1]), since the phase
space for scattering is enhanced.

The dephasing rate is the sum of particle- and hole-scattering rates, ΓL
ϕ = (ΓL

p + ΓL
h )/2,

with ΓL
p (k) =

∫
(dq)

〈
V̂ V̂

〉
q,q
(1 − fLk−q) and ΓL

h (k) =
∫
(dq)

〈
V̂ V̂

〉
q,q
fLk+q. This is because

both kinds of scattering processes destroy the superposition of many-particle states (kets in
fig. 1, right) that is created when a particle passes through the first beam splitter, entering
the left or the right arm (see [9] for the same kind of physics in weak localization).
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Fig. 2 – (Color online) Left: energy-resolved dephasing rate for a sample bath spectrum (inset).
Right: energy-averaged dephasing rate Γ̄ϕ(V, T ). Energies in units of ω0. The interference visibility
(Imax − Imin)/(Imax + Imin) is given by 1 − Γ̄ϕτ , in the leading order considered here.

For linear transport, fLk−q − fLk+q → − tanh(β(k − q)/2) under the integral, leading to
the result well known in the theory of weak localization [5], where ballistic motion in our case
(ω = vF q) is replaced by diffusion.

Figure 2 displays both Γϕ(k) and the energy-averaged Γ̄ϕ = (eV )−1
∫
dk δfkΓϕ(k) for the

example of a damped optical phonon mode, DR
q,ω = α[(ω − ω0 + iη)−1 − (ω + ω0 + iη)−1].

Discussion of shot noise correction. – In exactly the same manner, after a straightforward
calculation, one can derive the leading-order corrections to the coefficients C0, C1R, C2 in the
noise power S (again keeping only terms ∝ τ1). This is done by inserting the solutions of the
equations of motion, eqs. (10) and (11), into the coefficients defined in (7) and proceeding as
before. In the following, we provide a discussion of the results and illustrate them by plots. The
rather lengthy full analytical expressions will be listed in a forthcoming extended article [10].

As expected, the φ-dependence of the shot noise (7) is suppressed, in a similar manner as
the interference term in the current: |C2| and |C1R| decrease in magnitude.

There is no Nyquist noise correction, i.e. δS(V = 0) vanishes at arbitrary temperature T
(fig. 3, left). This is plausible, as S(0)(V = 0) does not depend on φ and thus is not affected
by phase fluctuations. In the case of purely classical noise, we had found a finite Nyquist
correction [3], but this is due to heating by a “bath” that is nominally at T = ∞.

At large voltage V (larger than the bath spectrum cutoff), there is a quadratic contribution
∝ V 2 in δC0 and ReδC2, due to time-dependent conductance fluctuations, corresponding
precisely to the leading order of “Scl” in ref. [3].

There are two peculiar features of those phase-shifts in the shot noise S(φ). First, the
phase-shift in the e2iφ term is twice as large as expected from the phase-shift in I(φ), shown
in eq. (13). Second, even when there is no phase shift in the current pattern (δϕ̄k = 0),
the phase-shift of the eiφ component in S(φ) does not necessarily vanish. There remains a
φ ↔ −φ-asymmetry in δS even when both arms are completely symmetric and TA = 1/2.
Only the additional constraint TB = 1/2 will guarantee the φ-symmetry.
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Both features arise because the phase shift fluctuates, due to the density fluctuations in
both arms. Restricting attention to the k-independent part for ease of the discussion, we may
interpret the phase-shift as an operator depending on the densities, schematically δϕ̂[n̂L/R],
whose expectation value determines the phase-shift of the current pattern. It is correlated with
the output current,

〈
(δϕ̂(t)− δϕ̄)(Î(0)− Ī)

〉

= 0, leading to an extra shot noise contribution

and (together with the k-dependent part) accounting for the extra factor of two in the e2iφ

phase-shift, as well as the fact that TA = 1/2 is not enough to obtain a φ-symmetric shot
noise (since the correlator

〈
δϕ̂Î

〉
depends on TB as well).

Comparison with simpler models. – The limit of classical noise (treated to all orders
in ref. [3]) is recovered by setting DR = 0 and using the symmetrized correlator 〈VclVcl〉 =〈{
V̂ , V̂

}〉
/2 everywhere. However, it is impossible to mimick the features obtained for true

quantum noise by any classical noise model, even with an arbitrary “effective” correlator (e.g.
phase-shift terms are missing). In ref. [1], two formulas were introduced to describe the mod-
ification of the partition noise by dephasing or phase averaging: 〈T (φ+ ϕ)(1− T (φ+ ϕ))〉ϕ
or 〈T (φ+ ϕ)〉ϕ 〈1− T (φ+ ϕ)〉ϕ (see also ref. [3]). To check such an ansatz, we introduce
fluctuations φ �→ φ+ δϕk into the scattering theory result, eq. (8), and average either in the
form 〈T T 〉 or 〈T 〉 〈T 〉, assuming Gaussian variables δϕk , with δϕ̄k taken from eq. (13) and〈
δϕ2

k

〉
= 2τΓϕ(k). This procedure is designed to reproduce the correct current. However,

neither formula gives a good approximation to our result (fig. 3).

Conclusions and implications for experiments. – We have introduced an equations-of-
motion method to describe a fermionic interferometer subject to quantum noise. The crucial
Pauli blocking effects are described as a consequence of the back-action of the bath onto
the system. The present approach lends itself naturally to a systematic extension to higher
orders, calculations beyond the Golden Rule approximation, and the analysis of current cross-
correlators. In addition, it would be interesting to evaluate the full counting statistics or to
compare with a Luttinger liquid approach, where dephasing is due to intrinsic interactions (see
the recent preprints refs. [11] and [12], respectively). Regarding future experiments following
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ref. [1], the following points should be checked first: i) the shot noise symmetries listed above;
ii) the generic dependence of shot noise S on beam splitter transparency TB and Aharonov-
Bohm phase φ (in particular: only eiφ, e2iφ contributions present) predicted in eq. (7); iii) ob-
serving different phase-shifts of the eiφ and e2iφ-contributions to S would be particularly inter-
esting, as this feature is not present in any simple phenomenological (or classical noise) model.
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