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Spin gap in chains with hidden symmetries
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We investigate the formation of a spin gap in one-dimensional models characterized by groups with hidden
dynamical symmetries. A family of two-parametric models of isotropic and anisotropic spin-rotator chains
(SRC’9 characterized by S2) X SU(2) and S@2) X SO(2) X Z,X Z, symmetries is introduced to describe
the transition from S(2) to SO4) antiferromagnetic Heisenberg chains. The excitation spectrum is studied
with the use of the Jordan-Wigner transformation generalizedfatgebra and by means of the bosonization
approach. Hidden discrete symmetries associated with invariance under various particle-hole transformations
are discussed. We show that the spin gap in SRC Hamiltonians is characterized by the scaling dimension 2/3,
in contrast to dimension 1 in the conventional Haldane problem.
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More than 20 years ago Halddnmade a conjecture that pair. We call the chain shown in Fig. 1 the spin-rotator chain
the properties of spi$ Heisenberg antiferromagneti®&F)  (SRO (in contrast to the spin-rotor modéf9. Unlike ear-
chains are different for integer and half-integer spins;lier attempts to construct the representation ofSsril state
namely, the excitations in Heisenberg AF chains with half-out of s=1/2ingredients’;® we respect in this case the &)
integer spins are gapless, whereas for integer spins there isssmmetry of the spin manifold on each ruffgAs a result,
gap in the spectrurfHaldane gap While the first part of the the singlet state cannot be projected oMioreover, it plays
Haldane conjecture has been proven a long time @ge an integral part in the formation of the spin gap. We show
Refs. 2 and B the second part, although confirmed by manythat the hidden Zsymmetries in this model are an intrinsic
numericat and experimentlstudies and tested by some ap- property of the local S@) group of the spin rotator on the
proximate analytical calculatiofs® remains a hypothesis. rung, and the symmetry breaking due to nonlogsiting)

The problem of SIR) Heisenberg chains has been attackedeffects results in spin gap formation. These special symme-
by modern tools such as, e.g., bosoniz#tiiisee also Ref. tries distinguish our model froniN=2)-leg ladder models
11), various numerical methods>13and the recently pro- and SU2) chains. In particular we show also that the scaling
posed fermionization by means of the Jordan-Wigner transdimension of a spin gap in a SRC differs from that in a
formation for higher spin* However, the main focus of two-leg ladder.

interest has been put either &1 chains characterized by New variables on a rung are introduced to keep track of
SU(2) symmetry or orllgl-leg ladders described in terms of s-1 properties. We deﬁnézglﬁgzyi' Fii:§1,i_§2,iu whereS
dynamic S@N) groups.® There have also been made severalsiangs for a tripleS=1 ground state and singl6t0 excited
conjectures concerning spontaneous discrete symmet
breaking inS=1 chain models associated with, e.g., exis-
tence of hidden Zand 2 X Z, symmetries>!’ Neverthe-

Yate. The operato§ describes dynamical triplet-singlet
mixing.*82° Then

less, the general question about the nature of the spin gap is J, .. . .. Y o,
still open. H:ZE [SS41+ SR+ (S R)]_ZE (§-R),
In this paper we propose yet another approach to the spin ' '
gap problem. It is based on investigation of a family of two- (2)

parametric Hamiltonians described by dynamical grodps. o

This family includes the conventional two-leg ladder andwhere the set of operato&, R, fully defines theo, algebra
several models intermediate between the ladder and the accordance with the commutation relations

chain. Here we concentrate on the most instructive example

of a “barbed-wire-like” chain with spins 1/2 in each site [S".S1=18je05,S, [RORI=1612,4,5,
coupled by the ferromagnetic exchanhewithin a rung and
the AF interactionJ, along the leg(Fig. 1). The model
Hamiltonian is J I :I J
I
(1)

AENPIECTREN DI

This model is a natural extension of tis=1 chain to a
case where the states on a given rung form a triplet-singlet FIG. 1. Spin-rotator chain.
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[Riaq?] =i8je4,R7, (3) (0,1), determine a threefold degenerate triplet state whereas
the doubly occupied statd,l) stands for a singlet separated

and Casimir constraints on each sites are given by is fermionized by means of a purely one-dimensiofid)
20 2o = string operatork; [Eqg. (6)] in contrast to the meandering
(S)*+(R)"=3, (S§-R)=0. ) strings proposed for the theory of two-leg laddé&sse Ref.

In order to characterize low-lying excitations in the SRC we21 and references therg¢in . .

propose a fermionization procedure, which extends the The Hamiltonian of the anisotropi¥XZ SRC model is

Jordan-WigneJW) transformation to the S@) group, and H=H;+Z;H ;, where

a bosonization formalism based on this procedure. Our I 7

method incorporates the JW. transformation Snrl pro- H, = = [S'S:1+SR, + (SR +H.c]+ = (55,

posed by Batista and OrtiBO) in Ref. 14. The relationships 87 4%

between the S@) JW representation and the BO represen- ,

tation is discussed below in some detalil. *§RL*+ (S =R, ©)
We begin with a single-rung dimer problem. A two- . :

_component fermior(a’b’) bas.is representing operators is H, = J—L(R?—Ri_ +RR")+ ‘]_i(RiZ)Z_ (ﬁi PN §1)_

introduced as followgS =S+i9): 8 4

There exists a set of discrete transformations keeping the

— ot imalapt — —ima'a — At T —
S'=a'+e™%', S=a+be , F=aa+bb-1. Hamiltonians(2) and (9) intact and preserving the commu-

The complementary representation %lgenerators is tation relations(3) and Casimir operator$4). In general,
o . these transformations are described by the matrix of finite
R'=a'-€™a" R =a-be'™?2 R=a'a-b'b. rotations characterized by Euler angles, ¢, ¢ for the case

of the SU2) X SU(2) or SQ2)XSOQ(2) XZ,XZ, groups.

This representation satisfies commutation relati@@)sfor An example of such a transformation is

the S@4) group and preserves the Casimir operatdjsThe
advantage of the two-fermion formalism in comparison with SS—R, S—R, % FR->R, (10

two independent JW transformations for eashl/2 isthat L . X o . .,

the latter requires an additional Majorana fermion to provideVhich is a U1) xU(1) rotation in the S“R* and “S'-R
commutation of two spins on the same rung. Two-componerﬁUbSPacef- This TIS in fact a partlcle—ht_)le flavor transforma-
spinless fermions may be combined into one spin fermiontion f;—f|, f,—f;. On the other hand, it corresponds to the

which is most conveniently done by the definition replacemenb— -b, thus manifesting hiddenZsymmetry.
_ _ This means that an additional gauge factor (e&p with
fi=(a-b)N2, fl=(a+b/2. (5  ¢==m appears in the fermion operator characterizing the

“free ends” of rungs in the SRC chain. Other examples are
f,—f) and (f;—f],f,—f]). The latter corresponds to a
particle-hole transformatiorfa— a’,b—b') in the nonro-
K;=exq i > nak> =[l@a- 2n)(L-2n)  (6) tated fermion basis. o _

k<j,o k<j After a JW transformation in tha-b basis (5)—(8) the
Hamiltonian(9) is written as follows:

In order to generalize the one-rung representation for a line
chain of rungs we introduce a “string” operatgy,

(n(,:fT,fU). As a result of the JW transformation the @D

generators acquire the following form: Hy = J')'(Z (@8 +aa)cosm)
§ =2l -nypK;+ KL -nyy)], | 1 1
+J7 (n-a——><n'a “) 11)
S=6)" S=n;-ny, (7) A2 2 |

Ry = \2(fjn K + KT my), andH, =xH. ; with

‘])J(_ T t z a 1 b 1
Ri=(R)", R=flff;+ffy. (8) Hoi= = @hirba) = Ji|n=o J{m-2 ), (12

Part of the representatidi@) describingS=1 coincides with where the shorthand notations®=a'a. nP=b'b. and

the BO representation. Nevertheless, siBtés no longer a cog7nP) =Re exp+i7nP)=1-2n° are used. Below we con-

conserved quantity, being defined I§}:2[1—n“-n“], the  sider the domaid, <J, where the strongest deviations from
projection of the SO group on theS=1 representation of the conventional Haldane gap regfieare anticipated. In
the SU2) group requires an additional Hubbard-like interac-the limit J, =0 our SRC model reduces to &¥1/2 AF
tion responsible for the hidden constraint overlooked in thechain; the gauge factor casn®)=+1 is a fictitious random
BO papet* (see also Ref. 15 where the unconstrained JWvariable which can be eliminated by the transformation
transformation is constructed f@=3/2). When theS=1 S'—-S‘andS— - on the corresponding site. This situa-
sector is fixed, three statés;,n;), namely,(1,0), (0,0, and tion is similar to the so-called Mattis disordémhere ran-
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p,u,u’,a(Q) = E C;,u,,k—q/ZCa,,u,’,k+q/2' (18)
k

Its diagonal part is the quasiparticle density. The operator
A, is defined as

Avv’,a(q) == Q/E k Cz,y,k—q/2ca,v’,k+q/21 (19)
k

while its diagonal part is\,,=div j,,=—dp,,-
In expression$18) and(19) the indexa== stands for the
) ) o ~ “old” Fermi surface pointkg=+/2 (we take unit lattice
domness in an interaction is removed by proper redeflmtlor},pacing, and k is measured fromke. The indices
of spin variables. . w,u',v,v' =% denote the branch of fermioms. We used the
The kinematic factor-cog#ny) in Hj [qu. (11)] can be property of uiva(iw/Z)zllv’E. The tensorg;’;, for these
eliminated by a unitary transformatioll=UTHU with scattering processes has the form
U:exriiw2|,j>|nfnf°). Then H? and Hff remain unchanged

X H H !
and theJ’| term acquires the string form gZ’; :Jﬁ(5 L+ Ufm’)w _ ‘T?V/)- (20)

FIG. 2. Dispersion law for hybridized spin fermions.

We analyze Eq(17) in terms of theg-ology approact

classifying various terms ilgzz;,(q) as forward and back-
(13) ward scattering and umklapp processes. We see, first, that if
|g| < 7/2 andg~ +J}, both diagonal and off-diagonal matrix

Thes=1/2chain is represented in terms of a half-filled band€lements of A,,, vanish in accordance with Adler’s
of fermions. Since interactiond1) and (12) do not change Principle?* Thus, the forward scattering processes leading to
the occupation numbers for each color, we expect that thémall renormalization of the coupling (J})?/Jf are irrel-
interacting case is also represented by two half-filled bandgévant. The backward scattering procestes/2— + m/2)

(see below. We note that the Hamiltoniakl, in Eq. (9)  result in a reduction),— J'™"J7 of the effective coupling

~ 1 )
H =- EJﬁ[ajbi ex;{— IWE [ajTaJ- + bJTbj]) + H.c.] .

j<i

possesses (@) X U(1) symmetry whereas only one local
U(1) associated withp fermions exists in Eq(11) due to the
nonlocal character of the JW transformation.

Let us consider th&XY;-XY, model(J{=J =0). We split
the first term in Eq(11) into the bare hopping and the kine-
matic term~Jn’(a'a;,,+H.c) playing the part of the effec-
tive interactionH}!. One gets after diagonalization of the
hopping term

Ho= X e\(P)Cl Crp (14)
pA=t

with c,=u,a+u_b, c_.=u,b-u_a,

W(p) = % eo(p)/[e4(p) — e-(P)], (15)

e.(p) = Jf cosp = [(Jf cosp)? + (I )?]*2. (16)

The chemical potentiah=0 is pinned in the gap. Thus, the
mixing term fixes the global phase difference &b fields.
The remaining symmetry is local,X Z,.

We represerit-lf,(]tY in terms of new variables, by expand-
ing the Hamiltonian(11) in the vicinity of two Fermi points
of the nonhybridized system:

1
H =5 2 0 @pu @A (-0 (17)
{mv,ad=21q

where the operatap,,,+ is given by

(0<y<1 is a constant To get this estimate we cut off the
logarithmic corrections to the coupling constant at
Amin~ (3%¥)?1J, whereA,;, determines the gap in the density
of spin-fermion states,. However, there is yet another en-
ergy scaleA~J| associated with the gap in a two-point
particle-hole correlator with zero total momentum of the pair.
This energy scale is attributed to the gap separating the
S=0 excited state on a rung from the triplet state. The cross-
over between the two energy scales will be discussed else-
where. The Hamiltoniar{17) allows also “interband” um-
klapp processes determined by the off-diagonal elements of
pu. and A, and responsible for the periodicitQ=27.
These processes, associated with the transfer of a pair of
quasiparticles over the gap, do not change the leading term in
Eq. (16).

The above arguments are complemented by bosonization
calculations for the strongly asymmetric two-leg ladder with
finite Fermi velocityu,, in theb subsystem, which may be set
to zero at the end of the scaling procedure. The continuum
representation for spin operatass,$, in Eq. (1) read$!?°
[i=a(1),b(2)]

S'(x) ~ efl%[cogmx) + cog2¢)],

S(X) ~ 7 gy + codmx + 2¢5) (21)

with canonically conjugated variables andIl;=,6,. Keep-

ing only the most relevant terms in the rung interactign

we arrive at the conventional equations of Abelian bosoniza-
tion for the spin Hamiltoniarg2),
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UK, U S stage renormalization procedure is essential for understand-
H=2 | dx — 1 +ﬁ(&x¢i) +J) cog0, - 6 ing the SRC model. In the limit,~ u,, Eq. (23) leads to

i=ab standard scaling of the spin gdp~J, (see, e.g., Ref. 37
In the case| # =0, J% =0 the scaling behavior of the
+J’ coSs 2p, cos 2p, (220 spin gapA ~ J,(J% /3?2 is determined by the backward scat-
te_zring processes 01_‘ the fieldon the random potential asso-
with K=1/2 andJ, <u,<u,=J,/2 for J=J'=J. ciated with fluctuations of cog,.

To find the scaling dimension of the gap we start with the ~ The fully isotropic caseJ} :1733253% might be expected
case JX=0, J=J,#0. Using the scaling procedure EO yield thesa;n3§3t'lm§m~tﬂ\ (IJL) .iAreﬁ??d ana!ySI'ES
X AX.t— AD). one hasd, —J, A2 where 8/2=K/2 see, e.g., Ref. 28ncluding the less relevant terms in Eq.
.( :;] T )d' X if_> - . B lizati (17) may correct the gap values, but does not change this
is the scaling dimension of cog2 The renormalization ggtimate.
of theb component stops when the renormalidecbecomes To summarize, we introduced a 1D model intermediate
comparable with the lower scale of the energy The  petween the spiB=1 chain and the two-leg ladder. Our SRC
;:eonrg;s]pogndﬂ?/ Jsc)alI/:aZ/}; & aggflntehse thf?rstﬂrsé ngcrg;daggg possessesfspecial hiddep %mmetriesfcgg(rgged WitE dis-

b= (Up/J crete transformations in a 6D space of t roup char-
Ap=up&t=uy(J, /u,) . At the second stage of the renor- acterizing the spin rotator. The SRC chain is mapped on the
malization, with frozen(cos 2p,,) ~ ggﬁ’z, the factor cos @, two-component uncons;rained interacting ferr_nions by means
undergoes further enhancement. The procedure halts whéh f\n_04 jV\t/) tra?]sforlm%t_lf(?n. TTedtWO fe_rmu()jn fleldg_are anf'

, L . acterized by sharply different dynamics demanding a two-
the renormalized amplitudd, is comparable withu, at o ' .
JLA2‘5’2553’2~U whicph definles asecc?nd correlatior? length stage renormalization procedure. One of the two fields is
ar

a frozen atk— *77/2 and the scaling dimensigh of the rung
B2 1(3-412) — 1 ' ¢ :
&= (& Ua/J,)"* P and a second gapa=Usg, . IN OUr  herator exchangd, is B=1/2 instead of3=1272as in the

particular casgg=1 these formulas simplify as follows: conventional Haldane problem. As a result, the formation of
6= (Uyd,), Ap=J massive excitations in the isotropic SRC model is character-
b~ L ST Ly ized by a “two-thirds” scaling law.
&= &(UJU)?R Ay=J, (ugfuy) . (23) We are grateful to N. Andrei, A. Finkel'stein, and A. Ts-

velik for useful discussions. This work is supported by SFB-
One may decrease, in the regime of frozenp, down to 410, Grant No. BSF-1999354 from the U.S.-Israel Binational
u,~J,. ThenA,~J(J,/3))?”. Further decrease af, does  Science Foundation, the A. Einstein Minerva Center, and the
not change the exponent 2/3 of the spin gap fully determinedransnational Access Program No. RITA-CT-2003-506095 at
by the scattering on the random potential cgg.2° The two-  Weizmann Institute of Sciences.
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