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We propose a scheme to implement controllable coupling between two flux qubits using the screening
current response of a dc superconducting quantum interference device(SQUID). The coupling strength is
adjusted by the current bias applied to the SQUID and can be varied continuously from positive to negative
values, allowing cancellation of the direct mutual inductance between the qubits. We show that this variable
coupling scheme permits efficient realization of universal quantum logic. The same SQUID can be used to
determine the flux states of the qubits.
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A rich variety of quantum bits(qubits) is being explored
for possible implementation in a future quantum computer.1

Of these, solid-state qubits are attractive because of their
inherent scalability using well-established microfabrication
techniques. A subset of these qubits is superconducting, and
includes devices based on charge,2,3 magnetic flux,4–6 and
the phase difference7 across a Josephson junction. To imple-
ment a quantum algorithm, one must be able to entangle
multiple qubits, so that an interaction term is required in the
Hamiltonian describing a two-qubit system.8 For two super-
conducting flux qubits, the natural interaction is between the
magnetic fluxes. Placing the two qubits in proximity pro-
vides a permanent coupling through their mutual
inductance.9 Pulse sequences for generating entanglement
have been derived for several superconducting qubits with
fixed interaction energies.10,11 However, entangling opera-
tions can be much more efficient if the interaction can be
varied and, ideally, turned off during parts of the manipula-
tion. A variable coupling scheme for charge-based supercon-
ducting qubits with a bipolar interaction has been suggested
recently.12 For flux qubits, while switchable couplings have
been proposed previously,13,14 these approaches do not en-
able one to turn off the coupling entirely or require separate
coupling and flux readout devices.

In this communication, we propose a coupling scheme for
flux qubits in which the interaction is adjusted by changing a
small current. For suitable device parameters thesign of the
coupling can be changed, making it possible to null out the
direct interaction between the qubits. Furthermore, the same
device can be used both to vary the coupling and to read out
the flux states of the qubits. We show explicitly how this
variable qubit coupling can be combined with microwave
pulses to perform the quantum controlled-NOT(CNOT)
logic gate. Using microwave pulses also for arbitrary single-
qubit operations, this scheme provides all the necessary in-
gredients to implement scalable universal quantum logic.

The coupling is mediated by the circulating currentJ in a
dc superconducting quantum interference device(SQUID),
in the zero-voltage state, which is coupled to each of two
qubits through an identical mutual inductanceMqs [Fig.

1(a)]. The SQUID consists of two Josephson junctions, each
with capacitanceC and critical currentI0 at T=0, on a su-
perconducting loop of inductanceL. The dynamics of the
SQUID are described by the phase difference across each
junctiong1,2.

15 A variation in the flux applied to the SQUID,
Fs, changesJ andIc, the critical current at which the SQUID
switches out of the zero-voltage state in the absence of quan-
tum tunneling[Fig. 1(b)]. The response is governed by the
screening parameterbL;2LI0/F0 and the externally con-
trolled bias currentIb, IcsFsd. In flux qubit experiments,16

the flux state is determined by a SQUID to which fast pulses
of Ib are applied to measureIcsFs,Td. Thus, existing tech-
nology allowsIb to be varied rapidly, and a single SQUID
can be used both to measure the two qubits and to couple
them together controllably.

The flux qubit consists of a superconducting loop inter-
rupted by three Josephson junctions.4,13 With a flux bias near
the degeneracy point,F0/2, a screening currentIq can flow
in either direction around the loop. Given the tunnel coupling
energyd between the different directions ofIq, the ground
and first excited states of the qubit correspond to symmetric
and antisymmetric superpositions of these two current states.

FIG. 1. (a) SQUID-based coupling scheme. The admittanceY
represents the SQUID bias circuitry.(b) Response of SQUID circu-
lating current J to applied flux Fs for bL=0.092 and
Ib/ Ics0.45F0d=0,0.4,0.6,0.85(top to bottom). The lower right in-
set showsJsFsd for same values ofIb nearFs=0.45F0. The upper
left inset showsIc vs Fs.

PHYSICAL REVIEW B 70, 140501(R) (2004)

RAPID COMMUNICATIONS

1098-0121/2004/70(14)/140501(4)/$22.50 ©2004 The American Physical Society70 140501-1



Thus, the dynamics of qubiti can be approximated by the
Hamiltonian

Hi = − sei
0/2dsz

sid − sdi/2dsx
sid. s1d

The energy biasesei
0 are determined by the flux bias of each

qubit relative toF0/2. The tunnel frequenciesdi /h are fixed
by the device parameters and are typically a few GHz. For
two flux qubits, arranged so that a flux change in one qubit
alters the flux in the other, the coupled-qubit Hamiltonian
describing the dynamics in the complex four-dimensional
Hilbert space becomes

H = H1 ^ I s2d + I s1d
^ H2 − sK/2dsz

s1d
^ sz

s2d, s2d

whereI sid is the identity matrix for qubiti andK character-
izes the coupling energy. ForK,0, the minimum-energy
configuration corresponds to antiparallel fluxes. For two flux
qubits coupled through a mutual inductanceMqq, the inter-
action energy is fixed atK0=−2MqquIq

s1duuIq
s2du.

In addition to the direct coupling,K0, the qubits interact
by changing the currentJ. The response ofJ to a flux change
depends strongly onIb [Fig. 1(b)]. WhenIq

s2d switches direc-
tion, the flux coupled to the SQUID,DFs

s2d, induces a change
DJ in the circulating current in the SQUID, and alters the
flux coupled from the SQUID to qubit 1. The corresponding
coupling is

Ks = uIq
s1duDFq

s1d = uIq
s1duMqsDJ,

=uIq
s1duMqsRes] J/] FsdIb

DFs
s2d,

=− 2Mqs
2 uIq

s1duuIq
s2duRes] J/] FsdIb

. s3d

The transfer function,s]J/]FsdIb
, is related to the dynamic

impedance,Z, of the SQUID via17

] J/] Fs = iv/Z = 1/L + iv/R, s4d

whereR is the dynamic resistance, determined byY, which
dominates any loss in the junctions, andL is the dynamic
inductance which, in general, differs fromL.

We evaluates]J/]FsdIb
by current conservation, neglect-

ing currents flowing through the junction resistances,

Ib = Iy + 2I0 cosDg sinḡ + 2CsF0/2pdg̈̄, s5d

J = I0 cosḡ sin Dg + CsF0/2pdDg̈. s6d

Here, Iy is the current flowing through the admittanceYsvd
[Fig. 1(a)]. Equations(5) and (6) describe the dynamics of
g1,2 through the variablesDg=sg1−g2d /2 and ḡ=sg1

+g2d /2; g1 and g2 are constrained bydDg=sp /F0dsdFs

−LdJd.
The expression forKs in terms of Res]J/]FsdIb

[Eq. (3)]
requires the qubit frequencies to be much lower than the
characteristic frequencies of the SQUID, thus ensuring that
the SQUID stays in its ground state during qubit entangling
operations. Furthermore, it is a reasonable approximation to
take thev=0 limit of Res]J/]FsdIb

to calculateKs, so that
we can solve Eqs.(5) and (6) numerically to obtain the

working point; for the moment we assumeYs0d=0. For the
small deviations determiningKs, we linearize Eqs.(5) and
(6) and solve for the real part of the transfer function in the
low-frequency limit,

ReS ] J

] Fs
D

Ib

=
1

2Lj

1 − tan2 Dg tan2ḡ

1 +
L

2Lj
s1 − tan2 Dg tan2ḡd

. s7d

Here, we have introduced the Josephson inductance for one
junction, Lj =F0/2pI0 cosDg cosḡ. For bL@1, Eq. (7) ap-
proaches 1/L, while for bL!1,

Res] J/] FsdIb
= s1/2Ljds1 − tan2 Dg tan2ḡd. s8d

We see that Res]J/]FsdIb
is negative for sufficiently high

values ofIb andFs, which increaseḡ andDg, as shown by
the dependence ofJsFsd on Ib in Fig. 1(b).

We choose the SQUID parametersL=200 pH, C=5 fF,
and I0=0.48mA, for which bL=0.092. The qubits are char-
acterized byuIq

s1d u = uIq
s2d u =0.46mA, Mqs=33 pH, andMqq

=0.25 pH, yielding K0/h=−0.16 GHz. If we chooseFs
=0.45F0, Eqs. (3) and (7) result in a net coupling strength
K /h=sK0+Ksd /h, that is −0.3 GHz whenIb=0, and K=0
when Ib/ Ics0.45F0d=0.57 [Fig. 2(a)]. By solving Eqs.(5)
and(6) before taking thev=0 limit, we find that the lowest-
frequency mode of the SQUID withIb/ Ics0.45F0d=0.57 oc-
curs near 44 GHz, much higher than the qubit energy split-
tings, DEi, of about 10 GHz. Thus, our zero-frequency
approximation in Eqs.(7) and(8) is justified. The change in
sign of Ks does not occur for allbL. Figure 2(b) shows the
highest achievable value ofKs versusbL. We have adopted
the optimal design atbL=0.092.

We also need to consider crosstalk between the coupling
and single-qubit terms in the Hamiltonian. When the cou-
pling is switched, in addition to]J/]Fs being altered,J also
changes, thus shifting the flux biases of the qubits. The cal-
culated change inJ as the coupler is switched fromIb=0 to
Ib/ Ics0.45F0d=0.57 produces a change in the flux in each
qubit corresponding to an energy shiftde1/h=de2/h
=1.64 GHz. In addition, when the qubits are driven by mi-
crowaves to produce single-qubit rotations, the microwave
flux may also couple toFs. As a result,K is weakly modu-
lated when the coupling would nominally be turned off. A
typical microwave driveẽistd /h of amplitude 1 GHz results
in a variation of about ±14 MHz aboutK=0.

When the bias current is increased to switch off the cou-
pling, the SQUID symmetry is broken and the qubits are

FIG. 2. (a) Variation of K with Ib for Fs=0.45F0 and device
parameters described in the text.(b) Highest achievable value ofKs

vs bL evaluated atIb=0.85Ics0.45F0d; I0 (and hencebL) is varied
for L=200 pH.
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coupled to the noise generated by the admittanceY. We es-
timate the decoherence due to this process by calculating the
environmental spectral densityJsvd in the spin-boson
model.18 We obtainJsvd from the classical equation of mo-
tion for the qubit flux with the dissipation fromY coupled to
either qubit throughJ,

Jsvd = sIq
2Mqs

2 /hdIms] J/] FsdIb
. s9d

To calculateJsvd, we linearize Eqs.(5) and (6) around the
equilibrium point to obtain

dḡ =
2 tanḡ tan Dg

Lj

1

2/Lj − 2v2C + ivY
dDg. s10d

For the caseY−1=R, following the path to the static
transfer function Eq.(7) and taking the imaginary part
in the low-bL limit, we obtain Ims]J/]FsdIb

=−v /R
=sv /4Rdtan2 Dg tan2ḡ. Thus Jsvd=av, where a
=sMqs

2 Iq
2/4hRdtan2 Dg tan2ḡ, and asIb=0d=0. As Ib is in-

creased to change the coupling strength,a increases mono-
tonically. For the parameters above andR=2.4 kV, when the
net coupling is zero[ Ib/ Ics0.45F0d=0.57, Fig. 2(a)] we find
a<8310−5, corresponding to a dephasing time<500 ns, an
order of magnitude larger than current experimental values.16

We now show that this configuration implements univer-
sal quantum logic efficiently. Anyn-qubit quantum operation
can be decomposed into combinations of two-qubit entan-
gling gates, for example, CNOT, and single-qubit gates.19

Two-qubit gates which cannot be decomposed into a product
of single-qubit gates are said to be nonlocal, and may lead to
entanglement between the two qubits.20 Since we can adjust
the qubit couplingK to zero, we can readily implement
single-qubit gates with microwave pulses as described below.

To implement the nonlocal two-qubit CNOT gate, we use
the concept of local equivalence: the two-qubit gatesU1 and
U2 are locally equivalent ifU1=k1U2k2, wherek1 andk2 are
local two-qubit gates which are combinations of single-qubit
gates applied simultaneously. The local gate which precedes
U2, k2, is given byk21^ k22, wherek21s22d is a single-qubit
gate for qubit 1(2), while the local gate which followsU2, k1,
is k11^ k12, where k11s12d is a single-qubit gate for qubit
1s2d.21 Our strategy is to find efficient implementation of a
nonlocal quantum gateU2 that differs only by local gates,k1
andk2, from CNOT, using the methods in Ref. 20 and then to
add those local operations required to achieve a CNOT gate
in the computational basis, in which the SQUID measures
the projection of each qubit state vector onto thez-axis.

The local equivalence classes of two-qubit operations are
in one-to-one correspondence with points in a tetrahedron,
the Weyl chamber.20 In this representation, any two-qubit
operation is associated with the pointfc1,c2,c3g, where
CNOT corresponds tofp /2 ,0 ,0g. Furthermore, the nonlocal
two-qubit gates generated by a Hamiltonian acting for timet
can be mapped to a trajectory in this space.16 If Ib is varied
such thatK is increased instantaneously to a constant value,
the trajectory generated by Eq.(2) is well described by the
periodic curve

fc1,c2,c3g = fKvt/",pusin vtu,pusin vtug. s11d

Here, p is a function of the system parameters,v
=e1

0e2
0/DE1DE2, and v=sDE1−DE2d /2", whereDEi =fsei

0d2

+di
2g1/2 is the single-qubit energy-level splitting. Indepen-

dently of p, this trajectory reachesfp /2 ,0 ,0g in a time tK
=np /v when the coupling strength is tuned toK="v /2nv,
with n a nonzero integer.

While this analytic solution contains the essential physics,
it does not include vital experimental features, in particular,
crosstalk and the finite rise time of the bias current pulse. To
improve the accuracy, we perform a numerical optimization
using Eq.(11) as a starting point, then add these corrections.
We set d1/h=5 GHz and d2/h=3 GHz, and include the
shifts of the single-qubit energy biases due to the crosstalk
with Ks in Eq. (11) by adding a shiftdei proportional toK.
We account for the rise and fall times of the current pulse by
using pulse edges with 90% widths of 0.5 ns[seeKstd in Fig.
3]. We numerically optimize the variable parameters to mini-
mize the Euclidean distance between the actual achieved gate
and the desired Weyl chamber target CNOT gate. IfIb is
pulsed to provideK /h=−0.30 GHz for a timetK=8.74 ns,
we find that the gate locally equivalent to CNOT is reached
when the externally controlled static flux biases are set to
yield e1

0/h=8.06 GHz ande2
0/h=2.03 GHz throughout the

operation.
As outlined above, to achieve a true CNOT gate we still

have to determine the pulse sequences which implement the
requisite local gates that take this Weyl chamber targetU2 to
CNOT in the computational basis. Local gates may be imple-
mented by applying microwave radiation,ẽistd, which
couples tosz

sid, and is at or near resonance with the single-
qubit energy-level splittingDEi. To simplify the pulse se-
quence, we keepe1,2

0 constant at the values used for the non-
local gate generation. This imposes an additional constraint
on the local gates: to generate a local two-qubit gatek1
=k11^ k12, the two single-qubit gatesk11 and k12 must be
simultaneous and of equal duration. We satisfy this constraint

FIG. 3. Pulse sequence for implementing CNOT gate. Energy
scales in GHz. Total single-qubit energy biaseistd=ei

0+ ẽistd
+deistd, where microwave pulsesẽ1,2std produce single-qubit rota-
tions in the decoupled configuration; crosstalk modulation ofKstd is
shown(see text). The bias current is pulsed to turn on the interac-
tion in the central region.
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by making the microwave pulse addressing one-qubit reso-
nant and that addressing the other slightly off resonance.
Using this offset and the relative amplitude and phase of the
two microwave pulses as variables, we can achieve two dif-
ferent single-qubit gates simultaneously, leading to our re-
quired local two-qubit gate.

The resulting pulse sequences forK andẽ1,2 are shown in
Fig. 3. The static flux biases which determinee1,2

0 remain
fixed throughout the entire pulse sequence and are chosen to
provide a large frequency separation betweenDE1/h and
DE2/h. This ensures that the microwave radiation to produce
the single-qubit gate for qubit 1 is far off resonance for qubit
2. This constraint could be relaxed if one could engineer the
microwave driving with two separate antennas, each one
coupling selectively to one of the qubits. The gate has a
maximum deviation from CNOT in the computational basis
of 0.016 in any matrix element. This error arises predomi-
nantly from the single microwave antenna which leads to
cross coupling of the microwave signals for the two qubits
and the weak modulation of theK=0 state of the coupler
during the single-qubit microwave manipulations. While
small, this error could be reduced further by performing the
numerical optimization with higher precision or by coupling
the microwave flux selectively to each qubit and not to the
SQUID. The total elapsed time of 29.35 ns is comparable to
measured dephasing times in a single flux qubit.19

In summary, we have shown that the inverse dynamic
inductance of a dc SQUID with lowbL in the zero-voltage
state can be controlled by bias current pulses. This technique
provides a variable strength interactionKs between flux qu-

bits coupled to the SQUID, and enables cancellation of the
direct mutual inductive couplingK0 between the qubits so
that the net couplingK can be switched to zero. By steering
a nonlocal gate trajectory and combining it with local gates
composed of simultaneous single-qubit rotations driven by
resonant and off-resonant microwave pulses, we have shown
that a simple pulse sequence containing a single switching of
the flux coupling for fixed static flux biases results in a
CNOT gate and full entanglement of two flux qubits. Fur-
thermore, the same SQUID can be used to determine the flux
state of the qubits. This approach should be scalable to larger
numbers of qubits, as, for example, in Fig. 4.
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