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Theory of Inelastic Scattering from Magnetic Impurities
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We use the numerical renormalization group method to calculate the single-particle matrix elements
T of the many-body T matrix of the conduction electrons scattered by a magnetic impurity at T � 0
temperature. Since T determines both the total and the elastic, spin-diagonal scattering cross sections,
we are able to compute the full energy, spin, and magnetic field dependence of the inelastic scattering
cross section �inel�!�. We find an almost linear frequency dependence of �inel�!� below the Kondo
temperature TK, which crosses over to a !2 behavior only at extremely low energies. Our method can be
generalized to other quantum impurity models.
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Quantum mechanical phase coherence in mesoscopic
structures is destroyed by inelastic processes, where ex-
citations such as spin waves, electron-hole excitations,
phonons, etc., are created in the environment, leading
to dephasing and loss of quantum coherence after a
time ��’ [1]. In some weak localization measurements
of the dephasing time �’ down to very low temperatures,
a surprising saturation of �’ has been observed [2]. This
unexpected saturation remained a puzzle for a long time
until recently, when further experiments on mesoscopic
quantum wires confirmed that the most likely candidates
to produce this surprising behavior are magnetic impuri-
ties [3,4]. These magnetic impurities seem to be present
even in samples of extreme purity and unavoidably lead to
inelastic scattering and the dephasing.

Theoretical calculations also confirmed these expecta-
tions and showed that the experimental data can be quan-
titatively explained assuming weak inelastic scattering
off Kondo impurities [5,6]. These calculations were per-
formed in the weak coupling regime, i.e., at energies
higher than the Kondo temperature, TK. However,
Nozières’s theory implies that well below TK the mag-
netic impurity spin is screened by the conduction elec-
trons and acts as a strong but conventional potential
scatterer, producing no inelastic scattering. Therefore
the inelastic scattering rate from magnetic impurities
must show a peak around TK and then drop to zero well
below TK [7].

These observations motivate us to study the complete
energy dependence of the inelastic scattering rate off a
magnetic impurity. Here we focus on the simplest possible
case of T � 0 temperature, where the inelastic scattering
rate can be defined as follows: Assume that we have a
single scattering impurity at the origin and we create an
incoming flux of electrons with momentum k, spin�, and
energy E above the Fermi energy far away from the
origin. This incoming flux can be scattered off the impu-
rity in two different ways: (i) Either the electrons scatter
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elastically (both energy and spin unchanged) with a
scattering cross section �el�E� into an outgoing single-
particle state, without perturbing the environment or
(ii) they scatter off inelastically with a corresponding
cross section �inel�E�; i.e., and they leave behind some
electron-hole or spin excitations.

In the present Letter, we show how the full energy and
magnetic field dependence of �inel�E� can be determined.
The basic idea is simple: The single-particle matrix ele-
ments of the many-body T matrix, hk�jT̂jk0�0i, deter-
mine the elastic cross section, but they are also related to
the total scattering cross section �tot � �el 	 �inel

through the optical theorem. Therefore, we have only to
find a way to compute the hk�jT̂jk0�0i’s to obtain the
inelastic scattering cross section as the difference of the
total and elastic scattering cross sections:

��
inel � ��

total 
 ��
el: (1)

To determine hk�jT̂jk0�0i, we first relate them through
reduction formulas to some local correlation functions
[8], which we then calculate using the nonperturbative
method of the numerical renormalization group (NRG)
[9]. Note that we evaluate the T̂ matrix elements for single
electron states (which are not eigenstates of the
Hamiltonian) rather than for quasiparticles; cf. [10]. As
a consequence, we find ineleastic scattering at any finite
energy (even at T � 0). Though here we focus exclusively
on the case of zero temperature, where excitations are
created from the vacuum state [11], our discussions carry
over, with some modifications, to the case of finite tem-
peratures, too [12].

To be specific, consider the Anderson model (AM), but
our method is rather general and applies to practically any
local quantum impurity problem. We write the
Hamiltonian as H � H0 	Hint, where H0 denotes the
‘‘free’’ quadratic part of the Hamiltonian,
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FIG. 1. (a) Diagrammatic derivation of Eq. (6). Dashed and
continuous lines denote the bare propagators of the d level and
the conduction electrons, small fat crosses stand for hybridiza-
tion V, and wavy lines denote the on-site interaction U. (b) A
diagrammatic representation of the T matrix in the Kondo
problem. Dashed lines denote pseudofermion propagators and
describe the evolution of the impurity spin, while continuous
lines denote free conduction electron propagators. Filled circles
stand for the exchange interaction J. The first term of the
T matrix is simply proportional to the expectation value of
the impurity spin, it is frequency independent, and vanishes at
zero magnetic field. The second term can be identified as the
composite fermions correlation function.
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H0 �
X
�

�dd
y
�d� 	

X
�;k

��k�cyk�ck�;

and Hint stands for the on-site Hubbard interaction and
hybridization

Hint � Un"n# 	 V
X
�;k

�cyk�d� 	 H:c:�; (2)

with n� � dy�d�. The operator cyk� creates an electron in
a plane wave state with momentum k, energy ��k� �
k2

2m
�, and spin �, while d� is the annihilation operator
of the d electron.

We proceed to define incoming and outgoing scattering
states as well as the corresponding field operators and
Hilbert spaces [8]. As the impurity is local, the interac-
tion switches off far away and the ‘‘in’’ and ‘‘out’’ states
are eigenstates of the full Hamiltonian with the asymp-
totic boundary condition of behaving as plane waves in
the t ! 
1 and t ! 1 limits, respectively. The many-
body S-matrix and the T-matrix elements are then simply
defined in terms of the overlaps of the incoming and
outgoing scattering states,

hb; outja; ini � hb; injŜja; ini; (3)

Ŝ � 1	 iT̂: (4)

In the interaction representation, the explicit form of the
S matrix is given by the well-known expression Ŝ �
T expf
i

R
1

1Hint�t�dtg, where T is the time ordering

operator.
We are primarily interested in scattering of single

electron states cyk�j0i off the impurity. As noted, these
are eigenstates of H0 and not of H, but as H�t ! 
1� !
H0 they can be used to label the full eigenstates ja; ini �
jk; �i by imposing the boundary condition, jk; �i !
cyk�j0i as t ! 
1, with the single-particle scattering
being described by matrix elements of the T matrix,
hk; �jT̂jk0; �0i. Separating the Dirac delta contribution
due to energy conservation and defining the on-shell
T matrix T via hk; �jT̂jk0; �0i � 2�����k� 
 ��k0�� �
hk; �jT jk0; �0i, we can express the latter through stan-
dard manipulations [8] as

hk�jT jk0�0i � 
sG
1
0 ��; sk�Gs�;s�0 ��; sk; sk0�G
1

0 ��; sk

(5)

where s � sgn� distinguishes electronlike excitations
from holelike excitations, G
1

0 � i @@t	�	 1
2mr

2 de-
notes the inverse of the free Green function, and G is
the time-ordered single-particle Green function. The
meaning of Eq. (5) becomes more transparent in the
diagrammatic language of Fig. 1: As indicated by the
large, thin crosses there, one has to drop the contributions
of the two external legs of all scattering diagrams to the
single electron Green function, and the rest is just the on-
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shell single-particle matrix element of the many-body
T matrix. In the particular case of the AM, T does not
depend on the direction of incoming and outgoing mo-
menta, and a simple Dyson equation relates it to the
d level’s time-ordered propagator (see Fig. 1)

T ��!� � 
sV2Gs��
d �!�; (6)

where s � sgn!, and we allowed for spin dependence due
to the presence of an external magnetic field B [13].

According to the optical theorem, the spin-dependent
total scattering cross section is given by the imaginary
part of the diagonal matrix elements of the T matrix:

��
total �

2

vF
Imhp�jT jp�i; (7)

where vF denotes the Fermi velocity. The elastic scatter-
ing cross section, on the other hand, is related to the
square of T :

��
el �

1

vF

Z dp0

�2��3
2����0 
 ��jhp0�jT jp�ij2: (8)

Once these two cross sections are known, we can compute
the inelastic cross section �inel through Eq. (1).

It is instructive to rewrite �inel in the case of the AM.
For electrons we have

��
inel�!> 0� �

4�

k2F

�


�

2
ImG�

d 


�
�

2

�
2
jG�

d j
2

�
; (9)

where � � 2�V2%0 denotes the width of the d level and
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FIG. 2 (color online). Inelastic, elastic, and total scattering
rates in units of �0 � 4�=k2F at T � 0 and B � 0, as a function
of the logarithm of the incoming electron’s energy. Only the
electronic contribution (!> 0) is plotted. �inel has only a very
weak (logarithmic) energy dependence above TK , scales ap-
proximately linearly with ! for 0:1TK < !< TK , and scales as
�!2 for !< 0:1TK. The inset shows the �!2 and ln
2�TK=!�
regimes for ! � TK and ! � TK, respectively.
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FIG. 3 (color online). Energy dependence of spin-dependent
elastic and inelastic scattering rates in units of �0 � 4�=k2F, at
T � 0 and in the presence of a local magnetic field B.
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%0 � k2F=2�
2vF is the conduction electrons’s density of

states for one spin direction. For B � 0, this expression
reduces to

�inel�!> 0� �
2�

k2F

��
�00�!��

�!
 �d 
�0�!��2 	 ��00�!� 
 �
2�

2
;

where �0 and �00 denote, respectively, the real and imagi-
nary parts of the d-propagator’s self-energy. The analyti-
cal properties of the Green function imply that the above
expression is always positive and vanishes only where �00

becomes zero. Furthermore, the Fermi liquid (FL) theory
of Yamada and Yoshida tells us that �00 �!2 as ! ! 0
[14], and thus �inel vanishes as !2 at the Fermi energy.
Note that at the same time �total approaches the unitary
limit.

We demonstrate the power of the method outlined
above by computing the inelastic scattering cross section
for the Kondo Hamiltonian

HK �
J
2

X
k;k0

~S ��cyk� ~���0cyk0�0 �: (10)

This spin Hamiltonian captures the low-energy physics
and the formation of the Kondo resonance in the AM,
though for finite values of �=U differences are expected
for intermediate energies, TK � !�U;�. In the Kondo
model (KM), the T matrix of Eq. (5) is simply related to
the correlation function of the following composite fer-
mion operator, F� �

P
�0;k

~S � ~���0ck�0 [15], and the spec-
tral function of F�, %F�!� is thus directly proportional to
the low-energy part of the spectral function of the d-level
propagator in the AM. (For a diagrammatic proof, see
Fig. 1.) The imaginary part of T can be determined by
simply computing %F�!� numerically, and then a Hilbert
transform can be used to get the real part of T and thus
the full T matrix. In all these calculations it is essential
to have high quality data [16]. It is also crucial to deter-
mine the normalization factor of T correctly. This can be
done by using the FL relation, 
Im2�%0T

�
d �! � 0	� �

2sin2��, with �� the phase shift at the Fermi energy. We
extracted the latter directly from the finite size NRG
spectrum of the KM [9,17].

Our results for the case of B � 0 are shown in Fig. 2.
Most of the scattering is inelastic at energies above the
Kondo energy j!j> TK. Decreasing the energy of the
incoming electrons (holes), �total increases and, at ener-
gies below TK, it finally saturates at a value �0 � 4�=k2F.
This behavior must be contrasted to �inel, which slowly
increases as ! decreases, has a broad maximum around
TK, then suddenly drops and vanishes at the Fermi energy.
On linear energy scales (see Fig. 3), �inel varies rather
slowly above TK, is very large even at !� 20TK, and
vanishes rather suddenly around !� TK. For very small
energies �inel �!2, in agreement with FL theory; how-
ever, this quadratic behavior appears only at very low
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energies, and �inel is almost linear for 0:1TK < !< TK.
At energies ! � TK the inelastic rate is simply domi-
nated by spin-flip scattering and is therefore expected to
scale as �1=ln2�TK=!�, as we indeed find numerically.
Note that the Nagaoka-Suhl approximation [18] is appro-
priate only for ! � TK (see the inset of Fig. 2).

We also computed �inel in the presence of a local
magnetic field B, directed downwards along the z axis
(see Fig. 3). In this case there is a dramatic difference
between the inelastic scattering properties of spin-up and
107204-3



VOLUME 93, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S week ending
3 SEPTEMBER 2004
spin-down particles. Already a small field, B� 0:1TK
results in a strong spin dependence of the inelastic scat-
tering, but for B� TK, this difference is even more dra-
matic. At this field the spin of the magnetic impurity is
practically aligned with the external field and points
downwards. Therefore an incoming spin-down particle
(electron or hole) is unable to flip the impurity spin. More
precisely, only higher order inelastic processes can result
in a flip of the local impurity spin. This is, however, not
true for spin-up particles: An incoming spin-up electron
can exchange its spin with the magnetic impurity in a first
order process, resulting in a maximum in �inel around
!� B for spin-up electrons and holes and a very broad
inelastic background for !> B.

Though here we mostly focused on the simplest cases
of the AM and the single channel spin S � 1=2 KM at
T � 0 temperature, our formalism can be extended to
other models and to finite temperatures as well [12]. In
particular, while for some quantum impurity models no
simple diagrammatic theory is available, the composite
fermion’s spectral function can be computed in any
Kondo-type model to obtain the matrix elements of the
T matrix, and the renormalization group flow of the
eigenvalues of the S matrix can be studied in all these
cases [12].While usually a thorough numerical analysis is
needed to understand the full behavior of �inel, in some
models simple analytical results can also be obtained. In
the specific case of the two-channel KM, e.g., we know
that the single-particle matrix elements of the S matrix
identically vanish at the Fermi energy, ! � 0 [19,20].
This implies that %0T

2CK�! � 0� � i=� and leads to
the rather surprising relation at the Fermi level, �2CK

inel �
�2CK

el � �2CK
tot =2: Though the S matrix vanishes identi-

cally, half of the scattering processes remain elastic. The
nonvanishing �inel is characteristic of non-FL quantum
impurity models. Application of any finite magnetic field
drives the two-channel KM to a FL fixed point and gives
rise to a vanishing �inel at the Fermi energy.

We have to emphasize that, though they must be re-
lated, the �inel we computed is not identical to �
1

’ mea-
sured in weak localization experiments [2], since the
former contains spin-flip scattering processes as well as
the creation of electron-hole pairs. While we computed
only �inel�!; T � 0�, we expect that �inel�! � 0; T� has a
very similar form. In this sense, our finding that �inel is
roughly linear with ! for 0:05TK < !< 0:5TK agrees
qualitatively with the recent experimental results of
Ref. [21].

In summary, we have shown how the full energy and
magnetic field behavior of the T � 0 inelastic scattering
rate can be computed by exploiting the reduction formu-
las and then using the powerful machinery of NRG to
compute the single-particle matrix elements of the many-
body T matrix. We have shown that the FL theory of
Yamada and Yoshida directly implies a quadratically
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vanishing inelastic scattering rate at the Fermi energy
in the specific case of the AM. Scattering properties of
the KM have been computed by calculating the composite
fermion’s spectral function. Our numerical calculations
show that the above-mentioned �inel �!2 regime ap-
pears only at energies well below TK. In a magnetic field
B> TK the inelastic scattering is very sensitive to the
spin of the scattered single-particle excitation.
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