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1. Introduction

During the last years a spectacular development in the storage and manipulation of cold atoms
in optical lattices [1, 2] has taken place. Greiner et al. [1], to name one important example,
succeeded in experimentally driving a quantum phase transition between a superfluid and a
Mott-insulating phase in bosonic systems. This experimental progress has revived the interest
in the Bose-Hubbard model [Eq. (1)] as a generic Hamiltonian for strongly correlated bosons,
by which the quantum phase transition can be described [3, 4]. The Bose-Hubbard Hamiltonian
has been used previously in condensed matter physics to study the adsorption of noble gases
in nanotubes [5], or Cooper pairs in superconducting films with strong charging effects [6, 7].
In this context a lot of work has already been done to characterize the quantum phase transi-
tion, the statistics, and the low-energy excitations of the Bose-Hubbbard model [8, 9]. However,
new interesting questions arise now due to the good tunability of the experiments with optical
lattices. In particular, it becomes possible to study time-dependent processes such as driven
quantum phase transitions [1]. A theoretical understanding of such phenomena is challenging,
since the characteristics of the superfluid phase — where the atoms tend to delocalize through-
out the lattice and large fluctuations in the local density exist —, and the Mott-insulating phase
— where the number fluctuations decrease, and a gap in the excitation spectrum opens —, must
be covered at the same time. Both regions are separated by a non-analyticity of the spectrum,
which implies that a perturbative study [10, 11] works best in strong coupling limit, while a
Hartree-Fock-Bogoliubov mean field works best in the superfluid regime. In addition it is pos-
sible to develop a mean field theory [12, 13] based on a Gutzwiller ansatz [3, 4]: this reproduces
the mean field theory in the superfluid limit, as well as the limit of infinite interaction, which
raises the hope that the theory also interpolates properly between these limits.

In this paper we develop a variational description of the ground state of an ensemble of cold
atoms in an one-dimensional optical lattice. Our trial wavefunction treats the connections be-
tween neighboring sites as entities which decouple in the limit of infinitely large lattices. We
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apply this technique first to the quantum rotor model —which describes the lattice for large and
commensurate occupation per site [6], and has also been used to describe an array of Josephson
junctions [14]—, and next to the Bose-Hubbard Hamiltonian. The accuracy of the variational
theory in both models is confirmed by several comparisons. In the quantum rotor case, we use a
spin wave approximation in the limit of weak interaction and a first order perturbation theory in
the limit of weak tunneling. For the Bose-Hubbard model we compare against results obtained
applying the quasi-exact, numerical DMRG method to one-dimensional lattices with up to 128
sites, and also with calculations based on the Gutzwiller ansatz. Our conclusion is that the vari-
ational picture of self-regulated connections between sites provides a rather cheap and simple,
but very good description of the local properties of the system in the superfluid and insulator
regimes, and a fairly good interpolation across the quantum phase transition. Our variational
ansatz, however, fails to describe long range properties of the superfluid phase, such as the
algebraic decay with distance of the off-diagonal elements of the one-particle density matrix.
The simplicity of the method suggests a possible generalization to higher dimensionalities and
other physical models.

The outline of the paper is as follows: In Section 2 we introduce the quantum rotor model
as a possible limit of the Bose-Hubbard Hamiltonian. Next, information about the ground state
of the quantum rotor model is obtained variationally as the solution of a Mathieu equation. We
can estimate energies, correlation functions and length, and the variance of the density as a
function of the only free parameter. A comparison with perturbative estimates demonstrates the
accuracy of the method when computing local properties. Since the quantum rotor model is only
an approximate description of the optical lattice, in Section 3 we develop a similar variational
theory for the Bose-Hubbard Hamiltonian. After bringing the Bose-Hubbard Hamiltonian to
an appropriate form, we can estimate the local properties of its ground state. The variational
solutions are compared in Sec. 3.3 with the results of DMRG studies of the Bose-Hubbard
model. We confirm that the variational method describes very well the local properties of both
the Mott-insulator and the superfluid regime, and provides a fairly good interpolation across the
phase transition. Finally, in Section 4 we summarize our results.

2. Quantum phase model

2.1. Relation to the Bose-Hubbard model

In this section we show the equivalence of the Bose-Hubbard model

HBH =
M

∑
j=1

[
−J

(
a†

j+1aj +a†
j aj+1

)
+

U
2

a†
j a

†
j ajaj

]
− U

2
Mn̄(n̄−1), (1)

and the quantum rotor model for large and integer occupation ¯n [6]. In our notation,M is
the number of lattice sites andN = n̄M the number of atoms. Both the Bose-Hubbard model
and the quantum rotor model show a phase transition due to the interplay between the kinetic
term proportional toJ and the interaction term proportional toU . For convenience we have
subtracted the ground state energy in the perfect insulator limitU/J → ∞.

If we expand a configuration of the lattice using Fock states

|ψ〉 = ∑
�n

c�n|�n〉 = ∑
�n

c�n|n1〉⊗ · · ·⊗ |nM〉, (2)

and the number of particles per lattice site is large,nk > 1, we may approximate the hopping
terms as follows

a†
l aj |ψ〉 =

√
n̄(n̄+1)PA+

l A−
j |�n〉+ |∆l j 〉 (3)
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Here,A±|n〉= |n±1〉 are ladder operators andP projects on states with non-negative occupa-
tion numbers,nk ≥ 0. To lowest order the error|∆l j 〉 is

|∆l j 〉 = ∑
�n

c�n
(n̄+1)(nj − n̄)+ n̄(nl − n̄)

2
√

n̄(n̄+1)
|�n〉, (4)

and its norm is bound by

‖∆l j ‖ ≤
√

n̄2 +(n̄+1)2

2n̄(n̄+1)
σl , (5)

where σ2
l = 〈(nl − n̄)2〉 is the variance in the number of particles per lattice site. For the

approximation (3) to be valid, the uncertainty in the number of atoms must be small com-
pared to the mean value, ¯n� σ , and the interaction energy must exceed the neglected terms,
Un̄(n̄−1) � Jσ .

Following the previous procedure the Bose-Hubbard model becomes

HQR = P ∑
j

[
−2ρJ

(
A+

j+1A−
j +A+

j A−
j+1

)
+

U
2

(Az
j)

2
]

(6)

Here ρ =
√

n̄(n̄+1) is approximately the density,Az
j = a†

j aj − n̄ is essentially the number
operator and we have used that∑ j A

z
j |ψ〉 = 0 when we work with states that have a fixed,

commensurate number of particles. In the following we will define the energy per lattice site as

ε ≡ 1
M
〈HQR〉. (7)

Since the physically interesting states will be concentrated around large occupations,nk = n̄,
the usual step now is to drop the projector,P, and move to the basis of phase states, defined by

〈�n|�φ〉 = ei�n·�φ(2π)−M/2, �φ ∈ [−π,π]⊗M. (8)

In doing so, we obtain the identificationA±
j → e±iφk andAz

j →−i∂/∂φj , which produces the
usual representation of the quantum rotor model

HQR = ∑
j

[
−2ρJcos(φj −φj+1)− U

2
∂ 2

∂φ2
j

]
, (9)

with the associated state writen as

|ψ〉 = (2π)−M/2
∫

ein̄∑φkΨ(�φ)|�φ〉dMφ. (10)

A similar derivation is possible using path integrals [16].

2.2. Variational ansatz

In this section we estimate the properties of the ground state ofHQR variationally. Due to the
previous splitting (10), any wavefunctionΨ(�φ) can only depend on the phase difference be-
tween neighboring wells,ξ j = φj+1−φj . These new quantum variables describe the connec-
tions between neigboring sites. In the limit of large lattices it seems reasonable to assume that
these connections become independent from each other adopting the product state

Ψ(�φ) = ΠM
j=1h(φj −φj+1). (11)

(C) 2004 OSA 12 January 2004 / Vol. 12,  No. 1 / OPTICS EXPRESS  45
#3323 - $15.00 US Received 7 November 2003; revised 1 December 2003; accepted 4 December 2003



1n , 1
φ φ n ,φn ,2 3 3

1
ξ ξw , w ,2 21

2

Fig. 1. Instead of working directly with the population of each well,nk, we can use other
quantum numbers,wk, defined by the relationnk = wk−wk−1 + n̄, and which behave like
a set of chemical potentials acting on the barriers that connect neigboring sites.

This representation becomes exact in the Mott-insulating limit,U/J → ∞, wherehmott(ξ ) = 1,
and in the superfluid limit,U/J → 0, wherehs f(ξ ) = ∑n∈Z δ(ξ −2πn), as can be verified by
direct substitution in Eq. (10).

Even though the phase representation is the best one to find a trial wavefunction, it is not the
optimal one for performing computations. It is instead more convenient to work with the vari-
ables which are conjugate to the phase differencesξ j = φj+1−φj . These are the new quantum
numbers,wk, given by

nk = wk−wk−1 + n̄. (12)

In terms of these numbers, the ansatz (11) reveals itself as a simple product wavefunction

|ψ〉 = |h̃〉⊗(M−1) = ∑
�w

h̃w1 · · · h̃wM−1|w1〉⊗ · · ·⊗ |wM−1〉, (13)

with coefficients given by the Fourier transform

h̃m =
∫

h(ξ )eimξ dξ . (14)

As sketched in Fig. 1, thewk play the roles of chemical potentials which are established be-
tween different wells: the difference between the potentials on the extremes of a site gives the
fluctuations over the mean and commesurate occupation ¯n. In this picture

HQR =
M−1

∑
k=1

[
−2ρJ

(
Σ+

k +Σ−
k

)
+

U
2

(
Σz

k−Σz
k−1

)2
]
, (15)

whereΣ±|w〉 = |w±1〉 are new ladder operators andΣz|w〉 = w|w〉.
By minimizing the energy associated withHQR over all states within a given ansatz we can

both obtain an upper bound to the energy of the ground state and approximate its wave function.
A simple computation with our product ansatz leads to the result [compare (7)]

ε[h̃] �−4ρJRe〈Σ+〉+U〈(Σz)2〉−U〈Σz〉2, (16)

where the expected values are computed over a single connection,〈Σz〉 = ∑ww|hw|2, and the
wavefunctions are assumed to be normalized,∑w |hw|2 = 1. Since the stationary states have
a well defined parity,̃h(−w) = (−1)Ph̃w, the optimal variational state must satisfy the linear
equation

−2ρJ(h̃j+1 + h̃j−1)+U j2h̃j = εesth̃j , (17)
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Fig. 2. Estimates for (a) energy energy per lattice site and (b) density fluctuations of the
quantum rotor Hamiltonian (6) obtained with the variational method (solid), and perturba-
tive calculations forU � J (dashed) andU � J (dots).

which is nothing but the Fourier transform of a Mathieu equation[
−U

2
∂ 2

∂ξ 2 −2ρJcos(ξ )
]

h(ξ ) = εesth(ξ ). (18)

The estimated ground state energy per site is given by the lowest eigenvalue of either equation.
Using the product ansatz and the same approximations required to deriveHQR, we can also

compute other properties of the ground state. For instance, the variance of the number of atoms
per lattice site

σ2
j =

〈
(a†

j aj − n̄)2
〉

= 2
〈
(Σz)2〉 , (19)

and the correlation functions

〈a†
j+1aj〉 = ρ 〈Σ−

j 〉 ≡ ρ γ1, (20)

〈a†
j+l aj〉 = ρ

〈
∏ j+l−1

k= j Σ−
k

〉
= ρ (γ1)l , (21)

which decay exponentially with the distance. This implies that the ansatz (13) only describes
properly the decay of the correlations in the Mott-insulating regime, since the correlations in the
superfluid regime follow a power law decay. However, as we will see below, local observables
(σ , γ1, ε . . .) are properly estimated even if long–range ones are not.

We have solved Eq. (17) numerically in a truncated space. The results are summarized in
Fig. 2, where we also plot reference estimates arising from two other analytical methods. In
the limit U � J we compare with a first order perturbative calculation around the solution
Ψ(�φ) = 1, which is possible thanks to an energy gap of orderO(U) in the excitation spectrum.
In the limit J �U we rather use a spin wave or harmonic approximation in which the cosine-
terms of the HamiltonianHQR are expanded up to second order in the phase difference between
neighboring sites [see Sec. 2.3]. This approximation is valid in the superfluid regime, where
the phase does not vary much between neighboring wells. From the graphical comparison we
see that the variational wavefunction provides a fairly accurate description of the ground state
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of the quantum rotor model in both the superfluid and insulating limits. As a side note, we
must remark that this ground state has a divergent fluctuation of the number of particles per
site asJ → 0. This differs from the expected behavior of the ground state of the original Bose-
Hubard Hamiltonian, and it reminds us thatHQR can only model the atomic ensemble when the
variance,σ , is small compared to the mean occupation number, ¯n.

2.3. Harmonic approximations to the quantum phase model

In the limit J �U it is possible to estimate the ground state of the rotor model (6) analytically.
Since we are deep in the superfluid regime, the wavefunction will be concentrated around the
line φ1 = φ2 = . . . = φM, and we can approximate

HQR�∑
j

[
−U

2
∂ 2

∂φ2
j

−ρJ(φj −φj+1)2

]
. (22)

If we remove the periodic boundary conditions onφi and change variables, the preceding

Hamiltonian may be diagonalized,H = ∑k ωk

(
b†

kbk + 1
2

)
, with frequencies given byωk =

(8ρJU)1/2 |sin(πk/M)|, wherek is an integer in the range−M + 1 < 2k < M and labels the
different values of the momentum in the lattice. The ground state energy [Fig. 4(a)] may be
estimated as the zero-point energy of the harmonic oscillator. For largeM, the sum overk may
be replaced with an integral, giving

Eg � 2M
π

√
2ρJU. (23)

The variance of the number of particles is related to the expectation value of the momentum,
and using the same procedure as above one obtains

σ � 1
π

√
8Jρ
U

. (24)

3. The Bose-Hubbard model

In this section we apply to the Bose-Hubbard Hamiltonian the techniques that were developed
in Sec. 2. We will do it in three steps: First we will develop a phase representation which is
valid for all occupation numbers. Next we will prove that this representation is equivalent to
a similarity transformation of the Hamiltonian which brings it to a form similar to (6), at the
price of losing Hermiticity. Finally we will show how to implement the ansatz of independent
connections (13) to produce estimates for the usual set of observables (ε, γ1, σ), which are to
be validated with DMRG calculations.

3.1. Coherent states

The phase coherent states|φ〉 are defined by

〈n|φ〉 = einφ/
√

n!. (25)

Unlike the phase states defined in Sec. 2, they are not orthogonal to each other,〈φ|θ〉 =
exp

[
ei(θ−φ)

]
, but they form a complete basis and an expansion like (10) is still possible. A nice

property of the coherent states is that we can rewrite the operatorsa, a†, a†a, etc, in terms of the
phases very easily. For instance,a|φ〉 = eiφ|φ〉, a†|φ〉 = −ie−iφ ∂

∂φ |φ〉, anda†a|φ〉 = −i ∂
∂φ |φ〉.
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Using this representation, we obtain an effective Hamiltonian for the wavefunctionΨ(�φ), i.e.
HBH|ψ〉 = (2π)−M/2∫

dMφ ein̄∑φk[Ht
cohΨ(�φ)]|�φ〉, which has the form

Ht
coh = −J ∑

〈i, j〉

[
2(n̄+1)cos(φi −φj)− iei(φi−φj ) ∂

∂φj

]
+

U
2 ∑

j

(
− ∂ 2

∂φ2
j

)
. (26)

HereHt
coh stands for the tranpose ofHcoh. This operator was already used in Ref. [29] to study

the Bose-Hubbard model with only two sites. On the one hand, it is a non-Hermitian operator1

and we cannot do a simple variational study. On the other hand the Hamiltonian still depends
on the phase differences, and it is reasonable to look for approximate eigenstates which have
the form (11). This will be done in the following section.

3.2. Variational procedure for non-Hermitian operators

In this section we will find the best variational function which has the product form of Eq.
(11). However, as it happened in Section 2, instead of working with phase variables it will
be more convenient to develop a representation of the Bose-Hubbard Hamiltonian in terms of
connections. This is once more a two-steps process. First we use a similarity transformation
suggested by the definition of the coherent states

O|�n〉 =
M

∏
k=1

√
nk!|�n〉. (27)

SinceOajO−1 = A−
j andOa†

j O
−1 = Az

jA
+
j , we find

Hcoh = OHBHO−1 (28)

= −J ∑
〈i, j〉

(Az
i + n̄)A+

i A−
j +

U
2 ∑

j
(Az

j)
2.

The Hamiltonians (26) and (28) are equivalent: while one is defined in terms of phase vari-
ables, the other one is defined using occupations numbers, and both are related by a Fourier
transform. The second and final step is to rewrite everything in terms of connections, with the
quantum numbers from Eq. (12) and the relationsΣx = Σ+ +Σ−, Σy = i(Σ−−Σ+). The result
is a decomposition of the Hamiltonian

Hcoh = H1 +H2, (29)

H1 = ∑
j

[
−Jn̄Σx + iJΣz

jΣ
y
j +U(Σz

j)
2
]
,

H2 = ∑
j

[
J(Σz

j−1Σ+
j −Σz

j+1Σ−
j )+UΣz

jΣ
z
j+1

]
,

into terms which are local,H1, and terms which involve pairs of connections,H2.
For the quantum rotor model we proved that the optimal product wavefunction was an eigen-

state of a Hamiltonian which did not couple connections, likeH1. The difference now is that,
since the operatorHcoh is not Hermitian, we cannot establish a variational principle and that
argument is no longer valid. Nevertheless, we will again propose a variational ansatz which is
an eigenstate of the local operatorH1|h̃〉⊗M = Mεest|h̃〉⊗N. Using the following equality

ε0 = min
ψ �=0

〈ψ|HBH|ψ〉
‖ψ‖2 = min

χ �=0

〈χ |O−2Hcoh|χ〉
〈χ |O−2|χ〉 , (30)

1The hermiticity ofHBH is maintained due to an implicit projection that takes place when we reconstruct the state
HBH|ψ〉 from Ht

cohΨ(�φ) (See Ref. [29]).
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and the product ansatz|χ〉 = |h̃〉⊗M, we arrive to an upper bound for the lowest eigenvalue of
the Bose-Hubbard Hamiltonian, expressed in terms of the non-Hermitian one

ε0 ≤ εest+
1
N
〈h̃|⊗MO−2H2|h̃〉⊗M

〈h̃|⊗MO−2|h̃〉⊗M
≡ εest+∆εest. (31)

The way to use this variational principle is as follows. First, for a givenJ andU we compute
the lowest eigenstate ofH1 and this way obtaiñh. After the equivalence (14), finding the ground
state of the local HamiltonianH1 becomes equivalent to solving a modified Mathieu equation[

−U
∂ 2

∂ξ 2 −2J(n̄+1)cos(ξ )−2Jsin(ξ )
∂

∂ξ

]
h = εesth, (32)

which describes exactly the static properties of a pair of sites with open boundary conditions
[29]. Once we haveεest we must still compute the correction∆εest using a rather straightforward
expansion which is shown in Sec. 3.4. Surprisingly,∆εest happens to be negative, so that it is
actually an improvement over the simple estimate given byεest [See Fig. 5].

From the optimal variational state,|ψ〉 = O−1|h̃〉⊗M, and the estimate for the energy,
εvar = εest+∆εest, we may compute other observables. For the density fluctuations and nearest
neighbor correlations we use the virial theorem

〈a†
j+1aj〉 =

∂
∂J

εvar, (33)

σ2 =
∂

∂U
εvar− n̄2, (34)

whereas for other properties one has to evaluate numerically the matrix products shown in Sec.
3.4. This allows us to prove that for the product states|h̃〉⊗M correlations decay exponentially,
opposite to what is expected in the superfluid phase, whose correlations should decay alge-
braically. Nevertheless, as we will see next, this family of states does estimate accurately the
local properties of the optical lattice.

3.3. Comparison to DMRG results

We will now compare the results for the ground state energy, the correlation functions, and
the variance of the particle number provided by the two variational ansatz, (18) and (32), and
the Gutzwiller ansatz [15] with those obtained by DMRG studies of the Bose-Hubbard model.
The DMRG, developed 1992 by White [17, 18] in the area of condensed matter theory, is a
very powerful numerical tool to investigate static and dynamic properties of strongly correlated
quasi-one-dimensional spin, fermionic or bosonic quantum systems. The DMRG is an essen-
tially quasi-exact numerical method. The fundamental ideas stem from real space renormaliza-
tion methods: the system size is grown iteratively while the (exponentially diverging) size of
the Hilbert space is kept constant by decimation. Hereby one tries to retain only that subset of
states that is essential to describe the physical quantity under consideration. In DMRG these
are expectation values with respect to low-lying states (“target states”), and in particular with
respect to the ground state wave function.

DMRG builds up the system linearly: at each growth step, suitable density matrices for the
target states are derived that yield information on the relevance of Hilbert space states. Build-
ing on this information, the states and operators are projected onto Hilbert subspaces of fixed
dimensionM containing the most relevant states.M is chosen to be small enough to be han-
dled numerically, but large enough to obtain the desired accuracy; numerical results can be
extrapolated inM to the exact limit of infiniteM in the thermodynamic limit. However, results
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Fig. 3. (a) The ground state energy per site,ε, (b) nearest neighbor correlation,c1 =
〈a†

j+1aj 〉, and (c) variance of the number of atoms per site,σ2 = 〈(nj − n̄)2〉. Plots (b)
and (c) use a log-log scale. The results of the DMRG (solid line) are obtained on a system
with 128 sites, a maximum occupation number of 9 bosons per site and a reduced space
of states of about 200 states. The estimates from the variational theory are plotted using
dashed lines. The vertical lines mark the location of the phase transition according to [11].
The mean occupation numbers are denoted with circles (¯n = 1), diamonds (¯n = 2) and
boxes (n̄ = 3).

presented here have converged for the largestM considered and no further extrapolation was
necessary.

Details on the DMRG method may for example be found in [19]. In the case of the Bose-
Hubbard model the DMRG has been used to study properties of the system [20, 21, 22]. The
results of DMRG agree very well with exact diagonalization results for small systems, with
quantum Monte-Carlo simulations e.g. [23, 24, 25, 26], and with 13th order perturbation theory
[27].

We have used the DMRG to study the properties of the ground state of the Bose-Hubbard
model on one-dimensional lattices with 128 sites, and commensurate fillings ¯n = 1,2, and
3. In Figs. 3(a-c) we show the mean energy per siteε, the nearest neighbor correlations,
c1 = 〈a†

j+1aj〉, and the varianceσ of the density, calculated both with the DMRG and with
the variational estimates developed above. As expected, there are no indications of the phase
transitions in these quantities, neither in the variational results nor in the numerical solutions.
Rather, an inflexion of the nearest neighbor correlation points out the location of the superfluid-
insulator transition which lies roughly between 3¯n and 4n̄ (see [20] and ref. therein). The agree-
ment of the two methods is fairly good above the phase transition and below it.
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Fig. 4. (a) The ground state energy per site,ε, (b) nearest neighbor correlation,c1 =
〈a†

j+1aj 〉, and (c) variance of the number of atoms per site,σ2 = 〈(nj − n̄)2〉. Plot (b)
and (c) are in log-log scale. Using filling factor ¯n = 1, we show results from the varia-
tional model for the Bose-Hubbard model using phase coherent states (solid), the quantum
rotor model (dashed), the Gutzwiller ansatz for the Bose-Hubbard Hamiltonian (dots) and
DMRG (circles). Vertical dash-dot lines mark the location of the phase transition according
to [11].

A more detailed comparison is provided in Fig. 4 for the case ¯n = 1. In this figure we
plot together results from the DMRG, the variational ansatz derived above, the quantum ro-
tor model and the well-known Gutzwiller ansatz. The Gutzwiller ansatz [28, 3, 4] is a vari-
ational ansatz made of a product of single-site wave functions,|ΨG〉 = ΠM

j=1

∣∣Φ j
〉
, where∣∣Φ j

〉
= ∑∞

m=0 f ( j)
m

∣∣mj
〉

and f ( j)
m are constants. Such a wavefunction cannot be used in the one-

dimensional Mott insulator regime, because a perturbative study shows that the corrections of
orderO(J/U) are lost and all correlations become zero. However this ansatz gives good results
in the superfluid regime, where the long-range order is well described by|ΨG〉, and we can use
these results and those of the DMRG to assert the accuracy of our variational estimates. As Fig.
4 shows, in the Mott insulator regime, the DMRG results agree perfectly with our variational
theory for the Bose-Hubbard model and for the quantum rotor model. Close to the phase tran-
sition is the point at which the quantum rotor model no longer describes well the atoms in the
optical lattice due to the growth of density fluctuations. At this point we also observe a small
disagreement between the DMRG and the coherent states, which is due to the growth of long
range correlations and vanishes as we get deeper into the superfluid regime.
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3.4. Numerical evaluation of the upper bound

In this section we will show how to compute the corrections to the local energy,∆εest, from Eq.
(31). We basically need a method to compute expectation values of the operatorO−2 around
product states which have the form

|φ〉 = |h̃〉1 · · · |h̃〉k−1|Ah̃〉k|Bh̃〉k+1|h̃〉k+2 · · · |h̃〉M, (35)

in which at most two contiguous vectors are affected by single-connection operators. For in-
stance, this is the case of the optimal variational state,|ψ〉= O−1|h̃〉⊗M, whereA andB are just
the identity, but also ofH2|ψ〉, whereA andB areΣ+, Σ− or Σz. After some manipulations it is
possible to write

〈O−2H2〉ψ =
M−2

∑
k=1

�u tO(HO)k−1ZkO(HO)M−k−1�u,

Zk = J(HzOH+ −H−OHz)−U(HzOHz),

with the real matrices and vectors

Hi j = |h̃i |2δi j ,

(Hα )i j = |h̃i(Σα h̃)i |2δi j ,

Oi j =
{

[(i − j + n̄)!]−1/2, i − j ≥−n̄
0, i − j < −n̄

,

ui = δi0,

i, j ∈ Z, α ∈ {+,−,z}.
We have used this technique to compute numerically the correction∆εest for different lattice

sizes and found small or no differences for more than 30 sites. Intuitively, this is because in the
limit of large powers the matrices(HO)k become projectors on the eigenvector with the largest
eigenvalue. Using the same type of expansion we may compute other correlations

〈a†
k+∆ak〉ψ =

�utO(HO)k−1(H−O)∆(HO)M−k+1�u
�utO(HO)M�u

. (36)

For large values of∆ and large lattices, this quotient will decay exponentially asγ∆
1 , whereγ1

is the largest eigenvalue of the matrixH−O.

4. Conclusions

In this work we have studied analytically and numerically the properties of the ground state
of an ensemble of bosonic atoms in an 1D optical lattice. For the study of the atomic ensem-
ble we have used both the quantum rotor model and the Bose-Hubbard model. Exploiting the
fact that in these models there exists only nearest neighbor hopping and local interactions, we
have developed a variational wavefunction that may be used to easily estimate local properties,
such as the energy per well, the nearest neigbor correlations and the fluctuations of the density.
In the case of the quantum rotor model we have verified our results with perturbative calcula-
tions around the strongly interacting regime, and with a spin wave approximation around the
superfluid regime. In the case of the Bose-Hubbard model we have compared the variational
estimates with numerical results obtained using the DMRG technique for a maximum density
of three atoms per well. We have concluded that this procedure leads to fairly good estimates
of local ground state properties of both Hamiltonians, in both the superfluid and the insulator
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Fig. 5. The energy of the product ansatz contains a contribution from each connection,
εest, plus the interaction between neighbouring connections,∆εest. In Fig. (a) we show that
∆εest (dash) is actually negative, and improves the estimateεest moving it towards the exact
value,εDMRG (circles). Everything has been computed for ¯n = 1. In Fig. (b) we show that
the correction∆εest does not change much for large lattices.

regime, the largest disagreement being localized around the phase transition. On the other hand,
we have also shown that our variational ansatz fails to describe long range properties of the su-
perfluid phase, such as the algebraic decay of the first order correlation function with respect to
distance.
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