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We investigate the charge fluctuations of a single-electron (bwetallic grain coupled to a lead via a
smaller quantum dot in the Kondo regime. The most interesting aspect of this problem resides in the interplay
betweenspin Kondo physics stemming from the screening of the spin of the small dotdrithl Kondo
physics emerging when charging states of the grain \gttarge Q=0 andQ=e are almost degenerate.
Combining Wilson’s numerical renormalization-group method with perturbative scaling approaches we push
forward our previous workK. Le Hur and P. Simon, Phys. Rev. @&, 201308R(2003]. We emphasize that,
for symmetric and slightly asymmetric barriers, the strong entanglement of charge and spin flip events in this
setup inevitably results in a nontrivial stable @JKondo fixed point near the degeneracy points of the grain.

By analogy with a small dot sandwiched between two leads, the ground state is Fermi-liquid-like, which
considerably smears out the Coulomb staircase behavior and prevents the Matveev logarithmic singularity
from arising. Most notably, the associated Kondo temperaTLﬂé(“) might be raised compared to that in
conductance experiments through a small quantum ddt K), which makes the observation of our predic-
tions a priori accessible. We discuss the robustness of thelStbrrelated state against the inclusion of an
external magnetic field, a deviation from the degeneracy points, particle-hole symmetry in the small dot, and
asymmetric tunnel junctions and comment on the different crossovers.
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[. INTRODUCTION can hop from the lead to the dot and back, the dot charge
remains to a large extent quantized. This quantization has
Recently, quantum dots have attracted considerable intebeen investigated thoroughly both theoretically and
est due to their potential applicability as single-electron tranexperimentally® It is important to bear in mind that this
sistors or as basic building blockgubits in the fabrication  problem is intrinsically connected to amrbital or charge
of quantum computersin recent years, a great amount of Kondo effect® Indeed, near the degeneracy points of the av-
work has also been devoted to studying the Kondo effect irerage charge in the grain, one can effectively map the prob-
mesoscopic structurésA motivation for these efforts was lem of charge fluctuations onto #plana) two-channel
the recent experimental observation of the Kondo effect irkondo Hamiltoniah*~2® with the two charge configurations
tunneling through a small quantum dot in the Kondoin the box playing the role of the impurity sgih’ and the
regime3~°In these experiments, the excess electrspioof ~ physical spin of the conduction electrons acting as a passive
the dot acts as a magnetic impurity. Let us also mention thathannel index(This mapping isa priori valid only for weak
the manipulation of magnetic cobalt atoms on a copper surtunneling junctions between the grain and the le&dr ac-
face, and more specifically the observation of the associateckssible temperatures—in general, larger than the level spac-
Kondo resonance via spectroscopy tunnelinging of the grain—spin Kondo physics is not relevdhthe
measurement¥’ also represents a remarkable opportunity toquantity of interest is the average dot charge as a function of
probe spin Kondo physics at the mesoscopic scale but ithe voltage applied to a back gate. Note that the average dot
another realmnot with artificial structures charge can be measured with sensitivity well below a single
A different set of problems relating the Kondo effect to charge!® Unfortunately, only some fingerprints of the two-
the physics of quantum dots is encountered when investigathannel Kondo effect were recently observed for a setting in
ing the charge fluctuations of a large Coulomb-blockadedsemiconductor quantum ddt$Indeed, the non-Fermi-liquid
quantum dot(metallic grain.® More precisely, one of the nature of the two-channel Kondo effect is hardly accessible
most important features of a quantum dot is the Coulombin the Matveev setup built on semiconducting devite®n
blockade phenomenon, i.e., as a result of the strong repulsidhe one hand, the charging energy of the grain must be large
between electrons, the charge of a quantum dot is quantizezhough to maximize the Kondo temperatiliye; on the other
in units of the elementary charge Even a metallic dot at a hand, the level spacing must be small enough compared to
micrometric scale can still behave as a good single-electromy . It is difficult to satisfy these two conflicting limits. A
transistor. When the gate voltalyg is increased, the charge better chance for observing the two-channel Kondo behavior
of the grain changes in a steplike manner. This behavior isnay occur if tunneling between the lead and the grain in-
referred to as a Coulomb staircase. Moreover, when the merolves a resonant level since it offers the possibility of actu-
tallic dot is weakly coupled to a bulk lead, so that electronsally enhancing the Kondo temperature of the systém.
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Vg the Fermi level was studied in Refs. 23 and 24, where in
7 contrast it was shown that the resonant level has only a slight
influence on the smearing of the Coulomb blockade even if
the transmission coefficient through the impurity is 1 at reso-
nance. This differs markedly from the case of an energy-
independent transmission coefficient where the Coulomb
staircase is completely destroyed for perfect transmissfon.
Furthermore, the charge of the grain in such a device can be
used to measure the occupation of the “dofhe resonant-
level behavior of Ref. 24 is also recovered in our setup when
an orbital magnetic field is applied.

When Q-tiand C-eae degeremts Let us mention that the possibility of a strongly correlated
orbital pseudo—spin T=1/2 .
Kondo ground state possessing an($lsymmetry has also
FIG. 1. (Color online Schematic view of the setup. A microme- been discussed very recently in the different contexts of two
ter scale grair(or large dot is weakly coupled to a bulk lead via a small dots coupled with a strong capacitive interdot
small dot in the Kondo regime, which acts asSn1/2 spin impu-  coupling’® and of triangular artificial atonts.The possibility
rity. The charges of the grain and the small dot are controlled by thef orbital and spin Kondo effects in such a geometry was
gate voltages/, andV, respectively. The auxiliary voltages can previously anticipated by Schoand co-workers® inspired
be used to adjust the tunnel junctions. by preliminary experiments of Ref. 29. It is worth noting that
these types of problems also have potential connections with

In this paper, the setup we analyze consists of a singlethe twofold orbitally degenerate Anderson impurity
electron box or grain coupled to a reservoir through a smallefodel?**" and more precisely with the physics of certain
dot (Fig. 1). We assume that the smaller dot contains an oddieavy fermion compounds like UBg where the U ion is
number of electrons and eventually acts asSarl/2 Kondo ~Modeled by a nonmagnetic quadrupolar dodbland thus
impurity.? Typically, when only charge Kondo flips are in- quadrupolarorbital) and spin Kondo effects can in principle
volved, the low energy physics near the degeneracy points igterfere¥
well described by a two-channel Kondo model; in particular, Our paper is structured as follows. In Sec. II, we resort to
the capacitance peaks of the grain exhibit at zero temperatufe Schrieffer-Wolff transformation and derive the effective
a |Ogarithmic Singu|arity at the degeneracy points, which eande| including the different useful parameters. In Sec. I,
sures a nice Coulomb staircase even for not too weak cowssuming that we are far from the degeneracy points of the
plings between the quantum box and the [B#ulour setup,  9rain, we use a pedestrian perturbation theory; this reveals
the Kondo effect now has two possible origins: the spin dué¢he importance of spin flips even in this limit. In Sec. IV, we
to the presence of the small dot playing the role of&n carefully investigate both theoretically and numerically the
=1/2 spin impurity, and the orbital degeneracy on the graininterplay between orbital and spin Kondo effects at the de-
Combining Wilson's numerical renormalization-group generacy points. In Sec. V, we discuss in detail the effects of
(NRG) method with perturbative scaling approaches, we expossible symmetry breaking perturbations and the crossovers
tend our previous worfZ and emphasize that &nd near generated by such perturbations. Finally, Sec. VI is devoted
the degeneracy points of the grain the two Kondo effects ca#P the discussion of our results, and in particular we summa-
be intertwined. The orbital degrees of freedom of the grairfize our main experimental predictions for such a setup.
become strongly entangled with the spin degrees of freedom
of the small dot, resulting in a stable fixed point with an Il. MODEL AND SCHRIEFFER-WOLFF
SU(4) symmetry. This requires symmetric or slightly asym- TRANSFORMATION
metric tunneling junctions. Furthermore, the low energy . . . .
fixed point is a Fermi liquid, which considerably smears out In the foIIovx_nng, we analy_ze in detail the behavior of
the Coulomb staircase behavior and prevents the Matveeg"a_rge fluctuations in the grain. In order to model the setup
logarithmic singularity from arising Remember that the ma- ep|cted in Fig. 1, we consider the Anderson-like Hamil-
jor consequence of this enlarged symmetry in our setup jfonian
that the grain capacitance exhibits, instead of a logarithmic QZ
singularity, a strongly reduced peak as a function of the ., _ + t < . F t
back-gate voltage, considerably smearing charging effects inH ; €iBko ko % “p@polpst 50" pQ ; Go8o
the grain. It is also worth noting that the Kondo effect is

metallic

grain

maximized when both Kondo effects occur simultaneously. t t

) ] +Un;n +t a. a,+h.c.)+t a, a,+H.c.),
In particular, the associated Kondo temperaffe®) can be [ % (kB % (o3,
strongly enhanced compared to that of Matveev’s original )

setup, which may guarantee the verification of our predic-

tions. We stress that the Coulomb staircase behavior is aWwherea,, a,, anda,, are the annihilation operators for
ready smeared out in the weak tunneling limit, due to theelectrons of spir in the lead, the small dot, and the grain,
appearance of spin-flip-assisted tunneling. A different limitrespectively, and is the tunneling matrix element, which we
where the small dot rather acts as a resonant level close sssume to bd& independent for simplicity. Let us first con-
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sider that the tunnel junctions asgmmetricWe also assume metallic grain vanishes, and therefore the Schrieffer-Wolff
that the junctions are narrow enough and contain one trangarametersy and J are completely identical to those of a
verse channel only. Extensions of the model to asymmetrismall dot connected to two metallic reservaitskEurther-

or larger junctions will be analyzed later in Sec. V. We alsomore, remember that in the present model the ultraviolet cut-
assume that the energy spectrum in the grain is continuousff at which the effective model becomes valid can be
which implies that the grain is large enough that its levelroughly identified withD~min{E;,A4}, where Ay is the
spacingA is very small compared to its charging energy level spacing of the small ddwith today’s technology it is
E.=e?/(2C): Ag/Ec—0 (in Ref. 20A,~70 mK was not possible to reach A;~2-3 K and for the graf E,
sufficiently small compared to the Kondo temperature scale;-2.3 K).

which hindered the logarithmic capacitance pefikm de- On the other hand, far from the degeneracy paint
veloping completely Q denotes the charge operator of the = —€/2C—which means on a charge plateau—the energy to
grain, C is the capacitance between the grain and the gatadd ahole on the grain isU_;=E,(1+2N), where N

electrode, ande is related to the back-gate voltage,  =CVg/e#1/2. Similarly, it costd);=E(1-2N) to add an
throughg=—V,. €<0 andU are, respectively, the energy extra electron on the grain. The Iea_d-dot and grain-dot
level and charging energy of the small dot, ang=a’a,. Kondo couplings,J, and J;, respectively, then become

The interdot capacitive coupling is assumed to be weak an@Symmetriceven for symmetric junctions:
is therefore neglected.

We mainly focus on the particularly interesting situation
where the small dot is in thEondo regime which requires
the last level to be singly occupied and the condition

1 1
t<—eU+e€ (2 =2t2
Jl 2t |:U1_6+U+6+U]J. (6)

:J’

1
Jo Zt{—e U+e

to be satisfied £<0). The resonant level limit where lies

near the Fermi level will be addressed at some points in Segn the second equation, the virtual intermediate state where
V. In the local moment regime, we can integrate out chargein electron first hops from the grain onto the small dot in-
fluctuations in the small dot using a generalized Schriefferduces an excess of enery ; in the second term. The first
Wolff transformatior’®** More precisely, the system is de- term contains the energy of the intermediate state of the pro-
scribed by the Hamiltonian cess, where the temporal order of the hopping events is re-
versed. The off-diagonal terms where an electron from the
reservoir(grain) flips the impurity spin and then jumps onto
the grain(reservoij reads

~2
_ t i, Q 2
H—; ekakak+zp epiapt 55+ ¢Q

Ja - 1
+> |5So+V|ala,. 3 —ot2
mz’n 2 " © Jor=2t U1—6+U+6'

To simplify the notation, the spin indices have been omitted
here and hereaftem,n take values in the two sets “leadk) 3 th[i+ 1 @
or “grain” ( p), the spinSis the spin of the small dot, ans 10 —€ U+etU_,4|
are Pauli matrices acting on the spin space of the electrons. _ _ _ _
Let us now discuss the parametérandV in more detail. ~ Note that in general particle-hole symmetry is absent in the

In the vicinity of one degeneracy point obtained for Iargze dot, so in principlelo,# J10. But, in our settingE.
= —e/2C, where the grain charging states wi=0 and =€°/2C<|e[,U+¢, so in the following we will neglect the
Q=e are degenerate, we find explicitly asymmetry betweend,, and J;, far from the degeneracy

points Jg1=J1¢) (this has no drastic consequence on the

Joop2 1 N 1 ) results. In the finite temperature range<U,,U_;, these
B —e U+e| off-diagonal processes are suppressed exponentially;as
. . =J1o(T)=J10e” YV*T whereas the diagonal spin processes
A small direct hopping term can be strongly renormalized at low temperatures. In other
2] 1 1 words, in the renormalization-group language, if we start at
=5 U% (5) high temperature with a set of Kondo couplings
— € €

Jo, J1, Jo1,» Jig, the growth ofly;, Jqgis cut off whenT

is also present and should not be neglected. In particulai$ decreased below mabdg,U_,), whereas the growth of
this embodies the so-called charge flips from the reservoifo, J1 is not. This offers a chance to reach a two-channel
to the grain and vice versa in Matveev's original problem.Kondo effect in the spin sectdfor asymmetric tunneling
Notice that the ratioV/J can take values between1/4  junctions, provided the conditiono=J; can be reached
(whenU=—¢€) and 1/4(whenU—x). V=0 corresponds with a fine-tuning of the gate voltagé&We can make the
to the particle-hole symmetric case wheret2U=0. For ~ Same approximation for the term and define/;o, Vo, ac-
¢=—el2C, the energy to add a hole or an electron onto thecordingly (with V,0=V,), and alsoV,.
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Ill. PEDESTRIAN PERTURBATION THEORY ON A small dot. Finally, note that in our perturbative treatment at
PLATEAU finite temperaturd <U,,U _; we have made the following

standarg approximation: We have introduced the tempera-

We want first to compute the corrections to the averag(% ; o
: re only virtually through the renormalization of the cou-
charge on the grain on a charge plateau due to the Kondo ang

. R . - plings J;p andVy,.
V couplings, bearing in mind that, when the tunneling ampli The other regimes that require nonperturbative ap-

tude t—0, the average grain chard®) exhibits perfect proaches will be studied in Secs. IV and V.
Coulomb staircase behavior as a functiorvgf. We confine

ourselves to values ofp in the range —e/(2C)<¢ IV. ORBITAL AND SPIN KONDO EFFECTS CLOSE TO
<e/(2C), which corresponds to the unperturbéharge THE DEGENERACY POINTS

value Q=0. A first natural approach is to assume that the

Kondo and charge-flip couplings are very small compared to In this section, we will be primarily interested in the situ-
the charging energ.=e?/(2C) of the grain and to calcu- ation close to the degeneracy point —e/2C, where none

late the corrections tQ =0 in perturbation theory. Although of the perturbative arguments above can be applied. We want
this perturbative calculation appears to be of limited use, it ito show that the Hamiltonian given by E@3) can be
very instructive to perform it in order to indicate the different mapped onto some generalized Kondo Hamiltonian follow-
sources of divergences that appear when approaching the deg Ref. 9.

generacy points, the main issue treated in this paper. At sec-

ond order, we find A. Mapping to a generalized Kondo model
3 e/2C— ¢ Close to the degeneracy poigt=—e/2C and for kgT
<Q>2=e(—~lio+ 2V3, In(— . (8)  <Eg, only the states wittQ=0 andQ=e are accessible,
8 el2C+e¢ and higher-energy states can be removed from our theory

Note that at finite low temperatufB<U,,U_,, we should introducing the projector®, and P, (which project on the

use the renormalized off-diagonal couplifdyg, Vo, which ~ States W(;thk?:? an_dQ3=e;]in the é:]rain, respectively The
are small(in other words the flow of the off-diagonal Kondo runcated Hami toniari3) then reads

couplings has been cut off far<U,,U_,). This better re- J

produces théexac) numerical calculations of Ref. 12. For H= Y, ea} a,,(Po+Py)+ehP+ > (—5-§+V)
more details, we refer the reader to the Appendix. The den- ~ k7=01 ke 12

sities of states in the lead and in the grain have been assumed + - + -

to be equaland taken to be 1 for simplicity. This result tends X(8ka8k0Po+ 8roak1P1)

to trivially generalize that of a grain directly coupled to a J

lead? However, there are two reasons that may suggest that — + >, (—5-§+V aj ay |, (10
this perturbative approach is divergent. Higher-order terms— =012

already at cubic order—involve logarithmic divergences asyyhere now the index=0 indicates the reservoir and= 1

sociated with the renormalizations of the Kondo couplingsindicates the grain. We have also introduced the small pa-
(see the Appendix but also other logarithms indicating the ygmeter

vicinity of the degeneracy poinp=—e/2C in the charge
sector. For example, a correction at cubic order to the result e e e
in Eq. (8) is given by h:f+¢:z_vg<6’ (12)

. 5 D e/l2C—¢ which measures deviations from the degeneracy point. Con-
<Q>3°‘Jo\]10|n(ﬁ)|n(m)- (9 sideringr as an abstraatrbital index, the Hamiltonian can
B ? be rewritten in a more convenient way by introducing an-
We also have a similar correction nljfo_ It would be po-  other set of Pauli matrices for the orbital sectof:
tentially interesting to observe the logarithmic temperature

dependence dfQ) on a given plateau due to Kondo spin-flip ~ H= > ealag,tehT+>, [ > (i(}. S+V|(PT*
events. Note also that the perturbation theory in\thgterm k. Kk |7 \2

has been previously extended to the fourth of8athe per-

turbative result is valid only far from the degeneracy points, +PTY) 'al a ,+2 (ﬂ&_gﬂ/ al ao.|. (12
provided the renormalization, e.g., of the spin Kondo cou- = e

pling Jo, is also cut off either by the temperatufeor by a ] ) .
magnetic fieldB [in general, for symmetric junctions one In this equation, the operatorsSSo) act on spin and the
already getsly>J; at the bare level; see E¢f)]. This con-  (T,7) act on the(charge orbital degrees of freedom.
siderably restricts the range of application of this perturba- The key role of this mapping stems from the fact @}
tive calculation compared, for example, to the simpler setugan be identified agan orbital pseudospjn

involving a grain coupled to a reservoir, and even on a

charge plateau the temperature must be larger than the (Q)ze
emerging spin Kondo energy scale between the lead and the

1 Z
§+<T )). (13
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Then we can introduce the extfaharge state|Q) as an

auxiliary label to the statéd) of the grain. In addition to | ¥ é Q 4 dD Q
introducing the labelQ), we make the replacement T
t B t +
g8k 0Po— a8kl D % O > % @
\A

T a T -
akoak/lpl%ak,oale . (14)

Notice thatT™ and T~ are pseudospin ladder operators act- D d) O > Cb @
Q

ing only on the charge pal®). More precisely, we have the
correct identifications

FIG. 2. (Color onling Couplings involved after the Schrieffer-
Wolff transformation:J refers topure spin-flip processes involving
the S=1/2 spin of the small doty, to pure charge flips from the
lead to the grain, an®, to exotic spin-flip-assisted tunneling, i.e.,

A AN T Tz A mixing the charge fluctuations of the grain with the screening of the
THQ=0)=T"|T*=-1/2=[Q=1), (15 S=1/2 spin of the small dot.

T7|Q=1)=T"|T*=+1/2=|Q=0),

meaning that the charge on the single-electron box is ad- Vv

justed whenever a tunneling process takes place. Further-q, =-S. (y'oy)+ = T4 ¢! 2y)
; " — K72 2

more, sinceT "|Q=1)=0 andT~|Q=0)=0 these opera-

tors ensure in the same way as the projection operdtgrs

\
and P, that only transitions between states wih=0 and + f[TJr(lﬂTT_ $)+H.c]
Q=1 take place. This leads us to identi®+ P, with the ) ) ) )
identity operator on the space spanned|®y and |1) and +Q, TS (¢ o)+ Q.S [TH(y'm ay)+H.cl,
P,— P, with 2TZ We now introduce an additional pseu- (17)

dospin operator via

where . ,= 2\ 8xrq -
1 A host of (spin-exchange® (isospin-exchangeinterac-
allak/ozzal,fakfr,, tions are generate(Fig. 2); J refers to pure spin-flip pro-
cesses involving th&=1/2 spin of the small dot/, to pure
charge flips which modify the grain charge, a@d to exotic
1 spin-flip-assisted tunneling.
aloak,lziaqu-*ak,r, , (16) This Hamiltonian exhibits a structure that is very similar
to the one introduced in Ref. 26 in order to study a symmetri-
cal double(small quantum dot structure with strong capaci-
where the matrices™ = 7=*i7’ are standard combinations tive coupling®® However, since the physical situation that led
of Pauli matrices. Finally, the Coulomb tertnmimics a  us to this Hamiltonian here is very different from that of Ref.
magnetic field acting on the orbital space. Therefore, th&6, our bare values for the coupling parameters are also very

(quantum grain capacitanc€,= — (Q)/ah is equivalent to ~ different (for J<1):

the local isospin susceptibilityr= — d(T?)/oh up to a factor

e. For simplicity, we will subtract the classical contribution V.=V, V,=0, Q,=0, Q,=J/4. (19
C, which is Vg independent. But obviously, to compute the

latter, we have to determine the nature of the Kondo groungye have ignored the potential scatterivigy, which does

state exactly. , _ not renormalize. It is also relevant to note that this model
Typically, when only “charge flips” are involved through &

elongs to the general class of problems of two coupled
the V term, the model can be mapped onto a two-channel o qq impurities. However, the coupling between impuri-
Kondo model(the two channels correspond to the two spiny;og namely,Q, , is far different from the more usual

state_s of an glectr()nand the capacitance always exhibits aRuderman—KitteI—Kasuya—YosideRKKY) interaction3®
logarithmic divergencat zero temperaturéHere, we have a . . . A
combination of spin and charge flips. Can we then expect Again, be?r in mind that here the operatd?s o= (1
two distinct energy scales for the spin and orbital sectors? Té-2T°)/2 andpo ;= (1+ 7%)/2 project out the grain state with
answer this question, we perform a perturbative scaling?=€ andQ=0, and the reservoir/grain electron channels,
analysis following that of a related model in Ref. 37. We firstrespectively. The spi® corresponds to the spin of the small
rewrite the interacting part of the Hamiltonian in real spacedot in the Kondo regime and the indexis the spin state of
as an electron in the reservoir or in the grain.
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Note that in the situation of Ref. 26 the operatd??§ 17.50%
=(1+2T?/2 and p.=(1*79)/2 rather project out the 5 AN
small double-dot statesn( ,n_)=(1,0) and (0,1) and the \\
right/left (+/—) lead channels, respectively. Additionally, .g 12.5 \\
the spin§ is the spin(excesg impurity either on the left or g g Sso
the right dot and the index denotes the spin state of elec- ) ‘;-:. -
trons in the reservoirs. The corresponding bare values in that < 15 -~ & RESIN
case would rather be of the form sLe=" ‘\\\
N\
\
V.=Q,, V,, Q,=J. (19 2.5 \\
2000 2500 3000 300

B. Perturbative renormalization group analysis

The low-energy Hamiltonian can be treated using pertur- FIQ. 3. (Color on_line Evplution of the four cqu_p_ling rati(_)§ as a
bative renormalization grougRG) following the related function of the scaling variable=In(D/E). The initial condlthns
model in Ref. 39. Observe that no new interaction terms ar82ve been chosen ag0)=u, V,(0)=0.1Q, Q,(0)=u/4 with
generated to second order as the bandwidth is reduced. Bl 0-000 18 and/;(0)=Q(0)=0. The full line isQ. /J, the dot-
integrating out conduction electrons with energy larger thar .d lineV, /V, and the daSheq lineQ, /V. andQ, /Q, (Wh'Ch
a scaleE<D (~min{E,,A,} being either the level spacing diverges forl —0). AII the; couplings are strongly renqrmahzed for

co=df T I.~3914 and all their ratios converge to 1. Extrapolating the flow to
Srt;[g\?ici?ta::lu?gft'bo(/vtgeog?;:\ggtgs(aeg(e)ﬁlg grfdtgf t%;alfrz),lllc;s\}i’ntgq >|. would give a straight horizontal line where the coupling ratios

. . - . . remain 1.
RG equations for the five dimensionless coupling constants:

] T/ W~De 14, (21)
— 12 2 2
dl IR+ 2QL Furthermore, we have checked numerically that all coupling
ratios converge to 1 in the low-energy limit provided the RG
N ) equations can be extrapolated in this regime. These results
gr - vitsQr, have been summarized in Fig. 3. As confirmed below with an
exact numerical RG treatment, the entanglement of spin and

orbital degrees of freedom in this geometry will lead to a

dl:vaer 3Q,0Q,, higher symmetry than SU(Z)SU(2), namely, SW4), and
dl then to the formation of a Fermi liquid correlated ground
state with, e.g., the complete screening of the orbital Efpin
dQZ:sz +2V,0,, [SU4) is the minimal group aIIQWing _spin-_orbital_ entangle-_
dl z Lt ment and which respects rotational invariance in both spin
and orbital spacesRecall that the presence of the spin-flip-
dQ, assisted tunneling terms then definitely hinders the possibil-
o VR HV.Q,, (20) ity of a non-Fermi-liquid ground state induced by the over-
screening of the pseudoimpurity.
with | =In[D/E] being the scaling variable arilthe running Let us now analyze the particle-hole symmetric case, i.e.,

bandwidth. This RG analysis is applicable only very close toV, =0. At second order, the RG flow would tend to suggest
the degeneracy pointp=—e/(2C), where the effective that two parameters, namely, andQ,, remainzerowhat-
Coulomb energy in the grain dr vanishes, and obviously ever the energy scale. Typically, the Kondo coupling the
only when all coupling constants stagl. Higher orders in largest throughout the RG flow and seems to be the first one
the RG have been neglected. to diverge. On the other hand, the ratigs/J and Q, /J

Although Egs.(20) have no simple analytic solution, one cannot be neglected, which tends to exclude an SU(2)
can try to read off the essential physics from numerical inte-x SU(2) symmetry, where the spin and orbital degrees of
gration and the initial condition€l8). freedom would be independently screeried. 4). Instead,

Let us first discuss the most obvious case of a particlespin-orbital mixing(entanglementseems to be prominent at
asymmetric level, withv, >0 meaning(large U> —2e. In low energy. Even though the perturbative RG is certainly not
this case, the numerical integration of the RG flow indicatessufficient to draw more definitive conclusions, it is also in-
that, even though we start with completelgymmetridoare  structive to observe that f&f, <0 the ratiosQ, /J andV,/J
values of the coupling constants, all couplings diverge at thatill converge to 1. Since the system definitely has to restore
same energy scale due to the presence of the spin-flighe rotational invariance in both spin and orbital spaces, this
assisted tunneling term®, and Q,. This energy scale tends to emphasize that higher-order terms play a crucial role
which we can identify with a generalized Kondo temperaturein the crossover regime by eventually restoring an(8U
is difficult to calculate analytically. However, we can ap- Fermi liquid even for those cases. Moreover, the RG analysis
proximate it by the one of the completely symmetrical modelsuggests that the temperature scale at which the Fermi liquid
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| below [whose range of validity is broader than E@20)],
050025 1, Vz which indeed concludes that the effective Hamilton{2g)
| is appropriate for all values of-J/4<V, <J/4. Note that
| apparently Eq(22) has SU(2)X SU(2) symmetry, represent-
/ ing rotational invariance in both spin and orbitgdseu-
I dospin spaces, and also interchange symmetry between spin
) and pseudospin. But the full symmetry is actually the higher-
symmetry group Sy, which clearly unifiegentanglesthe
spin of the small dot and the charge degrees of freedom of
the metallic grain. Notice that the irreducible representation
of SU(4) written in Eq. (22) has been used previously for
spin systems with orbital degenerd@/*The electron opera-
Vi= Qz =0? tor s now transforms under the fundamental representation
1500 2000 2500 3000 3500 of the SU4) group, with generatoréy (A=1,...,15), and
the indexu labels the four combinations of possible spin

FIG. 4. (Color online Here, we have chosei{0)=u, Q,(0) PP ;
=u/4 with u=0.000 18 andv, (0)=V,(0)=Q,(0)=0. TheLcou- EH)) Zr:% C()ﬁ')tél indices (0,1), which means 1B, (0.1,

pling J(I) is the largest throughout the RG flow, but the ratios
Q, /J andV,/J cannot be neglected. Furthermore, at second orde
the couplingsV, and Q, remain zero. However, the NRG con-

cludes that even in this limit the system converges to ar4gU

Fermi liquid fixed point with identical coupling constants, which
emphasizes the importance of higher-order terms and that spin- (§+ }
orbital mixing is very prominent and the rotational invariance is 2
restored in both spin and orbital spaces.

0.002 J

0.0015

Couplings
-

0.001

0.0005

; The emergence of such a strongly correlated (43U
ground state, characterized by the quenched hyperspin opera-
tor

.1
T+ 2) , (29
clearly reflects the strongntanglemenbetween thecharge
behavior emerges will be much smaller for vanishing anddegrees of freedom of thgrain and thespin degrees of
negativeV, , because the system needs a much longer tim&eedom of thesmall dotat low energy induced by the
to restore the rotational symmetry in both spin and orbitalProminence of spin-flip-assisted tunneling. There is the for-
spaces. To enumerate higher-order terms would be a veryation of an SW) Kondo singlet which is a singlet of the
tedious task; therefore this assertion will rather be checke@pin operator, the orbital operator, and the orbital-spin mix-
by a NRG analysis, a completely nonperturbative method. Tég operatorU “#=S*T#. Again, let us argue that this en-
summarize this part, we emphasize that\Wor<0 the above larged symmetry arises whatever the parameter simply
perturbative analysis does not allow us to determine the prddecause the spin-flip-assisted tunneling te@n always
cise nature of the low-temperature fixed point, whether thdlows off to strong couplings at the same time as the more
orbital (isospin moment is exactly screened or overscreenedusual Kondo termJ; the system then must inevitably con-
We will prove in Sec. IVE using NRG that an $4) verge to a fixed point with orbital-spin mixing. To respect
strongly correlated ground state emerges for any physicabtational invariance in both spin and orbital spaces the only
value ofV, , i.e., —J/A<V, <J/4. possibility is indeed an S(4)-symmetric Kondo model
(agreeing with the NRG resuilt

C. Entanglement of spin and charge degrees of freedom
D. Capacitance: Destruction of Matveev’s logarithmic

This RG analysis suggests—at least for not too small , ,
singularity

positive V, —that our model becomes equivalent at low en-

ergy to an SW) symmetricalexchange model: The (one-channelSU(N) Kondo model has been exten-
sively studied in the literaturésee, e.g., Ref. 42In particu-

2 lar, the strong coupling regime corresponds tdaminant

P o Fermi liquid fixed point induced by the complete screening

] of the hyperspinM?, implying that all the generator%of

_ A F.A SU(4) vyield a local susceptibility with a behavior

_Z; M MEV Vuturthy- @ 1TV T being one of these generators, we deduce that

+=—d(T%/oh and thus thgquantum capacitance of the

rain C4=—a(Q)/dh roughly evolves as TR at low
temperature$® We have subtracted the classical capacitance
C. Consequently, fohn<e/C, we obtain a linear dependence

A

1
T8+ =

s
"2 2

2

HK=JEA yhis,

Since all the coupling ratios converge to 1, we have rewritterg
the Kondo Hamiltonian(17) with the unique coupling con-
stantJ. We have introduced the “hyperspin”

MAe {2S7,2T® 4S°TA), (23 of the average grain charge as a functiorvgk — ¢:
for &, B=x,y,z. The operator1” can be regarded as the 15 e h e e
generators of the S4) group. Moreover, this conclusion (Q—s=—e—< =" —<=5ls=T¢| (25
will be strongly reinforced by the NRG analysis proposed 2 TRI® TRU®2C
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The hallmark of the formation of the 49 Fermi liquid 10' : .
in our setup is now clear. Th@rain) capacitance peaks are %
completely smeared out by the mixing of spin and charge
flips, and Matveev’s logarithmic singularithas been com- 10° ¢
pletely destroyed. Additionally, the strong renormalization of - JID=0.08
the V (andJ) term—and the stability of the strong coupling E S e
Kondo fixed point—clearly reflects that the effective trans- <10 .
mission coefficient between the lead and the grain becomes £ e | — e, 1
maximal close to the Fermi leve(The maximum of the 10° L - %fg-f \ !
tunneling does not appear exactly at the Fermi level, as one Vi=-01| |
could guess from the value of the phase shiftsm/4.) Vs

This example could also be interpreted as an interesting 10° 4 = - N =
proof that one can already wash out the Coulomb staircase 10 10 10 o;/Dm 19 r

when the “effective” transmission coefficient between the

grain and the lead is roughly 1 only close to the Fermi energy FIG. 5. (Color onling The orbital spinT# susceptibility for dif-
(and not for all energi€s). Conceptually, this is not acces- ferent values o¥/, . In all cases the susceptibility shows a typical
sible with a small dot in the resonant-level lifiit?AWe  SU(4) Fermi liquid state ato=Tg"“(V,). Inset: As a comparison
stress that this is a remarkable signature of the formation ofve plot the same quantity for the two-channel Kondo model. Fur-

a Fermi liquid ground state when tunneling through a single-thermore, we can clearly observe tg“ markedly decreases for
electron box. lower values ofU, i.e., by making the small dot larger and larger

(Ref. 46, meaningV, /J<0.

E. Confirmation by numerical renormalization group analysis ] ) o
this energy scale it behaves gs-» !, indicating that the

In order to confirm the results obtained by perturbative,rejation function in Eq(27) is constant for very short
RG and extend our investigation to the strong coupling "%imes. while forw<TEU(4) Y~ as a signature of the
gime, we have peff"fmed a coIIapoyatlve NRG anafyjéfs ~ 1/t? asymptotic of the aforementioned correlation function
of the model described by E¢L7), similar to that in Ref. 26. for a Fermi liquid model. Indeed, &=0, this ensures a
Note in passing that the model of Ed.7) with asymmetric grain capacitance ' ' '

bare values is not strictly speaking integrable. Therefore, w
resort to the NRG method, which in general can be success-

fully applied to (various two-impurity Kondo model4® At o0
the heart of the NRG approach is a logarithmic energy dis- Co= ersum)
cretization of the conduction band around the Fermi points. K
In this method—after the logarithmic discretization of the
conduction band and a Lanczos transformation—one definds
a sequence of discretized Hamiltoniart$y with the
relatiorf

dy([T%(1), T40) )= (28)

su4)”
TK()

urthermore, as one can see in Figs. 5 anghé&low) (for
,—0) the Kondo screening takes place simultaneously in
the spin and orbital sectors, indicating the (8Jdsymmetric
nature of the effective low-energy Hamiltonian.
To give a rigorous proof of the SY) Fermi liquid ground
HN+1EA1/2HN+E gN(vamfNH,er H.c), (26 state, one has to analyze the finite size spectrum obtained by
i NRG analysis. It turns out thaas in Ref. 26 the spectrum
where fo.,=.,/\2 and Hy=2AY2/(1+A)H, with A can be understood as a sum of four independent chiral fer-

~3 as discretization parameter, afig=1. For the defini- mion spectra with phase shift/4 in accordance with the

tion of f, see Ref. 44. The original Hamiltonian is connectedPrediction of the SU4) Fermi liquid theory. This result
to the Hy's as H=limy_..oyHy with oy=A"N+D72(1 proves that the low-energy behavior is described by the

+A)/2. Using the logarithmic separation of the energy':hermi liquid theory elven ayﬁ_:r?’hbm as cppjec_:éured abovea
scales, we are allowed to diagonaligl’s iteratively and '€ temperature rs]cae athw ich the I;erml Iquid emerges de-
calculate physical quantities directly at the energy seale creases as we change the couplingfrom 0.4) to —0.4J.

~wy. We have calculated the dynamical spin and orbital IFor com{:')s?fo?, lr][r:het\xlsethof Flgl.iwed plot tfd1e|.d?/n?rrln|£
spin (ad susceptibilities cal susceptibility for the two-channel Kondo model: In tha

case, Inmy(w)~const, which in contrast indicates that the
Im xo(w)=ImFH[O(t),0(0)]), 27) capacitanceC, would exhibit a logarithmic divergence at
zero temperature.
whereO=T* 5%, andF denotes the Fourier transform. Ac-  Additionally, the SW4) Kondo temperature scale is con-
cording to the discussion above, the couplings were chosesiderably reduced for negative values\f, i.e., by decreas-

asJ=4Q, , QZ=\_/Z=0. o _ _ ing the on-site interactiotJ on the small dot < —2¢).
The orbital spin susceptibility obtained for different val- This makes sense since by substantially decreasing the Cou-
ues ofV, is shown in Fig. 5. Regardless of the value\of, lomb energy of the small dot, i.e., by progressively increas-

the T? susceptibility exhibits a typical Fermi-liquid-like peak ing the size of the small dot, one expects the breakdown of
at an energy scale which can be identifiedig8”). Above  the SU4) fixed point and a situation similar to that of a
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107 ; . . 10’
J/D = 0.08 J/D =0.08
Q,=J/4, V,=0.4J Q,=J/4, V.=0.4J
10’ L Q=V,=0 Q=V=0
10° |
= =
E S
Ne 10’ b )
; g —— A,/D=0.001
= £ —— A,/D=0.003
—— B/D-0.001 100 A./D=0.01
107 —— B/D=0.003 —— A./D=0.03
B/D=0.01
—— B/D=0.03
107 L . L 1072 A " ,
10° 10° 107 107 10’ 107 10° 107 107 10’
w/D w/D
FIG. 6. (Color online The orbital spinT? susceptibility for dif- FIG. 7. (Color onling The real spinS* susceptibility for differ-

ferent values of the external magnetic fi@ldThe low-energy phys- ent values of the orbital splitting,. For A,>Ts" the processes

ics consists of a Fermi liquid regardlessBfbut the symmetry is  which involve orbital spin flip are suppressed, resulting in a purely

reduced for large magnetic fields to &Y (for the orbital space  one-channebpin Kondo effect, with a smaller Kondo temperature

and the Kondo energy scale is also reduced. of the order of that for a small dot embedded between two leads
Tk[A,]. Recall that the energy scale at which the(&torrelated

reservoir andtwo large dot&® [according to Eq.(2), spin  state arises can be much larger tffafiA,] which should certainly

Kondo physics should definitely vanish for< — €]. ensure the observation of our theoretical results. It is worthwhile to
note the parallel between Figs. 6 and 7 by interchangfrg S* and

V. STABILITY OF THE SU (4) FIXED POINT AND B4, (however,Ty[A,]>Tk[B]).

CROSSOVERS
Tk[B=»]~De W, (29

In contrast to the two-channel Kondo fixed point, which is
known to be extremely fragile with respect to perturbationswith, for instanceV~t?/(—2¢) for U— +, and might not
(e.g., channel asymmetry, magnetic figlthe SU4) fixed be detectable experimentally. A substantial decrease of the
point is robust at least foveakperturbations. Kondo temperature when applying an external magnetic field

In order to demonstrate the robustness of thé4$Bermi B has also been comfirmed using the NRG method even for
liquid fixed point we have checked the role, e.g., of a mag-extremely large values of (Fig. 6).
netic field in real and orbital spin sectors. It turns out that
both terms are marginal operators in the RG sense. On th@. Away from the degeneracy points: Small dot as a resonant
other hand, when the magnetiorbital) field is much larger level
than the scale of the Kondo temperature, the processes which
involve spin (orbital spin flips are suppressed, and low-
energy physics is described byame-channelorbital spin
(spin Kondo effect, with a smaller Kondo temperature than . _ . :
that of the SW4) case. Let us now thoroughly analyze the smgl_e-chapnel Kond_o effect in the spin sector. A naive
different fixed points and the effects of an asymmetry be_conS|derat|on—focu5|ng on the RG flow above—would sug-

tween the tunnel junctions and of rather large junctions withdeSt the possibility Of. a two-channespin Kpndo effect: the
more conducting channels. simultaneous screening of the excess spin of the small dot by

the lead and the grain electrons, independently. However,
going back to the Schrieffer-Wolff transformation for the
situation away from the degeneracy points, the charging en-
First of all, we have checked using NRG that the(8U ergy of the metallic grain definitely ensurés# J, (provided
Fermi liquid fixed point remains for quite weak external we start with almost symmetric junctionsa condition that
magnetic field. But applying atrongmagnetic fieldB> Ty destroys the stability of the two-channel spin Kondo fixed
unavoidably destroys the $4) symmetry. However, at zero point. The spin Kondo coupling, will be the first one to
temperature, we expect the behavior of charge fluctuationfow off to strong couplinggas anticipated in Sec. )ll The
close to the degeneracy points to remain qualitatively similarNRG calculation clearly confirms this expectation: the
Indeed, in a large magnetic field spin flips are suppressed arm not only suppresses the orbital spin-flip terms but also
low temperatures, i.eQ, =Q,=J=0, and the orbital de- generates an asymmetry between the grain-dot and lead-dot
grees of freedom, througil, andV,, develop a standard spin couplings which destroys the two-channel Kondo be-
one-channel Kondo modéthe electrons have only spin up havior (Figs. 7 and 8 The possible two-channdlspin)
or spin down, which also results in a Fermi liquid ground Kondo regime proposed by Oreg and Goldhaber-Gottion
state with a linear dependence of the average grain charge aannot be reached with this model, at least, for symmetric
in Eqg. (25. Yet the emerging Kondo temperature will be junctions. Asymmetric junctions and a fine-tuning of the
much smaller, grain gate voltage far from the degeneracy points would be

A weak orbital magnetic fieldorbital splitting A,«h
does not modify the S4) Fermi liquid state.
Moreover, the application of strongA, always leads to a

A. Magnetic field
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T,/D = 0.0082
—— A/D=0
—— A,/D=0.001
A,/D=0.003
L —— A,/D=0.01
1¢ A,/D=0.03
—
&
o
1 1
£ 0
10_2 1 1 1
10 10° 107 107 10’
w/D

FIG. 8. (Color online The orbital spinT* susceptibility for dif-
ferent values of the orbital splitting,. For A,>Ts"® the pro-
cesses which involve orbital spin flip are clearly suppressed at
scale ofA,, producing instead a Schottky anomaly. The orbital
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SU(4) Fermi liquid

<Q> linear slope also for N=1/2
0.2
0.1 /
7
g
-— L =
. . . = ‘ . N
-0.3 -0/.2——‘6” 0.1 0.2 0.3
-
”
7/
/ =041
=0.2

effective resonant level model

a small linear slope for N=0

pseudospin model then becomes inappropriate to describe the FIG. 10.(Color onling Profile of the average charg®) on the
charge fluctuations of the grain at low energy. We rather applygrain versusN=CV,/e for (almos) symmetric junctions and
another resonant level mapping and a perturbation theory similar teX T¢[A_]. Again, the SW4) Kondo entanglement between spin and

that of Ref. 24.

necessary to reach the conditidg=J;. On the other hand,

orbital degrees of freedom, e.g., at the degeneracy point/2,
produces a Fermi liquid state and the Coulomb staircase exhibits a
conspicuous smearing. Away from the degeneracy points, the phys-

we will see that, for quite asymmetric barriers, a two-channeiCs becomes similar to that of a resonant level weakly coupled to a
Kondo behavior for the orbital degrees of freedom instead"@in, which also ensures a lineeout smal) behavior for(Q)

can appear near the degeneracy points but at extremely sm
(anda priori unreachabletemperatures.

For A,>TRY™| the Kondo temperature scale here re-
sembles that for a small dot connected to two 1éad3,
=J) and, in principle, is still experimentally accessible:

Te[A,]~De W<TV®), (30)

Henceforth, this will cut off the logarithmic divergence in

gﬂ[N] whenN—0. The full line curve corresponds I¥E.=0.15
and the dashed line curve IWE.=0.1.

erage grain chargQ), we seek to go beyond the effective
model in Eq.(17). Indeed, at energies smaller th@ig[ A, ],

the physics can be qualitatively identified with that of Ref.
24: The Kondo screening of the excess spin of the small dot
by the lead produces an Abrikosov-Suhl resonance at the
Fermi level, and the small dot plus the lead can be replaced

the charge fluctuations away from the degeneracy pointY & resonant level with the energy-0 and the resonance

o= —el2C [see Eq.(9)]. In order to describe the physics at

width ~T[A,]. Now, one can still allow for aweak re-

strong orbital magnetic field, i.e., away from the degeneracyidual tunneling matrix elementbetween the grain and the
points, and at lower temperature, and more precisely the agffective resonant levelvhich may be of the same order as

density of states

p(E)

Ve

JATIORJJO

[9AJ] TURUOST

FIG. 9. (Color online lllustrative view of the effective low-

energy model for almost symmetric barriers away from the degen-

eracy points: According to Ed6) the charging energy on the grain
inevitably ensures that the spin Kondo couplidg between the
bulk lead and the small dot will be the first to flow off to strong
couplings at the energy scalg[A,]. The grain becomes virtually
weakly coupled to an effectiveesonant leveWith a reduced band-
width ~T[A,]<D.

the bare tunneling matrix elementbetween the small dot
and the grain but its value is difficult to determine accu-
rately). For an illustration, see Fig. 9. Reformulating results
of Ref. 24 for our case and including thalk[A,]
<Uq,U_; for N=CV,y/e<1/2 (p<—e/2C), at zero tem-
perature we find

o rf1 1)\ T 4N
(Q=e |G, "0 Er i—2N)(1+2N)"
(3D
with the effective tunneling energy scale
=, 126(e,)<Uq,U_;. (32)
p

SinceU,; andU _; are of the order ok for N<1/2, we
recover the result that the charge smearing far from the de-
generacy points cannot be large at low temperatures. Addi-
tionally, recall that forN<1/2 and zero temperature at sec-
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—— K=0.90 100 e K=0.4
-~ K=0.92 o
- K=0.94 P ---- K=0.5
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=0.98
—— Ket.00| | 10’
— =
2 = 10
S E
=0 J,=0=0.08, J=K'd J,=d=0.08, J=Kd N
Q,=JK/4, V =VK, V=0.1J 107 Q,=JK/4, V,=VK, V=0.4J
Qo= Vzeon=0 Qo=Yz00)=0
2 . . . 10° L . . :
10 57 107 107 0 ) 10° 100 10° 107 107
ow/D o/D
10’ . FIG. 12. (Color online Spin susceptibility versus/D upon
D increasing the asymmetry between the tunneling amplitudes at the
- K=0.94 two junctions.
——~- K=0.96'
=0.98]
K=1.00'
N 10° | - ) KJ
N\s_, ‘JOZJI ‘Jl=K ‘-]1 QL271
~
=
£ i J,=J=0.08, J=K'J
10 Q,=JK/4, V,=VK, V=0.1J V. =VK, Q,,=V,.=0, (34
Qo= o=
where we have introduced the asymmetry paraméter
10° L - - - - =t,/t; t=t, _(tl) denotes the hopping amplitude between
10 100 10/ 5 10 1 the lead(grain and the small dot. Since the asymmetry
(V)

FIG. 11. (Color online Magnetic and orbital susceptibilities ver-

susw/D for close to unity values of the asymmetry parame€er
=t/t, between the two tunnel junctions. The @Uground state is

stands for a marginal perturbation in the RG sense, it is natu-
ral to argue that the S4) correlated ground state is still

robust for weak asymmetry between the tunnel junctions.
However, to obtain more quantitative results we still resort to

stable against the inclusion of a weak asymmetry between tunné NRG analysigFig. 11). By takingV, =0.1J, we can ob-

junctions.

ond order int the average grain charge also exhibits a

(smal) linear behavior as a function df or V4 which is
sorr;el\(/)vhat distinct from the original Matveev situatigfg.
10).>

C. Case of asymmetric junctions

serve that the mixing of spin and orbital degrees of freedom
may survive untilK ~0.95; this guarantees an anisotropy of
roughly 10% between the conductances at the tunnel junc-
tions to preserve the SY) fixed point. Mainly, the magnetic

momentS and the isospin'T' are simultaneously quenched,
and again the spectrum can be understood as a sum of four
independent chiral fermion spectra with phase shift.

Let us now discuss the case of a quiteongasymmetry
between the tunnel junctions. For completeness, we also pro-

Another interesting perturbation is the explicit symmetry\é:?ueattiZi_RG equations at second order for this generalized

breaking between the dot-lead and dot-grain tunneling am?
plitudes. To address this issue, it is convenient to rewrite the

Kondo Hamiltonian in the most general form as follows dJ
(againT=0 for the bulk lead and=1 for the grain: dl

T z,7

dv,
=3+ (Q)%+2Q0,

=Vi+3Qt,

>

> O
He= 2 (J,wis'gwf
1

7=0U,

dv, 1 3
T = EVL(VZ,O_F V) + EQL(QZ,O—‘F Qz1),

+ 2>

1
(—(—wvz Tty
7=0,1 2 '

\Y,
+ S T (W' P +Hel+ X [Q,(~1)7

7=0,1

d
gl“ =23,Q,,+2V,Q,,

XT2S (ploy)1+Q, S [TH (4 r o) +H.cl.

(33  dQ,

1 1
dl =Q,(Jo+ I+ EQL(VZ,0+ V,1)+ EVL(QZ,0+ Qz1)-
(395

The corresponding bare values are embodied by
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At second order, note the equali¥y, o(1) =V, (1) =V,(l) nentially with increasing number of conducting modes. For
regardless of the parametkr Primarily, it is immediately instance, extending the results of Ref. 21 for our geometry,
obvious that forK =1 we recover the previous $4) fermi  we can clearly assess that there will berdque “effective
liquid flow. Now we greatly diminish the tunneling ampli- tunneling mode” in the leadit is some combination of the
tude between the grain and the small dot, te<t (t being  original tunneling modes in the lepdnd anotherunique
fixed) andK < 1. With the present notation, it is clear that the “tunneling mode in the box”(also a linear combination of
spin Kondo couplingd,=J between the bulk lead and the the original modes in the grginThe T=0 effective Hamil-
small dot will be the largest one through the RG flow andtonian of the model at the degeneracy points of the metallic
becomes of order unity at the temperatufg[K<1] dot corresponds to tunneling between these two modes only
~De W=T,[A,], whereasall the other couplingsare still  with or without spin flip of the excess spin of the small dot,
negligible, which breaks the 4 symmetry explicitly. and all the other modes can be neglected. This entirely jus-
It is worth noting at this stage that the role of the asym-tifies the emergence of an $4) fixed point at very low
metry parametelK seems to be practically equivalent to temperatures, even if the number of modes in the lead or in
renormalizing the orbital splittings, (compare Figs. 7 and the grain is larger than 1. However, the ultraviolet cuifit
12). The main difference, however, is that at the degeneracyhich the effective tunneling mode prevails, must be prop-
points of the grain one can expect a second-stage quenchirggly rescaled to

of the isospin'r' at some lower temperature, but obviously T*[n]=De " 37)
this (very) low-temperature regime lies much beyond the '
range of validity of the effective Hamiltoniaf83). Further-  wherea is of the order of unity. Above this energy scale one
more, one can clearly notice that the previous perturbativgan assume that the tunneling to the island happens through
result of Eq.(31) diverges if one of the charging energids  a very large number of identical mod&<*® Unfortunately,
or U_, approaches zero, i.e., is not applicable. this implies that an S) Kondo singlet can occur only at

In fact, as already noted in Ref. 24 it is a very difficult the much reduced Kondo temperature scale
task to find the exact shape of the step of the staircase in the
present situation of a grain at a degeneracy point coupled to TEU(“)[n]%T*[n]e‘l"”. (39

an effective resonant level But qualitatively one might ] ) o )
expect* that the physics and the resultirigwo-channel Experimentally, in order to maximize chances for observing

Kondo energy scale should not be so different as those of {'¢ SU4) Fermi liquid realm, it is then more advantageous
grain coupled to a normal lead with a reduced bandwidtifO consider tunneling junctions with one clearly dominant

Tk[K<1], via a hopping matrix elemeritvtl: conducting transverse mode.

TﬁChZTK[K<1]e_ ¥ty (36) VI. DISCUSSION AND CONCLUSIONS

We have determined exactly the shape of the steps of the
Coulomb staircase for a grain coupled to a bulk lead through
a small quantum dot in the Kondo regime. First, we mapped

. L . the problem onto a related model of two capacitively coupled
flow to strong couplingsince it is proportional t&?) at the b b y b

i i BA~De W1 S th duct small quantum dot& Then, combining both NRG calcula-
emperature sca@[A,]~De - >Ince the conductance g ity perturbative scaling approaches, we shed light on

betwee'n the grain and the lead is still very small at the iN{he possibility of a stable S4) Fermi liquid fixed point

termediate energy scale, d_ue to the anl_sotropy, a secon ccurring at the degeneracy points of the grain, where
stage quenching of Fhe orpltz_il pseudospin IS expected Al & Kondo effect appears simultaneously in both the spin
lower energy scale in a S|m|Iar_ manner as in the_ CESE  4nd the orbital sectors: This demands symmetric or slightly
<1. Unfortunately, for asymmetric junctions, it is difficult to asymmetric tunnel junctions and preferably a single-

formulate more quantitative results at low temperatures. %onducting channel with two spin polarizatioffer strongly

complete renormalization-group calculation starting with theasymmetric barriers, one may recover a two-channel charge

bhare Hamiltoniarl(l).wou_ld lljle r}ecessary. This ghoesfbeyondKondo effect). As in Ref. 26, these results bring preliminary
the present analysis. Finally, let us mention that for morg,qioht into the realization of Kondo ground states with
moderate values df ande, i.e., in the resonant-level regime SU(N) (N=4) symmetry at the mesoscopic scale

23 - .
of the small dot, the NRG results of Lebanenal™ still Let us provide a physical interpretation for the occurrence
§upport a twp-chgnnel Kondo crossover and the OVETSCIeeIyt sych an SA) entanglement. Typically, close to the de-
ing of the isospin moment in the case of asymmetrlcgeneracy points of the grain, we have two spin objects,

' ti . - .
Junctions namely, the spinS of the small dot and the orbital pseu-

dospinT’ of the grain, depicting the two allowed degenerate
charging states. Obviously, when these two spin objects are
We predict that the S4) symmetry should still be robust uncoupled the symmetry group of the problem is unambigu-
for wider junctions characterized hy>1 transverse chan- ously SU(2)®SU(2). But, as already discussed at length in
nels with almost equal transmission amplitudes; however, théhe paper, in our setting, spin-flip-assisted tunneling events—
associated typical Fermi liquid energy scale decreases expae., an electron from the bulk lead tunnels onto the metallic

Here y is a constant parameter of the order of unity. A simi-
lar discussion should hold in the opposite regike1,
where one expects this time the Kondo couplihgto first

D. Large junctions
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A 2—channel Kondo \é

metallic

Total capacitance

grain

0

0 lead 1 lead 2

temperaturgfor our setup with almost symmetric junctiofdashed
line) compared to those in the original Matveev probléuil line)
(Ref. 9

FIG. 13. (Color online Sketch of the capacitance pedks zero ;
Y

FIG. 14. (Color online Another mesoscopic double-lead setup,

grain by flipping the excess spin of the small dot, and vice? candidate for the S¥) model. This could be equally performed
; s thia il with vertically coupled dotgRef. 29.
versa—are very prominent at low energy; this implies that

the infrared fixed point must also reflect a visible spin-orbitalihat of Matveev's original setup, which maybe ensures the
mixing. Finally, it is easy to check that $4) is the minimal  verification of our predictions. In particular, for very large
group allowing spin-orbital entanglement and which guaranq (U>—2¢€ and V, >0), TEU(4)~D exp—(1/4J) may be
tees rotational invariance in both spin and orbital spaces. Oqérger than the Kondo scale in conductance experiments
Kondo fixed point then is rather described by the quenchingross a single small quantum Y¢t-1 K), and today ca-
of the hyperspirf S+ 3][T+31. pacitance measurements can be performed much below 100

In a very different context, let us mention that @Jsin-  mK.2° Additionally, we have checked that the 8Y Kondo
glets have also shown up in fermion lattice models wheraemperature scale is considerably reduced for negative values
spin and orbital degrees of freedom play a very symmetriof V| | i.e., upon(moderately decreasing the on-site inter-
role 04t action U (U~—¢), by making the small dot larger and

The major consequence of this enlarged symmetry is thahrger*® We have carefully discussed the robustness of the
the ground state is Fermi-liquid-like, which already consid-SuU(4) correlated state against the inclusionvaéak pertur-
erably smears out the Coulomb staircase behavior in thpations like an external magnetic field, a deviation from the
weak tunneling region, and, in particular, prevents the apdegeneracy points, or remaining asymmetry in the tunnel
pearance of the Matveev logarithmic singulatitfig. 13. junctions.
The grain capacitance exhibits, instead of a logarithmic sin- | et us now pursue and discuss an interesting crossover.
gularity, a strongly reduced peak as a function of the backSo far, we have concentrated on the situation at and near the
gate voltage. This is an irrefutable signature of the formationjegeneracy points of the grain. Let us now apply a quite
of a Fermi liquid ground state when tunneling through astrong orbital magnetic field such that we explicitly move
single-electron box. Furthermore, we strongly emphasizeway from the degeneracy points. Naively, since one sup-
that our NRG calculations markedly reproduce an(8U presses the orbital spin-flip terms, one could infer the emer-
ground state regardless of the particle-hole asymmetry on thgence of a two-channel spin Kondo model through the two
small dot (Fig. 5; more precisely, even in the case of Kondo terms], andJ,; however, in our setting with almost
particle-hole symmetry 2+ U =0, the spectrum can still be symmetric junctions, the Schrieffer-Wolff transformation
interpreted as a sum of four independent chiral fermions wittaway from the degeneracy points always ensdgesl;; the
phase shiftw/4 in agreement with the S@) Fermi liquid  NRG calculation of Fig. 7 clearly reproduces this expecta-
theory. This differs from the conclusion of Ref. 23. However, tion. The system then undergoes a one-channel Kondo cross-
this is not so surprising in the sense that in their NRG calover. First, the emergence of a logarithmic contribution in
culations(see, e.g., their Figs. 15 and)l@.ebanonetal.  (Q) at quite high temperature could be potentially observ-
studied a rather different limitU=—2e but U/E.<1,  able. Furthermore, at low energy, the physics resembles that
which does not correspond to our situation of a small dot an@f a resonant level—induced by the formation of an
a much larger metallic grainl/E.>1). In addition, in the  Abrikosov-Suhl resonance between the small dot and the
case of symmetric barriers, they clearly noticed that a modbulk lead—weakly coupled to the grain; we then recover a
erate Coulomb repulsion on the small dot already pushes th&imilar situation to that of Ref. 24.
two-channel Kondo regime down to much lower tempera- Another possible realization of our $4 model could
ture. still be possible in a multilead geometifyig. 14). Again, this

It is also worth recalling that the associated Kondo tem-would require us to be at the degeneracy points of the grain
perature scal@z” can be strongly enhanced compared toand to adjust the different tunneling junctions. More pre-
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cisely, following Glazman and Raikf,only the even linear found in Ref. 9. First, it is accurate to rewrite the Kondo term
combination of the electron creation and annihilation operain real space as

tors in the two bulk leads couples to the local $gmall do}.

The odd linear combination can be omitted, and conceptually

the effective model could be rewritten as in Efj7). Letus [ —
assume, for example, that the tunnel junctions between each™ ‘ap
lead and the small dot are symmetric. Then only the linear (A1)
combination ¢o= (o1t c,boz)/\/i will be coupled to the

small dot; ; (i =1,2) denotes the electron annihilation op- yhere 4, ==,a,, and Y14=3p8p,. The granule charge
erator in each lead. To recover an @WUKondo fixed point, A +
; . ) : operator readQ=eX i ,¢1,. Now, let |0) denote the
we infer that the grain-dot tunneling amplitude must then be @ oo :
. . round state of the unperturbed Hamiltonian with — .
approximately,/2 times that between each lead and the smal ' .
; , : : : The first-order correctiohl) to |0) then read®
dot. This setup is particularly interesting because the capaci-
tance of the grain and the conductance across the small dot
could both be measured. Furthermore, by completely block- (0
ing the opening between the grain and the small dot, one 1)=—i o dtHk(1)[0), (A2)
could recover a more usual Fermi liquid behavior with(3U
spin symmetry when measuring the conductance across the . . ) .
small dot, and observe a net reduction of the Kondo energyix being taken in the interaction representation. The expec-
scale Compared to the w case due to spin orbital decou- tation value of the Charge on the dot, however, is second
pling. order in the Kondo coupling. Indeed, we easily get
Note that this geometry—away from the degeneracy0|Q|1)=0. Therefore, the most leading contribution takes
points of the grain—has been previously discussed by Oreghe form(Q),=(0|QV)|1), whereQ™ is the first-order cor-

and Goldhaber-Gordon as a pOtential candidate for the aﬁ'ection to the Charge Operator on the dot. This can be com-
pearance of a two-chann@pin) Kondo regime in a conduc- puted using the identification

tance measuremetft This requires meticulous fine-tuning of
the gate voltages and tunnel junctions to equalize the cou- 0
pling to the two channel@rain plus even linear combination Q(l):j J(tdt with I(t)=i[H«,Q]. (A3)
of the leads —
The potential observation of a two-channel Kondo effect

in artificial nanostructures would definitely be an importantj be identified he effecti di
949-515ince the emergent non-Fermi-liquid behavior is must be identified as the effective current operator medi-

Issue, d by the Kond ling. This results |
very intriguing and so far difficult to observe with real mag- t€d by the Kondo coupling. This results in

netic impurities due to the intrinsic channel anisotrépin

our setting, another interesting situation to have potential ac- R Jio 0 . R

cess to a two-channétharge Kondo behavior would be to Q(1)=i97 > f At Sy, (1) 0 st (1)

stay at the degeneracy points of the grain and then progres- ap S

sively to shift the impurity levek on the dot(which can be

tuned via the gate voltagé, of the small dox to the Fermi

energy, i.e., to reach the mixed-valence esonant level

limit for the small dot®® The expectation value of the charge on the dot is then to
second order in the coupling to the impurity

J.

&, t - J10z + - H
ijlESwj“U“Bwjﬁ+ 7S(¢0a0'a3¢1ﬁ+ .c) 1,

— Syl (V)T apthop(D)]. (A4)
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APPENDIX: PERTURBATIVE CALCULATIONS (A5)

Here, we derive explicitly the perturbative result of Egs.where the averages are taken over the ground state of the
(8) and (9). We essentially focus on the Kondo term; the uncoupled system. It is advantageous to Fourier transform
perturbation theory for the direct hopping tefvhcan be the problem as
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A 3Qwi (o (O : A~ 3010° o | O(eWO(—€)  O(—€)O(ey)

@™ 3 [ sdatoait) (@mem g B | TPt
x(al(t)ap(t) ~ (ap(t2)al(ty) Mal(t) at)], 303,07 (el2C—¢

(A6) ~€ g ”(azc4-¢ : (A8)

where the momentum indicgsandk, respectively, refer to
the grain and to the reservoir. Using the Green’s functions 0@ is the usual Heaviside function. The densities of states in

the isolated grain, the grain and in the lead have been assumed to be equal and
t o (e—U_ 1)(t—t0) taken to be 1 for simplicity.
<ap(t2)ap(tl)>_®( €p)€ P ' Now, we briefly want to show that cubic orders involve
+ B e Uty logarithmic divergences associated with both the Kondo cou-
(ap(tz)ap(ty)) =0 (ep)e " (A7) pling and the proximity of a degeneracy point in the charge
where agairU; andU _,; embody the energies needed to addSector. More precisely, let us focus on the specific contribu-
an electron and hole onto the grain, we finally find tion in Jo(J10)? for the term(Q)3=(0|QW)|2), with

1 (o 0
2)=—5 at | dt TRt R0

J j 0 0 2 b"
--rs s s [ f_wdtz T[Sa(tl)sb(tz)]T[‘ﬂga(tl)%‘poﬁ(tl)'ﬂﬂ(tz)%wo”(tZ)hO)

2 a,b aB u,v

b

> j i i aV v
= 2 aE,B 2 _xdtlj_wdtz T[Sa(tl)Sb(tz)]{T<lpga(tl)¢Oy(t2)>5av¢oﬁ(tl)lﬂ#(tz)o'g B 0)
_ Jodio
=+ EC: EC; ﬁf dtlf dt, S°sgr(t,—t )T<¢0a(t1)¢0a(t2)>¢1ﬂ(t2) £ os(t1)|0)
J RN
N—IJoJloEC: g:ﬁ In| — T fdtl Scwl,u(tl)Tlp()ﬁ(tlHO). (A9)

It becomes then obvious thg?) is (almos) proportional to|1); it is straightforward to show that this induces a third-order
correction for the charge on the grain

. ~ , (D] [el2C—¢
(Q(T))3xJg(J10)%In T In e2Ctel

Note that the appearance of the extraDIff{) factor clearly stems from the prominent renormalization of the lead-dot spin
Kondo couplingJ, on a charge plateau.

(A10)
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