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Exploiting environmental resonances to enhance qubit quality factors
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We discuss dephasing times for a two-level systetiuding biag coupled to a damped harmonic oscillator.
This system is realized in measurements on solid-state Josephson qubits. It can be mapped to a spin-boson
model with a spectral function with an approximately Lorentzian resonance. We diagonalize the model by
means of infinitesimal unitary transformatioffow equationy and calculate correlation functions, dephasing
rates, and qubit quality factors. We find that these depend strongly on the environmental resonance frequency
); in particular, quality factors can be enhanced significantly by tufing lie belowthe qubit frequency.
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[. INTRODUCTION equation renormalizatio(FER) group approach of Wegnfer
and of Glazek and WilsofInterestingly, we find that\ is

A key feature in qubit design is to gain good control of renormalizedupwardsif the initial A is greater tharf), and
dephasing induced by the environment. A much-studiedhat correspondingly, the dephasing times and g-factors are
model that has yielded considerable insight into the dephasstrongly increased These results have the very important
ing of qubits(more generally, two-state systenis the spin-  implication thatby appropriately tuning the environmental
boson modet. Most studies of this model assume a spectrakesonance frequend), significant additional control of the
function J(w) that has a power-law form. However, several qubit dynamics can indeed by obtained.
qubit systems of current interest are coupled to an environ-
ment that features rather strong resonances, which would
correspond to a spectral functiol{w) with well-defined Il. SPIN-BOSON-MODEL
peaks at characteristic frequencies. A prominent example is We consider the Hamiltonian
the case of flux-qubitéwhich are read out using a supercon-
ducting quantum interference devic®8QUID), with a char-
acteristic resonance frequen@y(of order 3 GHz that is in ~ A . o
order of magnitude comparable to the characteristic qubit H=-—¢g +—-0,+ (BT + B)[ggz + E Kk(bl +by)
energy scalé10 GH2 34 2" 2 K

The presence of environmental resonances raises several . 2
interesting questions with both fundamental and practical im- + QBB+, abib, + (BT + B2, =X, (1)
plications: How is the qubit dynamics influenced by the pres- k k Wk
ence of environmental resonances? Can the latter be used to

indirectly tune qubit properties, such as the tunneling rate of pich describes a two-state system with asymmetry energy
g-factor? Is it more advantageous to have the resonance frg; tunneling matrix element\, coupled linearly with
quency higher or lower than the characteristic qubit eNel5irengthg to a harmonic oscillator with frequendy, which

gies? is itself linearly coupled with strengths, to a bath of har-

Here, we explore these questions in the framework of 4,0 oscillators. The coupling to the environment is com-
model that has been used with great success to describe an . .~ >
etely defined by the spectral functiolw)=3, xdw

optimize recent generations of flux qubit:involves a spin pie - oF )
degree of freedonqubit) coupled to an harmonic oscillator ~ @K =I'@®(w.—w), which is as usual taken to be of ohmic
with frequencyQ (modeling the environmental resonajce form to model the qI|SS|pat|ve environment. This system can
which in turn is coupled to a bath of harmonic oscillatdrs € Mapped to a spin-boson mddlel

provide damping® It can be mappé&donto a regular spin-

boson model with a spectral functialiw) featuring an al-

most Lorentzian resonance peak n€hrWe are interested H=- éa +E0 + 10 bl +b) + S wbiby, (2)

not only in the regime where the qubit tunneling rates 2% 2°° 2 M T T T A TG

much smaller thaf) (which would correspond to the stan-

dard spin-boson model, with playing the role of the bath i i

cutoff frequency, but also in the hitherto unexplored regime where spin dynamlgs depends only on the structured spectral
A> Q. Here a standard weak-coupling, poor-man scaling apfunction J(@) =2 Ad(w-aw,) given by
proach that predicts a downward renormalizatiom\dk in- .

sufficient; instead, we need a method sufficiently powerfulto 5 20000 (0.~ w) itha= 09 (3)

deal with all ratios ofA/Q. To this end, we use the flow- T (Q2- )2+ 27T wQ)? 0?
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Ill. FLOW EQUATION RENORMALIZATION renormalization of the bath frequencieg vanishes in the

FER is based on infinitesimal unitary transformations ofthermodynamic limit of infinitely many modes.

the Hamiltoniar. We follow the approach of Ref. 9 and  (d) Observablessuch asoy, have to be subject to the
mention only the main steps here: same sequence of infinitesimal transformations as the Hamil-

(@ In order to decouple the two-level system from its tonian:do,(I)/dI=[#(1),o,(1)]. For the flow ofo, we make
environment we apply a sequenceuniitary transformations the Ansat2°
U() to Eq. (2): H()=U()HU'(I). Here H(1=0)=H is the
initial Hamiltonian; H(I=<) is the final, diagonal Hamil-
tonian; and denotes the flow parameter, which characterizes ;. (1) = n(1)o, + (1o, + (1) + iy, (1) (b~ b))
the square of the inverse energy scale being decoupled. In K
differential formulation this transformation reads

+ % [xi(D) + ooxi (D] (b + b)) (8)

d() _ R V)
dl =L HD] - with (1) = dl vt @ We neglec(small) terms in[ %, o] that contain a coupling to

two bosonic modes. The calculation of the flow equations for

(b) The canonical choice for thgeneratory suggested by (e SiX pararréleztem, S, I, X X and u in Eq. (8) is
Wegner is #5.=[Ho,H] with Hy=—A/20y+¢e/20, straightforward:

+3, wkblbk-7 However, because, generates coupling terms (e) To calculatecorrelation functionsof the form C(t) _
originally not present in the Hamiltonian, it is advisable to = 1/ 202(1)02(0) +0;(0)o,(1)) we use the decoupled Hamil-

modify our generator. Fas # 0 we choos¥ tonian (o) ==[A(x)/ 2]o+[e/ 2]o,+ Sy axbyby, and Eq.
(8) for I=00. For T=0 the Fourier transfornC(w) of C(t)
then takes the fornthere all parameters are takenl ate):19

n=iay>, b+ bl + 0,2 7~ b + 0, > 7i(by — by)
k k k

2 2
t t _|es,4h _ sh_As_
* 2 (b bl (0, b)), 6  Clo)= [ Lt | demdor| oy | de)
€ A 2
for which Eqg.(4) closes for terms linear in bosonic operators. +> A—Xﬁ - ul+ A—Xﬁ Sw—[owg+A,)
We neglect small higher-order terms[in, H] that contain a k € €

coupling of the system to two bosonic modes. The param-
eters 7 and n in Eq. (5) are given by 7=-(\/2) e , <7
+ 2| —x-— - wy).
(e8] w)f(or, ), M=~ DA (@ D), 7=~ (v D ] Gy ©
-&2)/ o Jf(wy,l), and 77kq=A2/(ZAS)'Fanl’(ﬁAE/Z))\k)\qwq/
(wﬁ“"g)[f(g’k’l)‘Lf(“’q*l); with A,=VAZ+e? We choose  Nymerically, one finds thal(e)=s(c2)=0, and(i) r()=0
flon, ) =[wi(o=A,)JI[A @y +A,)]. By comparing numeri- g1 o =0 or (i) r(ec) # 0 for & # 0. Therefore, of the terms in
cal results for the:=0 (see Ref. 1pand thes # 0 Ansatz we  he first line of(9) only 8(w) remains and describes the non-
see that for #0, due to our particular choice 6wy, 1), We ;14 expectation value af, for systems with asymmetry.
are restricted to couplinge=0.02, which is a reasonable |, order to obtain quantitative results for the correlation
bound for experimental realizations. For an alternative Ans,ction C(w), we numerically integrate the flow equations
satz(for e 7&.0) see also Ref. 11. ) . up to some valué,, which is taken sufficiently large that the
_ (0) Equationg(4) and(5) give us a set of differential equa- fq) resyits do not depend on it. From the numerical results
tions (flow equationg for the parameters in the Hamiltonian, ¢, C(w), which reflects the dynamics of the two-level sys-
namelye(l), A(l), and\(1) [respectivelyd(w, )]: tem, we extract “dephasing times,” defined as the widths at
half maximum of the resonances occurringGfw) (as de-

Bw picted in the inset of Fig.)L For zero biage=0) a sum rule

—dA/A = [ do coth > JoDf(@,1), 4e=0, (6)  of the form [Z dwC(w)=1 should holc?

A
’9'3(“’"):‘Zf(w")(wz—AE)J(w,l)+tanh% hmic bath
Ohmic bat
2A? | ,0'J’,]) fol) + o | We start by comparing our results for the dephasing time
g A_sJ(w, ') m[ (@) + ("] for a spin-boson model with an ohmic bathl(w)

7 =2aw®(w.~w), with results from real-time renormalization
group (RTRG® and weak coupling calculation®/CC).1*
Note that according t®) the biase is not renormalized. The Figure 1 shows the dephasing timeas a function of the
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. ' ' ' ' ] very small coupling(a=0.0006, peak positions of(w) in
60 ] Fig. 2 can with very good accuracy be derived from a
50'_ ] second-order perturbation calculation for the coupled two-
i | level-harmonic oscillator system, yielding the following tran-
40k i sition frequencies[depicted in Fig. &)]: wy .+~ wp.=Q
S ] -g?2A(0)/[A%(0)-0?]=0.987) and wy-—wp.=A(0)
g 30- . +022A(0)/[A%(0) - Q2] ~ 1.348). With the two peaks we as-
20'_ ] sociate two different dephasing timeg, and r,, as shown in
I : Figs. 2a) and 2b). In Fig. 3a) both these dephasing times
10/®-=reaime RG e are shown as functions a@f(0)/€) for «=0.0006. Moreover,
:_:}’ffﬁ‘;;ﬁ:ﬁg’;g | | —% 7y is compared to the WCC resudj, of Eq. (10). This com-
0y 0.05 01 parison is expected to work well fdfQ))/Q) <1, and indeed

o it does[hereJ(2)/Q=0.08]. Due to the small coupling be-

. N ) _ tween the two-level-system and harmonic oscillatgr,
FIG. 1. (Color onling Dephasing times for an ohmic bath with

spectral function)(w) =2awB(w.—w) as a function ofx. The FER = Olég?z’((t);]ilgsgigge?ﬁ:t\?v% ?Qsﬁﬁ?nfe\;e& V\)/emalé'r eto
resultfe=0 and w.=10A(0)] is compared with results from RTRG ’ @ 9

calculation$® and WCC The inset shows a typical FER spin-spin a_symmetric double-peak_strl_JCture as shown in _the inset of
correlation function. Fig. 3a). Here a characterization by two different time scales

becomes difficult. Therefore the corresponding data points in

coupling strengthy. For weak coupling the dephasing time Fig. 3@ have not been included.

(at T=0) is given by*

Tw = 4N[A()]. (10 Figure 3b) showst,, 7, and =, for a larger coupling
We find very good agreement with RTRG and WCC. strength ofa=0.01. Figure da) shows one of the calculated
correlation functions. Note that the stronger couplingads
to a larger separation, or “level repulsion,” between tze
Structured bath/weak coupling andQ)- peaks than in Fig. 2. The inset of Figh3 shows the
We now turn to the structured spectral density given byréhormalized tunneling matrix elemed(«) as a function
Eq. (3). The main features of the corresponding sysf&mg.  the initial matrix elementA(0). Very importantly, forA(0O)
(1)] can already be understood by analyzing only the coupled 2, A increases during the flow, whereas #0) = (), it
two-level-harmonic oscillator systefwithout damping, i.e., decrease® This behavior can be understood from the fact
I'=0). For =0 this system exhibits two characteristic fre- that f(w,l) in Eq. (6) changes sign ab=A. Note also, that
guencies, close te) andA, associated with the transitions 1 the upward renormalization toward larg&f=) in the inset
and 2 in Fig. 2c). These should also show up in the corre-of Fig. 3b) is stronger than the downward one toward
lation functionC(w); and indeed Fig. @) displays adouble-  smaller values, i.e., the renormalization net symmetric
peakstructure with the peak separation somewhat larger thawith respect taA(0)=€). The reason for thissymmetryies
(A-Q), due to level repulsion. The coupling to the bath will in the fact thatf(w,l) has a larger weight fo® <A than for
in general lead to a broadening of the resonances and am>A. Also 7, and evenr,=1/J[A(e«)] in Fig. 3b) show an
enhancement of the repulsion of the two energies. Due to thasymmetric behavior with a steep but continuous increase at

Stronger coupling to bath

r @) 0.4
0.3 () .
1501 1
02 T 1. FIG. 2. (Color onling Spin-spin correlation
r /1< 2 0.1 e o, function as a function of frequency for experi-
i, 0.0 ' mentally relevant parameters discussed in Ref. 3:
5 100} 1 12 14 > «=0.0006, A(0)=4 GHz, £=0 (this is the so-
S —_—0, called idle statg (0=3 GHz, I'=0.02, andw,
o] i 150 =8 GHz. The sum rule is fulfilled with an error of
- + o, less than 1%(a) Blowup of the peak region re-
w1
sol - veals a double peakp) blowup of the larger
50 peak, (c) term scheme of a two-level system
0 coupled to an harmonic oscillator, drawn for
134 1.344 1.348 A(0)>Q («=0.0006 corresponds 5 () = 0.06).
.
0 0.5 1 1.5 2 25
©/Q
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FIG. 3. (Color onling FER results for dephasing timés, and r,) for the structured batfEg. (3)] compared to results from WCG,,)
given by Eq.(10), with A(x) occurring therein calculated using FER. Parametersea®, (1=3 GHz, '=0.02. (a) weak coupling:«
=0.0006 andw,=8 GHz. Sum rules are fulfilled with errors of less than 1%. Inset: Spin-spin correlation functidx(@pr0.987). (b)
stronger coupling=0.01 andw,=9 GHz. Sum rules are fulfilled with errors of less than 3%. Inset-Renormalized tunneling matrix
element; & —quality factorq=7,A(x)/2.

A(0)=Q: dephasing times foA(0) > () are larger than for should show the following behaviorty — %, 7,—0, and
A(0)< Q. That this happens, althougliw) is more or less 7,+.q— 0. In Figs. §b) and %c) and the renormalized tunnel-
symmetric around its maximum, is a direct consequence dhg matrix element and the quality factor are shown as func-
the stronger renormalization af for the latter case. Also the tion of the bias. Note that since is not renormalizedsee
quality factor[g-factor, see inset in Fig.(B)] defined asg ~ EQ. (6), A,() as a function of/() does not show a strong
=7,A()/2 shows this asymmetric behavidreing larger for ~asymmetry, in contrast to the case0. As a direct conse-
A(0)>Q than for A(0) <] with a steep increase at(0) quence, dephasing times and quality factors do not change
=() from 8 to 43, i.e., by a remarkably large factors6.  much atey, Finally, 7andq as a function ofA(0) for fixed

We consider the asymmetry of the renormalized tunnelings can be showtt to show a qualitatively similar behavior to
matrix element, the dephasing time and the quality factor akig. 3.

the central results of this paper: By tunifg such that

A(0) >}, dephasing times can be significantly enhan@ed IV. SUMMARY

compared toA(0)<().2® Note also thatr, in Fig. 3b)
shows a much stronger dependence\¢d) than in Fig. 3a).
This is due to the stronger couplifg=0.3(2) of the two-
level system to the bath ifb).

We used FER to study a two-level-system coupled to a
damped harmonic oscillator for arbitrary ratios ®fQ). We

05 . 1.0 . 15 ' 2.0
2@  e=0GHz 1
Nonzero bias 15F A=4 GHz
. Q=3 GHz 2/Qr,)

We now turn to the case of nonzero bias: 0. A second- ok |
order perturbation calculation, analogous to the zero-bias >
case, shows that a third resonanceQfw) is expected to 3 5 2/(Qrg) 0=0.01
show up at an energy scale + Q. Indeed it does, as exem- O , . r=0.02
plified in Fig. 4b), which shows a typical result fa@(w) for G (b) £=3.00 GHz o/t ®,=9 GHz
nonzero biad® With every resonance we associate a dephas- 290f  A=2.00 GHz 4
ing time (analogous to the zero bias caséigure 5a) shows Q=2.75 GHz
all three dephasing times,, 7, and7,.q) as a function of 10t 2/(Q,)
. 75 is compared to the weak coupling resujj. As ex- e 2/(Qt, )
pected,7, shows a minimum at,;,~ Q?-A?0), which 00 ‘ P
corresponds to the maximum 8w, =0). Beyondeyin, 7a ) 1.0 2.0
increases whereas, and 7, decrease. This is the expected w2
behavior: In the limite —«(A — 0), C(t), respectivelyC(w) FIG. 4. Spin-spin correlation function for the structured bath

should become independent of all bath characteristics, i.e[Eq. (3)] as a function of frequendy The maximum height of the
C(t)—1 andC(w) — 8(w). In this limit the dephasing times middle peak in(b) is ~7.2.
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100 —— T T
(a) (b) _
i X 114
80 A—A T, X 1 €
— X =1 gw
z o "o 1z
o T < 109 = FIG. 5. (a) FER results for dephasing times
"E’ 601 TA+Q « x X X J (7a, Tq, and my.q) for the structured batfiEq.
= L w v+ 408 (3)], compared to results from WCGC,) given
£ (c) © ] by Eq. (10). (b) Renormalized tunneling matrix
« 40r 1150 5 element.(c) g-factor q=74A,()/2. Parameters:
o3 | i G a=0.01, A(0)=2 GHz, 0=2.75 GHz, I'=0.02,
= 1100 & and w,=9 GHz.
< ]
150
1.2 0
find that by tuning the system into the regime> (), which ACKNOWLEDGMENTS

is studied here, dephasing times apthctors can be signifi-
cantly enhanced.
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cult since the QUAPI is restricted to finite temperature. of the Deutsche Forschungsgemeinschaft.
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