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Chapter 1

Preface

This report has the main purpose to document the “Habilitationsleis-
tung”, for the partial fulfillment of the requirements for the Habilita-
tion at the Ludwig-Maximilians-Universitat in Munich. It summarizes
a large part of the work I have done after my PhD-thesis.

The reported research is centered around quantum coherent manipula-
tion of collective quantum states in small superconducting circuits, as
they have been proposed as quantum bits. The main motivation for
these theoretical investigations are the experiments on small supercon-
ducting loops performed in the Quantum Transport group at the TU
Delft. They serve the purpose to understand and help improving these
experiments and to assess whether, and if yes how, quantum comput-
ing can be implemented in such systems. As an intermediate step in
the theoretical description, these circuits are reduced to abstract mod-
els which can also be physically implemented by other means, many
results have a broader impact on diverse qubit realizations. This con-
nection is spelled out in various places. On top of that, towards the
end, the scientific neighborhood is explored: Concepts and methods
similar to the results on superconductors are also applied to quantum
dot quantum bits. To the end, the microscopic details of certain types
of mesoscopic Josephson junctions are investigated.

The report consists of two parts: A physical introduction written with
pedagogical intention in chapter 2. This part serves as an outline and
should enable the reader to appreciate the main body of work: The
collection of original, peer-reviewed publications in chapter 3. This
chapter is split into sections which group papers on related issues, each
section has its own introduction which summarizes the papers in the



form of extended abstracts, and comments on their interrelation.

All this work has been done after my PhD-thesis. In fact, papers which
have appeared after my PhD which describe work done in my doctoral
thesis have been excluded. The work in section 3.8, though, contains
work on extensions and novel phenomena in a system I have already
studied in my thesis.



Chapter 2

Introduction

Quantum mechanics makes predictions which are contrary to the ex-
perience of the everyday macroscopic world. It has been originally
developed [1] as a description for experiments in atomic physics and
light-matter interaction. Its consequences, however, reach much further
and are one of the foundations of modern physics. The counterintuitive
nature of quantum mechanics has led to controversial discussions on the
foundation of physics [2, 3] which still persist [4] and have reached as
far as influencing parts of modern philosophy. In fact, many of the
original contributors to early quantum mechanics such as Max Planck
and Albert Einstein have doubted its general validity. Nevertheless,
quantum mechanics is nowadays a well-established theory which accu-
rately describes the physics of systems with a small number of degrees
of freedom such as atomic [5] and photonic systems [6] from ultra-
cold gases in the Nanokelvin range [7] up to precision (g — 2)-tests [8],
neutrino [9] and BB-oscillations [10,11], which occur at the range of
E = 237 MeV. Quantum mechanics also lays the foundation of mod-
ern solid-state physics [12] in which it is responsible even for dramatic
effects such as the band structure of semiconductors [13] and supercon-
ductivity [14,15].

On the other hand, the predictions quantum mechanics is making for
small systems do not seem to hold for the dynamics of the center-of-
mass motion of macroscopic systems. For example, large objects such
as chairs are usually not found to be in coherent superposition states of
two positions which can be discriminated by the bare eye. This fact has
already been recognized by Schrodinger and sharply cast in his famous
cat paradox [16]. It opens the question to which extent quantum me-



chanical predictions do hold on a macroscopic scale, whether quantum
mechanics breaks down at some system sizeor whether, given the rapid
progress in experimentation, generic quantum effects can in principle
be demonstrated on a macroscopic scale [15,17]. A method to approach
this question theoretically is to carefully understand the emergence of
the classical world within a generically quantum mechanical approach
and to propose how the quantum-classical border can be overcome or
at least stretched to larger and larger systems. In particular, such an
analysis would show what “small” and “large” means in this context,
i.e. provide measures related to the spatial extent or particle number
of a system which allow to predict whether or not quantum-mechanical
effects are visible [18].

One particularly important case of the transition between both worlds,
which occurs within the formulation of quantum mechanics even for
small systems, is the quantum measurement [15,19-22]. Performing a
measurement on a quantum-mechanical system transfers information
from its quantum-mechanical state to a macroscopic object, the mea-
suring device. According to the standard set of postulates of quantum
mechanics, it is strongly invasive: It renders the system in a “classi-
cal” state of the measured observable. The details of this “collapse”
of the wave function are seldom discussed and in particular it is not
understood, how this postulate is compatible with the assumption that
the degrees of freedom of the detector are also described by the laws of
quantum-mechanics, such that e.g. the superposition principle should
hold for the many-body states of the detector the same way as for the
quantum object to be measured. The exploration of the measurement
process, which narrows down but does not solve the quantum measure-
ment problem [23-25], is hence a paradigmatic piece for understanding
the connection between classical and quantum physics. Moreover, it is
important for understanding whether or not the quantum measurement
postulate is a necessary ingredient or whether quantum mechanics is
complete without it.

2.1 Quantum effects in solid-state systems

The dualism of quantum and classical descriptions is prevalent in solid
state system. Solids are composed of quantum mechanical degrees of
freedom, electrons, protons and neutrons, in huge numbers. Crystalline
solids are highly ordered through the laws of chemical bonding, which
are generically quantum-mechanical [12,26]. The deeper understanding
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of the formation and stability of solids allows to create a wide range of
materials with engineered properties and well-defined structures made
from these [27]. The microscopic theory of solids is governed by the
laws of quantum mechanics, which are e.g. responsible for the stability
of the solid and its optical properties. The electronic and transport
properties, which can be much easier accessed with macroscopic detec-
tors, of many materials can be described by a semiclassical approach
such as Bloch-Boltzmann dynamics or, in noble metals, the Drude-
Sommerfeld model [26]. These descriptions are very close to classical
theories treating electrons as classical point particles, supplemented
with a number of quantum mechanical ingredients. They are very suc-
cessful in describing transport at room temperature even though the
underlying physics is fundamentally quantum. At low temperatures,
quantum effects become more important and additional, generic quan-
tum phenomena can be observed. In particular, most metallic elements
undergo the transition to the superconducting state [14], which can be
viewed as a macroscopic quantum state where the wave function of the
superconducting electrons (Cooper pairs) serves as an order parame-
ter. Still, although the order parameter is determined by quantum
physics, it remains a formidable task to demonstrate generic quantum
features [15] of this order parameter itself, e.g. to bring its phase in a
superposition of two values. In this sense, the microscopic degrees of
freedom of a solid are quantum-mechanical and do determine many of
the macroscopic properties (such as the color or the conductivity) the
global collective coordinates of large solids such as the usually follow the
laws of classical physics: The order parameter is, besides small fluctu-
ations, uniquely defined as a classical variable, so is the color and the
conductivity or the position of the whole solid .

2.2 Small is different

As described in the previous section, the sheer size of a solid renders
invisible many of the quantum effects that would be visible in atomic
and molecular systems. Hence, as solid state setups get miniaturized
more and more, they approach the sizes where additional quantum ef-
fects appear. This is the idea of mesoscopic solid-state physics [28,29]:
To study systems whose size is in-between macroscopic solids and large
molecules. Depending on the quantum effect of interest, mesoscopic
systems can still span a wide range of sizes from several microns (as for
superconducting quantum interference devices, SQUIDs, in the quan-



tum regime) [30] down to about 10nm for molecules in contact with
an electrical circuit [31]. Among the quantum coherent effects ob-
served until the end of the 90s are signatures of the wave nature of
electrons in transport properties (weak localization [32], Aharonov-
Bohm effect [33], persistent normal currents [34], and universal con-
ductance fluctuations [35]), quantization of the electron charge (as in
Coulomb blockade devices [36]), transfer of superconductivity to normal
metals (as in Andreev interferometers [37]), strong interaction in con-
fined geometries (as in Luttinger Liquids [38,39]), quantum manybody
physics of artificial controllable impurities (Kondo quantum dots [40])
and many more.

Although some aspects of quantum mechanics are revealed in the exper-
iments described so far, the collective variables describing the state of
matter are classical in nature: The conductance of a sample subject to
weak localization takes, given identical parameters, a single value at a
time. It has however already been proposed in the 80s (for SQUID sys-
tems) [15,41-44] and in the 90s (for Coulomb blockade devices) [36,45],
that collective variables such as flux and charge can be brought into
superposition of two notably distinct values. This enterprise has been
pursued ever since, but it was only in the late 90s that it received the
high degree of attention and interest it has now. The increase in inter-
est was largely due to the perspective to realize a scalable solid-state
quantum computer [46].

2.3 Quantum computation

The way of computing as performed in today’s information-processing
devices is called classical computing. This implies, that the binary infor-
mation stored and manipulated is purely classical in nature: Every bit
is exclusively in one of its fundamental states 0 and 1. Computer pro-
grams are deterministic, such that (in principle) operating a program
on a fixed set of data leads to the same output data every time. For
most computer applications such as accounting or word processing, this
is exactly what is intended. The enormous progress in computer tech-
nology has made huge computing power readily available which allows
to solve many problems conveniently and in short time. The progress
in hardware improvement follows the self-fulfilling Moore’s law [47],
claiming that computer performance will double every 18 months. Al-
though failures of Moore’s law are periodically predicted and have to
occur at some time due to the laws of nature, it is by now expected to



still persist for a long time of a further 10-20 years [48,49].

Quantum information, the type of information processed in a quantum
computer, is radically different [50,51]: The predictions of quantum
mechanics open the option to realize different values of observables
at the same time and to distribute the information non-locally using
entangled states. These properties can be used as a computational
resource. Using superpositions makes it possible to operate an algo-
rithm on all possible input values at the same time (massive quantum
parallelism), using entangled states and measurements allows to act
on all qubits (quantum bits) simultaneously. This is in particular ad-
vantageous for problems which heavily rely on trying and comparing.
As quantum mechanics is a probabilistic theory, it is not guaranteed
that the outcome of a quantum computation can be extracted by a
physical measurement with high fidelity. Nevertheless, the problem of
finding an operational quantum algorithm which drastically speeds up
the best classical solutions to the same problem has been solved in a
number of cases, most notably fast database search [52] and factoring
of huge numbers [53]. Whereas the former only uses quantum paral-
lelism and leads to a square-root speedup, the latter uses entanglement
and is exponentially faster than the classical solution. Cryptography
in electronic communication as we know it today [54] essentially relies
on factoring. It is immune against progress in classical computing, be-
cause when classical computers can solve the N-digit factoring problem
in appreciable time 7", one can go to N + 1-digits and it will take time
TN. Thus, by a mild extension of the length of the coding numbers,
progress can always be beaten. This would not be true any more for
quantum computers.

The requirements for building a universal quantum computer have been
collected very early by DiVincenzo [55,56]. These five criteria enjoy
broad recognition and are, supplemented by two more on the conversion
between stationary and flying qubits important for communication, the
basis for most quantum computing research programs [57]. They will
also be present in this report: Much of the research presented is devoted
how its main subject, solid-state qubits, perform on these criteria. One
has to be aware, that this standard paradigm is by no means exclusive,
in fact, a whole subfield of basic quantum computing research is devoted
to developing alternative criteria for quantum computing universality.

The DiVincenzo criteria in a modern formulation require:

1. A scalable physical system of well-characterized qubits
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2. The ability to initialize the state of the qubits to a simple fiducial
state

3. Long (relative) decoherence times, much longer than the gate-
operation time

4. A universal set of quantum gates
5. A qubit-specific measurement capability
6. The ability to convert stationary to flying qubits and vice versa

7. The ability to faithfully transmit flying qubits between specified
locations

So far, the physical implementation of quantum computing is most suc-
cessful in nuclear magnetic resonance (NMR), where seven qubits have
been implemented [58] and twelve have been recently announced [59].
Remarkably, in NMR there is no “strong” measurement capability nor
the option to initialize a well-defined initial state [60]. Another success-
ful line of implementations comes from optical and atomic physics, such
as ion traps [61,62], atoms in cavities [63,64], linear optics [65], and
neutral atoms [66]. All these realizations follow the general approach,
that they start out from “generic” quantum systems, systems whose
quantum-mechanical properties have been well-established a long time
ago. Consequently, the phase coherence times are very long. The exper-
imental progress towards today’s level has been the ability to externally
control these systems better and better and to connect many of them
to larger circuits. However, it is still not evident whether these sys-
tems are really scalable, although a number of theoretical proposals for
scalable ion trap computing have been brought forward [67].

2.4 Solid-state quantum computation

Solid state circuits are readily scalable to huge size and complexity, as
can be seen in the computers available today. In these computers, the
information being processed is purely classical. However, the physics
of the basic building blocks of classical computers is already fundamen-
tally quantum: The physics of transistors relies on the band structure
of semiconductor materials [68], a generic quantum-mechanical effect



. Remarkably, also the size of a single transistor (characterized by the
gate length) is on the order of 100 nm or less [69] and thus even below
the size scale of typical mesoscopic samples. Combined with the enor-
mous clock speeds of several GHz, also the quantum limit of the elec-
tromagnetic communication between elements is within reach. Thus,
it is justified to speculate that solid-state electronics would be able, by
a radical design change, to process information quantum-mechanically
and to pursue this as a goal of fundamental research.

The reason why the collective variables of solid state systems usually
behave classically is decoherence and the lack of quantum fluctuations
necessary for the preparation of generically non-classical states. As will
be detailed in section 2.7, the mechanism underlying decoherence is the
coupling to an environment with many degrees of freedom and low-lying
excitations. Avoiding decoherence is the main issue in designing solid-
state qubits. A number of proposals has been brought forward, which
can be roughly classified in two classes: On the one hand, there is spin
quantum computing using a controlled exchange interaction such as in
phosphorus in silicon [70] and spin in quantum dots [71]. Pseudospin
quantum computing, on the other hand, uses two-state systems other
than spin such as charge states in quantum dots and superconducting
quantum bits. The former promise very long coherence times but are
difficult to fabricate and read-out. Thus the experimental realizations
are on a rather pioneering stage [72,73], but the possibilities are enor-
mous [74,75]. The status of the latter will be detailed in the following
sections of this report.

2.5 Superconductivity and the Josephson
effect

One specific class of promising qubit implementations is based on su-
perconducting Josephson junctions. In this section, the necessary fun-
damentals of superconductors and the Josephson effect will be outlined,
whereas in the following, in particular in section 2.6, specific quantum
bits based on the Josephson effect will be detailed.

lthe fact that the information encoded is still purely classical is closely related
to the classical behavior of global collective coordinates of large solids as described
in the end of section 2.1



2.5.1 Swuperconductivity

Superconductivity has been discovered already in 1911 by Kammerlingh
Onnes [76]. It manifests itself by vanishing electrical DC-resistance and
by perfect diamagnetism. It has now been shown that most metallic
elements become superconducting at low temperatures. A number of
alloys becomes superconducting at somewhat higher temperatures, cul-
minating at the recently discovered superconductivity of MgBs at 39
K [77]. Even higher transition temperatures can be found in the un-
conventional high-temperature superconductors [78]. These materials
are typically cuprates and turn out to be antiferromagnetic insulators
at high temperatures.

The theoretical understanding of superconductivity is now very ma-
ture and subject to a number of textbooks [14,79,80]. It has grown in
different stages. Already the phenomenological London theory [81] of
superconducting electrodynamics describes many superconducting phe-
nomena rather well and, in its modern formulation, accounts for the fact
that superconducting phenomena can be described by the dynamics of
a single wave function that describes the collective properties of all
superconducting electrons as if they were combined into a single quan-
tum particle. The same type of model is behind the phenomenological
Ginzburg-Landau-Theory [82] of the superconducting phase transition,
in which this wave function serves as an order parameter: The modulus
describes superconducting order and the symmetry with respect to the
phase is spontaneously broken. This is similar to the modulus and the
direction of the macroscopic magnetization in a Heisenberg ferromag-
net. This picture is consistent with the microscopic BCS-theory [83]:
In the presence of an attractive effective interaction, the conduction
electrons form Cooper pairs, which condense in momentum space into
a collective ground state. Thus, the “superconducting electrons” of
the phenomenological theories are Cooper pairs whose charge is twice
the elementary charge. The attractive interaction between electrons
in metallic superconductors is phonon-mediated. In superconducting
metals, this indirect interaction dominates over the Coulomb repul-
sion, which is screened and whose phase space is usually restricted by
the Pauli principle.

Superconductivity is in itself a macroscopic quantum phenomenon:
The simple manifestations of superconductivity such as flux quanti-
zation [84] and persistent currents can be straightforwardly connected
to the uniquely defined phase of the condensate wave function. This
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wave function is occupied by a macroscopic number of particles. In
superconducting samples of macroscopic size the wave function itself is
well-defined and the collective variables, number and phase, do not have
quantum uncertainties. This is an exemple for the previous statement,
that collective variables are usually not brought in superposition and
behave classically. Thus it has been argued that these are not macro-
scopic quantum phenomena in the strict sense as in Schrodinger’s cat
paradox [15].

The elementary excitation of superconductors are quasiparticles. They
are separated from the condensate by an an energy gap A(E F), where k F
points to an arbitrary point on the Fermi surface. A can be identified
with the order-parameter of Ginzburg-Landau theory 2. Elementary
superconductors are conventional in the sense that the order parameter
has the same symmetry as the crystal lattice, i.e. A is independent of
k r. In high-temperature superconductors the mechanism mediating the
attractive interaction is unknown. Still, it is confirmed that the Cooper
pair charge is 2e and that the properties can be modeled by a BCS-
model with an unconventional parameter with d-wave symmetry [85].
Other unconventional superconductors are also known, e.g. in heavy
Fermion materials [86].

The gap of the elementary excitations is the reason why superconduc-
tors are so attractive for solid-state quantum computation: The ele-
mentary excitations are costly in energy and cannot be reached at low
temperatures. At these low temperatures, also the lattice vibrations
are frozen out. Consequently conventional superconductors promise to
have very low intrinsic decoherence [87]. This argument does not hold
for d-wave superconductors as [ = 2 spherical harmonics have nodes, i.e.
there are elementary excitations at arbitrarily low energies in specific
directions of the Fermi wave vector.

2.5.2 The Josephson effect

The Josephson effect [88] is recognized as a hallmark of superconductiv-
ity. Its basic manifestation is that Cooper pairs can coherently tunnel
between two superconductors connected by a weak link [89,90]. This
gives rise to a supercurrent which is controlled by the difference of the

2In some cases, such as superconductors with magnetic impurities or high-
temperature-superconductors close to surfaces, one still keeps an order parameter
A, although excitations below A exist
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phases of the order parameter in the two superconductors ¢ = ¢; — ¢o.
For weak coupling between the superconductors, which will be assumed
henceforth unless stated otherwise, the current-phase-relation is sinu-
soidal,

I = I.sin ¢. (2.1)

This is the first Josephson equation. At stronger coupling, the sine gets
replaced by other 27-periodic functions with odd parity ranging up to
a sawtooth in the extreme case. Such strong coupling does usually not
occur when the weak link is a tunnel junction formed by a thin oxide
layer, but e.g. for microbridges, point contacts, and normal-metal or
semiconductor barriers [90]. From basic consideration of gauge invari-
ance, one can derive the second Josephson relation, which connects the
time evolution of the phase difference ¢ with the difference in chemical
potential of the Cooper pairs

ho = 2eV. (2.2)

The Josephson effect has first been microscopically derived from the
BCS theory and the tunneling Hamiltonian by Josephson. Later, a
number of pedagogical derivations have appeared, which do not contain
details of BCS theory and hence outline that the Josephson effect is a
universal phenomenon whenever two spatially separated coherent wave
functions are connected by a weak link [44,91,92]. In fact, Josephson
effects have been observed in systems like superfluid He® and He* [93,
94], Bose-Einstein-Condensates [95], and molecular junctions [96].

Real Josephson junctions contain more possibilities to transport charge
than the supercurrent:

1. The quasiparticle tunneling between superconductors gives rise
to a resistive channel. The resulting effective shunt resistance R
can have a strong dependence on temperature and voltage, e.g.
it can show the famous gapped IV-characteristics in supercon-
ducting tunnel junctions. Specifically, the effective resistance is
very high at low 7" and V. In real junctions, there is usually a
subgap resistance due to defects. In junctions between high tem-
perature superconductors, the V-dependence of the resistance is
much smoother due to the smoothness of the d-wave gap [97]. In
junctions with conducting interlayers, there is a pronounced sub-
gap conductance due to Andreev reflection. These systems will
be detailed in section 2.9, for the remainder we will concentrate
on tunnel junctions.
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2. Charge can also be transported as a displacement current through
the effective capacitance of the junction. This capacitance is es-
sentially the parallel plate capacitance between the superconduc-
tors. The capacitance can be rather big as tunnel junctions are
typically fabricated in an overlap geometry.

Note, that one can combine the two Josephson equations into one and
interpret the small-signal response of the superconducting channel as a
nonlinear inductance: Following eq. (2.2) ¢ is proportional to the time-
integral of a voltage and can hence be interpreted as dimensionless
magnetic flux, ¢ = 27®/®P;, where &y = h/2e ~ 2-107'%Vs is the
superconducting flux quantum. We can linearize eq. (2.1) as I(® +
@) = I.sin(2n®/®g) + 6@/L,, or 61 = §®/L;(®). This defines a
kinetic inductance, L;(®) = ®q/(271. cos(2nP/Py)) [98,99].

These ingredients can be put together into the famous resistively and
capacitively shunted junction (RCSJ) model. It results from Kirchhoff’s
laws and results in a total current

Icsingb—k%%é—l—C%(}ﬂ—I:f(t) (2.3)

where £(t) is current noise. This constitutes the classical equation of
motion of a Josephson junction. The ratio of the coefficients in this
model can be described by two parameters: The plasma frequency
Qpo = (L;(0)C)~2? = \/271,/C®; and the McCumber damping pa-
rameter 3. = 2rRC/(L;/R) = CR?I./®,. The junction is under-
damped if . > 1. This model has been extensively studied in the
classical regime [90,98,99]. It has been derived, in a generalized form,
from BCS theory [100]. We will in later sections study generalizations
of the quantum version of this model.

Aside from these intrinsic elements one can of course fabricate an arti-
ficial shunting circuit on-chip in order to influence the dynamics of the
junction.

Josephson junction circuits enjoy a huge variety of applications already
on the classical level. Superconducting quantum interference devices,
SQUIDs [101], are used as ultra-sensitive magnetometers and can be
used e.g. for measuring brain activity, destruction-free material diagno-
sis, detection of astrophysical phenomena, high-sensitivity amplifiers,
classical flux logic etc. As they are largely controlled by constants of
nature such as e and & and, using eq. (2.2) can convert frequency into
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current, Josephson devices also have various applications in metrol-
ogy [102].

2.6 Superconducting quantum bits

In this section, we will derive the macroscopic Hamilton operator of a
Josephson junction and describe one specific realization of a Josephson
quantum bit.

Without dissipation by a shunt conductance (R = co), we can rewrite
eq. (2.3) as

D

27
This is the equation of motion of a particle with coordinate ¢ and mass
C(®o/27)? in a tilted washboard potential U(¢) = —I¢32 — Ejcos ¢
where Ej = I.®y/2m is the Josephson energy. We can introduce a
Lagrangian

Cé=1I—1I,sing. (2.4)

6.6 =5 (32) # -0 (2:)

The first term, which plays the role of a kinetic energy, can be inter-
. 2 .
preted as charging energy, Eq = g—c, where we have introduced the
charge on a capacitor () = %‘;Cq.ﬁ = CV. It follows, that %‘;Q = g—g,
i.e. it is proportional to the canonical momentum to ¢. The Hamilton
function equivalent to eq. 2.5 reads
QQ
H(6,Q) = & +U(9) (2.6
So far, we have been treating () and ¢ as classical variables. Following
the canonical quantization procedure, we can readily quantize eq. (2.6)
by identifying ¢ and () with operators
02 . Dy - A
H= ;2—0 +U(9) 2—72 (6,Q] = ih. (2.7)
This is the basis of the macroscopic quantum theory of Josephson
junctions. Eq. (2.7) specifically predicts that both ¢ and @ experi-
ence quantum fluctuations and cannot be both defined with arbitrary
precision; instead, they are limited by a Heisenberg uncertainty rela-
tion [14,103]. Typically, the energy scales Ej and Eg determine the
appropriate starting point for describing the junction. For Ej > Fg
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the phase fluctuations are weak, the elementary excitations are quan-
tum vortices, and the charge wildly fluctuates. Junctions of this kind
are often termed “classical”’. In the opposite regime the charge is al-
most a good quantum number and the phase shows strong fluctuations,
these are “quantum” junctions. Using the junction area A, one can es-
timate Ej oc I, oc A whereas Eg, o< 1/C oc 1/A, thus Ej/Eq oc A2
and quantum junctions are typically much smaller in area than classi-
cal ones. One can show that the charge and the vortex side are dual
and one can observe competing order and quantum phase transitions
at By ~ Fg, [104].

In order to introduce damping in a Lagrangian / Hamiltonian forma-
lism, one has to introduce extra degrees of freedom, typically a bath
of harmonic oscillators coupling to the junction variables [105, 106].
(N.b.: One can also extend the Lagrange formalism by writing extra
terms in the Euler-Lagrange equation [107], but this modification can-
not be quantized). The Hamiltonian now contains extra, unobserved
degrees of freedom which have to be integrated out when making phys-
ical predictions for the junction. This has been pioneered for a single
Josephson junction by Caldeira and Leggett [108,109]. We will now
concentrate on junctions with very low intrinsic damping and will de-
scribe the remaining dissipation in a way which is compatible with
quantum computing in section 2.7.

For building a quantum bit one has to make sure that single-qubit
rotations are possible. This is ensured when the Hamiltonian has off-
diagonal terms in the basis of externally controllable variables. Here
this means that one has to make sure that both variables fluctuate suf-
ficiently, i.e. if a charge-based device is used, one has to provide enough
charge fluctuations and vice versa. Several realizations and propos-
als which accomplish this have been brought forward so far. These
range from large single junctions [110-112], highly inductive loops (RF-
SQUIDs) [30,41] and small loops [113-116], which are flux-based devices
to Cooper pair boxes [46,117-120], which are charge-based. Other de-
vices combine charge and phase fluctuations with comparable strength
and operate in between [121]. Other proposals use the specific proper-
ties of unconventional superconductors [122,123] or large arrays [124].
We will now describe one of these devices in more detail, namely the
persistent current quantum bit, which is phase-based and uses a small
loop. This device has been proposed at the TU Delft and MIT. As all
approaches it has its specific strengths and weaknesses. Most of the
theoretical work compiled in chapter 3 is motivated by this device, but
the main ideas can be described in terms of universal Hamiltonians and
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Figure 2.1: The circuit diagram of a flux qubit, including three Joseph-
son junctions (crosses) and all geometric and stray capacitances .

can be applied to other setups as well.

The flux qubit, fig. 2.1, consists of a micrometer-sized superconducting
loop, which is interrupted by three Josephson tunnel junctions made
from the same, conventional technology: Two of equal size, one smaller
by a factor a >~ 0.8. The loop dimensions are chosen such that the
geometric self-inductance of the loop does not play any significant role.
The loop is penetrated by a magnetic flux of size ®,, which imposes the
quantization condition ¢; + ¢o + ¢3 = f, where f = (20P/Py)mod2x
is the magnetic frustration, for the phases across the three junctions.
Thus we can eliminate ¢3, the phase across the weaker junction, and
obtain the potential energy

U = Ej(—cos¢; — cospy — acos(2nf + ¢1 — ¢2)) . (2.8)
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Figure 2.2: Top: First generation flux qubits with separate read-out

device (outer loop); bottom: Second generation with integrated read-
out-device. Picture a) taken by C.H. van der Wal and A.C.J. ter Haar,
picture b) by I. Chiorescu and Y. Nakamura



This potential is plotted in figure 2.3. The potential is periodic and
possesses a hexagonal pattern of minima separated by potential wells.
The energy difference of adjacent minima can be tuned through the
external flux: They are degenerate at & = ®,/2. From choosing one
of the Josephson junctions smaller than the others, one direction is
introduced in which the potential barrier is substantially smaller than
in the other directions. The state in the minima correspond to clockwise
and counterclockwise circulating current respectively.

The charging energy can be evaluated from Kirchhoft’s laws. The result
is written using vectors in the two dimensional {¢;, #o} and {Q1, @2}
coordinate-space as

Bin = 2°Q"Cu Q. (2.9)

with a capacitance matrix

(2.10)

CM:C(1+a+7 —a )

- l1+a+y

Here, v is the ratio of the stray capacitances to ground over the junction
capacitances, as seen in figure 2.1.

Carefully choosing appropriate parameters, one can reach a situation
with exactly one bound state per minimum, where the tunneling along
the easy direction is substantial and is strongly suppressed along the
other directions. At low energies the dynamics of the system can be de-
scribed in a two-state approximation in the basis of the states localized
in the potential minima, the classical states,

- l7e A
HQ_E(A _6). (2.11)

The energy bias € can be steered through the external flux following
€ ~ I,(® — ®/2), where I is the modulus of the circulating current in
the classical states. Thus, the quantum dynamics of the device can be
controlled by the external flux.

The tunnel splitting A can be made tunable by splitting the small junc-
tion into two parallel junctions, a DC-SQUID, which acts as an effective
single junction whose Josephson coupling E;(®3) = 2E, ¢ cos(m®2/Pp)
can be tuned by the flux ®5 through this loop between the sum of the
two couplings 2Fjy and zero. Such a tunable A is necessary in a num-
ber of, but not in all, quantum computing protocols. The state of the
system can be read out by measuring the extra magnetic flux produced
by the circulating current through a very sensitive magnetometer: a
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Figure 2.3: The potential landscape for a flux qubit as a function of the
phases across the identical junctions, taking o = 0.8. The solid arrow
indicates an easy tunneling path whereas the dashed lines indicate hard
directions.
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SQUID [101]. Such a magnetometer works as a tunable junction as
just described: E; depends on the flux through the loop and can be
measured electronically. The SQUID-readout corresponds to a mea-
surement of 7,. Figure 2.2 shows micrographs of real devices together
with their read-out apparatus.

The flux qubit is thus a well-defined quantum system that can perform
single-qubit rotations. All other ingredients demanded by DiVincenzo’s
original five criteria can also be met, which will be detailed more in sec-
tion 2 of this report. Note that eq. (2.11) predicts that superpositions
of current states can be prepared close to f = 1/2. The current states
involve up to 10'° electrons. Thus, these are superpositions of large
objects. This does not yet imply that these states correspond to huge
Schrodinger’s cats: For analyzing this question one has to carefully
evaluate the distance in Hilbert space between the two states, which is
a by far more subtle issue [17,18].

Structures of this kind are fabricated and studied in a number of labora-
tories in the world and a number of experimental demonstrations have
been performed: Spectroscopy and level-repulsion [125], Rabi oscilla-
tions and Ramsey fringes [115], coupling of qubits [126], and single-shot
readout [127]. Some of these goals have been declared to be physically
impossible shortly before being demonstrated experimentally. This ex-
perimental progress gives rise to the hope that the program can be
pursued further and more and more elaborate quantum-coherent ma-
nipulations can be performed.

2.7 Decoherence and the transition to clas-
sical physics

Coherence is the ability to interfere and is usually associated with the
phase of a wave. In optics, light is called incoherent if its propagation
can be described by geometrical optics alone [128]. The applicability
of such a description clearly depends on the phenomenon being studied
and on the scale of observation. The focusing of coherent laser light
on large scales can, e.g., still be described by geometrical optics, the
interference phenomena of the same laser beam in an interferometer re-
quire the use of a wave description. In quantum mechanics, the phase
under consideration is usually the phase of the wave function and the
incoherent limit of the theory is classical physics. Decoherence is the
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loss of coherence, i.e. in quantum mechanics it describes the transition
from generically quantum to classical behavior. When describing de-
coherence, one thus has to clearly specify which quantum interference
phenomenon (and which classical counterpart) is being studied. E.g.
in a two-state-system (TSS) one can specify the “decoherence of free
quantum oscillations” instead of just “decoherence”. We will see that
there are regimes when specific quantum phenomena, such as the forma-
tion of superpositions of classical states, are still observable, whereas
others, such as real-time interference fringes, are already completely
suppressed. In fact, this property of decoherence is important for the
coexistence of classical and quantum description of matter e.g. in the
large-scale classical description of molecules bound together by chemi-
cal bonds. The understanding of decoherence has huge impact on the
general understanding of quantum mechanics [22,129, 130].

Decoherence is an irreversible phenomenon and is in many cases closely
related to thermodynamic irreversibility, i.e. the dissipation of energy
and the generation of entropy. Consequently decoherence is not a
generic part of elementary quantum mechanics based on the Schrodinger
equation or its relativistic generalizations, which are all reversible at
least in the sense of the CPT-theorem. This dilemma is easily solved
in large systems with a thermodynamic number of degrees of freedom:
Such a system has a high number of levels and from a general ini-
tial state its wave function will follow a complex beating of oscilla-
tions whose frequencies are set by all possible transition frequencies
Wnm = (En, — Ep)/h between all combinations of levels n,m. It will
return to its initial state after a time 7" which satisfies T = 2pp, 7 /Wy,
with a set of integers p,,,. This time is called Poincaré time and has
very large values in thermodynamic systems with (quasi)continuous
spectra. Thus, the reversibility cannot be observed in any reasonable
experiment. On the other hand, there are always pairs of wy,,, and wy,,y
very close together, such that coherent phenomena between states n
and m are completely masked by those of states m', n' and can also not
be observed on short time scales. Moreover, observing a system with
this precision in a well-defined way requires the repeated preparation
of the same microscopic initial state, which is not possible for such a
high number of degrees of freedom. In other words: Even though mi-
croscopic physics may be reversible and coherent, we are very often not
able to observe it.

From the above discussion we can readily understand how coherence
and reversibility vanish for large systems. Here, we are however mostly
interested in small arrays of qubits, systems with very few (effective)
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degrees of freedom, and want to understand how they lose their coher-
ence. The type of model invoked is closely related to the above example:
The system is extend by coupling the quantum system to an environ-
ment (bath) containing a number of macroscopic degrees of freedom,
whose detailed initial state is unknown except for its thermodynamical
variables. Then one solves the dynamics of the full setup containing the
quantum system and the bath. The solution will depend on the initial
state of the bath and by tracing out the average over the ensemble of
initial states of the bath, the effective reduced dynamics of the system
under the influence of the bath is found. Baths of this kind always
occur in nature: Generally, one has to be aware of the fact that the
experimental machinery and the control and manipulation instruments
can serve as a bath; in fact, even the electromagnetic vacuum is a bath
to which energy can be emitted [5]. It is in particular easy to identify
physical baths in solids: All the “unused” degrees of freedom, typically
the lattice and electronic excitations, act as sources of decoherence for
the qubit degrees of freedom. Recalling the preceding discussion of
superconducting qubits, we note that superconductors are good candi-
dates for building coherent structures, because the ubiquitous natural
baths in a solid-state environment are suppressed: lattice vibrations
are frozen out and the electronic excitations are gapped.

Due to the necessity to introduce an environment, quantum systems
suffering from decoherence are often called “open quantum systems”.
There has been speculation in the literature [131], that under certain
circumstances decoherence can occur without a bath, which has lately
been strongly challenged [132].

The transition to classical physics manifests itself in at least three ways,
which are related but not equivalent. These situations will now be
illustrated invoking a system described by a two-state Hamiltonian of
the form eq. (2.11).

Firstly, a system can be by all means coherent and sufficiently isolated
from the environment, but the coherent phenomenon manifests itself on
an unobservable scale. E.g., we would not be able to observe coherence
fringes in the propagation of a ping-pong ball, because the de Broglie
wave length of the ball at any reasonable velocity is too small to be
observed (at v = 1m/s it is on the order of 1073m). In eq. (2.11),
this would occur if the off-diagonal matrix element is so small that one
cannot keep ¢ = (0 with sufficient precision and hence cannot prepare
superpositions, or if € > A such that coherent oscillations are too fast
to be observed and/or too small in amplitude. This can be attributed
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to the fact that the quantum fluctuations leading to the coherent cou-
pling of the classical states (here, the eigenstates of 6, are too small.
For tunneling systems such as the flux qubit, A is proportional to the
overlap of the basis states in some double-well potential [114]. We can
thus associate a small A with the fact that the basis states are too
strongly separated for coherent tunneling. They are hence too distinct
- very similar to the fact that the wave functions “alive” and “dead” of
Schrodinger’s cat [16] do not have overlap. This type of vanishing quan-
tum effects is usually not referred to as decoherence but as macroscopic
distinction [18] and has also been termed “false decoherence” [17].

Secondly, if the system has an appropriate effective Hamiltonian with a
sufficiently large off-diagonal matrix element it would be able to show
all kinds of quantum coherent interference phenomena leading to fringes
or temporal oscillations, such as the coherent oscillations of a two-state
system which is initially not prepared in an eigenstate of the Hamilto-
nian eq. (2.11). Due to the influence of the environment these oscilla-
tions lose their phase and are suppressed. This can be understood in
an ensemble-average: The system plus the bath propagate together and
display a complex beating pattern. As the bath is prepared in some-
what different states in each member of the ensemble, this propagation
looks differently for each realization and the quantum subsystem, from
a unique initial state, accumulates more and more differences between
one realization of the other, until ensemble-averaged quantum prop-
erties die out. This phenomenon is called “dephasing”. It does not
necessarily involve the exchange of energy with the environment. On
the other hand, at long times we expect the system to go into a ther-
mal state described by a diagonal Boltzmann-type density matrix. This
process involves energy exchange with the environment and is called re-
laxation. It takes place if there are no special selection rules and does
necessarily also lead to dephasing. The thermal state can still involve
superpositions of the basis states, if the Hamiltonian has off-diagonal
terms. Allin all this type of dynamics is called (“generic”) decoherence.

Thirdly even if the system Hamiltonian eq. (2.11) has substantial off-
diagonal elements, coherent tunneling between the classical states can
be blocked on all time scales by interaction with the environment. In
fact, the system gets dressed by fast degrees of freedom in the environ-
ment, i.e. the system states |1,,) have to be replaced by combined states
[Un)et = |n) @ |[ENV,), where |ENV,,) are the lowest-energy states of
the bath under the condition that the quantum system is in state |t,).
This type of dressing leads to a renormalization of the system Hamil-
tonian. E.g., in eq. 2.11, A gets renormalized to Ass when one couples
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a bath of oscillators to 6, [133,134]. Such renormalization effects are
known throughout physics as Lamb shift, Franck-Condon effect etc. ,
all of which describe the introduction of an effective Hamiltonian whose
matrix elements are different from the original ones due to the interac-
tion with some environment. If the bath is infinite and has sufficient
spectral weight at all frequencies, the system can undergo a dissipative
phase transition which leads to Aeg = 0, making the system completely
classical and localized, similar to Anderson’s orthogonality catastro-
phe [135] in Fermionic systems. In fact, the dynamics described in the
previous paragraph is always governed by H.g. In particular, there are
no superpositions of classical states left in a thermal mixture. Another
way to interpret this is, that the system builds up entanglement with
the environment, i.e. any superposition of different |1, )efr, |¥m)efr is en-
tangled. If the entanglement is complete, such that the |[ENV,,) are
mutually orthogonal, the system cannot tunnel any more between the
classical states ef(¢n|¥mxn)esr — 0. This is analogous to the first sce-
nario: There the system states themselves are macroscopically distinct,
here only the environment plus environment states are.

So far we have given a number of examples for baths which are physi-
cally quite different, but have not detailed how to model them. It turns
out that many baths can be modelled using a few general models: In
the thermodynamic limit at equilibrium, many systems are Gaussian,
i.e. the distribution of values for collective variables X is of Gaussian
form and can be fully described by the two-time correlation function
(X ()X (0)). All higher cumulants are zero. Such Gaussian models can
be universally described as a bath of harmonic oscillators, and collective
variables can be written as a linear combination of the oscillator coor-
dinates [108,133,136]. In order to determine the appropriate couplings
and distribution of the oscillators one introduces a spectral density
J(w) of the oscillators which is determined from the specific properties
of the model under consideration. This matching to the physical model
is usually done by comparing either the classical friction induced by the
environment, or the noise correlation function, and will be detailed in
chapter 3.2. Then the model of system plus bath with the appropriate
J(w) can be solved quantum-mechanically as described above. Oscil-
lator bath models work well e.g. for phonon and photon baths such as
electromagnetic noise.

Not all environments can be described this way. A prominent coun-
terexample are localized modes with a bounded spectrum such as spins
[137] and structural fluctuations generating classical telegraph noise
[138,139], which are inherently non-Gaussian. One expects from the
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central limit theorem, that large ensembles of such fluctuators usually
behave Gaussian again [140,141], but details of this transition are only
partially understood at present [139,142].

The discussion in the previous section already indicates the impor-
tance of studying noise for understanding decoherence [143,144]. In
fact, parts of our results on decoherence can be understood from noise
theory alone without a detour via an environmental Hamiltonian. This
can be illustrated by the two-state system described by (2.11), where €
is noisy, € = €+ 0¢€(t). We can readily solve the associated Schrédinger
equation. Even more intuitively we can describe the state of the sys-
tem by the expectation values of the three components of the spin, and
the Schrodinger equation becomes the classical equation of motion of
magnetic moment in a fluctuating magnetic field. For each realization
of the noise, the system behaves coherently, but the coherent evolu-
tion has a noisy component. Averaging over the noise then leads to
incoherent evolution. Specifically, two key results can be derived on
that level, assuming that de can be treated perturbatively [141,145]:
The relaxation rate is proportional to the noise spectral density S at a
frequency corresponding to the level splitting F = v/€2 + A?

A2

="

S(E). (2.12)
Flip-less decoherence contains a zero energy exchange (zero frequency)
contribution as well [46,146,147]

2

Ty =T,/2+ %S(O). (2.13)

Such methods for describing decoherence by averaging over semiclas-
sical noise will generally fail whenever entanglement between system
and bath is generated. This happens at large time scales, but also
at stronger coupling beyond perturbation theory. This failure is due to
the effect that under these conditions the system also has a pronounced
influence on the bath, which changes the bath dynamics and from there
acts back on the system. This is not captured if the noise is usually
calculated for an a priori given (thermal) bath state as in the naive
approach.

The more conventional methods for describing decoherence rely on
studying the reduced density matrix of the quantum system. This
density matrix is obtained from the full density matrix of system and
environment by tracing out the environment as described above. The
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reduced density matrix describes an ensemble of systems, i.e. the re-
sults obtained from it can be compared to results averaged over huge
collections of quantum systems or a repeated experiment with identi-
cal initial conditions of the quantum system at each attempt (time-
ensemble). The behavior of a single realization is not predicted, similar
to the statistical description of quantum measurements [25], see above.
In most cases the dynamics of the reduced density matrix can be de-
scribed by a generalized master-equation with memory, i.e. by a linear
integro-differential equation containing all the evolution in the past,
which falls back onto the Liouville equation if the coupling to the bath
is taken away [136,148-150]. Even the path-integral descriptions for
open quantum systems developed in the 80s have recently been cast in
a master-equation form [136]. Master equations which are local in time
are called Markovian [151-155]. Many approaches have been formu-
lated within the Born approximation, which only contains the coupling
to the bath in lowest, quadratic, order [156]. The simplest example
for such a master equation is the Bloch equation from NMR [146,157],
which introduces longitudinal relaxation rates (relaxation of the spin
component parallel to the magnetic field, corresponding to energy relax-
ation) and transversal rates corresponding to dephasing. These equa-
tions have first been phenomenologically introduced in the picture of
classical spins without having decoherence in mind. They have been
further developed in NMR and can be microscopically [146,158] derived
under suitable Markovian assumptions.

With very few exceptions, mainly such master equation methods are
used in the papers compiled in this report. The technical aspects are
highlighted in the papers.

There are other methods to describe open quantum systems, many
of which are essentially numerical: The quantum jump or trajectory
method [159,160] and the Bayesian formalism [161] rely on additional
assumptions and have the advantage that they stay within a wave func-
tion representation, which is advantageous for huge systems. Various
renormalization group approaches [162—-164] on the other hand are very
precise and include the regime of large coupling, however, up to now
they have difficulties in treating nonequilibrium or driven situations.
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2.8 Quantum dot quantum bits

As already stated above superconducting systems are not the only can-
didates for solid-state quantum bits. Specifically quantum bits in semi-
conductor quantum dots are an active field of study [29,71,72,74,75,
165-167].

The fabrication of a lateral quantum dot starts from a two dimen-
sional electron gas (2DEG) obtained in a band structure-engineered
GaAs/AlGaAs multilayer heterostructure [27]. Such heterostructures
have already been fabricated in the 80s and have been used e.g. in
the discovery have been the quantum Hall effects [168]. Due to strong
doping there are mobile conduction electrons even at low temperatures
just as in a metal, however, the concentration is much lower. The mo-
tion perpendicular to the 2DEG is strongly confined by the engineered
multilayer, such that the motion in that direction becomes quantized
similar to a particle in a box, and at low temperatures only the lowest
state in that direction is occupied.

To form a lateral quantum dot in the 2DEG, metallic gates are fabri-
cated on top which are galvanically isolated from the 2DEG. By apply-
ing a high negative voltage the Coulomb repulsion depletes the 2DEG
under the gate electrodes (Schottky effect). A potential landscape can
be shaped this way that confines the electron motion inside the 2DEG.
In particular one can define a small puddle of electrons which are con-
nected to the remainder of the 2DEG only by quantum point contacts.
Such a puddle is called a quantum dot. By making the dots small
enough, on the order of hundreds of nanometers, and strongly depleting
the 2DEG the dots develop a discrete energy level structure, i.e. they
act as zero-dimensional quantum systems (artificial atoms) [169, 170].
N.b. that in real metals this only happens at much smaller dimen-
sions [171], because there the Fermi wavelength is much smaller due to
the high carrier density. Moreover in small quantum dots the Coulomb
repulsion becomes significant and it costs lots of charging energy of
the form eq. 2.9 to add another electron to the dot (Coulomb block-
ade). This makes quantum dots stable, controlled and tunable artificial
atoms [169]. Figure 2.4 show a typical micrograph of a double quantum
dot.

Many of the basic predictions for such Coulomb blockade physics, such

as the the level structure, atomic and molecular states in multi-dot
setups, spin and spin-orbit effects, and the Kondo effect, have been
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Figure 2.4: Micrograph of a double quantum dot system. The bright
fingers are the electrostatic gates on top of the 2DEG, the dots are
defined in the two disks. Picture taken by A.W. Holleitner
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demonstrated experimentally in quantum dots. Some of these phenom-
ena have counterparts in atomic physics [40,166,170,172,173].

This similarity to atoms makes quantum dots a natural candidate for
solid-state qubits: The dot states offer various options for forming a
two-state system. The states on the dot are isolated from the other
conduction electrons by point contacts. The coupling to the lattice is,
however, a serious problem, unlike in the case of superconductors. The
phonon physics of GaAs, a piezoelectric material, in the heterostruc-
ture defining the 2DEG is less favorable — even at low temperatures,
there is a substantial phase space for phonon emission [174]. This can
potentially be overcome by fabricating dots on free-standing substrates
which act as a phonon cavity [175,176].

One natural approach to build a qubit is to use different charge states
on a double quantum dot, such that the qubit states are defined through
the position of a single mobile electron [165,167,177]. Such qubits can
be coupled electrostatically and read out by single electron transistors
or quantum point contacts. Due to the many gate controls of the dot
charge states can be easily and quickly manipulated by pulses in the
microwave range, they can be coupled using capacitors, and they can
be read-out using single-electron electrometers [178] or quantum point
contacts [72,179]. However, their coherence is limited by phonons as
described above, thus one has to operate on very short time scales.

Another option is to use spin states [71,74,75]. The spin in GaAs
has long intrinsic coherence times [180,181]. However although many
generic spin effects have been observed it is still a major challenge to
couple well to the spin, manipulate it coherently and read it out. Many
of the promising proposals use the relation of position and spin e.g.
through exchange interaction [70,74]. It is consequently also important
for spin qubits to understand the properties and the stability of charge
states.

Next to this interest for quantum computing applications quantum dots
also complement the knowledge of decoherence gained in superconduct-
ing qubits. Due to their electrostatic definition there is more freedom
to change the Hamiltonian in situ. Moreover one can study nonequi-
librium (and non-Gaussian) decoherence by studying the coupling to
electronic leads and voltage-biased point-contact detectors.
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2.9 Nonequilibrium superconductivity in
mesoscopic systems

Similar to the work on quantum dots, section 2.8, this section on meso-
scopic superconductivity mostly serves as an extension and complement
of the main text on superconducting qubits.

So far, we have adopted a very simplistic view of the microscopic physics
of Josephson junctions: Cooper pairs propagate through a weak link
without losing coherence [88,91,92]. Indeed, Josephson tunnel junctions
as they are mostly used in quantum computing usually do not show ad-
ditional features— the physics is analogous to tunneling through a high
potential barrier. There are, however, other types of weak links which
have a rich internal structure, namely links with a conducting connec-
tor. These links are much longer than the few Angstrom of the oxide
layer of tunnel junctions, however, they are still shorter than the phase
coherence length. The length makes direct tunneling across the struc-
ture almost impossible, so the Cooper pairs must make use of the finite
conductance of the barrier [182,183]. Indeed, one can show that the col-
lective wave function of the superconductor leaks into the normal metal
and generates superconducting correlations there, which can support a
(Josephson) supercurrent [184]. This is known as prozimity effect. The
microscopic mechanism leading to this effect is known as Andreev re-
flection [185]: Due to the energy gap in the superconductor, electrons
from the normal metal cannot directly enter the superconductor. Nev-
ertheless two electrons can enter the superconductor in a correlated way
and form a Cooper pair. This means that an incoming electron above
the Fermi edge is retroreflected into a hole. Due to momentum and
energy conservation, the component of the momentum parallel to the
interface is conserved whereas the perpendicular component is slightly
different. Note that this is retro and not mirror reflection. This pro-
cess is illustrated in Fig. 2.5 a). Thus the hole tends to trace back the
path of the electron with a slightly different wave number. Electron
and hole acquire a precisely defined phase relation at the interface due
to the coupling to the Cooper pair condensate, see Fig. 2.5 b). If the
conductor is bounded by two superconductors as it is the case in a weak
link, the hole can Andreev-reflect at the other side into an electron and
both can form a bound state. This bound state spectrum depends on
the difference of the phases of the order parameters and carries the
supercurrent.

Most of the metallic samples of this kind which can be studied exper-
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imentally, contain lots of static disorder. Hence the paths forming the
bound states are very complicated. They can be treated in an impurity-
averaged way and lead to a gapped but otherwise smooth density of
current-carrying states. This density has to be convoluted with the
electron distribution function for predicting the macroscopic supercur-
rent. The options to artificially manufacture such structures, together
with the possibility to control the distribution function through exter-
nal leads and create far-from-equilibrium situations consequently make
these setups powerful test-beds for studying the microscopic details of
the supercurrent transport and nonequilibrium superconductivity.

One of the early striking features of this supercurrent has already been
predicted and observed a while ago [186-188] namely the option to
switch the junction into a state with a negative critical current, a so-
called w-state, by an external voltage. In this report, section 3.8, a
number of extensions of this idea is compiled, including a broad intro-
duction to the basic physics.

m-junctions can be an interesting building block for superconducting
electronics, both classical and quantum. Basic features of such ap-
plications have already been demonstrated, however, noise and high-
frequency properties important for technology still need to be explored.
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b) d

Figure 2.5: a) schematics of the Andreev reflection process. The left
panel shows the density of states in a superconductor and a normal
metal and indicates the energetics of the electron-hole conversion. The
right panel shows the semiclassical paths of an incoming electron (solid
line) and retro-reflected hole (dashed), which are nearly retro-reflected
at the interface and are scattered off impurities. b) Density of super-
conducting correlations in an SNS-junction.
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Chapter 3
Original papers

This chapter comprises my research papers and forms the main body
of this report. The papers are grouped in sections on related subjects
and each section has an introduction outlining the subjects and inter-
relations of the papers. The papers are listed in the bibliography as
references [189-209]. The work presented in these papers has been done
exclusively after the completion of my PhD thesis.

3.1 Spectroscopy of superconducting qubits

In paper [189], macroscopic superpositions of persistent current states
in superconducting loops are demonstrated. The loops are interrupted
by three Josephson junctions in order to generate sufficient quantum
fluctuations between the states, as described in section 2.6. The qubits
are of appreciable size of about 450 nA, which involve the collective mo-
tion of at least 10° Cooper pairs. The measurement of the state is per-
formed by a weakly coupled SQUID and involves averaging over about
5000 experiments in order achieve enough resolution. The levels of the
qubit are studied using microwave spectroscopy. At f = 1/2, when the
classical current states are degenerate, level repulsion is clearly iden-
tified, which shows that the eigenstates are superpositions of the clas-
sical states. At strong microwave power, the absorption lines broaden
as expected from Rabi’s formula. At low power, the width saturates,
indicating an ensemble dephasing time of 7 = 10 ns. However, this
line width can also be fully explained by the classical back-action of
the meter and is not necessarily intrinsic.
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Paper [190] presents a new perspective on these data. Specifically, the
step of the magnetization in thermal equilibrium is investigated in the
vicinity of f = 1/2. If the temperature is lowered, the step in the
ground state gets sharper, however, a finite rounding due to quantum
fluctuations persist even at temperatures below the anticipated tunnel
matrix elements. In fact, from analyzing the half-width of the step, this
matrix element can be extracted. Its value is far above the value from
the spectroscopy data. This can be explained by the relatively long
timescale of the equilibrium experiment, in which slow fluctuations of
the bias flux lead to an additional broadening of the step.

In paper [191], the aspects of the classical back-action in the read-out
process in this experiment are emphasized and the relation to other
experiments on macroscopic quantum coherence such as in Ref. [30] is
detailed.
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pg/ml pepstatin, 4 mM PMSF, and 0.5% NP-40) was
then added. The tubes were shaken for 2 hours in the
The supernatant was collected for ELISA and protein
measurements. The ELISA reaction was completed in
96-well plate (Dynatech, Chantilly, VA) according to
the ELISA manufacturer’s instructions (GDNF E__
ImmunoAssay Systems Kit G3520, Promega, Madi-
son, WI). The optical densities were recorded in ELISA
plate reader (at 450 nm wave length; Dynatech).
Some lysates were diluted to ensure all the optical
densities were within the standard curve. The con-
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centrations or GDNF were calculated against six-
point standard curve and then adjusted to picograms
of GDNF per milligram of total protein. The total
protein in each tissue lysate was measured using
Bio-Rad protein assay kit (Bio-Rad, Richmond, CA).
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Quantum Superposition of
Macroscopic Persistent-Current
States

Caspar H. van der Wal,’* A. C. J. ter Haar," F. K. Wilhelm,"
R. N. Schouten,? C. J. P. M. Harmans," T. P. Orlando,?
Seth Lloyd,? J. E. Mooij'?

Microwave spectroscopy experiments have been performed on two quantum
levels of a macroscopic superconducting loop with three Josephson junctions.
Level repulsion of the ground state and first excited state is found where two
classical persistent-current states with opposite polarity are degenerate, indi-
cating symmetric and antisymmetric quantum superpositions of macroscopic
states. The two classical states have persistent currents of 0.5 microampere and
correspond to the center-of-mass motion of millions of Cooper pairs.

When a small magnetic field is applied to a
superconducting loop, a persistent current is
induced. Such a persistent supercurrent also
occurs when the loop contains Josephson tun-
nel junctions. The current is clockwise or
counterclockwise, thereby either reducing or
enhancing the applied flux to approach an
integer number of superconducting flux
quanta @, (/). In particular when the en-
closed magnetic flux is close to half-integer
values of @, the loop may have multiple
stable persistent-current states, with at least
two of opposite polarity. The weak coupling
of the Josephson junctions then allows for
transitions between the states. Previous theo-
retical work (2—4) proposed that a persistent
current in a loop with Josephson junctions
corresponds to the center-of-mass motion of
all the Cooper pairs in the system and that
quantum mechanical behavior of such persis-
tent-current states would be a manifestation
of quantum mechanical behavior of a macro-
scopic object. In a micrometer-sized loop,
millions of Cooper pairs are involved. At
very low temperatures, excitations of individ-
ual charge carriers around the center of mass
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of the Cooper-pair condensate are prohibited
by the superconducting gap. As a result, the
coupling between the dynamics of persistent
supercurrents and many-body quasi-particle
states is very weak. Josephson junction loops
therefore rank among the best objects for
experimental tests of the validity of quantum
mechanics for systems containing a macro-
scopic number of particles (3, 5, 6) [loss of
quantum coherence results from coupling to
an environment with many degrees of free-
dom (7)] and for research on the border
between classical and quantum physics. The
potential for quantum coherent dynamics has
stimulated research aimed at applying Jo-
sephson junction loops as basic building
blocks for quantum computation (qubits) (§—
11).

We present microwave spectroscopy ex-
periments that demonstrate quantum superpo-
sitions of two macroscopic persistent-current
states in a small loop with three Josephson
junctions (Fig. 1A). At an applied magnetic
flux of /2@, the system behaves as a particle
in a double-well potential, where the classical
states in each well correspond to persistent
currents of opposite sign. The two classical
states are coupled via quantum tunneling
through the barrier between the wells, and the
loop is a macroscopic quantum two-level sys-
tem (Fig. 1B) (12). The energy levels vary
with the applied flux as shown (Fig. 1C).
Classically, the levels cross at /2®,. Tunnel-
ing between the wells leads to quantum me-
chanical eigenstates that at />2® are symmet-
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ric and antisymmetric superpositions of the
two classical persistent-current states. The
symmetric superposition state is the quantum
mechanical ground state with an energy low-
er than the classical states; the antisymmetric
superposition state is the loop’s first excited
state with an energy higher than the classical
states. Thus, the superposition states manifest
themselves as an anticrossing of the loop’s
energy levels near 2®,. We performed spec-
troscopy on the loop’s two quantum levels
(Fig. 2) and our results show the expected
anticrossing at 2®, (Fig. 3) (13). We also
studied the resonance-line shapes and found
behavior similar to microscopic quantum
two-level systems (/4, 15) (Fig. 4).

Detecting quantum superposition. In
our experiments, the magnetic flux generated
by the loop’s persistent current was measured
with an inductively coupled direct-current su-
perconducting quantum interference device
(DC-SQUID) (Figs. 1 and 2), while low-
amplitude microwaves were applied to in-
duce transitions between the levels. We ob-
served narrow resonance lines at magnetic
field values where the level separation AE
was resonant with the microwave frequency.
The DC-SQUID performs a measurement on
a single quantum system. Thus, we should
expect that the measurement process limits
the coherence of our system. While the sys-
tem is pumped by the microwaves, the
SQUID actively measures the flux produced
by the persistent currents of the two states.
Detecting the quantum levels of the loop is
still possible because the meter is only weak-
ly coupled to the loop. The flux signal needs
to be built up by averaging over many repeat-
ed measurements on the same system (Fig.
2B), such that an ensemble average is effec-
tively determined. We measure the level sep-
aration, i.e., energy rather than flux, as we
perform spectroscopy, and we observe a
change in averaged flux when the micro-
waves are resonant with the level separation
(the peaks and dips in Figs. 2B and 3A). We
also chose to work with an extremely under-
damped DC-SQUID with unshunted junc-
tions to minimize damping of the quantum
system via the inductive coupling to the
SQUID.

Similar observations were recently made
by Friedman et al. (16) who performed spec-
troscopy on excited states in a loop with a
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single Josephson junction (radio frequency
SQUID). Previous experiments with single-
junction loops have demonstrated resonant
tunneling between discrete quantum states in
two wells (17, 18) and microwave-induced
transitions between the wells (19, 20). Other
observations related to macroscopic superpo-
sition states are tunnel splittings observed
with magnetic molecular clusters (217, 22) and
quantum interference of C,, molecules (23).
In quantum dots (24) and superconducting
circuits where charge effects dominate over
the Josephson effect (25-27), superpositions
of charge states have been observed, as well
as quantum coherent charge oscillations (28).

Macroscopic quantum system. Our
quantum system is a low-inductance loop
intersected by three Josephson tunnel junc-
tions (Fig. 1A) (10, 11). The Josephson junc-
tions are extremely underdamped and are
characterized by their Josephson coupling E,
and charging energy E. = ¢*/2C, where C is
the junction capacitance and e is the electron
charge. The critical current of a junction is

each well have persistent currents of opposite
sign, with a magnitude 7, very close to I, of the
weakest junction and with energies E =
+I(D,, — Y2D,) (dashed lines in Fig. 1C)
(29). The system can be pictured as a particle
with a mass proportional to C in the Joseph-
son potential; the electrostatic energy is the
particle’s kinetic energy. The charging ef-
fects are conjugate to the Josephson effect.
For low-capacitance junctions (small mass)
quantum tunneling of the particle through the
barrier gives a tunnel coupling ¢ between the
persistent-current states. In the presence of
quantum tunneling and for E,/E. values be-
tween 10 and 100, the system should have
two low-energy quantum levels £, and E|,
which can be described using a simple quan-
tum two-level picture (10, 11),

Eony = —(+)\,/t2 + [Ip(q)ext = 0]

The loop’s level separation AE = E, — E, is
then

AE = 20 + [21(Dy —

1/2(1)0)]2

2e ho (1)
leo = 7 Ej, where ho= o 18 the reduced system was realized by microfabricating

Planck constant. One of the junctions in the  an aluminum micrometer-sized loop with un-
loop has E; and C smaller by a factor 3 ~ 0.8.  shunted Josephson junctions (30). Around the
At an applied flux ®_  close to 2®,, the loop, we fabricated the DC-SQUID magne-
total Josephson energy forms a double-well  tometer (Fig. 1A), which contains smaller
potential. The classical states at the bottom of ~ Josephson junctions that were as under-

inductively coupled to B @ <0. 5<I>,J <I>

ext = oxt = 0-5 q)a weo //,f‘\\ AE
an underdamped DC- ‘ 1Y ,'
SQUID, which is posi-
tioned around the
loop. The DC-SQUID 1
can be used as a mag-
netometer by apply-
ing a bias current /.
to it. (B) Schematic presentation of the loop’s double-well A
potential with energy levels (72) for an applied flux @, , below 0.5
1/2d,, (left) and at /2P, (right). The vertical axis is energy, the o (D)
horizontal axis is a Josephson phase coordinate. In the vicinity et 0
of ®_, = /20, the loop is a double-well system in which the two minimums correspond to
classical states with persistent currents of equal magnitude /_, but with opposite polarity. Quantum
mechanically, the system has two low-energy eigen states (Black and gray) that are well separated
in energy from higher excited states (dashed lines), such that it is effectively a quantum two-level
system. The shape of the wave function of the ground state (black) and first excited state (gray)
is shown at the energy level. For ®_ , below or above /2@ the two lowest eigen states are well
localized on either side of the barrier and correspond (apart from zero-point energy) to the classical
persistent-current states. When quantum tunneling between the wells is possible, the loop’s eigen
states are at &, = /2@, symmetric and antisymmetric superpositions of the two persistent-
current states. The schematic plots show a distribution of the levels in the potential that is typical
for the device parameters mentioned in the text. (C) Energy levels and persistent currents of the
loop as a function of applied flux ®_ . The insets of the top plot show again the double-well
potential, for ®_ , below /2® (left), at /2P, (middle), and above /2d, (right). The energies of
the two localized persistent-current states are indicated with the dashed lines, and they cross at
®,,, = /2®,. The quantum levels (solid lines) show an anti-crossing near ®_ . = /2, where the
eigen states are symmetric and antisymmetric superpositions of the two persistent-current states.
The level of the ground state E, (black) and the excited state E, (gray) are separated in energy by
AE. The bottom plot shows the quantum mechanical expectatlon value (I.) = —03E/dPey of the
persistent current in the loop, for the ground state £, (black) and the excited state E, (gray), plotted
in units of the classical magnitude of the per5|stent currents /.

Fig. 1. (A) Schematic *
of the small super- A lpias * c
conducting loop with —— X
three Josephson junc-
tions (denoted by the "
crosses). The loop is

P

(Iq)/l

damped as the junctions of the inner loop.
Loop parameters estimated from test junc-
tions fabricated on the same chip and electron
microscope inspection of the measured de-
vice give I, = 570 = 60nA and C = 2.6 +
0.4 fF for the largest junctions in the loop and
B =0.82 = 0.1, giving E,/E. = 38 * 8 and
[, = 450 = 50 nA. Due to the exponential
dependence of the tunnel coupling ¢ on the
mass (i.e., the capacitance C) and the size of
the tunnel barrier, these parameters allow for
a value for #/h between 0.2 and 5 GHz. The
parameters of the DC-SQUID junctions were
Ico =109 £ 5nA and C = 0.6 = 0.1 {fF. The
self inductance of the inner loop and the
DC-SQUID loop were estimated to be 11 = 1
picoHenry (pH) and 16 = 1 pH, respectively,
and the mutual inductance M between the
loop and the SQUID was 7 = 1 pH (37). The
flux in the DC-SQUID is measured by ramp-
ing a bias current through the DC-SQUID
and recording the current level /g, where the
SQUID switches from the supercurrent
branch to a finite voltage (Fig. 2A). Traces of
the loop’s flux signal were recorded by con-
tinuously repeating switching-current mea-
surements while slowly sweeping the flux
®_ . (Fig. 2B). The measured flux signal
from the inner loop will be presented as I,
which is an averaged value directly deduced
from the raw switching-current data (32).

Results. Figure 3A shows the flux signal
of the inner loop, measured in the presence of
low-amplitude continuous-wave microwaves
at different frequencies f. The rounded step in
each trace at 2®, is due to the change in
direction of the persistent current of the
loop’s ground state (see also Fig. 1C). Sym-
metrically around ®_ , = 2P, each trace
shows a peak and a dip, which were absent
when no microwaves were applied. The po-
sitions of the peaks and dips in ®_ , depend
on microwave frequency but not on ampli-
tude. The peaks and dips result from micro-
wave-induced transitions to the state with a
persistent current of opposite sign. These oc-
cur when the level separation is resonant with
the microwave frequency, AE = hf.

In Fig. 3B, half the distance in ®_,
tween the resonant peak and dip AD_ is
plotted for all the frequencies f. The relation
between AE and ®_, is linear for the high-
frequency data. This gives [, = 484 = 2 nA,
in good agreement with the predicted value.
At lower frequencies, A®__ significantly de-
viates from this linear relation, demonstrating
the presence of a finite tunnel splitting at
®,. = VaP,. A fit to Eq. 1 yields #/h =
0.33 = 0.03 GHz, in agreement with the
estimate from fabrication parameters. The
level separation very close to 2®, could not
be measured directly because at this point the
expectation value for the persistent current is
zero for both the ground state and the excited
state (Fig. 1C). Nevertheless, the narrow res-

be-
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onance lines allow for an accurate mapping
of the level separation near '2®,, and the
observed tunnel splitting gives clear evidence
for quantum superpositions of the persistent-
current states. The large uncertainty in the
predicted ¢ value does not allow for a quan-
titative analysis of a possible suppression of ¢
due to a coupling between our two-level sys-
tem and a bosonic environment (33) or a
spin-bath environment (34, 35). However, the
fact that we see a finite tunnel splitting indi-
cates that the damping of our quantum sys-
tem, which is caused by environmental de-
grees of freedom, is weak. The dimensionless
dissipation parameter « introduced by Leg-
gett ef al. (33) must be a < 1.

In Fig. 4, we show the dependence of the
dip shape at 5.895 GHz on applied micro-
wave amplitude. The dip amplitude and the
full width at half the maximum amplitude
(FWHM) were estimated for different micro-
wave amplitudes by fitting a Lorentzian peak
shape to the data. Figure 4B shows that the
dip amplitude increases rapidly for micro-
wave amplitudes up to V,. =~ 2 arbitrary
units (a.u.), followed by a saturation for larg-
er microwave amplitudes. The saturated dip
amplitude is ~ 0.25 nA, which is close to half
the full step height of the rounded step at
Y2®, (=~ 0.4 nA) in Fig. 3A. This indicates
that on resonance the energy levels are close
to being equally populated, as expected for
pumping with continuous-wave microwaves.

Figure 4C shows a linear dependence be-
tween the FWHM and the microwave ampli-
tude. Qualitatively, this dependence of the
line shape on microwave amplitude agrees
with spectroscopy results on microscopic
quantum two-level systems. For negligible
decoherence, spectroscopy on quantum two-
level systems yields a Lorentzian line shape
and transitions between the levels occur by
coherent Rabi oscillations. The FWHM of the
Lorentzian resonance line is two times the
Rabi frequency and is proportional to the
amplitude of the monochromatic perturbation
(14). The linear dependence of the FWHM
on microwave amplitude in Fig. 4C suggests
that the line width for ¥, > 2 a.u. is dom-
inated by the frequency of microwave-in-
duced Rabi transitions. Transitions occur
then by a few quantum coherent Rabi cycles.
Using the linear relation between AE and
®, ., for @ values away from 2®, the
observed FWHM in ®_ , units can be ex-
pressed in frequency units. This indicates a
Rabi frequency of, for example, 150 MHz at
V.c = 4 a.u. However, we do not consider
these results as proof for coherent quantum
dynamics because other scenarios with weak
decoherence give similar results (36).

Dephasing due to measuring SQUID.
The loss of dip amplitude and the apparent
saturation of the FWHM at low V,, . is caused
either by variations in the flux bias ®_,
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[corresponding to inhomogeneous broaden-
ing for the ensemble average (/5)] or by an
intrinsic dephasing mechanism. The effective
dephasing time 7, (15) can be deduced from
the FWHM at low V,.. The FWHM (ex-
pressed in energy units) of a resonance line

shape that is dominated by a finite dephasing

2h
time corresponds to T (15, 14). Using, once

more, the linear relation between A and D,
for ®_  values away from 2®  to express
the FWHM at V,, . = <2 a.u. in energy units,
gives T, ~ 15 ns. As discussed below, this
can be fully explained by variations in the
applied magnetic flux that originate from the
measuring DC-SQUID.

The DC-SQUID performs a weak mea-
surement on the loop. It has two macroscopic
phase degrees of freedom. One is associated
with the circulating current in the SQUID’s
loop (internal degree of freedom), the other is
associated with the bias current through the
SQUID (external degree of freedom). As the
bias current is ramped up, the coupling be-
tween these two degrees of freedom increases
strongly due to the nonlinearity of the
SQUID’s current-phase relations (/). The ex-
ternal variable is coupled to a dissipative
environment, and the associated effective
mass (i.e., the capacitance across the SQUID)
is very large. The internal degree of freedom

Fig. 2. (A) Current-voltage characteris-  p
tic (inset) and switching-current histo-
gram of the underdamped DC-SQUID.
The plot with bias current /,, versus
voltage Vis strongly hysteretic. The /.
level where the SQUID switches from
the supercurrent branch to a finite volt-
age state—the switching current /,,—
is a measure for the flux in the loop of
the DC-SQUID. Switching to the volt-
age state is a stochastic process. The
histogram in the main plot shows that
the variance in /,, is much larger than
the flux signal of the inner loop’s per-
sistent current, which gives a shift in
the averaged /,, of about 1 nA (see Fig.
2B). (B) Switching-current levels of the
DC-SQUID versus applied flux. The inset
shows the modulation of /,,, versus the
flux ®¢, 5 applied to the DC-SQUID
loop (data not averaged, one point per
switching event). The main figure shows
the averaged level of I, (solid line)
near &, = 0.76 O, At this point,
the flux in the inner loop @, ~ /20,
The rounded step at ®_ , = /2 indi-
cates the change of sign in the persis-
tent current of the loop’s ground state.
Symmetrically around /2® the signal
shows a peak and a dip, which are only
observed with measurements in the
presence of continuous-wave micro-
waves (here 5.895 GHz). The peak and
dip are due to resonant transitions be-
tween the loop’s two quantum levels
(Fig. 3). The background signal of the

Counts

4000

has negligible intrinsic damping and the as-
sociated mass (i.e., the capacitance of the
junctions of the SQUID) is very small. Con-
sequently, this variable exhibits quantum be-
havior. The classical external degree of free-
dom of the SQUID performs a measurement
on the SQUID’s inner quantum variable,
which in turn is weakly coupled to our quan-
tum loop. We therefore expect that the SQUID
contributes dominantly to the loop’s dephasing
and damping with the present setup. The choice
for an underdamped DC-SQUID resulted in
very wide switching-current histograms. The
width of the histogram corresponds to a stan-
dard deviation in the flux readout of
111073 ®,. The uncertainty in flux readout is
much is larger than the flux signal from the
inner loop 2M I, ~ 3 - 107> ®,. Therefore, we
can only detect the loop’s signal by averaging
over many switching events (Fig. 2).

The loss of dip amplitude in Fig. 4 is
probably due to a small contribution to the
effective ®__, from the circulating current in
the DC-SQUID. The SQUID is operated at
0.76 @, in its loop, where its circulating
current depends on the bias current due to its
nonlinear behavior (7). This means that data
recorded by switching events on the low 7,
side of the FWHM of the Iy, histogram in
Fig. 2A differs in flux bias on the inner loop
from that of the high side by 20 - 107° &,
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DC-SQUID that results from flux directly applied to its loop (dashed line) is subtracted from the

data presented in Figs. 3A and 4A.
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Resonance lines at low V,. (ie., with a
FWHM < 20 - 10~° @) cannot be observed
as the peaks and dips smear out when aver-
aging over many switching events. The loss
of dip amplitude and the apparent saturation
of the FWHM at low V', is probably dom-
inated by this mechanism for inhomogeneous
line broadening.

The width of the rounded steps in the
measured flux in Fig. 3A is much broader
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than expected from quantum rounding on the
scale of the value of 7 that was found with
spectroscopy (see also Fig. 1C). We checked
the temperature dependence of the step
width, measured in the absence of micro-
waves. We found that at temperatures above
100 mK, the step width is in agreement with
the thermally averaged expectation value for

_ AE
the persistent current (7,,) = I, tank | 5. —

2k T
B 10 4 0 0.8 o
2
N
I
(&)
= 5 L
- 0
0 T T T
0 1 2 3
-3
A (107 @)

Fig. 3. (A) Switching-current levels T, of the
DC-SQUID as a function of ®_,, measured at
different microwave frequencies f [labels on the
right give f in GHz, [, is deduced from the raw
switching-current data /,, by averaging and sub-

tracting a background signal (32)]. Each trace clearly shows the rounded step at ®_, = /20,
where the persistent current of the loop’s ground state changes sign. In the presence of continuous-
wave microwaves a peak and a dip appear in the signal, symmetrically around /2®,. The positions
of the peak and dip depend on f. The peak and dip appear at values of ®_  where the level
separation between the lowest quantum states of the loop is resonant with the microwave
frequency, and the microwaves induce transitions to the state that has a persistent current of
opposite sign. (B) Half the distance in @, between the resonant peak and dip A®,_ at different
microwave frequencies f (f is plotted on the vertical axis for compatibility with Fig. 1C). Peak and
dip positions are determined from traces as in (A). At high frequencies, the Ad® __ values are
proportional to the microwave frequency. The gray line is a linear fit through the high-frequency
data points and zero. The slope is used to determine /, = 484 nA. At low microwave frequencies

the measured AD

res

values deviate significantly from this linear relation, demonstrating that the

loop’s lowest two energy levels repel each other near ®_ . = /2®,. The inset zooms in on the
low-frequency data points. The black line is a fit of Eq. 1 with only the tunnel coupling t as a fitting

parameter, yielding t/h = 0.33 = 0.03 GHz.

Fig. 4. (A) The influence of the micro-
wave amplitude on the shape of the
resonance dip in the scaled switching
current /,,, measured at 5.895 GHz
[the labels on the left give the ampli-
tude V,. in a.u.)]. (B) The dip amplitude
first increases with microwave ampli-
tude V,, but saturates at V,. > 2 a.u.
(C) The FWHM of the dips increases
with V,.. The linear fit through the
highest data points and zero (gray) is a
guide to the eye. The horizontal dashed
line indicates a flux value that corre-
sponds to the shift in effective flux bias
®_ . which is induced when the bias
current is ramped through the DC-
SQUID. This acts as a flux instability
with an amplitude of ~ 20 - 107° @,
Resonance lines with a FWHM below
this value cannot be observed. The loss
of dip amplitude in Fig. 4B when lower-
ing V,c < 2 au. sets in where the
FWHM =< 20 - 10°° @, The flux shift
from the SQUID is calculated using the /
is used) where the SQUID typically switches.
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interval (the FWHM of the switching-current histogram

(kg is Boltzmann’s constant), where we use
the level separation AE and /, found with
spectroscopy. However, at low temperatures
the observed step width saturates at an effec-
tive temperature of about 100 mK. We
checked that the effective temperature for the
SQUID’s switching events did not saturate at
the lowest temperatures. The high effective
temperature of the loop is a result of the loop
being in a nonequilibrium state. The popula-
tion of the excited state could be caused by
the measuring SQUID or other weakly cou-
pled external processes.

Concluding remarks and future pros-
pects. The data presented here provide clear
evidence that a small Josephson junction loop
can behave as a macroscopic quantum two-
level system. The application of an under-
damped DC-SQUID for measuring the loop’s
magnetization is a useful tool for future work
on quantum coherent experiments with Joseph-
son junction loops. The present results also
demonstrate the potential of three-junction per-
sistent-current loops for research on macro-
scopic quantum coherence and for use as qubits
in a quantum computer. This requires quantum-
state control with pulsed microwaves and de-
velopment of measurement schemes that are
less invasive. Circuits that contain multiple
qubits with controlled inductive coupling are
within reach using present-day technology.
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Triple Vortex Ring Structure in
Superfluid Helium Il

Demosthenes Kivotides, Carlo F. Barenghi,* David C. Samuels

Superfluids such as helium Il consist of two interpenetrating fluids: the normal
fluid and the superfluid. The helium Il vortex ring has generally been considered
merely as a superfluid object, neglecting any associated motion of the normal
fluid. We report a three-dimensional calculation of the coupled motion of the
normal-fluid and superfluid components, which shows that the helium Il vortex
ring consists of a superfluid vortex ring accompanied by two coaxial normal-
fluid vortex rings of opposite polarity. The three vortex rings form a coherent,

dissipative structure.

Vortex rings (/) have long been studied as
ideal examples of organized flow structures.
A large body of literature has been concerned
with vortex rings in a zero-viscosity (invis-
cid) fluid in which the vortex core thickness
is much smaller than the ring’s radius. This
mathematical idealization is realized in a
quantum fluid (2, 3), helium II, which is a
superposition of two fluid components: the
normal fluid (which is a fluid with nonzero
viscosity) and the superfluid (an inviscid flu-
id). The concept of the superfluid vortex ring
(4) or loop has contributed to many advances
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in superfluidity, ranging from vortex creation
(5, 6) to turbulence (7-10). An example of
this is the fundamental issue of quantum me-
chanical phase coherence and the onset of
dissipation. Ions injected into superfluid he-
lium IT move without friction, provided that
the speed does not exceed a critical value (/1)
above which superfluid vortex rings are cre-
ated (5). Vortex creation (/2, 13) and motion
(14, 15) have been studied theoretically using
various models and are also being investigat-
ed by atomic physicists in the context of
Bose-Einstein condensation in clouds of al-
kaline atoms (15, 16). The concept of the
vortex ring has been applied to interpretations
of the nature of the roton (/7-79) and the
superfluid transition itself (20). Finally, vor-
tex rings are important in the study of super-
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fluid turbulence, which manifests itself as a
disordered tangle of superfluid vortex loops
(distorted vortex rings). Superfluid vortex
lines may also end at walls, or at free surfac-
es, without forming closed loops. For sim-
plicity, we will consider here a circular su-
perfluid vortex ring, but our results should
also apply to all superfluid vortex lines.

Recent experiments, such as the observation
of decay rates of superfluid vorticity (21, 22)
consistent with the decay rates of Navier-Stokes
turbulence, motivate our study of the dynamical
coupling between the superfluid vorticity and
the normal-fluid component. Superfluid vortic-
ity scatters (23) the thermal excitations that
make up the normal fluid, producing a mutual
friction acting on the velocity fields V, and V,
of the two fluid components of helium II. Al-
though the superfluid vorticity can be detected
directly by the second sound technique (21),
very little is actually known about the normal-
fluid flow because we have no practical flow
visualization techniques near absolute zero. We
present results of a three-dimensional calcula-
tion in which V_ and V, are determined self-
consistently. The calculation reveals the sur-
prising triple structure of the helium II vortex
ring. We also discuss the implications of this
finding for the interpretation of current turbu-
lence experiments.

Our method is based on an improvement
over the vortex dynamics approach of
Schwarz (24, 25), who modeled a superfluid
vortex line as a curve S(&,7) that obeys the
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6. Quantum computing

Macroscopic quantum superposition of
current states in a Josephson-junction loop

F K Wilhelm, C H van der Wal, A C J ter Haar,
R N Schouten, C J P M Harmans, J E Mooij,
T P Orlando, S Lloyd

Abstract. Superconducting circuits with Josephson tunnel
junctions are interesting systems for research on quantum-
mechanical behavior of macroscopic degrees of freedom.
A particular realization is a small superconducting loop
containing three Josephson junctions. Close to magnetic
frustration 1/2, the physics of this system corresponds to a
double well, whose minima correspond to persistent currents of
opposite sign. We present DC measurements of the flux
indicating a smooth transition close to the degeneracy point
even at very low temperatures. Furthermore, microwave-
spectroscopy experiments allow for the excitation to the next
excited state. The dependence of the energy of the resonance on
the applied flux clearly indicates the nature of these states as
tunneling-splitted superpositions of flux states. We theoreti-
cally analyze the system using a generalized master-equation
formulation of the spin-boson model. We address the nature of
the measuring process by a switching DC SQUID and the
possible interpretation of the spectroscopy data in terms of
quantum coherence. We discuss these aspects in the context of
further applications as a quantum bit.

1. Introduction: qubits and MQC

Since the formulation of quantum mechanics, its concepts
have been heavily disputed. They can now be directly
verified in the microscopic world of systems with very few
degrees of freedom such as NMR, ion traps, or cavity QED.
With present-day technology, such microscopic systems can
be controlled externally. This has lead to the proposal of a
quantum computer, which makes explicit use of the
possibility to create superpositions and allows to solve
certain computational problems with a qualitatively
reduced number of steps (see [1] for a recent review). The

F K Wilhelm, C H van der Wal, A C J ter Haar, R N Schouten,
C J P M Harmans, J E Mooij Department of Applied Physics and
DIMES, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft,
The Netherlands
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of Technology, Cambridge MA, USA

aforementioned quantum systems have been used to demon-
strate few-bit quantum computation, however, it appears to
be very difficult if at all possible to integrate them into larger
circuits.

Solid state electronics, on the other hand, can be very
easily integrated. Moreover, in the field of mesoscopic
physics, and in particular in mesoscopic superconductivity,
genuine quantum-mechanical phenomena have already been
demonstrated. This makes mesoscopic superconductors a
candidate for the realization of quantum computation [2—
5]. More specifically, we propose to utilize persistent-current
states of small superconducting loops containing at least three
Josephson junctions [4]. These states correspond to the
collective motion of all superconducting electrons in the
loop, hence they are macroscopic [6].

In this contribution, we are going to briefly outline the
idea of our device [4] and present experimental results tracing
the ground state as well as results of microwave spectrosco-
py [7]. The data show clear evidence of anti-crossing of energy
levels, hence proving that around degeneracy, the system’s
eigenstates are superpositions of the two basis current states.
The results will be further discussed in terms of macroscopic
quantum superpositions and coherence. By creating a super-
position of these states, which is necessary for quantum
computation, we also address a fundamental issue in
quantum mechanics: a Schrodinger’s cat state. We acknowl-
edge that the mere superposition does not exclude alternative
theories for quantum mechanics (e.g. macrorealistic theories
[8]). This would require a type of experiment as proposed by
Leggett et al. [9].

2. The device

A single small Josephson tunnel junction with a capacitance
C and a coupling energy Ej can be represented as a particle
of mass C in a periodic potential, where the phase ¢
represents the coordinate, and the number of Cooper pairs
is the conjugate momentum. Our system (Fig. 1a), consists
of a micrometer-sized loop of negligible geometric induc-
tance penetrated by a magnetic flux @ close to half a
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Figure 1. Schematic drawing of the qubit (a) and the measuring circuit (b).
Crosses indicate Josephson junctions.
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superconducting flux quantum @,. The loop contains three
such junctions, whose phases are locked together by the
applied flux due to the phase quantization condition, hence
leading to a two-dimensional coordinate space. It has been
demonstrated [4, 5], that by proper choice of the junction
parameters, this effective potential is a periodic pattern of
local double wells, whose minimums correspond to clock- and
counter-clockwise supercurrent, respectively. The double
wells are separated by strong potential barriers such that
they are mutually very well uncoupled, whereas the barrier
within a double well is sufficiently weak such that it can be
overcome by quantum tunneling. The energy of the two
minima can be controlled by tuning the applied external flux
away from @(/2. The system parameters can be chosen such
that there is only one bound state in each well. This renders
the low-temperature (less than 100 mK) physics of the system
equivalent to a two-level system. It has been predicted [10],
that the intrinsic sources of noise and decoherence (quasi-
particles, nuclear spins ...) allow for quantum-coherent
behavior up to a decoherence time of 74 = 1 ms.

This setup invokes some key ideas of the ‘conventional’
MQC-proposal using an RF-SQUID [9, 11], with the key
difference that no self-inductance is needed in order to form
the double-well potential. This allows for much smaller loop
sizes and hence facilitates the decoupling from environmental
noise. Nevertheless, results similar to ours have recently been
obtained in an RF-SQUID [12]. Other observations that have
been related to macroscopic superposition states are tunnel
splittings observed with magnetic molecular clusters [13] and
quantum interference of Cgo molecules [14]. In quantum dots
[15] and superconducting circuits where charge effects
dominate over the Josephson effect [16, 17] superpositions
of charge states as well as quantum-coherent charge oscilla-
tions [18] have been observed.

The state of the qubit can be read out by a DC-SQUID
magnetometer which detects the flux produced by the
circulating current. Due to the small inductance of the
system, this signal is only a small fraction of ®,. Moreover,
according to first principles of quantum mechanics, any
measuring device (or ‘meter’) tends to decohere the quantum
state. As we expect the quantum coherence to be very fragile,
this property deserves special attention. In order to ensure
sufficient coherence we have to guarantee that (i) the meter
does not decohere the system while not measuring and (ii) the
meter registers the result before the relaxation time, i.e. after
the macroscopic environment constituted by the meter has
put the qubit into a thermal mixture of states, wiping out the
signatures of the initial state.

This decoherence is realized through the coupling to the
external impedance. The measuring SQUID has two macro-
scopic phase degrees of freedom, which we choose as follows:
one is associated with the circulating current in the SQUID’s
loop (internal degree of freedom), the other is associated with
the bias current through the SQUID (external degree of
freedom). As the bias current is ramped up, the coupling
between these two degrees of freedom increases strongly, due
to the nonlinearity of the SQUID’s current-phase relations
[19]. The external variable is coupled to a dissipative
environment. The internal degree of freedom has negligible
intrinsic damping and the associated mass (i.e. the capaci-
tance of the junctions of the SQUID) is very small. This
means that the circulating current is non-dissipative and does
not disturb the system, i.e. there is little dephasing as long as
we do not apply a measuring current.

In order to further minimize the unwanted decoherence in
our device, we use a setup which uses only very few dissipative
elements: an undamped SQUID with unshunted junctions
with low critical current and no extra resistors. In order to still
reduce fluctuations of the SQUID, it was made ‘heavy’ by
shunting with a large superconducting capacitor.

This SQUID has a highly hysteretic /— V" characteristic
[19]. The flux is determined through the switching current
which provides a measure for the effective Josephson
coupling across the SQUID. The escape to a voltage state is
a stochastic process, which leads to a wide spread of those
switching currents (see, e.g. [20] for an overview). The width
of the switching current histogram in our experiments
corresponds to a standard deviation in the flux readout of
11 x 1073d,, so the uncertainty in flux readout is much is
larger than the flux signal from the qubit 2M 1, ~ 3 x 1073,
This width is much bigger than expected from simple
theoretical models [20]. This may be due to quantum
fluctuations of the circulating current (and consequently the
total flux through the SQUID) and is subject of enduring
investigation. In order to obtain the results presented in this
paper, substantial statistical averaging over repeated mea-
surements was necessary in order to get sufficient resolution.
Consequently only ensemble-averaged quantities can be
measured.

3. Experiments

The system was realized by microfabricating a micrometer-
sized aluminum loop with unshunted Josephson junctions,
using the technology described in Ref. [21]. Around the loop
we fabricated the DC-SQUID magnetometer (Fig. 1b), with
smaller Josephson junctions that were as underdamped as the
junctions of the inner loop. Loop parameters estimated from
test junctions fabricated on the same chip and electron-
microscope inspection of the measured device give a critical
current amplitude Ico = 570 60 nA and C =2.6 + 0.4 fF
for the largest junctions in the loop. The size of the small
junction is reduced by a factor f=0.824+0.1, giving
E;/Ecyp =38 £ 8 and a circulating current in one of the
potential minima of I, =450+ 50 nA. These parameters
allow for a tunnel matrix element 7/4 between 0.2 and
5 GHz. The parameters of the DC-SQUID junctions were
Ico =109 & 5nA and Cs = 0.6 = 0.1 fF. The self-inductance
of the inner loop and the DC-SQUID loop were estimated to
be 11 =1 pH and 16 &1 pH respectively, and the mutual
inductance M between the loop and the SQUID was
7+ 1 pH.

4. Ground state measurements

In a first series of experiments, we have detected the flux
produced by the qubit as a function of the static bias flux. We
compare it to the expectation value for a quantum-mechan-
ical two-level system coupled to a bath at temperature 7,

€ AE
q)aﬁtanh<2kBT> s (1)

where @, is the flux produced when the system is purely in one
of the classical states, AE = (¢? +413,)"/? is the energy
splitting of the quantum-mechanical levels and € = ¢(@Pey)
® — @y/2 is the energy difference of the classical states. In
general, this function shows a step around ¢ = 0, which is

<¢q> =
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Figure 2. Switching-current levels of the DC-SQUID versus applied flux. (a) The main figure shows the averaged level of Isw (solid line) near @ey ~ P /2
which happens to be ®squip = 0.76 P and the rounded step at @y = Po/2 indicates the change of sign in the persistent current. The spikes are due to
additionally applied microwaves. The inset shows the modulation of Jsw versus the flux ®squip applied to the DC-SQUID loop (data not averaged, one
point per switching event). (b) Measured qubit flux from the qubit for different temperatures. The background signal resulting from flux directly applied
to the SQUID-loop is subtracted. (c) Analysis of the step width (half-width at half-step, HWHS). The solid line corresponds to the extrapolation of

equation (1), assuming the spectroscopically measured Ze.

rounded due to thermal and quantum fluctuations. As 7 — 0,
the system is in its ground state and quantum fluctuations
dominate. Any residual rounding is controlled by a finite
tunneling matrix element z and indicates that the ground
state close to the degeneracy point is a superposition.

Experimentally, the step occurs on top of the bias flux
through the SQUID (see Fig. 2a). The step width decreases
with temperature (see Fig. 2b) but stays finite. The observed
step width is even much broader than expected from quantum
rounding on the scale of the value of 7 that was found with
spectroscopy (see Fig. 2¢). The width saturates at an effective
temperature of about 100 mK. The high effective temperature
of the loop can be the result of heating induced by the DC-
SQUID after the switching. As the qubit is well isolated from
the environment, this heat only relaxes very slowly.

5. Spectroscopy

On top of the DC-flux, which fixes the energy bias ¢ of our
two-level system, we periodically modulate ¢ using contin-
uous microwaves. Figure 3a shows the flux signal of the inner
loop. On top of the step described in the previous section,
each trace shows a peak and a dip symmetrically around
Doyt = Po/2 , which were absent when no microwaves were
applied. The positions of the peaks and dips in @y depend on
microwave frequency f but not on amplitude. They reflect
microwave-induced transitions to the state with a persistent
current of opposite sign, they occur when the microwave
frequency is resonant with the energy splitting AE = Af. As
the frequency is lowered, the resonances are moving towards
the center, Fig. 3a.

In Figure 3b half the distance in @,y between the resonant
peak and dip is plotted for all frequencies f, which represents
AE(€). The relation between AE and ®ey is linear at high
frequencies. The slope of this part translates into
I, =484+ 2 nA, in good agreement with the predicted
value. At lower frequencies the energy splitting levels off,
hence indicating a finite tunnel splitting of fer/h =
0.33 £0.03 GHz. The level separation very close to @,/2
could not be measured directly since at this point the
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Figure 3. Results of cw-microwave spectroscopy. (a) Traces at fixed
frequency showing resonances corresponding to pumping to the respec-
tive excited state. Symmetrically around @, /2 the signal shows a peak and
a dip, which are only observed with measurements in the presence of the
microwaves. They are due to resonant transitions between the loop’s two
quantum levels (see Fig. 2). Different curves represent different values of
Dy, measured at different microwave frequencies f (labels on the right).
(b) Resonance positions are a clear indication of an anti-crossing. Half the
distance in @¢ between the resonant peak and dip A®. at different
microwave frequencies / (f is plotted on the vertical axis). Peak and dip
positions are determined from traces as in Fig. 2a. At high frequencies the
A, values are proportional to the microwave frequency. The inset: the
thin line is a linear fit through the high frequency data points and zero. The
thick line is a fit of the energy eigenvalues with only the tunnel coupling 7 as
a fitting parameter, yielding zor/h = 0.33 + 0.03 GHz.

expectation value for the persistent current is zero for both
the ground state and the excited state. The measured value of ¢
is compatible with the predicted value of 7. As the predicted
value depends exponentially on sample parameters and hence
has a substantial uncertainty, a quantitative analysis of a
possible suppression of z. due to a bosonic [22] or spin-bath
[23] environment is not possible. The fact that we see a finite
tunnel splitting indicates that the damping of our quantum
system by environmental degrees of freedom is weak. The
dimensionless dissipation parameter o [22] must be o < 1.
This level repulsion close to the degeneracy point clearly
indicates that the eigenstates, between which the transitions
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occur, are superpositions of the localized basis states. At
Doy = @y /2, these are symmetric and antisymmetric super-
positions of the two classical persistent-current states which
have respectively lower and higher energies than the localized
classical states.

6. Nonlinear regime

In Figure 4a we show the dip at a fixed frequency of
5.895 GHz for different microwave amplitudes. The dip
amplitude and the full width at half the maximum amplitude
(FWHM) were extracted by fitting a Lorentzian peak shape
to the data. Figure 4b shows that the dip amplitude increases
rapidly for microwave amplitudes up to Vac =2 a. u.,
followed by a saturation for larger microwave amplitudes.
The saturated dip amplitude is ~ 0.25 nA, which is close to
half the full step height of the rounded step at @ /2 (=~ 0.4 nA)
in Fig. 2b. This indicates that on resonance the energy levels
are close to being equally populated, as expected for
continuous pumping.
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Figure 4. Results of cw-microwave spectroscopy at fixed frequency but
different power. (a) The influence of the microwave amplitude on the
shape of the resonance dip in the scaled switching current Isw, measured at
5.895 GHz (the labels on the left give the amplitude Vac in a.u.).
(b) Resonance amplitude first increases with microwave amplitude Vac,
but saturates at ¥ac > 2 a.u. (c) Resonance width as a function of the
microwave power. The full-width-half-maximum (FWHM) of the dips
increases with V5c. The linear fit through the highest data points and zero
is a guide to the eye. The horizontal dashed line is at a flux value that
corresponds to the shift in effective flux bias @y, that is induced when the
bias current is ramped through the DC-SQUID. This acts as a flux
instability with an amplitude of ~ 20 x 10~°@,. Resonance lines with a
FWHM below this value cannot be observed.

Figure 4c shows a linear dependence between the FWHM
and the microwave amplitude, as we would expect it for the
Rabi resonance of a strongly and coherently driven two-level
system [24]: the linear dependence of the FWHM on
microwave amplitude in Fig. 4c suggests that the linewidth
is indeed dominated by the frequency of microwave-induced
Rabi transitions. In the presence of weak decoherence, the

Rabi oscillations decay over a time 7, into a stationary
mixture of ‘eigenstates’ of the driven system known as
Floquet states. After 75, transitions between those states
only occur due to incoherent processes. Even in this case,
the peaks remain narrow Lorentzians [25, 26] which depend
on the external parameters analogously to Rabi peaks: the
FWHM of the Lorentzian resonance line is proportional to
the amplitude of the monochromatic driving [24]. This allows
to observe narrow resonances even after 7,. Using the linear
relation between AE and ®ey for @gyq values away from @ /2,
the observed FWHM in & units can be expressed in
frequency units. This indicates a Rabi frequency of, for
example, 150 MHz at Vac =4 a.u.

The loss of dip amplitude and the apparent saturation of
the FWHM at low Vac is either caused by variations in the
flux bias @¢y (corresponding to inhomogeneous broadening
for the ensemble average [27]) or by an intrinsic dephasing
mechanism. The effective dephasing time 75 [27] can be
deduced from the FWHM at low Vac. The FWHM
(expressed in energy units) of a resonance-line shape that is
dominated by a finite dephasing time corresponds to 2//T;
[24,27]. From our data, we find T ~ 5 ns, which allows for a
few Rabi cycles. This is another hint on the presence of
coherent Rabi dynamics, however, only time-resolved mea-
surements would be fully conclusive. Possible sources for the
relatively short value of 775 will be discussed in the following
Section.

7. Discussion

The DC-SQUID performs a measurement on a single
quantum system. As described above, our setup in principle
still allows for reasonable dephasing and mixing times. The
external electronics limits the ramping speed, so the SQUID is
coupled to the qubit longer than theoretically required and is
consequently strongly dephasing the qubit prior to the actual
measurement. This can be avoided in future experiments by
the use of more efficient measuring schemes.

The loss of dip amplitude in Fig. 4 is probably not due to
the noise, but due to a small deterministic contribution to the
effective @¢y from the circulating current in the DC-SQUID.
The SQUID is operated at 0.76@, in its loop, where its
circulating current depends on the bias current due to its
nonlinear behavior [19], so the readout happens at a bias flux
slightly altered due the SQUID. This bias flux depends on the
switching current level, which in turn has a broad spread due
to the large histograms described in the beginning of this
paper. This means that data recorded by switching events for
low bias side of I, differ in flux bias on the inner loop from
that of the high current levels by 20 x 10~°®,. Resonance
lines at low Ve (i. e. with a FWHM < 20 x 10~%®;) cannot
be observed as the peaks and dips smear out when averaging
over many switching events. The loss of dip amplitude and the
apparent saturation of the FWHM at low Vac is probably
dominated by this mechanism for inhomogeneous line broad-
ening and not by dephasing.

8. Concluding remarks and future prospects

We show clear experimental evidence of level repulsion in a
small superconducting loop containing three Josephson junc-
tions, which can behave as a macroscopic quantum two-level
system. We demonstrate a useful readout for the magnetiza-
tion of the loop scheme by an underdamped DC-SQUID.
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This demonstrates the potential of these loops for further
work on macroscopic quantum coherence and solid-state
quantum computing. This requires quantum state control
with pulsed microwaves and development of measurement
schemes that are less invasive. Multiple qubit circuits with
controlled coupling are within reach using present-day tech-
nology.

We thank J BMajer, A C Wallast, L Tian, D S Crankshaw,
J Schmidt, A Wallraff, L S Levitov, M Grifoni, and D Esteve
for help and stimulating discussions. This work was finan-
cially supported by the Dutch Foundation for Fundamental
Research on Matter (FOM), the European TMR Research
Network on Superconducting Nanocircuits (SUPNAN), the
USA Army Research Office (Grant DAAG55-98-1-0369) and
the NEDO Joint Research Program (NTDP-98).

References

1. Bennet C H, DiVincenzo D Nature 404 247 (2000)

2. Makhlin Yu, Schén G, Shnirman A Nature 398 305 (1999)

3. Toffe L B et al. Nature 398 679 (1999)

4. Mooij J E et al. Science 285 1036 (1999)

5. Orlando T P et al. Phys. Rev. B 60 15398 (1999)

6. Anderson P W, in Lectures on the Many-Body Problem Vol. 2 (Ed.

E R Caianiello) (New York: Academic Press, 1964) p. 113; Leggett
AJ Prog. Theor. Phys. Suppl. 69 80 (1980); Likharev K K Usp. Fiz.
Nauk 139 169 (1983) [Sov. Phys. Usp. 26 87 (1983)]

7. Van der Wal C H et al. Science 290 773 (2000)

8. For an in-depth discussion on macrorealism see the essays of
Leggett A J, Shimony A, in Quantum Measurement: Beyond
Paradox (Eds R A Healey, G Hellman) (Minneapolis: Univ.
Minnesota Press, 1998) p. 1

9. Leggett A J, Garg A Phys. Rev. Lett. 54 857 (1985)

10. Tian L et al., in Quantum Mesoscopic Phenomena and Mesoscopic
Devices in Microelectronics (Dordrecht: Kluwer, 2000) p. 429

11.  Leggett A J J. Supercond. 12 683 (1999)

12.  Friedman J R et al. Nature 406 43 (2000)

13.  Wernsdorfer W, Sessoli R Science 284 133 (1999)

14.  Arndt M et al. Nature 401 680 (1999)

15.  Oosterkamp T H et al. Nature 395 873 (1998)

16. Nakamura Y, Chen C D, TsaiJ S Phys. Rev. Lett. 79 2328 (1997)

17.  Bouchiat V et al. Phys. Scripta T'76 165 (1998)

18. Nakamura Y, Pashkin Yu A, Tsai J S Nature 398 786 (1999)

19. Tinkham M Introduction to Superconductivity (New York:
McGraw-Hill, 1996)

20. Martinis J M, Devoret M H, Clarke J Phys. Rev. B 354682 (1987)

21.  Vander Wal C H, Mooij J E J. Supercond. 12 807 (1999)

22.  Leggett A Jetal. Rev. Mod. Phys.59 1 (1987)

23.  Prokof’ev N, Stamp P Rep. Prog. Phys. 63 669 (2000); cond-mat/
0001080

24. Cohen-Tannoudji C, Diu B, Laloé F Quantum Mechanics Vol. 1
(New York: Wiley, 1977) p. 443

25.  Wilhelm F K, Grifoni M (in preparation)

26. Grifoni M, Hanggi P Phys. Rep. 304 229 (1998)

27.  Abragam A Principles of Nuclear Magnetism (Oxford: Oxford Univ.
Press, 1961) p. 39

Quantum Andreev interferometer
in an environment

Y M Gal'perin, L Y Gorelik, N I Lundin,
V S Shumeiko, R I Shekhter, M Jonson

Abstract. The influence of a noisy environment on coherent
transport in Andreev states through a point contact between two
superconductors is considered. The amount of dephasing is
estimated for a microwave-activated quantum interferometer.
Possibilities of experimentally investigating the coupling
between a superconducting quantum point contact and its
electromagnetic environment are discussed.

1. Introduction

The assumption of coherent transport in Andreev states in a
superconducting quantum point contact (SQPC) is widely
used in theoretical work, see, e.g., the items of Ref. [1].
However, in realistic systems, interactions with a dynamical
environment will always introduce some amount of dephas-
ing, see the items of Ref. [2] for a review.

The so-called microwave-activated quantum interferom-
eter (MAQI) [3] is a device proposed as a tool to study the
dynamics of Andreev levels (ALs), present in a superconduct-
ing point contact. It is based on a short, single-mode, weakly
biased SQPC which is subject to microwave irradiation.
Confined to the contact area there are current-carrying
Andreev states. The corresponding energy levels — Andreev
levels — are found in pairs within the superconductor energy
gap 4, one below and one above the Fermi level. If an SQPC is
short (L < &, where L is the length of the junction while & is
the superconductor coherence length), there is only one pair
of Andreev levels and their positions depend on the order
parameter phase difference, ¢, across the contact as

E: = +E(¢) = 4 1—Dsin2(§). (1)

The two states carry current in opposite directions and in
equilibrium at low temperature only the lower state is
populated. The applied bias, V, through the Josephson
relation ¢ = 2eV/h, forces the Andreev levels to move
adiabatically within the energy gap with a period of
T, = hn/eV, see Fig. 1.

The microwave field induces Landau— Zener (LZ) transi-
tions between the Andreev levels (indicated by wavy lines in
Fig. 1). If the upper level is populated after the second
transition, a delocalized quasi-particle excitation will be
created when this Andreev level merges with the continuum.
The result will be a dc contribution to the current. Further,
this current exhibits an interference pattern since there are
two paths with different phase gains available to the upper
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Abstract  We present microwave-spectroscopy experiments on two quantum levels
of a superconducting loop with three Josephson junctions. The level
separation between the ground state and first excited state shows an
anti-crossing where two classical persistent-current states with oppo-
site polarity are degenerate. This is evidence for symmetric and anti-
symmetric quantum superpositions of two macroscopic states; the clas-
sical states have persistent currents of 0.5 uA and correspond to the
center-of-mass motion of millions of Cooper pairs. A study of the ther-
mal occupancies of the two quantum levels shows that the loop is at low
temperatures in a non-equilibrium state.

1. INTRODUCTION

A Josephson supercurrent is a macroscopic degree of freedom in the
sense that it corresponds to the center-of-mass motion of a condensate
with a very large number of Cooper pairs [1]. Even though the Joseph-
son effect itself (with classical current and voltage variables) is often
called a macroscopic quantum phenomena, Anderson [1], Leggett [2]
and Likharev [3] discussed that a quantum superposition of Josephson
currents would be a "true" [3] manifestation of quantum mechanics at a
macroscopic scale. A simple system in which such a superposition can
be studied is a superconducting loop containing one or more Josephson
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tunnel junctions, where an external magnetic field is used to induce a
persistent current in the loop. When the enclosed magnetic flux is close
to half a superconducting flux quantum ®q, the loop may have multi-
ple stable persistent-current states. The weak coupling of the Joseph-
son junctions then allows for transitions between the states. At very
low temperatures, the persistent-current states are very well decoupled
from environmental degrees of freedom; excitations of individual charge
carriers around the center of mass of the Cooper-pair condensate are
prohibited by the superconducting gap. As a result, the transitions be-
tween the states can be a quantum coherent process, and superpositions
of the macroscopic persistent-current states should be possible (loss of
quantum coherence results from coupling to an environment with many
degrees of freedom [4]). Josephson junction loops therefore rank among
the best systems for experimental tests of the validity of quantum me-
chanics for systems containing a macroscopic number of particles [2, 5].
The potential for quantum coherent dynamics has stimulated research
aimed at applying Josephson junction loops as basic building blocks for
quantum computation (qubits) [6, 7, 8, 9].

We report in this chapter on microwave-spectroscopy experiments
that demonstrate quantum superpositions of two macroscopic persistent-
current states in a small loop with three Josephson junctions (Fig. 1,
this is the qubit system discussed in [8, 9]). At an applied magnetic
flux of %@0 this system behaves as a particle in a double-well potential,
where the classical states in each well correspond to persistent currents
of opposite sign (Fig. 1c). The two classical states are coupled via quan-
tum tunneling through the barrier between the wells, and the loop is a
macroscopic quantum two-level system. The energy levels vary with the
applied flux as shown. While classically the levels should cross at %@0,
quantum tunneling leads to an avoided crossing with symmetric and
anti-symmetric superpositions of the two macroscopic persistent-current
states. An inductively coupled DC-SQUID magnetometer was used to
measure the flux generated by the loop’s persistent current, while at
the same time low-amplitude microwaves were applied to induce transi-
tions between the levels (Fig. 2). We observed narrow resonance lines at
magnetic field values where the level separation AFE was resonant with
the microwave frequency. The level separation shows the expected anti-
crossing at %@0 (Fig. 3), which is interpreted as evidence for macroscopic
superposition states [10, 11]. A study of the thermal broadening of the
transition between the two states at %@0 shows that the loop is at low
temperatures in a non-equilibrium state (Fig. 4).

Note that we have a scheme in which the meter (the DC-SQUID)
is performing a measurement on a single quantum system. We should
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Figure 1 SEM-image (a) and schematic (b) of the small superconducting loop with
three Josephson junctions (denoted by the crosses). The loop is inductively coupled
to an underdamped DC-SQUID which is positioned around the loop. (c) Energy
levels and persistent currents of the loop as a function of applied flux ®ext. The
insets of the top plot show the double-well potential that is formed by the loop’s
total Josephson energy, plotted for a ®eyi-value below $®@¢ (left), at $®o (middle),
and above %cl)o (right). The horizontal axis for these potentials is a Josephson phase
coordinate. The loop’s two classical persistent-current states are degenerate at ®exy =
2 ®¢ (dashed lines). The quantum levels (solid lines) show level repulsion at this point,
and are separated in energy by AFE. The bottom plot shows the quantum mechanical
expectation value (Iq) = —OFE;/O0®Pcxt of the persistent current in the loop, for the
ground state (black) and the excited state (grey), plotted in units of I,.

therefore expect that the measuring process is limiting the coherence of
our system. While the system is pumped by the microwaves, the SQUID
is actively measuring the flux produced by the persistent currents of the
two states. Detecting the quantum levels of the loop is still possible
since the meter is only weakly coupled to the loop. The flux signal
needs to be built up by averaging over many repeated measurements on
the same system, such that effectively an ensemble average is determined
(time-ensemble). We measure the level separation, i. e. energy, rather
than flux, since we perform spectroscopy; we observe a shift in averaged
flux when the microwaves are resonant with the level separation. In our
experiment we also chose to work with an extremely underdamped DC-
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SQUID with unshunted junctions to minimize damping of the quantum
system via the inductive coupling to the SQUID.

A recent paper by Friedman et al. [12] reports on similar results ob-
tained from spectroscopy on excited states in a loop with a single junc-
tion (RF-SQUID). Previous experiments on RF-SQUIDs have demon-
strated resonant tunneling between discrete quantum states in two wells
[13, 14] and microwave-induced transitions between the wells [15]. Other
observations that have been related to macroscopic superposition states
are tunnel splittings observed with magnetic molecular clusters [16] and
quantum interference of Cgp molecules [17]. In quantum dots [18] and
superconducting circuits where charge effects dominate over the Joseph-
son effect [19, 20, 21] superpositions of charge states have been observed,
as well as quantum coherent charge oscillations [22].

A quantum description of our system was reported in Refs. [8, 9].
It is a low-inductance loop intersected by three extremely underdamped
Josephson junctions (Fig. 1), which are characterized by their Josephson
coupling Ej and charging energy Ec = e%/2C. Here C is the junction
capacitance and e the electron charge. The critical current of a junction
is Igp = Q—TL@EJ, where h = % is Planck’s reduced constant. One of the
junctions in the loop has Fj and C smaller by a factor # ~ 0.8. At
an applied flux @yt close to %@0 the total Josephson energy forms a
double well potential. The classical states at the bottom of each well
have persistent currents of opposite sign, with a magnitude I, very close
to Ico of the weakest junction, and with energies £ = £I,(Pext — %@0)
(dashed lines in Fig. 1c). We assume here ®qy to be the total flux in the
loop (the small self-generated flux due to the persistent currents leads
to a constant lowering of the energies, but the crossing remains at %@0).
The system can be pictured as a particle with a mass proportional to
C' in the Josephson potential; the electrostatic energy is the particle’s
kinetic energy. The charging effects are conjugate to the Josephson
effect. For low-capacitance junctions (small mass) quantum tunneling
of the particle through the barrier gives a tunnel coupling ¢ between
the persistent-current states. In the presence of quantum tunneling and
for Ej/Ec-values between 10 and 100, the system should have two low-
energy quantum levels Ey and F4, which can be described using a simple

2
quantum two-level picture [8, 9], Eo(1y) = —(+) \/t2 + (Ip(éext - %@@) .
The loop’s level separation AE = E1 — Ej is then

AE = \/(Qt)2 + (2]1)(%(t - %@@)2. (1.1)
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Figure 2 (a) Current-voltage characteristic (inset) and switching-current histogram
of the underdamped DC-SQUID. The Iy;as-level where the SQUID switches from the
supercurrent branch to a finite voltage state —the switching current Isw— is a measure
for the flux in the loop of the DC-SQUID. The histogram in the main plot shows that
the variance in Isw is much larger than the flux signal of the inner loop’s persistent
current, which gives a shift in Isw of about 1 nA. (b) The inset shows the modulation
of Isw versus the flux ®squip applied to the DC-SQUID loop (data not averaged, one
point per switching event). The main figure shows the averaged level of Isw (solid
line) near ®gquip = 0.76 @o. At this point the flux in the inner loop Pext = %@g.
The rounded step at Pext = %@o indicates the change of sign in the persistent current
of the loop’s ground state. In the presence of continuous-wave microwaves (here
5.895 GHz) a peak and a dip appear in the signal, symmetrically around %tl)o. The
background signal of the DC-SQUID that results from flux directly applied to its loop
(dashed line) is subtracted from the data presented in Figs. 3a and 4a.

2. EXPERIMENTAL REALIZATION

The system was realized by microfabricating an aluminum micrometer-
sized loop with unshunted Josephson junctions (Fig. 1la). The sample
consisted of a 5 x 5 pm? aluminum loop with aluminum-oxide tun-
nel junctions, microfabricated with e-beam lithography and shadow-
evaporation techniques on a SiOg substrate. The electrodes of the loop
were 450 nm wide and 80 nm thick. The DC-SQUID magnetometer was
fabricated in the same layer around the inner loop, with a 7 x 7 um? loop
and smaller Josephson junctions that were as underdamped as the junc-
tions of the inner loop. The DC-SQUID had an on-chip superconducting
shunt capacitance of 2 pF and superconducting leads in four-point con-
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figuration. The sample was mounted in a dilution refrigerator, inside
a microwave-tight copper measurement box, magnetically shielded by
two mu-metal and one superconducting shield. All spectroscopy mea-
surements were taken with the temperature stabilized at 30 £ 0.05 mK.
Microwaves were applied to the sample by a coaxial line, which was
shorted at the end by a small loop of 5 mm diameter. This loop was
positioned parallel to the sample plane at about 1 mm distance. Switch-
ing currents were measured with dedicated electronics, with repetition
rates up to 9 kHz and bias currents ramped at typically 1 @A /ms (fur-
ther details of the fabrication and experimental techniques can be found
in Ref. [23]). Loop parameters estimated from test junctions fabricated
on the same chip and electron-microscope inspection of the measured
device give I, = 450 £50 nA, 8 = 0.82+ 0.1, C = 2.6 £0.4 {F for
the largest junctions in the loop, giving Ej/Ec = 38 £8. Due to the
exponential dependence of the tunnel coupling ¢ on the mass (C) and
the size of the tunnel barrier, these parameters allow for a value for t/h
between 0.2 and 5 GHz. The parameters of the DC-SQUID junctions
were Igg = 109 £ 5 nA and C = 0.6 £ 0.1 fF. The self inductance of
the inner loop and the DC-SQUID loop were numerically estimated to
be 11 1 pH and 16 + 1 pH respectively, and the mutual inductance
between the loop and the SQUID was 7+ 1 pH.

The flux in the DC-SQUID was measured by ramping a bias cur-
rent through the DC-SQUID and recording the current level Igw where
the SQUID switches from the supercurrent branch to a finite voltage
(Fig. 2a). Traces of the loop’s flux signal were recorded by continuously
repeating switching-current measurements while slowly sweeping the flux
Oyt (Fig. 2b). The measured flux signal from the inner loop will be pre-
sented as Igw, which is directly deduced from the raw switching-current
data, as described in the following three points:

1) Because the variance in Igw was much larger than the signature from
the loop’s flux (Fig. 2a) we applied low-pass FFT-filtering in ®ey-space
(over 107 switching events for the highest trace, and 2 - 108 events for
the lowest trace in Fig. 3a).

2) By applying ®ey, we also apply flux directly to the DC-SQUID. The
resulting background signal (dashed line in Fig. 2b) was subtracted.

3) Applying microwaves and changing the sample temperature influenced
the switching current levels significantly. To make the flux signal of
all data sets comparable we scaled all data sets to Isw = 100 nA at
Doyt = %@0. Data taken in the presence of microwaves could only be
obtained at specific frequencies where Igw was not strongly suppressed
by the microwaves. At temperatures above 300 mK drift in the Igw-level
due to thermal instabilities of the refrigerator obscured the signal.
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Figure 8 (a) Resonance lines in traces of the scaled switching current fsw versus
Peyt, measured at different microwave frequencies f (labels on the right). (b) Half
the distance in ®cxt between the resonant peak and dip A®,.s at different microwave
frequencies f. Peak and dip positions are determined from traces as in Fig. 3a. The
inset zooms in on the low frequency data points. The grey line is a linear fit through
the high frequency data and zero. The black line is a fit of (1).

3. RESULTS

Figs. 2b and 3a show the flux signal of the inner loop, measured
in the presence of low-amplitude continuous-wave microwaves at differ-
ent frequencies f. The rounded step in each trace at %Q)O is due to
the change in direction of the persistent current of the loop’s ground
state (see also Fig. 1c). Symmetrically around ®ey = %Q)O each trace
shows a peak and a dip, which were absent when no microwaves were
applied. The positions of the peaks and dips in ®.y depend on mi-
crowave frequency but not on amplitude. The peaks and dips result
from microwave-induced transitions to the state with a persistent cur-
rent of opposite sign. These occur when the level separation is resonant
with the microwave frequency, AE = hf.

In Fig. 3b half the distance in ®e¢y¢ between the resonant peak and
dip A®, is plotted for all the frequencies f. The relation between AFE
and ®ey is linear for the high-frequency data. This gives I, = 484 £ 2
nA, in good agreement with the predicted value. At lower frequencies
AP, significantly deviates from this linear relation, demonstrating the



oo

- - - 2
(a 20mk (D) )
— = *
8 160 mK o)
S o
S 80 mK Q !
._5 i ~
n
g | 30 mK % 1 }
< 17mK T H
s £
S ke
=
5 g
. : : A o : : : :
0498 0500 0.502 0 50 100 150 200 250

o (D) T (mK)

Figure 4 (a) Isw versus Dexs, measured at different temperatures 7' (labels on the
right). No microwaves were applied. The step in Isw broadens with temperature. (b)
The width of the step as a function of temperature. The half-width-half-step (HWHS)
is defined as the distance in ®.yt from %‘I’o to the point where the amplitude of the
step is half completed. The solid line is the calculated HWHS for thermally mixed
levels, using (1) and the I, and t-value from the spectroscopy results, with a saturating
width on the scale of t at low temperatures.

presence of a finite tunnel splitting at Pexy = %@0. A fit to Eq. (1)
yields ¢/h = 0.33 & 0.03 GHz, in agreement with the estimate from
fabrication parameters. The level separation very close to %Q)O could
not be measured directly since at this point the expectation value for
the persistent current is zero for both the ground state and the excited
state (Fig. 1c). Nevertheless, the narrow resonance lines allow for an
accurate mapping of the level separation near %@0, and the observed
tunnel splitting gives clear evidence for quantum superpositions of the
persistent-current states. The large uncertainty in the predicted t-value
does not allow for a quantitative analysis of a possible suppression of ¢
due to a coupling between our two-level system and a bosonic environ-
ment [24] or a spin-bath environment [25, 26]. However, the fact that we
see a finite tunnel splitting indicates that the damping of our quantum
system by environmental degrees of freedom is weak. The dimensionless
dissipation parameter « introduced by Leggett et al. [24] must be o < 1.

The width of the rounded steps in the measured flux in Figs. 2b and
3a is much broader than expected from quantum rounding on the scale
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of the value of ¢ that was found with spectroscopy (see also Fig. 1c). The
temperature dependence of the step width presented in Fig. 4 confirms
that the step width HWHS (defined in the caption of Fig. 4b) is too wide
at low temperatures T'. At temperatures above 100 mK the step width is
in agreement with the thermally averaged expectation value for the per-

sistent current < Iy, >= I, tanh (%) (kg is Boltzmann’s constant),

where we use the level separation AE and I, found with spectroscopy.
However, when lowering the temperature the observed step width satu-
rates at an effective temperature of about 100 mK. We checked that the
effective temperature for the SQUID’s switching events did not saturate
at the lowest temperatures. The high effective temperature of the loop
is a result of the loop being in a non-equilibrium state. Cooling the sam-
ple longer after the dissipative switching events did not make the step
narrower. The step width at 7' = 30 mK was measured with 100 ps and
50 ms dead time between switching events, but no significant differences
were found. This indicates that the out-of-equilibrium population of the
excited state is caused by the measurement process with the SQUID
or other weakly coupled external processes, in combination with a long
time scale for cooling the system to equilibrium (as can be expected since
it is very well isolated from the environment). Note that the observed
line width and the level separation near %@0 are small compared to the
effective temperature of 100 mK. Silvestrini et al. [27] showed that this
can be the case in a Josephson junction system when the transitions
between the levels occur much faster than the thermal mixing time, a
phenomena that is also well known from e. g. room-temperature NMR
on liquids.

4. CONCLUSION

We have presented clear evidence that a quantum superposition of two
macroscopic persistent currents can occur in a small Josephson junction
loop. Even though the measuring DC-SQUID is contributing signif-
icantly to the decoherence of our system (see also Ref. [11]), it was
possible to detect the superposition states since the SQUID was only
weakly coupled to the loop. The present results demonstrate the poten-
tial of three-junction persistent-current loops for research on macroscopic
quantum coherence and quantum computation.
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3.2 Decoherence from the electromagnetic
environment

A central issue in engineering solid state qubits is to avoid decoherence.
As explained above, the intrinsic decoherence of the solid-state environ-
ment is already well suppressed in superconducting systems. However,
due to their relatively large size and good electric properties, super-
conducting quantum bits very sensitively couple to the electromagnetic
environment formed by circuitry, control electronics, and the electro-
magnetic noise ubiquitous in the modern world. One cannot simply
design the system to decouple from these environments as well as pos-
sible, because at least good coupling to parts of the electronic circuitry
is important in order to control the qubit. One thus has to carefully
understand the decoherence induced by the circuitry in order to care-
fully avoid this unwanted backaction on the qubit while still keeping
the desired action.

In paper [192], a basic model for the decoherence due to circuitry cou-
pling inductively to the flux qubit is developed. It is shown, that the
coherence properties are essentially controlled by the flux noise affect-
ing the qubit, which is set by the real part of the effective, linearized
impedance of the external circuit. This type of modeling is extended to
nonlinear electric circuits containing Josephson junctions and SQUIDs
in the stable regime where they can be linearized. It is shown, that
underdamped circuitry leads to a rich structure in the spectral density
that is ultimately responsible for decoherence, and that in nonlinear
circuits which are linearized around a fixed working point, the effective
spectral density can be strongly influenced by setting the working point
through an external current. In particular, the underdamped read-out
SQUID can be (in linear order) decoupled from the qubit when no bias
is applied.

In ref. [193], the same system is analyzed from a different point of
view: Instead of studying the noise of the external circuit, the friction
of the continuous particle-in-a-potential representation of the qubit is
examined. It is shown that for the linear and the nonlinear circuit this
leads to the same results as above. When analyzing even more complex
nonlinear setups, it is usually easier to determine the friction, which
only involves the classical equations of motion without the noise, than
studying the noise. Thus, this approach may have practical advantages
as circuitry grows more complex.
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Abstract. We discuss the relaxation and dephasing rates that result from the control and the measurement
setup itself in experiments on Josephson persistent-current qubits. For control and measurement of the
qubit state, the qubit is inductively coupled to electromagnetic circuitry. We show how this system can be
mapped on the spin-boson model, and how the spectral density of the bosonic bath can be derived from
the electromagnetic impedance that is coupled to the qubit. Part of the electromagnetic environment is
a measurement apparatus (DC-SQUID), that is permanently coupled to the single quantum system that
is studied. Since there is an obvious conflict between long coherence times and an efficient measurement
scheme, the measurement process is analyzed in detail for different measurement schemes. We show, that
the coupling of the measurement apparatus to the qubit can be controlled in situ. Parameters that can be
realized in experiments today are used for a quantitative evaluation, and it is shown that the relaxation and
dephasing rates that are induced by the measurement setup can be made low enough for a time-resolved
study of the quantum dynamics of Josephson persistent-current qubits. Our results can be generalized as

engineering rules for the read-out of related qubit systems.

PACS. 03.67.Lx Quantum computation — 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion — 74.50.4r Proximity effects, weak links, tunneling phenomena, and Josephson
effects — 85.25.Dq Superconducting quantum interference devices (SQUIDs)

1 Introduction

The dynamics of electromagnetic circuits and other
macroscopic objects is usually well described by classi-
cal laws; quantum coherent phenomena like superposition
states are usually not observed in macroscopic systems.
The founders of the quantum mechanical theory already
recognized that there is in fact a conflict between a
straight forward extrapolation of quantum mechanics to
a macroscopic scale, and the laws of classical physics that
govern the macroscopic world. In particular, this concerns
the possibility of quantum superpositions of collective co-
ordinates (i.e. center-of-mass-like coordinates) of objects
that are much bigger than the atomic scale. These difficul-
ties were first presented by Schrodinger [1], and are now
known as Schrédinger’s cat paradox. Schrodinger’s discus-
sion of the cat in the box was clearly meant as a gedanken
experiment. Only several decades later, after the discovery
of the Josephson effect, it was recognized that the validity
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sity, 17 Oxford Street, Cambridge, MA 02138, USA

b Present address: Sektion Physik and CeNS, Ludwig-
Maximilians Universitdt, Theresienstr. 37, 80333 Munich,
Germany
e-mail: wilhelm@theorie.physik.uni-muenchen.de

of quantum mechanics for a macroscopic degree of freedom
could be tested in real experiments [2].

In 1980, Leggett pointed out that cryogenic and mi-
crofabrication technologies had advanced to a level where
macroscopic Schrodinger’s cat states could possibly be re-
alized in small superconducting loops that contain Joseph-
son tunnel junctions [3,4]. In such systems, the Josephson
phase (or equivalently, the persistent supercurrent in the
loop) is a collective coordinate for the Cooper-pair con-
densate, and it is conjugate to a variable which describes
the charge difference across the Josephson tunnel junc-
tion. However, while the analysis of the isolated quantum
system shows that superpositions of the macroscopic co-
ordinates might very well occur in these loops, it is by
no means obvious that such behavior can also be demon-
strated experimentally. Such superposition states are ex-
tremely fragile, reflecting the tendency of macroscopic sys-
tems towards classical behavior. Besides decoherence from
a weak coupling to the environmental degrees of freedom
inside the solid-state device (which is believed to be very
much suppressed at low temperatures due to the energy
gap for quasiparticle excitations in superconductors), also
the fact that the loop is not isolated but permanently
placed in an experimental setup may hinder attempts
to study macroscopic quantum coherence. Nevertheless,
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interesting results with evidence for macroscopic quantum
tunneling, energy level quantization and coherent dynam-
ics between quantum levels were obtained with systems
where the Josephson phase coordinate is trapped in a
metastable well (for an overview see [5-10]). Also with
systems where the energy scale for single-charge effects
is higher than, or comparable to the energy scale for the
Josephson effect, quantum coherent dynamics has recently
been demonstrated [11,12]. In Josephson junction loops,
quantum superposition states of persistent currents have
been demonstrated spectroscopically [13,14]. However,
time-resolved experiments that prove quantum-coherent
oscillations between macroscopically-distinct persistent-
currents states in the sense of reference [4] have not been
reported yet.

Whether such experiments can be realized at all has
been intensively discussed in the literature [15], with-
out consensus being reached. However, a detailed analysis
with estimates based on measurement techniques that can
be realized in experiments today, has been discussed very
little. The quantum coherent dynamics observed with the
other Josephson junction systems (such as Cooper pair
boxes [11,12] or single junctions [9,10]), indicates that it
might be possible to obtain similar experimental results
with Josephson persistent-current loops. Efforts in this
direction were stimulated by the prospect that it might
be possible to realize a quantum computer with supercon-
ducting Josephson devices [16-21]. An important advan-
tage of a Josephson quantum computer would be that,
if accurate quantum coherent control of elementary units
would be possible, it would be a system that can be ex-
tended to one containing a very large number of quan-
tum bits (qubits). The large size of the qubits allows for
individual (local) control and readout of the qubits and
qubit-qubit couplings.

In this article we analyze the feasibility of demon-
strating quantum coherent dynamics of Josephson persis-
tent currents with experimental techniques for manipulat-
ing and reading qubit states that can be realized in the
laboratories today (i.e. assuming the available techniques
for device fabrication, cryogenics, microwave applications
and electronic filtering). Such mesoscopic solid-state ex-
periments suffer from the fundamental difficulty that one
cannot avoid that an electronic measuring device is per-
manently coupled to the single quantum system that is
studied [22]. We will not consider future measurement
techniques which may couple less directly to the qubit.
A meter must be present in any useful experiment, and,
unlike experiments with for instance photons, this means
that a measuring device must be permanently located very
close to the solid-state quantum bit (e.g. fabricated on the
same chip). With such a setup, there is obviously a conflict
between an efficient measurement scheme with a strong
measurement, and long decoherence times in the quan-
tum system that is studied. For successful experiments in
this direction, a detailed understanding of the measure-
ment scheme is therefore needed such that the decoher-
ence that is induced by the setup itself can be reduced to
an acceptable level.

The European Physical Journal B

Obviously, there exist many other sources of decoher-
ence for Josephson qubits that one should worry about
as well. The critical current of the junctions may show
telegraph noise [23], which would give rise to decoherence
similar to what is described in reference [24]. Moreover, it
has been stressed that a very high number of spin degrees
of freedom is usually present in the solid state environ-
ment that may decohere Josephson qubits (see the work
by Prokof’ev and Stamp [25,26] on the spin-bath, and
reference [27] for estimates for persistent-current qubits).
Another example is decoherence from quasiparticles that
effectively shunt the junction [28]. These effects themselves
are very interesting for further study. However, a study of
for example the dephasing due to spin impurities remains
impossible as long a reliable and well-understood mea-
surement scheme for the loop’s quantum dynamics is not
available. Therefore, we will concentrate here on dephas-
ing and mixing due to the experimental wiring and the
measurement scheme itself.

Our analysis mainly focuses on experiments with the
three-junction persistent-current qubit proposed by Mooij
et al., [14,19,20], in a setup where they are measured by
underdamped DC-SQUID magnetometers (in this article
we will reserve the word SQUID for the measuring DC-
SQUID (Fig. la), and not use it for the three-junction
qubit (Fig. 1, center)). The decohering influence of the
inductively coupled DC-SQUID is analyzed as well as de-
coherence that results from inductive coupling to on-chip
control lines for applying microwave signals and local mag-
netic fields. Model descriptions of the experimental setup
will be mapped on the spin-boson model, such that we
can use expressions for the relaxation and dephasing rates
from the spin-boson literature. The typical experimental
situations will be described quite extensively to justify the
models and the approximations used. The results will be
worked out quantitatively, and we will evaluate whether
we can realize mixing and dephasing rates that are com-
patible with measurement schemes based on DC-SQUIDs.
The design criteria developed in this work are more gen-
eral and should also be of interest for experiments on loops
with a single Josephson junction [13], and quantum cir-
cuits where the charge degree of freedom is measured,
as Josephson charge quantum bits [18,21] and quantum
dots [29]. In a more general context the value of this work
is that it presents in detail an example of a measurement
process on a single quantum system in which the deco-
herence enhances with increasing measurement strength.
The issues discussed here are an example of experimen-
tal difficulties that will unavoidably play a role in many
realizations of quantum computers.

1.1 Outline

In Section 2 we will summarize a theoretical description
of the Josephson persistent-current qubit, and the spin-
boson theory that will be applied in our analysis. Section 3
presents a description of the measurement process with
the DC-SQUIDs, and a typical scheme for coupling the
qubit to the on-chip control lines. In Section 4 we work out
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Fig. 1. Experimental setup for measurements on a Joseph-
son persistent-current qubit. The qubit (center) is a super-
conducting loop that contains three Josephson junctions. It is
inductively coupled to a DC-SQUID (a), and superconducting
control lines for applying magnetic fields at microwave frequen-
cies (b) and static magnetic fields (c). The DC-SQUID is re-
alized with an on-chip shunt circuit with impedance Zsp. The
circuits a)—c) are connected to filtering and electronics (not
drawn).

the qubit’s relaxation and dephasing rate that result from
the coupling to a switching DC-SQUID. This is worked out
quite extensively and the definitions presented in this sec-
tion are also used in Section 5. Two measurement scenar-
ios with different types of electromagnetic shunt circuits
for the DC-SQUID will be compared. A short analysis of
the decoherence due to the coupling to on-chip control
lines is presented in Section 5. Section 6 presents a few
control techniques that can improve decoherence rates.

2 Qubit Hamiltonian and theory
for relaxation and dephasing

This work aims at calculating relaxation (mixing) rates
and dephasing (decoherence) rates for a Josephson
persistent-current qubit which result from its inductive
coupling to the measurement setup. The measurement
setup is formed by a DC-SQUID and control lines, which
are attached to leads and coupled to filters and electron-
ics (Fig. 1). This setup will be modeled as a macroscopic
quantum two-level system (central spin) that is coupled
to a linear electromagnetic impedance Z;(w), where w the
angular frequency. The impedance Z;(w) forms an oscil-
lator bath and can be described by a set of LC' oscilla-
tors. This allows for mapping the problem on the spin-
boson model: a central spin-% system that is coupled to
a bosonic bath [30,31]. The parameters of the bath will
be derived from the Johnson-Nyquist noise from Z;(w). In
this section we will first introduce the qubit Hamiltonian
and physical properties of the qubit, and then summarize
the spin-boson expressions for relaxation and dephasing.

113
2.1 Qubit properties and Hamiltonian

The three-Josephson junction qubit [19,20,14] is a low-
inductance superconducting loop which contains three
Josephson tunnel junctions (Fig. 1). By applying an ex-
ternal flux &, a persistent supercurrent can be induced
in the loop. For values where @, is close to a half-integer
number of superconducting flux quantums @, two states
with persistent currents of opposite sign are nearly degen-
erate but separated by an energy barrier. We will assume
here that the system is operated near &, = %@0. Classi-
cally, the persistent currents have here a magnitude I,.
Tunneling through the barrier causes a weak coupling be-
tween the two states, and at low energies the loop can
be described by a Hamiltonian in the form of a two-level
system [19,20,14],

6,4+ —04 (1)

where 6, and &, are Pauli spin operators. The two eigen
vectors of &, correspond to states that have a left or a
right circulating current and will be denoted as |L) and
|R). The energy bias e = 2I,(®4 — 3P) is controlled by
the externally applied field &,. We follow [32] and define
A as the tunnel splitting at ¢, = %@0, such that A =
2W with W the tunnel coupling between the persistent-
current states. This system has two energy eigen values
+1V/A% 4 €2, such that the level separation v gives

= VA2 +e2. (2)

In general A is a function of . However, it varies on
the scale of the single junction plasma frequency, which
is much above the typical energy range at which the qubit
is operated, such that we can assume A to be constant for
the purpose of this paper.

In the experiments @, can be controlled by applying a
magnetic field with a large superconducting coil at a large
distance from the qubit, but for local control one can apply
currents to superconducting control lines, fabricated on-
chip in the direct vicinity of the qubit. The qubit’s quan-
tum dynamics will be controlled with resonant microwave
pulses (i.e. by Rabi oscillations). The proposed operation
point is at ¢ ~ 5A, which was analyzed to be a good
trade-off between a system with significant tunneling, and
a system with o,-like eigen states that can be used for
qubit-qubit couplings and measuring qubit states [19,20].
For optimal microwave control the qubit will be placed in
a small off-resonant cavity, and the microwave signals will
be applied through on-chip superconducting control lines
(i.e. the magnetic component of the fields from microwave
currents will be used). The qubit has a magnetic dipole
moment as a result of the clockwise or counter-clockwise
persistent current The corresponding flux in the loop is
much smaller than the applied flux &, but large enough
to be detected with a SQUID. This will be used for mea-
suring the qubit states. For our two-level system equa-
tion (1), this means that both manipulation and readout
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couple to 6,. Consequently, the noise produced by the nec-
essary circuitry will couple in as flux noise and hence cou-
ple to &, giving € a small, stochastically time-dependent
part de(t). Our system also has electric dipole moments,
represented by &,. These couple much less to the circuitry
and will hence not be discussed here.

2.2 Spin-boson theory for relaxation and dephasing

For defining the relaxation and dephasing rates, the state
of the qubit is described with a reduced density matrix p,
in the basis which is spanned by the eigen vectors of &,
in (1), i.e. by the semiclassical states with well-defined left
(L) or right (R) circulating current

b= (PL,L PR,L) . (3)

PL,R PR,R

We will concentrate our discussion on the undriven case.
The qubit dynamics consists of quantum-coherent oscilla-
tions, which decay on a time-scale 74 = I’ ¢ L the dephas-
ing time. This dephasing is superimposed on an energy
relaxation mechanism on a larger timescale 7, = I,°1,
the relaxation time. This combined decoherence process
brings the system into an incoherent thermal mixture of its
energy eigen states. Expressed in the basis of these eigen
states, the off-diagonal terms (coherences) of the density
matrix p go to zero on the time scale of 74, whereas the di-
agonal terms (populations) decay in 7, to the Boltzmann
factors. For estimating I, and I'y we will work from the
systematic weak-damping approximation (SWDA) devel-
oped by Grifoni et al. [32], which covers recent theoretical
progress for the spin-boson theory. Grifoni et al. calculated
expressions for I5. and Iy for a spin-boson system in which
the coupling to the environment is dominated by bilinear
coupling terms between &, and the bath coordinates. This
is a good approximation for a quantum two-level system
that is only weakly damped by the environment.

In our case the bath is formed by the impedance Z;(w),
and can be described by a set of LC oscillators with
flux coordinates éi, conjugate charge coordinates Qi, and
Hamiltonian

Hyarn = ZZ (é?/2[/i + Q§/2Ci) : (4)

The flux produced by the qubit will shift the flux éi in
each LC oscillator. The coupling Hamiltonian is

A o A
Hy—path = 72 Zi ¢i®;, (5)
where ¢; is the coupling strength to the ¢th oscillator.
In this model the influence of the oscillator bath on the
qubit can be captured in the environmental spectral den-
sity function

J@) = 55 D7 ([ Ciws) 8w - wi), (6)

The European Physical Journal B

where w; the resonance frequency of the ith oscillator. The
dense spectrum of the degrees of freedom in the electro-
magnetic environment allows for treating J(w) as a con-
tinuous function.

From now on, we focus on the low-damping limit,
J(w) <« w. Thus, the energy-eigenstates of the qubit
Hamiltonian, equation (1), are the appropriate starting
point of our discussion. In this case, the relaxation rate
I'. (and relaxation time 7,.) are determined by the envi-
ronmental spectral density J(w) at the frequency of the
level separation v of the qubit

I, =r1= % (é)Q J(v/h) coth (ﬁ) G

where T is the temperature of the bath. The dephasing
rate I'y (and dephasing time 74) is

NORCL St

T,
F¢ = Td) 1= é
These expressions have been derived in the context of
NMR [33] using a Markov approximation and recently
been confirmed by a full path-integral analysis [32].

The second term only contributes for an environment
which is Ohmic at low frequencies (i.e. for J(w) o« w).
Here « is a dimensionless dissipation parameter. It is de-
termined by the slope of J(w) at low frequencies

o (9)

which, if J(w) is a sufficiently smooth function of w can

usually be taken as o = = 22(«)

5- 5, at w = 0. These results
can be intuitively interpreted: The system can relax by
dissipating all its energy v into an environmental boson.
Due to the weakness of the coupling, there are no multi-
boson processes. The relaxation also dephases the state.
Moreover, dephasing can occur due to the coupling to low-
frequency modes which do not change the energy of the
system. These expressions for relaxation and dephasing
have also been found by studying the Hamiltonian of our
qubit coupled to a damped oscillator, using a Markovian
master equation approach by Tian et al. [34] (based on
work by Garg et al. [35]).

AN\2

The expressions (7) and (8) have prefactors (£)

and (%)2 that depend on the tunnel splitting A and
the energy bias €. These factors correspond to the an-
gles between noise and eigen states usually introduced
in NMR [33] and account for the effect that the qubit’s
magnetic dipole radiation is strongest where the flux in
the qubit &, = 1®, (i.e. (£) maximal), and that the
level separation v is insensitive to flux noise at this point
(i.e. 92 = (£) = 0). One should know and control J(w)
at the frequency v/h for controlling the relaxation, and at
low frequencies for controlling the dephasing. In this arti-
cle we will calculate the noise properties of a few typical
experimental environments, and calculate how the noise
couples to the qubit. This can be used to define J(w) for
our specific environments.
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3 Measurement setup

This section describes a typical experimental setup for
measurements on Josephson persistent-current qubits.
Only the parts that are most strongly coupled to the qubit
will be worked out (Fig. 1). The first part describes a
DC-SQUID magnetometer that is used by measuring its
switching current, the second part addresses the use of on-
chip superconducting lines for applying magnetic fields to
the qubit.

3.1 Switching DC-SQUID

SQUIDs are the most sensitive magnetometers, and they
can be operated at very low power consumption [36]. We
will consider here the use of a DC-SQUID with a hys-
teretic current-voltage characteristic (IV) and unshunted
junctions that are extremely underdamped. It is used by
ramping a current through it and recording the switch-
ing current: the bias current at which it switches from
the supercurrent branch to a nonzero voltage in its IV
(Fig. 2). The switching current is a measure for the mag-
netic flux in the loop of the SQUID. An important ad-
vantage of this scheme is that the SQUID produces before
readout very little noise. As long as the SQUID is on the
supercurrent branch, it does not produce any shot noise or
Josephson oscillations. If the external noise and interfer-
ence can be suppressed by filtering, there is only Johnson-
Nyquist noise from the low-temperature leads and filtering
that the SQUID is connected to. At low frequencies this
residual noise has little power since the device is supercon-
ducting. Moreover, we will show in Section 4 that at low
bias currents the effective coupling between this meter and
the quantum system is very weak. In comparison, damped
non-hysteretic SQUIDs have the problem that the shunt
resistors at the junctions also provide a damping mecha-
nism for the qubit. In a hysteretic SQUID there is more
freedom to engineer the effective impedance seen by the
qubit, and it also has the advantage that the voltage jump
at the switching current is much larger [37]. Recently, a
similar scheme with a superconducting single-charge de-
vice, that can be operated as a switching electrometer has
been reported [12,38]. Voltage biased single-electron tran-
sistors for quantum measurements have been analyzed in
references [39-42].

For qualitative insight in the measurement process we
will present here a simplified description of the SQUIDs
noise and dynamics (valid for a DC-SQUID with symmet-
ric junctions and a loop with negligible self inductance).
In Section 4 it will be worked out in more detail. The su-
percurrent through the SQUID with a flux @ in its loop is

Isq = 2Icpco8 f SN ey, (10)
where f = 7®/®Py, 1., the critical current of the junc-
tions, and ¢ey: a Josephson phase coordinate. I, will
be distinguished from the applied bias current Ip;.s, as
part of the bias current may go into circuitry shunting the
SQUID. Insight in the SQUID’s response to a bias current
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Fig. 2. Sketch of a typical hysteretic current-voltage charac-
teristic (IV) for a current-biased Josephson junction or small
DC-SQUID. The IV is hysteretic; arrows indicate which of
the two branches is followed at an increase or decrease of the
bias current. When the bias current Ip;.s is ramped up from
zero (a), the voltage V first remains zero. The circuit is here on
the supercurrent branch of the IV (b). When I;4s approaches
the critical current I¢, a slow diffusive motion of the phase
©ext leads to a very small voltage across the system (c). At
slightly higher current (d), but always below I¢c (e), the system
switches to a running mode for @e;+, and the voltage jumps to
a value set by quasiparticle tunneling over the superconduct-
ing gap, V = 2A/e (this current level (d) is the switching
current Isw ). At further increase of the current (f) the IV ap-
proaches an Ohmic branch, where transport is dominated by
quasiparticle tunneling through the normal tunnel resistance
of the junctions. When lowering the bias current the system
follows the running mode (g) down to a low bias current where
it retraps on the supercurrent branch (at the level Iretrap, indi-
cated by (h)). See also the corresponding washboard potential
model, in Figure 3.

is achieved by recognizing that (10) gives steady state so-
lutions (OU/Opert = 0) for a particle with coordinate ez,
trapped on a tilted washboard potential (Fig. 3)

U= (21c0cos f cOS Yegt + IsqPent) - (11)

2
In this picture, the average slope of the potential is propor-
tional to the bias current, and the supercurrent branch of
the SQUID’s I'V corresponds to the particle being trapped
in a well. The Josephson voltage across the SQUID V =
QLL@@% is nonzero for the particle in a running mode. In
absence of noise and fluctuations, the SQUID will switch
to the running mode at the critical current I

Ic =21 ]cos f|. (12)
A DC-SQUID can thus be regarded as a single Joseph-
son junction with a flux-tunable critical current. In prac-
tice, noise and fluctuations of g, will cause the SQUID
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Fig. 3. The dynamics of a current-biased DC-SQUID, modeled
as a particle with coordinate @e.¢ in a one-dimensional tilted
washboard potential U. The labeling (a)—(f) corresponds to
that of Figure 2. At zero (a) and small bias currents (b), the
particle is trapped in a well of the washboard. Apart from the
small plasma oscillations at the bottom of the well, the parti-
cle’s coordinate @e,+ is fixed. When increasing the slope of the
washboard, the particle will start to have a slow, on average
downwards, diffusive dynamics, with rare excursions to one of
the neighboring wells (c). At the switching current Isw there
is a high probability that the trapped particle will escape to a
running mode (d), with effectively zero probability for retrap-
ping. Here the loss of potential energy exceeds the dissipation
when the particle moves one period down the washboard, and
the particle builds up a high kinetic energy. Due to thermal
fluctuations, external noise, and in certain cases quantum fluc-
tuations, this occurs below the critical current I¢c: the slope
where all local minimums in the washboard potential disap-
pear (e). At currents higher than this slope (f), the particle
will always be in a running mode. The retrapping process when
lowering the bias current follows similar dynamics.

to switch before the bias current reaches I-. This cur-
rent level will be denoted as the switching current Iy
to distinguish it from Io. It is a stochastic variable, but
averaging over repeated recordings of Igy allows for de-
termining f with great accuracy. This naive description
can be used to illustrate three important properties of the
measurement process with the SQUID.

In the experiment, the electronics for recording the
SQUID’s IV obtains information about f when the
SQUID switches. However, rewriting (10) as

Pext = sin~* ( (13)

Iy
21, cos f

shows that the SQUID’s coordinate ¢,; is already cor-
related (i.e. entangled) with the flux f at current val-
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ues below Igy . Small voltage fluctuations that result
from small plasma oscillations and translations of eyt
will cause dissipation in the electromagnetic environment
of the SQUID, which damps the dynamics of @e.:. This
means, that in a quantum mechanical sense, the position
of @eyt, and thereby f, is measured by the degrees of
freedom that form the electromagnetic impedance that is
shunting the SQUID (i.e. the leads and filtering between
the SQUID and the readout electronics), and that the
measurement may in fact take place before it is recorded
by a switching event.

Secondly, (13) shows that the SQUID’s coordinate @et
is independent of the flux in the loop (9pert/0f = 0)
for Isq = 0. Therefore, in absence of fluctuations of ez
and current noise, the meter is at zero current effectively
“off”. In practice this can not be perfectly realized, but it
illustrates that the decoherence from the SQUID may be
reduced by a large extent at low bias currents.

Thirdly, for bias currents well below I, the coordinate
ezt 1S trapped in a potential that is for small oscillations
close to harmonic. The SQUID can in this case be regarded
as an inductance

1
.

2e /412 cos? f — 2,

(see also (26) below). The noise from the SQUID can
here be described by the Johnson-Nyquist noise from the
SQUID’s Josephson inductance (14) in parallel with the
SQUID’s environmental impedance (Figs. 3a, b). For high
bias currents very close to I, the spectrum will have more
power and calculating the noise properties will be more
complicated. Here non-harmonic terms in the trapping
potential become important, and there maybe additional
noise from a diffusive motion of p.;: to neighboring wells
(Fig. 3c). For hysteretic SQUIDs this regime with diffu-
sive motion of ¢.,¢ and switching currents very close to
I will only occur in SQUIDs with a very specific electro-
magnetic shunt [37,43]. In many realizations of hysteretic
DC-SQUIDs @,y will escape to a running mode without
retrapping in lower wells (Fig. 3d), and Isy can be much
lower than Ic. In this case the approximation using (14)
should be valid for description of the noise before a switch-
ing event.

The statistics of Isy readouts depend strongly on the
damping of the dynamics of ¢¢,; by the impedance that
is shunting the SQUID. Experimental control over the
damping, requires the fabrication of a shunt circuit in the
direct vicinity of the SQUID, such that its impedance is
well defined up to the frequency of the SQUID’s plasma
oscillations (microwave frequencies). The shunt circuit is
therefore preferably realized on-chip (Zsp, in Fig. 1a). The
escape from the well may be thermally activated, but
for underdamped systems with low-capacitance junctions
quantum tunneling through the barrier can dominate the
escape rate at low temperatures. The influence of the
damping circuitry on the Isy statistics [6,37,43] is now
well understood. A SQUID with very underdamped dy-
namics usually has Igy values much below I, and his-
tograms of a set of Igy recordings will be very wide.

(14)
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This means that one needs to average over many re-
peated measurements to achieve the required resolution
in readout. Thereby, averaging also needs to take place
over many repeated experiments on the qubit, such that
only a time-ensemble average can be measured. With a
shunt that provides high damping at the plasma frequency
very narrow switching current histograms can be real-
ized [12,37,43-45], that in principle allow for single-shot
readout in qubit experiments. While in such a scheme
the SQUID’s noise will also be enhanced, it is possible
to engineer (for realistic fabrication parameters) a shunt
impedance that is at the same time compatible with co-
herent dynamics of the qubit and single-shot readout [38].
The engineering of single-shot readout will not be ad-
dressed in detail in this paper.

The main disadvantage of the switching SQUID is that
it is not very efficient. During each cycle through the hys-
teretic IV it is only measuring for a short time. More-
over, the IV is very nonlinear, such that the repetition
frequency must be an order lower than the bandwidth of
the filters. The filtering that is required for realizing low
effective temperatures and the SQUID’s shunt circuit have
typically a bandwidth well below 1GHz, and the accurate
readout electronics set a similar limit to the bandwidth.
In practice this limits the repetition frequency to values in
the range of 10 kHz [14,46] to 1 MHz [8,38]. More efficient
readout may be realized with AC readout techniques (see
e.g. Ref. [47]).

The slow operation of the switching DC-SQUID sets
requirements for the mixing rate I of the qubit. It needs
be longer than the time required to perform a switching
current measurement, which requires a time in the range
1 ps to 100 us. One could go to shorter times by setting the
SQUID ready at a high bias current when an experiments
on the qubit is started, but it is also needed to have the
mixing time longer than the time it takes to ramp the
bias current through the range of the switching current
histogram. At the same time we should realize that the
quantum system is prepared by waiting for it to relax to
the ground state, so relaxation times very much longer
than 100 ps will prohibit a high repetition frequency. A
high repetition frequency is needed if the signal can only
be built up by averaging over many switching events.

The experiments aim at working with many coherent
Rabi oscillations with a period of about 10 ns [19]. We
therefore aim at engineering SQUIDs that cause a dephas-
ing time that is much longer than 10 ns. The dephasing
and relaxation times turn out to be shortest at high bias
currents through the SQUID. Unless mentioned otherwise,
we will make in this article worst case estimates for the
dephasing and relaxation times using bias current values
near the switching current.

3.2 On-chip control lines

An attractive feature of macroscopic qubits is that one
can address individual qubits with control signals from
microfabricated lines (see also Fig. 1b, c). For persistent-
current qubits, for example, a supercurrent through a line
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that is mainly coupled to one specific qubit can be used
for tuning this qubit’s energy bias €. Also, it is convenient
to provide the microwave signals for control of the qubit’s
quantum dynamics using local superconducting lines. If
this is realized in a microwave cavity with its first res-
onance well above the applied microwave frequency, one
can apply microwave bursts with fast switch times with-
out being hindered by high-@Q electromagnetic modes in
the volume that is formed by the cold metallic shielding
that surrounds the sample.

Microwave signals can be applied using external mi-
crowave sources at room temperature. Alternatively, on-
chip oscillators for example based on Josephson junction
circuits [48,49] can be applied. High microwave currents
in the control lines are achieved by shorting the microwave
coax or wave guide close to the qubit with an inductance
that has an impedance much lower than the source’s out-
put impedance (Fig. 1b). For external microwave sources,
the typical level for the output impedance will be that
of the available coax technology, typically 50 2. With on
chip Josephson oscillators the typical output impedance
is one order lower. In both cases, it is in practice very te-
dious to engineer these impedance levels and our analysis
below will show that this forms a constraint for qubit ex-
periments: long decoherence times are in conflict with the
wish for local qubit control and low power levels of the
applied microwave signals.

If one uses external microwave sources at room temper-
ature it is harder than for the quasi DC signals to filter
out the high temperature noise. Low effective tempera-
tures can be achieved by a combination of narrow-band
microwave filters and strong attenuators at low tempera-
tures.

4 Relaxation and dephasing from a switching
DC-SQUID

4.1 Current-phase relations for the DC-SQUID

The DC-SQUID has two phase degrees of freedom, the
gauge-invariant phases v, and 7 of the junctions [36].
They are related to the supercurrents through the left and
the right junction,

I = (1o + Al sin -y,
(leo + =5%2) (15)

I, = (I, — Agco)sin%.
Here I, is the average of the critical current of the two
junctions. A small asymmetry in the junctions’ critical
currents is accounted for by Al., < I, (typically a few
percent). We will work here with the sum and difference
phase coordinates @;n: and e,¢, which are related by a
linear transformation

Pext = lei_Tzr PN Y i Pext + Pint ) (16)
Pint = ~ 5 Vr = Pext — Pint

The new phase coordinates are related with the current
passing through the SQUID I, and the circulating current
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in the SQUID I,

Ig =1+ 1,

L —1I,
I = 12

Il = %Isq + Icir
Aad )

(17)
Ir = %Isq - Icir

yielding the following current-phase relation for I, and
Icir

Isq = 2100 COS Qing SIN Qegt + Alco SIN Qg COS g, (18)
. 1 .
Loir = Lo SIN Qins COS Pegt + §AICO COS Yint SIN Yegt. (19)

We will assume that the DC-SQUID has junctions with a
critical current and capacitance that are lower than that
of the qubit junctions. In this case, the internal phase ;,;
follows the flux adiabatically up to time scales much faster
than % We will therefore use

D dey

Pint = T— = f

o (20)

4.2 Noise on the qubit from the DC-SQUID resulting
in J(w)

The noise that is induced by the measuring SQUID results
from Johnson-Nyquist noise of the total impedance Z;(w)
between the leads that are attached to the SQUID. The
impedance Z;(w) is formed the SQUID’s impedance in
parallel with the impedance of the wiring and circuitry
that the SQUID is connected to (see the circuit models
in Fig. 4). At bias currents well below the critical current
Ic, the phase dynamics can be linearized and the SQUID
can be modeled as an inductor L;. The coupling of @eyy
to the SQUID’s inner degree of freedom ¢;,; and thereby
to the qubit slightly alter the effective value for L, but
the correction it is so small that it can be neglected. The
Fourier-transformed power spectrum (§V (t) 6V(0)), of
the Johnson-Nyquist voltage fluctuations 6V across the
SQUID is [31,50]

(8V 6V, = hwRe{Zy(w)} coth <ﬂ> : (21)

2kpT
We will now calculate how this voltage noise leads to fluc-
tuations de of the energy bias on the qubit. As a rule,
the spectral density J(w) in (6) can then be derived by
hi
(2er).
The current-phase relations for Iy, and I, can be

used for expressing the current fluctuations. The first term
of (18) gives

dividing the expression for (¢ de),, by hZcoth

dr . _d
d—;q = iwlsy & 210 cOS [ COS Peyt (Z;xt
_ 2
= 21, cos f cos goexth, (22)

where we used @, for the time average of @, . With a
similar expression for the second term of (18) the current
fluctuations in Iy, are

0lsq = (21co cOS f €COS Pegt — Also sin f 8in Gezt) Speat.
(23)
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The SQUID is usually operated in regions where the av-
erage external flux in its loop is between an integer and
half-integer number of @y. At these points |cos f| ~ [sin f|.
Therefore, the second term in (23) can be neglected unless
[Ieo COS Pext| S | Alco Sin Pege|. That is, it can be neglected
unless the bias current is very high, for which sin @.,; ap-
proaches 1. For most purposes we can thus use

0lsq ~= 21008 f COS Pext OPegt- (24)

This is also used to define L; by expressing
dI

V=L,—1 25

i (25)

such that with (22, 20) and (18) L should be defined as
h 1 h 1

LJ = — — = — .
2e 21, cos f cOS Qeyr  2€ A2 cos? f — ng
(26)

For I.;» we get a similar expression as (23)

1
0l ~ <Ico sin f sin @ept + §AICO cos f cos @ext> OPegt-
(27)

Using again that the SQUID is operated where |cos f| ~
|sin f| shows that the second term in (27) can be neglected
unless |Ioo Sin @egt| 5 | Ao COS Pext|. For 61, the second
term only plays a role at low bias currents in the SQUID
for which @.,¢ = 0, and for most purposes we can use

Oleir m —Icosin f 8N Pert 0pent- (28)

In the above we used Q¢ for the time average of @eyt,
but at places where it is not confusing it will be simply
denoted as @eyy.

Both noise in I4 and I.;- can couple to the qubit, but
we will assume that the qubit is mainly sensitive to noise
in I (as in the experiments in [14], where the qubit was
placed symmetrically inside the SQUID’s loop) and ne-
glect an inductive coupling to noise in I,. For a more
general approach, coupling to noise in I can be treated
on a similar footing as noise in I, but for all useful sam-
ple geometries it should give a contribution to relaxation
and dephasing rates that is at most on the same order as
that of Ic’i'r‘-

With iwdl.; = —%Iw sin f sin @e,+ 0V follows for the
fluctuations 61,

2
(61cir 61ciy)e = <2—h€> %Ifo sin? f sin? et (SV 6V, .
(29)

The fluctuations in the imposed qubit flux are 09, =
Mé1.;-, where M the mutual inductance between the
SQUID loop and the qubit loop. This then yields the fluc-
tuations in the energy bias with de = 21,69,

2¢\” 4
(0 be), = (Ee) FMQII?IZO sin? f sin? per (5V V),
(30)
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where I, is the amplitude of the circulating current in the
qubit in the semiclassical states. Using (18) and (21) and
filling in 2—he = @( this can be written as

o 1 (MI,\? )
(0g de)y, = R (2m) ;<¢—op> Ifqtan f

x Re{Z;(w)} coth (%) . (31)

The fluctuations (de de),, are the result of the coupling
to the oscillator bath, as in (6). This can be used to define
J(w) for our specific environment,

(2m)* 1 (MI,
h w @0

J(w) =

) Ifq tan? f Re{Z;(w)} - (32)

These results show, that although the SQUID is perma-
nently close to the qubit, it may be effectively decoupled
if there is no net bias current I, flowing through the de-
vice. The physical reason for this becomes apparent in
equations (18) and (19): The SQUID remains mirror sym-
metric in that case and consequently the fluctuations of
the bias current are diverted symmetrically around the
arms of the SQUID and do not produce flux noise [51].

4.3 Relaxation times

With (7) and (32) follows the SQUID’s contribution to
the relaxation rate. It is here expressed as a function of
the resonance frequency wy.s = v/h at which the qubit is
operated,

2 2 2
FT:(A/FL) (2m)? 1 (sz) 2 o J

Wres 2h Wres @O

« Re{Zy(wpes)} coth (;‘;’?) . (33)

In this formula one can recognize a dimensionless factor

2
(Aéﬁp) which is a scale for how strongly the qubit is cou-

pled to the measuring SQUID. A dissipation factor in the
form I?R can be recognized in IZ, tan® f Re{Z;(w)}. The
dissipation scales with the absolute value of the current
fluctuations, so with I,4, and the expression is indepen-
dent of the critical current of the SQUID junctions I,
(unless Re{Z:(w)} depends on I,,). A weak measurement
scheme in which the inductive coupling to a DC-SQUID
(MI,/®0)* < 1 can yield relaxation rates that are very
low when compared to a scheme in which leads are di-
rectly attached to the loop [52]. A measurement of such a
scheme’s switching current could also be used for probing
the qubit, but the influence of the voltage noise would be
dramatically worse.

With the result (33) the relaxation rate for typical
sample parameters will be calculated. Sample parameters
similar to our recent experiment [14] are w,.s = 10 GHz,

A = 2 GHz, 1\;{? = 0.002. It is assumed that a SQUID
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Fig. 4. Circuit models for the C-shunted DC-SQUID (a) and
the RC-shunted DC-SQUID (b). The SQUID is modeled as
an inductance Lj. A shunt circuit, the superconducting ca-
pacitor Csp or the Rg,-Csy, series, is fabricated on chip very
close to the SQUID. The noise that couples to the qubit re-
sults from Johnson-Nyquist voltage noise 6V from the circuit’s
total impedance Z;. Z; is formed by a parallel combination
of the impedances of the leads Z;, the shunt and the SQUID,
such that Z, = (1/Z; + 1/(Rsn + 1/iwCsp) + 1/iwL;) ™", with
Rsn, =0 for (a).

with 2I., = 200 nA is operated at f = 0.75 7 and bi-
ased near the switching current, at I,, = 120 nA. For
T = 30 mK the relaxation rate per Ohm environmental
impedance is then

150 us
T = F,._l ~ ki

T Re{Zi(wres)} (34)

4.4 Engineering Re{Z(w)} for slow relaxation

In practice the SQUID’s resolution is improved by building
an on-chip electromagnetic environment. We will consider
here a large superconducting capacitive shunt (Fig. 4a, as
in our recent experiment [14]). This scheme will be de-
noted as the C-shunted SQUID. As an alternative we will
consider a shunt that is a series combination of a large ca-
pacitor and a resistor (Fig. 4b). This will be denoted as the
RC-shunted SQUID. The C' shunt only makes the effective
mass of the SQUID’s external phase @¢;; very heavy. The
RC shunt also adds damping at the plasma frequency of
the SQUID, which is needed for realizing a high resolution
of the SQUID readout (i.e. for narrow switching-current
histograms) [37]. The total impedance Z;(w) of the two
measurement circuits are modeled as in Figure 4. We as-
sume a perfect current source Ip;qs that ramps the current
through the SQUID. The fact that the current source is
non-ideal, and that the wiring to the SQUID chip has
an impedance is all modeled by the impedance Z;. The
wiring can be engineered such that for a very wide fre-
quency range the impedance Z; is on the order of the vac-
uum impedance, and can be modeled by its real part R;.
It typically has a value of 100 2. On chip, the impedance
is formed by the Josephson inductance L; in parallel with
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Fig. 5. A typical Re{Z;(w)} for the C-shunted SQUID (a)
and the RC-shunted SQUID (b), and corresponding J(w) in
(c) and (d) respectively. For comparison, the dashed line in (c)
shows a simple Ohmic spectrum (43) with exponential cut off
we/2m = 0.5 GHz and o = 0.00062. The parameters used here
are I, = 500 nA and T' = 30 mK. The SQUID with 2., = 200
nA is operated at f = 0.757 and current biased at 120 nA, a
typical value for switching of the C-shunted circuit (the RC-
shunted circuit switches at higher current values). The mutual
inductance M = 8 pH (i.e. Ailp = 0.002). The shunt is Csp, =
30 pF and for the RC shunt Rs;, = 10 €. The leads are modeled
by R; = 100 .

the shunt circuit (Cyp,, or the series combination of Ry
and Csp,). We thus assume that the total impedance Z;(w)
can be described as

Zt(W) =

—1
1 1 1
4 +=1 35
<leJ 1 + Rsp Rl> ( )

iwCsp

where Ry, should be taken zero for the C-shunt scenario.

The circuits in Figure 4 are damped LC' resonators. It
is clear from (7) and (32) that one should keep the LC-
resonance frequency wrc = 1/+/L;Csp, where Re{Z;(w)}
has a maximum, away from the qubit’s resonance wy.s =
v/h. For practical values this requires wyc < wys for Alu-
minum technology (with Niobium-based technology, the
regime wrc > wres may be realized [44]). This then gives
the circuits a Re{Z;(w)} and J(w) as plotted in Figure 5.
For the circuit with the C' shunt

w?L?
Tll, forw < wre
Re{Zi(w)}~ R, forw=wrc (36)

1
wﬁcsm, for w > wre.
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Fig. 6. Typical relaxation times due to the C-shunted SQUID,
the RC-shunted SQUID, and coupling the microwave leads as
a function of the resonance frequency at which the qubit is
operated. The example of the microwave leads contribution is
for a mutual inductance M,.., to the coaxial line of M. =
0.1 pH. Parameters are further as described in the caption of
Figure 5.

For the circuit with the RC shunt

w?L?
TIL, for w <« % X

1
<R, forw=wre< RoCo

Re{Zi(w)} =~ ~
R)//Rgp, for w = wrc > =

RsnCsh
Rl//Rsha

The difference mainly concerns frequencies w > wrc,
where the C-shunted circuit has a Re{Z;(w)}, and thereby
a relaxation rate, that is several orders lower than for the
RC-shunted circuit.

For a C-shunted circuit with wrc < wres the
Re{Zi(wres)} =~ 1 ;- This yields for J(w) at w >

(37)

for w > wrc.

WEescfh
wrc )
@)1 (MLN\? , . 1
J 2 — Izt . 38
(LU) h WS @0 sq an f C?,h Rl ( )

The factor 1/w? indicates a natural cut-off for J(w), which
prevents the ultraviolet divergence [30,32] and which in
much of the theoretical literature is introduced by hand.
The RC-shunted circuit has softer cut off 1/w. The mixing
rate for the C-shunted circuit is then

o AW e (M,
! w5 2h @0

Tes

2
) If,q tan? f

Figure 6 presents mixing times 7, VS wpes for typi-
cal sample parameters (here calculated with the non-
approximated version of Re{Z;(w)}). With the C-shunted
circuit it seems possible to get 7. values that are very
long. They are compatible with the ramp times of the
SQUID, but too slow for fast repetition rates. In Figure 5
one can directly see from the values of J(w) that an RC-
shunted circuit with otherwise similar parameters yields
at wres/2m = 10 GHz relaxation times that are about four
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orders shorter. For the parameters used here they are in
the range of 15 ps. While this value is close to the de-
sired order of magnitude, one has to be aware of the fact
at these high switching current values the linearization
equation (26) may underestimate the actual noise. In that
regime, phase diffusion between different minima of the
washboard potential also becomes relevant and changes
the noise properties [37,53].

4.5 Dephasing times

At low frequencies w < wpc the C-shunted and RC-
272

shunted scheme have Re{Z;(w)} =~ wRLL" that

with (32) and (9)

such

_(@en)? (ML, L, L2
J(W) ~ h w @—Op Isq tan f E, (40)
o (MIN\? 5 L%
~ — I - 41
a h(@o)sqtanle (41)

The environment is Ohmic at low frequencies since we
have J(w) x w. For our sample parameters the second
term in (8) dominates, such that with (41) and for the
qubit operated where ¢ ~ v

2
I~ (2m) (Mlp

2 2
2 2
2 5 ) I, tan” f

LJ
2 s T
R B

(42)

Note in (26) that L; o< 1/I.,, such that the dephasing rate
(42) does not depend on the absolute value of the current,
but on the ratio I;4/Ic. For the typical sample parame-
ters as used in Figure 5 the dephasing time is about 10
ns, which is too short. However, we can gain a few orders
(if I is low enough) by the fact that we can do the quan-
tum coherent control at low I, (the previous estimate was
calculated for I, = 120 nA, in the switching region). At
Isq = 0 we find I'y = 0 in this linear approximation for
the SQUID inductance. At I,, = 0 we should therefore
estimate the dephasing due to second order terms. How-
ever, in practice the dephasing is probably dominated by
the second term in (27), which is due to a small asymme-
try in the fabricated SQUID junctions of a few percent.
This influence can be mapped on a small bias current (a
few percent of the critical current, say 5 nA) through the
SQUID. Therefore, at I,; ~ 0 the dephasing times can

be (1—20)2 times longer. Furthermore, the factor L?], as de-
fined in (26), is at 5 nA about a factor 2 lower than at
120 nA. For our parameters this allows for 74 ~ 20 ps, see
also Figure 7. Further improvement is feasible by mak-
ing e.g. Ry = 1 kQ, working with a lower mutual induc-
tance M or tuning the qubit close to the degeneracy point,
as in [12].

Finally, we would like to mention that in the litera-
ture on dissipative two-level systems one often assumes
Ohmic dissipation, corresponding to a purely resistive
shunt across the junctions of the qubit. For a description
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Fig. 7. The dephasing time (42) as a function of the bias cur-
rent I, through the SQUID (solid line). The dashed line shows
Te for Isq = 5 nA, a typical minimum value for the effective bias
current for a SQUID with a few percent asymmetry between
its junctions. At this point 74 = 131 us, and a = 1 x 107",
Parameters are further as described in the caption of Figure 5.
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Fig. 8. Circuit model for coaxial line that is inductively cou-
pled to the qubit. The coaxial line is modeled as a 50 2
impedance that is shorted near the qubit with an induc-
tance Lmw. The qubit is coupled to this short with a mutual
inductance M,.,. The noise that couples to the qubit results
from Johnson-Nyquist voltage noise 6V from the circuit’s total
impedance Z;, formed by a parallel combination of the 50 €2
impedance and L.

of such a system one usually introduces an artificial expo-
nential cut off at frequency w,, yielding J(w) of the form

J(w) = awexp (—i) : (43)

We

In our case, J(w) has substantial internal structure orig-
inating from the frequency-dependence of Re{Z;(w)}. In
order to compare our results to the Ohmic case, we plot
in Figure 5 an Ohmic fit to the actual J(w) of the DC
SQUID. For the parameters as in Figure 5 the resem-
blance is reasonable for a resistive shunt corresponding
to a = 0.00062, and a cut off w. = 0.5 GHz. For low cur-
rents, as for the dashed line in Figure 7 a = 1 x 10~7. This
corresponds to an extremely underdamped system, with a
long dephasing time.

5 Relaxation and dephasing from on-chip
control circuits

We will treat here the influence of noise from the mi-
crowave leads in a similar way as worked out for the
SQUID. Here the total environmental impedance Z;(w)
is formed by a 50 2 coax, that is shorted at the end by a
small inductance L, see the circuit model in Figure 8.
This inductance L,,,, has a mutual inductance M,,, to
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the qubit. The voltage noise is given by (21). The noise
leads to fluctuations de of the energy bias separation ¢ as
follows. The current noise in Ly, is 611 = lew oV. The
fluctuations in the flux @, are then 0@, = M., 611, and
the fluctuations in the energy bias are de = 21,09,. This

gives for the fluctuations (0 de),,

AR (M, hw
<5€ 5€>w = U <m> Re{Zt(W)}COth <m>

(44)
and for the environmental spectral density (6)

4 Myl \”
I = o (M) ez 9
The Re{Z;(w)} is that of a first order low-pass LR filter
with a —3 dB frequency wyr = R/L. For the L, to be
effectively a short its impedance wL,,,, should be small
compared to 50 €2 at the frequency of the applied mi-
crowave radiation (typically 10 GHz), giving L., < 1nH.
This can be realized by making the length of the short line
less than about 100 gm. This means that all relevant fre-
quencies are below the —3 dB frequency wrpr, and that
for both relaxation and dephasing we can approximate
272
Re{Z(w)} ~ &L

R (46)

with Ry = 50Q. For w < wrg, J(w) is again Ohmic,

dw (M)’

J(w , 47
(w) = Bl (47)
and with (9) we find for «
4 (Muwly)®
~ — Wmwlp) 4
@ 2rh  Rpw (48)

Note that these results are independent of Lj,.,. A
larger L., leads to enhanced voltage noise, but the re-
sulting current noise is reduced by the same factor. For
frequencies below wrr the current noise is just that of a
shorted 50 2 resistor. For frequencies higher than wy g,
Re{Zi(w)} = Rpw, such that J(w) has a very soft intrin-
sic 1/w cut off.

For the relaxation rate (7) as a function of the qubit’s
resonance frequency w;es we now have

242 (Myol,)? hwres
I~ — P th res \
" hSWres me «© 2kBT

(49)

This has a much weaker dependence on w;.s than for
the SQUID, results are plotted in Figure 6. The results
are plotted for M,,,, = 0.1 pH (further parameters are as
used for the SQUID calculations) and for this M,,,, value
the relaxation times are in the required range of about
100 ps. The value M, =~ 0.1 pH corresponds to a 5 pum
loop at about 25 pum distance from the microwave line,
and is compatible with the fabrication possibilities and

The European Physical Journal B

the microwave requirements. With this geometry it is still
possible to apply sufficient microwave power for pump-
ing the qubit’s Rabi dynamics at 100 MHz (i.e. pumping
with an oscillating @, of about 0.001 @¢ [19], which needs
an oscillating current of O'J?/IO—MS" ~ 20 uA, corresponding

mw

to 20nW, i.e. —47 dBm microwave power), while the dis-
sipated microwave power in the attenuators at the refrig-
erator’s base temperature remains well below the typical
cooling power of 1 uW.

For the second term of the dephasing rate (8) we thus
find for the qubit operated where € =~ v

= A Ol

T.
72 Row ki

(50)
Using the same parameters as in the above calculation
of the relaxation time we find o ~ 1 x 1077 and for
T = 30mK the dephasing time is 74, ~ 130 us. While
this dephasing rate is sufficient for demonstration experi-
ments and promising for applications, we like to note that
it is much harder to engineer this dephasing rate as com-
pared to the DC-SQUID dephasing. It is in practice quite
tedious to apply microwave technology with impedance
levels R,,,, much higher than 50 €2, both for externally
generated microwaves and on chip generators (it could
for instance be increased using a planar impedance trans-
former [54]). Making M,,,, smaller requires higher mi-
crowave currents, and thereby more microwave dissipation
on the mixing chamber. The cooling power per qubit will
quite likely remain below 1 W, so much stronger mi-
crowave signals from a larger distance is not an option.
Moreover, making M,,,, very small means that the con-
trol line is 100 pum or further away from the qubit. In this
case, applying microwaves locally to one specific qubit on
a chip with several coupled qubits is much harder.

6 Suppressing rates by freezing states
and idle states

With additional control techniques the decoherence rates
can be made better than the estimates made in the previ-
ous sections. These are based on the pre-factors in equa-
tions (7) and (8). Bringing the qubit in a so-called idle
state (¢ = 0) [18] can reduce the dephasing, but not be-
yond I',/2 (which is enhanced at € = 0).

Another useful technique is freezing. Here, the tun-
nel coupling A between the two qubit states is strongly
reduced before the measurement process starts with a
fast but adiabatic control current [19]. This allows for
much slower measurements, thus for weaker coupling to
a damped SQUID with very high resolution. Moreover,
it has the advantage that the tunnel coupling becomes
so week that the Hamiltonian almost commutes with o .
This can improve the correlation between the outcome
of 6, measurements, and energy states in the case that the
calculation states are energy eigen states. However, freez-
ing requires that the qubit junctions are realized as small
DC-SQUIDs. This means that &, noise will be strongly en-
hanced. The influence of this additional noise source can
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1.0 15 2.0
freeze factor

Fig. 9. Numerically simulated suppression of A in qubits
where one (solid) or three (dashed) of the junctions are realized
as small DC-SQUIDs, using typical qubit parameters as men-
tioned in the text. The horizontal axis is the factor by which
the Josephson energy of the relevant junctions is increased. For
the solid line, one can observe a non-monotonic dependence of
A on the freeze factor, which results from the fact that if the
Josephson coupling of the weak junction is strongly increased,
alternative tunneling paths between the current states open
up, see also reference [19].

be calculated along the same lines as in [32] and, assum-
ing that it is not correlated with the other noise sources,
add up to the rates we have calculated in this paper. See
Figure 9 for numerical estimates on the possible adiabatic
suppression of A.

7 Discussion and conclusion

We have developed a scheme for modeling the decoherence
of a persistent-current qubit due to its electromagnetic en-
vironment. Examples for both control and read-out elec-
tronics are worked out quantitatively. We discussed how
the dephasing and relaxation rates of the qubit can be de-
rived from the impedance of the electronic circuitry, and
provided design criteria for such electronics. In particular,
we have shown that even though the readout SQUID is
always close to the qubit, it can be effectively decoupled.
Our examples show that the present status of experimen-
tal technology should allow for the observation of quan-
tum coherent oscillations between macroscopic persistent-
current states.

In this final section, we like to point out that the theory
that is used is still in development. In particular, an envi-
ronment with a strongly structured spectrum may violate
the weak-coupling Born approximation at its resonance
frequencies, but it may also induce weak additional deco-
herence off-resonance. This situation is hardly accessible
with traditional theoretical methods for this problem and
alternative approaches such as the flow-equation scheme
in [55] may be needed. Furthermore, it is not clear whether
the impedance can be described by a single temperature.
At low frequencies, noise from parts in the system with
a higher temperature can reach the sample. However, the
experimental results reported in reference [12] indicate,
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that an analysis of the decoherence of the type we give
here gives good predictions of the experimental decoher-
ence time scales in a superconducting qubit.
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Note added in proof

During the referral of this manuscript, Rabi oscillations
have been observed in a setup of this type.
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Abstract. On the way to solid-state quantum computing, overcoming decoherence
is the central issue. In this contribution, we discuss the modeling of decoherence of
a superonducting flux qubit coupled to dissipative electronic circuitry. We discuss
its impact on single qubit decoherence rates and on the performance of two-qubit
gates. These results can be used for designing decoherence-optimal setups.

1 Introduction

Quantum computation is one of the central interdisciplinary research themes
in present-day physics [1]. It promises a detailed understanding of the often
counterintuitive predictions of basic quantum mechanics as well as a quali-
tative speedup of certain hard computational problems. A generic, although
not necessarily exclusive, set of criteria for building quantum computers has
been put forward by DiVincenzo [2]. The experimental realization of quan-
tum bits has been pioneered in atomic physics, optics and NMR. There, the
approach is taken to use microscopic degrees of freedom which are well iso-
lated and can be kept quantum coherent over long times. Efficient controls
are attached to these degrees of freedom. Even though these approaches are
immensely succesful demonstrating elementary operations, it is not evident
how they can be scaled up to macroscopic computers.

Solid-state systems on the other hand have proven to be scalable in
present-day classical computers. Several proposals for solid-state based quan-
tum computers have been put forward, many of them in the context of su-
perconductors [3]. As solid-state systems contain a macroscopic number of
degrees of freedom, they are very sensitive to decoherence. Mastering and
optimizing this decoherence is a formidable task and requires deep under-
standing of the physical system under investigation. Recent experimental
success [41,5] suggests that this task can in principle be performed.

In this contribution, we are going to study decoherence of superconducting
qubits coupled to an electromagnetic environment which produces Johnson-
Nyquist noise. We show, how the decoherence properties can be engineered
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© Springer-Verlag Berlin Heidelberg 2003
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by carefully designing the environmental impedance. We will discuss how the
decoherence affects the performance of a CNOT operation.

2 Superconducting Flux Qubits

Superconducting qubits [3,4,5,6] are very well suited for the task of solid-
state quantum computation, because two of the most obvious decoherence
sources in solid-state systems are supressed: Quasiparticle excitations experi-
ence an energy gap and phonons are frozen out at low temperatures [7]. The
computational Hilbert space is engineered using Josephson tunnel junctions
that are characterized by two competing energy scales: The Josephson cou-
pling of a junction with critical current I., Ey = I.®o /27, and the charging
energy Eo, = 2¢%/Cj of a single Cooper pair on the geometric capacitance
Cjy of the junction. Here @9 = h/2e is the superconducting flux quantum.
There is a variety of qubit proposals classified by the ratio of this ener-
gies. Whereas another contribution in this volume [8] focuses on the case
of charge qubits, F., > FEj, this contribution is motivated by flux qubit
physics, Ey > Eg,. However, most of the discussion has its counterpart in
other superconducting setups as well. Specifically, we discuss a three junction
qubit [6,9], a micrometer-sized low-inductance superconducting loop contain-
ing three Josephson tunnel junctions (Fig. 1). By applying an external flux
&, a persistent supercurrent can be induced in the loop. For values where @,
is close to a half-integer number of flux quanta, two states with persistent
currents of opposite sign are nearly degenerate but separated by an energy
barrier. We will assume here that the system is operated near ¢, = %@0. The

microwave current
a C

bias current control current

£ p

qubit

Fig. 1. Experimental setup for measurements on a flux qubit. The qubit (center)
is a superconducting loop that contains three Josephson junctions. It is induc-
tively coupled to a DC-SQUID (a), and superconducting control lines for applying
magnetic fields at microwave frequencies (b) and static magnetic fields (c). The
DC-SQUID is realized with an on-chip shunt circuit with impedance Z(w). The
circuits a)-c) are connected to filtering and electronics (not drawn)
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persistent currents in the classically stable states have here a magnitude I,.
Tunneling through the barrier causes a coupling between the two states, and
at low energies the loop can be described by a Hamiltonian of a two state
system [6,9],

A (1)
where ¢, and 6, are Pauli matrices. The two eigenvectors of &, correspond
to states that have a left or a right circulating current and will be denoted as
|L) and |R). The energy bias € = 21,,(®, — 1®) is controlled by the externally
applied field @,. We follow [10] and define A as the tunnel splitting at ¢, =
%@0, such that A = 2W with W the tunnel coupling between the persistent-
current states. This system has two energy eigen values j:%\/ A2 + £2 such
that the level separation v gives v = VA2 +£2. In general A is a function
of e. However, it varies on the scale of the single junction plasma frequency,
which is much above the typical energy range at which the qubit is operated,
such that we can assume A to be constant for the purpose of this paper.

In the experiments @, can be controlled by applying a magnetic field
with a superconducting coil at a distance from the qubit and for local control
one can apply currents to superconducting lines, fabricated on-chip in the
vicinity of the qubit. The qubit’s quantum dynamics will be controlled with
resonant microwave pulses (i. e. by Rabi oscillations). In recent experiments
the qubits were operated at € ~ 5A or € ~ 0 [4,9]. The numerical values given
in this paper will concentrate on the former case. At this point, there is a
good trade-off between a system with significant tunneling, and a system with
6 .-like eigenstates that can be used for qubit-qubit couplings and measuring
qubit states [6]. The qubit has a magnetic dipole moment as a result of the
clockwise or counter-clockwise persistent current The corresponding flux in
the loop is much smaller than the applied flux @,, but large enough to be
detected with a SQUID. This will be used for measuring the qubit states. For
our two-level system Eq. (1), this means that both manipulation and readout
couple to 6,. Consequently, the Nyquist noise produced by the necessary
external circuitry will couple in as flux noise and hence couple to &, giving
e a small, stochastically time-dependent part Jde(t).

Operation at € ~ 0 has the advantage that the flux noise leads to less
variation of v. In the first experiments [1] this has turned out to be crucial
for observing time-resolved quantum dynamics. Here, the qubit states can be
measured by incorporating the qubit inside the DC-SQUID loop. While not
working that out in detail, the methods that we present can also be applied
for the analysis of this approach. This also applies to the analysis of the
impact of electric dipole moments, represented by &,. With E., < Ej, these
couple much less to the circuitry and will hence not be discussed here.

As the internal baths are well suppressed, the coupling to the electromag-
netic environment (circuitry, radiation noise) becomes a dominant source of
decoherence. This is a subtle issue: It is not possible to couple the circuitry
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arbitrarily weakly or seal the experimental setup, because it has to remain
possible to control the system. One rather has to engineer the electromagnetic
environment to combine good control with low unwanted back-action.

Any linear electromagnetic environment can be described by an effective
impedance Zeg. If the circuit contains Josephson junctions below their crit-
ical current, they can be included through their kinetic inductance Ly, =
@y /(2m1. cos ¢), where ¢ is the average phase drop across the junction. The
circuitry disturbs the qubit through its Johnson-Nyquist noise, which has
Gaussian statistics and can thus be described by an effective Spin-Boson
model [11]. In this model, the properties of the oscillator bath which forms
the environment are characterized through a spectral function J(w), which
can be derived from the external impedance. Note, that other nonlinear ele-
ments such as tunnel junctions which can produce non-Gaussian shot noise
are generically not covered by oscillator bath models.

As explained above, the flux noise from an external circuit leads to € =
€0 + de(t) in Eq. (1). We parametrize the noise de(t) by its power spectrum

({0e(t),8¢(0)}), = h*J(w) coth(hw/2kpT). (2)

Thus, from the noise properties calculated by other means one can find J(w)
as was explained in Detail in [12]. In this contribution, we would like to out-
line an alternative approach pioneered by Leggett [13], where J(w) is derived
from the classical friction induced by the environment. In reality, the com-
bined system of SQUID and qubit will experience fluctuations arising from
additional circuit elements at different temperatures, which can be treated
in a rather straightforward manner.

3 Decoherence from the Electromagnetic Environment

3.1 Characterizing the Environment from Classical Friction

We study a DC-SQUID in an electrical circuit as shown in Fig. 1. It contains
two Josephson junctions with phase drops denoted by 7;/,. We start by
looking at the average phase vyex = (71 + 72)/2 across the read-out SQUID.
Analyzing the circuit with Kirchhoff rules, we find the equation of motion

by
7 2

d
2C 7 —Hex = —21, 0 cos(7;) Sin Yex + Ibias — 2 / At Yex ()Y (t = t').  (3)

2

Here, vin = (71 — 72)/2 is the dynamical variable describing the circulating
current in the loop which is controlled by the flux, Iy is the bias current
imposed by the source, Y (w) = Z71(w) is the admittance in parallel to the
whole SQUID and Y (7) its Fourier transform. The SQUID is described by
the junction critical currents I. ¢ which are assumed to be equal, and their
capacitances C'y. We now proceed by finding a static solution which sets the
operation point i, /ex,0 and small fluctuations around them, 67i,/ex. The
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static solution reads Inias = Ic eff SinYex,0 Where I o = 210 €0OS7in,0 is the
effective critical current of the SQUID. Linearizing Eq. 3 around this solution
and Fourier-transforming, we find that

2nl, t in,0Ze
Fres() = o0 Vimo o)

0 2D i) (1)
where Zeg(w) = (Z(w)™'+ 2iwCy+ (ikain)’l)fl is the effective
impedance of the parallel circuit consisting of the Z(w), the kinetic in-
ductance of the SQUID and the capacitance of its junctions. Neglecting
self-inductance of the SQUID and the (high-frequency) internal plasma
mode, we can straightforwardly substitute v, = 7®/®Py and split it into
Yin,0 = TPy 5/Po set by the externally applied flux @y g through the SQUID
loop and v = TMsqlq/Po where Mgq is the mutual inductance between
qubit and the SQUID and Ig(¢p) is the circulating current in the qubit as a
function of the junction phases, which assumes values 1, in the classically
stable states.

In order to analyze the backaction of the SQUID onto the qubit in the
two-state approximation, Eq. (1), we have to get back to its full, continuous
description, starting from the classical dynamcis. These are equivalent to a
particle, whose coordinates are the two independent junction phases in the
three-junction loop, in a two-dimensional potential

C(D9/21)*p = =VU(p, Dsq + IsMsq). (5)

The details of this equation are explained in [6]. C is the capacitance matrix
describing the charging of the Josephson junctions in the loop, U(g) con-
tains the Josephson energies of the junctions as a function of the junction
phases and Ig. is the ciculating current in the SQUID loop. The applied flux
through the qubit @4 is split into the flux from the external coil @, , and the
contribution form the SQUID. Using the above relations we find

Z,
ISMSQ =6P. — 27T2MS2Q1123 tan® 'Yin,OﬁIQ (6)

where 09 ~ Msqle0COSYex,08in7in,0 is the non-fluctuating back-action
from the SQUID.

From the two-dimensional problem, we can now restrict ourselves to the
one-dimensional subspace defined by the preferred tunneling direction [6],
which is described by an effective phase ¢. The potential restricted on this
direction, Uip(p) has the form of a double well [11,14] with stable minima
situated at £¢g. In this way, we can expand Uip(p, @q) =~ U(p, @4, x) +
Iq(p)IgMsq. Approximating the phase-dependence of the circulating current
as Iq(p) = I,¢o/po where I, the circulating current in one of the stable
minima of ¢, we end up with the classical equation of motion of the qubit
including the backaction and the friction induced from the SQUID
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Py ? 2 2772 72 2 Ze 1]
—Ceff (%) w4+ 2 MSQIbias tan ’Yin70m
= _awUlD(SOv Py g+ 5@:1)' (7)

From this form, encoded as D(w)p(w) = —0U/Jp we can use the prescription
given in [13] and identify the spectral function for the continuous, classical
model as Jeont = ImD(w). From there, we can do the two-state approximation
for the particle in a double well [14] and find J(w) in analogy to [12]

) = B (%)QI{? tan (52 Re{Zunw)) ®)

3.2 Qubit Dynamics under the Influence of Decoherence

From J(w), we can analyze the dynamics of the system by studying the
reduced density matrix, i.e. the density matrix of the full system where the
details of the environment have been integrated out, by a number of different
methods. The low damping limit, J(w)/w < 1 for all frequencies, is most
desirable for quantum computation. Thus, the energy-eigenstates of the qubit
Hamiltonian, Eq. (1), are the appropriate starting point of our discussion. In
this case, the relaxation rate I'. (and relaxation time 7,.) are determined
by the environmental spectral function J(w) at the frequency of the level
separation v of the qubit

ne—-L(4 2J<5)coth v 9)
P T o\ h %pT )’

where T is the temperature of the bath. The dephasing rate Iy (and dephas-
ing time 7,) is

5)2 kpT (10)

I
F¢:T¢1:?+2’ﬂ'0[<; h
with a = limy, 0 J(w)/(27w). These expressions have been derived in the
context of NMR [15] and recently been confirmed by a full path-integral
analysis [10]. In this paper, all rates are calculated for this regime.

For performing efficient measurement, one can afford to go to the strong
damping regime. A well-known approach to this problem, the noninteracting
blip approximation (NIBA) has been derived in [13]. This approximation
gives good predictions at degeneracy, e = 0. At low |e|] > 0 it contains an
artifact predicting incoherent dynamics even at weak damping. At high bias,
€ > A and at strong damping, it becomes asymptotically correct again. We
will not detail this approach here more, as it has been extensively covered in

[11,14].
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If J(w) is not smooth but contains strong peaks the situation becomes
more involved: At some frequencies, J(w) may fall in the weak and at others
in the strong damping limit. In some cases, whern J(w) < w holds at least
for w < 2 with some {2 > v/h, this can be treated approximately: one can
first renormalize Aqg through the high-frequency contributions [11] and then
perform a weak-damping approximation from the fixed-point Hamiltonian.
This is detailed in [16]. In the general case, more involved methods such as
flow equation renormalization [17] have to be used.

4 Engineering the Measurement Apparatus

From Eq. (8) we see that engineering the decoherence induced by the mea-
surement apparatus essentially means engineering Z.g. This includes also
the contributions due to the measurement apparatus. In this section, we are
going to outline and compare several options suggested in literature. We as-
sume a perfect current source that ramps the bias current I;,s through the
SQUID. The fact that the current source is non-ideal, and that the wiring to
the SQUID chip has an impedance is all modeled by the impedance Z(w).
The wiring can be engineered such that for a very wide frequency range
the impedance Z(w) is on the order of the vacuum impedance, and can be
modeled by its real part R;. It typically has a value of 100 2.

4.1 R-Shunt

It has been suggested [18] to overdamp the SQUID by making the shunt cir-
cuit a simple resistor Z(w) = Rs with Rs < 1/ Lyin/2Cjy. This is inspired by
an analogous setup for charge qubits, [3]. Following the parameters given in
[12], a SQUID with I, o = 200nA at $/P ~ 0.75 biased at Ipias = 120nA, we
find Ly, ~ 2 - 107°H. Together with Cj ~ 1fF, this means that the SQUID
is overdamped if R < Rpax = 1.4kQ2. Using Eq. 8, we find that this provides
an Ohmic environment with Drude-cutoff, J(w) = aw/(1 + w?/w? ;) where

wrr = R/Liin and a = (27)%/h (Msql,/P0) I, tan?*(n® /Do) L2, /Rs. Us-
ing the parameters from [12], Mgql,/®Po = 0.002, we find aR = 0.08Q2 and
wir/R = 8.3GHz/). Thus, for our range of parameters (which essentially
correspond to weak coupling between SQUID and qubit), one still has low
damping of the qubit from the (internally overdamped) environment at rea-
sonable shunt resistances down to tens of Ohms. For such a setup, one can
apply the continuous weak measurement theory as it is outlined e.g. in [18].
This way, one can readily describe the readout through measurement of Zg
which leaves the system on the superconducting branch. If one desires to read
out the state by monitoring the voltage at bias currents above the I g, our
analysis only describes the pre-measurement phase and at least shows that
the system is hardly disturbed when the current is ramped.
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4.2 Capacitive Shunt

Next, we consider a large superconducting capacitive shunt (Fig. 2a, as imple-
mented in [4,9]). The C shunt only makes the effective mass of the SQUID’s
external phase 7.y very heavy. The total impedance Zeg(w) and J(w) are
modeled as before, see Fig. 3. As limiting values, we find
2r2
wRLl", for w K wre
Re{Zeg(w)} ~ R, forw=wrc (11)
#‘gh&, fOI' w > wrc

We can observe that this circuit is a weakly damped LC-oscillator and
it is clear from (9) and (8) that one should keep its resonance frequency
wrc = 1/v/LjCqsn, where Re{Zeg(w)} has a maximum, away from the qubit’s
resonance wyes = v/h. This is usually done by chosing wi,c < wyes. For a
C-shunted circuit with wrc < wyes, this yields for J(w =~ wic)

2m)® (MI,\* , , (TP 1
J(w) =~ Ifias t — | == 12
((U) hwg @0 bias an @0 Csth ( )

The factor 1/w?® indicates a natural cut-off for J(w), which prevents the
ultraviolet divergence [11,10] and which in much of the theoretical litera-
ture is introduced by hand. Using Eq. (9), we can directly analyze mix-
ing times 7, VS wyes for typical sample parameters (here calculated with the

a |
3
0 JR B
1, bias @ /8\ Csh ; LJ %
N
b |
T R sh
I bias ,é\ LJ dv
N CShT

Fig. 2. Circuit models for the C-shunted DC-SQUID (a) and the RC-shunted DC-
SQUID (b). The SQUID is modeled as an inductance Lj. A shunt circuit, the
superconducting capacitor Cg, or the Rgn-Cyn series, is fabricated on chip very
close to the SQUID. The noise that couples to the qubit results from Johnson-
Nyquist voltage noise dV from the circuit’s total impedance Z.g. Zeg is formed by
a parallel combination of the impedances of the leads Z;, the shunt and the SQUID,
such that Z; = 1/Z; + 1/(Rsn + 1/iwCsp,) + 1/iwLy, with Ry, = 0 for circuit (a)
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Fig. 3. A typical Re{Z;(w)} for the C-shunted SQUID (a) and the RC-shunted
SQUID (b), and corresponding J(w) in (c) and (d) respectively. For comparison,
the dashed line in (c) shows a simple Ohmic spectrum, J(w) = aw with exponential
cut off we/2m = 0.5 GHz and « = 0.00062. The parameters used here are I, = 500
nA and 7' = 30 mK. The SQUID with 2., = 200 nA is operated at f = 0.75 7 and
current biased at 120 nA, a typical value for switching of the C-shunted circuit (the
RC-shunted circuit switches at higher current values). The mutual inductance M
= 8 pH (i. e. MI,/®Po = 0.002). The shunt is Cs, = 30 pF and for the RC shunt
Rsn, = 10 Q. The leads are modeled by R; = 100 2

non-approximated version of Re{Z;(w)}), see [12] for details. The mixing
rate is then I} ~ (2rA/h)>w;l (M1, /®0)° 2, tan®(nd/®g)(2hC2 Ry) ™!
coth (Awyes/2kpT). With the C-shunted circuit it seems possible to get 7,
values that are very long. They are compatible with the ramp times of the
SQUID, but too slow for fast repetition rates. For the parameters used here
they are in the range of 15 us. While this value is close to the desired order
of magnitude, one has to be aware of the fact that at these high switching
current values the linearization of the junction as a kinetic inductor may un-
derestimate the actual noise. In that regime, phase diffusion between different
minima of the washboard potential also becomes relevant and changes the

noise properties [19,20].

4.3 RC-Shunt

As an alternative we will consider a shunt that is a series combination of a
capacitor and a resistor (Fig. 2b) (RC-shunted SQUID). The RC shunt also
adds damping at the plasma frequency of the SQUID, which is needed for
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realizing a high resolution of the SQUID readout (i. e. for narrow switching-
current histograms) [19]. The total impedance Z;(w) of the two measurement
circuits are modeled as in Fig. 2. For the circuit with the RC' shunt

272
L
le", for w < wrc

SR, forw=wiec< gy (13)
Ri//Rgp, for w = wrc > 5
R;//Rsp, forw > wre

Re{Zi(w)} ~

The difference mainly concerns frequencies w > wp¢, where the C-shunted
circuit has a stronger cutoff in Re{Z.g(w)}, and thereby a relaxation rate,
that is several orders lower than for the RC-shunted circuit. Given the values
of J(w) from Fig. 3 one can directly see from the values of that an RC-
shunted circuit with otherwise similar parameters yields at wyes/2m = 10
GHz relaxation times that are about four orders of magnitude shorter.

5 Coupled Qubits

So far, we have applied our modeling only to single qubits. In order to study
entanglement in a controlled way and to eventually perform quantum algo-
rithms, this has to be extended to coupled qubits.

5.1 Hamiltonian

There is a number of ways how to couple two solid-state qubits in a way which
permits universal quantum compuation. If the qubit states are given through
real spins, one typically obtains a Heisenberg-type exchange coupling. For
other qubits, the three components of the pseudo-spin typically correspond
to physically completely distinct variables. In our case, ¢, corresponds to the
flux through the loop whereas /, are charges. Consequently, one usually
finds Ising-type couplings. The case of &}(,1) ® &52) coupling, i.e. coupling by
a component which is orthogonal to all possible single-qubit Hamiltonians,
has been extensively studied [21,22], because this type is straightforwardly
realized as a tunable coupling of charge qubits [3]. We study the generic case
of coupling the “natural” variables of the pseudospin to each other, which
can be realized in flux qubits using a switchable superconducting transformer
[6,23], but has also been experimentally utilized for coupling charge qubits
by fixed capacitive interaction [24].

We model the Hamiltonian of a system of two qubits, coupled via Ising-
type coupling. Each of the two qubits is described by the Hamiltonian Eq.
(1). The coupling between the qubits is described by Hyq = —(K/Q)&gl) ®
&22) that represents e.g. inductive interaction. Thus, the complete two-qubit
Hamiltonian in the absence of a dissipative environment reads

. 1 , N1
__1 0 4 A0 s
Hogp = =3 ‘;2 (ezgzz +Azg;) SKeW6?. (14)
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For two qubits, there are several ways to couple to the environment: Both
qubits may couple to a common bath such as picked up by coupling elements
[6]. Local readout and control electronics coupling to individual qubits [0]
can be described as coupling to two uncorrelated baths. In analogy to the
procedure described above, one can determine the spectral functions of these
baths by investigating the corresponding impedances.

In the case of two uncorrelated baths, the full Hamiltonian reads

R R 1 om - X
H3Y, = Hagy + Z §0£)X()+H31 + Hp,, (15)
i=1,2

X0 = (>, A, are collective coordinates of the bath. In the case of two
qubits coupling to one common bath we model our two qubit system in a
similar way with the Hamiltonian

R R 1/ N & s
H21§b = Hogpp + 5 (09) +Ug2)) X+ Hp, (16)

where X is a collective bath coordinate similar to above.

5.2 Rates

We can derive formulae for relaxation and dephasing rates similar to Eqgs. (9)
and (10). Our Hilbert space is now four-dimensional. We label the eigenstates
as |E1)...|E4). We chose | E1) to be the singlet state (|T]) — ||1)) /v/2, which
is always an eigenstate [25] whereas |E2)...|F4) are the energy eigenstates
in the triplet subspace, which are typically not the eigenstates of [7,(21) + 622).
As we have 4 levels, we have 6 independent possible quantum coherent os-
cillations, each of which has its own dephasing rate, as well as 4 relaxation
channels, one of which has a vanishing rate indicating the existence of a stable
thermal equilibrium point. The expressions for the rates, although of simi-
lar form as in Eqgs. (9) and (10) are rather involved and are shown in [25].
Figure 4 displays the dependence of typical dephasing rates and the sum of
all relaxation rates I'gr on temperature for the case A = ¢ = K = hrg with
vs = 1GHz. The rates are of the same magnitude for the case of one common
bath and two distinct baths. If the temperature is increased above the roll
off point set by the intrinsic energy scales, Ts = (h/kp)vs = 4.8 - 1072 K,
where F; = 1GHz, the increase of the dephasing and relaxation rates follows
a linear dependence, indicating that the environmental fluctuations are pre-
dominantly thermal. As a notable exception, in the case of one common bath
the dephasing rates I',,, = I',,, go to zero when the temperature is decreased
while all other rates saturate for T"— 0. This can be understood as follows:
the singlet state |E1) is left invariant by the Hamiltonian of coupled qubits
in a common bath, Eq. (16), i.e. it is an energy eigenstate left unaffected
by the environment. Superpositions of the singlet with another eigenstate
are usually still unstable, because the other eigenstate generally suffers from
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Fig. 4. Log-log plot of the temperature dependence of the sum of the four relaxation
rates and selected dephasing rates. Qubit parameters K, € and 7 are all set to Es and
the bath is assumed to be Ohmic o = 1073, The upper panel shows the case of one
common bath, the lower panel the case of two distinct baths. At the characteristic
temperature of approximately 0.1 - T the rates increase very steeply

decoherence. However, the lowest-energy state of the triplet subspace |E2)
cannot decay by spontaneous emission and flip-less dephasing vanishes at
T = 0, hence the dephasing rate between eigenstates |[E1) and |E2) vanishes
at low temperatures, see Fig. 4. As shown in [25], there can be more “pro-
tected” transitions of this kind if the qubit parameters are adjusted such that
the symmetry between the unperturbed qubit and the coupling to the bath
is even higher, e.g. at the working point for a CPHASE operation.

5.3 Gate Performance

The rates derived in the previous section are numerous and do strongly de-
pendend on the tunable parameters of the qubit. Thus, they do not yet allow
a full assesment of the performance as a quantum logic element. A quan-
titative measure of how well a two-qubit setup performs a quantum logic
gate operation are the gate quality factors introduced in [20]: the fidelity,
purity, quantum degree and entanglement capability. These factors charac-
terize the density matrices obtained after attempting to perform the gate
operation in a hostile environment, starting from all possible initial condi-
tions p(0) = |&] ) (¥ |. To form all possible initial density matrices needed to
calculate the gate quality factors, we use the 16 unentangled product states
|w? ), 7 =1,...,16 defined [22] according to (¥, ), [¥),, (a,b =1,...,4), with
1) = [0}, 122) = [1), [ %) = (1/V2)(|0) +11)), and [#5) = (1/v/2)(|0)+i [1)).
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They form one possible basis set for the superoperator vg which describes the
open system dynamics such that p(tg) = vgp(0) [22,26]. The CNOT gate is
implemented using rectangular DC pulses and describing dissipation through
the Bloch-Redfield equation as described in [3,25].

The fidelity is defined as F = (1/16) 32)° | (¥, | Ug pUc [¥,). The fi-
delity is a measure of how well a quantum logic operation was performed.
Clearly, the fidelity for the ideal quantum gate operation is equal to 1. The
second quantifier is the purity P = (1/16) Z;il tr [(p]é)ﬂ, which should be
1 in a pure and 1/4 in a fully mixed state. The purity characterizes the effects
of decoherence. The quantum degree measures nonlocality. It is defined as the
maximum overlap of the resulting density matrix after the quantum gate op-
eration with the maximally entangled Bell-states Q = max; j (¥%.| p& |5 .).
For an ideal entangling operation, e.g. the CNOT gate, the quantum degree
should be 1. It has been shown [27] that all density operators that have an
overlap with a maximally entangled state that is larger than the value 0.78
[22] violate the Clauser-Horne-Shimony-Holt (CHSH) inequality and are thus
non-local. The entanglement capability C is the smallest eigenvalue of the
partially transposed density matrix for all possible unentangled input states
|7 ). (see below). It has been shown [25] to be negative for an entangled state.
This quantifier should be -0.5, e.g. for the ideal CNOT, thus characterizing
a maximally entangled final state.

In Fig. 5, the deviations due to decoherence of the gate quality factors
from their ideal values are shown. Similar to most of the rates, all gate quality
factors saturate at temperatures below a threshold set by the qubit energy
scales. The deviations grow linearily at higher temperatures until they reach
their theoretical maximum. Comparing the different coupling scenarios, we
see that at low temperatures, the purity and fidelity are higher for the case
of one common bath, but if temperature is increased above this threshold,
fidelity and purity are approximately equal for both the case of one common
and two distinct baths. This is related to the fact that in the case of one
common bath all relaxation and dephasing rates vanish during the two-qubit-
step of the CNOT (see [25] for details), due to the special symmetries of
the Hamiltonian, when temperature goes to zero as discussed above. Still,
the quantum degree and the entanglement capability tend towards the same
value for both the case of one common and two distinct baths. This is due to
the fact that both quantum degree and entanglement capability are, different
than fidelity and purity, not defined as mean values but rather characterize
the “best” possible case of all given input states.

In the recent work by Thorwart and Hénggi [22], the CNOT gate was
investigated for a (}éz) ® coupling scheme and one common bath. They
find a pronounced degradation of the gate performance with gate quality fac-
tors only weakly depending on temperature. If we set the dissipation and the
intrinsic energy scale to the same values as in their work, we also observe
only a weak decrease of the gate quality factors for both the case of one com-

&)
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Fig.5. Log-log plot of the temperature dependence of the deviations of the four
gate quantifiers from their ideal values. Here the temperature is varied from ~ 0 to
2. E,. In all cases a = aq = o = 1073, The dotted line indicates the upper bound
set by the Clauser-Horne-Shimony-Holt inequality

mon bath and two distinct baths in the same temperature range discussed
by Thorwart and Hénggi. However, see Fig. 5, overall we find substantially
better values. This is due to the fact that for 6, ® &, coupling, the Hamilto-
nian does not commute with the coupling to the bath during the two-qubit
steps of the pulse sequence, i.e. the symmetries of the coupling to the bath
and the inter-qubit coupling are not compatible. The dotted line in Fig. 5
shows that already at comparedly high temperature, about 20 qubit ener-
gies, a quantum degree larger than Q = 0.78 can be achieved. Only then, the
Clauser-Horne-Shimony-Holt inequality is violated and non-local correlations
between the qubits occur as described in [22]. Thus, even under rather mod-
est requirements on the experimental setup which seem to be feasible with
present day technology, it appears to be possible to demonstrate nonlocality
and entanglement between superconducting flux qubits.

6 Summary

It has been outlined, how one can model the decoherence of an electromag-
netic environment inductively coupled to a superconducting flux qubit. We
have exemplified a procedure based on analyzing the classical friction induced
by the environment for the specific case of the read-out SQUID. It is shown
that the SQUID can be effectively decoupled from the qubit if no bias cur-
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rent is applied. The effect of the decoherence on relaxation and dephasing
rates of single qubits has been discussed as well as the gate performance of
coupled qubits. We have shown that by carefully engineering the impedance
and the symmetry of the coupling, one can reach excellent gate quality which
complies with the demands of quantum computation.
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3.3 Manipulation of superconducting qubits

In the previous works, we have focused on finding the appropriate pa-
rameters for mapping a superconducting qubit coupled to an electric
circuit by a system-plus-bath Hamiltonian. From this, we have straight-
forwardly predicted the dynamics of a qubit with a time-independent
system Hamiltonian. In Ref. [194], we study the interplay of driving
and dissipation on a single qubit. We focus on continuous driving,
reflecting the status of experiments [189] which had already been com-
pleted while this work was done. In contrast to models in quantum
optics and NMR, the driving of the flux qubit cannot be reduced to a
simple, integrable rotating-wave Hamiltonian: the symmetry is lower
than in atomic systems and driving fields can - and (given the strong
decoherence) have to - be stronger. Thus, nonlinear driving effects are
likely to occur and can be used in order to experimentally characterize
all relevant properties of the sample.

In paper [195], a system of two coupled qubits in given environments
is studied. The model of the qubits and environments is motivated by
what can be done in superconducting flux qubits. In particular, since
in these systems the decoherence is predominantly due to flux noise
and the inter-qubit coupling is due to flux, the coupling to the noise
commutes with the coupling Hamiltonian, but not with the single-qubit
Hamiltonians. The dynamics of this setups is far more complex than
in the single qubit case, in particular, it has six distinct nonzero eigen-
frequencies, corresponding to n(n — 1)/2 level splittings in the case of
n = 27 levels and ¢ = 2 qubits. We give the distinct dephasing rates
of these transitions and illustrate the dynamics. owever, these data do
not provide too clear information on the performance on the device.
Specifically, the rates depend on the parameter settings of the Hamil-
tonian in subtle and diverse ways. Thus, we also simulate controlled
phase-shift (CPHASE) and controlled not (CNOT) quantum gates us-
ing rectantular DC pulses, and characterize our results in terms of the
gate-quality factors from quantum information theory. We show that
on the level of coherence of present day devices, it may be well within
reach to demonstrate entanglement between coupled qubits. At low
temperatures, the performance of the CPHASE becomes ideal, because
the Hamilton operator commutes with the bath coupling at all times.
The CNOT is by far more limited, because the single-qubit operations
which are necessary on top of the CPHASE do not have this symmetry

property.
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Theoretical analysis of continuously driven dissipative solid-state qubits
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We study a realistic model for driven qubits using the numerical solution of the Bloch-Redfield equation as
well as analytical approximations using a high-frequency scheme. Unlike in idealized rotating-wave models
suitable for NMR or quantum optics, we study a driving term which neither is orthogonal to the static term nor
leaves the adiabatic energy value constant. We investigate the underlying dynamics and analyze the spectros-
copy peaks obtained in recent experiments. We show, that unlike in the rotating-wave case, this system exhibits
nonlinear driving effects. We study the width of spectroscopy peaks and show, how a full analysis of the
parameters of the system can be performed by comparing the first and second resonance. We outline the
limitations of the NMR linewidth formula at low temperature and show, that spectroscopic peaks experience a
strong shift which goes much beyond the Bloch-Siegert shift of the eigenfrequency.

DOI: 10.1103/PhysRevB.68.012508 PACS nuntder74.50:+r, 05.40-a, 85.25.Dq, 03.67.Lx

Coherent manipulation of quantum states is a well estabtion of J(w) to the setup parameters is detailed in Ref. 5. The
Il_shed technique in atomic and molec_ular physics. In thesetatic energy splitting of the pseudospin/iasw/eoz+A2. This
fields, one works with “clean” generic quantum systemsmodel is also applicable to other Josephson qubits and other
which can be very well decoupled from their environments reajization? In particular, the strong driving regime we are
Moreover, it is possible to apply external fields in a way suchyging 1o elaborate on has recently been realized in several
that strong symmetry relations between the static and thgetupsl_O—H We study the effective dynamics of the pseu-
F'me'depef?def“ part Of. the Hamiltonian apply and the r_es'“'ltaospin having traced out the bath in the limit of weak damp-
ing dynamics is very simple and can be treated analytlcallymg a<1 which is appropriate for quantum computation.

In solid-state systems, the situation is different. Not only da..,”. " : .
they contain a macroscopic number of degrees of freedoorp{hls is done using the Bloch-Redfield equatidiThe result-

which form a heat bath decohering the quantum states to HeY equatlon s of 'Markov!an form n the.sense that it o'nly
controlled, but also is the choice of controllable parameter£°Ntains the density matrix at a single time, however, it is
much more restricted. A quantum-mechanical two state sy<derived in such a way, that the free coherent evolution during
tem (TS realized in a mesoscopic circuit can be identifiegthe interaction wlth the b_ath is fully tal_<en into a<_:count such
with a (pseudgspin, however, in that case the different com- that the resulting equation is numerically equivalent to a
ponents of the spin may correspond to physically distincfully non-Markovian path-integral scherhié and only
observables such as, e.g., magnetic flux and electric charggnemory terms beyond the Born approximation are dropped.
This naturally limits the possibilities of controlling arbitrary The explicit form of the equations for this situation as well as
parameters of the pseudospin. Hence, in order to describe titiee formulas for the rates correspond to those given in Ref. 7.
direct control of quantum states in mesoscopic devices, cone compare our numerical results to analytical formulas de-
cepts from NMR or quantum optics cannot biectly ap-  rived in the framework of a high-frequency approximatibn
plied but have to be carefully adapted. In particular, as decowhich involves averaging over the driving field and has
herence is usually rather strong in condensed matter systemsonetheless shown to give a good estimate for the system
one can attempt to drive the system rather strongly in ordeglynamics even close to resonanées.
to have the operation time for a quantum gate, usually set by |nitial experiments on quantum bits such as Ref. 3 do not
the Rabi frequency, as short as possible. monitor the real-time dynamics of the system as in Ref. 4,
We concentrate on the case of a persistent current quaecause the read-out is much slower than the decoherence,
tum bit"~* driven through the magnetic flux through the loop j e, the dephasing time, is too short. In order to optimize
and damped predominantly by flux naiseith Gaussian sta-  the experimental setup, it is important to measure hegh
tistics. This setup is accurately described by the dfiYen ang the relaxation timeg, even and in particular if they are

spin-boson mod&| insufficient. In the standard NMR-case, this is done by study-
. ing the width of the resonand¢éWe will detail that a some-
et). A. . ~ pf 1 . what modified analysis can be performed for solid-state qu-
=5 0 ng+‘722 Cixi+2i 2_mi+§mi“’i Xi | bits and what are its limitations. We discuss both

(1) situations>* Our results thus help to analyze the decoherence
as observed in Refs. 3,4, and outline the possibilities and
wheree(t) = o+ scosQt and the oscillator bath is assumed limitations of driving the system in the nonlinear regime.
to be ohmic with a spectral density J(w) We have numerically solved the driven Bloch-Redfield
=(77/2)2i(ci2/miwi)6(w—wi)=27rawe"‘”’”0. The connec- equation. The real-time dynamics is illustrated in Fig. 1.

0163-1829/2003/68)/0125084)/$20.00 68 012508-1 ©2003 The American Physical Society
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These oscillations can lead to errors of the Hadamard gate.
On a longer time scale, the Rabi oscillations decay. The time
scales will be discussed later on. In general, if one is not
exactly on resonance, these oscillations are combined with
nonoscillatory decay, see Figs(al and Ib). At very long
times, the system assumes a quasistationary VRJue

Corresponding to the situation of a spectroscopy experi-
ment, we now turn to the analysis of the quasistationary state
which is established after a long tinie> T(,,,TR,w,;l. We
compare our full numerical solutions with analytical expres-
sions we have obtained from the high-frequency approxima-
tion of Refs. 7,14. As a result of this approach, the TSS is
mapped onto a coupled ensemble of TSSs corresponding to
the original system emitting or absorbinghotons from the
driving field during the tunneling. The energy bias of these
individual systems ig,=ey—n{) and the tunnel matrix el-
ement

FIG. 1. {o,)(t) at fixed frequency)/2w=6.6 GHz for different
bias points.(a) Off resonancep/27=2.9 GHz, incoherent decay
towards thermal equilibrium(c) on resonancey/27m=6.6 GHz,

Rabi oscillations decaying on the scale of a dephasing tipe  where thel,, are Bessel functions. At low driving fields, we

A =AJ,(s/Q), (2

towards a dynamical equilibrium staté) close to the resonance, can approximated ,=(A/n!)(s/2Q)" as we would expect
vI2m=6.4 GHz, combination of decoherence and relaxation, anq’rom the expansion of a perturbation series in the driving
(d) short-time dynamics highlighting the fast oscillating component,strength. Thed , can hence be viewed asphoton Rabi fre-

see text.

quencies. This implies, that the usual single-photon fre-
quency gets replaced hy; =sA/v, which can be interpreted

The dynamics shows distinct features on different timeas only the projection of the driving field onto the direction
scales. As expected, there are clear Rabi oscillations on thie pseudospin space orthogonal to the static Hamiltonian. In
scale of the effective driving strengtiee below. In quan-
tum computing applications, these would be used for thdions for the eigenfrequencies have been solved, taking into
implementation of a Hadamard gate. On top of this, there araccount an appropriate number of terthsThe dynamical
fast components: The dominating one oscillates with théwo state systems are characterized by individual dynamical
driving frequency, which originates in the fact that the driv- dephasing rateE , , and a common relaxation ratg .7 0n
ing is not perpendicular to the static field. A weaker one,thenth resonancd,, , can be very low, much lower than off
which oscillates at twice the driving frequency, comes fromresonance, as can be seen in Fig. 1, and largely exceed the
the counter-rotating term perpendicular to the static fieldintrinsic dephasing time. This has been observed in Refs. 1,4.

order to obtain the solid curves in Fig. 2 the secular equa-

a) b)
1.0; 1.0,
P? P,
0.5 0.51
0.0 analytical 0.0,
05 approximation 0.5 FIG. 2. (o, in the long-time limit at fixed
) ® Bloch-Redfield - frequencyQ/27w=6.6 GHz as a function of the
1.0 1.0 energy bias for different values of the driving
0 5 10 15 o 5 10 15 strengths/Q = 0.034,0.43,1.7,2./(a)—(d)]. From
P 1.0, C) €p(GHz) P1_o. d) €y(GHz) (b)—(d), nonlinear resonances can be identified.
0 ' @ (d) already shows negative valuessahall posi-
0.54 0.5 tive €5, which can be identified as the coherent
destruction of zero-photon tunneling. Further
0.04 0.0 peaks occur at even higher bias.
-0.5 -0.5
-1.0 T r . -1.0 T . ,
0 5 10 15 5 10 15
€0(GHz) €0(GHz)
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can see, that the step which iset=0 in case(a) is shifted
to eg= in case(d). This phenomenon, the coherent de-
struction of tunneling relies on destructive interference of
the dressed stateformed by the TSS and a cloud of photons
from the driving field. This interpretation is supported by the
dynamics of(o,)(t). As seen in Fig. 3, which shows the
dynamics at the degeneracy point for different driving
strengths, the zero-photon tunneling is slowed down and
brought to a standstill. If that strong driving can be applied to
solid-state qubits, it would provide an alternative for control-
ling Ay by a cw microwave field instead of an additional
magnetic flux as proposed in Ref. 2.

At very weak driving, the peak position corresponds to
the qubit eigenfrequendy = v. This is not reliably predicted
by the high-frequency approximation. At stronger driving,
the peak gets shifted. Closer inspection as in Fig. 4 shows,
that this shift goes much beyond the usual Bloch-Siegert

FIG. 3. (o,) at strong driving with high frequency)/2w  shift® of the dynamical eigenfrequency, in fact, one can show
=6.6 GHz (where A/2m=660 MHz). By increasing the driving that the position of thpeakin steady state and the eigenfre-
strength, the tunneling is slowed down and brought to a standstillquency do not coincide. The former is given by balancing of

rates and it can be shown that in lowest order gets shifted

Figure 2 shows numerical and analytical results Rar ~ by*® 5epeakzszl89 whereas the Bloch-Siegert shift for our
=lim_.(0o,) at a fixed frequency)/2m=6.6 GHz as a case isdegs=A2s?/(160Q3). As a more general conclusion,
function of the energy bias,. This corresponds to a realistic already at modest not-too-weak driving, the resonance posi-
experimental situatiof.In Fig. 2(a), taken at weak driving tions do not necessarily reflect the eigenfrequencies of the
field, only the regular resonance corresponding to the transsystem.
tion between the two eigenstates driven by absorbing a single In Fig. 5, the height of the two lowest order peaks is
photon can be seen. At somewhat stronger driving, Rig, 2 shown. It can be seen, that, from the low-driving side, they
this peak grows wider and a second resonance appears, cgaturate as soon as their effective Rabi frequekigcgxceeds
responding to the simultaneous absorption of two photonsl/\/r,7,. At very high driving, the peaks show an inversion
At higher fields, Fig. &), these peaks grow and start to of population.
dominate over the background. They also turn asymmetric. For the optimization of qubit setups on the way to coher-
This trend culminates in the situation shown in Figd)2In  ent dynamics, it is important to characterize its coherence
that caseP., doesnot grow to positive values at small posi- properties from the spectroscopic data. In NMR, this is done
tive €q, but it gets negative and then directly approaches thérom the linewidth given by
first resonance. The reason for this behavior can be identified

30 40 50

time(ns)

50 "o
time(ns)

20 30 40 10 20 30 40 50

time(ns)

within the high-frequency approximation: The lowest order- 80=21,%+ wrTrl/ Ty, 3
tunnel frequencyAo=AJy(s/Q)) vanishes at this particular
driving strength. Indeed, comparing FiggaRand Zd) one s
1 |
6.6 =
0.8 -
§ 6.5 §
S 64 Bos ]
= x
[ 1] 1
o, 6.3 { ,'
& 0.4 . ]
6.2
0.2 4 —— Amplitude first peak analytical H
6.1 ,' e Amplitude first peak Bloch—Redfield
. ) - = Amplitude second peak analytical
0 02 04 06 0.8 1 A,’ A Amplitude second peak Bloch-redfield
00 05 1 1.5 2
s/® S/e

FIG. 4. Shift of the spectroscopy peak as a function of the driv-
ing strength forw/27m=6.6 GHz andA/27=660 MHz. We com-
pare to the usual Bloch-Siegert shift formttasheg and the for-

mula derived in the textsolid).

FIG. 5. Heights of the two lowest resonances as a function of
the driving strengths at v/27=6.6 GHz, A/27=660 MHz,
0/27=6.6 GHz. The solid and dashed lines are extrapolated NMR
formulas.
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We can essentially identify three regimes: A saturation
broadening regime at low powers, Wheﬂé)n:ZT;l, a
saturated regimej(),=2A v 7r/ 7, and a nonlinear regime,
where the numerical curve deviates from E4). due to the
fact, that the high Rabi frequency shifts the relevant energy
scales and modifies the time scales given in &g. Note,
that in this regime, the general curve Bf, is greatly de-
formed (see Fig. 2 and the width of a peak becomes am-
biguous.

This result allows to measure essentially all interesting
parameters of the system experimentally. By extrapolating
the level separation at the degeneracy pastit was done in
Eqg. (3)], one obtaing\. By tracking the resonance positions

at weak driving, one can evaluatg as a function of the
external control paramet@in Eq. (3) this would be the mag-
0 0 netic flux]. By driving in the saturated regime, the widths of
8 A "’s(GHZ;S I Z(GHZ‘; the first and second peak become, according to @&J.
: 60 ,=2A 5\ TR/ T4, hence by taking their ratio we find the

FIG. 6. Widths of the two lowest resonances as a function of theeffective driving strength fromA,/A;=J,(s/€)/Jo(s/(2)

driving strengths at A/27=660 MHz and(Q/27=6.6 GHz. The =g/2 and by tracking the slope of the first resonance we find

solid line corresponds to the extrapolated NMR formula discusse(jt'lhe_raﬁm’r /T¢'_Fina”y’ examiniljg the saturation broadening
in the text. regime of the first resonance gives the absolute valug, of

In conclusion, we have numerically and analytically ana-

where wg is the Rabi frequency at resonance, which coin-lyzed the spin-boson system, which, e.g., represents a
cides with the strength of the driving field. A generalization SQUID qubit, in the weak damping regime, driven by con-
of this formula to our case has to take into account lowtinuous fields. As compared to the more familiar situation in
temperatures and the different driving situation. MoreoverNMR, this system is both different in the character of the
wg is usually not directly known to sufficient precision, be- driving and the low temperature governing the dissipation.
cause the driving strength depends on the attenuation of th&/e¢ have shown, that the key features of this system, Rabi

applied fields on their way to the sample and the efficiency?scillations, and saturation of the linewidth, persist qualita-
of the coupling®® tively as has been experimentally confirnfethey are, how-

Our analysis suggests the generalization of B).is  €ver altered on a quantitat_i\(e level, such as an unanticipat-
given by edly strong shift of the position of the resonance peak, and
also supplemented by new phenomena such as higher-
harmonics generation, oscillations{af,) on the scale of the
) ) ) driving field, and coherent destruction of tunneling. We have
where (1, is the width(in frequency of the n-photon reso-  finajly outlined a scheme how to determine all relevant pa-
nance and\, is the effective Rat_)l frequency defined above. gmeters (tunnel spliting, energy dispersion, driving
At low powerss<(}, they are given by the rates from the gyrength, dephasing and relaxation tine a quantum bit

undriven Ohmic case solely through spectroscopy.
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Solid-state quantum bits are promising candidates for the realization safalable quantum computer.
However, they are usually strongly limited by decoherence due to the many extra degrees of freedom of a
solid-state system. We investigate a system of two solid-state qubits that are coupted wia type of
coupling. This kind of setup is typical fggseudospirsolid-state quantum bits such as charge or flux systems.
We evaluate decoherence properties and gate quality factors in the presence of a common and two uncorrelated
baths coupling tar,, respectively. We show that at low temperatures, uncorrelated baths do degrade the gate
quality more severely. In particular, we show that in the case of a common bath, optimum gate performance of
a controlledrPHASE gate can be reached at very low temperatures, because our type of coupling commutes with
the coupling to the decoherence, which makes this type of coupling interesting as compared to previously
studied proposals withr{’® o) coupling. Although less pronounced, this advantage also applies to the
controlledNoT gate.

DOI: 10.1103/PhysRevA.67.042319 PACS nuntber03.67.Lx, 03.65.Yz, 05.46-a, 85.25-]

l. INTRODUCTION oVe o) Ising-type coupling. This indicates that the com-
putational basis states are coupled, which, i.e., in the case of

Quantum computation has been shown to perform certaiflux qubits are magnetic fluxes, whereas;, are electric
tasks much faster than classical compuférs3]. Presently, charges. Ther, observable is a natural way of coupling,
very mature physical realizations of this idea originate inbecause it is typically easy to couple to. We will study a two
atomic physics, optics, and nuclear magnetic resonanceubit-system coupled this way that is exposed to Gaussian
These systems are phase coherent in abundance, howeuesise coupling too,, the “natural” observable. This ex-
scaling up the existing few-qubit systems is not straightforample accounts for the crucial effect of electromagnetic
ward. Solid-state quantum computers have the potential achoise in superconducting qubits. We will compare both the
vantage of being arbitrarily scalable to large systems otases of noise that affects both qubits in a correlated way and
many qubits|4—6]. Their most important drawback is the the case of uncorrelated single-qubit errors. We determine
coupling to the many degrees of freedom of a solid-stateéhe decoherence properties of the system by application of
system. Even though recently, there has been fast progresstiie well-known Bloch-Redfield formalism and determine
improving the decoherence properties of experimentally requality factors of a controlledioT (cNOT) gate for both
alized solid-state quantum bifg—11], this remains a formi- types of errors and feasible parameters of the system.
dable task.

Quite a lot is known about decoherence properties of Il. MODEL HAMILTONIAN
single solid-state qubits, see, e.g., R¢i2—14, but much
less is known about systems of two or more coupled qubits We model the Hamiltonian of a system of two qubits,
[15-17. However, only for systems of at least two qubits, coupled via Ising-type coupling. Each of the two qubits is a
the central issue of entanglement can be studied. The phydwo-state system that is described in pseudospin notation by
cally available types of qubit coupling can be classified aghe single-qubit Hamiltoniafl3]
Heisenberg-type exchange that is typical for real spin-1/2
systems, and Ising-type coupling, which is characteristic for Ho—— EE(} _ EA& (1)
pseudospirsetups, where the computational degrees of free- sq 277 270
dom are not real spins. In the latter, the different spin com-
ponents typically correspond to distinct variables, such a¥heree is the energy bias andl the tunnel matrix element.
charge and flux10,18 whose couplings can and have to be The coupling between the qubits is determined by an extra
engineered on completely different footing. Previous workterm in the HamiltoniarH,= — (K/2)o{M® o{ that repre-
[16,17 presented the properties of a system of two coupledents e.g., inductive interactigilirectly or via flux trans-
)®0§,') type cou- formen in the case of flux qubitfs,20]. Thus, the complete

solid-state qubits that are coupled \mé'
pling as proposed in Reff14] as the current-current coupling two-qubit Hamiltonian in the absence of a dissipative envi-

of superconducting charge quantum bits. ronment reads

On the other hand, many systems such as inductively
coupled flux qubitg6], capacitively coupled charge qubits B N IR I R e
[7,8], and other pseudospin systefid$] are described by a qub_i;m 2602 ZAioy | mgKez o (2)

The dissipativgbosonig environment is conveniently mod-
*Electronic address: storcz@theorie.physik.uni-muenchen.de eled as either a common bath or two distinct baths of har-
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monic oscillators, coupling to the, components of the two If we now also express the coupling to the dissipative
qubits. This approach universally models baths which proenvironment in this basis, we find in the case of coupling to
duce Gaussianfluctuations, such as the noise from linear two uncorrelated distinct baths that

electrical circuits. An example for a situation described by a

common bath is long correlation length electromagnetic e—s+K n 0 0
noise from the experimental environment or noise generated 1 7 —K 7 —As
. . 2b
or picked up by coupling elements such as flux transformers =~ Hq,=— > 0 K— et o |’ (6)
[6]. Short correlation length radiation or local readout and K €rs
control electronics coupling to individual qubif&3] might 0 —As 0 —-K
be described as coupling to two uncorrelated baths of har- )
monic oscillators. with s= Xl+ X2 and As= Xl_XZ- Here, the bath mediates

One should note that if the number of qubits is increasedransitions between the singlet and triplet states, the singlet is
to more than two, there might also occur dissipative effectdl0t a protected subspace.
that neither affect all qubits nor only a single qubit, but rather  In the case of two qubits with equal parameters that are
a cluster of qubits, thus, enhancing the complexity of ourcoupled to one common bath, we obtain the matrix
consideration$21].

In the case of two uncorrelated baths, the full Hamiltonian e-stK 7 0 0
reads 1 7 —-K 7 0
2 0 n K-ets O

2b _E 1 ~ (i) 1 ~ (i) 1A(i)'\(i)
Haa= 2, | =562 — 3 Ai0x F502 X 0 0 0 -K

1 wheres=2X andAs=0. One directly recognizes that com-

- EKag%gm Hg, +Ha,, (3)  pared to Eq.6) in this case, thermalization to the singlet
state is impeded, because H@) is block diagonal in the

. : . . . singlet and triplet subspaces. The singlet and triplet are com-

where each QUb_'t couples_ to its own, O_“Stht h?[ir)rp(glc OSCIIpletely decoupled from each other, and in the case of one

lator bathHg,, i=1,2, via the coupling termi;’X"”, i common bath the singlet is also completely decoupled from

=1,2, that bilinearly couples a qubit to the collective baththe bath and thus, protected from dissipative effects. There-

coordinatef((‘)ngv)\va. We again sum over the two qu- fore, a system in contact with one common bath that is pre-

bits. In the case of two qubits coupled to one common bathpared in the singlet state will never experience any decoher-
we model our two-qubit system with the Hamiltonian ence effects. The singlet state is a decoherence free subspace

(DF9) [22], although a trivial, one-dimensional one.

Ill. EIGENENERGIES AND EIGENSTATES
OF THE TWO-QUBIT HAMILTONIAN

1 o o 1 .-
M= 5 3 (et + a5~ Ka5

1. n oy~
+ E(a§1)+ o)X +Hg, (4) We calculate exact analytical eigenvalues and eigenvec-
tors of the unperturbed two-qubit system Hamiltonian in the

. . aforementioned symmetric case of , Which reads
whereHg denotes one common bath of harmonic oscillators. Y i

The appropriate starting point for our further analysis is e+K 7 0 0
the singlet/triplet basis, consisting dff 1):=(1,0,0,0Y, _K 0
(1A2)(|T1)+]11))=(0,1,0,0), |11):=(0,0,1,0), and the Hyooe — =| 7 7 . ®
singlet state (2)(|11)—|11)):=(0,0,0,1). In the case of a 21 0 n K-e O
flux qubits, the and | states correspond to clockwise and 0 0 0 -K

counterclockwise currents respectively.
In this basis, the undamped Hamiltonidlg,,, EQ.(2), of  This Hamiltonian is block diagonal and the largest block, the

the two-qubit system assumes the matrix form triplet, is three dimensional, i.e., it can be diagonalized using
Cardano’s formula. Details of that calculation are given in
etk 7 0 —Apy Ref. [23]. The case of nonidentical qubits is more easily
1 7 —K n Ae handled numerically.
Hagp=~ 75 0 K A : (5) In the following, |E1), |E2), |E3), and|E4) denote the
7 € 7 eigenstates of the two-qubit system. The eigenenergies of the
—An Ae Ay —-K unperturbed HamiltoniafB) depend on the three parameters

K, €, and 5. Fig. 1 displays the eigenenergies in more detail
with e=e;+te,, 7=(A1+A,)/\2, Ap=(A,—A,)/\2, for typical experimentally accessible values. The values that
and Ae=€;—€,. From now on, for simplicity, we concen- are chosen for the parameters », andK in Fig. 1 corre-
trate on the case of equal parameter settidgss A, and  spond to what can be reached in flux qubits. They typically
€1= €. assume values of a few GHz resembling the parameters
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FIG. 1. Plot of the eigenenergies of the eigenstfds, |E2), |E3), and|E4). From upper left to lower rightl) K= »=E ande is
varied, (2) K=10Egs, n=E, ande is varied; the inset resolves the avoided level crossing due to the finite transmission amgli{Gge
n=e€=E, andK is varied;(4) K=e=E, and 5 is varied.

of known single- and two-qubit experiments in De]ft3] For large antiferromagnetic coupling—K|>¢€,A the
and at MIT[24]. Therefore, we will use a characteristic en- states|]|) and|| 1) are favorable. In this limit, the ground
ergy scaleEs, which is typically E;<=1 GHz. The corre- state tends towards (M2)(|11)+|/1)) and the energy
sponding scales aré;=1 ns, ws=2m7X1 GHz, and Ty splitting between (H2)(|T1)+[11)) and (1A2)(|1])

= vg(h/kg) =4.8x10"? K. Panel (1) shows that for large _|| 1)) vanishes asymptotically, leaving the ground state
values ofe, two of the eigenenergies are degene(atenely, nearly degenerate.

for e>7K the states|E1l) and [E4) equal the states  rrom Fig 1, panel3), one directly recognizes that the
(AN2)(IT1)=111)) and (142)(|T1)+]11)), hence the singlet eigenenergy crosses the triplet spectrum, which is a

eigenen(_argies are degenejateile near zero energy bias consequence of the fact that the singlet does not interact with
(ma.gne'F'C frustatiorf = 1/2) all four eigenenergies might be_ any triplet states. At zero energy biamagnetic frustration
distinguished. Note also that, therefore, at zero energy b|a§,: 1/2, for a flux qubil, none of the eigenstates equal one of

the. transition frequency, 4= — wy; has a localmaximum . the triplet basis state.g., as observed for a large energy
which, as W.'" be; §hown below, can only be accessed V'abiaSe), they are rather nontrivial superpositions. This is elu-
honsymmetric d“V”?g- " . cidated further in the following paragraph. The inset of panel
It Kis seF toa b|g po§|t|ve value corresp_ondmg to Iarge(z) depicts the level anticrossing between the eigenenergies
f:rro_rlnag_netlc8 cpupllng[IFl%._ L palnel(g), hK_loESr]]’ the 5f the two state$E2) and|E4) due to quantum tunneling.
amiltonian (8) is nearly diagonal and, hence, the eigen- In general, the eigenstates are a superposition of singlet/

states in good approximation are equal to the Singlet/triplefriplet states. Figure 2 shows how singlet/triplet states com-

bas\}g states. In this cas¢E3) equals the triplet state |05, eigenstates for different qubit parameters. The first
(IN2)(IT1)+1T)), |E2) and|E4) equal|TT) and|| 1), eigenstate|E1) equals (1{2)(|7/)—|/1)) for all times

respectively, for positive values &f For large negative val- while the other ei .
genstat¢g2), |[E3), and|E4) are in gen-
ues ofe, the two state$E2) and|E4) become equall |) o4 superpositions of the singlet/triplet basis states. For large

and |TT>I w::h'a pseudo-spin-flip bet(\;veehn clockW|?e and,aues of| €], the eigenstates approach the singlet/trigiet
counterclockwise rotating currents @t 0 when going fom s gtates. In particular, at typical working points, where

positive to negativee. In the case of large ferromagnet!q ~5A [13], the eigenstates already nearly equal the singlet/
coupling, the ground state tends towards the SUPerpositioiyet hasis states. Hence, although the anticrossing de-

(1W2)([11)+]11)). Panel(2) shows that only fore equal  geriped above corresponds to the anticrossing used in Refs.
to zero, both E2)=[17) (|E2)=[| |), for negativee) and g 5] to demonstrate Schdinger’s cat stateentanglement

|E4)=[11) (IE4)=]11), for negativee) have t(q;a tame en- is prevalent away from the degeneracy point. For an experi-
ergies(which one would expect if the (1/2)Ko; o™ term  mental proof, one still would have to show that one has

in the Hamiltonian dominat¢sbecause ik is increased, the - successfully prepared coherent couplings by spectroscopi-
eia§'> (i=1,2) terms in the Hamiltonian change the energy.cally tracing the energy spectrum. Note that, for clarity, in
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FIG. 2. Plot of the amplitude of the different singlétiplet) states of which the eigenstates denotediy)), |E2), |E3), and|E4) are
composed for the four eigenstates. In all plets varied, andK and » are fixed toE.

Fig. 2, the interqubit coupling strengthis fixed to a rather w,n,=— wn,. The transitions between the singlet stdié)
large value ofEg that also sets the width of the anticrossing, and the triplet states are forbidden in the case of one com-

which potentially can be very narrow. mon bath, due to the special symmetries of the Hamiltonian
(4), if the system is driven collectively through a time-
Spectroscopy dependent energy biag(t) = €,(t). However, in the case of

As a first technoloaical step towards demonstratin coherEWO distinct baths, the environment can mediate transitions
! 9! p tow Ing between the singlet and the triplet states.

Egtvvmeaew%gﬁg?nn:r:;rUbltlz,v:ISsuglrlg tr;glg;lgg]'t'iog frticgu;?_cles Not all transition frequencies have local minima at
) gy pro L . ,=0. The frequencies,; andwz, have local maxima at zero
ergy differencesbetween the levels. Figures 3 and 4 depict . . . .
energy bias. This can already be inferred from Fig. 1, panel

the transition frequencies between the four eigenstates. Thﬁ) the energy of the eigenstdf4) has a local minimum at
transition frequencies are defined agy=(En~Em)/# and €=0. Similarily, the substructure abz, can be understood

from Fig. 1: the frequencyws, has a local maximum a¢
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FIG. 3. Plot of the absolute value of the transition frequencies FIG. 4. Plot of the transition frequencies,, w,;, ahdwa,. In
W3, W, andwsz;. In the left columnK=7»=0.2E; and € is var- the left column K= 7n=0.2E; ande is varied. In the right column,
ied. In the right columnK=0.2E, e=Eg, and 7 is varied. K=0.2E;, e=Eg, and 5 is varied.
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=0, because of the local minimum of the eigenenergy of thgyhere "), = (i=1,2) are the matrix elements of.) with

state|E4). First, if € is increased, the level spacing [@4)  respect to the eigenbasis of the unperturbed Hamiltof8an
and |[E3) decreases. Then, for larger valueseofthe level  5n( likewise forr{ ) .

spacing of E4) and|E3) increases again. Thus, the structure  \ve assume Ohmic spectral densities with a Drude cutoff.

observed folwg, arounde=0 emerges in Fig. 4. This is a realistic assumption, i.e., for electromagnetic noise
[13] and leads to integrals in the rates which are tractable by
IV. BLOCH-REDFIELD FORMALISM the residue theorem. The cutoff frequengyfor the spectral

nctions of the two qubits is typically assumed to be the
rgest frequency in the problem, this is discussed further in
§ec. IV E,

In order to describe decoherence in the weak damping
limit, we use the Bloch-Redfield Formalisi6]. It provides
a systematic way of finding a set of coupled master equation
which describes the dynamics of the reduceel, the reser-

voir coordinates are traced guensity matrix for a given ajho axhw

. . SO . = n = . 1
system in contact with a dissipative environment and has Ji(w) w2 and  Jy(w) w2 (13
recently been shown to be numerically equivalent to the 1+ — 1+—

more elaborate path-integral schef2¥]. The Hamiltonian We @We

of our two-qubit system in contact with a dissipative envi- . . )
ronment, Egs(3) and (4), has the generic “systesrbath”  The dimensionless parameterdescribes the strength of the
form dissipative effects that enter the Hamiltonian via the coupling

to the environment, described lsyand As. In order for the
Hop(t) =Hagp+Hg+ Hint, (9) Bloch-Redfield formalism, which involves a Born approxi-
mation in the system-bath coupling, to be valid, we have to

whereHg is a bath of harmonic oscillators amdj,, inherits  assumea,,,<1. After tracing out over the bath degrees of
the coupling to a dissipative environment. In our case, thgreedom, the rates read

effects of driving are not investigated. In Born approxima-

tion and when the system is only weakly coupled to the 1

environment, Bloch-Redfield theory provides the following F(Jn)nk=%[A1J1(wnk)+AZJz(wnk)][cotI"(/BﬁwnKIZ)—1]
set of equations for the reduced density magridescribing

the dynamics of the systef28,29: i
F A AM (02 +AM (0 D] (14)

bnm(t) =—iwymPnm(t) — % RumikePke(t), (10 ) L 1 W ) ) ) @ (@
with A :Aé’mnk: a'z,fma-z,nkv A :Afmnk: Uz,€maz,nkv and

where T’nn;J:(En_Em)/ﬁy and max,m,k,€|ReaQnmk{)| Ji(w)

<MiNyzml@,m Must hold. The Redfield relaxation tensor Ty iy — fw i +

Rnamke comprises the dissipative effects of the coupling of the M=(Q.DH=P 0 dwa_Qz[cotr(,Bhw/Z)Q_ @),
system to the environment. The elements of the Redfield (15)
relaxation tensor are given through golden rule rags

hereP denotes the principal value. Likewise,
Rnmke = ‘Semzr I‘Eirrr)k"' 5nk2 I‘5,’r7r)m 1
N Tl g7 [A 1) + A235(0gm) [ COt B wgn/2) + 1]
_F%m)nk_rgm)nk' (11)
i
2\ + Iz +
A. Two qubits coupled to two distinct baths + 47h [AM(wm2) +ATM (0¢mD)]. (16)
We now evaluate the Golden rule expressions in (Ed). ) ) ) .
in the case of two qubits, each coupled to a distinct harmonid h€ rated yn andI'y yn might be inserted into Eq11) to
oscillator bath. HereH () = exp(Hgt/%)H exp(~iHgt/%) de-  Puild tge Redfield lte”io“ Nolte’ her}?'rfhat fgﬁ:ﬁt and
notes the coupling between system and bath in the interad2¢m respective y,_t e real part o _t_e ratgehic |(s+ge-
tion picture, and the bracket denotes thermal average of th%oo(n_s)lble for relaxa}tll)on g‘;‘d dep?gs)m(% of value I'y i
bath degrees of freedom. Writing down all contributions =L ¢mnk=(1/48%)[ 07, im0z nkaa+ 07 im0z nital-
gives To solve the set of differential equatiofis0), it is conve-
nient to collapsep into a vector. In general, the Redfield
equationg10) without driving are solved by an ansatz of the
type p(t)= Bexp(~Rt)B‘1p(0), whereR is a diagonal matrix.
The entries of this diagonal matrix are the eigenvalues of the

I‘(€:rn)nk: ﬁ72f:dt67iwnkt(e[i(HBﬁHBZ)t/ﬁ]

X(0§%§m®5((1)+ 0§?2m®)A((Z))e[*i(HBﬁHBz)“h] Redfield tensor(11), written in matrix form, including the
. . dominating term w,, [cf. Eq.(10)]. Here, the reduced den-

1 2 A i nm : . )
X (oim@ XD+ o) @X®)), (12 sity matrix p=(py1, . . . .pag)" is written as a vector. The
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matrix B describes the basis change to the eigenbasis af 0+ /mTwak- They originate when tracing out the bath degrees

which R has diagonal form.

B. Two qubits coupled to one common bath

For the case of two qubits coupled to one common bath,_
we perform the same calculation as in the preceding section,

of freedom. In the case of one common bath, there is only
one spectral function, which we also assume to be Ohmic
J(w)=(ahw)/(1+ wzlwc) For w,—0, andw,,—0, re-
spectively, the real part of the rates is of the valifg.)

T4 = (al4Bh)A, for wy,wm—0.

which leads to expressions for the rates analogous to Egs.

(16)

iA
1—‘fmnk_ 8h A‘](wnk)[COtr(ﬁﬁwnklz) 1]+

a7
with A=A k= 0 dm0 ot 0o Gt oo
+ oo and
iA
F{e g A @ [Coth Bl nf2) + 11+ 5

J(w)

a)

XPJ do———
w?

)

XPJ dw
0 w

—Z[COtf‘(,Bﬁw/Z) Wemt o]

@om

47h

>-[coth( Bl w/2) wp— @],
nk

(18

C. Dynamics of coupled flux qubits with dissipation

The dissipative effects affecting the two-qubit system lead
to decoherence, which manifests itself in two ways. The sys-
tem experiences energy relaxation on a time saalvel“gl
(I'g is the sum of the relaxation rates of the four diagonal
elements of the reduced density matrlxz=—2,0, and
0, are the eigenvalues of the matrix that consists of the
tensor element®, ,nm, N,M=1,...,4), called relaxation
time, into a thermal mixture of the system’s energy eigen-
states. Therefore, the diagonal elements of the reduced den-
sity matrix decay to the value given by the
Boltzmann factors. The quantum coherent dynamics of the
system are superimposed on the relaxation and decay on a
usually shorter time scale —F YG,j=1,... 4i#j and

T, = —ReR}® ) termed dephasmg time. Thus, dephas-

ing causes the off-diagonal terfherencesof the reduced
density matrix to tend towards zero.

First, we investigate the incoherent relaxation of the two-
qubit system out of an eigenstate. At long times, the system

The difference between the rates for the case of two distinds expected to reach thermal equilibriugy=(1/Z)e" PH,

baths(14) and (16) are the two extra terms

(1)
{,’mo'z nk

(2)

and

Special cases ar€=0, wherep,q equals the projector on
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S E e . e 3 7 energiesK, €, and » are all fixed
Soasf =T T 3 = to E;. The characteristic time
g SRR R T scaletg is te=1/v,.
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t

the ground state anfi—o, where all eigenstates are occu- times for the case of one common or two distinct baths are of
pied with the same probability, i-ep,eq=(1/4)1- Figures 5 the same order of magnitude. The left column illustrates the

and 6 illustrate the relaxation of the system prepared in onehavior when the temperature is increased TAt2.1T,
of the four eigenstates for temperaturds=0 and T  the system relaxes into an equally populated state on times
=21T, respectively. The qubit energié§ e, and 5 are all much shorter than fof =0. For low temperatures, the char-
set toEg and a is set toa=10 3. From Fig. 1, one recog- acteristic time scale for dephasing and relaxation is some-
nizes relaxation into the eigenstaf2), the ground state for what shorter for the case of one common batf®(7*°
this set of parameters. ~0.9, fora=10"3). This can be explained by observing the
At low temperaturesT=0), we observe that for the case temperature dependence of the rates shown in Fig. 8. Though
of two distinct uncorrelated baths, a system prepared in onfor the case of one common bath, two of the dephasing rates
of the four eigenstates always relaxes into the ground stateywe zero atT=0, the remaining rates are always slightly
In the case of two qubits coupling to one common bath, thisigger for the case of one common bath compared to the case
is not always the case, as can be seen in the upper left pangJgtwo distinct baths. If the system is prepared in a general
of Figs. 5 and 6. This can be explained through our previougnerposition, hertE3) and|E4), nearly all rates become
observation, that the singlet is a protected subspace: Ne'th%portant thus compensating the effect of the two rates that

the free nor, unlike in the case of distinct baths, the bathyre approximately zero at zero temperature and leading to
mediated dynamics couple the singlet to the triplet spac&gsier decoherence.

Moreover, we can observe that relaxation to the ground state |t , and. therefore. the strength of the dissipative effects

happens by populating intermediate eigenstates with a loWe increased fromr= 102 to a=10"2, the observed coher-

energy than the initial state the system was prepared in atgnt motion is significantly damped. Variation afleads to a

=0 (cf. Fig. 1). _ phase shift of the coherent oscillations, due to renormaliza-
For high temperaturesTe=21T), the system thermalizes jon of the frequenciefL6]. However, in our case, the effects

into thermal equilibrium, where all eigenstates have equalt renormalization are very small, as discussed in Sec. IV E,
occupation probabilities. Again, in the case of one common,nq cannot be observed in our plots.

bath, thermalization of the singlet state is impeded and the
three eigenstatd&?2), |E3) and|E4) have equal occupation
probabilites of 1/3 after the relaxation time.

If the system is prepared in a superposition of eigenstates, Figure 8 displays the dependence of typical dephasing
e.g.,|[E3) and|E4) as in Fig. 7, which are not in a protected rates and the relaxation rakg on temperature. These deco-
subspace, we observe coherent oscillations between therence rates are the inverse decoherence times. The rates
eigenstates that are damped due to dephasing and after t@ee of the same magnitude for the cases of one common bath
decoherence time, the occupation probability of the eigenand two distinct baths. As a notable exception, in the case of
states is given by the Boltzmann factors. This behavior i®ne common bath, the dephasing rdfgs =1, - go to zero
depicted in Fig. 7. Here, for=10"3, the cases 6f=0 and  when the temperature is decreased, while all other rates satu-
T=2.1Tg are compared. When the temperature is lowrate forT— 0. This phenomenon is explained later on. If the
enough, the system will relax into the ground st&&), as  temperature is increased from= (h/kg) vs=4.8x10 2 K,
illustrated by the right column of Fig. 7. Thus, the occupa-the increase of the dephasing and relaxation rates follows a
tion probability of the state (12)(|E3)+|E4)) goes to  power-law dependence. It is linear in temperatliraith a
zero. Here, in the case of zero temperature, the decoherenspe given by the prefactors of the expression in the Red-

D. Temperature dependence of the rates
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FIG. 7. Plot of the occupation probabilif§ ;7 es)+|eay(t) when starting in the initial state (;@)(|E3>+|E4>), which is a super-
position of eigenstateg€3) and|E4). The first row shows the behavior for two qubits coupling to two uncorrelated baths. The lower row
shows the behavior for two qubits coupled to one common bath. The qubit pararagtersand K are set toEg and « is set toa

=10"3. The inset resolves the time scale of the coherent oscillations.
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field rates that depends on temperature. At temperafure case of one common bath. This behavior is depicted in Fig.
~0.1T, the rates show a sharp increase for both cases. Th& It originates from the special symmetries of the Hamil-
roll-off point is set by the characteristic energy scale of thetonian in this case and the fact that for this particular two-
problem, which in turn is set by the energy biasthe trans-  qubit operation, the system Hamiltonian and the coupling to
mission matrix elemeny, and the coupling strengtk. For  the bath are diagonal in the same basis. This special case is
the choice of parameters in Fig. 8, the characteristic energyf crucial importance for the quantum gate operation as de-

scale expressed in temperaturelis 0.1Ts. . scribed in Sec. V and affects the gate quality factors.
Note that there is also dephasing between the singlet and

the triplet states. When the system is prepai®dapplica-
tion of a suitable interactionn a coherent superposition of
singlet and triplet states, the phase evolves coherently. Then Next to causing decoherence, the interaction with the bath
two possible decoherence mechanisms can destroy phase @so renormalizes the qubit frequencies. This is mostly due to
herence. First, “flipless” dephasing processes, wi{&gre-  the fast bath modes, and can be understood analogous to the
mains unchanged. These flipless dephasing processes are &eanck-Condon effect, the Lamb shift, or the adiabatic renor-
scribed by the terms fow,,,,w,— 0 in the rates, EqY16) malization[30]. Renormalization of the oscillation frequen-
and (18). Obviously, these terms vanish fr—0, as the ciesw,nis controlled by the imaginary part of the Redfield
low-frequency component of Ohmic Gaussian noise istensor[16]

strictly thermal. Second, relaxation due to emission of a bo- _

son to the bath is also accompanied by a loss of phase co- Opm— Onm=Onm= MRy mnm- (19
herence. This process in general hafngte rate atT=0.

This explains th@ dependence of the rates in the single-bath

case]E1) alone is protected from the environment. As thereNote that IR, mnm= — IMRmnmndue to the fact that the cor-

are incoherent transitions between the triplet eigenstates evealators in the Golden Rule expressions have the same parity.
atT=0, the relative phase of a coherent oscillation betweeeihe imaginary part of the Redfield tensor is given by

|E1) and any of those is randomized, and the decoherence

ratesI’  are finite even aT=0. As a notable exception,

E. Renormalization effects

314,
|E2), the lowest-energy state in the triplet subspace, can (+) 1bop 1 % 1
only be flipped through absorption of energy, which implies ImI = C(’rﬁnk%Pfo do J(w)| ——
that the dephasing rate, also vanishes at low temperature. @ T Onk
The described behavior can be observed in Fig. 8. X[ coth Bhw/2) w,— w] (20

If the parameterg and » are tuned to zero, thus being
the only nonvanishing parameter in the Hamiltonian, all
dephasing and relaxation rates will vanish fo+0 in the and
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FIG. 10. The left plot depicts the ratio of the renormalization effects and the corresponding transition frequencies. Pawameters:
=103, T=0, andw./ws is varied between f0and 1§ for several frequenciesu(,, w4, andw,g) for the case of two baths and in the
case ofw,3 also for the case of one common bath. The parameters for the right plat=at® 3, T=2.1T, andw,/w, is varied between
10% and 16. The inset of the left plot shows a log-log plot of the temperature dependence of the renormalization effeais= Heré and
=10, Note that for small temperatures the renormalization effectaatalepend on temperaturéThis is elucidated further in Sec.

IV E.) The plots are scaled logarithmically to emphasize the logarithmic divergence of the renormalization effeais.with

1 o 1 The temperature dependence of E@®) and(23) at higher
Imr{.) = C%&ﬁi—hpf do J(0)| 5— temperatures, where, andc, are small and the renormal-
& 0 W T Wy ization effects are very weak, is shown in Fig. 10. The rates

(22) and(23) diverge logarithmically withw in analogy to
the well-known ultraviolet-divergence of the spin boson

oo b,2b _ model[30]. When comparing the leftT(=0) and right [
where’P denotes the principal value, a@%m“k are prefac =2.1T,) panel, one recognizes that for the first case, one

tors defined, in the case of two distinct baths, according tQ,mmon hath gives somewhat smaller renormalization ef-
Comni= iLo Lo b+ ool and in the case of one focts than two distinct baths, while in the second caseTfor
common batfCyy, .= i A. Here, for simplicity, we assumed =2.1T,, the renormalization effects deviate only slightly
a1=a,=a and thus,J;(w)=J,(w) =J(w). Evaluation of (see the behavior fan,z) and the renormalization effects are
the integral leads to the following expression ;). : smaller for the case of two distinct baths. The effects of

renormalization are always very sm@lim(Rp mn m)/ @nn

X[coth B w/2) wom+ w], (21

2 .
wew below 1% for our choice of parametégrand are therefore
(+) _ ~1b2b_ “™c%nk p ,
IMI = C€mnk27_r(wz+wz ) P(1+Cy) +9(cy) neglected in our calculations. However, having calculated
¢ nk Egs. (22 and(23), these are easily incorporated in our nu-

(22 fects is discussed in Ref31].

We only plotted the size of the renormalization effects for
with ¢,:=(Bhw,)/(27) and c,:=(Bhw)/(27). In the w12, w14, andws,, because in general, all valueswfy are
case ofr%r—n)nk, the expression is of the same magnitude and give similar plots. The size of the
renormalization effects diverges linearly with the dimen-

. ¢ merical calculations. The case of large renormalization ef-
2R y(icy)]-m o=,

n

- 1626 wZwem sionless parameter that describes the strength of the dissipa-
ImL{ = tmni, 2~ 2 P(1+Co) +(cy) tive effects.
m(we T Ofm) For flux qubits, the cutoff frequency, is given by the
e circuit properties. For a typical first order low-pass LR filter
—2Rd y(icq)]+ WE} (23 [32] in a qubit circuit[13], one can inserR=50 () (typical
m

impedance of coaxial cableandL~1 nH (depends on the

with ¢;:=(wmBh)/(27). The terms in Eqs(22) and (23) length of the circuit I|.ne)3|nto o r=R/L, and_ gets that
which are linear ino,, give no net contribution to the imagi- “LR™~ 2% 10 Hz. wi is the largest frequency in the prob-
nary part of the Redfield tensgt6]. To illustrate the size of lem (see again R%ﬁm]’ Chap. 4.3 and o> w g Sho?'d
the renormalization effects, the ratio of the renormalizatior’0ld- Thenwe~10" Hz (=10°Ey) as cutoff frequency is a
effects to the frequencies which are renormalized is depicteff@sonable assumption.
in Fig. 10.

If ¢, andc, are large, and the digamma functions can be
approximated by a logarithm, the resulting expression for the In Sec. IV, we evaluated the dephasing and relaxation
renormalization effects will be independent of temperaturerates of the two-qubit system that is affected by a dissipative

V. GATE QUALITY FACTORS
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environment. Furthermore, we visualized the dynamics of The fourth quantifier, the entanglement capabiflityis the
the two-qubit system. This does not yet allow a full assesssmallest eigenvalue of the partially transposed density matrix
ment of the performance as a quantum logic element. Theder all possible unentangled input statds! ). (see below.
should perform unitary gate operations and based on the has been showf85] to be negative for an entangled state.
rates alone, one can not judge how well quantum gate operghis quantifier should be-0.5, e.g., for the ideal g, thus
tions might be performed with the two-qubit system. There-characterizing a maximally entangled final state. Two of the
fore, to get a quantitative measure of how our setup behavegate quality factors, namely, the fidelity and purity might
when performing a quantum logic gate operation, one camlso be calculated for single-qubit ga{d®]. However, en-
evaluate gate quality factof83]. The performance of a two- tanglement can only be observed in a system of at least two
qubit gate is characterized by four quantities: the fidelity,qubits. Therefore, the quantum degree and entanglement ca-
purity, quantum degree, and entanglement capability. The fipability cannot be evaluated for single-qubit gates.
delity is defined as To form all possible initial density matrices, needed to
LB calculate the S;}e quality factors, we use the 16 unentangled
1 I i product statesV]), j=1,...,16defined[17] according to
7= 16 2 (VhlUsreUcl Vo). @H )Wy, (ab=1,....4), with [W1)=|1), [¥,)=|1),
[Wa)=(LN2)(|1)+]1)), and [Wa)=(1N2)(1)+i1)).
whereUg is the unitary matrix describing the desired ideal They form one possible basis set for the superoperagor
gate and the density matrix obtained from attempting a quarwith p(tg)=vgp(0) [17,33. The states are chosen to be

tum gate operation in a hostile environmentpis= p(tg), unentangled for being compatible with the definitionCof
which is evaluated for all initial conditionsp(0)
=Wl }W¥! |. The fidelity is a measure of how well a quan- A. Implementation of two-qubit operations

tum logic operation was performed. Without dissipation, the

reduced density matri,x{; after performing the quantum gate 1. Controlled phase-shift gate

operation, applyingUg and the inverseJS would equal To perform the controlledtoT operation, it_is necessary
p(0). Therefore, the fidelity for the ideal quantum gate op-to be able to apply the controlled phase-shift operation to-
eration should be 1. gether with arbitrary single-qubit gates. In the computational
The second quantifier is the purity basis (00),/01),/10),|]11)), the controlled phase-shift opera-
tion is given by
18 .
P= 1_6121 tr((p&)?), (25 100 O
0 1 0 O
which should be 1 without dissipation and 1/4 in a fully Ucz(e)= : (29
. . ' 0 01 O
mixed state. The purity characterizes the effects of decoher- _
ence. 0 0 0 e¥
The third quantifier, the quantum degree, is defined as the
maximum overlap of the resulting density matrix after theand for o= 7, up to a global phase factor,
guantum gate operation with the maximally entangled states,
the Bell states - - -
_ Ucz= exr{ i Zogl) exp( [ Zagz)) exr< i Zagl)a'gz)) .
i,k
where the Bell state¥¥ . are defined according to Note that in Eq.(30) only o, operations, which commute
with the coupling to the bath, are needed. The controlled
LD+ LDY+[11) phase-shift operation together with two Hadamard gates and
[pl =" L Pl = , (27)  asingle-qubit phase-shift operation then gives the controlled-
V2 V2 NOT gate.
— — 2. ControllednoT gate
M&FM' |\1fr1nle=|”> T 29 .
V2 V2 Due to the fact that the set consisting of thgod (or

controlledNOT) gate and the one-qubit rotations, is complete
For an ideal entangling operation, e.g., the controiled- for quantum computatiof36], the Usor gate is a highly
gate, the quantum degree should be one. The quantum degrie&portant two-qubit gate operation. Therefore we further in-
characterizes nonlocality. It has been shq@4] that all den-  vestigate the behavior of the four gate quality factors in this
sity operators that have an overlap with a maximally en-case. The Yor Operation switches the second bit, depending
tangled state that is larger than the value QI8 violate the  on the value of the first bit of a two bit system. In the com-
Clauser-Horne-Shimony-Holt inequality and are thus nonloputational basis, this operation has the following matrix
cal. form:

042319-11
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TABLE |. Parameters of the Hamiltonians which are needed to
perform the WYor gate operation; only the nonzero parameters are
listed: ¢&=E, in our case.

No. Operation ParameterEQ Tlme (S)
Tty T3 T T T )
1 ex;{'z ot = —& Ay=—¢ :E FIG. 11. Pulse sequence needed to perform the quantysr U
2 \/5 1 2& operation. Here, the elements of the unperturbed single- and two-
. 1 gubit Hamiltonian needed to perform a certain operation undergo-
2 ex;{iaole) €=¢ 7'2:2—5 ing free unitary time evolution are shown. The dotted horizontal
1 lines denotet=0, and the horizontal lines are spaced|by=E;.
LT _ — The durations of each pulse are not equal in generélr;, i,]
3 eX[‘,(IZo‘%of) K=¢ T =1,...,6(cf. Table ). P ) senes 1
T 1
4 eXP('Z z) €2=¢ T4 a¢ Table I, Fig. 11 depicts the values of the elements of the
- 1 Hamiltonians. Interestingly enough, we find that for the only
5 exp(izoi) €=¢ 75T 2¢ two-qubit operatlo_n included in theydg operation,e and »
z are zero. T.husK is the only nonzero parameter ah%b
6 oxd —i ot or €= — & A= — & =3¢ assumes dmgona} form.. For flux qub!ts, |mplem¢nt|ng the
2\ 2 ' § pulse sequence Fig. 11 involves negative and positive values
tuning the magnetic frustration through the qubit loop below
or abovef=1/2. Note that, e.g., for realistic models of in-
1 0 0 O ductively coupled flux qubits, it is very difficult to turn on
the interaction Hamiltonian between the two qubits without
Uyor= 0100 (31) the individualo, terms ip the Hamilton?an. prever, for the
0 0 0 1 pulse sequence given in E@2), we might simply perform
00 1 0 the third, fourth, and fifth operations of E¢32) at once

using only the Hamiltonian with both the individua), terms

Up to a phase factor, the two-qubitk (or cnoT) operation — and the interqubit coupling.

can be realized by a sequence of five single-qubit and one To obtain the final reduced density matrix after perform-
two-qubit quantum logic operations. Each of these six operalnd the six unitary operationt32), we iteratively determine
tions corresponds to an appropriate Hamiltonian undergoin§le density matrix after each operation with Bloch-Redfield
free unitary time evolution exXp-(i/4)Host]. The single- theory and insert the attained resultlng dens@y matrix as ini-
qubit operations are handled with Bloch-Redfield formalism,tial density matrix into the next operation. This procedure is
like the two-qubit operations. We assume dc puléestan- repeated for all possible unentangled initial states given in

taneous on and off switching of the Hamiltonian with zerothe preceding section. We inserted no additional time inter-
rise time of the signalor rectangular pulses vals between the operations. This is usually needed, if one
applies Bloch-Redfield formalism, because it is known to

7 c@+o? violate complete positivity on short time scales. However,
Uyxor=€expg —i S\ T Ucz(m) we circumvent this problem in our calculations by dropping
V2 the memory after each operation, when we iteratively calcu-

late the reduced density matrix. This procedure may lead to
small inaccuracies as compared to usingaPpPI[17], which,
however, should not affect our main conclusions.

wexd i = ol exd —i " a0+ a?
272 2\ 2

whereU () is given by Eq.(30). This generic implemen-
tation has been chosen in order to demonstrate the compari-
son to other coupling schemgk7] as well as for computa- We have analyzed the gate quality factors in the cases of
tional convenience, it is not necessarily the optimum schema common and of two distinct baths, respectively. In Fig. 12,
for application under cryogenic conditions, where slow rise-the temperature dependence of the deviations of the four gate
time ac pulses are preferred. Table | shows the parameters vggiality factors from their ideal values are depicted as a log-
inserted into the one- and two-qubit Hamiltonian to receivelog plot. At temperatures below =2.5x10 2 K~0.5T,
the Ucor Operation. In our case, we assumged Eg. How-  the purity and fidelity are clearly higher for the case of one
ever, there is no restriction in the use of other valueséfor common bath, but if temperature is increased above this
For a typical energy scale of 1 GHz, the resulting times fromcharacteristic threshold, fidelity and purity are slightly higher
Table | are in the nanosecond range. for the case of two baths.

To better visualize the pulse sequence needed to perform In the case of one common bath the fidelity, purity, and
the quantum kg operation, which was already given in entanglement capability are approaching their ideal value 1,

(32)
B. Temperature dependence

1. Controlled phase-shift gate
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FIG. 12. Log-log plot of the
temperature dependence of the de-
viations of the four gate quantifi-
ers from their ideal values after
performing the controlled phase-
shift (cPHASE gate operation. In
all casesg=a;=a,=10"3. The
full curves are provided as guides
to the eye.

102 10
T, T,

102 10

when temperature goes to zero. This is related to the fact thail in their ground states and can be excited through sponta-
in the case of one common bath all relaxation and dephasingeous emission. But for the case of one common bath, the
rates vanish during the two-qubit step of the controlleddeviation from the ideal fidelity goes to zero, when tempera-
phase-shift gate due to the special symmetries of the Hamikure goes to zero. This is due to the special symmetiess (
tonian, when temperature goes to zero as depicted in Fig. $he onlynorvanishing parameter in the two-qubit operajion
The controlled phase-shift operation creates entanglesf the Hamiltonian, which rules out spontaneous emission.
ment. The creation of entanglement is impeded by decoheffhese symmetries are also reflected in the temperature de-
ence effects that vanish when temperature approaches zependence of the rates, Fig. 9. There, for one common bath,
Therefore, the entanglement capability exhibits the same beall rates vanish folf — 0. Note that these rates only describe
havior as the fidelity and purity. For zero dissipatiom ( the two-qubit part of the operation. However, the single-
=0), the quantum degree has the value 0.5 but the entanglgubit part behaves similarly, because the terms in the single-
ment capability is— 0.5 thus, characterizing a maximum en- qubit Hamiltonian are alse o, .
tangled state. The reason is that the Bell-states, which are
generated by the controlled phase-shift gate from the input
states, result in a basis that is different from the used basis, Different to the preceding section, we now add two
but can be transformed using only local transformations.  single-qubit operationgHadamard gatesto the controlled
Furthermore, for finite dissipation, Fig. 9 shows that alsophase-shift operation that dwt commute with the coupling
for the case of two distinct baths, there are only three nonto the bath. In Fig. 13, the deviations of the gate quality
vanishing rates fof — 0. The system, being prepared in one factors from their ideal values are depicted as a log-log plot.
of the 16 initial states, might relax into one of the eigenstateg\gain, at temperatures below=2.5x10 2 K~0.5T,, the
that is an entangled state. purity and fidelity are higher for the case of one common
We observe the saturation of the deviation for the case dbath, but if temperature is increased above this characteristic
two baths and can directly recognize the effects of the symthreshold, fidelity and purity are higher for the case of two
metries of the controlled phase-shift operation. For giggn baths. Note that, we have chosen a rather largthis value
the fidelity and purity cannot be increased anymore by low-can substantially be improved by means of enginedririj
ering the temperature in the case of two distinct baths. InterThe fidelity and purity are clearly higher for the case of one
estingly enough, we find that for two qubits coupling to onecommon bath, when temperature is decreased beloW 0.5
common bath, the situation is different for temperatures beThis is related to the fact that in the case of one common
low 0.5T,. Above a temperature of =4.8X10 2 K, the  path, all relaxation and dephasing rates vanish during the
decrease of the gate quality factors shows a linear depemwo-qubit-step of the Wyg, due to the special symmetries of
dence on temperature for both cases of one common or twhe Hamiltonian, when temperature goes to zero as discussed
distinct heat baths before it again saturates at abo&itk10 in the preceding paragraph. However, the quantum degree
~2x10°T. Finite decoherence effects in the fidelity, purity and the entanglement capability tend towards the same value
and entanglement capability &t=0 for the case of two dis- for both the case of one common and two distinct baths. This
tinct baths are resulting from the coupling of the system tds due to the fact that both quantum degree and entanglement
the environment of harmonic oscillators, whi@dtT=0) are  capability are, different than fidelity and purity, not defined

2. ControllednoT gate
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FIG. 13. Log-log plot of the
temperature dependence of the de-
viations of the four gate quantifi-
ers from their ideal values after
performing the ogr gate opera-
tion. In all cases,a=a;=a,
=103, The dotted line indicates
the upper bound set by the
Clauser-Horne-Shimony-Holt in-
equality. The full curves are pro-
vided as guides to the eye.

-4 ] | | | ] 4 ] ] ] ] ]

10 10?2 10 10" 10% 10
T/T, T,

as mean values but rather characterize the “best” possible The dotted line in Fig. 13 shows that the temperature has
case of all given input states. This results in the same valu be less than abolt=21T,=1 K in order to obtain values
for both cases. of the quantum degree being larger thgis:0.78. Only then,

In the recent work by Thorwart and 'Hagi [17], the  the Clauser-Horne-Shimony-Holt inequality is violated and
Uxor gate was investigated for&)@ o)) coupling scheme  nonlocal correlations between the qubits occur as described
and one common bath. They find a pronounced degradatian Ref.[17].
of the gate performance, in particular, the gate quality factors
only weakly depend on temperature. They set the strength of C. Dependence on the dissipation strength

. - - _ 74 - - _
the dissipative effects ta=10 . Their choice of param The deviations from the ideal values of the gate quantifi-

eters wase~10E;, A~1E,, andK~0.55; which is on the ers possess a linear dependencexaas expected. Generall
same order of magnitude as the values given in Table |I. A%1 P P P ) y

can be seen in Fig. 13, we also observe only a weak decrea éno special symmetries of the Hamiltonian are present
of the gate quality factors for both the cases of one common

ere are always finite decoherence effects alsd@-a0.
bath and two distinct baths in the same temperature ran herefore, we can not improve the gate quality factors below
discussed by Thorwart and "Hggi, both fora=10"2 and

9 certain saturation value, when lowering the temperature
a=10"% and overall substantially better values. This is due

[17], as was also discussed in the preceding section. By bet-
() o () ; S ter isolating the system from the environment and by care-
to the fact that f_oray ©ay c_ouplmg, the Hamlltc_)man does fully engineering the environmefpt 3], one can decrease the
not commute with the coupling to the bath during the two- gyengih of the dissipative effects characterizedsbyin or-

qubit steps of the kg pulsg sequence. der to obtain the desired value of 0.999 99 #&rP, and Q
We observe the saturation of the deviation for both th 17], @ needs to be below 16 at T=0.21T.= 10 mK
' 21T .

cases of two baths and one common bath. For givethe
fidelity and purity can not be increased anymore by lowering
the temperature, different from the behavior for the con-
trolled phase-shift gate that was discussed in the preceding To investigate the anatomy of theykk quantum logic
section. This is due to the application of the Hadamard gateperation, we calculated the occupation probabilities of the
whose Hamiltonian does not commute with the coupling tosinglet/triplet states after each of the six operations, of which
the bath. Above a temperature Bf, the decrease of the gate the Usgr consists. This time resolved picture of the dynam-
quality factors shows a linear dependence on temperature faecs of the two-qubit system, when performing a gate opera-
both cases. Here, different from the controlled phase-shiftion, gives insight into details of our implementation of the
gate, we observe finite decoherence effects in all four gat&lyog operation and the dissipative effects that occur during
quantifiers also at =0, both for the case of one common or the operation. Thus, we are able to characterize the physical
two distinct heat baths. These decoherence effects are resuftrocess, which maps the input density magrido p,¢ in an

ing from the coupling of the system to the environment ofopen quantum systef33]. When the system is prepared in
harmonic oscillators, whickat T=0) are all in their ground the statd | |)=|00), the Usor Operation(31) does not alter
states and can be excited through spontaneous emission th® initial state and after performing thek operation, the
already described above. final state should equal the initial stdte| )=|00). This can

D. Time resolved controlledNOT operation
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[ =-aT=21E-1K, 0=10% 2 baths 03
i ¥ T ~Bee
s [ AATR1ESIK a=107%, 1 bath ] S s i N
= 005 02 \: -
o [ P ¢ N\ FIG. 14. Time resolved Lhr
i /s o operation. The system is initially
K 5 01 prepared in the stat®0). Occu-
L ’,}‘" pation probabilities of the singlet/

08—t | o1 ol o1 41 0 ' ! ' L ! triplet states are shown after

0 05 1 1.5 0.5 15 : i )

1 . I . | . | 0.4 . | . . | completion of a time stepr; (i
=1,...,6). For a=a1=a,
=102 and T=21T,=1 K clear

03 - :
0.8 = deviations from the ideal case can
A s be observed. Qubit parameters are
o= A g 02 set according to Table I. The lines
06 /P a~ are provided as guides to the eye.
¥ 0.1
I S — /
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clearly be observed in Fig. 14. During thgk operation,

also less close to their ideal value for the case of two distinct

occupation probabilities of the four states change accordingaths. The case of two distinct baths also shows bigger de-

to the individual operations given in E2). At T=21T,,

viations from the ideal casex=0) during the Uyor Opera-

the case of two baths differs significantly from the case oftion (see Fig. 14 But, if the system is initially prepared in

one common bath. After the third operati¢ime two-qubit

the state|17)=|11), the case of two distinct baths shows

operation; only there the distinction between one common obigger deviations from the ideal case during theskJopera-

two distinct baths makes senseccupation probabilities are tion, while the resulting state is closer to the ideal case for
different for both environments resulting in a less ideal resultwo distinct baths compared to one common bath.
for the case of two baths. In Figs. 14 and 15, it looks like there would be no deco-
In Fig. 14, the resulting state after performing theogd ~ herence effectéor at least much weaker decoherence effects
operation always deviates more from the ideal vafoe « after performing théfirst two) single-qubit operations. How-
=0, i.e., no dissipationfor the case of two distinct baths, if ever, not all input states are affected by the decoherence
all other parameters are fixed and set to the same values feffects the same way. And when we regard all possible input
both cases. The staf, is less close to the ideal occupa- states, there are finite decoherence effects. This can be ex-
tion probability one and the other singlet/triplet states areplained with Fig. 16. Figure 16 depicts the time resolved

1 T I T I T I 05 T T T
—o a=0
081\ &-aT=21 E~1K, 0=10% 2baths ]| 0.4
06|\ 44 T=21 E=1K, 0=10% 1 bath 203
— - - - +
o 0.4-_ éo.z - FIG. 15. Time resolved &by
| o operation. The system is initially
02k 04 prepared in the statfl1). Occu-
L pation probabilities of the singlet/
o5 L 0{5 1 '1 1 : 0 L triplet gtates are shown after
01 : | : | : | 05 i completion of a time step; (i
L =1,...,6). For a=a1=ay
- 0.4 =102 and T=21T=1 K, de-
- ~ viations from the ideal case can be
A r A N 503 observed. Qubit parameters are set
g2 005 / o 3 according to Table I. The lines are
- / R Q=02 provided as guides to the eye.
r I g
L / J 0.1
K ! / ! | ! !
% o5 ¢ 1 s 0 s s
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) T : T " ] measures of the quality of a quantum logic operation. We
099951 T=0 - illustrate that the gate quality factors depend linearlyagn
B e A B & ] as expected. The time resolvegdg operation(Figs. 14 and
a  } ., 4 15) again illustrates the difference between one common and
iy s two distinct baths, and moreover, we observe that single-
qubit decoherence effectso, during the Wog Operation are
09075 . ! . ! . L] weak. The time scales of the dynamics of the coupled two
° °e " ! ' qubit system are comparable to the time scales, which were
1.00 ' . — . ' T already observed in experiments and discussed in the litera-
r T=100 mK=2.1 GHz 1 ture [13]
- . The question, whether one common bath or two distinct
00990 e 7 baths are less destructive regarding quantum coherence can
- T ] not be clearly answered. For low enough temperatures, cou-
I 1 pling to one common bath yields better results. However,
080 : ' : ' : ! when the temperature is increased, two distinct baths do bet-
tt, ter; in both temperature regimes, though, the gate quantifiers
are only slightly different for both cases.
Compared to the work of Thorwafil7], the interaction
part of our model Hamiltonian possesses symmettibe
Hamiltonian of the two-qubit operation and the errors com-
mute that lead to better gate quality factors. Furthermore,
analysis of the symmetries and error sources of our model
system can lead to improved coupling schemes for solid-
purity when performing the Lbg operation. We clearly ob-  state qubits. Milburn and co-workers on the other hand fo-
serve that there are finite decoherence effects for the firfi;tused on comparison of classical and quantum mechanical
single-qubit operations in Eq32) as well. The difference dynamics[15] and estimated the decoherence properties of
between the single-qubit and two-qubit operations is thewo coupled two-state systems.
steeper decrease of the purity due to stronger decoherence in Governale[16] determined the decoherence properties of
the case of the two-qubit operation. The upper panel in Figiwo coupled charge qubits whose Hamiltonian differs from
16 depicts the behavior of the purity for—0. Decoherence Eq. (2) by the type of interqubit coupling, namelyrg,l)

due to theo, terms in the Hamiltonian will vanish fol ®052) coupling. However, introducing the quality factors

T
|

0.998

0.995

T
1

0.985

FIG. 16. Time resolved purity for the dg operation. The value
of the purity after each time step (i=1,...,6) isshown. Here
a=a;=a,=10"2, and T=2.1T=100 mK (lower panel or T
=0 (upper panel Qubit parameters are set according to Table I.
The lines are provided as guides to the eye.

—0 in the case of one common bath. gives a measure to judge how certain qubit designs perform
quantum gate operations.
VI. CONCLUSION As a next step, one should consider driving, to be able to

pbserve and discuss Rabi oscillations in systems of two
I;?oupled qubits. It should be investigated, how the decoher-
ence properties are modified, if one adds more qubits to the
system.

We presented a full analysis of the dynamics and decohe
ence properties of two solid-state qubits coupled to eac
other via a generic type of Ising coupling and coupled, more
over, either to a common bath, or two independent baths.
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3.4 Read-out of superconducting qubits

After quantum manipulations have been performed, the result has to be
read out. This very obvious requirement is connected to the fundamen-
tal physical problem of the quantum measurement process, which is dis-
cussed in the introduction. Our enterprise is more modest: Within the
range of useful detectors which can be built and modeled, the proper-
ties of the specific read-out process have to be deduced and understood.
The modeling of the meter has already been described in the papers
compiled in section 3.2. In paper [196], this model is taken to a extreme
limit: The peak in the environmental spectral density is moved to high
frequencies and is strongly emphasized. In that limit, the system en-
tangles strongly with that resonance, tunneling becomes suppressed i.e.
it becomes localized in the classically preferred states. Thus, we meet
the condition for a detector-dominated projective measurement.

In ref. [197], the equivalence between the peaked spectral resonance
and the model of a qubit coupled to a damped harmonic oscillator is
worked out in more detail.

The analysis of the peaked spin boson model in Refs. [196,197] was
based on a phyiscally motivated mapping on a low-temperature Hilbert
space. In Ref. [198], the same model is mathematically analyzed with a
number of state-of-the art methods such as NIBA, Bloch-Redfield, and
flow equation renormalization. Next to confirming the results of [196], a
number of other features are found: The renormalization of the energy
splitting of the spin due to the environment changes sign depending on
the ratio of the environmental and the qubit resonance energy, follow-
ing the usual quantum-mechanical level repulsion. The weak-coupling
results taken to stronger coupling generally tend to overestimate the
decoherence, in particular close to resonance. This has a clear physical
interpretation: The resonance reflects strong coupling to a single quan-
tum system, which changes the system dynamics strongly, but changes
it in a coherent way, because decoherence would require an infinite
environment.
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Asymptotic von Neumann measurement strategy for solid-state qubits

PHYSICAL REVIEW B 68, 060503R) (2003

F. K. Wilhelm
Quantum Transport Group, Technische Natuurkunde, TU Delft, P.O. Box 5046, 2600 GA Delft, The Netherlands
and Sektion Physik and CeNS, Ludwig-Maximilians-Univetsitheresienstrasse 37, 80333 Minen, Germany
(Received 19 May 2003; published 19 August 2003

A measurement on a macroscopic quantum system does not, in general, lead to a projection of the wave
function in the basis of the detector as predicted by von Neumann’s postulate. Hence, it is a question of
fundamental interest, how the preferred basis onto which the state is projected is selected out of the macro-
scopic Hilbert space of the system. Detector-dominated von Neumann measurements are also desirable for both
guantum computation and verification of quantum mechanics on a macroscopic scale. The connection of these
guestions to the predictions of the spin-boson model is outlined. | propose a measurement strategy, which uses
the entanglement of the qubit with a weakly damped harmonic oscillator. It is shown that the degree of
entanglement controls the degree of renormalization of the qubit and identify that this is equivalent to the
degree to which the measurement is detector dominated. This measurement very rapidly decoheres the initial
state, but the thermalization is slow. The implementation in Josephson quantum bits is described and it is
shown that this strategy also has practical advantages for the experimental realization.

DOI: 10.1103/PhysRevB.68.060503 PACS nuni®er03.67.Lx, 03.65.Ta, 03.65.Yz, 74.50x.

The field of quantum computatidhas been experimen- the state of the qubit, however, the final statedsan eigen-
tally pioneered in quantum optics, atomic physics, andstate of the measured observable, but of the qubit. Qubit and
nuclear magnetic resonanc®dMR). In these quantum- apparatus daot get strongly entangled. It has also been
mechanical systems with few degrees of freedom and stronghown theoretically, that detector-dominatestrong mea-
quantum coherence, the measurement devicesters”) are ~ surements of superconducting qubits are possible, on the ex-
well described and can be classified into two types. In atomi®€ense ofrg being very short, which sets a strong experimen-
physics, e.g., “strong” measurements can be performedtal challenge. It is a fundamental question, under which
which satisfy von Neumann’s measurement postiflate,, conditions a measurement performed on a potentially macro-
the state of the system is projected onto the eigenstate of tH€0pic object follows the postulates of quantum mechanics
metercorresponding to the measurement result. In NMR, orgnd how, in general, the preferred observable basis is se-
the other hand, the meter couples weakly to each individudected out of the large Hilbert space of the system and the

spin and decoheres it only weakly. In order to still obtaindetector® This question should be addressed using specific
enough Signa| and information’ the measurement is pelﬂ']OdelS which describe actual detectors. Moreover, there are

formed on an ensemble of qubits. practical issues(i) The theoretical signal-to-noise ratio of a
These qubits cannot be easily integrated to large-scale civveak measurement is limited to(Ref. 12, (i) and Efficient
cuits. Thus, solid-state qubits, which can be lithographicallyduantum algorithms such as error correctfoor the test of
manufactured, are a promising alternative. Solid-state sydBell-type inequalitie¥’ rely on strong measurements.
tems consist of many degrees of freedom, hence quantum In this paper, | am going to connect the abstract notions of
coherence can so far only be maintained over very shofuantum measurement theory to the concepts of the spin-
times_3'4 It was proposed that Superconducting Josephson Ci[boson mOdEL in partiCUlar, the issue of entanglement will be
cuits in the charg® or flux*® regime could act as solid-state connected to scaling of the tunnel matrix element. | will
qubits with appreciable coherence times. In these cases, tifitine a method how to perform genuine detector-
measurement apparatus is permanently close to the qubflominated measurements in this context.

although the interaction may effectively be switched ‘c¥f. For definiteness, it is assumed that the variable of the
The measurement process in this system can be describ@antum bit which is measured is described by the pseu-
within the spin-bosoh® or related model§!1? dospin operators,. When the measurement apparatus is

From a density-matrix description, we can obtain detailedcoupled to the qubit, the same term experiences a fluctuating
(although incompleteinformation about the dynamics of the force, which is assumed to be Gaussian and be modeled by a
measurement: After a dephasing timg, the density matrix bath of harmonic oscillators. Consequently, we end up with
is brought into an incoherent mixture, and after the relaxthe spin-boson Hamiltoniah® After integrating out high
ation time 7, it thermalizes and the information about the frequencies, its pseudospin part reads
initial state is lost. In order to renderr, long enough,
usually’~°the meter is only weakly coupled to the qubit. This . €~ Aggn
makes it necessary to ensemble average by repeating the Heﬁ:ﬁ(EUZJ’ 5 Ix]»
measurement. Theoretical resedrcht? shows that an opti-
mization of these weak measurements allows for single-shavhere the off-diagonal term o is in general rescaled due to
measurements without averaging, by waiting longer than théhe environment as compared to the original splitthgf an
dephasing time. These aoptimized weak measurements isolated qubit. The spin-boson model generally predfictse
qubit dominatedmeasurements: They completely decoheredynamics described in the preceding section. In particular,

@
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after the dephasing time, the density matrix is projected onto IL>
a mixture of eigenstates of k. Usually, in the weak-
coupling regimé, A .« is close to the bard of the qubit and -
consequently the eigenstatestfi; are far from being eigen-
states ofo,. Consequently, the state of the qubit will not be
projected onto the measured variable, i.e., the measurement
is qubit dominated. A detector-dominated measurement

|0> IR>

would be realized foA =0, i.e., whenH o= (&/2) o, and @)

hence commutes with the coupling to the meter. A number of

schemes allow to directly suppredsusing an external con- g 04 : : : : : : :

trol parameter:®*8In what follows, | want to describe, using Soss | t_0 — |

a generic model, how this is accomplished by the measure- Q;)3 i Ag |

ment apparatus itself, in agreement with the usual under- =" z=0-1 """""

standing of quantum measurements. B2 |- e 1

Consider a qubit coupled to a sindleig) harmonic oscil- 021 N 1o 1

lator, which experiences linear friction, which is in turn de- 0.15 £ 10 e _

scribed quantum mechanically through a bath of oscillators. ik A i

The Hamiltonian of this system reads s L |
. €. A. P2 M o 06 =05 T 15 2 25 5 35 4
H_h(EUZ+EUX +m+ EQ (X—=qo) ) q/w

f)-z FIG. 1. Left: Visualization of the ground stae) and the co-

+2

i i ~ S

2_mi+ ?wiz(xi_(ci Imo)X)?|, (2 herent pointer stateld ) and|R) of the oscillator in the potential
V(x); right: Relaxation rates as a function of the coupligigv for

where the displacement characterizes the coupling of the different energy biasesw is the width of the ground-state wave

qubit to the big oscillator. The oscillator bath is characterizedunction of the pointerw= y#/MQ.

through an ohmic spectral density](w)=2(7rci2)/

(2m;w;) 8(w— w;)=MT w, wherel'/2 is the friction coeffi- The coherence properties of our system caneat, T

cient of the damped big oscillator. It was shdWihat this <Q be studied using a systematic weak damping

system is equivalent to the spin-boson model, with an effecapproximatioft® of the spin-boson model. The relaxation and

tive spectral density dephasing ratek, ,= TJ;; are given by
Q4 2 2
Jeil(0) =200 ———— > 50 () _ ﬂ > _E <
(02— 02)2+4T 20 IN=na VeffCOt 5T Iy= 5 +2makg VeﬁT/h, (4)

where a=2M@?I'/h is a dimensionless dissipation coeffi-
cient, which here is assumed to be smals1. From now wherevgs= \/Aezﬁ+ €. Inour case, ifp>1, A is exponen-
on, we want to concentrate on the casa <(). tially reduced compared ta, transitions between the basis
At I'=0, the low-energy Hilbert space is spanned bystates are suppressed leaving relaxation very slow, i.e., the
|+ )er=|=)|L/R) where|=) are the basis states of the qu- state becomes almost localized or “frozen,” see Fig. 1
bit, o,|+)=+|*), and|L/R) are coherent states of the har- (right). The second contribution t&' 4 in Eq. (4) reflects
monic oscillator centered arourXi= +q, see Fig. 1(left).  dephasing processes which do not change the qubit energy
So in a general low-energy state/)=al+)ei+b|—)e,  and are consequently not frozen.
|al?+|b|?=1, qubit and oscillator are entangf@dand the The use of a weak damping approximation or , is
oscillator states are pointers onto the qubit sthtds. this  appropriate, althoughi(w) can be large at the peak and in
low-energy basis, the Hamiltonian acquires fofin, with  fact the down scaling of .« is essentially a nonperturbative
Agg=A(L|R)=Ae” 7 wherep=MQq?%. Under an appro- effect. However, decoherence is mostly probing dag o)
priate choice of parameters, we can achieyel andAg  around w=rz<{Q, where the weak damping condition
<A. This choice corresponds to the condition of almostholds. This is supported by two observationsf ive project
[meaning here and henceforth “up to an errorGffe” 7)”]  the full Hamiltonian onto its low-energy Hilbert space
orthogonalstates in the environment, which has been idenspanned by= )., we find an effective ohmic model leading
tified as the condition for an ideal von Neumann to Eq. 4;(ii) a full nonperturbative calculatidhbased on the

measurementt:! noninteracting blip approximatiofNIBA)® reproduces both
For finite I', this system can be analyzed using the scaling and’, within the knowr® limitations of NIBA.

adiabatic renormalizatioh One find$® Agg gamd @) The measurement can now be performed as follows: As a

=Ae "A-a(A/Q)*(A-a)  Thus, finite dissipation €« first step,q is adiabatically ramped from=0 to a finiteq,

<1 scalesA down even slightly further. where n>1 and A—A<A. The adiabatic theorem pre-
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dicts, that the state of the system evolves ag )
+ Bl ®]0)— (| +)|L)+ 8% —)|R)), where

6°"—0\  [6"—0
oo cos( 5 sm( 5 ) N
- il

6°f— o 6°f— 0
—sm( > ) CO% 2 )

and targ®M=¢/AMN  The condition for adiabaticity is
do/dt< vﬁﬁIZq MQA s, i.e., for smallg the ramping can be
very fast.

When »>1, the matrix element is scaled down and the
state is “premeasured” by entanglement with well-separated

pointer stated and R*® Only now, we start the measure-

RAPID COMMUNICATIONS
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Oscillator 11 Meter

: !
L2

Fqu—‘qubit

ment, by coupling the oscillator to the meter and decoheringleft) and chargeright) quantum bits.

the state is projected onto the eigenstateélg;‘, which are
close to the ones af,. We can then read off the position of

the big oscillator serving as a pointer and switch off the

meter(or q) again way beforer, without destroying infor-
mation by relaxation.

In practice, it will usually not be possible to switch the i
coupling between oscillator and meter separately. Thus, be-

We

charge—qubit

FIG. 2. Underdamped readout devices for superconducting flux

the weak damping regime in Ref. 8 and resembles the one
experimentally used ifRef. 4. The oscillator in our model
represents the plasma resondfia# the tunable junction at
Q=\2ely/hC,(1—13/13)Y4
C,(h/2e)%2, X=¢ (the Josephson phase and q
(5IC/IC)(IB/\/I02—IZB), where 61/l is the difference in

can identify M

fore the entanglement is established, the relaxation (dite critical current induced by the two fundamental states of the

doesnot profit from the reduction ofA ., see Fig. 1(right).

In order not to lose the information to be measured, ther=hq

maximumrelaxation ratel’, .« reached atp=1/2 (i.e., q

=(q.= Vh/l2MQ) should be slow enough, such that by the

time 7¢ it takes to ramp above,, the information is not
lost. In practice, this can be achieved by switchopgery
fast, at a timerengl“[,%]ax, to g, and slower afterwards,
when the actual measurement occurs.

In the ohmic spin-boson modgt® ie., for Ju4
=2mawe ““c, a scaling ofA. to zero can be achieved

through a dissipative phase transition at strong coupling to

the bath @>1).%1"?42°This transition is driven by the en-
tanglement with aollectivestate involving the whole oscil-
lator bath. Ramping to large values increasdgy( ) atall
frequencies, which leads to rapid relaxatioeforethe scal-

ing is established. Moreover, it is not known, how long it is limited by I na,=2.

will take for the system to go through this phase transition.

qubit. The damping is provided by the resistor and leads to
2/2e’R=0?%11.&O/R, and the scaling exponent reads
7=0°\C,l A/8€°.
When rampindl g, the junction switches to a finite volt-
age atl;,,<Iq, which provides a measure fby. This switch-
ing is a stochastic process, so, if the measurement is re-
peated, one finds a histogram of switching currérs
centered arountl,,, o, whose widthdl g, limits the resolution
of this detector. In our case, the switching is predominantly
due to thermal activation, where we can exprégso/lo
1—[In(wr/TYluel?® and 81 /1= [ujin(w/T'9] 3 through
the dimensionless height of the barrier at zero bigs
=(4\2/3)(h1J2ekT), the activation frequency wy
=20/, and the ramp rat€';=d(q/qma0/dt. The current
can be switched within a time,,=Q 1, i.e., the ramp rate

In a flux qubit, one can reali2d .=1 uA, shunt with

Here, according to the adiabatic theorem, this time is sefx=100 pF andR=10 K, and gm,=0.05 at a typical
through the inverse level spacing of the coupled systemSwitching current level. We will assum,=1 GHz ande
which is infinite for the dense Ohmic spectrum. On the con-=1 GHz for the qubit. These parameters are accessible by
trary, the model studied in the present paper provides strongoubling the size of the sample studiedRef. 4). This leads
scaling of A4 with predictablyslow relaxation and gives a to (=2 GHz, «=0.003, and
clear prediction for the time scale of the entanglement set by 0.03A,. Entanglement sets in g;=0.015, where the re-

the finite level spacing.

laxation time iS7, =17 ma=5 MS.

ﬂmaX:3.5, i.e., Aeff

For 1% error, the first

This model does not generally predict the efficiency of theswitch over this point has to be done at 700 ns, which is way
detection. In order to do so, | chose a specific realization oaibove I'g ,,,=500 ps and the adiabatic conditiandg/dt
the model, a superconducting quantum®bitn this case, the < (500 ns) *. Close to the measuring poing,, o, we find
readout device is a Josephson junction, whose critical current=120 us andr,= 100 ns, which leaves a huge measure-
I, is influenced by the state of the qubit, either a superconment window.

ducting single-electron transistoor a dc superconducting

For definiteness, we set the temperaturelte200 mK

quantum interference devi¢8QUID).® see Fig. 2. We study and find, usingl's=(15 us) !, that l'sw,0/10=0.96 and
the junction on the superconducting branch at low bias cursl/l1,=0.35%, so, becausg=5%, we have a signal-to-
rentlg. We assume the tunable junction to be shunted onlyoise ratio of about 14. Hence, a single-shot von Neumann

by a very large resistdR and an external capacitan€g and

consequently underdamped. This system has been studiedpnovement of technology.

060503-3
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For the readout for a charge qublty a superconducting
single electron transistd6-SET), one can achieve values of
g=0.5 within a charging energ¥¢ set=2K, corresponding
to a capacitance scale @f=1 fF. We take the critical cur-
rent of the SET to bé.=10 nA and a shunt oR=10 k()
and C,=1 pF shunt capacitance. This leads#e- 3.5, )
=2 GHz, and damping:=0.25. AssumingA=1 GHz, and
e=1 GHz, we find7g ;=60 ns, so for 1% error we have
to switch toq. in about 10 ns, which is close to the limit of
I's max=500 ps. however, may pose some challenge for th
limiting time scales which ar@ot due to the on-chip cir-
cuitry. For the readout step, we findk=25us and 7,
=15 ns. Applying the histogram theory as above Tat
=200 mK andI's=(3 #s)", we end up withlg, o/l
=40% anddl /I .=8%, which can resolve our large signal
of q=30% at signal-to-noise ratio of 4. It has been
showrf®>®° that experimentally SET'san reach signal-to-
noise figures comparable to the quantum limit, hence eve
though the resolution is slightly less favorable than above
von Neumann measurements appear to be possible. F
qubits’® operating in the regime dE;/E.~=1, more favor-
able parameters should be accessible.

The readout of the detector by switching is only one, an
not necessarily the optimum alternative. Measurements could | thank J. von Delft, M. Governale, M. Grifoni, A.C.J. ter
also be performed by detecting the kinetic inductance usingdaar, P. Hadley, P. Hakonen, C.J.P.M. Harmans, S. Kleff, L.
the same parameters. Levitov, S. Lloyd, A. Lupascu, J.E. Mooij, T.P. Orlando, A.

A similar circuit, anormal conductingSET with outthe  Shnirman, and C.H. van der Wal for clarifying discussions,
shunt capacitor has been thoroughly studied in Refs. 5,7. las well as acknowledge support by the EU through TMR
that case, the measurement is started by rapidly switching theupnan and Quiprocone and through ARO under Contract
gate and monitoring the current. It has been shown that itNo. P-43385-PH-QC.

this way weak as well as strong measurements can be per-
formed. As a consequence of the direct coupling of a dense
spectrum of normal electrons to the qubit, the entanglement
and the decoherence are not as strongly separated as in our
case. Typical mixing times during the whole measurement
are of the order of 1us, i.e., one has to be able to monitor
the current through the SET on the scale of 100 ns. In our
case, one has to make the first entanglement switch on a
similar scale, but has to be monitor the voltage only after-
gvards, when mixing times are on the scale of € These
numbers clearly indicate an advantage of the entanglement
with the intermediate oscillator.

| have proposed a strategy for performing detector-
dominated von Neumann measurements on qubits, using en-
tanglement with coherent states of an harmonic oscillator.
This system has been quantitatively analyzed using the spin-
boson model and it has been shown that it has very favorable
coherence and relaxation properties. A connection between
the familiar scaling of the tunnel matrix element and the
degree of entanglement with the environment has been es-
Pblished. Realistic superconducting circuitry, which could
perform such measurements within present-day technology,
dwas been proposed.
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Abstract

The SQUID used to measure the flux state of a superconducting flux-based qubit interacts with the qubit and
transmits its environmental noise to the qubit, thus causing the relaxation and dephasing of the qubit state. The
SQUID-qubit system is analyzed and the effect of the transmittal of environmental noise is calculated. The method
presented can also be applied to other quantum systems. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 03.67.Lx; 74.90.4+n; 85.25.Dq; 85.25.Cp J

Keywords: Quantum bit; Quantum computing; Superconductive devices

1. Introduction—the qubit

Present schemes for the measurement of a single
flux-based superconducting qubit usually employ a
SQUID as the measurement meter [1-6]. The me-
ter, however, is permanently coupled to the single
qubit and becomes entangled with it. This cou-
pling also allows a channel for the environment to
interact indirectly with the qubit to cause deco-
herence. Therefore, a detailed analysis of the par-
ticular measurement scheme is necessary for
engineering the decoherence to an acceptable level.
In this paper we will analyze a persistent current
qubit surrounded by a DC SQUID as the meter.

* Corresponding author.
E-mail address: orlando@mit.edu (T.P. Orlando).

The method outlined here is applicable to other
flux-based qubits and other schemes of measure-
ments.

The persistent current qubit is a macroscopic
quantum system which consists of a supercon-
ducting ring interrupted by three Josephson junc-
tions [2].

When the external flux bias @ = fox Py is near
Jfext = 1/2, the periodic potential of the qubit has
two wells. These two lowest energy states corre-
spond to a persistent current [, circulating in
opposite directions, and these are the |0) and |1)
states of the qubit. The qubit is represented sym-
bolically in Fig. 1 as a ring with an up-arrow de-
noting the magnetic moment of the |0) state. L, is
the self-inductance of the qubit loop, Lgq is the
geometric inductance of the DC SQUID, M is the
mutual inductance. I is the circulating current in

0921-4534/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0921-4534(01)01184-4
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Fig. 1. The measuring circuit of the DC SQUID which sur-
rounds the qubit. C; and [, are the capacitance and critical
current of each of the junctions, and ¢@; are the gauge-invariant
phases of the junctions. The qubit is represented symbolically
by a loop with an arrow indicating the magnetic moment of the
|0) state. The SQUID is shunted by a capacitor Cy, and the
environmental impedance Zy(w).

the DC SQUID and 1, is the bias current. For both
loops, Lil; < ®.

A model Hamiltonian for these two states of
the qubit is Hy = (). + (t/2)o,. Here, U, =
+ ol (fex — 1/2) is the potential energy of the
upper (lower) state caused by the magnetic field
for small self-inductance so that ¢¢ = U, — U_ =
2®pIo(fext — 1/2); and ¢y is the coupling energy
due to tunneling. The corresponding energy dif-
ference v between the two states is v = (¢2 + £2)"/.
Using an external oscillator, the energy level dif-
ference has been mapped out for the persistent
current qubit [4] and also for the RF-SQUID qubit

[5]-

2. The meter

The state of the qubit adds or subtracts flux in
the loop of the DC SQUID. Because the critical
current I, of the DC SQUID is modulated by the
total flux in its loop, the state of the qubit can be
inferred from the change AL.

To be more quantitative, we consider the
Hamiltonian of the coupled systems. The DC
SQUID has two Josephson junctions which have
gauge-invariant phases ¢, and @, respectively.
For convenience of discussion, we assume the two
junctions are identical. When the self-inductance
Lgq and mutual inductance M of the SQUID are

considered, we have the flux quantization relation:
al — @2 = —2n(ﬂxt + LSQIS/¢0 +Mlpc/¢0): where
I is the circulating current in the DC SQUID. The
Lagrangian of the SQUID is L = T — U, in terms
of ¢, and @,,

G P\ G (s
T?(ﬂ“") *7(%4’2)

Ca (@02 <\

T (E((pl'i_(PZ))v (1)

U= —E2cos g, — E;%cos ¢,

L 0
+ 0L L (4 B2)

where Cj is the junction capacitance, and Cy, is the
shunt capacitance parallel to the SQUID. EJSQ =
Iy®y/(2m) is the Josephson energy of the junc-
tions in the SQUID. The first three terms in the
Lagrangian depend on the time derivatives of the
phase variables and are the charging energies of
the capacitances. U is the potential energy of the
SQUID, including the Josephson energies of the
junctions, the energy due to the self-inductance,
and the work done by the bias current .

The Hamiltonian of the qubit-SQUID system
can be derived from the Lagrangian by adding the
qubit Hamiltonian H, to the total energy. We
choose the independent variables of the SQUID to
be: @, = (31 + §2)/2 and G, = (1 — $)/2 B,
is the external variable that directly correlates with
the ramping current /,, and ¢, is the inner vari-
able that corresponds to the circulating current of
the SQUID. ¢, inductively couples with the qubit
flux. The total Hamiltonian of the qubit-SQUID
system is:

H, = Hy + Hsq + Hiy,

Hy = %az +t500-x7
Hyg = %+% S cospreospn
+2E§Q(‘7’%£ﬁ’“)2—lb%¢p,
o= G afee

which includes the qubit Hamiltonian H,, the
SQUID Hamiltonian Hgg under external flux fe,
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and the qubit-SQUID interaction Hiy. P, and Py
are the conjugate variables of the corresponding
phases. my, = 2Cy(®,/2n)” is the mass of the inner
variable; m, = (Cy, + 2C))(®y/2n)° is the mass of
the external variable. For convenience we in-
troduce fgq = 2nLsqlo/®y to represent the self-
inductance.

Typical parameters of the experiments are:
E}? = 40 GHz with I = 80 nA, C; = 2 fF, Cy, = 5
pF, Ly =10, Lsg =16 pH and M =8 pH. The
circulating current of the qubit gives a flux of
f ~ 1073 flux quanta, which is coupled to the
SQUID by mutual inductance.

The mutual inductive coupling also changes the
flux through the qubit. However, since the mag-
netic energy of the qubit states is linear near
f =1/2, the potential energies of the upper and
lower states are U, = £®olpc(foxt + ML/ Py
Lylpe/®o — 1/2) where L is the self-inductance of
the qubit. Therefore, the energy difference is
€=U, — U_ =2®Ip(fexe + MI;/ Dy — 1/2). How-
ever, fou > MI/®, so that to lowest order, € does
not change; nevertheless, the mutual inductive
coupling will be important when we consider it as
the main channel through which environmental
noise interacts with the qubit. Also to first order
the tunneling does not change, so that H, remains
the same.

The current I, at which the SQUID switches
from the zero voltage state to the finite voltage
state, is smaller than I, due to thermal activation
and quantum tunneling. What is measured exper-
imentally then is a histogram of switching currents
for a given applied flux as the bias current /, is
swept linearly in time. The circuitry which shunts
the SQUID affects the statistics of I, [7-9]. An
underdamped SQUID has I, < I. and the histo-
grams are wide and require a number of repeated
measurements for the needed resolution. A
damped SQUID can give a narrow histogram at
the expense of decoherence. Hence, a compromise
is needed to damp the SQUID sufficiently to gain a
fast, sensitive readout while maintaining a long
coherence time. In this paper we will focus on
underdamped SQUIDs as used in the recent ex-
periments, but the method holds for damped
SQUIDs also. The repetition frequency of the
measurement of 7, is limited by the bandwidth of

the low pass filters used for the measurements and
by the read-out electronics. This limits the repeti-
tion frequency to the range of 10 kHz to 1 MHz. A
more efficient readout may be realized by mea-
suring the dynamical inductance of the SQUID
[11].

3. Decoherence engineering

The relaxation and dephasing times may be
found by solving the master equation for the re-
duced density in the spin—boson model [12,13].
The relaxation and dephasing times in terms of the
spectral density of the effective environmental
noise Jerr () are

1 7 ho

=0y, th ,

" 20 { () co kT L,_“,O 3
1 € fiw

— = — | J. th

3 o ]

where w = v/7 is the frequency corresponding to
the average energy difference of the qubit states.
The environmental spectral density function is
calculated from the fluctuations in the energy lev-
els of the qubit, Jer = (dede) /hz. Intuitively, the
change in the energy level € = 2Pl (fox + ML/
@y —1/2) is 8e = 2I,:M 3I;, where we have as-
sumed that the external bias field is constant and
the main source of fluctuations is the Johnson
noise acting through the circulating current in the
SQUID. The bias current for the SQUID is
I, = 2Iycos ¢,, sin ¢, and the circulating current is
I = 2lysin ¢, cos @,,. Let @, = nfey so that
% = =2l sin(nfex) Sin @, (2?7; |4 (4)
where V = (®y/2n)d¢,/dt is the voltage across
the SQUID. Taking the Fourier transform of the
above and using the definition of 7,, we have

27
U)(DO

The fluctuations in the voltage are given by the
Johnson—-Nyquist formula

81y(0) = i—— I tan(nfu )3V (). (5)

hw

(8V (w)dV (w)) = himRe{Z(w)} coth T

(6)
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where Z(w) is the total impedance seen by the
SQUID, which in the case of Fig. 1 is a parallel
combination of the environmental impedance and
the capacitor Cg,. The spectral density function
becomes

1 /2aMI,\*
Jef[(w) = hw( @0 p > Ié

/10)

x tan® (nfeuq)Re{Z(w)} coth T

(7)
where @, & Tfex.

A more detailed analysis [13] begins by linea-
rizing the Hamiltonian, which was implicitly as-
sumed in the more intuitive approach. After
linearizing the potential energy near the energy
minimum, the SQUID variables behave as har-
monic oscillators interacting with each other, and
the Hamiltonian becomes

2
H, = Hq + ;n—mm + %mmw;((pm + 6@002)2
PZ

1
p 2 2
+ 2, + > MWy @)y + 100 ) (8)

The phases ¢, = ¢,, — ¢y, and ¢, = ¢, — @} are
the oscillator coordinates relative to the energy
minimum (@}, ¢?). The inner oscillator frequency
depends on the self-inductance of the SQUID, Ly,
and the capacitance of the junctions Cj, as o, =
v/2/LsqCy. In the experiment, the self-inductance
of the SQUID is weak with f; = 2nlsqly/ Py =
0.004. Hence o, ~ 10° GHz is higher than all
the other relevant energies of the qubit-SQUID
system. As a result, the inner oscillator is slaved to
the qubit and follows the qubit’s dynamics even
during qubit operation. The external oscillator
frequency depends on the ramping current as
wp = wg[l - (Ib/lc)2}1/4wherewg = /2nl./(ChPy)
is the oscillator frequency at zero current and 1 is
the effective critical current of the SQUID under
external frustration. Typical numbers are wg =1.3
GHz and w, = 1.0 GHz at I, = 0.8I.. As I, in-
creases the potential barrier decreases faster than
oy, and the linearization will become invalid when
I, is close enough to the critical current. It can be
shown that the harmonic oscillator approximation
stays valid until I, ~ 0.951,. However, in the pre-
sent experiment with a linear ramp of I, the

SQUID usually switches to the finite voltage state
before this current. In Eq. (8), the inner oscillator
coordinate ¢,, is offset by the qubit by £3¢, when
o. = £1. This offset originates from the inductive
interaction between the qubit and the SQUID:
8¢y = Ml /Py. The J; term is the bilinear cou-
pling between ¢, and ¢, at the potential energy
minimum and is determined by the ramping cur-
rent J,. We have J; = |tan ¢° |1, ®y/2n. When the
ramping current is turned off, the J; coupling dis-
appears, and ¢, and ¢, interact via a higher order
term (pm(pé which brings negligible entanglement
with the qubit state.

Hence, we can divide the qubit-SQUID system
into two parts: the measured system that includes
the qubit and the inner oscillator of the SQUID;
and the “meter” that is the external oscillator of
the SQUID. The current ramping process is the
system—meter entanglement process. When the
SQUID switches, the meter variable escapes from
the supercurrent branch to the finite voltage branch
and a macroscopically distinguishable record is
obtained; in the process, the coherence of the sys-
tem is completely destroyed by quasiparticle exci-
tations at the gap voltage. Note that the switching
current in any given measurement is not perfectly
correlated with the state of the qubit. In other
words the measurement is not strictly speaking a
von Neumann measurement, but rather a more
general positive operator valued measurement [14].

The effect of the environmental noise is included
by adding to the Hamiltonian a bath of oscillators
which are coupled to the modes of the system. In
this case we only include the coupling to the ex-
ternal ¢, modes of the SQUID as the major source
of noise. The spectral density of the bath is de-
scribed by the Johnson—Nyquist spectral density of
Z(w), the shunting impedance [15]. The problem
can then be recast in terms of an effective bath that
the qubit itself sees; that is, the inner and external
SQUID oscillations are absorbed into an effective
bath. The spectral density of this effective bath can
be found from the generalized susceptibility of the
qubit by writing the equations of motion for the
linearized Hamiltonian and considering the vari-
ables as classical variables [16,17].

By treating the Hamiltonian classically, the re-
sulting equations of motion describe the time
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[ J [ J o O Csh
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]
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Fig. 2. Equivalent circuit of the linearized qubit-SQUID sys-
tem. ¢, and ¢, are the two independent variables of a DC
SQUID. ¢, correpsonds to the circulating current of the
SQUID, and ¢, couples with the ramping current of the
SQUID. The capacitances of the inner oscillator loop and
the external oscillator loop are C, =2C; and C,, the shunt
capacitance outside the SQUID. Flux of the three loops, ¢ =
4002, @, and @, are chosen as independent variables in the
calculation. Each of the inductances in the three loops interacts
by mutual inductances as are indicated by the paired dots near
the inductances.

evolution of the average of the quantum variables
0., @ and ¢,. For the example in Fig. 1, the re-
sulting linear equations can be represented by the
equivalent circuit in Fig. 2 [13]. The reservoir of
the SQUID has been modeled as an impedance
Zy(w). The effective admittance Y of this circuit is
the inductance of qubit in parallel with a contri-
bution from the outer circuits through the mu-
tual inductive coupling with the inner oscillator.
This contribution depends on the SQUID oscilla-
tor parameters and the impedance Z,. The current
noise from this effective admittance is Jur(w) =
(hw/4e*)Re[Yerr]. When oy > @, o, we have:

(elyMI,.)* o
Jer (@) = ——=T PR 2
CiliRay (@0? — 2)” + (/R Csn)

©)

where Cy, is the SQUID shunt capacitance and the
shunt impedance Z; is simplified as a resistor Ry,.
At w =~ wy, the noise is filtered by a factor of
(wp/w)4. When o ~ ,, a sharp Lorenzian peak
appears in the spectrum that has a width of
(RanCan) ™

Once Jor(w) is known, the decoherence and
relaxation times can be calculated from Eq. (3).

We use the experimental parameters of Cy, = 5 pF,
M =8 pH, I, =80 nA and I, =0.8/;, and we
assume an environmental impedance of Ry, =
100 Q. At a temperature of 20 mK the derived
decoherence time is then 7, =4 ps at [, = 0.81,
and the relaxation time is 7, = 0.3 s. The deco-
herence time is shorter than the estimated intrinsic
noise decoherence of 0.1 ms [18]; while the relax-
ation time is long enough so that it will not hin-
der the extraction of accurate information of the
qubit states.

4. Summary

The DC SQUID decoheres the qubit during the
measurement, when the bias current of the SQUID
is ramped up to measure the qubit’s state. This
means that while the SQUID’s bias current is zero,
it does not contribute to the decoherence of the
qubit, and thus it does not degrade the Q (the
number of operations which can be performed
prior to qubit decoherence). Assuming that the
operations have been completed, the only consid-
eration required is whether the SQUID’s bias
current can be ramped to the switching point be-
fore the qubit can relax to its ground state,
tamp < Tr. In the recent qubit experiments [4],
however, excitations are applied to the qubit si-
multaneous to the ramping of the SQUID’s cur-
rent. This results in the application of the
SQUID’s dephasing at the same time as the logical
operation, resulting in the short dephasing time
observed. Note that this technique for calculating
the decoherence can be applied to other circuits,
some of which continuously couple to the qubit.

Similar analyses have been done for a shunting
circuit which includes a resistor [10,19] and the
coupling of an external driving circuit to this qu-
bit, both by an external oscillator [10,19] and an
on-chip oscillator [20].
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The spin-boson model with a structured
environment: A comparison of approaches*
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Abstract

In the spin-boson model, the properties of the oscillator bath are fully characterized
by the spectral density of oscillators J(w). We study the case when this function is
of Breit-Wigner shape and has a sharp peak at a frequency 2 with width I' < Q.
We use a number of approaches such as the weak-coupling Bloch-Redfield equation,
the non-interacting blip approximation (NIBA) and the flow-equation renormaliza-
tion scheme. We show, that if €2 is much larger than the qubit energy scales, the
dynamics corresponds to an Ohmic spin-boson model with a strongly reduced tun-
nel splitting. We also show that the direction of the scaling of the tunnel splitting
changes sign when the bare splitting crosses 2. We find good agreement between
our analytical approximations and numerical results. We illuminate how and why
different approaches to the model account for these features and discuss the inter-
pretation of this model in the context of an application to quantum computation
and read-out.

Key words: Spin-boson model, quantum computing, quantum measurement,
cavity quantum electrodynamics
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1 Introduction

The subject of open-system quantum mechanics and the physics of the bound-
ary between classical and quantum physics has been of strong interest since the
early days of quantum theory. A paradigmatic standard model for the study of
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open quantum systems is the spin-boson model [1,2]: A single two-state system
coupled to a bath of harmonic oscillators described by the Hamiltonian

1 1 1 2
% %

Here, Hj is a constant counter-term. The energy eigenvalues of the two state
system alone are +F/2 with E = /€2 + A%, The oscillator bath can model
arbitrary Gaussian noise sources. It is fully characterized by a spectral function
J(w) which depends on the distribution of frequencies and couplings

c?

J(w) =) — 50w —w). (2)

~ 2m,w;

For a given physical system, e.g. a superconducting quantum bit coupled to a
noisy electronic circuit, J(w) can be obtained by analyzing either the effective
friction [3] or noise [4] originating from the environment. It is useful to also
introduce the semiclassical noise power S(w) = J(w) coth(w/2T).

Next to its long tradition in chemical physics, the physics of open quantum
systems and in particular the spin-boson model has gained recent practical
importance in the field of quantum computation [5]. There, one is interested
in obtaining long phase coherence times for the actual computation and long
relaxation times for the readout. In a number of quantum computation realiza-
tions, the researcher has the option to engineer at least part of the properties
of the quantum system and the dissipative environment under study [6], e.g.
in the case of superconducting qubits coupled to their control and readout
electronics [4]. In particular, environments with nontrivial internal dynamics,
e.g. with resonances, can be realized and appear to be attractive [4,7,8]. Much
is known about the physics of the spin-boson model whose spectral density
is a power law with an exponential cutoff [1,2]. Such spectral densities only
contain the cutoff as internal energy scale, which is typically assumed to be
very high, leading to scale-free rates.

Much less is known about structured environments. We are interested in a
generic realization of this physics described by a spectral density containing a
Breit-Wigner resonance

Q4
2 _ ()2)2 T2 (3)
(w? — Q2)2 + 4w?T

J(w) = aw



in the underdamped case I' < €). In that case, we can expand

a)? oo’ ~
J(w) = — _ 0 =0Q-2I?/Q. 4
() 8il' | = w—i0'Q —ioT / @

Moreover, we will be able to profit from the analytical continuation of results
with a Drude spectral density, noting that eq. 3 can be written as

af)? ow
J = - .
(w) 4T Z w2 — (O’Q + ZF)Q

o==%1

(5)

Note, that the shift of the real part of the resonance frequency from €2 towards
Q can be neglected in the underdamped case, except close to the resonance.
We will henceforth only emphasize this shift in those cases, when it actually
affects the results.

This type of spectral density is generically obtained by coupling the spin to a
harmonic oscillator with eigenfrequency €2 which in turn is damped with a lin-
ear friction coefficient I' /2. This friction is modeled quantum-mechanically by
a bath of harmonic oscillators. Using a normal mode transformation, one can
show that this is equivalent to our spin-boson Hamiltonian with a structured
bath [9]. More details are given in section 5. This model is realized in various
physical systems such as chemical reactions involving biomolecules [9], atoms
in cavities [10] or superconducting qubits coupled to resonators [4,8,11-14].
It is related to the nonlinear dimer model of polaron physics [15]. The case
of no dissipation with restriction to a rotating wave approximation is known
in quantum optics as the Jaynes-Cummings model [16]. Our notation corre-
sponds to the one adopted in Ref. [7] and is slightly different to the one of
Ref. [17].

The spin-boson model cannot be solved exactly in closed form. It has been
studied by a number of approaches. Some of them are largely numerical such
as quantum Monte Carlo [18], real-time renormalization group [19], quasi-
adiabatic path integrals [20] flow equation renormalization [21] and numerical
renormalization group [22], others are mainly analytical such as the noninter-
acting blip approximation (NIBA), a systematic weak damping approximation
or exact Born approximation [23,24] or Bloch-Redfield [25-27]. A spectral den-
sity of the type eq. 3 poses a challenge to most of these approaches, since the
dimensionless coupling, the spectral density in units of the frequency, J(w)/w,
can be either very small (off-resonance) or large (on-resonance). In order to
explore the physics of this model and to obtain useful analytical information,
these approximation schemes have to be applied within their range of validity
and compared to numerical methods which are essentially nonperturbative in
J(w)/w. Alternatively, one can treat the coupled TSS and oscillator system



as multilevel quantum system and only the friction to the oscillator as a bath
[28].

The plan of this paper is to analyze this model using the weak-coupling Bloch-
Redfield theory and the nonperturbative NIBA and to compare the results to
a full numerical study obtained in the flow equation scheme. We will very
briefly introduce these methods and compare the dynamics of the reduced
density matrix [characterized through the expectation value s,(t) = (6,) (¢)
with, for definiteness, localized initial condition s,(0) = 1], effective reduced
Hamiltonians, dephasing and coherence rates. Interpretations of the results in
terms of a superconducting quantum bit coupled to a resonant measurement
circuit will be given.

2 Bloch-Redfield

The Bloch-Redfield-theory has originally been developed in the context of nu-
clear magnetic resonance (NMR) [25]. It offers a systematic way to obtain
a generalized master equation within the weak coupling Born approximation
between system and bath with J(w)/w as small parameter. It contains a sub-
tle Markov approximation such that the resulting master equation is local in
time; however, the main bath correlations relevant within the Born approxi-
mation are kept and they do lead to time-dependent rates for a driven system
[27,29]. Bloch-Redfield has been shown to be numerically equivalent to a full
non-Markovian path integral technique for a rather generic choice of param-
eters [27]. Nevertheless, recent calculations at 7" = 0 seem to indicate [24]
that there may under certain circumstances be additional terms in the Born
approximation, that are neglected in the Bloch-Redfield approach.

The natural starting point for the Bloch Redfield theory in the undriven case
are the energy eigenstates of the spin-part of the Hamiltonian 1. In that “en-
ergy basis”, the Bloch-Redfield equation can be written as (see e.g. ref. [2])

p'nm = _iwnmpnm + Z anklplcl (6)
kl

where all indices take the values + and — corresponding to the ground and
excited state and wy, = (E, — E,)/k. The Redfield tensor has the form

Roumit = O > Uyl + 0 3 Liron = Tipnie = Dinne (7)

where we have introduced

T e = (02)im (@)l (W) and T = (0.)im(00) kD (—wim) — (8)



where (0,)nr are matrix elements of o, in the energy basis, the * denotes
complex conjugation. The basic building block of the rates in the Redfield
tensor is the rate I' which can be written as

1 0o . 0o
['(dw) = %/dte_“s‘“te_o”/dwef(w) [coswt coth (%) - isinwt] . (9)
0 0

The resulting dynamics displays exponential decay and reads

s,(t) = il (e‘r’"t + tanh (Eeﬁ> (1-— e_r’“t)) + A cos(Eegt)e ¢! (10)
EZ% 2T EZ%

The quantities Aeg and Eeg = /€2 + AZ; can be associated with a renormal-
ized Hamiltonian

1
Hee = 5 (c6 + Aur6y) (11)

The details of the shift of the tunnel splitting A +— Acg will be discussed
below.

The term in eq. 10 containing I', describes incoherent energy relaxation. It
leads the system into thermal occupation of the renormalized Hamiltonian
described below. The relaxation rate can be deduced from the Bloch-Redfield
rates eqs. 9, 7 and 8

Ih=R ___ +Rityy =(0:)-+(02)+— (I(E) + I(—E) + c.c)
AQ
= @S(E) (12)

This result is easily understood in terms of the Born-approximation: In order
to relax, the system has to exchange the energy corresponding to the energy
splitting £ with the environment at once, using a single photon.

The last term in eq. 10 describes quantum coherent oscillations analogous to
Larmor precession of a spin [30]. These are the hallmark of (macroscopic)
quantum coherence in the spin-boson system. Their decay rate can hence be
identified with the dephasing rate and can, using egs. 7, 8 and 9, be written
as

Fy=—Rel'_y_y = Re[2(02)-—(02)1+1'(0) + (02) -1 (02) - (I'(E) + I (= E))]

r, €2

(13)



Note, that on very general grounds [30] we have 2I';, > I';. The extra factor of
1/2 originates from the fact that there are in principle two dephasing channels
corresponding to clockwise and counterclockwise Larmor precession. We are
following here the standard NMR-motivated notation [30]; one could equiva-
lently define 2I'y as the true physical dephasing rate. The first term in eq. 13
is proportional to the relaxation rate eq. 12, which reflects that a relaxation
process certainly also randomizes the phase information. The additional term
involves S(0), which in our case is o« 7. This contribution originates from “fli-
pless” dephasing processes which randomize the phases while keeping energy
constant, i.e. transitions from a state into itself.

The form of both rates egs. 12 and 13 resembles the case of unstructured en-
vironments [23], even though the spectral density eq. 4 has singularities close
to the real axis. The high relaxation rate at £ ~ €) corresponds to resonant
interaction between the qubit and the central environmental oscillator. When
interpreting this result, one has to be aware, that the Born approximation
involved is only valid for I', 4 < E, which, bounding J(w) < J(2), means
a? < I'?. This a very rigorous constraint in the underdamped case, I' < ,
which we are considering. Also physically, we do not expect this result to be
consistent up to strong couplings, because the relatively weakly damped big os-
cillator is a highly coherent quantum system which mostly reversibly exchanges
energy with the spin. Since the Golden-Rule approximation in Bloch-Redfield
only takes the long time limit, this reversible exchange cannot be seen in the
Bloch-Redfield result. This can be understood from the order of limits pre-
scribed by Bloch-Redfield and shown in the appendix: The imaginary part of
the energy is first sent to zero. Non-Markovian approximation schemes [23,24]
would at least take a self-consistent value and thus shift the S(E) in eq. 12
into ReS(FE +4I';.). Such shifts can be important in particular if £ ~ Q, when
both predicted rates are very high. Results are summarized in figure 1. We
clearly see the peaked behavior at resonance and notice that the influence of
the self-consistent solution is rather small even at rather extreme parameters.
On the other hand, the self-consistent solution predicts lower rates as com-
pared to the non-self-consistent one, similar to the predictions of flow-equation
studies [17].

As mentioned above, the environment not only causes dephasing and relax-
ation, it also renormalizes the tunnel splitting A (and with it the transition
frequency), by dressing the two-state system with environmental degrees of
freedom. This is similar to the physics of the Lamb shift or the Franck Con-
don effect and leads, in the nonperturbative regime, to the dissipative quantum
phase transition [1,31,32]. In our case, the transition frequency is renormal-
ized according to E — E — ImR,_,_. If we look at the imaginary part of
the generic rate, eq. A.2, I'(E) = 1 [ dw J(w)P =253 [coth(fw/2) E — w] we
observe a weight function P(w? — E?)~! which changes sign at w ~ F. Thus
we can expect an upward renormalization of F if most of the spectral weight
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Fig. 1. Relaxation and dephasing rates as a function of energy bias predicted from
Bloch-Redfield theory. Parameters are A = 0.1Q2, T' = 0.01€2. For the low-damping
plots we have chosen o« = 1076, T' = 1072Q, for the high-damping plots we
have chosen o = 107%, I' = 107%Q. The inset compares the self-consistent and
non-self-consistent relaxation rate around the resonance for A = 0.1Q, T = 0,
a=10"2and T =10 2Q.

of J(w) is above E (corresponding to E' < 2) whereas F scales downward in
the opposite case. Physically, this corresponds to level repulsion between the
spin and the oscillators in the environment. The result also is consistent with
usual second order perturbation theory for the energies. The sign change hap-
pens at E ~ ) the point where most of the spectral weight is concentrated,
thus we expect a rather sharp structure of the splitting Feg(€2). Note, that
this sign change is not predicted for the usual spin-boson in the scaling limit,
which can be studied by the well-known adiabatic renormalization approach
[1,31]. In that case, Eog is always reduced. This is consistent with our findings,
because in the scaling limit, the vast majority of the environmental oscillators
have high frequency, much above the qubit splitting.

From the structure of the dephasing rate eq. 13 we can conclude that the last
term in eq. A.3, which is even in energy, drops from the final result. Moreover,
the remaining contribution to eq. A.3 vanishes as £ — 0. If we finally go to
low temperatures, we can replace p in eq. A.3 by an appropriate logarithm
and find for the shift of the transition frequency

OF
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In the underdamped limit we are working in, we can approximate the log-
arithm as log |Q2/E| — iom/2 and split the result as Feg = F + 0F, 0E =
0Fq + dEyes. It contains a logarithmic contribution which resembles the scal-
ing in the Ohmic case (with cutoff frequency €2),

2 A?
0Eq = ——J(F)log

E
=. 1
7w E? Q‘ (15)

This contribution changes sign from an upward shift at 2 < F to a downward
shift at 2 > FE' as is expected from the general arguments above. The logarith-
mic divergence at low E can be indicated as a precursor of a dissipative phase
transition. The other contribution takes into account the enormous spectral
weight of the resonance,

A2 E2 _ ()2

6Eres = ﬁJ(E) QF

(16)

This contribution is of the order «/T. It will be shown below, that terms of
this kind persist even in the absence of damping of the external oscillator.
It, too, undergoes the expected sign change. It is linear at low F and hence
does not contribute to a dissipative phase transition. It instead represents
a substantial but finite renormalization. This is due to the fact, that for a
dissipative phase transition, the environment has to get entangled with the
spin down to arbitrarily small frequencies. These results are summarized in
figure 2. As expected, we find in fig. 2, that the energy shift has a sharp
structure around the sign change at £ ~ . At this point, the spin becomes
strongly entangled with the central oscillator, hence the concept of “qubit
energy splitting” is of limited applicability. This observation is consistent with
the usual dressed atom approach of cavity quantum electrodynamics.

3 NIBA

So far, we have restricted ourselves to the Born approximation, i.e. to the low-
est order in J(w)/w and have otherwise kept the system general. We now turn
to the noninteracting blip approximation (NIBA), which is nonperturbative in
that parameter. It can be derived from evaluating the influence functional in a
path-integral approach by assuming that the off-diagonal excursions (“blips”)
of the density matrix contributing to the path of the two state system are
uncorrelated [1,2]. It is thus justified when E < 2, because then the bath is
oscillating rapidly on the scale of the two-state system and the time-integrated
bath correlation function quickly averages out, leading to weak damping on



0.01 |

0.005 — — high damping
- low damping

L
<, O e T
2e]
-0.005
-0.01 ' l l
0 05 1 15 2
| l !
02+ — high damping |
- low damping
w 0.1 _
8} -----------------------------------
ut O
2]
-0.1
-0.2 :
| il '
0 0.5 1 15 2
E/Q

Fig. 2. Renormalization of the energy splitting at 7" = 0 taken at the degeneracy
point € = 0, defined as positive if the splitting is decreased. Upper panel: Ohmic-like
logarithmic contribution from eq. 15; lower panel: Contribution of the environmental
resonance from eq. 16 (for discussion see text). Low damping: I' = 0.01Q, o = 1074,
high damping: T' = 0.1Q, a = 10~ 2.

longer time scales. Alternatively, the NIBA can be obtained by analyzing a
the polaron-transformed version of the spin-boson Hamiltonian.

NIBA is known to work well under these conditions at the degeneracy point
e = 0. At € # 0, the situation is more subtle. At ¢ > A [1,2] the true dynamics
is dominated by incoherent relaxation, which is again accurately predicted.
This application of NIBA is closely related to the so-called P(FE) theory of
Coulomb blockade [2,33-35].

In this approach, the dynamics turns out to be governed by the Laplace trans-
formed exponentiated correlation function

A% T
= ﬂ/e_’\tel((t)dt (17)
0

P())

where K (t) is the twice integrated bath correlation function from eq. 9

K(t) = % 7dt% ((cos wt — 1)coth (%) + isinwt) : (18)



At the degeneracy point, the dynamics of the system in Laplace space is readily
found from

[ 1
s:(A) = 0/6 s:(t) = AT ReS(Y) (19)

where S(\) = (P(X) + P*(\*))/2. Far from the degeneracy point, we find
incoherent relaxation

s,(t) =e It [1 — tanh (%)] + tanh (%) I, = 2ReP(ie 4+ 0).(20)

At T = 0, we can use eq. 4 to evaluate K(¢) in closed form

af) o'Q—1lo
K(t)=
*) SWFiZiO’F—I-aQ

oo’

—v —log(—i(cQ2 — o'T)t)] (21)

[e(ianU’I‘)tEi(—(io’Q —o'T)t)

This is too complicated to allow a direct calculation of P(A) from eq. 17. At
low energies, £ < ) we can concentrate on the long time limit of eq. 21 and
find, keeping only lowest order terms in I'/Q

0
Kiong (£) = == — 2a[log || + 7 + i /2] (22)

where 7 is the Euler-Mascheroni-constant. This is a combination of a constant
term of the order o/I" and a logarithmic term which resembles the findings in
the Ohmic case [2,1]. This is similar to what we observed in our Bloch-Redfield
result for the scaling in egs. 15 and 16. From here, we find P(\) being

. A2 2a
P\ = e_aQ/Fe_27ae_Za”7F(1 —2a) <%> : (23)

Off the degeneracy point, we can directly evaluate the relaxation rate from
eq. 20 which reads

A2 a0 e e [\
T, =2 % R
¢ T (Q) 24

o]

This rate resembles to the Ohmic case [33,2] but is reduced by an extra ex-
ponential prefactor exp(—af2/T"), which again represents the contribution of
the resonance and can be very small. Thus, we find the important result that

10
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Fig. 3. Relaxation rates calculated from the NIBA eq. 24, in the long time approx-
imation using I' = 0.01Q2. Note, that for small « values the rate first grows with
growing «, until the localization due to the resonance takes over and relaxation
rates drop dramatically.

by designing small o but appreciable af2/T", the incoherent relaxation rate of
the spin can be reduced to extremely small values. A physical interpretation
of this finding will be given later on. The predictions of equation 24 are shown
in fig. 3. At the degeneracy point, at ¢ = 0, we find the Laplace transform of
s, using egs. 19 and 23. In analogy to the Ohmic case [2,1] we obtain for the
back-transform that

5:(t) = Fa 20 (—(Aeat)” ) (25)

where E is the Mittag-Leffler function [2,1,36] and

A a/(l—a)
A = A (5> (e‘aQ/Fe_QW cosmal'(1 — 20z))

1/(2—2a)

(26)

is the renormalized tunnel splitting. Note that this is only valid at A < 2
because we have taken the long time limit for K(¢). Consequently, it always
predicts a downward renormalization. As in the Ohmic case, the dynamics
show a crossover from decaying oscillations at low « to incoherent decay at oz >
1/2 at € = 0. The renormalized tunneling frequency A.g shows a combination
of the usual Ohmic scaling behavior governed by «, including a dissipative
phase transition at o = 1, plus a very effective down-scaling of e~@/2'(1-)
governed by «/I' only, which also occurs for an undamped resonance and is
not present for the Ohmic case. This again captures the contribution of the
resonance and reflects the behavior we have observed in egs. 16 and fig. 2 to
lowest order in a/T". The dynamics is illustrated in figure 4. We can observe,
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Fig. 4. Dynamical properties within the long time approximation of the NIBA at
e = 0. Left panel: Effective tunnel matrix element eq. 26 for /A = 10 for different
values of the environment line width as a function of . Lower I means more spectral
weight of the resonance and stronger down-scaling of Aqg. Right panel: Expectation
value of o,, eq. 25 for different values of the damping parameters and A/Q = 0.1.

that the time evolution of the spin is almost brought to a standstill, in the
sense of absence of both oscillations and decay, already at modest coupling
constants.

4 Comparison to flow equation results

So far, we have studied our system using traditional methods for open quan-
tum systems. In order to complement this work, we want to compare the
above results with previous work [17], in which the same setup was studied
with the flow-equation renormalization method [21], which originates from
strongly correlated electron systems and very well suited for treating prob-
lems with several different energy scales. We will restrict ourselves to € = 0.
This method typically can be used to calculate spin-spin correlation functions
in equilibrium such as C(t) = (0,(t)0,(0))eq. A typical example is shown in
fig. 5. The Fourier-transformed correlation function C'(w) is peaked at several
frequencies. The resonance around A.g corresponds to coherent oscillations,
its width can be identified with the dephasing rate. There can also be a reso-
nance around {2 corresponding to oscillations of the oscillator leaving a trace
on the qubit, but it hardly carries spectral weight. We have numerically solved
the flow equations for small and moderate coupling strengths. More complete
results are published elsewhere [17]. We see, that at A < 2, A.g is rescaled
downwards similar to the NIBA, but with quantitative differences The Bloch-
Redfield result produces the correct slope at small «, see fig. 6. Around A = €2,
the rescaling changes sign. Remarkably, Bloch-Redfield also predicts the slope
above the sign change with good accuracy, see inset of fig. 6, although this set
of date is taken very close to resonance. Please note, that in the inset fig. 6 it
is important to keep Q in eq. 14.

12
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Fig. 6. Rescaling of the tunneling matrix element using different methods. Main
plot: I'/Q = 0.027, A/Q = 0.1; inset: I'/Q = 0.06m, A/Q = 1.1.

5 Relation to quantum measurement and entanglement

As already mentioned in the introduction, a straightforward way to implement
this model with the spectral density eq. 3 is to couple the TSS to a single
harmonic oscillator with resonance frequency €2, which is in turn damped by
additional oscillators. This model has the Hamiltonian

13
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The oscillator bath is characterized through an ohmic spectral density J(w) =
> 2::51(5 (w—w;) = MTw, where, I'/2 is the friction coefficient of the damped
big oscillator. It was shown in [9], using a normal-mode decomposition, that
this system is equivalent to the spin-boson Hamiltonian eq. 1 with spectral

density eq. 3, where oo = 2M¢°T'/h.

There are a number of realizations of such models. We would like to concen-
trate on a specific implementation in superconducting quantum circuits: A flux
quantum bit coupled to the plasma resonance of a DC-SQUID. This setup has
been thoroughly analyzed in Refs. [3,4]. It has been shown that the spectral
density of the flux noise indeed leads to eq. 3 and how the circuit parameters
relate to the parameters of that function. Moreover, it has been shown that
the coupling parameter ¢ actually can be tuned by the bias current through
the SQUID. A representative circuit is shown in fig. 7. It is also shown there
and discussed in Ref. [7], that a similar though less favorable realization can
be found for charge quantum bits. We are mentioning this model, because it
describes a detector of a quantum variable. Thus, we are going to interpret the
findings of this paper in terms of quantum measurement theory. Other appli-
cations of resonators coupled to superconducting qubits have been discussed
in [12-14] As a key result, we have found above within Bloch-Redfield as well
as within NIBA, that at ¢, A < €, the system dynamics can be interpreted
as an Ohmic spin-boson model with a strongly down-scaled tunneling matrix
element. This can be understood in terms of the following model, which was in-
troduced and discussed already in Ref. [7]. We start from the undamped case,
[' = 0. the low-energy Hilbert space is spanned by |+)eg = |£)|L/R) where |£)
are the basis states of the qubit, o,|+) = +|+) and |L/R) are coherent states
of the harmonic oscillator centered around X = +g¢, see Fig. 8. So in a general
low-energy state |} = a|+)eg + b|—)esr, |a|> + [b]*> = 1, qubit and oscillator
are entangled. In this low-energy basis, the Hamiltonian acquires the form
of the renormalized spin part of the spin-boson Hamiltonian eq. (11), with
Aeg = A(L|R) = Ae ", where n = MQq?/h. This coincides with the result of
eq. 26 in the limit of @« — 0 but a/T" = const. Under an appropriate choice of
parameters, we can achieve n > 1 and A.s < A. Following the notion of Ref.
[37], the degree of entanglement is equal to 1—e 27 = 1—|A.g/Al?, i.e. we can
interpret strong separation of the preferred states of the external oscillator and
strong renormalization,i.e. Aeg /A < 1 with strong entanglement. In terms of
quantum measurement theory, the oscillator states are pointers onto the qubit
states [38]. Choosing n > 1 corresponds to the condition of almost orthogonal
pointer states in the environment, which has been identified as the condition
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for an ideal detector-dominated von-Neumann-measurement [38,39]. Such a
measurement corresponds to the standard textbook quantum measurement:
The preferred states into which superpositions are decohered are assumed to
be Eigenstates of the measured observable regardless of the Hamiltonian of
the qubit. In our case, eq. 27 describes coupling of the pointer degree of free-
dom to 6, and hence measurement thereof. Rescaling A.¢ asymptotically to
zero means bringing the target states of the decoherence arbitrarily close to
Eigenstates of 7,, thus realizing the aforementioned textbook assumption.

As it stands, the qubit just gets entangled with the pointers, but they are
not read out. This can be done by coupling to the dissipative environment.
As shown above, its influence corresponds to that of an Ohmic environment
of strength «. Taking o < 1, this leads to dephasing and relaxation rates
analogous to the Bloch Redfield results eqgs. 12 and 13

A

2 2
Eq r €

[, = eff th(e> [y = — + 2nak
waEeHco ) 5 + 2 BEef-f

T/h. (28)

Note, that the result on I', correspond, for ¢ = 0 to the nonperturbative NIBA
result, eq. 24. There may be non-exponential contributions to the dynamics
as well [24].

It is important to notice that in the strongly entangled case, A < A, the
relaxation rate, which describes the thermalization of the system independent
from the initial state, is strongly reduced, whereas the dephasing rate, which
describes the projection of a superposition into a mixture of the eigenstates
H.¢ is hardly affected. This is a very favorable situation for a practical mea-
surement: The information is quickly available, after 7, = F;l and is destroyed
only after 7 = I'z'. This is not only convenient for experimental implemen-
tation but also guarantees high fidelity: The probability for reading out the
correct result after the dephasing time is P = e ™/™ and thus close to unity.
For completing the description of the measurement, one has to evaluate the
resolution of the detector and the typical measurement times. This depends
on details of the physical realization of interest and has been done in Ref.
[7] for the superconducting setup. In general, our scheme should permit very
high resolution up to single shot, because the signal can be enhanced by strong
coupling without reducing 7,.

6 Summary and outlook

We have studied the spin-boson model with a structured bath using three dif-
ferent approaches: Bloch-Redfield, NIBA, and flow equation renormalization.
We have arrived at a number of common features: If the peak in the spectral
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density is at frequencies much above the environmental resonance, the system
is equivalent to a renormalized Ohmic spin-boson model. This has been inter-
preted in terms of quantum measurement and the usefulness of this result for
modeling quantum detectors has been outlined. We have furthermore shown
that the tunneling matrix element of the spin part is renormalized downward
if its initial value A is below the environmental resonance {2 and renormalized
upward if it is above. We have compared this renormalization from all ap-
proaches and shown that they are in reasonable agreement within the scope of
their applicability. In particular, our analytical results from NIBA and Bloch-
Redfield reliably approximate the numerical results from flow equations.

We would like to thank M. Grifoni and S. Kehrein for useful discussions. Work
supported in part by the National Security Agency (NSA) and Advanced Re-
search and Development Activity (ARDA) under Army Research Office (ARO)
contract Nr. P-43385-PH-QC, and by the Deutsche Forschungsgemeinschaft
through SFB 631.

A Calculation of rates including poles of the spectral density

We now want to outline how to calculate the rates eq. 9 We can interchange
the order of integration and evaluate the time integral, which can be expanded

into a delta function contribution and a Cauchy principal value. We can split
['(E) into real and imaginary part, ['(F) and I'"(F) and find

I'(E) = %_LJ(E) [coth(BE/2) — 1] (A1)

for the real part, which determines the decoherence and

I'(E) = % /dw J(w)’Pﬁ [coth(Bw/2)E — w] (A.2)

for the imaginary part, which controls the frequency shifts. The latter can
be calculated by extending the integration contour to the complete real axis,
applying the residue theorem and resumming the resulting Matsubara series.
We end up with

O2F ['— 1002
—r @ o 5 |P(I' —io) — Rep(iE) — W%

2 2T 2 P = (0Q + i)

(A.3)

where p(z) = (1 + Bz /27) + ¢(Bz/2m) involves the digamma function .
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3.5 Active suppression of decoherence and
errors

So far, we have taken the approach to carefully analyze the decoherence
from a dissipative enironment acting on a qubit which is controlled as
if it was fully coherent. Understanding this allows to engineer the de-
coherence properties by carefully engineering the selection rules of the
coupling and the spectrum of the environment. This is particularily
suitable for noise from the electromagnetic environment. In Ref. [199],
a radically different approach is pursued: For a given coupling to the
environment, the system is controlled in such a way that decoherence
has less impact. This approach is particularily suited for noise intrinsic
to the material, which cannot be arbitrarily engineered. The paper con-
centrates on the compensation of slow telegraph noise which is typical
for disordered materials. The impact of this noise is supressed by appli-
cation of the quantum bang-bang protocol, which essentially averages
out the noise by applying a rapid train of short spin-flips. We show
that this train of control pulses very efficiently refocuses the dynamics
and supresses the deviation from the mean by a factor proportional to
the ratio of the separation of bang-bang pulses over the typical flipping
time of the telegraph noise. The approach employed for modeling the
system is based on analyzing the resulting random walk on the Bloch
sphere and averaging over noise realizations. This is different from
the generalized master equation approaches used in the other sections.
The reason for this is, that those approaches typically rely on the as-
sumption of weak coupling to the environment and on the mapping
onto a harmonic oscillator bath model and in many cases also on a
Markov approximation. Both requirements are not satisfied in the case
of telegraph noise: The spectral density grows to large values at low
frequencies (in fact, few telegraph sources lead to 1/f-noise) and the
statistics of the noise is Poissonian with a relatively long characteristic
time scale which also displays the memory.
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With the growing efforts in isolating solid-state qubits from external decoherence sources, the
origins of noise inherent to the material start to play a relevant role. One representative example
are charged impurities in the device material or substrate, which typically produce telegraph noise
and can hence be modelled as bistable fluctuators. In order to demonstrate the possibility of
the active suppression of the disturbance from a single fluctuator, we theoretically implement an
elementary bang-bang control protocol. We numerically simulate the random walk of the qubit
state on the Bloch sphere with and without bang-bang compensation by means of the stochastic
Schrodinger equation and compare it with an analytical saddle point solution of the corresponding
Langevin equation in the long-time limit. We find that the deviation with respect to the noiseless
case is significantly reduced when bang-bang pulses are applied, being scaled down approximately
by the ratio of the bang-bang period and the typical flipping time of the bistable fluctuation. Our
analysis gives not only the effect of bang-bang control on the variance of these deviations, but also
their entire distribution. As a result, we expect that bang-bang control works as a high-pass filter
on the spectrum of noise sources. This indicates how the influence of 1/ f-noise ubiquitous to the

solid state world can be reduced.

PACS numbers: 03.65.Yz, 03.67.Lx, 05.40.-a

In order to implement solid-state quantum information
processing devices, the decoherence acting on the quan-
tum states has to be carefully understood, controlled and
eliminated. So far, research has concentrated on decou-
pling from external noise sources (like thermal heat baths
and electromagnetic noise). With the success of this ef-
fort, noise sources intrinsic to the material such as defect
states increase in importance and have to be controlled
in order to improve coherence even further.

Most external noise sources are composed of extended
modes in the thermodynamic limit close to equilibrium
such that their fluctuations are purely Gaussian. Thus,
their influence can be modelled by an oscillator bath, see
e.g., |1]. However, there are physical situations when this
assumption fails [2, [3]. In particular, this is true for lo-
calized noise sources with bounded spectra as they occur
in disordered systems for hopping defect states [4]. Phys-
ical examples for this situation are background charges
in charge qubits |5, I, [1] or traps in the oxide layers
of Josephson tunnel junctions [8]. Such localized noise
sources are more realistically represented by a collection
of bistable fluctuators [d] (henceforth abbreviated bfls),
as their noise spectrum is considerably non-Gaussian. If
many of these noise sources with different flipping times
are appropriately superimposed, they lead to 1/f noise
M, [1d]. With the progress of fabrication technology and
miniaturization of qubits, we expect however that there
might only be a few fluctuators in a qubit [§].

We analyze the impact of a single fluctuator in the

semiclassical limit, where it acts as a source of telegraph
noise. We apply an open loop quantum control tech-
nique, namely quantum bang-bang [11, 12, [13], which is
designed suitably for slowly fluctuating noise sources. We
simulate the noise-influenced qubit dynamics with and
without bang-bang correction by integrating the time-
dependent Schrodinger equation for each specific realiza-
tion of the noise. We present the resulting random walks
around the unperturbed signal on the Bloch sphere and
analyze the quality of this suppression by an compari-
son of the ensemble averaged deviations of these random
walks with and without bang-bang correction.
We describe our system by the effective Hamiltonian

H{™(t) = Hq+ HL9 (1) (1)
Hy = heq69 + hA 69 SOR (1) = hagea(t)og (2)

where o denotes the coupling strength between the fluc-
tuator and the qubit and &pa(t) represents a symmet-
ric telegraph process that is flipping between £1, whose
switching events are Poisson distributed with a mean sep-
aration m,q between two flips.

On a microscopic level, such noise is typically gener-
ated coupling the qubit to a two-state impurity, which
is in turn coupled to a heat bath causing the two-state
system to flip randomly and incoherently. Our model
corresponds to the semiclassical limit and should be ac-
curate whenever the coupling of the impurity to the bath
is much stronger than its coupling to the qubit |2, 3] such
that the qubit does not act back on the noise source.



The assumption of a symmetrical telegraph process cor-
responds to a high bath temperature compared to the
impurity level spacing. This restriction is not essential
for the following investigations, for an asymmetric noise
signal would only produce an additional constant drift.

We describe the resulting evolution of the noise influ-
enced qubit by a stochastic Schrodinger equation [14, [15]
with the time-dependent Hamiltonian (). For any initial
state of the qubit, we numerically integrate

o) =Te (<isn [ H @) v @

with T the time-ordering operator and ¢ the state vector
of the two-state system. The result is a random walk on
the sphere, which is centered around the free precession
on the Bloch sphere corresponding to €4 and A,.

We implement the following idealized open quantum
control scheme: apply an infinite train of m-pulses on the
qubit with negligibly short pulse durations and a con-
stant separation time 7,1, between neighboring pulses.
In doing so, we intend to average out the &, parts of
the effective Hamiltonian (and thereby in particular the
noise term) on time scales large compared to 7,p. This
is accomplished by iteratively spin-flipping the qubit and
thus effectively switching the sign of the noisy part of the
Hamiltonian. This mechanism thus works analogously
to the well-known spin-echo procedure, specifically the
Carr-Purcell procedure of NMR [16]. We expect to com-
pensate a fraction of the telegraph noise effects: the size
of the random walk induced by the noise is determined
by the typical time separation of the fluctuators influ-
ence between two flips 7,q and its coupling strength «
and scales roughly with a7,g. Using bang-bang, the bfls
influence remains uncompensated for at most a single
bang-bang period. Thus, we reduce the influence of the
bfl randomly by an average factor of m,q/Tbb.

As generic conditions of the system dynamics we con-
sider for the numerical simulations g = Aq = 9. With-
out loss of generality, we assume (64) = +1 as an initial
state. If there were no noise, the spin would precess on
the Bloch sphere around the rotation axis 63+ 463. So we
expect for not too large an interaction strength (o < 1)
a slight deviation of the individual quantum trajectory
from the free evolution case. We take o = 0.1 for our
coupling strength. All the following time and energy
measures are given in units of the unperturbed system
Hamiltonian: our time unit is 7gys = 2 /o and our en-

ergy unit is AE = /€2 + A2 = V2Q. Note that in

these units, a period lasts m7gys/ V2. We have integrated
Equ. @) and averaged over N = 1000 realizations. The
time scale ratio 7pa/mp = 10 if not denoted otherwise.
We characterize our results by the root-mean-square de-

viation from the unperturbed signal

Adoms(t) = \/ L (0 - ) @)

In order to characterize the degree of noise suppression
by means of bang-bang control, we define the suppression
factors for a given time tg

AGtRs(to)

rms

Sto (o /Tob) =

The deviation as a function of time is plotted in Fig. ().
We recognize that the total deviations on intermediate
time scales are suppressed by a ratio of ~ 10. Detailed
analysis shows that the tangential and the orthogonal
deviation, corresponding respectively to dephasing and
relaxation, are of the same size for the uncompensated
case. In contrast, the bang-bang modulation mostly com-
pensates the dephasing-tvpe deviation. as shown in the
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FIG. 1: Time evolution of the mean deviations for bfl-induced
random walks with and without bang-bang. The straight lines
are square-root fits of the analytical derived random walk
model variances (plotted as triangles). Inset: Transverse and
perpendicular components of bang-bang suppressed noise.

We now develop analytical random walk models for
our system. Although the random walk on the Bloch
sphere is in general two-dimensional, bang-bang control
effectively reduces it to a one-dimensional model, rep-
resenting the relevant perpendicular part. We restrict
ourselves to the long-time limit.

For simplicity, we replace the fluctuating number of
random walk steps for a given time At of noisy evolu-
tion by its expectation value At/7,g [11]. This allows to
use the number of random walk steps as time parameter.
We encounter different one-step-distributions, depending
on whether the number of steps is odd or even, corre-
sponding to an “up” or “down” state of the bfl [21]. The



step-size distribution of the bfl model in our small devi-
ation regime is given from Poisson statistics

TFz/B

(I)Bgd/even(z) = eff(ix) (6)
with 3 = ampg as a typical random walk one-step devia-
tion. Tynit is a time unit, corresponding to a discrete step
length zynit = & Tuni of the random walk. 6(x) denotes
the Heaviside step function. We neglect the correlations
between transverse and perpendicular deviations as they
average out in the long-time limit.

For the bang-bang suppressed random walk, the flip-
ping positions of the bfl-noise sign in the bang-bang
time-slots are essentially randomly distributed as long as
Toh < Th- We find a homogenous step-size distribution
between zero deviation and a maximum vy = %’L,
0(£2)0 (£]y —a])

v

(pggd/even(z) = (7)
The ubiquitous \/LE occurs, because the bang-bang se-
quence also averages over the static e;-term and hence
slows down the free evolution.

By means of these one-step probability distributions,
we are able to calculate via convolution the distributions
for 2N-step random walks. Specifically, they are the in-
verse Fourier transforms of the N-fold products of the
Fourier transforms of the two-step distribution [11]. For
the uncompensated case, we find

T odk 1
b o —ikx
Pon(z) = /_7r 27T52Ne (1 — 2cos(k)e~1/8 + eQ/ﬁ)
(8)

whereas for the compensated case

bb (T dk o=k [1 —cos((y + DK)J? "
Dop(z) = /7r 272N ( [1 — cos(k)]? )

(9)
Already for random walk step-numbers in the order
of ten, the resulting distributions are almost Gaussian.
Their standard deviations give the rms deviations of the
random walk models plotted in Fig. [). As expected,
they grow as a square-root of the number of steps.

The above integrals can be evaluated analytically using
the saddle point approximation. We find variances of

opa(N) = V2Namg (10)

for the pure bfl random walk and

O’bb(N> =1/ %Oﬂ—bb (11)

for the compensated one. In the large- N limit, this model
shows excellent agreement with the simulation.

Beyond predicting the variance, our analysis also al-
lows evaluation of the full distribution. We compared

evolution with and without bang-bang compensation via
simulations with 10* realizations and calculated the full
distribution function for a evolution time ¢y = 7gys. The
numerical histograms of the deviation with their respec-
tive one- and two-dimensional Gaussian fits are shown in
Fig.[@). We observe that not only the bang-bang com-
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FIG. 2: Histograms of the deviation from free evolution with
and without bang-bang and fits to the expected two- (pure
bfl case), respectively one-dimensional (bang-bang corrected
evolution) random walk statistics. Numerical data collect
over 10000 realizations at a fixed time to = 7sys. With
7oA = 0.017sys the random walk distributions are calculated
for N = 7sys/ma = 100 steps. (NB: The z-axis scale of the
right graph is 15 times smaller than that of the left graph.)

pensated distribution is much narrower than the uncom-
pensated distribution, but also that its shape is qualita-
tively different: its maximum is at zero error whereas the
uncompensated distribution has its maximum at a finite
error |Ac| = 0.01 and zero probability of zero error.

We have systematically studied suppression factors for
different ratios of the switching time 7,8/7,b at a con-
stant fluctuator flipping rate m,q = 10_27'syS and evolu-
tion time ty = Tgys. The numerical data in Fig. (3) show
that the suppression efficiency is linear in the bang-bang
repetition rate, S = pmha/7bp. The numerically derived
value of the coefficient, pinumerical = 1.679, is in excellent
agreement with our analytical result panalytical = V3~
1.732 from the saddle point approximation, Equs. ()
and ([l). This small discrepancy reflects the correlations
between the transverse and longitudinal random walk in
the uncompensated case, see Fig. ).

We have demonstrated the ability of a bang-bang pro-
tocol to compensate environmental fluctuations with fre-
quency w < 1/7m,p. Thus, bang-bang is acting as a “high
pass filter” for noise with a roll-off frequency of 1/7p.
Evidently, the bang-bang correction is suitable for sup-
pressing the impact of telegraph noise on qubits and can
enhance the coherence by orders of magnitude. The ap-
plication of the scheme which we outlined requires a rel-
atively strict separation of time scales: One has to be
able to flip the spin very rapidly, typically two orders
of magnitude faster than 7,5. It remains to be investi-
gated how this scheme works with pulse durations that
are finite rather than infinitesimal. Moreover, we have
assumed that the environment produces symmetric tele-
graph noise regardless of the qubit dynamics. Clearly,
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FIG. 3: The suppression factor S, (Tba/Tbb) = AR eval-

uated for to = 7sys as a function of the ratio of the flipping
time 7,a and the bang-bang pulse separation 7.

the issue of when one may neglect feedback effects be-
tween the qubit and bfl must be critically revisited in the
low-temperature limit. We speculate that the setup is
promising for 1/ f-noise, as in particular the most harm-
ful and predominantly low-frequency fraction of a corre-
sponding ensemble of fluctuators would be compensated
most strongly. Finally, one has to be aware that also
the static term of the Hamiltonian is averaged out, and
this generally reduces the degree of control on the qubit.
This is only a technical constraint, however, as one could
imagine interchanging two different types of bang-bang
pulses to admit corresponding quantum gate operations.

Another approach for decoupling from slow noise is
to choose an appropriate working point with a domi-
nant term o, in the static Hamiltonian. The action
of this term can be understood as a rapid flipping of the
spin, similar to our bang-bang protocol. Using a Gaus-
sian approximation the noise from the bfl with standard
rate expressions (e.g., [18]), it can be shown that the de-
phasing rate reads I'y = a/7,aQ? instead of I'y = ampg,
which corresponds to the same amount of reduction as
in our case. This scheme has been implemented in su-
perconducting qubits [19]. In that case, it turned out
that because the o, term was limited by fabrication, this
consideration led to a major redesign. Our compensation
scheme purely relies on external control and thus keeps
the hardware design flexible.

A related problem has been addressed in Ref. [20],
which deals with bang-bang suppression of Gaussian 1/ f-
noise, i.e., a bosonic bath with an appropriate sub-Ohmic
spectrum. That system is treated in the weak-coupling
approximation, i.e. it assumes S(w)/w < 1 at low fre-
quencies where S(w) is the noise spectral function. Both
assumptions are serious constraints in the 1/ f-case [4, ]
Our work is not constrained to weak coupling, takes the
full non-Gaussian statistics of telegraph noise into ac-

count, and gives the full resulting distribution of errors.

In summary, we examined the decoherence of a sin-
gle qubit from a single symmetric telegraph noise source
and proposed an adequate open quantum control com-
pensation protocol for suppressing its impact. We simu-
lated the qubits dynamics using a stochastic Schrodinger
equation and analyzed its deviation from free evolu-
tion. We formulated analytically solvable one- and two-
dimensional random walk models, which are in excellent
agreement with the simulations in the long time limit.
Specifically, we show quantitatively, how the degree of
noise compensation is controlled by the ratio between bfl
flipping time scale and bang-bang pulse length. We give
the full statistics of deviations in both cases.
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3.6 Elements for superconducting quan-
tum computers

So far, a number of designs for superconducting quantum bits have
been brought forward. The experiments have so far mostly focused on
the single-qubit level and on qubits with a fixed coupling. Although
there are workarounds, it is most desirable to have tunable couplings.
Most straightforwardly, flux qubits can be mutually coupled by a flux-
transformer interrupted by a superconducting switch. In ref. [200] we
examine such a coupler interrupted by different types of dissipative
switches. We give general criteria for the use of dissipative switches in
terms of subgap conductance and critical current density. In particu-
lar, we show that a voltage-controlled Josephson field effect transistor
(JOFET) can, assuming a modest improvement of present-day device
parameters be used in superconducting qubit architectures: Due to its
operation principle, it is only noisy in the “on” state but noiseless in
the “off” state. Other dissipative elements such as 7m-junctions are less
favorable. Compared to the proposal to use a DC-SQUID as a switch,
the JoFET has the advantage of a very well-defined off-state. Moreover,
since it is voltage-operated, it avoids cross-talk with the qubit flux.

The use of charge control in flux qubit architectures is further inves-
tigated in Ref. [201]. It is shown that in a single flux qubits with an
electrostatic gate, the Aharonov-Casher effect can be used in order to
control the phase of the tunnel matrix element, such that full control
over all components of the effective spin representation of the qubit
Hamiltonian can be achieved. This can be used, e.g., to demonstrate
the Berry phase and implement geometric quantum computation, which
in many cases is more fault-tolerant that usual, pulsed quantum com-
puting. As a byproduct, the paper also describes the contribution of
background charge noise to the decoherence of flux qubits.
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Superconducting flux qubits are a promising candidate for solid-state quantum computation. One of
the reasons is that implementing a controlled coupling between the qubits appears to be relatively
easy, if one uses tunable Josephson junctions. We evaluate possible coupling strengths and show
how much extra decoherence is induced by the subgap conductance of a tunable junction. In light
of these results, we evaluate several options of using intrinsically shunted junctions and show that
based on available technology, Josephson field effect transistors and hjghetions used asr

shifters would be a good option, whereas the use of magnetic junctionstafters severely limits
guantum coherence. @003 American Institute of Physic§DOI: 10.1063/1.1612901

Quantum computation promises qualitative improvemenstrength between two qubits coupled by a switchable flux
of computational power as compared to today’s classicalransformer. We evaluate the strength of the decoherence in-
computers. An important candidate for the implementation ofluced by the subgap current modeled in terms of the resis-
a scalable quantum computer are superconducting gubits. tively shunted junctioliRSJ model. Based on this result, we
After experimental demonstration of basic features, e.g., ikssess available technologies for the implementation of the
flux qubits®* the improvement of the properties of such set-switch.
ups involves engineering of couplings and decoherence, see, We start by calculating the strengk of the coupling
e.g., Ref. 5. between the two qubits without a switch and then show how

To perform universal quantum computation with a sys—it is modified by the presence of the switch. From Fig. 1 and
tem of coupled qubits it is very desirable to be able to switctthe law of magnetic induction we find the following equa-
the couplinggalthough there are in principle workarounds Fions for the flux through qubit 1 and 2 induced by currents
It has already been described that for flux qubits, this can b the qubits and the flux transformer

achieved by using a superconducting flux transformer inter- M M M
; . O TT TQ TQ Is
rupted by a tunable Josephson junctfare., a superconduct-
ing switch, as shown in Fig. 1. The primary and most O ®1|=| Mrq Mqq O 1], 1)
straightforward proposal for the implementation of this P, M O Mao 2

switch is to use an unshunted dc-superconducting quantum ) , )

interference devicéSQUID) based on tunnel junctions uti- Whe,reMQQ is the sglf-lnductance Qf the qubitassumed to
lizing the same technology as for the qubit junctions. Al- be identica), Mrq is the'mutual mductance'between the
though this holds the promise of inducing very little extratransformer and the qubits and the mutual inductance be-

; . o tween the qubits is assumed to be negligible. The fluxXes
decoherence, it suffers from two practical restrictidfisthe in Eq. (1) are the screening fluxes in the transformer and the

SQUID loop has to be biased by exactly half a flux quantumtwo qubits, i.e., the deviations from the externally applied

in the off state andii) the external control parameter is a values. Henceforth, we abbreviate Et). ass®=M|. These

magnetic flux, which introduces the possibility of flux i
crosstalk between the qubits and the switch. The combinaf—OrmUIaS are general and can be applied for any flux through

tion of (i) and(ii) implies that even small flux crosstalk will

severely perturb the off state of the switch. _T_ _T_ i _T_
This can be avoided by using different switches: A ] 1. 1. I

voltage-controlled device such as a Josephson field effec ! i 2 1 ZaN ] 2

transistor (JOFET’ or a super—normal—metal-conductor qubit 1 qubit 2

(SN9S-transistor completely avoids the cross-talk problem. @q;xl X @q;f

As an intermediate stébpne can improve the SQUID by

using a larger junction, in order to fix the off-state at zero 1

field. Suchar junctions can be found in high; system8 or U ~ W

in systems with a magnetic barrirAll these junctions are B ' =

damped by a large subgap conductance because they conte B \—N\N‘—[ Is )

a large number of low-energy quasiparticles.

In this letter, we quantitatively evaluate the coupling
FIG. 1. The flux transformer inductively couples two flux quliise Ref.
2). It can be switched, e.g., by a dc—SQUID or by a tunable shunted Joseph-
dElectronic mail: storcz@theorie.physik.uni-muenchen.de son junction.

RSJ model

0003-6951/2003/83(12)/2387/3/$20.00 2387 © 2003 American Institute of Physics
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fluctuations of the qubit of the shapéde(t)se(0)),,
=J(w)cothfiw/2kgT) with J(w)=aw?/(0?+ »?) with the

L important result that the dimensionless dissipation parameter
R LJ here reads
2 2 2
4lcirc'vI TQLJ
A= T TL)2 ()
FIG. 2. Equivalent circuit diagram of the flux transformer circuit. The R(L+ LJ)

JoFET is modeled by a resistively shunted Josephson junction. L
and an intrinsic cutoff o,=R(L+L;j)/LL;. Here, L;

. . =®dy/27l . is the kinetic inductance of the junction. From
the transformer loop. It is most desirable to couple zero neEq_ (3) we receive in the limitL>L, the expressionx

flux through the device, which can be achieved by using 3 1/RI2 and forL~L,, L<L, it follows that @ 1/R. From
gradiometer configuratiol. For this gradiometer case, we the re;ults of Ref. 12, we can conclude that 10-° poses

getls=—(Mrq/Mrr)(I1+15), which we might insertinto 5, sher hound for gate operations to be compatible with

Eq. (1) and find for the inductive energy guantum error correction. In the following sections we will

2
Mt

2 evaluatea for different types of junctions in the switch, a
Eind:(MQQ— Mot

(12+1%)—-2 M—TQ| 1ls. (20 JOoFET, a superconductor-ferromagnet-supercondy&ie®

i junction and a highF; junction by inserting typical param-
The terms resulting from the off-diagonal elements of @y.  eters. We use the normal resistaigto estimate the shunt
can directly be identified as the interqubit coupling strengtiresistance in the RSJ model. Here, it is important to note that
K= —2(M$Q/MTT)I1I2 which enters thed,®d, Ising- the parameterk. andRy of the junction determine the suit-
coupling described in Refs. 2 and 12. Note, that the dynamability of the device as dow-noise switch, which are given
ics of the qubit flux is dominated by the Josephson enefgiesby a combination of material and geometry properties. In the
to which the diagonal term is only a minor correction. following we exemplify the calculation of the dissipative ef-

We now introduce the tunable Josephson junction intdects with several experimental parameter sets.

the loop. Using fluxoid quantization, we rewrite the Joseph-  For present day qubit technolofywe can assumé
son relation! 1 =1 sin[—2m(ds/dg)] and insert it into Eq.  ~1 nH, 1,,~100 nA Mo~100 pH. In the following, we
(1). The resulting nonlinear equation can be solved in theestimatea for a number of junction realizations, adjusting
following casesi(i) If |Is/lI¢<1 (“on” state of the switch  the junction area for sufficient critical current.
we find K=- 2(M$Q/M}T)I1I o with  Mip:=Mqr A JOFET can be understood as a SNS junction where the
+(Po/27] ) =M1+ Lin(0). This can be understood as an role of the normal metal is played by a doped semiconductor.
effective increase of the self-inductance of the loop by theBy applying a gate voltage, it is possible to tune the electron
kinetic inductance of the Josephson junction at zero ligs. density of the semiconductor.

In the casdls/l|~1, “off” state, the circulating current is The critical current of such a junction containimdy,
close to the critical current of the switch, hence the phasehannels can be found using the formula of Kulik and
drop is +@/2 and we find an analogous forfk=  Omel'yanchukl ;= (7A)/(Rye).'***Ry=h/(2e’N,) is the

— 2(M$Q/M’TT)I1I > With Mir=Mqr+(Po/41]), i.e., at point-contact resistance. In a JOFET, the back gate essentially
low | the coupling can be arbitrarily weak due to the enor-controls N.,. The typical normal resistance is aroury,
mous kinetic inductance of the junction close to the critical=10 ). For a JOFET the critical current of the Josephson
current. junction is1.~30 xA and the Josephson inductanceLig
We now turn to the discussion of the decoherence in~11pH.’
duced by the subgap conductance of the tunable junction. Inserting the earlier estimates we get7x10 . This
The decoherence occurs due to the flux noise generatedeans that the dissipative effects are weak and a JOFET
through the current noise from the quasiparticle shuntshould be a reasonable switch that poses no new constraints.
Hence, both qubits experience the same level of noise. ThBesides the obvious technological challedgme drawback
decoherence of such a setup has been extensively studiedah JOFETSs is that due to wide junctions with dimensions of
Ref. 12 as a function of the environment parameters. In thigroundw=500 nm they are likely to trap vortices, which can
letter, we evaluate these environment parameters for our speause 1ff noise by hopping between different pinning sites.
cific setup. However, this can be reduced by pinning, e.g., by perforating
We model the junction by the RSJ-model for a soundthe junction.
guantitative estimate of the time scales even though the If we go away from the on state with the JOFET, we
physics of the subgap conductance is usually by far moreeduce both . and Gy linearily by depleting the density of
subtle than that. We evaluate the fluctuations of the currendtates. Figure 3 shows that we find that the dissipative effects
between two points of the flux transformer loop sketched inare strongest during the switching process when
Fig. 1.L is the geometric inductance of the lodp; is the  L;(pe/p2™~L, andnotin the on state of the switch. In the
Josephson inductance characterizing the Josephson contatf state of the switctifor po(0)—0) alsoa goes to zero. If
and R is the shunt resistance. The correlation is given bythe switch is tuned from the off state to the on state,
the fluctuation-dissipation theorem (6814l), reaches a local maximum and then decreases again. This
=coth(Bh w/2)h w ReY(w), where Y(w) is the admittance makes the JOFET a very attractive switch: It induces an ac-
of the effective circuit depicted in Fig. 2. Following the lines ceptably low level decoherence in the on state and can be

of Ref. 5, this translates into a spectral function of the energynade completely silent in the off state.
Downloaded 09 Oct 2003 to 129.187.254.47. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp
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2.0x10" — T T — T by far closer to the desired values, see Fig. 4.
| 2040° T T High-T, junctions can be realized in different ways.
15x10% - Here, we take from Ref. 9 parameters for a typical noble
1.5x10™ |- ® Loo® 1 metal (Au)-bridge junction with a film thickness of about
1 w=~100 nm. The product.Ry~1 mV andpy=8.3Q nm.
| 50x10° [ 7 1  We assume that in principle for the 7 state and the 0 state
B Lox10* - ool ol ) are the same. For a contact area of around 908 rim

Py ~1mA andRy~1. Now the strength of the dissipative
effects is easily evaluated to be~6.5x10 8, which is

5.0x10° much better than SF% junctions and even better than the
JoFET.
We estimated the strength of the dissipative effects that
00 Ll C el PR will occur due to the switch for several possible switches.
0.001 0.01 0.1 1 . . . .
o/p. These results are summarized in Fig. 4 for typical parameters
ele

of the analyzed systems. We find that the noise properties of
FIG. 3. The dimensionless dissipation parameteas a function of the & JOFET andr shifters based on high; materials introduce
electron density in the two-dimensional electron gas for a JOFET. The inseno important noise source. On the other hand, the parameters
shows a linear plot of the region with the largest found from 7 shifters based on magnetic materials are much
less encouraging.
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PACS. 85.25.Dq — Superconducting quantum interference devices (SQUIDs).
PACS. 03.65.Vf — Phases: geometric; dynamic or topological.
PACS. 03.67.Lx — Quantum Computation.

Abstract. — We outline a method to generate a Berry phase in a small superconducting
loop interrupted by Josephson tunnel junctions, to which an electrostatic gate is coupled. We
quantify the achievable phase and show how it can reach large values, if the junctions are
made tunable. We show, that this system can be used for geometric quantum computation.
We furthermore propose a direct test of a quantum mechanical prediction on the macroscopic
scale, namely of the Bloch-character of a wave function in a periodic potential. Our results can
be used to estimate the effect of offset charges onto a regular persistent current qubit.

Small Josephson circuits are a model system for quantum mechanics on a macroscopic
scale [1]. In particular, it has been recently demonstrated that small superconducting loops
interrupted by one [2] or three [3] Josephson junctions can be brought into a superposition
of macroscopically distinct flux states. They show quantum-coherent dynamics in the time
domain [4] and are hence a possible candidate for the realization of a quantum computer [5-7].

Quantum computing schemes are usually based on the application of fast pulses, i.e. the
switching of a term in a Hamiltonian in a well-defined time. This can be understood as
interference of dynamic phase factors, which are proportional to the time-integral over the
difference of energy levels. The quantum evolution generally can also exhibit geometric phase
factors [8]. In particular, if the Hamiltonian of a quantum system is adiabatically varied such
that there are no transitions between the respective energy eigenstates, a geometric phase
called the Berry phase [9] occurs. The adiabatic condition is satisfied as long as the rate
of change of energy level splittings dej; = €; — €; is much smaller than the level splittings
themselves, h|dde/dt| < |d¢|?>. The Berry phase occurs even if the variation is taken around
a closed loop back to the initial Hamiltonian. It hence does explicitly depend on the path in
parameter space describing the variation, not only on the initial and final points. In this sense,
it is non-Abelian. It has been pointed out [10] that this phase can be used for implementing
a universal quantum computer. The Berry phase does not depend on the timing of the
variation, as long as it remains adiabatic. It has so far been observed in microscopic systems
such as NMR [10,11], photons [12] or microscopic spins in semiconductor nanostructures [13].
Recently, a Berry phase experiment in a superconducting circuit in the charging regime,
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Fig. 1 — Proposed experimental setup. The Josephson junctions may all be of different coupling
strength, e.g. realized as SQUIDs. The capacitances of the junctions are assumed to be identical.

has been proposed [14]. We are going to show, how the wave function of a macroscopic
magnetic flux in a small superconducting loop can acquire such a geometric phase. Quantum
computation in the flux regime has the potential advantage over the charge regime, that the
fundamental states are less sensitive to 1/f noise from offset charge fluctuations, which are
expected to limit both phase coherence and large-scale integrability [5,7]. Moreover, as the
fundamental flux states involve a macroscopic number of Cooper pairs, whereas in the charging
regime only a single Cooper pair is controlled, it has been argued that flux-based experiments
are suitable for probing quantum mechanics on a truly macroscopic scale.

We first discuss a simple circuit containing three junctions, which allows to demonstrate
the phenomenon. Then, we turn a six-junction design, which allows the generation of Berry
phases of arbitrary size, profiting from the periodicity of the system’s wavefunction.

The device is sketched in Fig. 1. It consists of a small, micrometer-sized superconducting
loop interrupted by three Josephson tunnel junctions with capacitances C; and Josephson
couplings a;Ey. The «; are supposed to be close to unity and can be made tunable by
replacing them with DC-SQUIDs, i.e. by two junctions in parallel [15]. One of the three
islands connecting the junctions is coupled to an electrostatic gate with capacitance Cg,
which is held at a voltage Vg and induces a gate charge Qg = VgCg = 2eng carried by ng
induced Cooper pairs. Inevitably, all three islands do also electrostatically couple to ground
by a geometric capacitance Cy. Here and henceforth, we assume the junction capacitances
and the ground capacitances among themselves to be identical C; = C, Cy; = vC'. Without
the external gate, this system has already been discussed in Refs. [3,5,6]. A similar setup, a
Josephson array with a gate, has been used to study the Aharonov-Casher effect of quantum
vortices in junction arrays [16]. General symmetry properties of a bigger class of related
devices including gates have been discussed in Ref. [17].

Using current conservation and fluxoid quantization, we can proceed along the lines of
Refs. [5,6] and describe the dynamics of the device by two independent variables, the phases
across junctions 1 and 2. The Hamiltonian corresponds to that of a particle in two dimensional
{#1, 2} coordinate-space

H=27TCy™ 7+ U(9)



F.K. WILHELM AND J.E. Moo1J: BERRY PHASE IN GATED PERSISTENT CURRENT QUBITS 3

The capacitance matrix is

_ 2+ -1
CM_C(—I 2+7>’

the scalar potential reads

U =Ej(—aj1cosd —ascosda — azcos(2nf + ¢1 — ¢2))

1

momentum operator is 7 = 7+ Qg /2e, where § = —ihV > is the canonical momentum. Note
that without the gate, at ng = 0, there is no pseudo vector potential, hence the Hamiltonian
is a completely real differential operator and the Berry phase vanishes.

From now on, we will discuss the properties of the system close to frustration, i.e. when the
magnetic flux through the system is close to half a superconducting flux quantum ®/®¢ ~ 1/2.
Then, the potential shows a periodic pattern of minima, which form a hexagonal lattice. This
symmetry reflects the three junctions of the loop [17]. The minima are separated by potential
barriers, whose strength is determined for each of the three unit lattice vectors through the
corresponding «;, see fig. 2 (a-c).

It can be shown [6], that under an appropriate choice of parameters of EyC/2e? ~ 80 and
a; ~ 1, there is exactly one bound state per minimum. These states correspond to either
clock-or counterclockwise supercurrents and span the low-energy Hilbert space of the system.
The eigenstates of the system can be expressed as Bloch functions, whose quasi-momentum
Qc/2e is set by the gate charge.

From now on, we will tacitly assume that one of the three junctions, labeled g, is weaker,
oi, ~ 0.8, than the other ones with o = 1. In this case, drawn in Fig. 2, the minima form
a periodic pattern of strongly coupled double well potentials, whereas tunneling into other
directions, between the wells, is strongly suppressed [5].

Simple Berry phase. In a system, where the q; are fixed by the lithography, i.e. where
the junctions in Fig. 1 are single junctions, a finite Berry phase can be demonstrated. We
choose the third junction to be the weak one, ig = 3, Fig. 2 ¢). Following the discussion in the
preceding paragraph and in Refs. [5,6], the low-energy properties of this system are described
by the two-level Hamiltonian

. = 1 . .
and a pseudo vector-potential set by the gate charge Qg = VaCgq (_ ) so the kinematic

HTLS — % (G(A(I:) —GA(@)) €= Icirc (@ — @0/2) (]-)
where I is the amplitude of the cirulating current in the basis states.

The tunneling matrix element A = |A|e?® can be calculated within the WKB approxima-
tion. In Ref. [6] |A| has already been calculated and shown to be of appreciable size. The phase
¢ is due to the pseudo-vector potential @G. The minima of the potential are located at ¢ =
+Arcos(—1/2as3)(mod27), so we find as a phase factor ¢ = ngArccos(—1/2a3) ~ 0.727ng.
As QG plays the role of quasi-momentum, it is only defined within the first Brillouin zone, an
hence we are restricted to 0 < |ng| < 1/2 and a phase |¢| < dmax = (1/2)Arccos(—1/2a). In
principle, higher values of |ng| > 1/2 would lead to even higher phases, however such states
are outside the first Brillouin zone and correspond to a higher energy band. This means, that
they can only be achieved by non-adiabatic pulses and posess a finite lifetime.

Using the gate and the bias flux ® we have control over the two-level Hamiltonian eq. 1.
and can, within the limits set by ¢nax perform arbitrary cycles on the Bloch sphere. As an
example, we can perform the cycle described in Table I. This cycle allows a Berry phase as
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Fig. 2 — Contour plots of the potential U/Ej as a function of the junction phases ¢1 and ¢2 at half
frustration for a; = 0.8, @z = as = 1 (upper left), az = 0.8, a1 = as = 1 (upper right) and as = 0.8,
a1 = a2 = 1 (lower left); dark color indicates high potential; d) shows a schematic plot of the minima
taken at @1 = a2 = a3 = 1 with an exemplary pattern connecting two equivalent minima. The letters
indicate, which of the three potential realizations has to be chosen in order to achieve the desired
transport of the ground state.
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large as ¢B,max = 2¢max. This theoretical limit may not be achievable in practice, because
when exploring the limits of ng the system becomes more sensitive to decoherence due to
random fluctuations of the gate charge, which can induce single-charge tunneling events even
before the edge of the Brillouin zone is reached. Although insufficient for geometric quantum
computing, this setup allows for demonstrating a clearly detectable Berry phase.

Arbitrarily large Berry phase. We now want to turn to a six-junction circuit, where all of
the “junctions” in Fig. 1 are made tunable by replacing them by DC-SQUIDS. We will still
focus on the situation when not more than one junction is weakened (a;, = 0.8) with respect
to the others (@; = 1) at the same time fig. 2 a)—).

The strategy to achieve large Berry phases is to adiabatically shift the wavefunction by a
full unit cell, using an appropriate sequence of settings for ¢g. This is done with a fixed setting
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of the gate QG using the pattern indicated in Fig. 2 (d): Similar to above, we start with
positive flux §f = fo and ip = 3, hence we are in the initial state, see Fig. 2 (d). By tuning
to 0f = —fo, we transport the state into the second point and acquire a piece of geometric
phase. Now we interchange the role of the weak junction to ig = 2. The state is still localized
in the second point, but now the preferred tunneling direction is to the third point. By tuning
0f = fo, we transport the ground state to the third point. Repeating the procedure using
1o = 1 for the last step, we complete the pattern. Note, that through the lowering the barriers
this experiments only takes about twice as long as the one explained previously.

After these moves, the initial ground-state wavefunction, which is a Bloch function, is
readily mapped onto itself with an extra geometrical phase ¢p = fyng in the end point,
where 6y has been defined in Table I. It is hence not necessary to move the state back in order
to close the loop. An experiment would search for an interference fringe between ground and
excited state as explained in [14] and below. Note, that it has been argued that wave functions
of Josephson-systems cannot have Bloch-form because the shift of all junction phases by 27
leaves a trave in the environment [18]. If that would be true, nothing can be detected because
the path has not been traced back, if an interference fringe from the opposite geometric phases
of ground and excited state can be detected, the Bloch-character of the wave function would
be verified in a more direct way than e.g. Bloch-oscillation experiments [19].

Possibility of geometrical quantum computation. The experimental detection of the Berry
phase in both cases can be performed by embedding the cycles into a spin-echo-type scheme
[10,14]. Starting from the ground state [¢)) = | |) obtained after relaxation at € = eq,
the system is brought into superposition 1)) = (| 1) + | 1))/v/2 by a 7/2-pulse. Then, the
appropriate contour is performed, e.g. the one sketched in table I, and both states acquire
dynamical and Berry phases of the same amplitude but opposite signs. In order to compensate
the additional dynamical phase, the states have to be interchanged by a m-pulse and then the
contour has to be traced a second time in the opposite direction. Un-splitting the superposition
by another 7 /2-pulse translates the phase into weights of clock- and counterclockwise current
states, i.e. we find (0,) x cos(4¢p).

Although this detection method still requires the fast pulses and precision in time, it allows
for a demonstration experiment of Berry’s phase based on available technology [4].

Noise and inaccuracies in the applied field may lead to an additional, unwanted flux § f on
top of the applied one. For clarity, we discuss its influence specifically for the first contour,
see table I. An additional flux changes the limits of € from *+egto +eg + de, The Berry phase
hence changes following ¢g = ¢r(6(eo + de) — 0(—€o + d€)), where ¢F is the gate-dependent
prefactor evaluated above for both cases. We find a change

dgp €0 + d€ €0 — d€ €

= + -2
oF VA2 + (69 +d€)2 /A2 + (€9 — J€)? VA2 + €2

(2)

If §e < A is a small error, we find d¢p o (6¢/A)?, manifesting the celebrated fault-tolerance of
geometric quantum computation. On the other hand, in order to perform geometric quantum
computation, it must be possible to couple Berry phases to each other, i.e. to make the
Berry phase of one qubit depend on the state of the other one. It has already been discussed
[5,6], that qubits of the type discussed here can be coupled by a switchable flux transformer,
providing a coupling of the type Hyy = €:.0,,1 ® 05,2, i.e. the state of qubit 2 influences qubit
1 by changing its energy bias € by de. In the light of the above discussion, this coupling
consequently affects the Berry phase only in the nonlinear regime de > A of eq. 2. It has been
shown theoretically [6], that such large couplings can be achieved by properly designing the
flux transformer. Further research in this direction should make non-Abelian geometric factors
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beyond the Berry phase possible, which would lead to holonomic quantum computation [20].

Discussion. Geometric quantum computing is supposed to have two principal advantages:
There are only very few short pulses needed and the system shows stronger fault-tolerance,
i.e. small errors in the setting of parameters only affect the phase quadratically. Both of these
features can be particularly important for Josephson qubits: The application of microwave
pulses under cryogenic conditions is generally very difficult and small variations in fabrication
parameters may lead to inaccuracies in the applied transformations.

On the other hand, maintaining the Berry phase requires all manipulations to be carried
out within the coherence time 7, [21]. As the manipulations have to be carried out on an
adiabatic time scale 7,4, we have the double inequality 1/A < 7,4 < 74, whereas for pulsed
schemes only a single inequality is imposed, i.e. the demand for a long phase coherence time is
less restrictive. Moreover, the need to control a gate charge implies that the main advantage
of the flux qubit with respect to the charge qubit, the independence of offset charge noise, is
reduced and the system is more sensitive to decoherence. This sensitivity is different for both
scenarios: In the first one, only differences of gate charges play a role (see Table I), so a static
offset charge has no effect. In the second proposal, the absolute value of the gate charge is
important. Nevertheless, also this setup permits to trace back the same path with a different
gate setting, which makes ¢ = 27m(ng,1 — ng,2) again independent of static offset charges.

Our results finally allow to estimate the effect of offset charge noise onto the standard
pulsed persistent current qubit [3-5] without extra gates operated in the time-domain. As
long as these charges are static, they act like a fixed gate setting and do only induce a constant
phase shift d¢. This shift does not affect the computation. If a charge jumps during a gate
pulse, there is an additional, random geometrical phase next to the controlled dynamical
phase, which potentially leads to an error.

This background charge noise has typically a 1/f power spectrum. For definiteness, we
follow the approach taken in [22] to treat this noise as a limiting case of the Sub-Ohmic
Oscillator bath, i.e. we assume a bath oscillator spectral density Jy(w) as

T

5 {90, SO}, = Jolw) coth(w/2T) Tolew) = 5haw) 3)

and take the limit s — 0. Using a standard unitary transformation with U = exp (—i6,0¢(t)/2),

—i6g
we find from H = § = ( Aeei 56 Ae ) the transformed Hamiltonian
. 1 (e+6d A
r—pt —iut = - .
H' =U'HU 1U6tU—2( A —e—5¢> (4)

i.e. the Spin-Boson Hamiltonian with a super-Ohmic spectral density Jsp(w) = w?Jy(w). In
the weak damping limit, this problem is readily solved [23] and the dynamics of the reduced
density matrix is described by a combination of incoherent relaxation on a time scale T} given
through the rate 7' = (A%/2E?)Jsp(E) coth(E/2T) where E = /AZ + €2 is the energy
splitting of the qubit states, and T5 = 277. Thus, the decoherence is rather regular and the
coherence time can be very long because the destructive low-frequency noise only has very
little spectral weight. Transforming the reduced density matrix back using p = UtpU and
performing the ensemble average, we find that this dynamics is also recovered in the original
basis with the slight difference that the effective size of the off-diagonal matrix elements is
reduced by an effective time-independent prefacor. Thus, we have confirmed the claimed [5,6]
relative insensitivity of flux qubits to the noise of offset charges and quantified their effect.
In conclusion, we have shown how Berry phases up to a limited size can be realized in gated
superconducting three-junction loops. We have discussed the preparation of arbitrary large
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TABLE I — A cycle in fluz-gate voltage parameter space fiven by its corner points and he corresponding
Hamiltonians and directions on the Bloch sphere. 6f = 2n®/®q—1/2, e0 = %Iq(gf, I is the circulating
current in the qubit, o = noacos(—1/2as) and 6y = ataneg/A. From the solid spanned by this

contour, we find a Berry phase of ¢B = 2sin oo = 2doco/r/A? + €2

1 2 3 4 5=1
nag —no —no o no
of || fo —fo —fo fo
i 1 €0 Ae~ %0 ) 1 —eo Ae %0 ) 1 —€o Aei®o ) 1 €0 Aei®o >

2 Aei¢o —€o 2 Aeid’o €0 2 Ae—wo €0 2 Ae_M’O —€o

sin fp cos ¢po sin @ cos ¢o sin A cos ¢o sin @ cos ¢o
i ( — sin fg sin ¢o ) ( — sin g sin ¢o ) ( sin B sin ¢o ) ( sin B sin ¢o )
cos o — cos §o —cos fo cos 8o

Berry phases in six-junction devices and outlined the application of this device to quantum
computing. Finally, we have quantified the impact of offset charge noise to flux qubits.
Work supported by the EU through TMR Supnan and IST “Squbit”. FKW is supported
by ARO under contract P-43385-PH-QC. We acknowledge useful discussions with P. Hadley,
Y. Gefen, L. Levitov, S. Lloyd, J.B. Majer, Yu. Nazarov, C.H. van der Wal, and R. Whitney.
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3.7 Decoherence of charge states in quan-
tum dots

The papers reviewed in this section examine the decoherence of charge
states in double quantum dot in Coulomb blockade due to cotunneling
with the electronic leads. Cotunneling is a second order process, which
dominates because the first order process, sequential tunneling, is su-
pressed in the blockade region. In order to capture it, the Hamiltonian
is transferred using a generalized Schrieffer-Wolf transformation, such
that the coupling term to the leads is of particle-hole scattering form.
This method, together with first results, is explained in Ref. [202]. In
particular, it is shown that even if the coupling to the leads is diagonal
in the basis of qubit eigenstates, the state can relax through cotunnel-
ing, because the leads are assumed to keep their voltage constant, i.e.
they have to be phyiscally connected through the voltage source, which
transfers the relaxing electron.

This system is studied further in Ref. [203], where the transport in the
case of finite tunnel coupling and arbitrary asymmetry are studied. We
concentrate on the crossover between elastic and inelastic cotunneling,
i.e. the onset of transport processes which excite the qubit and which
show up as an extra contribution in the cotunneling current. At fixed
voltage, these processes are allowed at intermediate tunnel couplings,
which are large enough to allow current flow but small enough such
that the molecular level splitting is smaller than the applied voltage.
Thus, the current is a nonmonotonic function of the inter-dot coupling
strength.

In Ref. [204], the relaxation of excited states and the decoherence in
the same system is studied. One would expect that the relaxation time
is longest in the equilibrium state, when the transport voltage between
the leads is zero. This is however misleading, because vanishing net
current only means that the current contributions with opposite polar-
ity have different modulus, whereas relaxation processes contribute to
the total rate with equal sign. Moreover, if the eigenstates are spread
out across the double dot, there are also relaxation processes which
only involve one lead and do not carry current. Indeed, it turns out
that the relaxation time is usually maximum at finite voltage, namely
if the voltage equals the level splitting at a polarity blocking the most
prominent relaxation channel. At this point, excitation due to inelastic
cotunneling (i.e. absorption from the environment) is still supressed
and one of the two relaxation processes (i.e. emission to the environ-

176



ment) is blocked because the gain in energy from the relaxation does
not compensate the electromagnetic energy of the voltage source which
has to be overcome.
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Solid state quantum bits are a promising candidate for the realization of a scalable quantum
computer, however, they are usually strongly limited by decoherence. We consider a double quan-
tum dot charge qubit, whose basis states are defined by the position of an additional electron in
the system of two laterally coupled quantum dots. The coupling of these two states can be con-
trolled externally by a quantum point contact between the two dots. We discuss the decoherence
through coupling to the electronic leads due to cotunneling processes. We focus on a simple Ge-
danken experiment, where the system is initially brought into a superposition and then the inter-
dot coupling is removed nonadiabatically. We treat the system by invoking the Schrieffer-Wolff
transformation in order to obtain a transformed Hamiltonian describing the cotunneling, and then
obtain the dynamics of the density matrix using the Bloch-Redfield theory. As a main result, we
show that there is energy relaxation even in the absence of inter-dot coupling. This is in contrast
to what would be expected from the Spin-Boson model and is due to the fact that a quantum dot
is coupled to two distinct baths.

Quantum dots (“artificial atoms”) are prototype systems for studying the properties of
discrete levels embedded in a solid-state environment [1]. In particular, various schemes
for realizing quantum bits, fully controlled quantum coherent two-state systems, using
quantum dots have been brought forward. Next to using optically excited charge states
in quantum dots [2] and electronic quantum dots used for spin manipulation [3], it has
been proposed [4] to use the charge states of a double quantum dot as a computational
basis. The proposed setup is sketched in Fig. 1. In order to minimize the inevitable
decoherence through coupling to the electronic leads, the system can be brought into
the Coulomb blockade regime where sequential tunneling is suppressed. We are going
to discuss in this article, how the inevitable cotunneling still decoheres the system in
this regime. The calculation is carried out for one specific Gedanken experiment which
should capture the most generic features, the decay of a superposition state when the
coupling between the dots is switched off. A more complete treatment of this setup is
in preparation [5].

We restrict our analysis on spin-polarized electrons. The relevant Hilbert space is char-
acterized by four basis states, written as |7, j), which denotes i additional electrons on the
left dot, j additional electrons on the right dot. The two states |1,0) and |0,1) define the
computational basis, see e.g. [6]. In order to describe cotunneling, we use the closest
energetically forbidden states as virtual intermediate states. These are |vp) = [0,0) and
|v2) =]1,1). Zero- and two electron states with internal polarization are energetically
even less favorable due to the high charging energy of the individual dots.

1) Corresponding author; e-mail: hartmann@theorie.physik.uni-muenchen.de
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weak coupling to the leads (tunable) Fig. 1 (online colour). Sketch of the
double dot system. The coupling of the
double dot to the leads is assumed to
be weak, whereas the coupling between
the dots can be strong. The leads are
biased such that sequential tunneling is

HI' suppressed

Ky

strong inter—dot coupling (tunable)

The Hamiltonian of this system can be written as

H=Hy+ H, (1)
HO - eas(ﬂl - flr) - eaﬂvo + eﬁﬂvz
+y 3 (ay ay +aTay) + 30 qb b+ Y 6bi by 2)
n k K
Hy =ty (a7 by +agb™) + 1 3 (ay by +aybi") . (3)
k,n k'.m

Note, that the sum over dot states only runs over the restricted Hilbert space described
above. Hy describes the energy spectrum of the uncoupled system, whereas the tunnel-
ing part H; describes the coupling of each dot to its lead and will be treated as a
perturbation. 7/, are the number operators for the additional electrons on either dot.
The asymmetry energy ¢, describes the difference between the energy level for the
additional electron in left dot and the corresponding energy level in the right dot. It
can be tuned through via the gate voltages which are applied at each dot. ¢g and ¢, are
the energy differences towards the higher level |v,) and the lower level |vg), respec-
tively. y is the tunable inter-dot coupling. The a*)s and b(*)s denote the creation/de-
struction operators in the dots and leads. In H; the symbol . represents the coupling
constant concerning the coupling of the dots to the leads, which should be small com-
pared to the asymmetry energy. Note, that we have chosen a slightly asymmetric nota-
tion in order to highlight the physical model: For the actual calculation, H; is also
expressed in the eigenstate basis of the dot.

For our Gedanken experiment, we assume that first the inter-dot coupling y is large
(y > €as, V) such that the system relaxes into the ground state, which is a molecular
superposition state of the form |g) = (|0,1) — |1,0))/+/2. Then the gate voltage that con-
trols the inter-dot coupling is switched to high values, so that the coupling is practically
zero. After this, the system dephases and relaxes into a thermal mixture of the localized
eigenstates of the new system.

Thus, in order to describe decoherence, we only have to consider the case y =0 K.
This means, that H, is already diagonal, i.e. the states |1,1), |1,0), |0,1) and |0,0) are
eigenstates of our system.

The decoherence is analyzed applying the well-established Bloch-Redfield theory,
which is based on the Born approximation in the system-bath coupling. As we are in
the Coulomb blockade regime, the rates evaluated from the original coupling Hamilto-
nian H; vanish in that order. In order to treat cotunneling with this formalism, we per-
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form a generalized Schrieffer-Wolf transformation [7, 8]. This transformation maps our
original Hamiltonian H;, which is zero in the computational basis but couples the com-
putational states to the |vy,) onto a Hamiltonian which does not have this coupling to
higher states but which has nonzero matrix elements in the computational basis. The
new terms in the Hamiltonian describe the amplitude of transitions between the basis
states via the intermediate states. We perform this transformation perturbatively up to
second order, i.e. all processes involving at most one intermediate state are taken into
account.
The new Hamiltomian Hj in our special case then can be written as

Hy o = AR+, R, ++) bRTDR + A(L, L+, ++) bFbET (4)
Hy = A(L+,L, —) bEtblF + A(R, R+, ——) bRbRT (5)
Hy, = AR+, L, +-) bRl + A (6)

)

L, R+, +—) bibR*
Hy = A(L+, R, —+) bi bR+ A

(
(R, L+, —+) bRpET (7

The + and — signs are indizes for the states |1,0) and |0, 1), respectively. We call A the

Schrieffer-Wolff coefficients, they are calculated along the lines of [8] using mainly sec-
ond order perturbation theory. For example, A(R+, R, ++) is
2 1 1
A(R+, R, = — . 8
BRI =S g Cat o) & @) ®
We now use the Bloch-Redfield equations [9, 10]

Qnm (t) = _iwannm - Z Rﬂm}d@kl(t) ’ (9)
k.l

where R, are the elements of the Redfield tensor. These equations of motion for the
reduced density matrix are obtained within Born approximation in the effective system-
bath coupling, so after the Schrieffer-Wolff transformation, R is of order . Let us re-
mark that our perturbation theory naturally breaks down below the Kondo tempera-
ture, which can however be made arbitrarily small by lowering ¢, through pinching off
the contacts to the reservoirs.

The Bloch-Redfield equations are of Markovian form, however, by properly using
the free time evolution of the system, they take into account all bath correlations which
are relevant within the Born approximation [11].

The Redfield tensor has the form

Ryumki = Oim Z r' ,,,,k + Ok Z r, lrrm - Er:,)qk r l(mr>tk (10)

The rates entering the Redfield tensor elements are given by the following Golden-
Rule expressions

FE0 = B2 ] dr et (B (t) Hy(0)). (1)

lmnk -
0

)

Imnk —

=h2 f dr e~iomt <H1 m(0) Hl,nk([»a (12)

where H; appears in the interaction representation (written as Hy). In our formalism, it
is of crucial importance that the expectation values over Hj vanish, i.e. that the bath
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produces only noise. As a number of expectation values of Hy turns out to be finite, we
tacitly replace Hy by Hy — (H;) in Egs. (11) and (12) and use the finite expectation
values to renormalize the diagonalized, unperturbed Hamiltonian Hy — Hy + (Hy). In
our case, the effect of this renormalization is of the order of 0.1% of the original matrix
elements of H,.

After a straightforward calculation of the above Golden-Rule rates, one gets in the
general case a (large) sum over terms with the generic form

€ — €2 F 245

—-n 2¢ 1 |
+ M |:W <2+2ﬂ (Eb $2€as /"1))

€p — €a :F 2¢as
(ev — #2))

S R
o (32 2] )
2¢as

ro =c {L [faen) (1 = file

€b — €a F 2€qs

b F
—ny(uy = ZLaS) i
_ — 2
* € — €3 F 2€4 2+2 (Eb:F Cas ‘ul)

+ (;4‘% (€ a—ﬂ1)> ‘HUG ;ﬂ(b_ﬂz))

r =c {—”’ [fi(e F 26as) (1 = fo(en)) — filea) (1 = folea £ 2615)))]

as)) — f2(€a £ 26x) (1 = fi(ca))]

1 |
-y (2 Zﬁ (€a & 2¢as — ﬂz))] } ) (14)
taVim? g Er
h =< 0 th ling to the leads ¢, by t. = /——= —
whnere ¢ = 4;‘1(27[;12) ne can €xpress € coupling to € leads . by [ 8.7'1,’2 " Y

where g is a conductance in terms of the quantum conductance, Ef is the Fermi energy
of the leads and n is the number of electrons in the leads. Consequently, c¢ is then

128
327k
€g, € and €. Due to the multitude of possibilities for virtual transitions, each element

of the Redfield tensor contains a number of terms of this generic structure.

In the above equations, the terms containing the Fermi function f(¢) only play a role
close to resonance and can be neglected in the Coulomb blockade [12]. The ny/, repre-
sent Bose functions for the electron—hole pairs (excitons) that are generated during the
virtual processes. The y denote Digamma functions and hence diverge logarithmically
at low temperatures.

By solving Eq. (9), one finds that the off-diagonal elements decay towards zero on a
time scale 7,4 (dephasing time) whereas the diagonal density matrix elements equili-
brate on a time scale 7, (relaxation time).

Using the above expressions, we find the rates as

changed to ¢ =

The ¢, and ¢, are terms containing varying sums or differences of

Ir= Z(F(++,),+ + F(—++)+7) ) (15)

+ () +r® —2r?) ), (16)
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where

r' o = = c(—neu +2e)) Z, (17)

F(,+42+, = F(7742+7 = C(*nl(ﬂr - 2€as)) Z, (18)
_ 1

F£r++>++ = F(++>++ =c B Yi, (19)

re) == % Y, (20)
_ 1

r) _=r) =c 7 Yi1. (21)

Z is a function containing several w-functions (or logarithms). Y3, Y_1 and Y; _; are dif-
ferent functions of several y’'-(Trigamma-) functions (or reciprocals), however, these func-
tions only have a very weak temperature dependence. The most important part of the
temperature dependence comes in through 1/8 and in n;;; and is summarized in Fig. 2.
We find in Fig. 2 that the temperature dependence is similar to the Spin-Boson case [13].
This can be confirmed by inspection of the formulas (17)—(21): For the relaxation rate,
one has only Bose functions taken at the finite amount energy which is dissipated. In case
of the dephasing rate, there are also terms that are proportional to 7', which represent
dephasing processes which do not change the energy of the qubit, i.e. cotunneling pro-
cesses which originate and end in the same state. This explains the observed behaviour.
Note, that in the Spin-Boson case, where there is only one lead, the situation correspond-
ing to our Gedanken-experiment (no tunneling between the classical states) would corre-
spond to pure dephasing, whereas in our system relaxation is always possible by extract-
ing an electron on one side and adding one on the other side from the other lead.

0.25
0.2 A
—— Dephasing time 7 for e, =0.1 K and Au=0.06 K
— — Relaxation time 1, for e, =0.1 K and Au=0.06 K
— 0.15 -
£,
e
)
E B
\
ook
0.05 -
0 Il Il Il Il L
0 0.2 0.4 0.6 0.8 1

Temperature T [K]

Fig. 2 (online colour). Relaxation and dephasing times (7; and 7,) as a function of temperature 7,
with sy = 085K, s, =0.91K, €5 =01 K, =11 K, ¢, =9K, g=0.1, V =10" m?, Ep =5 meV
and n/V = 1.7 x 101 m~2
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The numerical values for the relaxation and dephasing times are comparedly huge,
on the order of 100 milliseconds as compared to the experimentally measured times,
which are in the order of nanoseconds. Other possibilities to explain the small decoher-
ence time are phononic and/or photonic baths [14-16], or the influence of the whole
electronic circuitry.

We analyzed relaxation and dephasing processes in a system of two laterally coupled
quantum dots which is coupled to two electronic (i.e. fermionic) baths. We showed that
even in the case of vanishing inter-dot coupling, the system’s energy can relax, unlike in
the Spin-Boson model. On top of that, the temperature dependence of the rates resem-
bles that of the Spin-Boson model. We identify, that this originates in the fact that the
cotunneling rates are mostly sensitive to the distribution function of excitons.

As a next step, the case where the inter-dot coupling y has finite values will be con-
sidered [5].

Acknowledgement We thank J. von Delft, L. Borda, J. Konig, R. H. Blick, A.W. Hol-
leitner, A. K. Hiittel and E. M. Hohberger for clarifying discussions. We acknowledge
financial support from ARO, contract-No. P-43385-PH-QC.

References

[1] R. C. AsHoori, Nature 379, 413 (1996).
[2] P. ZanarDpt and F. Rosst, Phys. Rev. Lett. 81, 4752 (1998).
F. Rossi etal., 275th WE-Heraeus-Seminar. Hardware Concepts for Quantum Computing,
12.-15. 5. 2002; Bad Honnef, Germany; phys. stat. sol. (b) 233, No. 3 (2002).
[3] D. Loss and D. DIVINCENZO, Phys. Rev. A 57, 120 (1998).
[4] R. BLick and H. Lorenz, Proc. ISCAS 2000 (pp. 11245-11248).
[5] U. HaARTMANN and F. K. WILHELM, in preparation.
[6] M. A. NieLseN and I L. CHUANG, Quantum Computation and Quantum Information, CUP,
Cambridge 2000.
[7] 7. R. ScHRIEFFER and P. A. WoLFF, Phys. Rev. 149, 491 (1966).
[8] C. CouEn-TaNNouDII, J. DuPONT-ROC, and G. GRYNBERG, Atom-Photon Interactions, Wiley,
New York 1992.
[9] U. WEiss, Quantum Dissipative Systems, 2nd ed., World Scientific Publ. Co., Singapore 1999.
[10] K. BLum, Density Matrix Theory and Applications, Plenum Press, New York 1981.
[11] L. HARTMANN, I. GoYcHUK, M. GrironI, and P. HANGGI, Phys. Rev. E 61, R4687 (2000).
[12] J. KONIG, J. KONIG, H. SCHOELLER, and G. ScHON, Phys. Rev. Lett. 78, 4482 (1997).
[13] M. Grironi, E. PaLaDINO, and U. WEiss, Eur. Phys. J. B 10, 719 (1999).
[14] T. BranDEs and B. KRAMER, Phys. Rev. Lett. 83, 3021 (1999).
[15] S. DEBALD, T. BRANDES, and B. KRAMER, Phys. Rev. B 66, R041301 (2002).
[16] H. QIN, A. W. HOLLEITNER, K. EBERL, and R. H. BLIcK, Phys. Rev. B 64, R241302 (2001).



RAPID COMMUNICATIONS

PHYSICAL REVIEW B 67, 161307R) (2003

Nonlinear cotunneling through an artificial molecule
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We study electron transport through a system of two lateral quantum dots coupled in series. We consider the
case of weak coupling to the leads and a bias point in the Coulomb blockade. After a generalized Schrieffer-
Wolff transformation, cotunneling through this system is described using methods from lowest-order pertur-
bation theory. We study the system for arbitrary bias voltages below the Coulomb energy. We observe a rich,
non-monotonic behavior of the stationary current depending on the internal degrees of freedom. In particular,
it turns out that at fixed transport voltage, the current through the system is largest at weak-to-intermediate
interdot coupling.

DOI: 10.1103/PhysRevB.67.161307 PACS nunider73.63.Kv, 73.23.Hk, 72.16-.d, 03.67.Lx

Quantum dots are prototype systems for studying thesingle dots are very close to each other and the interdot cou-
properties of discrete levels embedded in a solid-state envpling is, although appreciable, much smaller than the single-
ronment. Single dotg“artificial atoms”) can be coupled dot addition energy. Thus, the subspace spanned by the two
through quantum point contacts, leading to “artificial mol- states|1,0) and [0,1) is energetically most favorable. The
ecules.” Indeed it has been shown experimentaflyhat the — next closest statepo)=[0,0) and |v,)=[1,1) are outside
eigenstates of double-dot systems are coherent molecular siie transport window and serve as virtual stateStates with
perpositions of single dotatomig states. Unlike real mol- higher dipolar moment are energetically even less favorable
ecules, these dots are readily contacted and turiabéitu, ~ due to the high charging energy of the individual dots.
making them a natural test bed for molecular transport. The Hamiltonian of this system can be written as
Double dots have also been proposed as charge quantum
bitS.S'G H:Ho+ Hlv (1)

This raises the question, which information on the energy
spectrum and the wave functions of the dot can be probed by
transport measurements. This is only possible if artifacts in-
duced by the coupling to the leads can be sorted out and thﬁsyszsas(ﬁl_ﬁr)_saﬁv +8,8ﬁv +y> (atfaR+aRtal),
double-dot is disturbed as little as possible. This is the case 0 2 n

HOZHsys+ Hes, (2

when the coupling to the outside leads is wéake Fig. 1 €)
and the gates are tuned to the Coulomb blockade reffme.

In that regime, only states with a fixed number of electrons _ L Lt L R Rt R

are energetically permissible and hence sequential tunneling Hres_zlz 2y bk+% &b bl?’ @)

is suppressed. The leading transport mechanism in this case

is cotunneling! the coherent transfer of two electrons via

virtual levels in the dots. Our work stands between studies H,=t.>, (ab;+alb;")+t.> (aETb;JraﬁbE,T).
focusing on sequential tunnelihgnd work onlinear re- k.n K \n

sponsén the Kondo regimé® The properties of cotunneling 5
currents as a spectroscopic tool for the spectrum of quantuiyote that the sum over dot statasonly runs over the re-

dot system have recently been _stqdied in exquisitely CONstricted Hilbert space described abot, describes the iso-
trolled experiments on systems similar to ofit8. tated double-dot i, and the leadsH,.), whereas the

In this paper, we analyze a serial configuration of lateral : ; ; ;
- : ) o unneling partH, describes the coupling of each dot to its
guantum dots in the cotunneling regime. We study finite volt- gp ! Ping

ages up to the order of the charging energy, i.e., do not re-

strict ourselves to linear response. We find a rich nonmono-

tonic structure in the current as a function of the dot
parameters. In particular, we find a pronounced crossover
indicating the opening of an inelastic transport channel, i,
which leads to the surprising result, that a too strong interdot v

— [+>
coupling actually inhibits charge transport. We analyze the 28 : 0
influence of the asymmetry of the dots on the current. _ ¥ |—> /
- : ; 7
In the Coulomb blockade reginfé the relevant Hilbert
space is spanned by four basis stdtgs, i,j €{0,1}, which FIG. 1. Sketch of the considered artificial molecule, wheds2

denOt.eS' andj additional electrongas compared to an ap- the level splitting andv is the bias voltage. The coupling to the
propriate neutral stateon the left and right dots, respec- outside leadghatched areass assumed to be small whereas the
tively. We study the situation where the gate voltages of thénterdot coupling(dotted ling can be strong.

0163-1829/2003/61.6)/1613074)/$20.00 67 161307-1 ©2003 The American Physical Society
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lead and will be treated as a perturbatiﬁn, are the number
operators counting additional electrons on either dot. The
asymmetry energy ..~ (e,—&,)/2 describes half of the dif-
ference between the energy level for the additional electro
in left dot (¢,) and the corresponding energy level in the

right dot (e,), which can be tuned through the gate voltages. £ 2. Examples for relevant processé:a relaxation process
e ande,, are the charging energies towards the higher leveithout current, (b) current without relaxatior(only dephasing

lvo) and the lower levelvo), respectively.y is the tunable  and(c) a process that carries current and also relaxes the system.
interdot coupling strength. Tha("s andb(Ms denote elec-

tron creation/annihilation operators in the dots and leads. Igludes all relevant non-Markovian parts. This approach has
H,, the symbolt, represents the tunnel matrix element be-been showh to be numerically equivalent to formally exact
tween the dots and the leads. It is independent of the energiggith-integral methods for the spin-boson model in the weak-
in the double-dot system and the corresponding sequentigbupling limit. The Redfield equatioffsfor the elements of
tunneling ratgiT" =27t2N(sg) should be small compared to the reduced density matrix in the molecular basis read

the internal energieN(eg) is the density of states in the

leads taken at the Fermi energy. We restrict our analysis to : o _

spin-polarized electrons, these can be polarized by an appro- Pan(D) = ~1 @nm( ) pan(1) ; Rumiew(L), ™

priate in-plane magnetic field. Figure 1 shows a sketch of the . .
system. In Fig. 1V=pug— p, is the bias voltage between WNeré @nm=(E,—Em)/% are the appropriate energy split-

the two leads(hatched and EZZW is the level tings andR,, i are the elements of the ReNdfieId tensor. They
splitting in the molecular two-state system. are composed of golden rule rates involvidgfrom Eq.(6).

Pursuing our aforementioned objective, we take the inter™ M. k. andl can be either (molecular excited stater
dot coupling y into account to all orders by diagonalizing — (molecular ground stateTheE's are the eigenenergies of
He,s and transformingH into the new basis. Already now, the two molecular states. Due to the lack of symmetry, this

there is no simple selection rule or symmetry of the coupling€2ds _to a huge number of processes contributing to each

15 ; ; ; ;
of the states to the leads anymore. We want to use welll€'m:~ We are only interested in stationary solutions here. A

established tools of lowest-order perturbation theory for botr{ull treatment of the simple case wit=0 can be found in
finding the density matrix of the system and evaluating theRef. 6. _ _

current. In order to capture cotunneling by this approach, we The current is derived from the standard formitila
perform a Schrieffer-Wolff transformatidfiup to second or- it

der3 ie., we take intq_account all indirect transit?ons between I(t)= _e%J' dt' ([N, (1), R, (1)), ®)
arbitrary final and initial states of the dot which involve only —c

a smlgtjle _mte_rrpe?rl]ate stat_e.f This takes the transformethereNL is the particle number operator on the left dot in
amiitonian into the generic form the interaction representation and the transformed interaction

) ) HamiltonianH, from Eq. () is also taken in the interaction
Hi=> alag X HY bETbi, picture. Carrying out the integration in E€B) and rotating
c.d VY KK ki cd K back to the Schdinger picture, we get a time-independent

expression for the curremt Using the stationary occupation
probability of the molecular groundp( _ o) or excited state

' ©) (p++ ), We obtain for the expectation value of the station-
ary current

A% v, Y't
+ R - —
Eﬁ _ Hk,k’,c,dbkbk’
Y,Y' KK

Y,Y’ . .
where thelef,’C’d are Schrieffer-Wolff amplitudes and d la=tr(psd)=pss ol r o +p_ ol _, (9)

. (1) i _ , . .
* denote the two molec,ular Ievel.%/d the associated where we find from balancing relaxation processes in the
molecular operators, and,Y'’ the position of the electrons Efloch-RedfieId equation, Eq7)
0 L 1

involved in these processes. Due to the molecular nature

the double-dot eigenstates, all the amplitudes are finite and R., _ R._..
composed of a huge number of contributions with no particu- p4 1 5= R R . P-—sTR R

lar symmetry. The perturbation-theory formula for this gen- tAoo o A Tt “‘(‘10)
eral case can be found, e.g., in Ref. 14 and is worked out in

more detail in Refs. 6 and 15. In E¢), we have taken The current amplitudek, . andl __ in Eq. (9) are of the

matrix elements in the double-dot eigenbasis only whereagsame form as the contributions to the Redfield tensor. We
we stick to second-quantized notation in the leads, becausgmphasize that the choice of processes from all possibilities
this notation readily connects to the formalism used later onjs very distinct. As an example, Fig. 2 displays a variety of

The stationary density matrix is found using the well- possible processes in such a double-dot system. Processes of
established and controlled Bloch-Redfield thejéthIS is a the type d|sp|ayed in F|g(a) contribute to the relaxation but
systematic technique for deriving generalized master equato not carry current(b) shows a process which carries cur-
tions within Born approximation iri-i,, Eqg. (6), which in-  rent but does not relax the state, aioil relaxesand carries

161307-2
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FIG. 3. Stationary current,/l for differente 5/V as a function
of the coupling y/V (with T=140 mK, V=5.170uV and wug,

Inter—dot Coupling y/V

=(urt+p)/2=75.832eV andl'=1 GHz).

Asymmetry Energy ¢, /V

FIG. 4. Stationary currerit,/I, for different values ofy/V as a
function of the asymmetry energy,/V (with T=140 mK, V
=5.170V and u4~=75.832ueV andl'=1 GHz).

current. The phase information of the quantum state is lost i?N €as/ V. It confirms the interpretation of Fig. 3. The plot is
all three pictures of Fig. 2. Consequently, one must not conOnly weakly asymmetric t@,s/V=0. At zero asymmetry,

fuse cotunneling rates with relaxation rates.
We now turn to the discussion of the results. Al internal VV2/4— e has its maximum and therefore the current is

energies ,candy are normalized in units of the bias voltage only governed by the interdot coupling/V, resulting in a

V, the stationary current; in terms ofly=el.

In Fig. 3, the current at fixed bias voltage as a function of
the interdot coupling is shown. The sign ©f; plays a role,
as one can see above, for an intermedigteregime. This
effect is more pronounced i(V), see Ref. 15. Close tg

e,/V=0, the condition for charge transport is ideal,

zero-asymmetry maximum.

Still, all three transport regimes can be recognized in Fig.
4. They/V=0 curve shows that the stationary currégtl

is exactly zero as expected. For growing, but small values of
vIV, the maximum ate,/V=0 reaches the highest value

=0, the curves all turn to zero because at that point the dotkst/lo=2lo /10 at about 1.% 10°° (like in Fig. 3), corre-
are disconnected and no current can flow. However, a nunrsponding to two open transport channgtasticand inelas-

ber of curves, the ones with,/V<1, exhibit an intermedi-
ate maximum at lowy next to a very sharp minimum at
=0, which sometimes is hardly resolved. At higke V, the
stationary current saturates into a value, which for our pa-

tic). If we raise y/V further, the height of the peak goes
down again and saturateslaf/l g=1q ¢/l =~7.5X 107, cor-
responding to only the elastic channel being open.

The three transport regimes are summarized in Fidi)5:

rameters turns out to be abdyts/lo=7.5x<10 ’. Remark-

ably, this is half the value of the current at the aforemen-
tioned low-y maximum. This is the central result of this

paper.

These regimes can be classified in terms of the level split-
ting 26:2°At V<24, the energy supplied from the leads is

0.6 ‘ ‘ m

one-channel
05 - / 4

only sufficient to use one of the molecular states for transportZ. 0.4 - { 1

(elastic cotunnelingwhereas alv>24, both states partici-
pate and also inelastic processes contribute, i.e., there is
second current channel, which carries the same contributio
of l,. The crossover naturally occurs at=V%/4—sZ,
which can only be reachedif,./V<<1/2. As long asy is not
too low, the coupling to the leads is the limiting element for
the current flow. Only ify<e,s, the double-dot eigenstates
become localized and the interdot coupling becomes the cur
rent bottleneck. Consequently, associated dips have a hall
width of ¢4 for low temperatures and bias voltages and can 0.0
thus be extremely narrow. We would like to remark that the

two—channel

Inter—dot Coupling
o
w

o
n
T
L

atomic limit atomic limit

01 - 7 4

10 08 06 04 02 00 02 04 06 08 10
Asymmetry Energy €, /V

notion of transport “channels” is appropriate here because
cotunneling is a coherent transport process.
Figure 4 shows the dependence of the stationary current5.170 V.

FIG. 5. Limits for the three transport regimes with
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the atomic limit(no transpoit y<e,., (ii) the two-channel parts of the double-dot literature focus on phonon/photon
case (inelastic cotunneling & ,< y< \/mi_s and (i)  assisted transpo(see, e.g., Refs. 21 and 22 for experiments
the one-channel cagelastic cotunnelingy> V24— &2, and Refs. 23 and 24 for thec)r)Unhkg Ref. 25, we concen-
These conditions show that indeed cotunneling can b&ate on the Coulomb blockade regime and do not consider
used as a tool for investigating the energy spectrum of afotunneling at resonance. In Ref. 26, a different approach to
undisturbed artificial molecuté The crossover between the the problem was developed, in which the master equation is
elastic and the inelastic cotunneling in dependence of théarried to second order instead of using a Schrieffer-Wolff
applied bias voltage has recently been obsef¢édsimilar  transformation, and a few setups simpler than ours are stud-
conclusion was found in Ref. 20. ied. Our approach does not require the molecule to be artifi-
Although the notion ofelastic and inelastjccotunneling  cial, in principle, it can be applied to “real” moleculé$.in
was already introduced very eatfyits consequences for re- contrast to the approach in Ref. 28, it permits to take into
alistic quantum dot systems have only been discussed vemccount charging effects, however, the Schrieffer-Wolff
recently?® along with detailed and accurate experiments onransformation is clearly a laborious step for larger systems.
small semiconductor quantum dbté becoming available. To conclude, we analyzed the stationary coherent cotun-
The sharp crossover between elastic and inelastic cotunnekeling currentl ;; through a double quantum dot system or
ing, WhICZh we discuss, has been identified in a vertical quanartificial molecule. As a function of the interdot coupling
tum _dml by changing the transport voltage. Reference 4siangth it displays a rich, nonmonotonic structure, which
studies cotunneling in a parallel double-dot topology, usingynaples us to perform “molecular cotunneling spectros-
again cotunneling and the elastic-to-inelastic crossover as @opy." Strikingly, we have shown that at fixed bias voltage,

Ep?ﬁtroscopfhtool and tuning the flr:jterdot (lzog%im][gnu. Ir: d the current is highest, if the dots are weakly to intermediately
oth cases, the narrow regime ot decoupled dots would nq nnected, such that the interdot coupling is at least as strong

g?)\r/r?eb(i‘etrrleagiezfilrtr):gnttg:c;gggeg ﬁgcg%(gggiﬁerg;ﬁifmae _cse'the coupling to the leads, but the splitting of the molecular
P Y afave functions is still smaller than the transport voltage.

dressed in Ref. 20. In that case, however, the behavior of a
single multilevel dot system was modeled with phenomeno- We thank J. von Delft, J. Kuig, L. Borda, M. Sindel,
logical couplings to the leads, whereas we take a realisti®.W. Holleitner, A.K. Hittel, and E.M. Htberger for clari-
model and only by this manage to predict effects which, e.g.fying discussions. We acknowledge financial support from
depend on the serial dot topology of the sample. Note thaARO, Contract No. P-43385-PH-QC.
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We analyze the decoherence of a two-state system (TSS) coupled to two baths being are in mutual
disequilibrium: a double quantum dot in the cotunneling regime at finite voltage. This system is
treated using the Bloch-Redfield generalized master equation for the Schrieffer-Wolff transformed
Hamiltonian. We show that the decoherence, characterized through a relaxation 7, and a dephasing
time 74, can be controlled through the external voltage and that the optimum point where these
times are maximum is not necessarily in equilibrium. We discuss the relevance of our results for
recently proposed charge qubit realizations and show how they can be experimentally verified.

PACS numbers: 03.67.Lx, 05.40.-a,73.21.La,72.70.4+m

The loss of quantum coherence is one of the central
paradigms of modern physics. It not only governs the
transition between the quantum-mechanical and the clas-
sical world, but has recently also gained practical impor-
tance in the context of engineering quantum computing
devices. Decoherence naturally occurs in small quantum
systems coupled to macroscopic heat baths. A huge class
of such baths generates Gaussian noise and can hence be
mapped on an ensemble of harmonic oscillators as in the
Spin-Boson model [ll]. This can even apply, if the funda-
mental degrees of freedom of the bath are Fermions [2],
as it is e.g. the case if the bath is a linear electrical circuit
13, 4, 5], which is producing Gaussian Johnson-Nyquist
noise. In the case of a quantum system simultaneously
coupled to two distinct particle reservoirs, the situation
is different: The leads can have different chemical poten-
tials. Oscillator baths cannot straightforwardly account
for this, as their quanta are not conserved particles. As a
matter of fact, it is also known that at sufficiently large
voltages, V > kpT/e, the noise of two baths exchanging
particles is shot-noise which is strongly non-Gaussian |6].

This setting introduces a new parameter for controlling
the decoherence properties of the system, the voltage,
and naturally raises the question, under which conditions
the decoherence is minimal. One may naively assume,
that this is the point of equilibrium, when there is no net
exchange of particles which disturb the quantum system
between the reservoirs. The central result of the paper
will be that this is not true in general.

We study a well-defined realization of such a setup, a
double quantum dot in the cotunneling regime. As in
the Gaussian case, one has to distinguish between re-
laxation and dephasing: Dephasing is the loss of phase
information of the quantum states, manifest through the
decay of coherent oscillations. This corresponds to the
time evolution of the off-diagonal elements of the reduced
density matrix expressd in the energy eigenbasis. Relax-
ation is the process during which a TSS exchanges energy
with the environment and ends up in a stationary state.
This is described through the time evolution of the di-
agonal density matrix elements. We are going to show

that our system posesses two competing optimum work-
ing points: An out-of equilibrium one at a finite voltage,
where energy relaxation is suppressed, and an equilib-
rium working point, where flipless dephasing processes
can be suppressed. Depending on the choice of param-
eters, the former one may have least decoherence. Our
work also provides a theory for the cotunneling contribu-
tion to the decoherence of quantum dot charge quantum
bits [].

As a prototype system for studying the properties of
discrete quantum states in a macroscopic environment,
we study serially coupled lateral quantum dots (i.e. an
artificial molecule [§]). The existence of coherent molecu-
lar states in these systems has been demonstrated exper-
imentally [9, [L0] and they have been proposed as charge
quantum bits [@, [1L1].

The computational basis is formed by the position
eigenstates of an additional electron (either left or right
dot). A superposition of these two states can be created
by variation of the inter-dot coupling. In order to have
a stable TSS, the coupling of the dots to the two leads
is very weak and additionally the dot is tuned to the
Coulomb Blockade regime [12], where sequential tunnel-
ing is suppressed through the addition energy. Even then,
the system couples to the environment through the co-
tunneling mechanism [13], the coherent exchange of two
electrons with the external leads which ends up in a state
with the same charge as the initial one.

In our specific model, the relevant Hilbert space is
spanned by four basis states, written as |4, j), which de-
notes ¢ additional electrons on the left dot, j additional
electrons on the right dot. The two states |1,0) and |0, 1)
define the computational basis [14] because they are ener-
getically accessible, the closest virtual intermediate states
for cotunneling are |vg) = 10,0) and |vz) = |1,1).

The Hamiltonian of this system can be written as
H = Hy + Hy where Hy = Hgys + H,es describes the en-
ergy spectrum of the isolated double-dot through Hyys =
cas(afTal —afTa®) — e iy, +eph, +y(alTal? +afal)
and the two electronic leads Hyes = E,; séb?bé +

i sg bg bg . The sum over dot states only runs over the



restricted Hilbert space described above, the a/F act on
the lowest additional electron state on either dot. The
double-dot is characterized by the asymmetry energy €,4
between the individual dots and the interdot tunnel cou-
pling v. The virtual states |vs) and |vp) are separated by
energy differences eg and e, towards the higher level |vg)
and the lower level |vg) respectively. The tunneling part
Hy =t 3 (abtbk+albih) 11037 | (b8 4alibh)
describes the coupling of each dot to its lead and will
be treated as a perturbation. For simplicity, the analysis
is restricted to spin-polarized electrons. Fig. [l shows a
sketch of the system under consideration.
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FIG. 1: Sketch of the considered artificial molecule, where 2§
is the level splitting and V' the bias voltage, that is applied
between the two leads (grey).

From now on, we use the molecular basis obtained by
diagonalizing Hgys, the eigenstates of which are molecu-
lar wavefunctions with energy splitting 26 = 2
In order to capture cotunneling by leading-order pertur-
bation theory in the density matrix, we rewrite H; us-
ing a Schrieffer-Wolff transformation [15], which removes
the transitions to the virtual states and generates an ef-
fective Hamiltonian containing indirect transition terms
between the molecular states. The basic formulae of this
procedure are found in [16] and a more detailed descrip-
tion of our calculation is given in [L1, [174]. The final cou-
pling Hamiltonian is of the general form H = Hy + H;
where Hi =37, . &7 Aij(n,m, k, lg’)alambi%b‘; +h.c.
where ¢ and j denote right or left lead, the as are opera-
tors in the molecular basis and the coeflicients A;; are
given through usual second order perturbation theory
with energy denominators containing the energy cost of
the intermediate state. Note that H; conserves the parti-
cle number, because it acts upon the double-dot by inject-
ing and extracting an electron in a single step. Hence,
the terms with i # j transfer charge between different
reservoirs.

In order to describe the open system dynamics, we
derive an effective master equation using the well-
established and controlled Bloch-Redfield theory [1€],
which has been demonstrated to work well down to low
temperature for certain models [19]. It involves a Born
approximation in H7, i.e. by virtue of the Schrieffer-Wolff
transformation it captures all cotunneling processes in
lowest nonvanishing order.

The Redfield equations [2] for the elements of the re-
duced density matrix p in the eigenstate basis of Hgys

(i.e. the molecular basis) read

frm () = =W (8)prm () = D Rummipra(t) . (1)
k,l

where wym = (Fn — Em)/h and Ry are the Redfield
tensor elements, which are given by a large number of
Golden Rule rates describing different cotunneling pro-
cesses, which are essentially independent due to the low
symmetry of the system. Each process contributes a typ-
ical cotunneling rate of the type outlined in Ref. |11, [17].
An overview of the most important processes is given be-
low with the discussion of our results. n, m, k and [ can
be either + (excited molecular state) or — (molecular
ground state). The Es are the eigenenergies of the two
molecular states.

We restrict ourselves to the undriven case with a
time-independent Hamiltonian, where the Bloch-Redfield
equation eq. () is readily solved. From the solution, we
can identify coherent dynamics as well as incoherent re-
laxation and up to lowest order in R the relaxation and
dephasing rates read

1
Ir = Re(Rytyt +R—) = — (2)
1
Iy = Re(Ry—t-) =Re(R_4_4) = . (3)

where the R,k are again the elements of the Redfield
tensor. Note that there are also weak renormalization
effects, which are discussed elsewhere [[17].

(b)

N
_

FIG. 2: Examples for relevant processes in the system: (a)
a relaxation process that carries no current, (b) a relaxation
process with current, (¢) a pure dephasing process without
current flow and (d) a current-carrying dephasing process.

Fig. @ shows a choice of processes, which contribute to
the Redfield tensor. All processes contribute to dephas-
ing, because at least the phase information is always lost,
if an electron is injected from the reservoirs. (a) and (b)
illustrate relaxation processes. Note that only (b) carries



a current, i.e. in general the relazation rate must not be
confused with the cotunneling current. In (c¢) and (d)
two pure dephasing processes are presented, only in (d)
a cotunneling current flows through the TSS. In general,
processes without current can emerge, if the cotunneling
processes take place between a single lead and the TSS.

We have evaluated the rates entering eqs. ()-8 using
the A;;. Due to the high number of terms, details are
not shown and will be given elsewhere [11].

We now turn to the discussion of our results. In the fig-
ures below, we normalized all times by T5 = %, which is
the period of coherent oscillations between the two molec-
ular states. We start with the discussion of the depen-
dence of the relaxation time 7, on the transport voltage

V = ur — pur. We observe in Fig. Bl that for an asym-
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FIG. 3: Relaxation time 7, for different values of .5 and =,
when the bias voltage V/2¢ is varied (with 7' = 0.1 mK and
tav = (ur + pr)/2 = 75.832 peV); inset: T' = 140 mK.

metric TSS, i.e. for £,5 # 0, there is a pronounced peak
of the relaxation time at V = —sgn(e,s)26, i.e. the sign
has to be chosen with opposite polarity to the asymmetry
energy. This means in particular, that the relaxation is
minimal far away from equilibrium. For quantum com-
putation, achieving a maximum relaxation time is e.g.
appreciable during read-out |3, 4].

The appearance of the peaks in Fig. Bl can be under-
stood by investigating the different classes of relaxation
processes contributing to eq. (@), notably the current-
carrying processes, [e.g. Fig. B (b) and (d)] as schemati-
cally shown in Fig. Bl for low temperatures. At low volt-
ages, |V| < 24, the system relaxes into a thermal state,
which at low temperature is close to the ground state.
Relaxation takes place by spontaneous emission of en-
ergy into the environment and creation of an electron-
hole pair in the leads. This pair can recombine through
the electrical circuit, which fixes the electrochemical po-
tentials. This manifests itself as electrical current. As the

voltage is increased away from V = 0, emission processes
which lead to a current against the polarity of the source
are suppressed, the others are increased, see Figs. H (a)
and (b). Depending on the asymmetry of the double dot,
i.e. on the weight of the excited state on the left and the
right dot, this leads to an enhancement or a suppression
of the rate. At |V| > 2§, the emission processes against
the source are completely blocked: The dot relaxation
does not provide enough energy to overcome the electro-
motive force. The rate vanishes linearily as a function of
voltage reflecting the size of the available phase space for
cotunneling, see Fig. ().

At higher voltages, |V| > 24, inelastic cotunneling [2(]
sets in, see Figs. @ (c) and (d): The source provides
enough energy to even excite the double dot, creating
a nonequilibrium steady-state population of the molec-
ular levels. Hence, inelastic cotunneling provides a way
for the dot to absorb energy from the environment even
at low temperature. This process can be experimentally
identified by a sharp increase of the current |11, 20].

Hence, at V = +24, three of the four processes de-
picted in Fig. B vanish at low temperatures, whereas at
V = 0 only two vanish. The linear voltage-dependence of
the rates leads to the rather sharp cusps seen in Fig. Bl
This behavior is smeared at higher temperatures by Bose-
function-type factors. The peak height is set by the re-
maining processes: Energy emission with the source and
current-less relaxation, Fig. Bl (a). As explained above,
the relative weight of the former strongly depends on the
weight of the excited molecular state on the individual
dots and thus is responsible for the strong asymmetry of
the peaks in Fig. Bl for different asymmetry energies.

Next, we analyze the properties of the dephasing time
Ty as a function of the bias voltage. The total dephasing
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FIG. 4: Dephasing time 74 for different values of e.s and 7,
when the bias voltage V/2¢ is varied (with T'= 0.1 mK and
tav = (ur + pr)/2 = 75.832 peV); inset: T = 140 mK.

rate contains relaxing as well as flipless (“elastic”) pro-



cesses. We hence observe in Fig. Bl a peak structure at
V = —sgn(e,5)28 as in the relaxation time, Fig. Bland a
similar structure at V' = 0. The physics of the peak at
V' = 0 can be understood due to the suppression of fli-
pless processes (energy exchange 0) in an analogous way
to the peak in Fig. Bl (energy exchange 26). Depending
on the degree of asymmetry, the one or the other peak
is higher: at low asymmetry energy €,s < 7, the dephas-
ing time at V' = 0 is longest and for higher asymmetry
€as > 7, this is the case at V' = £2§. In general, this
indicates the existence of two preferable working points
for quantum computation: One in equilibrium, the other
again far from equilibrium. V = —2sgn(e,s)d is even
longer. The curves for different signs of €,5 again reflect
mirror symmetry. As also already seen in the inset of
Fig. B the voltage dependence at higher temperature is
smeared out and the characteristics of the two peaks is
lost.

v/2d V/2d

-1 1 -1 ! 1

FIG. 5: Qualitative voltage dependence of the rates of “emis-
sion” [(a) and (b)] and “absorption” [(c) and (d)] processes,
see text

A measurement of the relaxation and dephasing times
should be feasible by the following methods: a time-
resolved measurement of (o,(t)), e.g. through a single-
electron transistor observing the charge on one of the
dots [3] , the saturation broadening method [21] or reso-
nance schemes such as proposed in Ref. [22] for spins.

Note that parts of the double-dot literature focus on
decoherence through phonons/photons (see Refs. [10, 123,
24, 127), whereas we focus on cotunneling. Our results in-
dicate that, as long as phonons are not suppressed by an
appropriate cavity [2€], they give the main contribution,
such that our results describe the next evolutionary step
in the development of double quantum dot charge qubits.

To conclude, we have chosen a generic and realistic
model system to describe decoherence through coupling
to reservoirs in disequilibrium, a double quantum dot in
the cotunneling regime. We have shown that decoher-
ence can be controlled through a bias voltage V' (and
thus creating a non-equilibrium situation) between the
two fermionic baths. In particular, the optimum working

point for read-out and potentially also for operation of
the qubit can be in an out-of-equilibrium situation at a
voltage V' = —sgn(e,s)26. We have given a consistent
physical interpretation of our findings in terms of stabil-
ity and phase space.
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3.8 Mesoscopic Josephson junctions with
conducting barriers

This work is a continuation and generalization of an idea already pre-
sented in my PhD-thesis: the tunable 7-junction effect previously stud-
ied in mesoscopic superconductor-normal metal-superconductor (SNS)
junctions with a control line. Ref. [205] provides a detailed quantitative
study of that effect, including the influence of imperfections, such as
different geometries and nonideal interfaces. It is shown that this effect
is relatively robust and, e.g., can also be found in short SNS-junctions,
which can support much higher critical current than long ones.

Ref. [206] departs from previous work in the choice of materials. It is
shown, that the tunable m-junction phenomenon bears some analogy
to the m-junction effect predicted (and later observed) in ferromagnetic
junctions: Essentially, the interference leading to the supercurrent is
modified by changing the distribution of the available electrons: In the
former case, these are electrons from two different leads, in the latter,
the two different spins separated by exchange or Zeeman fields. It is
shown that in a controlled SFS-junction, both effects can be defined
and that one half of the supercurrent from the case of a nonmagnetic
barrier can be recovered by compensating the exchange field through a
control voltage of the same magnitude.

All the theoretical work complied in this section has been done using
the microscopic quasiclassical Green’s function technique in the diffu-
sive limit. This is a very efficient and well-established method which
contains a number of systematic and controlled approximations. The
accuracy of the approach is, together with the high level of present
day experimentation, demonstrated in Ref. [207]. The Josephson cric-
ital current for a jucntion with good metallic contacts is calculated
for different lengths d of the junction, parameterized by the Thouless
energy, Er, = D/d?, where D is the diffustion constant. This en-
ergy is compared with the superconducting gap A. It is found that for
short junctions, the cricital current times the normal state resistance at
zero temperature is given by the gap as predicted by the Ambegaokar-
Baratoff formula. For long junctions, the Thouless energy limits the
current to I.Ry/e = 10.8Ery,. Theory and experiment are compared
at different temperatures and show excellent agreement over several
decades of the current.

Ref. [208] considers a geometry with an important difference: Instead
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of a control-line, only a single control-terminal is used, turning the
setup into a transistor-like 3-terminal device. It is shown, that the 7-
junction effect persists and has, in the absence of inelastic scattering,
the same magnitude as in four-terminal devices. On top of this, it is
more immune to inelastic effects due to a subtle restriction of scattering
phase space. The paper focuses on an experimental realization of the
device which can be fitted quantitatively within our theoretical model.

As is shown in Ref. [209], the three terminal setup has a number of ad-
ditional features due to the parallel and antiparallel flow of the dissipa-
tive current to the supercurrent in the arms. Injecting nonequilibrium
quasiparticles into a supercurrent-carrying state leads to a superflow
of heat. As the normal-superconductor interface is a perfect insulator,
this total flow has to be compensated by a dissipative heat flow driven
by a gradient of the effective temperature. Thus, the supercurrent
leads to an effective temperature gradient, which can be interpreted as
a generalized Peltier-effect. In contrast to usual themoelectric effects,
this effect does not depend on subtleties of the lattice or electron-hole
symmetry breaking and is thus typically much larger.
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Recent experiments have demonstrated the nonequilibrium control of the supercurrent through diffusive
phase-coherent normal-metal weak links. The experimental results have been accurately described by the
quasiclassical Green’s-function technique in the Keldysh formalism. Taking into account the geometry of the
structure, different energy scales, and the nonidealities at the interfaces allows us to obtain a quantitative
agreement between the theory and the experimental results in both the amplitude and the phase dependence of
the supercurrent, with no or very few fitting parameters. Here we discuss the most important factors involved
with such comparisons: the ratio between the superconducting order parameter and the Thouless energy of the
junction, the effect of additional wires on the weak link, and the effects due to imperfections, most notably due
to the nonideal interfaces.
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I. INTRODUCTION most normal-metal weak links. The corresponding ballistic
limit d<I| has been extensively described in the
Many quantum phenomena in many-body systems aréiteraturé®8in terms of Andreev bound staté8BS). We

based on probing the spectrum of states corresponding to tl#ow qualitatively a connection between the discrete ABS
desired observable, the states being filled according to aand the continuous diffusive-limit spectral supercurrent.
appropriate distribution function. A similar viewpoint can be  This paper is organized as follows. After this introduction,
taken also on the Josephson effect: supercurrent is carried I8ec. Il introduces to the theoretical formalism which is based
states in the weak link and their occupation is determined byn the real-time Usadel equation for the quasiclassical
a distribution function antisymmetric between the electronGreen’s function in the diffusive limit??° In the case of
and hole spaces. This aspect is directly reflected in the mathronideal interfaces or in multiterminal geometries, the
ematical structure of the supercurrent formula derived fromhoundary conditions to these functions are also essential. Un-
the Keldysh Green's-functions method:. Such an approach derstanding the results of the following sections does not

has been taken in some recent experinfefiisontrolling the require a detailed reading of this part but it is enough to

Josephson _effect in phas_e-qohe_rent nor mal-metal_ _W'reérasp the idea of the relation of the spectral supercurrent and
through the control of the distribution function by an injec-

. L the observable one. In Sec. Ill we look how the spectral
tion of normal quasiparticle current. One of the most remark- .

. . ) . ._supercurrent depends on the length of the weak link com-
able results of these experiments is the inversion of the sigh

of the supercurrent for a given phase difference across th%ared to the superconducting coherence length and separate
weak link when the junctions turn into a state two extreme cases. In the limit of a short junction where the

Quantitative fit to the experimentally obtained results hagonerence length is much longer than the weak link, one
been very successful for the equilibrium supercur%uﬂ;ing ot_)talns an analytical _solu_tlon for the spectral supercgrre_nt
the equilibrium quasiclassical theory. In the nonequilibriumWithout further approximations. The current-phase relation in
case, detailed knowledge of the relaxation mechanisms cofliffusive normal-metal weak links is considered in Sec. IV.
trolling the shape of the interactions, but also the precis&Ve show how, especially at low temperatures, higher har-
spectrum of supercurrent-carrying states, is requifed. monics appear in addition to the usual sinusoidal phase de-
Previously! for the calculation of this spectrum, one has as-pendence and indicate how the period can be halved in a
sumed a two-probe setup with some idealized conditions ononequilibrium situation. Section V considers the effect of
the length scales and on the nature of the interfaces. In thizdditional normal-metal terminals on the current-carrying
paper, we systematically investigate the spectrum of thislensity of states, and in Sec. VI, we discuss how nonideali-
current-carrying density of states, or spectral supercurrenties in the normal metal — superconducidS) interface
show how it is calculated, and how it depends on the lengtlthange its shape. Finally, in Sec. VII, we summarize the
of the weak link, presence of additional terminals, or on themain results.
nonidealities in the interfaces between the normal-metal To be specific, we consider the structure shown in Fig. 1.
weak link and the superconductors. We also discuss th&he main wire with length. and cross sectioA,, between
current-phase relation of such a system: at low temperaturethe superconductors forms the weak link whereas the addi-
it can be far from sinusoidal, and at certain conditions, itstional wires with lengthL. and integrated cross sectidq
period can even be halvédWe focus on the diffusive limit are used for the control of the distribution functions and
where the dimensiond of the weak link are much greater therefore referred to as the control wires. We assume that the
than the elastic mean free pdthrhis is the typical limit for ~ superconducting and normal reservoirs are much larger than
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. L . only superconducting reservoirs much wider than the weak
Aw,Gw  Ac,Gc link, we a_dopt the usual step-function fo'rm fa(x) (finite
S J / S constant in the superconductors, zero in the normal-metal

o2

—
X

L

—0/2 wires).
In addition to Eq.(1), Usadel Green’s function satisfies a

normalization conditiorG?=1. Therefore it can be param-
etrized with four scalar parameters as follc®dhe Keldysh

Green’s functionGX describing the occupation numbers of
different quantum states, i.e., tironequilibrium state of
the system can be expressed with two real distribution func-

o o ~ tions f_ and fr as GN=GR(f +f75)—(f +fr73)GA
FI_G. 1. Multiterminal SNS Josephson Junc_tlon. The weak link whereas the retarded and advanced Green's funct'@ﬁs,
consists of a phase coherent normal-metal wire of lehgtbross

sectionA,,, and normal-state conductivity,,, yielding a normal- and G*, describing the spectral properties which do not di-
state resistanc®y=L/o,A,, . Additional normal-metal wires of rectly depend on the distribution functions are
length L., total cross sectiol\;, and normal-state conductivity . .
o, i.e., with resistanc&®.=L./o,A,,, called the control wires, &R costi6) sinh( 6)exp(i x)
are connected to the center of the weak link, and from their other | —sink( f)exp(—ix) —cosh 6)
end, to normal reservoirs.

c

(4)

andG*= — 73(GR) T7;. Here6(x;E) andx(x;E) are in gen-
the weak link and the control wire, such that the Green’seral complex scalar functions.
functions describing them take their bulk values very close to In what follows, we describe a quasi-one-dimensional
the interfaces. Furthermore, we assume that the width of thsituation, where the functions are assumed to vary only in
control wires is much smaller than the lendttof the weak one dimensiorx. Expressing the coordinatein terms of the
links. This allows us to consider the wires as quasi-oneseparatiorL of the superconductors between which the su-
dimensional1D) structures by assuming translational invari- hercurrent flowsx=x’L, the spectral equations fdsR®
ance in the transverse directions. read in a normal metalX=0)

Il. THEORETICAL BACKGROUND 2 . . . 1 2
d5,0=—2i(E"+iI'")sinh ) + E(ax,x) sinh(26), (5

. . . X
Circuits composed of normal and superconducting metals

in the diffusive limit(dimensions larger than the elastic mean

free pathl) are effectively described in terms of the quasi- je=—sintf(0)dxx, dxje=0. (6)
classical %reen’s functionsG  satisfying the Usadel Here, the prime over th&limensionlessquantities denotes
equations” the fact that the energies are expressed in the units of the
. _ . Thouless energfr=D/L? corresponding to the length.
DV(GVG)=[—-i(E+il)73+A,G], (1) Below, we tacitly assume all lengths and energies expressed

in these natural units even if not marked by a prime. The
kinetic equations satisfied by the distribution functioins
andf; are described, e.g., in Ref. 20, where the part of the
distribution function which is symmetric about the chemical
potential of the superconductors correspondgt@and the
antisymmetric part td, . These two components acquire dif-
ferent space and energy dependent diffusion coefficients due
to the superconducting proximity effect.

whereD = vl is the diffusion constang is energy relative
to the chemical potential of the superconductosich is
assumed to be the same for &lterminalg, I" describes

a small inelastic scattering rate, andthe superconducting
pair potential(we setz=1 throughout Since we aim to
describe nonequilibrium effects, we adopt the Keldysh real
time formalisnt' and hence

BR BK A 0 0 If the interfaces to the reservoirs are ideal metallic, the
G= . A :( ~ ) 1 4= 3 . parameters are continuous at the boundaries to the reservoirs
0 GA 0 A 0 = and can be identified with the bulk valuesgs

(2 =artanh@A/E) and 6y=0 in the superconducting and
) R normal-metal reservoirs, respectively. In general, e.g., if a
All of the submatrices denoted by a has?, etc) are 2 sypercurrent is driven through the system, there can be a
X2 matrices in Nambu particle-hole space, in particutar, phase difference, which we choose to be applied symmetri-

is the third Pauli matrix anad has the form cally between the superconductors, such that in the left su-
perconductory= ¢/2 and in the righty=— ¢/2. Below, if
. 0 A(X) not mentioned otherwise, we chooge= 7/2, which typi-
= A*(x) 0 ) pally _yields a supercurrent close to the critical current of the
junction.

The pair potential (x) can in principle be obtained from a Nonideal interfaces with reduced transmissivities are not
self-consistency relatioff:?> However, since we consider directly described by the Usadel equation, because they are
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of microscopic, atomic-scale thickness. They can, howevegase, they are the continuity of the functiahand y and the

be taken into account using boundary conditions derived bgonservation of the spectral currents. Assuming that the de-
ZaitseV? for Eilenberger Green's functionwalid indepen-  rivatives in theN wiresi=1,...N with cross sectiong\;

dent of the mean free patland later simplified in the diffu- and normal-state conductivities, point towards the cross-
sive limit by Kuprianov and Lukichev for a tunnelling cdde ing point atx., we get

and Nazarov for a general interfatedescribed by a scatter-

ing matrix. For an interface characterized by the transmission 0i(Xc)=0j(xc) Vi, j=1,...N, (12
eigenvaluedl,, the Green’s function&, on the right-hand
side andG, on the left-hand side of the interface satfSff Xi(Xo)=xj(X)  Vi,j=1,...N, (13
oNA1G19,G1 = 073AGL0,G) N .
, & 6 2, AioNdxfi(xe) =0, (14
2e TG1,Gs -
=2 e )
T n 4+ T,({G1,Go)—2) N
evaluated at the position of the interface. In most cases, the izl Aiondxxi(Xe) = 0. (19

individual transmission eigenvalues are not known, but since
typical interfaces contain a huge number of channels, it i$n the last condition we used the continuity of the parameters
enough to integrate over the probability distribution of the ¢ across the crossing point.
eigenvalues to obtain the desired boundary condition. Below, we assume the system depicted in Fig. 1: two
In the case of a tunneling interfacehere all the trans-  superconductors connected by “horizontal” mesoscopic nor-
mission eigenvalues of the interface are sinhlé boundary mal wires to which we connect normal reservoirs by the
conditions between the parametrized functions in wires 1 anévertical” mesoscopic normal wireglabeling of the wires as
2 reduce 8> in Fig. 1). When considering the supercurrent between the
) , two superconductors, for the spectral equations it is enough
dx01=[sinh(6,)cosi 0,) — sinf(#) cost 6;)cog A x) J/r, to treat any number of “vertical” wires by a single wire for
8 which the product ofryA is simply the sum of these prod-
. . . , ucts in the individual wires. In the case that the dependence
SINkP(6:)dxx1 = sinh( 9y)sinh( 6)sin(Ax) /Ty (9) on the lengthL, of these wires becomes important, the
Here, Ax=x1—x> and 6,)= o(x; 7)) and Xx12y  Smallest of them characterizes the situation the best. In this
EX(xg(—)) are the parameter and y at the interfacex  case, since there can be no supercurrent flowing to the nor-

—X,, but on the side of the wire @®). The nonideality of the ~mal reservoirs, Eq(15) reduces tojg=—j&. Furthermore,
interface is characterized by the ratio of its resistaRcand ~ for simplicity, we assume the system left-right symmetric,
of the weak-link resistancBy, r,=R, /Ry and the deriva- such that the part of the weak link in the left-hand side of the
tives point towards the wire 1. In the case of a dirty interface Cross is similar to that in the right-hand side.

where the boundary condition is evaluated using the distri- Finally, the observable supercurrent is obtained from the
bution function of the transmission eigenvalues correspondsolutions to the spectral and kinetic equations by

ing to an interface with a random array of scatterers in a 2D
layer?” we get

\/E[sin}"( 01)cosh #,) — sinh( 65)cosh{ 61)cog A x)]
xV1= roD ' In the reservoirs with voltag¥ with respect to the potential
(100  of the superconductorévhich are assumed equal for both
superconductors in order to avoid the ac Josephson gffect

I =iJm dE'Im[je(E")]f (E") (16)
ST 2eRy) Ie L .

2sinh( 6,)sinh( 6;)sin(A f, obtains the form
sianwl)axxl:f i z)rg LLEY I
° _ 1 E+eV E-eV
Here we denoted the denominator D fLE}V,T)=5tan T +tan 2T | | 17

= /14 cosh@,)cosh@,)—sinh(#,)sinh(@,)cos@y). This de-
nominator reflects the contribution of open conduction chanit can be showh® that, in the absence of inelastic interac-
nels which are not present in E@). tions and for energieE<A, f, remains constant throughout
Note that both types of boundary conditions indicate athe control wires, and hence the reservoir value can directly
form of a conservation of a spectral current over the interbe used for the calculation of the supercurrent.
face, the second equation being the conservation of the spec- In this paper, we will consider two limits fof, . These
tral supercurrenjg . are the equilibrium finite-temperature limit, wherg
In geometries with more than two terminals, we assume=tanhE/2kgT), and the zero-temperature nonequilibrium
that narrow quasi-one-dimensional wires connect to eachase whenf, is driven in a normal-metal wirk,f, = 9(E
other at some point of the structure. Therefore we need te-eV)— 9(—eV—E), where 3(E) is the Heaviside step
impose appropriate matching conditici€>?%2° |n this  function.
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The spectrum of supercurrent-carrying states typicallytheir contribution vanishes quickly witE—A.
consists of both the states carrying the supercurrent parallel The energy ranges can be understood as follows: In the
to the phase gradient and those carrying it in the oppositeenter of the junction, which is the bottleneck for the super-
direction!*? depending on their energy. Hence, by control-current, both superconductors provide sufficient correlations
ling the occupation of these states by the above steplike dighat a gap in the energy spectrum of a digis induced at
tribution function, one is able to vary the sign of the observ-¢=0, where the size oE, interpolates betweek+ (long
able supercurrent and, e.g., obtain thestate. junction) and A (short junction.>32 If now a finite phase
The form of the spectrum can be qualitatively understoodifference is applied, the correlations from either side start to
by considering a ballisti¢scattering-frepweak link. There, interfere more and more destructively leading to a closing of
the quasiparticles form bound stafeg® which contain an  the gap at¢= .3 Hence the lower energy bound, below
Andreev reflectio?f at both NS interfaces. Since the first which no bound states exist, is set by this phase-dependent
reflection at the left is from hole- to particlgarticle- to  gap. AboveA, the states depend less and less on the super-
hole) -like states and the second at the right interface fronconducting properties, hence their phase dependence is rap-
particle- to hole(from a hole- to particle-like states, the net idly lost and they also do not contribute to the supercurrent.
result is a transfer of a Cooper pair from the left supercon-
ductor to the rightfrom right to lef). Bound-state energies A. Short-junction limit L<&,

are found by requiring that the total phase the quasiparticles . )
acquire within a single cycle is a multiple of2 This leads . !N the limit when the superconducting order parameter
to (for E,,<A) is much smaller than the Thouless energy, the supercurrent is

carried by states with energies much belbyand we may
thus neglect the first term on the right side of E5). In this

1 1
E§=2—[2w m-+ > *+ |, (18 case, we get an analytical solution to the differential equa-
T tions without further approximations,
the sign in front of the phase depending on the direction of s
the supercurrent flow. Here=vg/L is the time of flight g(x):arcos% coshjea(x—%o)]|,  (20)
between two successive Andreev reflections lamglthe cor-

responding length of the trajectory. The supercurrent- )
carrying density of states is then found from x(X)= xo—arctafa tanh jga(x—xo) I}, (21)

where« andx, are constants which along with the spectral
supercurrentjz are determined from the boundary condi-
tions. In the two-probe case we can choose the origin in the
center of the weak link, and assume the functi@fs) and
resulting into a peaklike spectrum that contains states carryy(x) take the bulk values at the NS boundar=(*+L/2).

ing both positive E=E,) and negative E=E_) supercur- Thus we getx,=0 and

rent. In the presence of disorder, the distribution of the times

IE
IS(E)* 2 " o(E~En), (19

of flight = depends on the impurity potential and the spectral VE?—A%cos(/2)

supercurrent is conveniently characterized by its impurity- - Acog ¢/2) ' (22

averaged smooth density of states. However, the resulting

gpgctrum still containg many properties similar to the plean . 2A cog B/12) VE \/EZ—A2c052(¢/2))

limit, such as the varying sign of the supercurrent carried at j.= rcos

different energies. This analogy holds, even though on a for- VE?—A%cos(4/2) E*-A?

mal level, the calculation within our quasiclassical technique (23

does not directly invoke these concepts. In the real-time calculation of the supercurrent, we are
mostly interested in the imaginary part of the spectral super-

IIl. SHORT- AND LONG-JUNCTION LIMITS currentjg. This is
The spectrum of current-carrying states in the weak link 0, E>A

depends very much on the ratio of the lengtlof the weak

link and the superconducting coherence lenggh \D/2A, Im(jg)= mA cod $/2) Ec[A|cod ¢/2)],A]

or in other words, on the ratio between the supezrconducting JVEZ—AZcoL(¢/2)’ ’

order parameteh and the Thouless enerds;y=D/L“ of the

weak link. In the case of a long weak lifkL>¢&, (or, 0, [El<Alcod¢/2)] (24)

equivalentlyE;<A), the spectrum is wide and many energy ] ]

states contribute to the supercurrent with only a small phasénd 1M je(—E)]=—Im[je(E)]. At T=0, we get the ob-

dependent gap of the order of a fdy at low energies. In  Servable supercurrent by simply integrating Jg)(over the

the opposite limit, only the states with energg  €nergy to obtain

e[A|cos(@/2)|,A] carry supercurrent and between these Acog /2)

limits, A serves as a cutoff for the spectral supercurrent: :M in( &b/
/ ! S artantisin( ¢/2)]. (25

there may exist some current-carrying states \EthA, but Ry
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For a finite temperature, we have to multiply this by the 4
distribution function tanti/2kgT) and integrate over the en-
ergy, which is conveniently done using the Matsubara tech-
niqueli.e., substitutingc=iw,, wherew,=7T(2n+1) are

the poles of tant/2kgT) and summing Rég) over n
=0,1,..., seRefs. 10 and 20 for detailsyielding

27AT

LU L
S eRy cos ¢ )n=o VAZCoZ(/2) + w?

X arctal Asin#/12)
VA2coZ(¢12) + w?

. (26)

. @0 10 20 30 40 50
As expected, Eqg25) and(26) are the same as obtained by T
Kulik and Omel’'yanchuf* and in numerical studié$for the
same limit. 14°

In a setup where the distribution function can be con-
trolled by an additional probe coupled to the system via a
narrow normal wirg'such that the current-carrying states are 10¢
not essentially deformedthe resulting supercurrent as a gl T 0 o
function of control voltage/ at T=0 reads 3

T
o N & o ®

A cog ¢/2) A[1+sin(¢/2)] E 4
Is(V)= 26R, In Vi N 3%0l( 0D (27

for Ve[A|cos@/2)|,A]. Above A, | vanishes, and foW

<A|cos(p)|, the supercurrent has the form of Eg5), inde- 2t 0

pendent ofV. 0 0.5 1 1.5
The spectral supercurrent of H@4) can also be obtained (b) Eia

ffom Fhe diffusive limit of the corresponding .quantity de-  FiG. 2. Spectral supercurrent for a few values MfE . (a)
rived in Ref. 35. There, the supercurrent is written as a sumynctions longer than the superconducting coherence lggth
of the contributions from different bound states, finite A/E; shows up as a peak &=A. (b) Short junctionsL
~ ¢, the peak atE=A persists, but another develops arouad
eA N Tp Ep =A cos(@/2). In (b), the spectral supercurrent is normalized by
ls=—sin(¢) Z E—tam‘( 5K ) (28)  E;/A to allow for the analytical solution & /A—. The inset
P=1%p B shows how the zero-temperature, zero-voltage critical current be-
haves as a function af/E+, in accordance with Ref. 10.

where the bound-state energiés depend on the transmis-
sion eigenvalues, by E,=A[1— 7,si?(¢/2)]"2 Writing
Eq. (28) in the form of an energy integral, behavior is responsible for the occurrence of thetate in
nonequilibrium-controlled Josephson junctidfsnd in fer-
romagnetic weak link383°
The spectral supercurrent as a function of energy is plot-
(29  ted for a few values ofA/E; in Fig. 2, the upper figure
) o ] showing the limitE+<<A and the lower the ImiE;<A.
and averaging the _tra_msr_nlsgéon eigenvalues over their or 4 finite ratioA/Ey, the divergence of the density of
d|ﬁu5|ve-l|rr1|'i ~ distribution; p(7)=(7/26°Ry)  giates at the superconducting gap edge is reflected as a peak
X(ry1l—7) " yields a spectral supercurrent given by EQ. i, the spectral supercurrent Bt=A. The direction of the
(24) multiplying the distribution function tanE(2kgT). peak, positive or negative, is determined by geometric con-
siderations and hence depends on the precise valNéEf.
B. Long and intermediate-length junctions For E;~A, the spectral supercurrent lig) tends towards

If the lengthL of the weak link is much longer tha,,  the short-junction result, E424), replacing the Thouless gap
the supercurrent is carried by a wide spectrum ofby the gap of widthA cos(@/2). Moreover, forA/E;+—0, the
energies:>%" At low E, however, the current-carrying den- width of the peak aE=A tends to zero.
sity of states has a phase-dependent minigap reminiscent of In the limit T>E; for a long junction E;<<A), the tem-
the gap in the usual density of states of a SNS safiple. perature dependence of the obtained observable supercurrent
Above the gap, Imji) rises sharply, then starts to oscillate tends to the limits considered by Likhaf&or A<T and by
with an exponentially decaying envelope. This oscillatoryZaikin and Zharko¢! for a generalA/T.

S(E-Ep),

eA Nor E
= gj > P
Is= 5 Sin( ¢) dEp=l Etanl‘( KT
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FIG. 3. Energy dependence of the Fourier sine transformed eviE,

spectral supercurrent: four lowest harmonics-1,2,3,4 corre-
sponding to the phase dependenciesnghp(The energy scales and
magnitudes of the different harmonic constituents decay ras 1/

FIG. 4. Voltage dependence of the amplitudes of the first four
harmonics of the observable supercurrent. Inset: Corresponding
temperature dependendeven harmonics yield negative ampli-
IV PHASE DEPENDENCE tudes, but here we plot the absolute values of the supercurrent
| t.O”g'nalll(yi.ﬂlle :Jotshep?son ?ffect was dl_scoyertid ';.Or.'tnsfuénd the effective energy scales decay with a powen of
ating weak links In the tunneling regime, 1.e., in the imit o suggesting that the observation of the higher harmonics is

a very low tunneling probability. There, the supercurrent Seasiest at low temperatures. The corresponding temperature
due to an uncorrelated transfer of Cooper pairs through thé

weak link?? As a result, one obtains the familiar dc Joseph-a,nd voltage dependencies of the critic.al curre@tplotted in_
son relationl s= .sin(¢). However, it has been showsee, F|_g.. 4 behave analogously. A num_erlcal fit to the obtained
e.g., Refs. 13 and 34hat other kinds of weak links, through Critical currents ateV=kgT=0 yields roughly Ig—
which the transmission probability is much above zero, may —1)"/n® and to the voltag&/;; wherel(V) first changes
have a different current-phase relation. Thus we may write irsign suggests that the effective energy scales beha# as
general =E+1(cy+c,/n), with some constants, ,.
This behavior can be understood by identifying the higher
°” harmonics with the correlated transfer of a clusten@oo-
lc(¢)= 21 Iesin(ng), (300 per pairs. Now instead of the phage the cluster has the
"~ phasen¢ and since the cycle containgn2Andreev reflec-

where the amplitudesl are the coefficients of the Fourier tions, the effective trajectory length is increased fromo
sine series of o(¢). For example, in a ballistic weak link NL- In EQ. (18)*’ making these replacements yields the ob-
where the transmission probability for Cooper pairs i${1, Served resultey «(c,+c,/n). In the diffusive limit, the ef-
«—(—1)"n, yielding a sawtooth form fot(¢).131® The fective trajectory Ien_gth mcrezases in the second power of the
odd parity with respect t@ (appearance of only sine terins length of the weak link|.4<L<, but since t.he phase. is reset
of this representation reflects the fact that the supercurrent R&t€" eagh traversal through the weak link, we simply get
driven by the spatial asymmetry introduced by the applicalefinnNL". Hence, similarly to the alternating sign, the scal-
tion of the phase: changing the phase to a negative valug9 of the effective energies with indexfollows the behav-
corresponds to mirroring the structure about the center ant®" Of the ballistic-limit spectral supercurrent.

hence to a reversal of the current. Since the crossover voltag®% , wherel¢(V})=0, de-

The occurrence of higher harmonics in E§0) may be  Pend onn, Fhe actual critical current never vanishes at the
interpreted as a correlated transfemaEooper pairs through ~Crossover: it is rather that the current-phase relation changes
the weak link as a result of the pairing correlations extendingts form near the crossover voltages. Such a change was ob-
through quasiparticle paths containing multiple Andreev reServed in Ref. 11, where the current-phase relation of a con-
flections. For example, the flux quantum for thén har- trolla}ble Josephspn junction was measured in a supercon-
monic ish/2ne, i.e., corresponding to a charge@ ducting quantum interference devi€8QUID) geometry.

In a diffusive weak link considered in this paper, the In the short-junction regimé <&, the contributions of
transmission probabilities for the Cooper pairs are widelythe different harmonics can be derived analytically. A general
distributed between zero and®1As a result, one may get form for Im(jg) would be complicated, but as an example,
contributions from the higher harmonics to the phase deperthe first two amplitudes are
dence. This is shown in Fig. 3 where the amplitudesj ij(
of the first four harmonics of the Fourier sine transformed
spectral supercurrent through a long weak litke(¢,) are

2
: . . , (31
plotted as a function of energy. Both the amplitude of jii(

| m

Im(jé>=(
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> E2(2A2—3E2) 3 i
Im(jE)=~——F—— (32 el "
Clearly all the harmonics share the same energy saalbut 2f "‘\‘ ga
as for the case of a long weak link, the amplitude decays also ~ ) ﬁ_:iﬁ
here roughly as ©2. Namely, integrating Im(E) over the g 13 ‘\\ .
energy, we get for a short weak link B B 2 T
|n— _ (—1)"eA 33 0.5?_;: 44""\“.‘\.:'\43 % (VA 3 4]
¢ Ry(2n+1)(2n-1)°
ReplacingA by E; and scaling by a numerical factor close to
33, this form fits the amplitudes of the long-junction harmon- 05 5 10 20 30 10 50
ics as well but a rigorous proof does not exist. E/E;

FIG. 5. Spectral supercurrent for different cross sectibp®f
V. EXTRA TERMINALS the control probe. From top to bottom, the cross sectioi\ds

In order to relate our results to physical observables, We=0,0.2,1,2,4 times the cross gectlon of the weak link. Inset: observ-
ble supercurrent as a function Af for T=V=0 (upper set of

have to evaluate statistical expectation values. In two-probg. B .
SNS weak links in equilibrium, most of the experimental circles and for kB.T_.3ET (IowEr set of circlek The. zero-
observations have been accurately described with the e ut,gmperature resultis fitted 1g(Ac=0)Ay, /(Ay+ Ad/3) (solid line
L iquld y Ahd the finite-temperature result tby(A.=0)A,/(A,+AJ/2)
librium Matsubara technique. However, one of the recent (dashed ling

advances in the research of the Josephson effect has been

;jone{_ n _notr;]eqwhbﬂulmks;]tuatg)ns whetre ”thde bd'smbu}!onvoltages/temperatures of the order of the Thouless gap, the
unction in the weak fink has been controfied by coupling g, probes do not change the voltage/temperature depen-

one or more normal—metgl reser.voir_s to the weak link bydence ofl¢ from the two-probe case, but only the overall
phase-coher'ent wiré$ While making .I'[ possible to control magnitude is decreased. From the resultigg.) we obtain
the occupation of the current-carrying states, these extra ¢

wires also affect the form of Inj¢).? In the discussion of A
these effects, we concentrate on the regime of a long junc- Is(Ay,Ac) = —WIS(AW’A(::O)a (34)
tion, L>§&,. There, most notably, the control probes allow AwtAcl2

for the existence of states with low energies, and therefor(\?vhiCh holds very well for maxVksT)>E; .

the Thouless gap is lifted. Moreover, the existence of the If the length L, of the phase-coherent control wire is

normal reservoirs brings some extra depairing by imposing "flarger tharL, the effect of the control wires is independent of

\iamshmg_ bpundary condm_on for the pairing amp|_|tuﬂe the precise value df.. ForL.<L, the spectral supercurrent
=sinh(p) inside the reservoirs. As a result, the amplitude of. altered forE<%D/L2 such that the overall maanitude is
the spectral supercurrent decreases due to the extra probes.'%n - c SU M gnitude 1

what follows, we consider the effects of the integrated crossdecreased, the observable supercurrent tending towards. zero
sectional ared\ . of the control wires attached to the center as Lc—0. The spectral supercurrent and the resulting
of the weak link with cross sectioh,, (note: a similar effect
would be present if the control wires and the weak link were
made of different materials with normal-state conductivities
on ¢ andoy w—however, here we simply talk aboAt and
A,) and of the length. . of the phase coherent control wires,
compared to the length of the weak link. For simplicity, we
assume that the widths of the control wires are much smaller
thanL, allowing one to treat these wires as quasi-1D struc-
tures, connected by the rules of Nazarov’s circuit thédf.
In the language of this circuit theory, the extra normal wires
divert some of the spectral current to the normal reservoirs,
thus decreasing the pairing correlations between the super-
conductors.

The spectral supercurrent as a function of energy for dif- 4 s ‘ '

. C g 0 5 10 15 20

ferent cross section&; of the control wire is plotted in Fig. eVIE
5. Here we have taken the length=5L>L. Already a T
smallA <A, yields a finite Im{¢) at low energies, butdoes  FIG. 6. Voltage dependence of supercurrent dot /2 in the
not much reduce the total magnitude of the supercurrent. Th@‘esence of the control probe with different cross secti@psln-
resulting temperature and voltage dependencies of the totgét: The corresponding temperature dependence of the supercurrent.
supercurrenty is plotted in Fig. 6. Except at the very lowest The cross sections have been chosen as in Fig. 5.

184513-7
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FIG. 7. Spectral supercurrent for different lengths of the FIG. 9. Spectral supercurrent in a weak link with dirty interfaces
control probe. From top to bottom, the lengthlis=5,0.25,0.15 to the superconductors, characterized by the matioR, /Ry of the
times the length of the weak link. The cross section of the controkesistances. The interface resistariReis assumed the same for
probe is chosen equal to that of the weak link. Inset: Supercurrent aoth interfaces. From top to bottom;=0, 0.2, 0.4, 0.6, 0.8, 1.0.
T=0 (solid line and T=3E;/kg (dashed as a function of the Enhanced scattering at the interface reduces mostly the amplitude

lengthL . of the control probe with respect to the length of the weakof the supercurrent, but also slightly the effective energy scale. In-
set: zero-temperature, zero-voltage supercurrent as a functign of

link.
Circles: calculated supercurrent; solid line: fit tg(rp)=15(rp
temperature/voltage dependencies AQe=A,, and for three  =0)/(1+1.6ry).
differentL./L are plotted in Figs. 7 and 8, respectively. _ )
the amplitude of the supercurrent decays wigh but also
the energy scales decrease since the interface barrier can to
certain extent be thought as adding a barrier-equivalent
Normal-metal—superconductor interfaces with reduce engt® to the path length of the qua5|pa_rt|cles. Observmg
o . o he temperature and voltage dependencies of the resulting
transmissivity can be taken into account by specifying the upercurrent, plotted in Fig. 10, shows that the amplitude of
transmission eigenvalues through the interface and takin epsu ercur’repnt behavesglé.rtsoy V=0 as P
them into account as in E@7). Here we consider a typical P S
case described by the distribution of eigenvalues for a (R =0)R
“dirty” interface Ic(R/,R )%M
Y ' RN = TR T L6R,

Figure 9 shows the spectral supercurrent for a long junc-
tion connected to superconductors through a dirty interfacée., the resistances should not simply be added up but the

with resistanceR, (yielding a total resistanc®y+ 2R, be-  dirty interface decreases the supercurrent less efficiently than

tween the superconductgr®ue to the additional resistance, the normal-metal resistance. Furthermore, the effective en-
ergy scaleE* found, e.g., from the voltage dependence in-

dicates that it follows the approximate lak*=E{(1

VI. NONIDEAL INTERFACES

(39

12 . -

0 5 10 15 20

10
eV/ET

FIG. 8. Woltage dependence of supercurrent gor 7/2 in the

presence of a control probe with lendth and cross section equal
FIG. 10. VWoltage dependence of the supercurrent with dirty NS

to that of the weak link. Inset: The corresponding temperature de-
pendence of the supercurrent. The lendthhave been chosen as interfaces at¢=m/2. Inset: Corresponding temperature depen-
dence. The values d®, are the same as in Fig. 9.

in Fig. 7.
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+0.7R,/Ry). This kind of a behavior of the critical current longer than the weak linkbut not much longer to reduce the
and the spectral supercurrent is similar to those found in Refnelastic effects on the nonequilibrium distribution funcion
24 [especially, see Eq$55) and(56)] and Ref. 2 in the case and as thin as possible compared to the weak link. For the

of a tunneling interface. observation of ther state, the ideal limit is the long-junction
limit L>¢&, where the spectrum of the current-carrying
VIl. CONCLUSIONS states is not cut off by the superconducting gap.

_ ) _ ) In typical experiments, also inelastic scattering neglected

In this paper, we have systematically investigated théere may become important. However, since equilibrium
spectrum of current-carrying states in a phase coherefghenomena induced by the superconducting proximity effect
normal-metal weak link. Taking into account the effect of haye peen quantitatively described by the quasiclassical
extra terminals, the characteristic energy scales—the Tho‘iheory without incorporating such effedtsee, e.g., Refs. 10
less energyer and the BCS superconducting gap-and a  gnd 44, we expect these inelastic effects to be mostly im-
finite NS interface resistance makes it easier to find & quansortant in the kinetic equations describing the nonequilib-
titative agreement with the obtained experimental results opym distribution functions. In recent experimefisinclud-
the nonequilibrium-controlled supercurrent. We have alsqng these inelastic terms into the kinetic equations has lead to
been able to derive analytical results in a number of “m'tsgood agreement between the theory and the experiments.
Moreover, we have discussed the underlying microscopiqherefore our results provide an accurate and independent

phenomena leading to the state and have explained its ay of also characterizing such inelastic effects by observing
properties, such as its dependence on energy, and higher hagy they affect the supercurrent.

monics in the phase dependence, by invoking Andreev bound
states smeared over a broad distribution of times of flight,
and by multiple Andreev cycles tranferring more than one
Cooper pair in a single coherent process. We thank Norman Birge, Fderic Pierre and Jochem

To obtain an optimal voltage control of the supercurrent,Baselmans for discussions. This work was supported by the
the interface resistances should be much smaller than theraduate School in Technical Physics at the Helsinki Univer-
weak-link wire resistance, the control wire should be slightlysity of Technology.
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PACS. 74.50.+r — Proximity effects, weak links, tunnelling phenomena, and Josephson effects.
PACS. 71.70.Ej — Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect.
PACS. 75.30.Et — Exchange and superexchange interactions.

Abstract. — We consider a mesoscopic normal metal, where the spin degeneracy is lifted by
a ferromagnetic exchange field or Zeeman splitting, coupled to two superconducting reservoirs.
As a function of the exchange field or the distance between the reservoirs, the supercurrent
through this device oscillates with an exponentially decreasing envelope. This phenomenon is
similar to the tuning of a supercurrent by a non-equilibrium quasiparticle distribution between
two voltage-biased reservoirs. We propose a device combining the exchange field and non-
equilibrium effects, which allows us to observe a range of novel phenomena. For instance,
part of the field-suppressed supercurrent can be recovered by a voltage between the additional
probes.

Externally controlled weak links in mesoscopic superconducting circuits have been at the
focus of interest in recent years [1]. The possibility to control the quasiparticle distribution
by external voltage probes allows tuning the supercurrent through the device (mesoscopic
SNS transistors). It has been predicted that devices with tunnel junctions [2] and systems
with good metallic contacts [3] can enter a peculiar mesoscopic non-equilibrium state at low
temperatures, which even allows reversing the supercurrent, turning the system into a 7-
junction. This phenomenon has been verified experimentally [1].

Another phenomenon of high interest in superconducting mesoscopics is the combination
of ferromagnetic (F) elements with superconductors (S) [4-8]. A strong exchange interaction
h in the ferromagnet is expected to suppress the superconducting proximity effect, and hence
also the supercurrent. (Several recent experiments [9-11] do not confirm this expectation, a
fact which, at this stage, is not understood.) For weak fields, the supercurrent through a SF'S
weak link and the transition temperature of a SF multilayer are predicted to oscillate [12-14] as
a function of the field, or of the width d of the ferromagnet. The latter defines a characteristic

(*) E-mail: Tero.T.Heikkila@hut.fi

© EDP Sciences
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Fig. 1 — Schematic picture of the studied S-F-S structure.

Fig. 2 — Spectral supercurrent for different exchange fields h at ¢ = 7/2 as a function of energy. The
exchange fields are expressed in units of the Thouless energy Ft. The variation in the peak heights
is due to a finite magnitude of the order parameter A = 50F.

energy scale, the Thouless energy, which in the diffusive limit is Et = AD/d?, proportional
to the diffusion constant D.

In this article, we show that the non-equilibrium—controlled supercurrent in mesoscopic
SNS transistors [3] and the supercurrent in SFS weak links are formally equivalent, although
one is tuned by varying the distribution function, while the other is controlled by modifications
of equilibrium spectral functions. Combining the two phenomena, we can recover by an applied
voltage part of the supercurrent which is suppressed by the exchange field. Thereby, one can
measure the exchange field in the weak link.

For definiteness we consider a quasi-one-dimensional system depicted schematically in
fig. 1 assuming a three-dimensional system with structural changes only in one direction.
The magnetism in the weak link, or the Zeeman splitting, is accounted for by the energy
oh of a spatially homogeneous exchange field coupling to the electron spin ¢ = +1. In the
diffusive limit, the system can be described by the Usadel equation for quasiclassical Green’s
functions [5,7,15]. While the equilibrium results of the present work can also be obtained
in the imaginary-time Matsubara formalism, we have chosen to use the real-time Keldysh
technique in order to include also non-equilibrium processes. Then we have

D
D?0 = — 2i(E — oh)sinh § + 2A cosh 6 + E(GI)()Q sinh 26, (1)
jE'(Ev h) = sinh® 00:x , O0xjr =0, (2)

where 0(E, h, ) and x(F, h, z) are complex variables parametrising the quasiclassical diagonal
and off-diagonal Green’s function G(E, h,x) = cosh(f) and F(E, h,z) = sinh(8) exp[ix]. For
a system of length d, eq. (1) introduces a natural energy scale Er = D/d?. Hence, one way to
tune the relevant energies is by varying the length d. Deep in the superconducting electrodes
the exchange field or Zeeman splitting vanishes. For simplicity, we assume a bulk BCS solution
up to the interfaces, s = arctan(A/E), xs = £¢/2 in the superconducting electrodes with
amplitudes A and phase difference ¢ of the order parameters of the two superconductors.
Furthermore, we assume clean interfaces, and neglect the reduction of Andreev reflection
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Fig. 3 — Supercurrent js(¢ = 7/2) as a function of exchange field h/Er through the structure depicted
in fig. 1 for different temperatures T//Er. The superconducting order parameter A = 1000E-.

Fig. 4 — SF'S supercurrent js(¢ = 7/2) as a function of exchange field h/FEr for different values A of
the superconducting order parameter at 7' = 0.

expected in spin-polarised systems [16-18]. We expect the error due to these approximations
to be only quantitative (for the latter point, see the discussions below).

The imaginary part of the conserved “spectral supercurrent”, jg, in eq. (2) enters into the
observable supercurrent as

50) =5 3 v [ ABQ-27(E)In{jp(E.0n). Q

o==+1

Here f(F) is the distribution function of quasiparticles in the weak link, which in the ab-
sence of applied voltages reduces to the equilibrium Fermi distribution f°. Furthermore,
gNe = 22Ny, D, is the normal-state conductivity for spin ¢, and Ny, is the corresponding
normal-state density of states at the Fermi level. Our approach (egs. (1), (2)) assumes spin-
independent densities of states and diffusion constants. It is valid at low fields A, when the
variation in the densities of states is small, No; — No; < (Nop + Noj)/2. In this case we
may put gnt = gn| = gn. The distribution function f in general is obtained from kinetic
equations [15], but for the moment, we assume thermal equilibrium.

It is instructive to see how the spectral supercurrent Im{jgr} depends on energy E and
exchange fields h. It is plotted in fig. 2 for a phase difference ¢ = 7/2 between the supercon-
ducting electrodes. For h = 0, the function Im{jg} is antisymmetric around the Fermi surface.
At low energies E < Er, it vanishes until some phase-dependent E.(¢). At larger energies it
increases sharply, and then decreases exponentially, oscillating between positive and negative
values. The exchange field shifts the position of the symmetry point from £ =0 to E = oh
and for a superconducting gap A of the order of h, distorts the symmetry. Since A serves
as an upper cutoff, which is not shifted, the overall magnitude of the spectral supercurrent
decreases when h becomes comparable to A.

In equilibrium we have 1 — 2f(E) = tanh(E/2T). This term and the sum of the spectral
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Fig. 5 — Supercurrent js(¢) as a function of phase for different exchange fields h/ET in the regime
where the crossover from the ordinary 0-state to the m-state occurs for the first time. Here, T' = 0
and A = 1000E.

Fig. 6 — Crossover from the 7-state (js(¢ = 7/2) < 0) to the O-state (js(¢ = 7/2) > 0) as a function
of temperature T for a few values of the exchange field h/Er.

supercurrent »__ jg(FE,ch) are antisymmetric around E = 0. Hence, for the discussion of the
total supercurrent js we can concentrate on the part £ > 0. At low T' < Er the supercurrent
js is given by an alternating sum over the decreasing areas under the oscillating function
Im{jg} measured from the E-axis (see fig. 2). At h = 0, the positive first term dominates the
sum and yields a large supercurrent jg. Increasing h shifts the negative peak from F < 0 to
E > 0, hence decreasing jg, and even reversing its sign. At finite temperature, the low-energy
part, £ < T is effectively cut off, hence jg decreases in amplitude. This result is illustrated in
figs. 3 and 4, where js(¢ = 7/2) is plotted as a function of different exchange fields at different
temperatures and for different bulk order parameters A. Analogous results can be obtained
for a constant exchange field by varying the distance d of the superconducting reservoirs and
through it the Thouless energy FEr.

In the regime where js(¢ = 7/2) is negative, the junction forms a so-called “m-junction”
[12], since the ground state of the system, with no supercurrent flowing between the two su-
perconductors, is reached for a phase difference equal to m. The supercurrent-phase relation
for different exchange fields is plotted in fig. 5, showing the crossover from an ordinary be-
haviour to a w-state. A closer analysis of fig. 3 shows that the precise value of h/Er where
the crossover occurs depends weakly on temperature, since higher values of T' smoothen the
oscillations between positive and negative contributions to js. At h =0, js(¢ = 7/2) is posi-
tive for any T'. It remains positive as long as the thermal energy dominates over the exchange,
T > h. With increasing 7" the cross-over to a m-junction is shifted towards higher fields. This
dependence was probably observed in ref. [19]. It is an alternative way to verify the current
reversal to what has been discussed in previous proposals, where typically one requires many
different samples with varying widths [4] but otherwise equal parameters. The crossover is
illustrated in fig. 6 for a few values of h/Er.



438 EUROPHYSICS LETTERS

10 T T
U=-v/2 & N
L ©oh=10 |
8 ol -- h=20
li 6 o e
N “ Sl
k}4 \\2"‘J.MIJ.7
y Z, \ 0 20 40 60
j X :
L dsI s = |s X <,
uU=0
0
d
22 _
NorF 0
u=Vv/2
Fig. 7 Fig. 8

Fig. 7 — Four-probe setup for studying the non-equilibrium effects on the supercurrent. It is assumed
that L > ds and that the superconductors lie in the middle of the normal wire (y = 0) so that the
distribution function has the two-step form between the superconductors. Furthermore, we expect
that the four-probe setup does not notably alter the spectral supercurrent obtained from a quasi—
one-dimensional calculation (for a more detailed discussion, see refs. [3,23]).

Fig. 8 — Supercurrent js(¢ = 7/2) of the four-probe structure at different fields as a function of the
voltage V' between the normal probes. In the calculations for the main picture, the magnitude of the
order parameter was set to A = 100ET, and at the inset, A = 10Er, thereby showing that even when
A is of the order of h and eV, a local maximum is obtained at eV = 2h.

By shifting the variable of integration F in eq. (3) by oh, one finds
. dg e . .
() = Y [ ABQ - B + o) (E). (W

The shifted distribution function f =1/2%"_ f°4(E 4 oh) has the same form as the two-step
distribution function measured in ref. [20]. There it appeared as the solution of a kinetic
equation in the centre of a diffusive metal between two normal probes with voltage eV = £2h
in the limit where the inelastic scattering length is longer than the distance between the two
normal reservoirs. The spectral supercurrent in general still depends on the exchange field
via the boundary conditions. However, if the superconducting gap A is much larger than the
exchange field, A > h, this dependence can be neglected. In this limit, the supercurrent in
the presence of an exchange field is the same as for a non-equilibrium distribution four-probe
structure described in ref. [3] (see fig. 7 for a schematic picture).

It is interesting to note that this behaviour of the diffusive-limit supercurrent as functions
of the exchange field and the external potential is very similar to the supercurrent through a
multiprobe structure in the clean limit. This limit has been described by Dobrosavljevi¢-Grujié¢
et al. [21] for the ferromagnetic two-probe case and by van Wees et al. [22] including a voltage
in a non-magnetic three-probe setup. In this case, the supercurrent is carried by the Andreev
levels, whose energies are controlled by the exchange field [21], and whose occupation can be
tuned by the voltage [22]. With both parameters, for example, the system can be driven into
a m-state.
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We can combine the effects of exchange field and non-equilibrium distribution [3,23] by
considering the structure in fig. 7, where the magnetic material is placed between supercon-
ductors and normal voltage leads. Here, the distribution function is

1 1

1B = (5= 1) roE v+ (544 ) 1E - evpa) )

exhibiting the two-step form observed by Pothier et al. [20]. In this case, if the superconducting
reservoirs are located around y = 0 and provided A > h, eV, the observable supercurrent can
be written as a sum of four terms,

js@) = U2 [ aB( — 2f N E)Im{ip(E — h - eV/2) +ip(B b+ eV/2) +
+je(E+h—eV/2) + jp(E +h+eV/2)}. (6)

For example, if the potential is exactly twice the exchange field, eV = 2h, due to the anti-
symmetry of Im{jg}, we have

J5(8) = 5 (8°5(6.0) + 38756, 20) ~ 1 j8"5(6,0). 7)

| =

The latter approximate equality holds if h > Er. Here, jSFS (¢, h) is the supercurrent through

the SFS structure with the exchange field h in the weak link. Hence, one can use the external
potential to recover half of the zero-field supercurrent. This is illustrated in fig. 8, where
the supercurrent of the four-probe structure is plotted as a function of voltage with a few
magnitudes of fields.

The results summarised by eq. (7) provide a way to measure the exchange field and at the
same time to explore the applicability of the simplified model for the ferromagnet used here
and previously [7,8,12]. When the voltage-dependent supercurrent js(V') reaches a maximum,
eV should equal 2h. Deviations could occur as, for instance, this model neglects the band
structure effects [24] important in the ferromagnets. Also, to be able to measure the actual
supercurrent through a typical ferromagnet with Curie temperature Tc, > A, the ratio h/Er
has to be made small by fabricating very thin weak links. Moreover, our assumption of the
diffusive regime requires d > [, and a quantitative agreement cannot be expected for thin
structures. Finally, due to the strong electron-electron interactions in ferromagnets, producing
a short inelastic relaxation length, the normal probes should be fabricated rather close to each
other to obtain the two-step form for the distribution function. For conventional ferromagnets
the exchange field is large, which would correspond to enormous voltages. However, we expect
that our model is approximately valid for setups constructed from ferromagnetic alloys with
Tcw of the order of the superconducting critical temperature [19], or in situations where h can
be related to the Zeeman splitting in magnetic fields much weaker than the superconducting
critical field.

In summary, we have calculated the supercurrent through a ferromagnetic weak link as a
function of the exchange field in the ferromagnet. In the calculations, the Keldysh technique
was used to provide a description of non-equilibrium effects. We found that when A > h, the
problem is formally equivalent to the four-probe measurement of the supercurrent through a
normal-metal weak link. Furthermore, we showed that applying a non-equilibrium potential
in the transverse direction, one can recover half of the supercurrent of a ferromagnet with an
exchange field h > E, as compared to the supercurrent in the absence of h.
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We carry out an extensive experimental and theoretical study of the Josephson effect in S-N-S junctions
made of a diffusive normal metéN) embedded between two superconducting electr@®e®ur experiments
are performed on Nb-Cu-Nb junctions with highly transparent interfaces. We give the predictions of the
quasiclassical theory in various regimes on a precise and quantitative level. We describe the crossover between
the short- and the long-junction regimes and provide the temperature dependence of the critical current using
dimensionless uniteRyl./e. andkgT/e., wheree. is the Thouless energy. Experimental and theoretical
results are in excellent quantitative agreement.

DOI: 10.1103/PhysRevB.63.064502 PACS nuniber73.23—b, 74.50+r, 74.80.Fp, 85.25.Cp

The Josephson effect is well known to exist in weak linkswill also use in the present work. Fitfattempted to analyze
connecting two superconducting electrodes S, e.g., a tunnéie datd’ by means of an extrapolation of the Ginzburg-
barrier I, a short constriction C or a normal meta 8-S,  Landau theory to low temperatures.

S-C-S, and S-N-S junctionsThis effect manifests itself in a The proximity effect in mesoscopic hybrid structures con-
nondissipative dc current flowing through the Josephsomsisting of normal and superconducting metals attracted a
junction at zero voltage. At weak coupling, e.g., in the S-I-Sgrowing interest during recent yedrsHere we will consider
case, the Josephson current can be expresskeg=dssing, = mesoscopic diffusive S-N-S junctions where the sample
where ¢ is the phase difference between the two superconlength is much larger than the elastic mean free patbut
ducting condensates and the maximum supercurigris ~ smaller than the dephasing length : I.<L<L,. In N-S
called the critical current. junctions and Andreev interferometers, we can identify—

The Josephson effect in S-N-S junctions has been studidabth theoretically and experimentally—the natural energy
in a variety of configurations. The early experiments ofscale for the proximity effect**°It is given by the Thouless
Clarké' and Shephefdwere performed in Pb-Cu-Pb sand- energye,=#%D/L2. HereD=v¢l /3 is the diffusion constant
wiches. In these experiments and in the pioneering calculasf the N metal,v¢ is the Fermi velocity. In contrast to the
tions by de Gennesit was already realized that the presenceenergy gap\ that is set by the interactions in the supercon-
of a supercurrent in such structures is due to the proximityducting electrodes, the energy scaleis a single-electron
effect. This can be understood as the generation of supercoquantity : €. /7% is merely the diffusion rate across the sample
ducting correlations in a normal metal connected to a supeffor a single electron. This energy scale remains important in
conductor, mediated by phase-coherent Andreev reflectionsonequilibrium situations, e.g., if one drives the supercurrent
at the S-N interfaces. The critical currdntis limited by the  across a S-N-S junction by the injection of a control current
“bottleneck” in the center of the N-layer, where the pair in the N metaf-®-18
amplitude is exponentially smalll ,xe “'*T. Here, L The main purpose of the present paper is to carry out a
= JhD/27kgT is the characteristic thermal length in the dif- detailed experimental investigation of the equilibrium super-
fusive limit andL is the length of the junction. These calcu- current in relatively long diffusive S-N-S junctions with
lations, as well as those by Fiffkanalyzed the temperature highly transparent N-S interfaces as well as a quantitative
dependence of, within the Ginzburg-Landau theory in the comparison of our data to the theoretical predictions. Here, a
vicinity of the superconducting critical temperature, . long junction means that the junction lendthis much big-
Later, the critical current of diffusive S-N-S microbridd@s ger thanZD/A. This is equivalent ta\>e¢.. In order to
was successfully described by Likhafewith the aid of the  perform this comparison at all relevant temperatures, we
quasiclassical Usadel equatidh this work, the emphasis complete the previous studies by providing a rigorous ex-
was put on the high-temperature regime where the supercopression for the Josephson critical currentTat:0, which
ducting order parameter is smaller than the thermal energwas not properly evaluated before. Our experimental results
A<kgT. A more general study of the Josephson effect inare in excellent agreement with theoretical predictions.
diffusive S-N-S junctions was made in Ref. 9. As before®!! our theoretical approach is based on the

More recently, experimental data on long Josephsomuasiclassical Green’'s functions in imaginary time. The
junctiond® showed a surprising temperature dependenceproximity effect is described by a finite pair amplitudiein
which turned out to be in a strong disagreement with thehe N metal(see Ref. 19 and references theje/e will
early theory by de Gennes. These data have been discussassume N-S interfaces to be fully transparent and neglect the
by some of us! within the quasiclassical approach, which we suppression of the pair potential in the S electrodes near

0163-1829/2001/68)/0645025)/$15.00 63 064502-1 ©2001 The American Physical Society
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the N-S interface. This is appropriate ®& T, or if the res- 10! . | | 1 | |
ervoirs are very massive as compared to the normal metal. eRJI/A |
Within those bounds, our calculation does not contain further 10° L ]

approximations and is, e.g., valid at arbitrary temperature
and sample size. We will now proceed by discussing certain

limits. 10t .
In the high-temperature reginkg T> €., (or, equivalently,
L>L+), the solution is well known. In this case the mutual 107 .
influence of the two superconducting electrodes can be ne-
glected and the Usadel equations can be linearized in the N 103 | | | L | |
metal, except in the vicinity of the N-S interfaces. One 10+ 10 10° 10? 10*
finds?® g /A
Azexr(—L/L ) FIG. 1. Calculated dependence of the zero-temperatiRg .
eRyl¢ —647T|(BT2 product in un.it.s ofA as a function of the ratiosC./A. I i§ the
La)n [wa+ Qnt+V2(0%+ w,Q, ]2 Josephson critical curreri®y the normal-state resistance, is the

(1) Thouless energy, anill is the superconducting gap of S. The long-

. . ) junction regime is on the left part of the graph whete<A, the
where Ry is the N-metal resistancey,=(2n+1)mkgT IS ghortjunction regime is on the right part where>A. The dashed
the Matsubara frequency,Q,=\A*+ o] and L.,  line corresponds to the Kulik-Omel'yanchuk formtiat T=0.
=\hD/2w,. If Tis close to the critical temperature of S, the
gap is small as compared to the thermal ener§y<kgT. In  comes from a numerical solution of the Usadel equation,
this limit, Eqg. (1) coincides with the result derived by while the high-temperature part comes from Ef). From
Likharev’ this figure, we can see that the characteristic decay tempera-

At lower temperature&gT= ¢, evaluation ofl . involves  ture for the critical current is a few times the Thouless tem-
solutions of the Usadel equationait energies? In order to peraturee./kg. As soon akgT>5¢., the sum in Eq(l)
determine the precise vaftfeof the critical current, we per- can be reduced to the first frequency term within a 3% un-
formed a numerical solution of the Usadel equations for thejerestimation. This term corresponds ig=mkgT and
whole range of Matsubara frequencies. In the long-junction_ _|_T_ Adding the second term in the summation de-

limit (A/ec—), the zero temperaturRyl . is found to be  1eases the error below 0.1% in the same temperature range.
proportional toe: The universal curve of Fig. 2 fak/e.— < is valid only in
PN the case of a very long junction with/e.>100. It appears
eRulo(T=0)=10.8%. @ asifA is to be compared to the quantiyRyl.(T=0)
In this case, the current phase relation is slightly different=10e. in the long-junction limit. In the limit of infinite
from a sine and the supercurrent maximum occurspat Ale., Eq. (1) simplifies to
=1.277/2. As compared to previous estimatés?the exact
numerical prefactor in this formula turns out to be unexpect-
edly high. This observation is crucial for a quantitative com- 32
parison between theory and experiment not only in the case eRNI°_3+ 2.2
of conventional junctions but also for high: S-N-S
junctiong! or devices involving carbon nanotubs.
Let us briefly consider the short-junction regime<e.,
i.e., the case of dirty S-C-S weak links described in Refs. 23 eRyI /e,
and 24. Our numerical results reproduces quantitatively the
behaviors of both the current-phase relation and the zero-
temperature critical current.eRyl,~1.326rA/2 at ¢ _
=1.257/2.23%4This results confirms the precision of our cal- 01l
culation in describing both the long-junction and the short- §
junction regimes. Our numerical results fof{T=0) as a I
function of the Thouless energy are presented in Fig. 1. It 0.01 |
confirms that it is the minimum of the gap and the Thou- 2 3
less energye. that limits the critical current in diffusive o 5 10 15 2w 2
S-N-S junctions. A=A, the critical current value remains knT/e
close to the short-junction case. B/Ec

In the following, we will focus on long junctions FIG. 2. Calculated temperature dependence ofetRgl . prod-
>¢€.. Figure 2 shows the temperature dependence of thgct. The different curves correspond to various values of the ratio
eRyl ¢ product for various values of the superconducting gap\/e, in the long-juction regime. The curve fa/e,— is univer-
in the long-junction regime. Both axis are given in units ofsal in the sense it does not depend An Note thatkgT/e.
the Thouless energy. The low-temperature pRET( 5e.) =L22mL3.

e~ L/LT_ (3)

10 =y

1 E
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We benefited from a trilayer stencil mask technoffgy
making use of a thermostable resist that does not outgas
during Nb evaporation. Thus we were able to routinely ob-
tain a superconducting critical temperature as high as 8.1 K
for the Nb electrodes. We performed successive shadow
evaporations of Cu and Nb at different angles through the
silicon stencil layer in an ultra-high vacuum chamber, fol-
lowed by a liftoff. Figure 3 shows a typical sample. We
studied a single sampl@) plus five different samples evapo-
rated on the same substratg, , d, e, andf). Table | lists
the main physical parameters for these samples. The Cu me-
tallic strips are 600 nm wide and 100 nm thick. The Nb
. . . o superconducting electrodes are 800 nm wide and 200 nm
FIG. 3. Oblique micrograph of a typical S-N-S junction made of , . oo
a Cu wire emb?added be?we?an two I)\llrl)a electrodeé. The doubling otthCk' except for sampla where itis 100 nm. The length

every structure due to the shadow evaporation is visible. The ng)f the metallic island was varied between 700 and 1000 nm,

electrodes cover the Cu strip over about 150 nm. correspondi_ng fo a separation lengify, between Nb elec-
trodes varying between 370 and 700 nm. For all samples,

From Eq.(3), one can get the temperature dependence of thihe calculated Thouless energyD/L? is therefore signifi-

critical current: | < T¥%exp(—L/L;). It has been demon- cantly smaller than the gap.

strated in Ref. 11 that within a limited temperature interval The normal-state resistané®, cannot be directly mea-

this expression ismumericallyvery close to a simple expo- sured at temperature aboVg since the resistance of the Nb
nential dependencé.<exp(—L/L;) with L;>1/T, as one electrodes is measured in series. We found that the finite-bias

would expect in a ballistic limit>?® From Fig. 2, the resistancegV=e.) varied by about 10% between 2 K and
quasiexponential temperature dependence of the critical cu8 K due to the proximity effect on the conductance. We
rent is indeed striking. This was the central result of Ref. 10fook for the normal-state resistan& the resistance at
but was not understood at that time. This coincidence is=6 K for a better agreement with theory. It is a relatively
purely accidental and has no special meartini the low-  high temperature sinckgT>15¢, for every sample then.
temperature limit, the numerical solution can be approxi-Using L for the Cu length, we obtain a Cu resistivity
mated bye Ryl ./e.=a(1—be 2</32eT) The coefficients: p=11x108 Om for samplesb to f and p=1.5
andb are 10.82 and 1.30, respectively, in the Iong—junction><1078 Q) m for samplea.
limit, i.e., atA/e,— . We measured the critical current of sampéet® f at tem-
S-N-S junctions are intrinsically shunted and have negliferatures down to 300 mK. Our procedure consists of
gible internal capacitance, so they are strongly overdampegweeping the bias current while measuring the differential
Their current-voltage characteristics are hence intrinsicallyesistancelV/dl. We define the experimental critical current
nonhysteretic. The transition from a supercurrent to a voltag@s the current where the differential resistance reaBpé.
state happens at the critical current, but is rounded by finitdVith this criteria, the experimental uncertainty is estimated
temperaturé’ We fabricated Nb-Cu-Nb junctiofSwith a  below 0.5% afT=2 K, 5% aroundT=4 K and 100% at
large conductance so that thermal fluctuations remain smafi K. Figure 4 shows the data for three samples. The mea-
compared to the Josephson energgyT<7%1.(T)/2e even at  suredeRyl./e. plotted as a function of the reduced tempera-
high temperature near the critical temperature of Nb. Thigure kgT/e. show a large decrease over more than two de-
ensures a well-defined critical current up to the critical tem-cades. For each sample, we fitted the data to the theoretical
perature of Nb. Effects of environmental fluctuations knownprediction with only one fitting parameter, the Thouless en-
from mesoscopic tunnel junctioR®which are intrinsically  ergy. The zero-temperature superconducting §apas cal-
underdamped, are absent. culated from the measured critical temperature of Nb using

TABLE |. Parameters of the different samples studleés the full length of Cu strip, whilely, is the Nb
electrodes separation andis the Cu strip width. The Thouless energy is derived from the fit of the
experimental data to the theoretical predictisee Fig. 4.

# L dnp w Rus K D hD/L? € Ale, %(sz
(M (m M (@) (el (ueV)  (weV) B
a 1000 600 600 0.260 200 13 14.3 70 8.91
b 1010 680 580 0.173 300 20 18.6 70 8.99
c 910 570 590 0.179 260 22 21.7 60 8.83
d 800 470 580 0.183 230 25 25.4 51 8.64
e 800 476 590 0.169 250 26 26.1 50 8.62
f 710 370 580 0.152 250 34 33.5 39 8.32
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10t
eR I /e,
10°

In Fig. 4, the critical current of sampleshows the onset
of the saturation regime. At=300 mK the adjusted critical
currenteRyl; reaches up to 8.2.. This number is close to
the theoretical value 8.9 for samplef at T=0. This result
discards an interpretation of our data within the Ginzburg-
Landau theory of Ref. 12, which predicts a maximum
eRyl./e; of about 1.

In Ref. 10, an array of S-N-S junctions was made of a
long N-metal wire periodically in contact with a series of
superconducting islands. A good fit between the data and
theory was shown in Ref. 11, but with the introduction of a
strong reduction of the effective area. This may be attributed
to the periodic and lateral characters of this type of samples.

Our calculation assumes perfectly transmitting interfaces
with zero boundary resistance. In fact, it is sufficient that the
barrier-equivalent lengfi L,=1./t is much smaller than the
sample length. As an example, this condition means an in-
terface transparendy>0.1 for sample b. In the case of Nb-
Cu-Nb samples fabricated through a two-lithography-step
25 process including Ar etchingf, we found a critical current
kgT/e, with a reduced magnitude, presumably due to a slightly de-
graded interface. The critical current in S-N-S junctions with
partially transparent interfaces was discussed in Ref. 34. The
predicted behavior features a different temperature depen-
dence for the critical current. Nevertheless, the measured
temperature dependence remained consistent with theory as-
suming a perfect interface. Only a reduction prefactor had to
be introduced. This observation could hint at the fact that
interface barriers are very inhomogenous and the current is
carried through a few highly conducting pinholes.

10t

100

10t

10°

FIG. 4. Temperature dependence of the measeRgd . product
of samplesa, e, andf together with the theoretical fits assuming a
temperature-independent gépll line) and a gap following a BCS
temperature dependence with=7.5 K (dashed ling The only
adjustment parameter is the Thouless enetgyf each sample. For
a description of the sample parameters, see Table I.

2A=3.8kgT, .3 This givesA=1.3 meV for all samples ex-

cept samplea for which A=1 meV. We used both a fixed |, symmary, we discussed the Josephson critical current

gap e_qual to the zero-temperature value and a ztgél'b)_ of diffusive S-N-S junctions. This study provides a simple
following the BCS temperature dependence, but with &, rejiable formulation that enables the practical determina-
slightly reduced critical temperatureTc=7.5 K. FOr oy of the equilibrium critical current. We studied the criti-
samplese, f and at high temperature, it appears necessary i@ cyrrent of a set of samples with different junction lengths

take into account the temperature dependence of the gap. Iy found excellent agreement between our data and the pre-
this case, the agreement between theory and experiment g tions of quasiclassical theory.

excellent. The fit is very sensitive to the chosen value of the

Thouless energy. We would like to stress that for each We acknowledge discussion and financial support in the
sample the horizontal and vertical axis are normalizethéo EU-TMR network “Dynamics of superconducting circuits”
sameThouless energy.. Each such value is found to be as well as support from the DFG through SFB 195 and GK
very close to the Thouless energy calculated from the fulk84. We thank A. Golubov, T.T. HeikkiJaD. Mailly, N.
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Recently Baselmanst al. [Nature,(London 397, 43 (1999] showed that the direction of the supercurrent
in a superconductor/normal/superconductor Josephson junction can be reversed by applying, perpendicularly to
the supercurrent, a sufficiently large control current between two normal reservoirs. The unusual behavior of
their 4-terminal device(called a controllabler junction arises from the nonequilibrium electron energy
distribution established in the normal wire between the two superconductors. We have observed a similar
supercurrent reversal in a 3-terminal device, where the control current passes from a single normal reservoir
into the two superconductors. We show theoretically that this behavior, although intuitively less obvious, arises
from the same nonequilibrium physics present in the 4-terminal device. Moreover, we argue that the amplitude
of the mr-state critical current should be at least as large in the 3-terminal device as in a comparable 4-terminal
device.

DOI: 10.1103/PhysRevB.66.020507 PACS nuniber74.50:+r, 73.23-b, 85.25.Am, 85.25.Cp

When a normal metal is put in contact with one or moreof the quasiparticle distribution functioi{E) in the normal
superconductors, the properties of both materials are modiegion of the junction describing the pairs of quasiparticles
fied near the interface. The physical phenomena associatg¢é>E;) and quasiholes E<Eg). Under nonequilibrium
with superconductor §/normal (N) systems, namely the conditions,f(E) can be made to have a staircase shape, with
proximity and Josephson effects, were intensely studied isteps appearing at the voltages of the normal resertfbirs.
the 1960's and 1970%.Interest in S/N systems was re- The staircase shape 6(E) excludes the low-energy contri-
kindled in the 1990’s due to the ability to fabricate complexpution of j ¢ from the supercurrent. When the control voltage
structures with submicrometer dimensions. A new, deepeapproaches the energy whekechanges sign, the supercur-
understanding of the proximity effect on mesoscopic lengthrent changes its sign relative to the equilibrium situation. In
scales has emergéd, concentrating on equilibrium and contrast to ther-junction behavior, smearing of the distribu-
linear-response physics. tion function by electron heating or raising the sample tem-

Nonequilibrium phenomena i&/N systems are now tak- perature simply causes the supercurrent to decrease toward
ing the spotlight.™® A major discovery was made by Basel- zero without ever changing sign.
mans et al,> who measured a 4-terminal diffusive metal The sample shown in Fig. 1 consists offashaped Ag
S/N/S Josephson device with a cross shape. Two opposingire, 70 nm wide and 50 nm thick, connected to t&elec-
ends of the cross were connectedtelectrodes, while the trodes(70 nm of Al) and oneN reservoir(230 nm of Ag.
other two were connected 0§ reservoirs between which a
control current was passed. Baselmahsl. found that, at
high control current, in samples with the normal reservoirs
sufficiently close together, the sign of the Josephson super-
current between theS electrodes reversed direction. The
current-phase relationship under such conditions becomes
Is(¢) =1.sin(¢p+ ), wherel . is the (positive critical super-
current, rather than the usual Josephson relationkliip)
=1.sin(¢), hence the device is called 7 junction. Such a
device has been used to make a controllabkuperconduct-
ing quantum interference deviéeThe explanation of the
nonequilibrium junction consists of two parfs’ First, the
supercurrent can be decomposed into an energy-dependent
“spectral supercurrentjg, which is an equilibrium property
determined by the sample geometry and resistance as well as e .
the phase difference between the twé& electrodesjg is an . e(s:g;mr F
odd function of energy, and exhibits damped oscillations on
an energy scale comparable to the Thouless energy of the g, 1. Scanning electron microscope picture of the sample,
sample,Ey,=%D/L2, with D the diffusion constant in the with schematic drawing of the measurement circuit. The sample
wire andL the length between the superconductors. Secondonsists of al-shaped Ag wire with lateral dimensions of 50 nm
the total supercurrent is determined by the occupation of th& 70 nm, connected to two 70-nm-thick Al electrodes and one 230-
supercurrent-carrying states, given by the antisymmetric parim-thick Ag electrode.

0163-1829/2002/6@)/0205074)/$20.00 66 020507-1 ©2002 The American Physical Society
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The distance betweeelectrodes is 1.1um, while the dis-
tance from the top of theT” to the N reservoir is 4.5um.

The phase coherence lengthy in similarly prepared Ag
wires is several micrometers at sub-Kelvin temperatures,
hence we expect to observe a substantial Josephson effect
between the twdS electrodes. The sample was fabricated
using one electron-beam and two optical lithography steps.
The T-shaped Ag wire was fabricated first, followed by the
thick Ag reservoir, and finally the Al electrodes. A gentle ion
mill of the exposed ends of the Ag wire preceded the evapo-
ration of the Al electrodes to enhance the transparency of the
Ag/Al interfaces. The sample was immersed in the mixing
chamber of a dilution refrigerator with filtered electrical
leads.

The transport properties of the sample were determined
initially by measuring th&/ vs| characteristics between pairs
of electrodes. Th&-I curve betweers electrodes shows the
standard Josephson-junction behavior with a critical current

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 66, 020507R) (2002
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FIG. 2. A subset oWV gysvs| curves measured across BeN/S

of 0.7 uA at 38 mK. TheV-I curve between thll electrode  Josephson junction, for different values of the current injected from
and either of thes electrodes exhibits a change in slope at athe normal reservoir. From bottom to top, the injected currépts
current approximately equal to twice the critical current. Thisare in microampere: 0.53, 0.70, 1.01, 1.23, 1.89, 2.18, 3.15. The
behavior is due to the superposition of opposite-flowing quacurves are offset for clarity.

siparticle current and supercurrent in the dangling arm, as
observed recently by Shaikhaidareval!! For the sample

The significant difference between our experiment and

shown in Fig. 1, the left and right arms have resistances othat of Baselmangt al, aside from the reduction from 4
R;=7.0 Q andR,=9.1 Q, respectively, while the base of terminals to 3, is the presence in our sample of a dissipative
the T has a resistance &,=36 . From these values and quasiparticle current in the sample arms that simultaneously
the sample geometry, we deduce that about half of th€arry the supercurrent. In the Baselmans 'experiment, the
16.1 Q) S-Sresistance comes from the uncovered part of thesontrol voltages of the two normal reservoirs were set to
Ag wire, and the other half from the Al/Ag interfaces and values=Vy with respect to the superconductors, so that the
part of the Ag wire extending under the Al electrodes. electrical potential was zero everywhere along the wire con-
The measurement circuit for the nonequilibrium injection necting the two superconductors. To compare our experiment
experiment is shown schematically in Fig. 1. A dc currigjt with theirs, we must understand the influence of the dissipa-
is injected from the normal electrode to one of the supercontive current on the supercurrent in our sample. We use the
ducting electrodes. Simultaneously, tkfel curve between quasiclassical formalism in real time, which was originally

the two superconducting electrodes is measured in a four-
probe configuration. Figure 2 shows a subseVdf curves

for different values ofl;, and is the central result of this
paper. The critical current of th&/N/S junction decreases
rapidly with increasing injection current. Wher;,
=1.0 uA, the critical current is below our measurement
threshold. Upon further increase bf;, the critical current
increases again, and finally disappears whg3 unA. In

Fig. 3, we plotl, vs Vy at three different temperatures,
whereVy= Ryl is the voltage of the normal reservoir with
respect to the superconductors, ari§N=R0+(Rl’1

+ Rz’l)*1=40 Q. In the figure we intentionally plot.<0
after it falls to zero, to emphasize that the junction has en-
tered the “r” state}? Our interpretation of the data is con-
sistent with the assumption that, for fixeld 15 is a smooth
function of V with a continuous first derivative. It is also
consistent with the experiment of Baselmaetsal,® who
confirmed the existence of ther” state by measuring the
resistance of the normal wire as a function of the supercur-

08 T T T T T T T T T T

06

00

FIG. 3. Critical current of the Josephson junction vs voltage of

rent, hence the phase diﬁgren@ebetvyeen th&s elgctrodes. the normal reservoir & =38 (O), 96(2), and 200 mK Q). I is
At zero supercurrent, their wire resistance exhibits a locakhown as negative fory=40 wV to symbolize the appearance of
minimum in the usual “0” state and a local maximum in the the 7 junction. Inset: Critical current vs temperatureVai=0. The
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developed for nonequilibrium phenomena in massiveSurprisingly, the magnitude of the calculated cricital current
superconductots but also adapted and successfully appliedhad to be reduced by a factor 1.7 to match the experimental
to mesoscopic proximity systems, as reviewed, e.g., in Refglata, possibly due to the rather hi§h\ interface resistances

3 and 14. in this samplé-’
For the present paper, we are concerned primarily with the If we now calculate the nonequilibrium data Igf vs Vy
supercurrent using the equilibrium form fof? in the normal reservoir, we

find that the calculation overestimates the critical current in
the “#” state by a large factor, and predicts too small a
voltage at which the supercurrent changes sign. This failure
results from neglecting inelastic collisions inside the wire
whereoy andA are the conductance and cross section of theynd electron heating in the normal reservoir. Based on our
normal wire,jg is the spectral supercurrent discussed earlierprevious measurements &{E) in nonequilibrium mesos-
and f_(E)=f(—E)—f(E) is the antisymmetric part of the copic metal wires®'8we can estimate the contributions of
electron energy distribution function. With the chemical po-poth inelastic scattering and reservoir heating to the rounding
tential of the superconductors taken to be zero, the symmegs f(E) in our sample. Inelastic scattering in similar Ag
ric distribution functionf(E) =1—f(E) — f(—E) describes  wires was well described within the framework of the Bolt-
charge imbalance, whilé_(E) describes energy or heat in zmann equation using an electron-electron interaction kernel
the conduction-electron system. in agreement with the theoretical for( E) = K 3,E ~ %2, but

To calculate the supercurrent, first one must solve the Uspjith a prefactorkz,~0.5 nstmeV 2 about five times
adel equation for the retarded and advanced Green’s fungarger than predicted by theory. Heating of the normal reser-
tions. Those contain all information about energy-dependenfoir can be estimated using the Wiedemann-Franz law and a
properties of the sample, including the functipn. To find  simplified model of electron-phonon scattering in the
fL(E), one must then solve the Keldysh component of thereservoirt®?° The temperature of the electrons in the reser-
Usadel equation, which takes the form of conservation lawgygir js given by Toq= T2+ b2VZ whereb? is proportional
for the spectral charge and heat currefitéthenje#0, the 15 the ratio of the reservoir sheet resistance to the wire
two kinetic equations are coupled, and lead to complicatedgsjstance? From our sample parameters and previous mea-
spatial and energy dependencesfpfE) and f+(E) in the  syrements of similar sampl&Swe estimateb~1 K/mV.
arms of the sample between the superconductors. A man[lsing these values dfs, andb, we have calculated(E)
simplification occurs in the arm of the sample connected tg,q thereby .(Vy) in our sample by solving the Boltzmann
the normal reservoir: therg==0 since the superconducting equation with the correct boundary conditions at &

phase is constant along that arm. For voltages %nd temperierfaces but neglecting proximity effect in the bulk of the
tures small as compared fothe heat currentis zerdhence  jire. The result of that calculation does not fit the data

f (E) is constant along that arm and takes on tequilib-  chown in Fig. 3. A much larger value ofKs,
rium) value it has in theN reservoir: f)=(1/2){tanf(E =3 ns *meV 2 provides a reasonable fit, but leaves us
+eW)/2kgT] +tanH (E—eW)/2kgT]}. Since the total charge without a plausible explanation for the enhanced electron-
current is conserved along the two sample arms connectinglectron interactions. An alternative approach is to use an
the superconductors, we can evaluate it anywhere in thosgteraction kernel of the fornk(E)=K,E 2, which de-
arms. At the central point, the dissipative currents divertedscrines samples containing dilute magnetic impurffes.
into the two arms cancel and we can find the supercurrenyith the valueK,=0.55 ns !, corresponding to a magnetic
from Eq. (1) using the expression foi{(E) given above, impurity concentration of about 0.1 ppm, we obtain the solid

without integrating the kinetic equations. We need only tocurves shown in Fig. 3, which fit the data well at voltages up
evaluatejg at the central point by solving the equilibrium

A
=2 et &

Usadel equation for our sample geometry. 19 100
As an extension of previous workywe have solved the

retarded Usadel equation taking into account the influence of =3

the lead to the normal reservoir and the finite interface o Eeo

resistance&® The normal reservoir induces extra decoher- =00 %

ence into the structure, decreasing the magnitude of the ob- <

served supercurrent. We find that the full gap in the spectral ! °zo

supercurreritbecomes a pseudogap and that the amplitude of 00 . N

the maximum ofjg is strongly reducedalthough the total 400 50 0 8 1£°( o) 100 200
(1t

supercurrent is reduced by only 20% at 40 mRur fit to
the equilibrium data of critical supercurrent vs temperature is  rig_ 4. Left: Solid line: distribution functiori(E) used to cal-
shown in the inset to Fig. 3. To fit the temperature depengyjate the Josephson junction current in the state atVy
dence, the Thouless energy was adjusted to B3¢ =50 xV and T=38 mK. Dotted line:f(E) taking into account
=3.5 ueV, which corresponds to a distante=1.7 um  only reservoir heating but not energy exchange. Dashed line: hot
between the superconducting electrodes—Ilarger than the agermi-Dirac distribution. Right: Numerically calculatéd (multi-

tual distance as a result of the silver wire penetration undeglied by the prefactorryA), at the central point of the sample,
the aluminum reservoirs and of the finite contact resistanceshown only forE>0.
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to the crossover to the junction. Adding a reasonable;,  small, since the vertical arm of our sample is much longer
term to K(E) improves the fit only slightly at higher volt- than the horizontal armsSince the available phase space for
ages. The magnetic impurity concentration of 0.1 ppm isquasiparticle energy exchange decreased (&) deviates
plausible, and will limitL , to about 5 um near the Kondo from 1/2, the 3-terminal geometry should be favorable for
temperature—still much larger than the distance between th@aximizing I, in the 7 state. A direct measurement of this
two superconducting electrodes. subtle effect could be made in a 4-terminal sample. Biasing
The rather poor fit to the data at high voltages may reflecthe two normal reservoirs at the same poteniial, rather
the fact that the magnitude of in the 7 state depends on a han at asymmetric voltagesVy, would result in a current
Qellcate_z balance between the positive anq negative parts @f,, pattern and distribution functions essentially equivalent
je, weighted by the precise shapefqE). Figure 4 shows 4 h0se in our 3-terminal experiment. A comparison of the

f(E) for V=50 uV, near the maximumr junctionlc. By =\ oyeq ofl, in the 7 state under symmetric biad/(,Vy)

eye f(E) looks nearly like a hot Fermi-Dirac function, but . - N X "
the dashed line in the figure shows that it is not. If the samplt?ae r:g::;'ﬁmma etsnrzg;lar?@ ’ df(\lé';) \T\/Igh;|;?1\/?§| :x;lljgrtclae t(rj1|ifs

were shorter, so thdt(E) maintained the staircase structure : :
of the dotted line in the figure, the junction |, would be comparison experimentally.
much larger.

Figure 4 also reveals the difference between our We thank D. Esteve and H. Pothier for suggesting the
3-terminal experiment and the 4-terminal experiment of‘dangling arm” experiment, and |. O. Kulik for a valuable
Baselmangt al. In our sample the electrical potential is non- discussion concerning electron heating. This work was sup-
zero at the central point, since the injection current flows intgported by NSF Grants Nos. DMR-9801841 and 0104178,
both theSelectrodes. HencB(E=0)+ 3 at the central point, and by the Keck Microfabrication Facility supported by NSF
unlike in Baselmans’s sampléThe deviation from 1/2 is Grant NO. DMR-9809688.
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The local nonequilibrium quasiparticle distribution function in a normal-metal wire depends on the applied
voltage over the wire and the type and strength of different scattering mechanisms. We show that in a setup
with superconducting reservoirs, in which the supercurrent and the dissipative curreaiivparallel, the
distribution function can also be tuned by applying a supercurrent between the contacts. Unlike the usual
control by voltage or temperature, this leads to a Peltier-like effect: the supercurrent converts an externally
applied voltage into a difference in the effective temperature between two parts of the system maintained at the
same potential. We suggest an experimental setup for probing this phenomenon and mapping out the controlled
distribution function.

DOI: 10.1103/PhysRevB.67.100502 PACS nuni®er74.25.Fy, 74.40tk, 74.50+r, 74.45+cC

Many of the well-understood phenomena in mesoscopiinto symmetric and antisymmetric parts relative to the
physics can be probed within the linear response of a physchemical potential.g of the superconductor,
cal system to an applied external perturbation, i.e., they are

governed by equilibrium physics. Recently the attention has fr(E)=1—-f(us—E)—f(ustE), @
turned more towards the study of effects far from equilib- B
rium. The quasiparticle distribution functidifx;E) charac- fLB)=f(ns=BE)~f(ust+E). @

terizing the nonequilibrium was measured in a normal-metaBelow, we chooseus=0. These functions describe charge
(N) wire between two large reservoirsthrough a supercon- and energy distributions, respectively. They satisfy the ki-
ducting (S tunnel probe. This yielded useful information on netic equations®

the residual interactions between the Fermi-liquid quasipar-

ticles. This nonequilibrium distribution was used to control djr . afr
the supercurrentqin a normal-metal weak I#R.Both of EZO’ JTEDT(X)EJFJE]CL“LT(X)&XH; &)
these setups serve as different types of local probes for
f(X;E). I ) aofL .
As a further step, we describe the controlf¢k;E) via %0 JLEDL(X)WJFJE‘CT_T(X)WCT- (4)

the supercurrent. We show that, unlike other control param-
eters, it changes the profile of the effective temperaturélere we assume no energy relaxation, so the kinetic equa-
through the sample in the form of a large Peltier effect, i.e.tions describe the conservation jg{ E) andEj, , the spec-
heating the electrons in one part of the structure, and coolingjal charge and energy currents, respectively. TebmsD, ,
them in another—even in the case of complete electron-holés , and7 can be found from quasiclassical equations for the
symmetry. Moreover, we show how the two types of mea<etarded Green’s function in the diffusive linfit Al of them
surements forf(x;E) can be combined within the same depend on the phase differengebetween the superconduct-
sample. ors such that forp=0, jg and 7 vanish. In our case, the
We concentrate on studying a diffusive normal-metal wirecharge diffusion coefficienD+ is increased at most up to
where elastic scattering is the dominant scattering mecha0% from its normal-state valuB;=1,"° whereas for ener-
nism. In the absence of superconductivity and for wiresgies belowA, D, tends towards zero near ti&interface,
much shorter than the inelastic scattering length, the steadyffectively prohibiting energy transport. The tefftx; E, ¢)
state distribution function between two reservoirs with(Ref. 8 is obtained as a cross term from the retarded and
chemical potentialg.; andu, has a double-step form, inter- advanced Green'’s functions. In general, it is much smaller
polating between the two Fermi functions in the reservbirs. than the other coefficients. The supercurrent is described by a
When theN reservoirs are replaced by superconductingspectrum je(E;¢) of supercurrent-carrying stat&s;'3
ones, the leading transport mechanism at energies below théhich yields a contributiorjgf (X) to the spectral charge
superconducting gaf is Andreev reflectiof.This leads to a current and, under nonequilibrium conditions involving
penetration of superconducting correlations into thevire ~ f1(x)#0, a contribution to the energy curreBigf+(x).
(superconducting proximity effectlt modifies the charge These kinetic equations have to be supplied with bound-
and energy conductivities and we may introduce the correary conditions. AtN reservoirs, electrons are simply trans-
sponding diffusion coefficient®(x;E) and D, (x;E) de- mitted and the distributions have to match Fermi functions
pending on space and energilore importantly, the prox- with shifted chemical potentials. At th&lS interface for
imity effect allows supercurrents to flow through tNewire.  |E|<A, Andreev reflection prohibits the transfer of energy
To describe these effects, it is convenient to sepdiateE) into Syielding j_ =0. The charge distribution is continuous,
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which leads tof {(E)=0 at theNS interface assuming that
there is no charge imbalance in the leads.

The nonequilibrium distribution function may be charac-
terized through its moments, the local chemical potential
n(x) and the local effective temperatufeg(x). The previ-
ous characterizes the charge distribution functionu#g) 084"
=[odEf{(x;E). The effective temperature describes the
amount of heat in the electron system and is related to theg®®7

energy distribution function via §0_4_.~""g
2
eLoy_, o 0.2+
> Teﬁ(x):J dEEf o XE)=fL(E)], (5
°
where £,= (m?k3/3¢e?) is the Lorenz number and the corre-
sponding zero-temperature distribution has a step-functior E/E, 20 40 1
form f| o(x;E=0)=1—-0[E— u(X)]. o o . . )
In the absence of the supercurrent, the kinetic Ez)sand FIG. 1. Quasiparticle distribution functiof(x;E) in the right-

djorizontal arm for voltage/=20E+ /e, temperaturel =4E/kg,

nd phase differenceé=m/2 between the superconductors. The
arge deviations from the rounded staircase form are created by the
supercurrent flowing in the structure.

(4) are not coupled and, consequently, there is no therm
electric coupling between the applied voltage and the energ
currents. This results from the assumption of bands wit
complete electron-hole symmetry in the derivation of the for-
malism. Beyond the limits of the formalism, it is known that
electron-hole symmetry breaking leads to small thermoele
tric effects in normal metals, limited by the tiny factor
kBT/ € .14

Below, we study a multiterminal setup depicted in the

tion of both the spectral and kinetic equations. Here and
%below, we assume that all the energies are belowThe
effect of the supercurrent on the distribution functions is
clearest at a low temperatukgT=E+. The resulting distri-

inset of Fig. 2: varying the voltage between theand S bution functionf(x,E) for the right-hand horizontal arm is

reservoirs while maintaining the superconductors at e uaﬁloned In Fig. 1 for¢ = /2, yielding a supercurrent close to
) 9 Uperce > Al €qUS maximum. As expected, the antisymmetric part ©f,E)
potentials allows one to vary the distribution function in the

phase-coherent wire. Such a device has already been implréfj1S become space dependent, its energy dependence follow-

mented for controlling the critical current for the dc Joseph-Ing that of j . F|X|pg a position in space, chosen, .for ex-
. ample, near thé&\ Sinterface in the left-hand side horizontal
son effect It permits to study the supercurrent under non-

S . ; S arm, allows us to observe how the distribution function
equilibrium conditions without the complications caused bychanges as a function of phage i.e., as it is driven by the
the ac Josephson effect and is, hence, an appropriate Systetily '\ ont This is illustrated in Fig. 2, whefdE: ¢) is
for demonstrating the physics outlined above: As the energ%lotted for a .few values ob n "=
_flow Ejef1(x) carried by t_he extra quasiparticles_ injected In the three-probe case ;[he chemical potentiad) inter-
into the supercurrent-carrying states cannot pass into the su- ’

perconductors, it has to be counterbalanced by another e olates nearly linearily between the chem|pal poten_nals of
the superconductor and the normal reservoir and varies only

ergy flow. This flow is driven by the gradient of the energy . ! . . _
distribution functionED, d,f, and hence, the applied control mé';;ﬁ':g_l:[ heasrgps]r;;:ri?;'r;heroc:i?r?fes dml:]htehzﬁ:gg\e/ﬁégrgf
P eff p .

voltage is converted into a gradient of the effective temperathe supercurrent .. is
ture through the supercurrent. P eff

Solving Egs.(3) and(4) for =0 andE<A is similar to 0 _ —0) = .72 7_ 2
a two-probeN-S case’ f, stays constant throughout the Ter=Ter(9=0)=\T+{V"= (u(x)/e)}/ Lo (7)
phase-coherent wire at its value in thereservoir, f(V)  Both Te(x; ¢=0) andu(x; ¢=0) are symmetric in the two
= (tanH(E+eW)/2kgT]+tanH(E—eW/2kgT])/2 and f; is  horizontal arms. The supercurrent-induced change in
slightly modified from the linear space dependence due td.(X;E) can be described through the change of the effective
the proximity effect oDy .1° Increasing the phasg induces ~ temperature compared to Eq7), such that Ten(X)
a finite supercurrent into the weak link, thereby coupling ~ =[To:(X)?+ S(x;V) + du(x; ¢) V2 where
andf;. First neglecting the small coefficiefif we get

A o fr 0 afr|  , fr
— T X _JED_L'

6 o

S(x;V)= ?f dEEfAE;V)—fL(GE)] (8
- lep o (6) mkg o

L . — . 2 . 2 H
and Su(Xx; )= u(X; p)“— w(x;p=0)“]/2 describes the
Assuming thaf g is small, we observe that the major changechange in the local chemical potential due to the supercur-
due to the supercurrent is expected fo(E,x); in particu-  rent, a much smaller term the8(x). The kinetic equations
larly, it will depend on space. imply that the supercurrent-induced change of the distribu-

In general, a closed-form solution féy (x;E), f+(x;E) tion function f, is antisymmetric between the two arms,

cannot be found. Therefore, we focus on a numerical soluhence so i§(x), i.e., Tex increases in one arm and decreases
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To obtain an estimate foB(x;V,®), we approximate
D+(E;x)=1 and find

2E2R, (= _ o L2 x'dx’
s=—f dEEJE(E)fT(E)f _
L?(R,+ Ry /o x  Dy(x";E)

9

At low temperature&gT<<eV, f; reduces to a step function
around the potentiaV in the reservoir, cutting the integra-
tion off at E=eV. Thus, this current-induced temperature
change, which is similar to the Peltier effect, is much larger
than in conventional single-metal setups.
For the measurement of the predicted effects in the distri-
bution function, we suggest a setup shown in the inset of Fig.
-1 . ' : 2—very similar to those used in Refs. 1,2. Such a setup has
0 > 11 E/EZO 2% 30 3% 40 also been used as a local thermometerf the electronic
T temperatures. A superconducting wire is connected to the
FIG. 2. Supercurrent-driven distribution functidp(E) at the  horizontal arm via a highly resistive tunneling lay@y at
left NS interface as a function of energy fap=0 (solid), ¢  position, say,x=x.. The dc current is then given by the
=0.12r (dotted, ¢=0.247 (dashed, and ¢= /2 (dash dotted tunneling quasiparticle current
The result is obtained witi =4E/kg andV=20E;/e. The cor-
responding changes &f by the supercurrent in the right arm have 1 (=
the opposite sign. Inset: the system under consideration. We assume IJ:e_RJ:xd Eps(E+w)p(E)[fo(E+n)—f(E)],
symmetric horizontal wires of length/2. This length defines the (10)
Thouless energy of the weak linE;=%D/L2. The resistance of
the weak link isR,, and of the vertical wirdr,. Measurement of the \where Ngps(E) is the BCS density of statg®O9) of the
predicted effects can be performed by placing a superconductingnnel probeNyp(E) is the local DOS in the mesoscopic
tunnel probe at positior=x., near theN S interface. wire atx=x., Ng andNy, are the normal-state DOS’s for the
two materials atE=Eg, fy(E) is the Fermi function, and
in the other one. Hence, the system works analogously to (E) is the distribution function to be measured. When all
Peltier device, where the control current is replaced by thghe wires are in the normal state, the resistance through the

supercurrent: the supercurrent “cools” one part of the systunnel junction isR. We can separate this expressionl as
tem, transferring the heat to another part. The supercurrent=|, 1|, wherel, is the tunneling current for the equilib-

induced temperature chan§éx;V) is illustrated in Fig. 3. rjum systemv=0, probingp(E) and

25— . . 1 (>
R o= AED(E) (BN ol B)+ pel = E)]
20 1
sl _ +[fL(E)—tant(E/2kgT) L ps(1+ E) — ps(u— E) I}
7“50 0.5 1 15 2 (11)
10F T in ’ B
e depends on the state of the wire, and for an equilibrium state,
o 5F 1 V=0, vanishes. In order to isolake, one can first determine
A I, as a function of the supercurrent by investigating the equi-
0 librium case. Thenl; may be substracted from the nonequi-
sk | librium results, leaving only currents,. Moreover,|,(w)
+1,(— ) is proportional to the first part of Eq11), depen-
-0k 1 dent onf(E), andl,(u)—1,(—u) to the second, depen-
dent onf (E).
-15¢ , , , With the above setup, the distribution functions may be
0 eVIE, 10 15 20 characterized as a function of both the voltageand the

supercurrent driven through the weak link. The setup also
FIG. 3. Supercurrent-induced chanéx:V) in the effective ~ Makes it possible to measure the local distribution function
temperature as a function of voltag®/E at different positions in ~ POth through the NIS contact and through the SNS critical
the weak link with¢y= /2. From top to bottomx=0, x=L/4, X current. These two independent probes should permit to dis-
=L/2, x=3L/4, andx=L. Herex=0 andx=L correspond to the tinguish the contributions from different inelastic scattering
left and rightS interfaces and=L/2 to the crossing point. Inset €effects along the lines of Ref. 1.
shows the phase dependences@t=0) for eV=12E (solid) and So far we have completely neglected inelastic scattering
eV=8E+ (dashedl In both curves, the bath temperatdre:0. in the wires. We can include energy relaxation due to
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electron-electron scattering phenomenologically, generaliz- In Ref. 19, another thermoelectric effect, the ther-
ing the method of Ref. 16 to include the effect of supercur-mopower, has been measured experimentally in a similar
rent. In the limitL>1_, we may describe the nonequilibrium type of a system. The coupling of the distribution functions
distribution functions by Fermi functions with local chemical through the supercurrent may explain part of the observed
potential and temperature. In this case, assuming for simpliceffects. In Ref. 20, thermopower has been studied in the
ity Dr=1 and7=0, we can integrate the two kinetic equa- regime of high tunnel barriers and within linear response,
tions over energy, obtain kinetic equations fafx) and leading also to an unexpectedly large effect. In that paper, all

Tew(X) and find in the limit of highA the distribution functions are, besides minor corrections, in
) quasiequilibrium: the transport is essentially driven by the

T (X) = = dxl o(X), (12 discontinuities at the tunneling barriers. Moreover, Ref. 21

_ _ studies the Andreev interferometers through a numerical
e LoT(X)dxTen(X) = — w(X) Iy (X) + Qs. (13)  scattering approach, and predicts an oscillating thermopower

_ . . as a function of the phase. However, there the quasiparticle
Herel s(x) =L/ dEje(E)f,(E,x)}/2 is the local supercurrent, current and supercurrent do not flow in parallel and the mag-

27 > —
2Le°T=—[dEED, d7f__and 2u(x)=—JdEED d,fL de-  pide of the effect may be strongly affected by the very
scribe the local temperature and chemical potential modified o/ size of the studied structure.

by D, , respectively, an@s=[ JdEEje(E)f(E,x)]/2is the Summarizing, we predict that in a nonequilibrium situa-
energy current carried by the nonequilibrium supercurrenton created by applying a voltage between a normal metal
The first equation states the conservation of the total current,y wwo superconductors, the nonequilibrium distribution
whereas the latter describes the temperature profile. In thﬁmctions in the normal-metal wire can be tuned by the su-
absence of the proximity effect, these yield the effective tempercyrrent flowing between the superconductors. This results
perature given in Eq(7). Similarly as above, the effective j, 3 sypercurrent-controlled Peltier effect. The predicted ef-

temperature can also in this case be tuned via the SUPercyget can be observed by the measurement of the tunneling

rent, through the control ®s. _ _ current from an additional superconductor.
The predicted effect resembles a previously studied phe-
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