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Chapter 1

Introduction

1.1 Motivation

The fascinating phenomenon of superconductivity posed many questions to ph-
ysisists since its discovery by Kammerlingh Onnes in 1911. A consequent micro-
scopic theory of superconductivity was proposed only in 1957 by Bardeen, Cooper
and Shriefer (BCS) [1], as quantum mechanics, originally developed to describe
properties of single atoms, has also been successfully applied to macroscipically
large condensed matter systems. The BCS theory decribed all observable effects
of superconductivity in the bulk like zero resistance, Meissner effect and the gap
in the excitation spectrum. The superconductivity turned out to be a purely
quantum phenomenon having no counterpart in the classical physics thus being
a macroscopic manifestation of the quantum nature of matter.

New fields of physical research, mesoscopics and nanoscience (see [2] for an intro-
duction) were opened by new developments in microfabrication techniques during
the last several decades, which made it possible to fabricate systems in the submi-
cron range. Such systems “in the middle” between microscopic and macroscopic
systems were called mesoscopic. Nanoscience emphasises small dimensions (1-100
nm).

In the mid-1990s Ralph, Black and Tinkham (RBT) succeeded to perform single-
electron-tunneling spectroscopy experiments [3] on individual ultrasmall metallic
grains i. e. small metallic particles on the length scale of several nanomaters The
grains were coupled via oxid tunnel barriers to two electrodes and capacitively
to a gate to form a single electron transistor with the grain as central island,
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6 CHAPTER 1. INTRODUCTION

and the tunneling current between the grain and the electrodes was measured.
From the I — V characteristic of the tunneling current one was able to extract
the discrete excitation spectrum of the grains.

The experiments of RBT opend a new frontier in the study of superconductivity,
since the excitation spectrum of ultrasmall Al grains with even number of elec-
trons had a distinct spectroscopic gap but an odd grain did not. This was an
evidence for the presence of superconducting pairing correlations in these grains.
Thus new questions could be studied (see [4] for a review), e. g. how does the finite
size of the grain affect the superconductivity ? For ultrasmall superconductors
the grand-canonical mean-field BCS theory, which was so successful in describing
bulk superconductors could not be applied, since the single-particle mean level
spacing d was of the same order of magnitude as the bulk superconducting gap
A. This motivated the development of canonical theories of superconductivity.

One interesting feature of the discrete excitation spectra of ultrasmall Al grains
measured by RBT was, that the spectroscopic gap was driven to zero by an ap-
plied magnetic field. Thus the paramagnetic breakdown of superconducting pair-
ing correlations could be studied in detail. This was done by Braun et. al. [5], who
used the reduced BCS model to describe the superconducting pairing correlations
and solved it via a generalized mean-field Ansatz.

In this thesis we address the following question: how do the pairing correlations
affect the single-particle excitation spectrum, in utrasmall metallic grains “above
the paramagnetic limit’, i. e. driven by an applied magnetic field into a para-
magnetic state 7 We study the tunneling (or single-particle) density of states
(tuneling DoS) of ultrasmall metallic grains above paramagnetic limit. The tun-
neling DoS describes the response of a system to adding a single particle to it
and thus reflects the correlations inside the system.

We use the reduced BCS model and solve it by means of two numerical methods
with controllable accuracy. The first method uses the exact solution of the re-
duced BCS model (found by R. Richardson [6]), which expresses the eigenstates
and the eigenenergies in terms of certain parameters, which are coupled via a
system of algebraical equations. We solve this equations numerically. The sec-
ond method uses the density matriz renormalization group (DMRG) approach
for solving the Hamiltonian. The DMRG is a systematical numerical method of
studying highly correlated systems, which reduces the Hilbert space of the sys-
tem by using a small number of basis states that are in particular sense the most
probable states that contribute to the ground state (or other targeted states of
the system).
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First we study the transition to a paramagnetic state. As mentioned, this was
already done by Braun et. al. in [5]. But firstly, they used a mean-field approxi-
mation and secondly, we need the ground state above paramagnetic limit for cal-
culating the tunneling DoS. We study the crossover between small grains, where
the correlations are weak so that this grains behave purely paramagnetically, and
large grains, where the correlations are strong so that the BCS theory becomes
applicable, which predicts a sharp phase transition between the superconducting
and the paramagnetic state.

After considering the transition to a paramagnetic state, we turn to the tunnel-
ing density of states. It turns out that in ultrasmall metallic grains above the
paramagnetic limit, where the superconducting ground state is destroyed by the
applied magnetic field, pair correlations still persist and lead to observable effects,
as was predicted by Aleiner and Altshuler (AA) [7], who used diagrammatic tech-
niques and considered the case of continuous single-electron spectrum (we call it
“continuum limit” in the following). They showed that the tunneling DoS above
the paramagnetic limit exhibits an anomaly: it has a gap for 0D systems (like
ultrasmall metallic grains) and a dip for 2D systems (like thin films).

The theory of AA was motivated by the experiments of Wu et. al. [8], where an
anomaly in the tunneling density of states of disordered superconducting films
driven by parallel magnetic field to a paramagnetic state was observed. AA
explained this experiments and predicted a new effect in ultrasmall grains.

In this thesis we study the tunneling density of states in ultrasmall supercon-
ducting grains using Richardson’s exact solution and DMRG. This allows us to
study the case of grains with finite number of electrons N and thus with discrete
single-electron spectrum. So, we can study deviations from the continuum limit
N — oo considered by Aleiner and Altshuler.

1.2 Outline

The outline of this thesis is as follows:

In Chapter 2 the reduced BCS model and methods of solving it are are described.
These are the BCS theory, the Richardson’s exact solution of the and the DMRG.
Chapter 3 describes the transition of an ultrasmall metallic grain to a paramag-
netic state in an applied magnetic field.

In Chapter 4 the notion of the tunneling density of states is introduced, and the
known experimental and analytical results about the tunneling density of states
above paramagnetic limit are presented.
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In Chapter 5 our new results for the tunneling DoS of ultrasmall metallic grains
with finite number of electrons are presented.

Appendizes A and B contains technical details which are important for under-
standing exactly how the calculations were done.



Chapter 2

Basics

2.1 The model

We use the discrete reduced BCS Hamiltonian with Zeeman coupling to a homo-
geneous magnetic field [9] :

Hpcs = Ho+ Hipy
Hy = Y (ej—oh)clycjo

J0
Hipy = =AY c}+c§_cj,cj+ (2.3)
4]
Here c;-a are creators corresponding to the single-electron eigenstates | jo) with

eigenenergies ;. The state | j+) is chosen to be the time-reversed to the state
| j—), where 0 = +(—) corresponds to the up (down) spin.

The spin projection direction is choosed to be parallel to the magnetic field H.
Thus the Zeeman energy of a spin o is given by —oh = aé,uBgLH with Bohr’s
magneton ug and the Lande factor g, = 2 for electron. The summation in the
interacting part H;,; goes only over levels within the Debye frequency wp above
and below the Fermi energy cp.

The term “reduced” in the name of the Hamiltonian referrs to the fact that only
time-reversed states participate in the interaction. This Hamiltonian was used by
Bardeen, Cooper and Shrieffer in their BCS theory of superconductivity [1]. The

9



10 CHAPTER 2. BASICS

interaction described by this Hamiltonian is an effective electron-electron attrac-
tion which results from the electron-phonon interaction. The cutoff wp appears
because wp is the typical phonon frequency. The model makes a simplification
and uses a constant coupling parameter. This is assumed to capture the most
relevant features of the superconductivity phenomena. A good agreement of the
calculations made with this model with experiment is the justification of such an
assumption.

2.2 BCS theory

The BCS theory describes the superconductivuty in the bulk. The fact that the
nubmer of particles is macroscopic allows one to use a grand-canonical description:

HI = HBCS — /,LN, (24)

where N is the number of particles. In the grand canocical ensemble the mean
value () rather then N is fixed, which makes the calculations much easier.

In the original work of Bardeen, Cooper and Shrieffer [1] the following Ansatz
for the ground state of the superconductor was used:

|GS) = ] (w; +vj¢}c]-)|0) (2.5)

J

The parameters u; and v; can be interpreted as the probabilities for the level
j to be to be empty and to be occupied by a pair of electrons in time reversed
states, respectivly. So after performing the tensor product we get a superposition
of states with different number of electrons and different amplitudes. BCS used
a variational procedure to obtain the optimal u’s and v’s with the constraint
(N) = const. They obtained [11]:

Juj|? 1 £j
=-(1+2 2.6
|v;[? 2 E;)’ (2:6)

B = /A% +¢2, (2.7)

Y

and A is a solution of the following “gap equation”:

where

1

1=XMd
;\/AQ—FE?

(2.8)
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This equation can be solved for bulk systems by replacing the sum over j with
the integral over . One obtains

A N
- (2.9)
d  2sinh(1/))

where N is the number of interacting levels, which is connected with wp via
N/2d = wp. This means, A depends only on wp and A and is a material constant.

Excited states are obtained by breaking the paired states in some of the j’s from
(2.5). For example, the spin-up electron from a pair at j' goes to a state j” and
the spin-down electron remains in the state j'. One can again make an ansatz
similar to (2.5) for such a state:

|Yexc) = | 1 (uj+UjC;+C}_) c;,_c},,+|0), (2.10)
J#5" 5"

and then again obtain the u’s and v’ with a variational method. This way was
used in the original paper of Bardeen, Cooper and Shrieffer. There is another way
due to Bogoliubov and Valatin ([12, 13]), which uses a mean-field approzimation
of the Hamiltonian Hpgcg and elucidates the nature of low-energy excited states.
One introduces the operators b; = c;_c;y, rewrites the Hamiltonian Hpcg in
terms of b; = (b;) + (b; — (b;)) and then neglects all the terms quadratic in
(bj — (b;)). In this way one reduces the quartic Hamiltonian Hpcg to a quadratic
one. The latter can be diagonalized by means of a canonical transformation :

1.
i+ = Ui G+ — U6
[P (2.11)
Vj— =V Ciy T U Cli

The term “canonical transformation” means here that the commutation relations
between the ~y-operators remain the same as for the ¢’s. The u’s and v’s can be
choosen in such a way that the Hamiltonian becomes diagonal in ;,. This
condition leads to exactly the same expressions as for u’s and v’s from (2.6) The
diagonalized Hamiltonian reads:

Hyr = Eo+ Y Eylovjo, (2.12)

J,o
where Ej; are given by (2.7). Due to the fact that v,,| GS) = 0, the operators
%TU can be interpreted as creations operators of the excitated states. F; are the

corresponding excitation energies and Fj is the energy of the ground state. The
diagonal form of Hj;r means that the excitations can be created independantly



12 CHAPTER 2. BASICS

from each other. They can be interpreted as quasiparticles. A general excited
state then has the form

| wCZ‘C) = 7}-10'1 vt rYJ]Lnan| GS> (213)

and the energy
E,.=FE +...+FE, (2.14)

The condensation energy of the superconductor is defined as the energy difference
between the uncorrelated Fermi sea state and the superconducting ground state:

Econd = <GS | HBCS | GS> — <FS | HBCS ‘ FS> (215)

where |FS) is the uncorrelated Fermi sea state. The calculation with the BCS
ground state (2.5) yields:

A2
2d
Eonq is proportional to 1/d, which gives the density of states at the Fermi surface,
scaling ~ Vol. Therefore E.,,q is an extensive quantity. This shows that the
superconducting ground state obtained via the ansatz (2.5) is indeed energetically
favorable. One can interprete the relation (2.16) as follows: the ground state has
A/2d “Cooper pairs’, each having a binding energy A.

Evond = — (2.16)

2.3 Richardson’s exact solution

The reduced BCS model that we use for describing the properties of ultrasmall
metallic grains has an exact solution, which was obtained by Richardson ([6],
[14]). Before we come to the Richardson’s solution, first we describe a property
of the Hamiltonian Hpcs (2.1), which is called “blocking effect”. This means
that singly occupied levels decouple from the rest of the system (are “blocked”)
and contribute only with their non-interacting energy. This is a consequense of
the fact that 37, ; c} +c},cj,cj+ gives 0 when acting on a state in which level j
is singly occupied. Thus if |9) is an eigenstate with energy E of Hpcs with
all levels except j interacting, then the state c;-[, | ¥) will be an eigenstate of the
Hpcs with all levels interacting with energy E +¢; — oh.

Richardson’s exact solution (for a detailed discussion see [9]) yields the eigen-
states and eigenenergies for a given set U of unblocked, i.e non-singly occupied
levels. Every eigenstate corresponds in a one-to-one way to an eigenstate of the
non-interacting system, in which the levels from U are either doubly occupied or
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0 02 04 06 08 1 12
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Figure 2.1: The real parts of the energy parameters E, from the Richardson’s equa-
tions (2.17) for p = 1,..., 10 as a function of coupling parameter. The initial conditions
correspond to the ground state.

empty. If there are n pairs of electrons, the eigenstates of the non-interacting sys-
tem are obtained by simply distributing these n pairs among the unblocked levels.
If the occupied levels have energies €1, ..., €,, then the eigenstate has the energy

iz1 2¢;. Now, the corresponding eigenenergy of the interacting Hamiltonian can
also be written as a sum of certain energy parameters:

These energy parameters F,, satisfy the Richardson’s equations:

U n
g 29
-y — 4 Yy ——
~ 2¢, — E, i) E,—E,

=0, v=1,...,n (2.17)

Here the first sum runs over all unblocked levels, and ¢ = Ad is the coupling
constant with the dimension of energy. For ¢ = 0 there are no interactions
and E, must be equal to some noninteracting pair energies : Vu, E, = 2¢; for
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some j € U. When g is increased, E, will evolve continuously from their non-
interacting values in a way shown in Figure 2.1 for the case of the the ground
state (with 10 electron pairs). We see that E, (for even N) arrange in pairs
whose elements approach each other, and become equal at some value of g. At
this point they turn to complex conjugated pairs (in the Figure only the real
parts are shown), so that the whole energy remains real.

A general eigenstate can be graphically represented as in Figure 2.2. The circles
depict the unblocked levels, where the filled circles depict the levels filled with
pairs and the empty ones depict empty levels at ¢ = 0. The arrows depict the
blocked levels occupied by single electrons. To determine the eigenenergy, we
have to solve the Richardson’s equations for the unblocked levels with the initial
conditions corresponding to the distribution of the filled and unfilled circles and
to add the non-interacting energies of the single electrons at the blocked levels
to the result.

At the values of g, where some two of the parameters £, become equal, Richard-
son’s equations (2.17) become singular. For numerical applications these singu-
larities have to be factored out, which is done in Appendix A for the case of the
ground state. For an excited state the energy parameters £, behave in quite a
complicated way: the pairing between them can change as g is increased (see

Figure 2.2: A general eigenstate of the reduced BCS Hamiltonian (2.1). The filled
circles depict the levels filled with pairs and the empty circles depict the empty levels
at ¢ = 0. The arrows depict the blocked levels occupied by sinlge electrons.
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Figure 2.3: This figure from [15] shows the evolution of the Richardson’s parameters
for an excited state.

Figure 2.3), which means that the algorithm of finding a numerical solution has
to be rather sophisticated.

The difficulties of finding the energies of excited states with the exact solution,
combined with the difficulty to find with its help the eigenfunctions (which is nu-
merically impossible for n % 8), caused us to use also another numerical method
of solving the reduced BCS Hamiltonian, which is described in the next section.

2.4 Density matrix renormalization group

The density matrix renormalization group (DMRG) is a method invented by S.
White to calculate the low-energetical excitations of strongly correlated systems,
where the interaction is local (like spin chains) [16]. This method was also suc-
cesfully applied to the reduced BCS Hamiltonian by Sierra and Dukelsky [17].

The basic idea of the DMRG method (like in all numerical renormalization strate-
gies) is to find an effective Hamiltonian for a complicated interacting system. This
effective Hamiltonian should act on a smaller Hilbert space than the original one
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superblock
Ol© 0,000 0,000
new site new site
system block environment block

Figure 2.4: DMRG algorithm on a chain

so that it can be solved numerically. At the same time, it should contain the
most relevant information about the system.

The idea of using density matriz comes from the following observation. Consider
an interacting system ( “superblock”). Let us divide it in two parts , the “system
block” and the “environment block” (see Figure 2.4). If |i) and | j) are the basis
states of the system block and environment block, respectively, a general pure
state | 1) of the superblock is given by the sum of the tensor-product states | )| j)
with some coefficients:

[¥) =D i D)1 4) (2.18)

We would like now to throw away some states of the system block and to retain
only a set m states |u®),« = 1,..., m, namely those which for the fixed value of
m would most optimally describe the state | 1) of the superblock. It turns out
that if we construct the reduced density matrix of the system block as part of the
superblock by tracing out the environment block, and then take its m eigenstates
with highest eigenvalues, these states will be the most optimal for describing the
superblock. To be precise, this means that the optimal approximation to |%)) is

a state | 9) of the form B
19 = X o %))
a’]

for which the quantity
— 12
S=|lv)—19)
is minimized by taking for | u®) the m eigenstates whith the largest eigenvalues
of the reduced density matrix of the system block p = Tre,, (|¥){(¢¥|). The

corresponding weights a,,; can be constructed from the states |j) and the m
highest eigenvalues of p.

With this idea one can propose several algorithms for finding the ground state
and its energy for an interacting system. For a 1-dimensional chain the simplest
version of the algorithm (“infinite system algorithm”) looks like follows:
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1. Take a small part of the whole system as the superblock. Devide the su-
perblock into the system block and the environment block (Figure 2.4).

2. Diagonilize the superblock Hamiltonian numerically and construct its ground
state | ).

3. Build the reduced density matriz of the system block by tracing out the
environment block and find its m eigenvectors with the largest eigenvalues.
They will build the reduced basis of the system block. Perform the same
procedure for the environment block tracing out the system block and ob-
tain the reduced basis of the environment block. The reduced basis of the
superblock having m X m vectors can be obtained by constructing tensor
products of the vectors from the reduced bases of the system block and the
environment blocks.

4. Transform the Hamiltonian of the superblock to the reduced basis from
step 3.

5. Add a new site to the system block and environment block to form the new
superblock.

6. Repeat with step 2.

The algorithm proposed by Sierra and Dukelsky to find the ground state of the
reduced BCS Hamiltonian follows the philosophy of the infinite system algorithm
but acts in the momentum space. This means that instead of breaking the su-
perblock into two pieces in the real space, one devides the single-particle levels
of the superblock into two parts, one of them spanning the system block and the
other spanning the environment block. A general state |) of the superblock
can then be represented in the form (2.18) where the states |i) belong to the
system subspace and the states |j) belong to the environment subspace. This
representation allows one to apply the infinite system algorithm descibed above
with the difference, that instead of adding new sites, new single-particle levels
are added to the system block and the environment block.

Appendix B contains the details of algorithm of Sierra and Dukelsky for calculat-
ing the ground state of the reduced BCS Hamiltonian as well as its modification
for the ground state in magnetic field and some of excited states entering into
the expression for the tunneling density of states, which is the quantity we are
interested in this thesis.
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Chapter 3

Transition to a paramagnetic
state

In this chapter we shall search for the ground state of an utrasmall supercon-
ducting metallic grain in a magnetic field. Without magnetic field the total spin
is zero. We will see that the total spin increases with the applied magnetic field.

If a sufficiently large magnetic field is applied to a bulk superconductor, it causes
a transition to a normal state. Below the transition point the field can only
penetrate the superconductor up to a small surface layer of thickness A. This is
due to the surface currents generated when the field is turned on, that screen the
magnetic field in the interior of the superconductor. So a bulk superconductor
behaves as a perfect diamagnet until the magnetic field reaches a certain critical
value and destroys the superconductivity.

Ultrasmall metallic grains as those from experiments of Ralph, Black and Tin-
kham have radii 7 S 5nm and are smaller than the penetration depth of the
magnetic field A ~ 50nm. Thus all their electrons interact with the magnetic
field. This interaction gives rise to two types of magnetic effects: Pauli para-
magnetism, associated with Zeeman splitting of electron orbitals and Landau
diamagnetism, associated with the orbital motion of electrons. The latter effect
can be shown to be negligible in ultrasmall metallic grains [10]. This is why only
the Zeeman term is contained in our model Hamiltonian (2.1).

In section 3.1 normal paramagnets are considered. Their spin increases linearly
with the magnetic field. In section 3.2 bulk superconductors are considered,
where the BCS theory [1] can be applied. Here a first order phase transition from
superconducting to a purely paramagnetic state occurs. In section 3.3 we turn

19
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(a) (0)

Figure 3.1: Ground state of a normal grain without magnetic field (a) and with
magnetic field H (b). The electrons gain energy if they choose their spin parallel to H
but have to pay kinetic energy due to the Pauli principle. For a given H , the spin S
can be determined by maximizing the energy gain.

to ultrasmall superconducting grains. Here by varying the electron number N
and coupling constant A we can reach both the weak coupling regime (A/d < 1),
where the behaviour is similar to that of normal paramagnets and the strong
coupling regime (A/d > 1), where the BCS theory can be applied.

3.1 Normal paramagnets

In this Section we consider a normal paramagnet, having no interaction, so that
every energy eigenstate of the grain is a direct product of some single-particle
eigenstates. In absence of magnetic field the ground state is obtained by filling
up the single-particle energy levels with pairs of electrons with opposite spins up
to the Fermi energy e (see Figure 3.1(a)).

A magnetic field H breaks the two-fold degeneracy of energy levels due to the
Zeeman interaction —oh. Thus the levels occupied by single electrons with spins
parallel to H decrease their energy by h while the doubly occupied levels do not
change their energy. So it can be favorable for some electrons to flip their spin
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E(N, h)

Figure 3.2: Energy gain vs. number of flipped spins N

and (due to Pauli principle) to jump to unoccupied (higher) energy levels if the
gain in magnetic energy becomes greater then the loss in kinetic energy. Let the
number of flipped spins be S. Then S will also be the spin of the system (in units
of h). It is clear that for every given S the lowest possible state is that where the
flipped electrons were immediately below € before changing their spin.

If there are S singly occupied levels below e and S singly occupied levels above
ep with spins parallel to H (see Figure 3.1(b)), and we choose ep as the zero of
the energy scale, the kinetic energy of the electrons at the singly ocupied levels
will be equal to zero because of their symmetrical distribution with respect to .
Before flipping these electrons were at the S doubly occupied levels immediately
below e7 and they had the energy — Y7 ' 2 (3 + 1) - d = —S*d. Therefore the
loss in the kinetic energy is S?d. On the other side, the magnetic energy of 29
spins parallel to magnetic field is —2S5h, and before flipping the magnetic energy
was equal to zero, i.e the gain in the magnetic energy is 25h and we can obtain
S for given h by maximizing the energy gain

E(S,h) = 2Sh — S2d

For given h, this is a function of a discrete variable S. We can find it’s maximum
by considering the corresponding function of a continuous variable. Its graph is
a parabola which is symmetric about its maximum point

Spas(h) = h/d. (3.1)

The shape of the parabola is only determined by the factor near S2, so it does
not depend on h. For h = 0 the most favorable state is S = 0 and when h
is increased, the transition from Sy to Sy + 1 occurs if E(S) becomes equal for
S =S5y and S = Sy+1, i.eif S;u(h) lies in the middle between Sy and Sy + 1
(see Figure 3.2).
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Thus the transition from S to S + 1 occurs at the points
h=(S+1/2)d, $=0,1,2... (3.2)

The corresponding spin increases also by 1 (in units of 7). The first jump occurs
at h = g and the next jumps are separated from each other by d.
For a bulk system, where S can be considered as a continuous variable, 1/d
corresponds to the density of states g(¢r) at the Fermi surface and the spin will
go linearly with A:

S = Spaz(h) = hg(er). (3.3)
So the magnetization M = up - S is given by uphg(er) = p4H g(cr) and the

susceptibility is x = OM/OH = u% g(er), which is the well known Pauli param-
agnetic susceptibility [18].

The difference between the ground state energy in magnetic field h and without
magnetic field Egs(h) — Egs(0) = E(Nmaz(h), h) is:

h2

Egs(h) — Egs(0) = — p

(3.4)

3.2 Bulk superconductors

In the bulk limit the BCS theory can be applied. We assume that at some crit-
ical field h. the system changes it’s spin by a macroscopically large amount and
becomes purely paramagnetic, with no pairing correlations anymore (it will be
justified in the next paragraph). This happens if the ground state energy differ-
ence of the pure paramagnet Fgg(h)—Egs(0) (see eq. (3.4)) becomes smaller than
the bulk condensation energy of the superconductor, which is equal to —A?/2d
(see equation (2.16)). So we have

B2 A2
d~ 2d’

which yields :

(3.5)

With (3.3) the spin increase is

A (29 N

"~ V2d  2/2sinh(1/)) (3.6)
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The assumption that in the paramagnetic state no pair correlations persist any-
more, is justified by the following argument: the excitations in the pair correlated
state are obtained by breaking cooper pairs and pairwise creating of quasipar-
ticles (see Section 2.2). The lowest such a state is obtained by breaking one
Cooper pair and creating two quasiparticles wich costs the energy 2A — 2h, and
this becomes favorable at h = A, which is larger than h,..

So we see, that in the strong coupling limit a phase transition from supercon-
ducting to a purely paramagnetic state occurs. The transition is of the first
order because of the discontinuity in the magnetization as order parameter at
the critical value of the magnetic field h,.

3.3 Ultrasmall superconducting grains

In this section we consider the transition to a paramagnetic state for ultrasmall
superconducting grains. If a magnetic field is applied to the grain, then, to con-
struct Richardson’s solution (see chapter 2, section 2.3) we have to start by con-
sidering the states corresponding to the non-interacting case described in section
3.1. This means, we have some singly occupied, blocked levels lying immediately
below and above er. We shall consider a grain with even number of electrons N
(if N were odd, we had one blocked electron in the ground state without mag-
netic field, and for the remaining even number of electrons the physics would not
change).

Let us call Nr the number of levels which correspond to the non-interacting levels
filled with pairs, and Np the number of blocked levels (see Figure 3.3). Then
Np +2Np = N. The blocked electrons contribute only with their kinetic energy
and additional magnetic energy —h per level. The remaining 2N electrons are
scattered between the 2Ny unblocked levels due to the pairing interaction (2.3).
We call their total energy Fj,;.

In contrast to the non-interacting case, we have no analytical expression for E;,;
and have to find it numerically. The total energy of the grain for a given number
of blocked levels, F(Ng) is then given by

E(Ng,h) = Eyin(Ng) + Eint(Ng) — Ngh

For given h, the optimal Ng can be found by compairing E(Ng, h) for all possilble
Ng = 0,2,...,N (since by flipping of one spin the number of blocked levels
increases by 2). Then ugNp gives the magnetization of the system. The kinetic
energy of Np blocked electrons Ey;,(Ng) is equal to e due to their symmetrical
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N

QOO

Figure 3.3: Candidates for the ground state of the grain. The Ng levels immediately
above and below ¢r are occupied by single electrons with spins parallel to the magnetic
field. The remaining 2N electrons are scattered among the 2Np unblocked levels.
The distribution of filled circles corersponds to the initial values of the Richardson’s
parameters (see Section 2.3).

distribution with respect to . So it is constant for a given grain and will be
droped in the following.

For calculating the energy of the unblocked electrons two methods were used:
numerical solving of Richardson’s equations and DMRG (see Sections 2.3, 2.4
for introduction and Appendixes A, B for details). Thus we could combine the
power of DMRG with the possibility to check the calculations made with its
help against the results from Richardson’s exact solution in a regime were both
methods work.

In Figure 3.4 we show the total energy of the grain E(Ng, h) vs. h for all possible
Npg for N =20 and A = 0.8. We see that from some critical value of h the state
with Ng = 0 becomes unfavorable and the spin begins to increase.

In Figure 3.5 the magnetization vs. magnetic field is shown for N = 20 and
different values of \. We see that for small A the behaviour is normal: the first
spin flip occurs at A = d/2 and the next are separated by d. With increasing
A the value of the first spin jump, Syi,s, increases. After the first flip the spin
increases by 1 at each step, just like in the normal regime. But if the state after
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Figure 3.4: Total energy of the grain E(Np,h) (in units d) for A = 0.8, N = 20 and
different blocking numbers N = 0,2,..., 20 vs. magnetic field ~ (in units of d). The
lowest line corresponds to Ng = 0, the top line to Ng = 20. For some value of h, the
superconducting ground state with Np = 0 (and thus zero spin) becomes unfavorable
and the spin begins to increase.

the first spin flip would be normal, than the values of the magnetic field at which
the subsequent spin flips occur, should coincide with the values of the magnetic
field, at which spin flips for the normal grain occur. We see from Figure 3.5 that
this is not the case. This is an evidence for the remnants of pairing fluctuations
in the paramagnetic state.

In Figure 3.6 we plotted the magnetization vs. magnetic field for fixed A\ and
different values of N. The behaviour of the magnetization with increasing N is
similar to the case of fixed N and increasing A just discussed. In both cases the
value of A/d is increased, thus the pairing correlations become stronger and the
bulk BCS regime is approached.

To study the crossover between the weak coupling and strong coupling regimes
by varying A/d from being < 1 to > 1, we calculate the height of the first spin
jump, Sfirst, and the corresponding magnetic field by, for different values of N
and A. Since A/d = N/(2sinh(1/))) (see (2.9)), we can increase A/d both by
increasing N at fixed A and by increasing A at fixed N.
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Figure 3.5: Magnetization M (in units of up) vs. magnetic field A (in units of d)
for N = 20 and different values of \. With increasing A the first spin jump, Sfirs,
increases.
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Figure 3.6: Magnetization M (in units of up) vs. magnetic field A (in units of d)
for A = 0.4 and different values of N. With increasing N the first spin jump, Sy,
increases
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In Figure 3.7 the ratios Syirst/Se and hpirsi/he vs. N for fixed A are plotted,
where S, and h, are the bulk BCS critical values for spin and magnetic field (see
eqgs. (3.6) and (3.5). With increasing N, hyirst/h. converges rather fast to unity
from above. The plot of Sfirst/Se vs. N consists of continuous decreasing parts
with jumps between them. This is due to the discrete nature of the variable
Stirst, which in contrast to linearly growing S, (see (3.6)) does not change along
every continuous part (the leftmost continuous part corresponds to Syirse = 1)
so that Syirs/S. decreases. At the values of N, where Sy;,s increases, Spirst/Se
jumps up and then again decreases continuously with increasing /N until the new
change of Syirst occurs. The oscillations become smaller with increasing /N and
the Spirst/Se converges to unity from below.

So we see, that with increasing N, the Sy and hys; approach their bulk BCS
values S, and h.. For small N the deviations from the BCS theory are significant:
the ratios Spirst/Se and hyirst/h. differs from 1 by more than 0.5.

In Figures 3.8, 3.9, Sfirst/Sc and hygipse/he vs. A for fixed N are shown . The
agreement with BCS theory for large A is much worse then for the case of constant
A and increasing N. This is not surprising, even though for increasing A and fixed
N, A/d also increases. For at some value of A\ = A, all spins will flip, thus for
A > Aer Spirst Will remain constant, while S, will still increase linearly with A,
since for fixed N equation (3.6) yields

S, oc1/sinh(1/A) ~ X for AZ 1 (3.7)

The reason for this disagreement the continuum limit, that underlies the BCS
theory. Therefore it does not take into account the fact that the number of
particles is finite.

The quantity A g, which has a continuius range of values, still increases even
when all spins are flipped. It lies below the BCS critical field h.. It is interesting
that for A > A, hyirse increases almost linearly with A.
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Figure 3.7: Spirst/Sc and hypipsi/he vs. number of electrons N for A = 0.4. With
increasing N the first spin jump Sy, and the corresponding magnetic field h s
approach their BCS bulk values S, and k. (see egs. (3.6), (3.5)).
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Figure 3.9: hyire and h (in units of d) vs. X for N = 300.
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Chapter 4

Tunneling anomaly above
paramagnetic limit: known
results

In this chapter we introduce the notion of tunneling (or single-particle) density
of states (tunneling DoS). It is a quantity that measures the response of a sys-
tem to adding a single particle to it. The tunneling DoS can be measured via
tunneling experiments with single-electron transistors, where the electrons jump
individually from the lead to the sample. The tunneling DoS can be expressed
via the Green’s function of the sample and therefore it can be calculated using
the Feynman diagrammatic technique.

First we shall look at the tunneling DoS of a bulk superconductor. There it
turns out that the tunneling density of states is equal to the BCS quasiparticle
density of states. Then we present the results of Aleiner and Altshuler [7] for
the tunneling DoS of an ultrasmall grain above the paramagnetic limit, i.e for a
magnetic field that is large enough to cause a transition from the superconducting
to the normal state, as considered in chapter 3. These results were motivated by
the experiments of Wu et. al. [8], who made the first direct measurement of the
e-e interaction anomaly in a disordered 2D superconductor.

31
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4.1 The tunneling density of states

Consider a model of a tunneling experiment! (Figure 4.1). There is a lead on
the left side and a sample on the right side of the junction with a tunneling
barrier between them. A bias voltage is applied to the tunneling junction that
causes a chemical potention difference between the lead and the sample. So the
system is in non-equilibrium and a current can flow. The tunneling process can
be described by means of the effective tunneling Hamiltonian:

Hr = Z (Tkk,a;r(bkz + Tl:k’blt’ ak) s (41)
KK

where a' and b are the single-electron creators of the lead and the sample, re-
spectively. The full Hamiltonian is given by the sum

H = Hl + H2 + HT, (42)
where H; and H, are the Hamiltonians of the lead and the specimen, respectively.

The tunneling current can be expressed as the rate of the change of the number
of electrons on the lead. This rate can be found in the Heisenberg picture from

I= Qa = i[H, Qa]: Qa=c¢ Za'ltak- (4'3)
k

Since both H; and H, conserve the charge of the lead, only Hr gives a contribu-
tion to the current. In order to find the average current we have to find the averge
of the operator @, in the state where the chemical potentials of the both sides of
the junction are different. This is a non-equilibrium state and one cannot directly

1 The discussion in this section follows [19]. See also [20]

Figure 4.1: A tunneling experiment
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apply the usual equilibrium techniques like the linear response theory. But one
can use a standard trick which allows us to map the problem on an equivalent
equilibrium problem. It consists in making the following gauge transformation:

akx — Qk, bkl — bkleith (44)

This transformation shifts the energies in the sample at eV and therefore it
balances the chemical potentials. After this transformation the tunneling Hamil-
tonian becomes

HT — Xeith _i_X’refith’ (45)
where
X = Z Tkklaibkl, (46)
Kk’

and the tunneling current is given by
I =ie(Xe®Vt — XTeteVt), (4.7)

So, after the gauge transformation (4.4) we get a time-dependent perturbation
acting on an equilibrium state. It means that we can apply the Kubo formula and
calculate the current as the linear response of the time-dependent current oper-
ator (4.7) to the “external field” (4.5). The bias voltage eV gives the frequency
of the “external field”.

Now, according to the Kubo formula (see e.g. [20]), the average of the tunneling
current operator (4.7) in the lowest order of peturbation theory with the tunneling
Hamiltonian (4.5) as perturbation is given by

S t
T =i [ d{H(), 1) (48)
Consider the susceptibility x(w),

xw) =i [t (X, 1)), (49)

which describes the response of the tunneling current to the external field X (see
equation (4.6)). The tunneling current as a function of voltage V is related to
x(w) via

I(V) =2Rex(w=¢€V) (4.10)

In order to calculate x(w), first we consider the Matsubara susceptibility

Z dr{T, X (1)I(0))e"™", (4.11)

xoni0) =5 [
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and then continue it to the real frequencies. Substituting into (4.11) the expres-
sions for I and X from (4.7) and (4.6), we obtain

(T X (n)1(0)) =
e > T (Traf, ()b (7) (Tk2k' af, (0)bg, (0) — Tﬁkgakz(o)bﬁg(o)))
ki,k] k2 ki,
(4.12)
In abscentcef of superconducting correlations in the lead and the sample the av-

erages (a,a,,) and (bxby) are equal to zero. Therefore only the second term in
(4.12) gives a non-zero contribution. (This argument also holds if only one of the
sides of the junction is non-superconducting, which will be the case in the next
section.) So, we get
(T, X (1)1(0)) = —ie > |Tiaw |*Go (1, k) Go(—T,K'), (4.13)
Kk’

where Gy (7, k) = —(T,ax(7)al.(0)) and Gy(7,k) = —(T,bi(7)b.(0)) are the Mat-
subara Green’s functions of the lead and the sample, respectively. Writing the
Green’s functions as Fourier integrals and substituting in (4.11), we obtain

X (i) = =2ieT YD [T |*Go(iwm + i, k) Gy (1w, k'), (4.14)

wm kk’

where 7" is the temperature the factor 2 comes from the summation over spin
projections.

Now we perform the analytical continuation of the expression (4.14). We use the
expresses of the Matsubara Green’s function in terms of the spectral function,
i. e. the imaginary part of the retarded Green’s function (see e.g. [20]):

G(iwp,T1,T2) = — (4.15)

T J-o W — Wy

1/00 duw III]GR(L(),I'l,I'g)

As a result, the Matsubara susceptibility (4.14) becomes

( = —QZeTZZ ‘Tkk'| / /dwdw ImG ( )Ime (w’,k’)

wm Kk’ (1w + 182 — w) (iwn — ')
(4.16)
The sum over w,, can be calculated with the help of the identity (see [19])

1 nr(Epir) — nr(&p)
T = .
z Zwm + tw, — £p+k)(iwm - gp) Wy, — £p+k + fp (4 17)

It yields

nr(w) — nr(w')
w' —w + 18,
(4.18)

%
(i) = == 3" Tia? / dwdw' Im GE(w, k) Im GE(w', k') F
7T

kk’
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The analytical continuation of this expression to real frequencies is obtained by
substituting w+10 for of i€2,,. According to (4.10), the real part of the analytically
continuated expression yields the tunneling current

I(V)= de > | T [? /oo dwdw' §(w'—w—eV)Im GE(w, k)Im GE (W', X') (np(w)—np(w'))
kK -

(4.19)
Integrating over w eliminates the J-function and finally, we get:

%
IV)=4e Y T [ ZImGRK,w+ V) GE(K, w) [np(w) — np(w + V)],
Kk’ oo T
(4.20)
where ng is the Fermi distribution function. If we neglect the k-dependence of

the tunneling amplitudes Ty and set Ty = T, equation (4.20) becomes:

I(V) = 4re|Ty? /_ O:O dwve(w + V(W) [nr(W) — ne(w + V)], (4.21)
where )
Vo) (W) = - zk: Im Gf(b) (k,w) (4.22)

is the tunneling (or single-particle) density of states.

So, the knowledge of the tunneling density of states allows the determination of
tunneling current at arbitrary temperature. If 7" = 0 and the density of states
of the lead is constant, v,(w) = vy, the tunneling density of states of the sample
can be determined directly from the I — V-characteristic as

dl
vp(w) = 4me|To|*vo v (4.23)

—eV=w

since then the Fermi function becomes a step function and the difference np(w)—
nr(w + eV) forms a window of width eV'.

4.2 Tunneling density of states in bulk super-
conductors

Now we want to consider a normal-superconducting tunneling junction with a
normal lead and a superconducting sample. The tunneling density of states of the
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Figure 4.2: Tunneling density of states of Pb from the experiments of Giaver et. al. [21].
The gap and the singularity predicted by BCS theory (see equation (4.26)) can be seen
very well.

superconductor is given by the imaginary part of the retarded Green’s function
(4.22). The retarded Green’s function of the superconductor is (see [20])

w+ &k
w? — & — A? + 40sign(w)
Thus the tunneling DoS is given by

G (w, k) = (4.24)

v(w) = —1/ dk Im GF(w, k) = 1 /_O; dw sign (w)(w + €)6(w? — €2 — A?)

wJ (2m)3
(4.25)
After calculating the integral over the J-function, we obtain
12 T for |w| > A
v(w) =14 Vw2 - A? ’ (4.26)
0 for |w| < A,

where 1 is the non-interacting density of states. This can be written as 710 /0w,
which is exactly the BCS quasiparticle density of states, i.e. the density of states
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Figure 4.3: This figure from [22] shows the splitting of the tuneling DoS in bulk
superconductor in magnetic field (which is small enough not to destroy the supercon-
ductivity). The singularities occur at |w| = A £ E,/2. The Zeeman level splitting F,
corresponds to 2h in our notation, so E,/2 is the Zeeman energy of a single spin.

of quasiparticles with the dispersion law w? = A2+ £2. It has a gap betwen w = 0
and w = A and a singularity at w = A. So tunneling experiments can serve as a
check of the BCS theory. Such experiments were performed by Giaver et. al. [21]
in the early sixties and provided an important confirmation of the BCS theory
(see Figure 4.2).

If a magnetic field is applied, the DoS given by (4.26) splits in two diferent parts,
due to the Zeeman interaction. This is shown on Figure 4.3.

4.3 Tunneling density of states above paramag-
netic limit

Now we turn to the question, what happens if the grain is above paramagnetic
limit, i. e. if the magnetic field is large enough to produce a transition from
superconducting to a paramagnetic state as described in chapter 3. Naively one
would expect that the tunneling DoS should look similar to that of a normal
grain and therefore it should exhibit no singlarities. However, in experiments of
Wu et. al. [8], where the tunneling DoS of disordered 2D superconducting films
was measured, an anomaly above the paramagnetic limit was observed. The
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tunneling DoS had a dip at the energy of the order of Zeeman energy of a single
spin (see Figure 4.4).

Aleiner and Altshuler (in the following often referred to as AA) proposed a theory
which explains the anomaly in the tunneling DoS above paramagnetic limit [7],
[22]. We present here only the part of the theory concerning zero-dimensional
systems, where no disorder averaging has to be made, as is the case for ultrasmall
metallic grains.

AA explain the anomaly qualitatively in the following way [7]: “ the structure of
the ground state above the paramagnetic limit is similar to that without interac-
tion ... but the spectrum of excitations changes drastically due to the interaction
... The essence of this effect is that a spin-down electron tunneling into some or-
bital £q already occupied by a spin up electron creates an electron pair which can
mix with the empty orbitals and thus interact with superconducting fluctuations.
This mixing turns out to be resonant at some energy £ = E* and it leads to a
sharp singularity in the spectrum of one-electron excitation” (see Figure 4.5).

AA use the discrete reduced BCS model (2.1). Thus the vector index k in the

G (V} (109 0)

Figure 4.4: This figure from [8] shows tha experimentally measured tunnel conductance
of a disordered 2D superconductoing film. The supression of the conductance at zero
voltage is the usual Altshuler zero-bias anomaly. The satellite features are due to the
superconducting fluctuations.
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Figure 4.5: This figure is taken from [22] and shows the “structure of the supercon-
ductor above the paramagnetic limit. Electron tunneling onto the orbital £y creates a
spin singulet state on this orbital. At some value of ¢y the mixing of this singlet with
the empty states becomes resonant” [22].
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G?¢ (w1)

Figure 4.6: This figure from [22] shows the leading contribution to the self-energy (a)
and the propagator of superconducting fluctuations (b).
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Figure 4.7: Tunneling density of states above paramagnetic limit obtained by Aleiner
and Altshuler (see eq. (4.35) and text). The Figure is taken from [22].

general expression (4.22) has to be replaced by discrete index i:
1
v(w) =—=> ImGf(w) (4.27)
m =

AA calculate the single-particle retarded Green’s function for the electron at
the level ¢ using the diagrammatic technique. The Dyson equation reads (since
only retarded Green’s functions will be used, we drop the superscript R in the
following):

G = G = B, (4.28)
where GY_ is the non-interacting Green’s function

wy =w +10sgn(w) and 3, is the self-energy.

After summing up the leading contributions to the self-energy (see Figure 4.6),
AA obtain for the spin-down electron the self-energy

dA? 1

2, (w) = , 4.
Hw) Q wy+e—FE,/2+Qsgn(e; — E,/2) (430)
and the Green’s function
wy +e—E,/2—-Q
Gi(w) = S A , 4.31
Hw) (wy —&; — E,/2)(wy +e;— E,/J2—Q) — W¢§ (4:31)
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where

2
Q= \E2-A2, W,= %. (4.32)

During the calculation of the single-loop II(w) (see Figure 4.6(b)) AA replace the
sum over ¢ by an integral over de;, thus making an approximation of a continuous
single-electron spectrum.

Since AA consider the continuum limit, the summation over the index 7 in the
expression (4.27) for the tunneling density of states can be replaced by an integral
over dg;:

o w++5z E,/2-Q/2
;G” B ”0/ dsl—e + (wy — E,/2—Q/2)2 — W}
— E*
= —iyT “ (4.33)
\/(w — E*)?2 —-W¢
where .
E* = §(Ez + Q). (4.34)

Substituting this into (4.27) AA finally find the tunneling DoS for a spin-down
electron:

_ E*
Y lw | for |w— E*| > W,
v (w) = Viw—E)2—W¢ (4.35)
0 for |w—E* < W,

It has a gap at |w — E*| < Wy and singularities at w = E* + W;. For a spin-up
electron the same calculations lead to expressions, which can be obtained from
the corresponding expressions for the spin-down electron by changing the signs
of E, and 2. Thus the overall density of states v| + 14 looks like in Figure 4.3.
It is supressed by a factor two for |w £ E*| < W.
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Chapter 5

Tunneling anomaly above
paramanetic limit: new resluts

In this chapter we present the new results obtained with numerical methods
(DMRG and Richardson’s exact solution) for the tunneling density of states above
the paramagnetic limit. The numerical methods allow us to calculate the tunnel-
ing DoS for finite N and thus to study the deviations from the continuum limit
considered by Aleiner and Altshuler (see Section 4.3). The limitations of the nu-
merical methods are the available computational power (DMRG, exact solution)
and the complexity of algorithms (exact solution).

First we present the expression for the tunneling density of states, that contains
the excitation energies and matrix elements. These quantities are available both
with our numerical methods and with the analytical methods of Aleiner and
Altshuler, so they allow us to compare analytics and numerics. In the contin-
uum limit, which was considered by Aleiner and Altshuler, the numerical and
analytical results converge, providing a useful consistency check.

The tunneling density of states of a discrete system exhibits J-peaks, which cannot
be represented graphically. Therefore we (somewhat arbitrary) replaced the o-
functions by Gaussian peaks with the width equal to the level spacing. In the
continuum limit this representation yields a completely smooth density of states,
since the peaks become more and more close to each other.
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5.1 Tunneling DoS in terms of excitation ener-
gies and matrix elements

Expression (4.22) for the tunneling density of states contains Green’s functions
and therefore it can be evaluated using Feynman’s diagrammatic technique. This
was done by Aleiner and Altshuler [7], as described in the previous Chapter. Here
we use another representation of the tunneling DoS, which can be obtained from
(4.22) by expressing the imaginary part of the retarded Green’s function G%(k, w)
in terms of the spectral function A(k,w) , which in turn can be expressed in terms
of eigenenergies and matrix elements of the single-particle creation operators.
Namely, we use the following identities (see [23]), given in their 7' = 0 form:

Im G (k, w) = —%A(k,w), (5.1)

Ak, w) = 0(w) 3 [ | e[ wo)| 2m8(e) ! — w)
Z\W e o) 216N~ w), (5.2)
with &)+ = EN* — E, (5.3)

where | 1) is the ground state and Ej it’s energy for the N-particle system and
| NE1) and EN*! are the eigenstates and eigenenergies of the (N =+ 1)-particle
system enumerated by a discrete index n, respectively and 0(w) is the Heavside
step function. We see that the (N — 1)-eigenstates contribute only for negative
w and the (N + 1)-eigenstates contribute only for positive w. Because of the
particle-hole symmetry of the reduced BCS model, from now on we consider only
the particle sector, i.e only w > 0. Then the tunneling DoS introduced in Section
4.1 reads

v(w) > Im GR(k,w) = —ZAkw
k

1
™

(5.4)
= gz\ BN el o) S —

The ground state of an ultrasmall metallic grain above the paramagnetic limit
was discussed in Chapter 3 and has the form shown in Figure 5.1(a). It has a
certain number of blocked levels immediately above and below the Fermi energy
occupied by single electrons with spin parallel to the magnetic field. The remain-
ing unblocked levels have a certain probability to be doubly occupied or empty.
For A = 0 the Np unblocked levels above er are empty and Ny unblocked levels
below e are doubly occupied. For A # 0, pairing fluctuations will lead to a very



5.1. DOS VIA EXCITATION ENERGIES AND MATRIX ELEMENTS 45

N

Figure 5.1: State change after the tunneling event. Adding a spin-down electron to
the ground state (a) produces two different kinds of states: the new electron can block
one of the previously unblocked levels (b), or it can unblock a previously blocked level
i by building a pair with a single spin-up electron on it (c).

small amplitude for the highest-lying doubly occupied levels to be empty and the
lowest-lying empty levels to be doubly-occupied.

Now consider what happens during a tunneling event. If the number of electrons
on the grain before tunneling was N, then after the tunneling event, where an
additional electron jumps onto the grain, the number of electrons becomes N + 1.
The equation (5.4) tells us that in order to obtain the tunneling density of states,
we have in principle to consider all possible eigenstate of the (N + 1)-electron
grain in magnetic field. Following the general discussion of the eigenstates of the
reduced BCS Hamiltonian in 2.2 and concentrating only on the ground state and
the lowest-lying excitations, we consider two possibilities to obtain the (N + 1)-
eigestate from the N-ground state (see Figure 5.1):

1. blocking one of the empty unblocked level by putting the new electron on
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it (Figure 5.1(b))

2. unblocking one of the Npg blocked levels by adding a spin down electron
to, say, level i, thereby building a pair (shaded in Figure 5.1(c)) with the
single spin-up electron already on it.)

In contrast to the situation in absence of a magnetic field, above the paramag-
netic limit the first mechamnism produces a homogeneous density of states and
shows no interesting features (essentially because the initially empty levels lie
so far above the paired levels, and consequently are so weakly affected by pair-
ing fluctuations, that blocking one formerly empty level has virtually no effect
on pairing correlations). That is why Aleiner and Altshuler considered only the
second mechanism, which we also do from now on.

Unblocking the previously singly occupied level 7 produces a number of possible
states that can be labelled according to the distribution of filled and unfilled
levels at A = 0. We denote such states by | a, i) and their energies by &, ;, where
a = 0,..., amee counts all the possible states corresponding to the same new
unblocked level 7, in ascending order of energy. In Figure 5.2, the states |0, i)
and |1, 7) are shown. If we denote the ground state before tunneling by |gs),

0.0 L0

NF NFE

Figure 5.2: The two lowest states |0, ) and | 1, i) corresponding to the new unblocked
level <.
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then the tunneling density of states (5.4) reads

) 2
v(w)=>>" ‘(a, il |gs)‘ 0(€a,i — w), (5.5)
j a,i
where we use the discrete index j to enumerate the single-particle states of the
grain instead of vector index k in the general expression (5.4).

It is easy to see, that the matrix elements in (5.5) are non-zero only for j = i.
Indeed, the state | «, i) for 7 # j has a single spin-up electron at level j and the
state c;r| gs) has a pair of a spin-up and a spin-down electrons at level j, so that
their scalar product gives zero because of the Pauli principle. So, (5.5) becomes

v(w) = 2| il [gs)] d(eai—w). (5.6)

This means that to calculate the tunneling DoS we have to know the matrix
elements |(oz, ilel |gs)‘ and the excitation energies €, ;. The DMRG method
(see Section 2.4 and Appendix B) enables us to calculate only the ground state
and its energy in the subspace spanned by the unblocked levels. The ground state
in the subspace of the unblocked levels is the state | 0, ), for which, at A = 0, the
lowest unblocked levels are filled with pairs and the all higher-lying unblocked
levels are empty (see Figure 5.2). So, the matrix element (0, i|c! |gs) and the
excitation energy €o; are available via DMRG.

The higher states |« > 0, 7) are not available with our DMRG code. Therefore
we used the Richardson’s exact solution to calculate the enegies ¢, ; for @ > 0
and to check the DMRG calculations for &« = 0. The matrix elements cannot be
calculated with the exact solution with the available amount of computational
power. But fortunately, there is a sum rule which yields an upper bound for the
contribution of the higher states. Namely, if we consider all eigenstates |2 *')
of the (N + 1)-electron system, then the sum

2
Si=Y [ el |es)) (5.7)
can be written as

Si=d(gs|ci [ YTy - (Wl | gs). (5.8)

The states | ™!) build a basis of the (N + 1)-particle Hilbert space, so the sum
S | YNy (pNFL| s equal to the identity operator. Thus we get

Si = (gs| ci-cl_| gs) = 1 (5.9)
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Since the states | o, i) build a subset of the states | *!), the inequality
. 2 . 2
> [silel lgs)| <10, ifcl |gs)) (5.10)
a>0

has to be be fulfilled.

5.2 Poles of the Green’s function

Let us consider the retarded Green’s function for the spin-down electron at the
formerly singly occupied level ¢ with energy ¢; obtained by Aleiner and Altshuler
(see chapter 4.3):

UJ++€Z—EZ/2—Q
(wy —&; — E,/2)(wy +& — E,/]2—Q) — W&’

Gl (w) = (5.11)

with
2

[dA
wy =w++1in, Wy= d—, Q=4/E2- A2 (5.12)

where n = 0sgn(w), €; ranges between E,/2 and E,/2, and E, /2 gives the Zeeman
energy of a single spin.

The poles of the Green’s function of the N-particle system in the limit N — oo,
which was considered by AA, determine the quasiparticle excitation energies of
the system [24]. To obtain them, we have to solve the following quadratic equation
for w:

W —w(E, + Q)+ E2/4 — &} + Qe; + E,/2) — W = 0. (5.13)

The solution of (5.13) reads

1
wo,i = 5 (B + QF V(28 — Q)2+ 4W), (5.14)

“w_»

where and “+” corespond to wy; and w; ;, respectively. There are two
branches in the excitation spectrum separated by 2W, (see Figure 5.3). The
curves wy ;(g;) and wy ;(e;) are hyperbolas symmetric with respect to the point
g; = Q/2, w = E*, where

B = %(Ez +9) (5.15)

After performing the partial fraction expansion of the Green’s function (5.11),
going into the limit  — 0 and using the identity

. Ui
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~<
~
~~ -
~~ g
S~ -

Figure 5.3: Poles of the Green’s function (5.11) wg, wy vs. energy of the additional
unblocked level ¢; obtained from the Green’s function (5.11). There are two branches
separated by a gap Wj. The extrema points of the excitation energies lie at &; = /2.

Q"2 ¥

Figure 5.4: Weights My ;, My ; of the delta peaks coresponding to the poles of the
Green’s function (5.11) wp, wy vs. energy of the additional unblocked level €; obtained
from the Green’s function (5.11). The range of values of ¢; where the weights signifi-
cantly change lies around the extrema points of the poles as function of ¢; (see Figure
5.3) and has the width Wj.
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we get
ImG; = —m (M, 6(w—wo,i) + My,i 0(w—wr,5)), (5.17)
where
1 2e; — Q
Moy, == 1+ 2 , (5.18)
2 V(2e; — Q)2 + 43
where “+” corresponds to M, ; and “~” corresponds to M; ;. The tunnelling
DoS 1
V(OJ) = ——ZImGu (519)
[

thus will be the sum over delta peaks at quasiparticle energies wy ; and w; ; with
the weights M, ; and M, ;, respectively.

The representation (5.19) allows us to elucidate the reasons for the occurance of
singularities in the tunneling DoS, which are not clear from the formal calulation
of Aleiner and Alrshuler (see Section 4.3). Namely, we will see that the singular-
ities occur because of the eztrema in the quasiparticle dispersion law wq(),i(€;)-

The behaviour of M, ,; and M, ; as functions of ¢; is shown in Figure 5.4. In
the limit d — 0, Wy — 0 and the matrix elements become sharp step functions
around the extremum point of the excitation energies £; = /2. This means, for
d — 0 the weights M, ; will produce a cut off for the poles at wy ; for ; > §2/2
and the weights M, ; will cut off the poles w; ; for ¢; < £2/2. Looking at Figure
5.3, we see that for d — 0, the sum over wy ; in (5.19) will produce é-peaks at
the energies up to E* — W, while the sum over w; ; will produce J-peaks at the
energies from E* 4+ Wj. The tunneling DoS thus will have a gap of width 2Wj,.
Since the weights of the peaks are equal, the tunneling DoS is only determined
by the density of the peaks on the energy scale, which can be obtained as the
derivative of the inverse functions of wy), i(€;)

862'

B awo(1),i

v(w)

(5.20)

Wo (1),i=wW

The functions €;(wo(1),;) can be obtained from the equation (5.13) by interpreting
it as quadratic equation for €;, which will in general have two different roots, one
of which will not contribute because of the cut off produced by the weights M ;
and M, ;. Qualitatively, one readily sees from Figure 5.3, that at the edges of
the gap two singularities appear since the functions wg(),i(€;) have extrema at
g; = /2. Performing the calculations one obtains in this way the same density
of states as given by equation (4.35).

Now the following question arises: how do the quasi-particle poles wy ;, wi ; and
their weights M, ; and M, ; correspond to the excitation energies and matrix
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elements in (5.2)? To clarify this question, we have to take the continuum limit
in the finite N-expression for ImG; :

Im Gi(w) =~ Y [(o i} [g9)] 8(cai —w) (5.21)

In the continuum limit the energies €, ; coalesce and build continuous range of
values with exception of some possible discrete points n = 1,..., Npmae.. For
the continuous range the sum over the discrete index « in (5.21) becomes an
integral over a continuous variable £, whereas for discrete points the sum has to

2
be retained. If we denote ‘(oz, ilel | gs)‘ for the continuous range as m(e) and
for the discrete points as m,,, we get:

2 lim InGilw) = Ymd(en) + [ de D(e)m(e) o(e — )

T N—oo (522)
= Zmn5(6n)+m(w)D(w)v

where B denotes the continuous range of values ¢ and D(g) denotes the density
of states at €. The sum rule (5.10) requires

> my, + /Bdw D(w)m(w) = 1. (5.23)

Equation (5.22) shows that continuous ranges of energy values produce no peaks
and only contribute whith a smooth background. Therefore we have to identify
wop,; and wy, ; with some of the excitation energies ¢, ;, which in the continuum
limit are spearated from the others so that they build discrete points in the
excitation spectrum for given i.

It is easy to see that the state |0, i) (Figure 5.2) is energetically separated from
the state |, i) with a > 0, Since |0, 7) is the lowest state associated with
tunneling into level 7, in the continuum limit the equations
St 2
woi = €0,i Mo,i = {0, i|c]_ | gs)| (5.24)
must hold.

Comparing w; ; and €1 ; for A = 0, we see that state |1, i) can be one of the
states that in the continuum limit correspond to the second quasiparticle pole,
wi,;. Indeed, for A = 0 the state |1, ¢) has at the level N+ 1 above e a pair of
electrons, one of these is the additional electron with kinetic energy (Ng+1/2)d

1This discussion follows [25], § 8.



92 CHAPTER 5. TUNNELING ANOMALY: NEW RESULTS

(the first level above e = 0 has by definition the energy 1/2d) and magnetic
energy h, and the other is the electron that initially was at level 7 in the state
| gs)- So,

e1,iA=0) = (Np/2+1/2)d+h+ (Ng/2+1/2)d—¢;

— (Ng+1)d+h—e (5.25)
For wy ; at A =0 we have from (5.14)
3
wl,i()\ = 0) = §Ez — &;. (526)
Now, h corresponds to 1/2E, and Ngd to E,, so (5.25) becomes
3
61},’()\ = 0) = §Ez —&; + d, (527)

which differs from (5.26) only by d, which in continuum limit goes to zero.

The calculation of 1 ; at A # 0 with the exact solution in the next section shows,
that in continuum limit £, ; and w,,; converge.

5.3 Tunneling DoS for finite N

Here we present our new resluts for the tunneling DoS of ultrasmall supercon-
ducting grains above paramagnetic limit. Using DMRG and exact solution, we

calculated the excitation energies ¢, ;, corresponding to the final states |, i)
2
, which enter the

with @ = 0, 1, 2, 3 and the matrix elements ‘(a, 0lcl |gs)
expression (5.6) for the tunneling density of states.

With DMRG we only could calculate energies £y ; and the matrix elements

L(O, ilcl | gs) 2, since the state |0, i) is the ground state in the subspace spanned
y unblocked levels and our DMRG code does not allow the calculation of excited
states. With the exact solution we could calculate the excitation energies ¢, ; for
a large range of the values of parameters (e. g. for A = 0.4 for N up to 300), which
provided a good check of the DMRG, and the enrgies ¢,,; with & > 0 only for a
limited range of parameter values. The reason for this was mentioned in Section
2.3: the calculation of the excited states (i. e. excited states in the subspace of
unblocked levels) with the exact solution requires a more complicated algorithm
for the numerical solving of the Richardson’s equations than the one that we
used. With our algorithm the solution for the excited states is only possible for
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Figure 5.5: Excitation energies gy ; (calculated with DMRG) and e, for « =1, 2, 3
(calculated with the exact solution) corresponding to tunnelling into level ¢ and posi-
tions of the AA quasiparticle poles wg ;, wi,; (see eq. 5.14) in units of wp vs. energy ¢;
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Figure 5.7: Gauss-smeared density of states v(w) normalized to the non-interacting
density of states vy for the lowest-lying excitations |0, 7). The thick lines are the
analytical curves (see eq. (4.35)) having a singularity at w = E* — Wj. The energy is
given in units of wp.
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Figure 5.8: Position of the peak in the gauss-smeared numerical DoS (calculated
with DMRG) for the lowest-lying excitations and position of the left singularity in the
analytical DoS of AA, E* — Wy, (see eq. (4.35)) in units of wp vs. number of electrons
on the grain N.
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a limited range of parameters. For example, for A = 0.4 it was not possible to
obtain a solution for N > 120.

In Figures 5.5 the positions of quasiparticle poles wy ;, wl, 7 and the excitation
energies €, for =0, 1, 2, 3 and in Figure 5.6 the weights M, ; and the matrix
elements ‘(0, ilcl | gs) ‘2 ate plotted as functions of the energy of the tunnel level
¢;- The number of blocked levels Np is chosen to lie closely above the value which
corresponds to the paramagnetic transition point. The coupling parameter A has
been fixed to the value A = 0.4. The total number of electrons is varied from 60
to 120 in Figure 5.5 and from 100 to 220 in Figure 5.6. The energies are plotted

in units of wp. We see that with increasing N, €y ; and €1,; converge to wy ; and
2

wy, 4, respectively and ‘(0, ilel | gs)‘ converge to My ;.

From the excitation energies and the matrix ellements we calculated the contri-

bution of the lowest lying excitations |0, i) to tunneling density of states. We
replaced the d-functions in (5.6) by normilized gauss distribution functions:

v(w) = Y0|0, il el |es)| plens - w), (5.28)

where
1

oV 2T

p(z) = 5,2

So we smoothed the singular § peaks and obtained the tunneling DoS as a con-
tinuous function. In Figure 5.7 the gauss-smeared tunneling density of states
normalized to the non-interacting value vy = 1/d is shown for A = 0.4, N =
100, 140, 180, 220 and Npg lying closely above their values at the paramagnetic
transition point.

72
exp <——> with o =d/2. (5.29)

The tunneling DoS has a peak at the values of energy closed to the maximal
possible energy. It comes from the extremum point of the excitation energy & ;
as function of the energy ¢; of the tunnel level i (see Figure 5.5), which leads to
a high density of peaks ¢(g9; — w) at the extremal value of €y ; . For increasing
N, the peak becomes stronger, approaching the analytical singularity.

In Figure 5.8 the position of the peak in the gauss-smeared finite-N tunneling
DoS and the position of the lower singularity of the analytical DoS, E* — W, (see
eq. 4.35) are plotted against N for A = 0.4, N closely above the paramagnetic
transition point and N changing from 20 to 130. The numerical peak always
comes at lower energies than the analytical singularity. With increasing N, the
numerical finite-N and analytical continuum limit curves approach each other.

What about the higher excitations ? Looking at Figure 5.5 we readily see that
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Figure 5.9: Gauss-smeared finite-N tunneling DoS due to excitations |0, ¢) for small
values of N and A = 0.4. With decreasing N, the peak vanishes.
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Figure 5.10: Matrix elements ‘(O, i c}: | gs) ‘2 for small values of N and A = 0.4. With
decreasing N, the matrix elements increase and for N < 60 become all larger than 0.5.
Thus for N < 60 due to the sum rule (5.10) the contribution of the states |« > 0, 7)
to the tunneling DoS is smaller than that of the lowest state |0, ).
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there is a gap in the excitation spectrum between the states |0, 7) and the state
|1, 7). Since we could not calculate the matrix elements for the states | o, ) with
a > 0, we could not make plots like in Figure 5.7 for the contribution of this
states to the tunneling DoS. We can only make some qualitative observations
from the behaviour of the excitation energies €, ; as functions of the energy of
the tunnel level ¢; and from the knowledge of the matrix elements and the sum
rule (5.10).

As already mentioned, non-trivial behaviour of the tunneling density of states
comes from the non-trivial behaviour of the excitation energies. A peak in the
DoS at some point can only occur if the excitation energies agglomerate at this
point. This happens if the the function ¢, ;(¢;) has an extremum. From Figure
5.5 we see that the ¢, ;(¢;) for & > 1 only have extrema for the lowest values of ¢;
while €7 ;(¢;) also has an extrema closely below the highest value of ;. The sum
rule tells us that the contribution of the higher states altogether and the lowest
state | 0, 7) is smaller than 1.

From Figure 5.6 we see that for low levels ¢ the lowest excitations get almost the
whole weight and with increasing ¢; more weight comes up to the higher exci-
tations. This means that the peaks corresponding to the extrema of ¢, ;(¢;) for
a > 1 that lie at low ¢; have only a very low weight while the peak corresponding
to the extremum of ¢; ;(¢;) which lies at a high value of ¢; could have a weight
comparable to that of the lowest peak. Since we have seen that the energies ¢, ;
and w; ; converge in the large N-limit, the state | 1, ¢) must be one of the states
that in continuum limit contributes to the higher AA singularity at E* + W,.

So far we have seen that in the limit of large electron numbers our numerical
results and the analytical results converge. We found that the state |0, ¢) is the
only state that contributes to the lower singularity at w = E* — W), and that the
state | 1, 4) contributes to the higher singuarity at w = E* + Wj. For the states
states | o, i) with o > 1 we observed no singuarities. But since the energies ¢, ;
with @ > 0 were only available for a limited range of parameters (for A = 0.4 only
N up to 120 were available), we cannot exclude the possibility that for higher
values of N some of the states |«, i) with & > 1 also produce peaks and in the
limit N — oo contribute to the higher AA singularity.

We would like now to discuss the deviations between the tunneling DoS for small
N and the continuum DoS of Aleiner and Altshuler. Instead of two singularities
(for w > 0) that ocuur in the continuum limit, for small N (and generally, for
finite V) there are peaks which become weaker with decreasing N as one can see
from Figure 5.7. From 5.8 we see that the lowest peak in the finite-/V DoS lies
always lower than the lowest AA singlarity and the that distance between them
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increases with decreasing N.

In Figure 5.9 the gauss-smeared tunneling DoS for small values of N and A = 0.4

2
and in Figure 5.10 the corresponding matrix elements |(0, ilel| gs)‘ are shown.
For N =80 (A/d = 6.6) there is a sharp peak, while for N =20 (A/d = 1.6) the
peak has almost vanished.

2
, increase with

The matrix elements for the lowest excitations, ‘(O, ilel | gs)
decreasing N (see Figure 5.10). For N < 60 the matrix elements are larger
than 0.5 for every i. The sume rule (5.10) then yields that the matrix elements
corresponding to higher excitations must be smaller than 0.5. This means that
for N < 60 the strength of the higher peak is smaller then the strength of the
lower peak.

It is also interesting to see, how the peak in the DoS changes for a given grain if
the magnetic field is increased. As we know from Chapter 3, above paramagnetic
limit the number of blocked levels, Ng, increases linearly with the magnetic field.
In Figure 5.11 we plotted the gauss-smeared finite-N tunneling DoS for A = 0.4,
N = 100 and different values of Ng. The strength of the peak decreases with
increasing Ng. The physical reason for this is that with increasing Ng the amount
of unblocked levels and thus the number of correlated electrons decreases.

In Figure 5.12 we plotted the position of the lower analytical singuarity, E* — Wj,
and the position of the peak in the finite-NV DoS vs. N for the same values of
A and N as in Figure 5.11. For Np at the paramagnetic transition point both
curves almost coincide. If Npg increases, the deviation increases slightly, but
remains small.

We see that in contrast to the form of the anomaly in the tunneling DoS, which
in the continuum limit remains to be a singularity with increasing magnetic field,
but for finite NV is a peak, which strength decreases, the dependence of the position
of the anomaly on the magnetic field remains for finite N almost the same as in
the limit N — oo.
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Figure 5.11: Gauss-smeared finite-N tuneling DoS for fixed A and N and variable
Np invreasing in steps by 10 from N = 14 (leftmost step), lying closely above the
paramagnetic transition point, up to Ng = 94 (rightmost step). The strength of the
peak decreases with increasing Np.
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Figure 5.12: Position of the lowest peak in the finite-N DoS and the position of the
lower analytical singularity, E* — W) (see eq. (4.35)), vs. N for fixed A and N .
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Chapter 6

Conclusions

In this thesis we considered ultrasmall superconducting metallic grains driven by
an applied magnetic field to a paramagnetic state. We analized the transition to
a paramagnetic state and the tunneling density of states above the paramagnetic
limit.

In Chapter 3 we considered the transition from superconducting to a param-
agnetic state using DMRG and Richardson’s exact solution. We calculated
the magnetization as function of magnetic field by determining the energeti-
cally optimal number of the blocked (singly occupied) levels. For grains with
small electron numbers N or small coupling constants A, for which A/d S 1,
we observed that they behave purely paramagnetically: their spin increases in
steps of 1 (in units of h) at uniformely spaced discrete values of magnetic field
h =d/2,d(1/2+1),d(1/2+ 2),.... With increasing A or N, the spin change
at the first step, Sfirst, and the corresponding magnetic field h 5 increased (see
Figures 3.5 and 3.6). We saw that for fixed A and increasing N, Syirs; and hyrg
converged to their bulk values S, and h, predicted by the BCS theory (Figure
3.7).

In Chapter 5 we calculated the tunneling density of states above the paramagnetic
limit for finite N numerically. This allowed to study the deviations from the
theory of Aleiner and Altshuler (AA) (summarized in Section 4.3), which uses
the approximation of a continuous single-electron spectrum. In Section 5.1 we
expressed the tunneling density of states in terms of excited states |, i) that
are created after a spin-down electron tunnels onto the grain and builds a pair
with a spin-up electron at the previously blocked levels i (see equation (5.6) and
Figures 5.1, 5.2). In Section 5.2 we analized the behaviour of the AA quasiparticle
poles wy ; and w; ; for a spin-down electron tunneling into level ¢. We saw that

61
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singularities ocucur due to extremal behaviour of the quasiparticle excitation
energies as functions of the energy ¢; of the single-particle level i.

In Section 5.3 we calculated the excitation energies €,,,; for o« = 0, 1, 2, 3 and

2
matrix elements ‘(O, i|cl_|gs)|, which enter the expression (5.6) for the tunnel-
ing DoS. In the continuum limit the excitation energies € ; and € ; converged to
the analytical quasiparticle poles wy ; and w; ;, respectively (see Figure 5.5), and

the matrix elements ‘(0, ilel | gs)‘2 converged to the weights M ; of the lowest
poles wy ; (see Figure 5.6). Thus we identified the states | 0, i) as the only states
contributing to the lower AA singularity and the states | 1, 7) as one of (possibly
several) states contributing to the higher AA sigularity in the continuum limit.

We calculated the contribution of the states |0, i) to the tunneling density of
states by replacing the singular delta-peaks in the expression (5.6) with normal-
ized gaussian peaks with the width equal to the single-electron level spacing d.
Thus we obtained the tunneling DoS as a continuous function. We observed
that our numerically calculated DoS had a peak, which strength increased with
increasing electron number N and approached the lower AA singularity (see Fig-
ure 5.7). The position of the peak and the position of the lower AA singularity
converged with increasing N (see Figure 5.8).

For small N the deviations of the tunneling DoS from the continuum limit can
be summarized as follows:

e for finite N the tunneling DoS has peaks instead of singularities in the
conctinuum limit

e the lower peak lies always below the lower singularity (see Figure 5.8)

e the strength of the lowest peak decreases with decreasing N, for NV so small
that A/d < 1 the peak vanishes (see Figure 5.9)

e for small N the strength of the higher peak (or, possibly, several higher
peaks) is lower than the strength of the lower one (see Figure 5.10)

We also analized the behaviour of the tunneling DoS for a fixed grain with in-
creasing magnetic field h. We saw that the strength of the lower peak decreases
with increasing h so that for h corresponding to Np closely below N (i.e. when
almost all spins have flipped) the peak vanished (see Figure 5.11). The position
of the lower peak, however, is well described by the continuum limit expression
E* — W, (see Figure 5.12).
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In this thesis we could not calculate the matrix elements for the states | «, 7)
with @ > 0 and the energies of this states were only available for a limited range
of parameter values (for A = 0.4 only for N up to 120). Thus we could only
estimate the contribution of these states to the anomaly by means of the sum
rule (5.10). We observed that the excitation enrgies £, ; behave extremally and
thus should produce a peak in the tunneling DoS. For the energies ¢, ; with oo > 1
we observed no extremal behaviour. It would be interesting to investigate the
contribution of the states |« > 0, ) in more detail. An open question is, whether
for large values of N the states |, i) with @ > 1 also produce peaks and in the
limit N — oo contribute to the higher singurarity.
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Appendix A

Transformation of Richardson’s
equations

As we know from 2.3, the roots of the Richardson’s equations (A.1) bulid pairs
whose elements approach each other as the coupling parameter A is increased.

n

1-%L+ Y M g u=1,...,n (A1)
;2B S Bu— By

After the roots become equal they turn to a complex conjugated pair. This means
that the Richardson’s equations become singular for some values of A\. For the
sake of numerical solving of the equations this singularities must be separated by
some appropriate parametrization of the Richardson’s parameters E,,.

Let n be the number of electron pairs. If we enumerate the roots from the bottom
to the top, then for the ground state the pairing of the roots is as follows:
e if n is even, the roots Fy,_1 and Ey,, a = 1,..., n/2, build a pair
e if n is odd, the lowest root FEy stays real and the roots Fs,_1 and FEs,,
a=1,..., (n—=1)/2, build a pair.
Therefore we parametrize the Richardson’s parameters as follows [9]:

E2a71 = ga - ina
) A2
E2a = ga + 27, ( )

Here £ is purely real, whereas 7 is purely imaginary before the roots become
complex and real after the roots become complex. After substituting (A.2) into
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the Richardson’s equations, adding and substracting the equations for v = 2a—1
and v = 2a one finds:

1 U 2e; — &, 22, (1 + ¥a)
- z J
A\

iztazact (26§ = &) +va(2d — p2)  pa(l = ya)® — 22(1 + ya)?
n(n=1
2(E0 - 5&) ? (22 ) 461)(1(51?(1 + 77[? + 772)

=0,
(Bo —&)*+m2 iz (&Gt +m2) —dmpn?
(A.3)
1 2
2 2 yaz 7 T Z e 2 2
pa(l — Ya)? — xa(l + Ya) j#2a.2a—1 (25j —&a)?+ Ma
_ 2Yq _ Z 4ya(§ga - 771? + 775) -0
(Bo—&)2+m2 7 (& +m5 +m2)? — dmpn? ’
where we introduced further real variables
2
Mo
x = f — E€2g—1 T €2q, Yy = )
a a 2a—1 2a a 1% _ ,02 (A4)
Pa = €24 — €241, gba = fb - ga

The upper limit in the sum over b is n/2 if n is even and (n — 1)/2 if n is odd.
The terms containing Ey occur only for odd n.

The equations (A.3) contain no singularities any more and can be solved for the
variables x, and y, using the Broyden’s algorithm for the initial values coppe-
sponding to the ground state. However, for large particle numbers or large \’s
the algorithm fails to converge. If the initial values corresponding to some ex-
cited state are chosen, then for A beyond some critical value no solution with real
x, and y, exists. The reason is that the pairing between the roots changes so
that the parametrization (A.2) is not appropriate any more. It turns out that
the roots behave in quite a complicated manner and the pairing can change as A
increases [15].
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Details of the DMRG method

Sierra and Dukelsky [26] use the momentum-space DMRG algorithm to find the
ground state of the reduced BCS Hamiltonian Hgcgs. They choose the system
block of the Hilbert space to be spanned by the single-electron levels above the
Fermi energy €r and the environment block to be spanned by the levels below
er (see Figure B.1).

Sierra and Dukelsky exploit the particle-hole symmetry of the Hamiltonian, which
means that after performing the following canonical transformation

b;rv . j=1,...,N/2
P— /2+1_J50— ? ? ) 1
Cio . '
! { aj-nj2,e  J=N/2+1,..., N (B.1)

and choosing the zero of the energy scale at 1/2 (N + 1 — A), i. e. making the
transformation

Sj—)gj—g(N—{—l—)\), (BQ)

the Hamiltonian (2.1) can be rewritten in terms of a; ,, b; , as

1 N 2
~ Hpos = K4+ K — \(AUA + BB + AB + ATB') - (5) . (B3)
N/2 N/2
K4 = gl _a;,, AT=Y"al al _, B.4
17,077 T, + 1,
j:l,g’::l: =1

where £ = j — 1/2+ )/2 and K® and B can be obtained from K“ and A by the
particle-hole transformation a; , <+ b; _,, under which the Hamiltonian (B.3) is
invariant.
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Energy
new level
system
(particle states)
Ept--

environment
(hole states)

new level

Figure B.1: Block configuration for the DMRG algorithm for the ground state of the
reduced BCS Hamiltonian. The states above ep are the particle states, the states below
er are the hole states. The ground state can be written as a sum of the tensor products
of particle and hole states (see equation (B.5)), which allows one to apply the infinite
system algorithm.

Because of the blocking effect, only the unblocked levels have to be included
into the Hilbert space, thus the basis states will have only doubly occupied or
empty levels. Sierra and Dukelsky [17] introduce the paticle and hole states,
the particle states defined as states having some particles (pairs of electrons with
opposite spins) at some levels above Fermi surface and the other levels empty,
and the hole states defined as the states obtained from the Fermi sea (where
all levels below ¢ are occupied with pairs of electrons with opposite spins) by
annihilating the electron pairs at some of the levels below € and thus creating
holes at this levels.

In terms of the particle and hole states the ground state of Hgcg can be repre-
sented in the form

8= 3 asll) | l)a® | 5D, (B.5)

l «o,p=1

where the particle state | «,1)4 contains [ particles and the hole state |5,{)p
contains [ holes and m; gives the multiplicity of this states. The number of
particles and the number of holes have to be equal in order to conserve the
particle number.

The particle states belong to the subspace of the Hilbert space spanned by the
single-particle states above the Fermi surface and thus to the system block,
whereas the hole states belong to the subspace spanned by the single-particle
states below the Fermi surface and thus to the environment block.
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In the DMRG algorithm of Sierra and Dukelsky at the beginning the superblock
is chosen having N = 4 energy levels, being the closest two particle and hole
states near ep. The superblock has to be diagonalized in the sector of the Hilbert
space, where the number of particles is equal to the number of holes. A new
superblock is builded by adding the closest particle state to the system block and
the closest hole state to the environment block.

Sierra and Dukelsky exploited the particle-hole symmetry of the ground state
which implies that the reduced density matrix in the particle subspace coincides
with the reduced density matrix in the hole subspace. In this thesis we do not
suppose the particle-hole symmetry of the states but nevertheless, we use the
particle and hole states as bases of the system block and the environment block,
respectively.

We used the DMRG for calculating the ground state of an ultrasmall metallic
grain in presence of a magnetic field in Chapter 3 and for calculating the excited
states |a, 0) and matrix elements (0, 7 |cl_|gs) entering the tunneling density
of states in Chapter 5 (see equation (5.6) and Figure 5.2). The DMRG can be
applied to these states since they are ground states in the Hilbert spaces spanned
by the corresponding unblocked levels.

Nr
0
(]
>
@
@
2 2
a
o system block
1
Ng oo
0
(]
,,,,,,,,,,,,,,,,,,,,,,, >
<@
€ 3
,,,,,,,,,,,,,,,,,,,,,,, ~
[&]
i=]
o]
1 o ______._
1
= environment block
> 2
<@
Q
o
e
NE

Figure B.2: Intial superblock and environment block configuration for the ground
state in presence of a magnetic field.



70 APPENDIX B. DETAILS OF THE DMRG METHOD

Nr
0
(]
>
Q
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]
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1

N
system block
i
)

[ environment block ] ]
[2]

a 2
>
@
Q
o
e

Nr

Figure B.3: Initial system block and environment block configuration for the state
|0, 7). The system block contains the additional unblocked level and the lowest particle
level of the ground state. Dashed lines denote blocked levels not included into the
Hilbert space of DMRG.

The ground state in presence of a magnetic field is discussed in Chapter 3.3. It
has Ng/2 blocked levels above er and Ng/2 blocked levels below er. This levels
only contribute with their kinetic energy and do not interact with the electrons
at the unblocked levels. The DMRG algorithm is used to calculate the energy
E;n: of the interacting electrons for different values of Ng in order to find the
energetically optimal value of Ng. The only change in the algorithm compared
to the algorithm for the ground state without magnetic field is that the particle
levels start at ep + Np/2d and the hole levels start at e + Np/2d (d is the level
spacing) (see Figure B.2).

For the calculation of the state |0, i) and the matrix elements (0, 7| c_ | gs) we
take into account that there is an additional unblocked level 7, i. e. an additional
particle level, and that the number of particles N, and the number of holes N,
are now related by N, = N, + 1. For this reason the initial superblock is choosed
containing the lowest hole state and the lowest two particle states (see Figure
B.3). This choice insures that after subsequently adding a new particle and new
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hole after some number of steps we reach all the levels.

Furthermore, in order to calculate the matrix elements between the ground state
and the state |0, 7), both states have to be represented in the same basis. This
is acchieved by letting the level ¢ be unblocked during the calculation of the
ground state and assigning to it a huge energy of say 10000d, which makes it
very unprobable for this level to be occupied. The same initial superblock is
chosen for the ground state as was chosen for the state |0, ¢). Then all steps of
the algorithm are made simultaniously for the both states. At the step where
the reduced density matrices are calculated for the ground state and the state
|0, i), they are devided by 2 and added. The obtained matrix is diaoganalized
and its m eigenstates with the highest eigenvalues provide a basis optimal for
representing the both states.
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