
PHYSICAL REVIEW B 67, 064506 ~2003!
Two pairing parameters in superconducting grains
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Unlike bulk superconductivity, where one energy scale, the energy gap, characterizes pairing correlations,
we show that in small superconducting grains there exist two different such quantities. The first characterizes
collective properties of the grain, such as the condensation energy, and the second single-particle properties. To
describe these two energy scales, we define two corresponding pairing parameters, and show that although both
reduce to the bulk gap for large grains, this occurs at different size scales.
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I. INTRODUCTION

The question of how superconductivity is affected
small sample size, raised already by Anderson in 1959,1 has
experienced a recent revival of interest, which started w
the experimental work of Ralph, Black, and Tinkham.2,3 In
these experiments it was shown that small superconduc
grains, with size much smaller than the coherence length,
level spacingd smaller than the bulk gapD, have a gap of
order 2D in their tunneling spectrum, and grains in the r
gime d*D ~to be called ‘‘ultrasmall’’ regime! do not. Since
the pairing parameter is the basic quantity in bulk superc
ductivity, several efforts have been made to define pair
parameters which are relevant in the regime of sm
grains,4–9 and reduce toD in the bulk limit. The need for
such new definitions arises for two apparent reasons:~i! for
ultrasmall grains, in whichd.D, the quantityD has no di-
rect physical meaning;~ii ! in both ultrasmall grains, and
small grains for whichd&D, if the grains are isolated th
appropriate ensemble is the canonical one, in which the u
definition of D that is used in the grand canonical ensem
@seeDg.c. in Eq. ~3!# is trivially zero. In this paper we show
that there is a third, fundamental reason for the inadequ
of Dg.c. to describe pairing correlations in small superco
ducting grains. Unlike the situation in bulk superconducto
in which all the various superconducting properties can
characterized by one energy scaleD, in general there exis
two distinct energy scales that characterize pairing corr
tions, and the difference between them becomes impor
particularly for small grains. The first such energy sca
which we denote byDs.p., characterizes single-particle prop
erties, such as excitation energies and parity effects. The
ond, denoted asDcol , characterizes collective propertie
such as the condensation energy@see Eqs.~10! and~17!#, to
which pairing correlations of all the levels up tovD contrib-
ute. The reason why these two scales are in general distin
that levels far from the Fermi energy, namely those w
energyu«2EFu betweenD and the Debye frequencyvD ~to
be called ‘‘not condensed’’ or ‘‘distant’’ levels!, make a more
significant contribution to collective properties than
single-particle ones.~For a discussion on the role of the di
tant levels in superconducting grains and persistent curr
in normal metal rings see Refs. 10 and 11.! The contribution
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of the distant levels to physical properties turns out to
proportional to the level spacing; in the large grain lim
where the level spacing becomes exceedingly small,
contribution can thus be neglected. In this limit, the sing
particle and collective properties are therefore both de
mined by the correlations of only the ‘‘condensed levels
i.e., those withinD of EF , so that the two scalesDcol and
Ds.p. become identical.

Previous attempts4,6–9 to define, in terms of pair correla
tion functions, a pairing parameter adequate to desc
small grains in the canonical ensemble resulted in parame
characterizing collective properties of the grain, but n
single-particle ones. We shall discuss a particular definit
for such a collective parameter, denotedDcol , which is pur-
posefully chosen such thatDcol reduces toD in the bulk
limit. For small grains, we show the correspondence of t
definition to collective properties such as the condensa
energy. We then define a single-particle parameterDs.p. and
show the correspondence of this definition to single-part
properties of the grain. In the bulk limit bothDcol andDs.p.
reduce toD as expected, but at a different size scale~see Fig.
1!. For the single-particle properties, we findDs.p.@D in the
ultrasmall regime (d.D), andDs.p..D for larger grains. In

FIG. 1. The two pairing parameters,Dcol ~top curve! and Ds.p.

~bottom curve!, normalized to the value of the bulk gap, a
sketched as function ofN5vD /d ~proportional to the inverse grain
size!, for l50.12. Ds.p.@D for N,250, which correspond told
5D. Dcol.D,Ds.p. both in the ultrasmall regime, and in the inte
mediate regime, up toN.7500 which corresponds tol3dvD

5D2.
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contrast, for the collective properties we findDcol@D not
only in the ultrasmall regime, but also in an ‘‘intermedia
regime’’10 in which D.d.D2/vD . Regarding the relation
between collective and single-particle parameters, we
Dcol@Ds.p. in both the ultrasmall and the intermediate r
gimes. Note that both the range of the intermediate regi
and the value of the pairing parameters and the various
perconducting properties obtained below, depend explic
on vD . ThisvD dependence, as well as the very existence
the intermediate regime, are direct manifestations of the c
tribution of the pairing correlations of the distant levels. F
nally, we discuss some possible strategies for measuring
single-particle and collective quantities in small grain
Throughout the paper, except when discussing the parity
fect, we assume for simplicity an even number of electro
in the grain.

II. PAIRING CORRELATIONS IN THE GRAND
CANONICAL ENSEMBLE

We consider the reduced BCS Hamiltonian

Ĥ5 (
j ,s56

e j cj s
† cj s2ld( 8

i , j
ci 1

† ci 2
† cj 2cj 1 . ~1!

where the second sum~the pairing interaction! is restricted to
energies withinvD of EF , and 1 (2) denote spin up
~down!. The Hamiltonian~1! is the usual BCS Hamiltonian
used when discussing superconducting grains9 and its valid-
ity is discussed in, e.g., Refs. 12,13, and 9. For a grain w
a given, finite number of electrons this Hamiltonian has
exact solution, obtained by Richardson,14,15 and indepen-
dently by Gaudin.16 In the macroscopic limit, where the ca
nonical and grand canonical ensembles produce the s
results, Richardson’s solution reduces to the B
solution.17,18As a result of the pairing interaction, the groun
state of a superconductor is different from the noninterac
Fermi state. It is a coherent superposition of various pa
many-body noninteracting states, defined as Slater dete
nant of real one-electron wave functions. The cohere
means that the amplitudes for all these states in the supe
sition are real, up to an overall, global phase factor. This
true both for the BCS wave function in the grand canoni
formalism,

uBCS&5)
j

~uj1v jbj
†!uVac&, ~2!

wherebj[cj 2cj 1 , and for the exact wave function given b
Richardson’s solution.15 ~In the grand canonical formalism
the above coherence relates to noninteracting many-b
states with a given number of pairs. One can add a cons
phase between states of different number of pairs, whic
referred to as the superconducting phase.! A particular char-
acteristic of the structure of the ground state of a superc
ductor is that the occupation probability of levels above
Fermi energy isnonzero, and that of levels below the Ferm
energy is smaller than unity. A measure of the pairing cor
lations, which exploits both the non-Fermi-like occupati
06450
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probability and the phase coherence mentioned above
given by the pair amplitude, which in the grand canonic
ensemble is given by

Dg.c.[ld(
j

^cj 2cj 1&. ~3!

For any many-body BCS-like eigenstate, characterized
the set$ f j s% of the occupation probabilities of the BCS qu
siparticles, one obtains19

Dg.c.~$ f j s%!5ld(
j

ujv j* ~12 f j 12 f j 2!. ~4!

Specifically, for the ground state given in Eq.~2!, for which
f j s50 for all j, we obtain

Dg.c.~g.s.!5ld(
j

ujv j , ~5!

which gives in the bulk limit Dg.c.(g.s.)5vD /sinh(1/l)
[D. The mean occupation of levelj is given by v j

2 , and
uj

21v j
251. Note that the nature ofDg.c. is collective, being a

sum of the contributions of all levels. As a result of the pha
coherence mentioned above, all the contributions to the s
in Eq. ~5! come with the same phase.

III. COLLECTIVE PAIRING PARAMETER Dcol

We now turn to the definition of the collective canonic
pairing parameter. A natural extension of the concept
long-range order in the bulk, suggests the following defi
tion for a canonical pairing parameter:

uDcolu2[~ld!2E dr1dr2F~r 1 ,r 2!, ~6!

whereF(r 1 ,r 2) is a function characterizing pairing correla
tions, which is given by

F~r 1 ,r 2![^c1
† ~r 1!c2

† ~r 1!c2~r 2!c1~r 2!&

2^c1
† ~r 1!c1~r 2!&^c2

† ~r 1!c2~r 2!&. ~7!

We will show that this definition for the collective canonic
pairing parameter is adequate, as it has the following pr
erties: ~i! it is meaningful for a canonical ensemble;~ii ! in
the bulk limit it is equivalent to the grand canonical defin
tion ~3! for any given BCS eigenstate;~iii ! it is related to the
condensation energy and to the mean occupation of the
interacting levels not only in the bulk limit, but also in th
opposite limit of ultrasmall grains@see Eqs.~10! and ~11!
below#.

Expanding each of thec operators in the basis of th
noninteracting single-particle eigenstates, we obtain

uDcolu25~ld!2(
i j

~^bi
†bj&2^ci 1

† cj 1&^ci 2
† cj 2&!. ~8!

Since the terms in each of the brackets are number cons
ing, they are meaningful in the canonical ensemble, whic
used below for the evaluation ofuDcolu2 for small grains.
6-2
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However, in the macroscopic limit, one can use the gra
canonical ensemble to evaluateuDcolu2 within the BCS ap-
proximation. By using the Bogoliubov transformation a
the BCS wave functions, we find that for any many-bo
BCS-like eigenstate

uDcolu25~ld!2(
i j

uiv i* uj* v j~12 f i 12 f i 2!~12 f j 12 f j 2!

5uDg.c.u2, ~9!

where the last equality is a result of Eq.~4!. The canonical
pairing parameter is equal, in the bulk limit, to the gra
canonical pairing parameter for any many-body state,
therefore both definitions are equivalent in this limit. O
definition for Dcol differs slightly from that given in Ref. 8
The difference lies in the last term in Eq.~8!, which results in
the exact equivalence toDg.c. in Eq. ~9!.

We now turn to the opposite limit of ultrasmall grains. B
examining Richardson’s exact solution,14,15it was shown that
pairing correlations, however small@i.e., even for l
!1/ln(vD /d)] manifest themselves both in the form of th
ground-state wave function and in a finite condensation
ergy Econd.

10 Here we make the connection between the
two effects and the canonical pairing parameter. In particu
we shall show that to leading order inl

Econd5
uDcolu2

2ld
, ~10!

where uDcolu2 is evaluated for the exact ground state@this
result differs from the known bulk resultEcond5D2/(2d) by
the occurrence ofl in the denominator, which is discusse
below#. Also, Dcol is related to the sum of the pairing corr
lations in all the levels, as are reflected in their occupat
probabilities, since we shall show that

uDcolu25
2 ln 2

l
Docc

2 , ~11!

where

Docc[ld(
j

ū j v̄ j , ~12!

with v̄ j
2[^bj

†bj& and ū j
2512 v̄ j

2 . The quantityDocc, which
has been defined in analogy toDg.c., reflects the non-Fermi
like mean occupation probability in the many-body grou
state of the noninteracting single-particle levels.

These results are found as follows: To obtain the value
uDcolu2 in the ground state we use Richardson’s equations
expressions for the wave functions,15 to write the ground
state to leading order inl, in terms of the amplitudes of th
various noninteracting many-body states appearing in it:

fg.s.~1, . . . ,N!51

fg.s.~1, . . . ,N;Þ j ,k!5
ld

2~ek2e j !
. ~13!
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The first line refers to the amplitude that all the levels bel
the Fermi energy are occupied by pairs~noninteracting
ground state of the system!. The second line is the amplitud
for the noninteracting many-body state which is the same
the noninteracting ground state, except for one pair exc
tion from level j to level k. The amplitudes of all the othe
many-body noninteracting states are zero to first order inl.

From Eq.~13!, to zeroth order inl, the two terms in Eq.
~8! cancel each other. The second term in Eq.~8! has no
contribution to first order inl. The contribution to the first
term which is first order inl comes from the fact that ther
is finite amplitude for levels above the Fermi energy to
occupied, and is given, using Eq.~13!, by ld/2(e j2e i) for
eachj .,i , @by ,(.) we refer to levels below~above! the
Fermi energy#. Since the sum in Eq.~8! is unrestricted, we
get a factor of 2, and to leading order inl

uDcolu25~ld!3 (
i ,, j .

1

e j2e i
. ~14!

The condensation energy was calculated in Ref. 10. In o
to compare it withDcol of Eq. ~14! we present here its valu
for a general spectrum, which to leading order inl is given
by

Econd5~ld!2 (
i ,, j .

1

2e j22e i
. ~15!

This result is obtained directly from Richardson’s equatio
and leads to Eq.~10!.

Evaluating Eq.~14! for equally spaced spectrum, we ob
tain

uDcolu252 ln 2•l3dvD . ~16!

The large magnitude~linear invD) of this result is due to the
fact that all the amplitudes in Eq.~13! have the same phas
~which is a consequence of the coherence discussed in
II !, so that all the terms in Eq.~14! are added with the sam
sign.

In Ref. 10 we have shown thatEcond.Econd
BCS1Econd

pert ,
whereEcond

BCS5D2/2d is the contribution of the condensed le
els, andEcond

pert 'l2vD is the contribution of the distant~not-
condensed! levels, which can be calculated perturbative
Similarly, uDcolu2 is a sum of the contributions of all level
below vD , too, and is related to the condensation energy
both the BCS and the perturbative regimes. Therefore i
natural to hypothesize thatuDcolu2 ~similarly to Econd) can to
a good approximation be written as the sum of a bulk c
tribution from the condensed levels and a perturbative c
tribution from the distant levels, i.e.,uDcolu2.2 ln 2l3dvD
1D2. This would imply thatDcol@D in both the ultrasmall
and intermediate regimes~see Fig. 1!. Note that the expres
sion for the condensation energy in Eq.~10! is different from
the bulk expression of the condensation energy in terms
D, namelyEcond

bulk5D2/2d, by a factor ofl in the denomina-
tor. Since we have shown that in the bulk limitDcol5Dg.c.,
we conclude thatDcol and the condensation energy have
different functional dependence onl. The above hypothesis
results in
6-3
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Econd5
uDcolu2

2 f ~l!d
, ~17!

wheref (l) is a monotonic function ofl, which equalsl for
l!1/lnN and unity forl@1/lnN ~bulk limit!.

We now turn to derive the relation~11! betweenDcol and
the mean occupation probabilities. In the exact ground st

v̄ j
2 is given by

(
$ f 1 . . . f Nu j P%

uf~ f 1 , . . . ,j , . . . ,f N!u2, ~18!

where$ f 1••• f Nu j P% is any configuration ofN levels out of
the 2N noninteracting single-particle levels, that includes t
level j. To leading order inl, using Eq.~13!, we obtain for
levels j aboveEF

v̄ j
25~ld!2(

i ,

1

4~e j2e i !
2

. ~19!

Using the approximation of constant level spacing, we fi
that

v̄ j
25

l2d

4e j
, ~20!

wheree j is measured from the Fermi energy. This importa
result shows that the mean occupationv̄2(e) is proportional
to e21, unlike the usual BCS result, where fore@D the
mean occupation is proportional toe22. Since the occupa
tion probability for a single level is, by Eq.~20!, proportional
to the level spacing, this term can be neglected in the b
limit. However, in finite-size grains, we find that in both th
ultrasmalland intermediateregimes~i.e., D,lAdvD), the
occupation probability for energies of the order ofvD is in
fact larger than that given by the BCS approximation.

As a result of Eq.~19!, to first order inl we find that

v̄ j5ldA( i ,1/4(e j2e i)
2 andū j51. For equally spaced lev

els, one therefore obtains from Eq.~20! that

Docc5ld(
j

ū j v̄ j5l2AdvD, ~21!

which yields the relation betweenDocc andDcol given in Eq.
~11!. To summarize: the condensation energy, pairing par
eter, and mean level occupation all receive significant con
butions from the weak pairing correlation of the distant~not-
condensed! levels up to the Debye frequency. As a resu
their magnitude is much larger than that given by the B
approximation, not only in the ultrasmall regime, but also
the intermediate regime whereD2/vD,d,D.

IV. SINGLE-PARTICLE PAIRING PARAMETER Ds.p.

Unlike the collective properties considered above, ot
superconducting properties, such as the excitation energy
the parity effect@quantified by the Matveev-Larkin~ML ! pa-
rameter, see Ref. 5#, are related to the blocking of, say, on
one or two levels to pairing correlations. Therefore they
not depend on the correlations between all possible pair
06450
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levels in the grain, but only on the correlations between th
selected levels and all the other levels. As a result,their
values in small grains are much smaller than one would
by using the bulk analogy withDcol as the pairing parameter.
We therefore define

Ds.p.
i [ld(

j
~^bi

†bj&1^bibj
†&!, ~22!

where the sum is over the noninteracting single-particle l
els andi is a selected such level. Since one frequently de
with the lowest energy levels, we define

Ds.p.[Ds.p.
ī ~23!

for ī being the level closest to the Fermi energy~for our
considerations the cases thatī is below or aboveEF are
equivalent, and we takeī to be belowEF).

In the bulk limit, using the BCS approximation, we obta
for the ground state

Ds.p.
i 52lduiv i(

j
ujv j , ~24!

and specifically

Ds.p.5ld(
j

ujv j5D. ~25!

We now turn to the ultrasmall regime, and evaluateDs.p. in
the ground state to second order inl. Using Eq.~13! we
obtain

Ds.p.
i 5ld1(

j .

~ld!2

e j2e i
, ~26!

and for the equally spaced spectrum

Ds.p.5ld1l2d ln
vD

d
. ~27!

Let us now consider the excitation energy, sayEexc, of
the first excited state of an~even! superconducting grain
This state can be described by having the two levels nea
to EF singly occupied with probability unity, thus breakin
one pair, and the otherN21 pairs occupying the remainin
2N22 levels according to Richardson’s exact solution15

The excitation energy has two different contributions.~i! The
kinetic energy costd of occupying a level of higher energ
with probability unity, and~ii ! a pairing energy cost, which is
given byDs.p.. Note that the latter has~iia! a diagonal part,
given by ld, which is related to the excess energy of tw
electrons occupying the same spatial noninteracting eig
state, and~iib! an off-diagonal part due to the blocking of th
two singly occupied levels to pairing correlations. Addin
these contributions gives

Eexc5d1Ds.p.'d1ld1l2d ln
vD

d
, ~28!
6-4
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TWO PAIRING PARAMETERS IN SUPERCONDUCTING GRAINS PHYSICAL REVIEW B67, 064506 ~2003!
where the last expression is valid for a grain with equa
spaced spectrum. Similarly, the ML parameter5 is given by

DML5
1

2
Ds.p.. ~29!

Note that the pairing contribution to the energy cost of
first excitation equals 2Ds.p. in the bulk limit, whereas it
equalsDs.p. in an ultrasmall grain, and the same factor of
appears in the ML parameter. This reflects the fact that in
bulk limit each level is correlated with all the other leve
while in the ultrasmall grain, the dominant correlations a
between levels on different sides of the Fermi energy.

V. MEASUREMENT STRATEGIES FOR Dcol AND Ds.p.

A possible measurement of the collective correlations o
superconducting grain was discussed in Ref. 10. It w
shown that the condensation energy can be obtained f
specific heat or spin magnetization measurements, wher
explicit calculation was done for the latter.

In distinction with the case of bulk superconductivit
where the single-particle properties are easiest to mea
through the lowest excitations of the system, in small gra
the energy of the first excited state is given by Eq.~28!, in
which Ds.p. is only a small correction to the level spacin
Matveev and Larkin suggested to measure their pairing
rameter by the parity-induced alternation of Coulomb blo
ade peak spacings in small grains. Here we suggest the
sibility that for an ensemble of small, weakly coupled grai
Ds.p.could be measured through their spin magnetization
function of magnetic field at zero temperature. We assu
that the coupling between the grains is weak enough s
that the equilibrium properties of the system can be appr
mated by summing over the individual grains, but stro
enough so tunneling between grains in a large enough
semble~of say 50 grains! occurs within the time of the ex
periment.

For a single-grain, the spin magnetization shows step
values that correspond to the Zeeman energy being equa
energy required to break a pair, of which the first is atEexc
5d1Ds.p. @by Eq. ~28!#, which is dominated by the larg
single-grain level spacingd. In order to avoid having to
worry about the latter, we consider an ensemble of wea
connected superconducting grains, which would have an
fective joint level spacingdens that is much smaller thand if
the ensemble is large,dens!d ~we neglect the charging en
ergy. Note that the charging energy was found to be m
smaller20,21 than what naive estimates give. Since the tunn
ing between the grains is weak, the relevant ensemble is
canonical one!. Then the ground state of the unconnect
system is given by each of the grains having an even num
of electrons, being in its ground state. The first excited s
of the system is given by moving one electron between
grains, so that afterwards the first has a single-occupied l
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just belowEF , and the second has a singly occupied le
just aboveEF . For a system of ‘‘normal’’ noninteracting
grains the energy of such an excitation is of the order of
single-particle level spacing of the whole ensemble of gra
dens. However, in a system of ultrasmall superconducti
grains, since two singly occupied levels are created in t
different grains, the energy of such an excitation would
given by Ds.p. ~which is @dens). Since the first step in the
spin magnetization is at the energy of the first excited stat
the system, in such a measurement we predict a gap of v
Ds.p.. ~In a similar measurement in grains withd,D, the
measured gap would be given byD). ThusDs.p. can be in-
terpreted as the superconducting gap as measured by si
particle properties. In principle, performing such a measu
ment as a function of the grain size would monitor t
change ofDs.p., from being much larger thanD for ultras-
mall grains to equalingD for large ones. Note by that reduc
ing the grain size oneincreasesthis gapDs.p..

Finally, we would like to note that the logarithmic depe
dence of the correlation~second! term of Ds.p. in Eq. ~27! is
manifested in the interaction correction to the ensemble
eraged magnetic response of small metallic grains, w
considered within the BCS model.11

VI. SUMMARY

We have shown that various superconducting proper
can be classified to two groups, one containing those pr
erties which are single particle in nature, and the other c
taining those properties which are collective, a result of
summed contributions of many levels. Unlike the case
bulk superconductivity, where both these properties are c
acterized by one energy parameterD, in general, and in par-
ticular in small grains, two different energy parameters,Ds.p.
for the former group andDcol for the latter one, characteriz
superconducting properties.

In bulk superconductivity the relevant contribution to th
various superconducting properties comes from the ‘‘c
densed’’ levels, withinD of EF . However, in small grains the
contribution of all levels up tovD is significant, and this
results in the existence of these two different parameters
well as in the fact thatDcol@Ds.p.@D in the ultrasmall re-
gime andDcol@D also in the intermediate regime. Exper
mental possibilities to measure the two pairing parame
were discussed.
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