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SU(4) Fermi Liquid State and Spin Filtering in a Double Quantum Dot System
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We study a symmetrical double quantum dot (DD) system with strong capacitive interdot coupling
using renormalization group methods. The dots are attached to separate leads, and there can be a weak
tunneling between them. In the regime where there is a single electron on the DD the low-energy
behavior is characterized by an SU(4)-symmetric Fermi liquid theory with entangled spin and charge
Kondo correlations and a phase shift 7/4. Application of an external magnetic field gives rise to a large
magnetoconductance and a crossover to a purely charge Kondo state in the charge sector with SU(2)
symmetry. In a four-lead setup we find perfectly spin-polarized transmission.
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Introduction.—Quantum dots are one of the most basic
building blocks of mesoscopic circuits [1]. In many re-
spects quantum dots act as large complex atoms coupled
to conducting leads that are used to study transport. The
physical properties of these dots depend essentially on
the level spacing and precise form of the coupling to the
leads: They can exhibit Coulomb blockade phenomena
[2], build up correlated Kondolike states of various kinds
[3-5], or develop conductance fluctuations.

The simplest mesoscopic circuits that go beyond single
dot devices in their complexity are double dot (DD)
devices (see Fig. 1). These ‘“‘artificial molecules” have
been extensively studied both theoretically [6—11] and
experimentally [12-15]: They may give rise to stochastic
Coulomb blockade [6] and peak splitting [7,12], can be
used as single electron pumps [1], were proposed to
measure high frequency quantum noise [11], and are
building blocks for more complicated mesoscopic devices
such as turnstiles or cellular automata [16]. DDs also have
interesting degeneracy points where quantum fluctuations
may lead to unusual strongly correlated states [17].

In the present Letter we focus our attention to small
semiconducting DDs with large interdot capacitance
[10,17]. We consider the regime where the gate voltages
V. are such that the lowest lying charging states,
(ny,n_)=1(0,1) and (1,0), are almost degenerate:
E(1,0) — E(0,1) = 0 [n. = No. of extra electrons on
dot “=”, and E(n,, n_) is measured from the common
chemical potential of the two leads]. We consider the
simplest, most common case where the states (1, 0) and
(0, 1) have both spin S = 1/2, associated with the extra
electron on the dots. Then at energies below the charging
energy of the DD, E- = min{E(1, 1) — E(0, 1), E(0, 0) —
E(0, 1)}, the dynamics of the DD is restricted to the sub-
space {S* = *1/2; n, —n_ = *1}.

As we discuss below, quantum fluctuations between
these four quantum states of the DD generate an unusual
strongly correlated Fermi liquid state, where the spin and
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charge degrees of freedom of the DD are totally en-
tangled. We show that this state possesses an SU(4) sym-
metry corresponding to the total internal degrees of
freedom of the DD, and is characterized by a phase shift
8 = /4. This phase shift can be measured by integrat-
ing the DD device in an Aharonov-Bohm interferometer
[18]. Application of an external field on the DD suppresses
spin fluctuations. However, charge fluctuations are unaf-
fected by the magnetic field and still give rise to a Kondo
effect in the charge (orbital) sector [10,17,19]. We show
that in a four-lead setup this latter state gives rise to an
almost totally spin-polarized current through the DD
with a field-independent conductance G = e?>/h. The
conductance across the dots, on the other hand, shows a
large negative magnetoresistance at T = 0 temperature.
Model.—We first discuss the setup in Fig. 1. At energies
below E. we describe the isolated DD in terms of the

FIG. 1. Top: Schematics of the DD device. Bottom: Virtual
process leading to “‘spin-flip assisted tunneling” as described
in Eq. (4).
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orbital pseudospin T = (n,. —n_)/2 = *1:
Hy = —8ET* — tT* — B S (1)

The term proportional to 7° describes the energy differ-
ence of the two charge states [§E = E(1,0) — E(0, 1) ~
V. — V_ for a fully symmetrical system], while t < E
is the tunneling amplitude between them. The last term
stands for the Zeeman splitting due to an applied local
magnetic field in the z direction. We are interested in the
regime, where —despite the large capacitive coupling—
the tunneling between the dots is small. Furthermore, one
needs a large enough single particle level spacing A on
the dots. Both conditions can be satisfied by making small
dots [20], which are close together or capacitively coupled
to a common top-gate electrode [21].
The leads are described by the Hamiltonian:

_ t t
Hleads - Z € oot Oeo+ + Z €deg—Ugo—» (2)
lel<D lel<D

where a;rﬁ (algf) creates an electron in the right (left)
lead with energy & and spin o, D ~ min{E, A} =1 is a
cutoff, and {a;rm, agl(,/.,./} =6,,0,,0(e —&).

To determine the effective DD-lead coupling we have
to consider virtual charge fluctuations to the excited
states with n, + n_ = 0 and 2, generated by tunneling
from the leads to the dots. By second order perturbation
theory in the lead-dot tunneling we obtain the following
effective Hamiltonian:

1 2 . 1 2 -
Hyondo = 5J+ P+ SWT Gpo ) + 20 P-SW' Gp-y),
(3)

Hygis = Q[T S(tar ) + he], 4)

Hon = 3T 70 + VAT @)+ heh ()

where ,, = [de a,,, and & and 7 denote the spin and
orbital pseudospin of the electrons (o =1,|; 7= 7¢ =
+1). The operators P, = (1 x27%)/2 and p. =
(1 £ 7%)/2 project out the DD states (1,0) and (0, 1),
and the right/left lead channels, respectively.

In the limit of small dot-lead tunneling the dimension-
less exchange couplings are J. ~I'./E. with I the
tunneling rate to the right (left) lead [22]. The “spin-flip
assisted tunneling” Q, ~ T T_/Ec in Eq. (4) gives
simultaneous spin- and pseudospin-flip scattering and is
produced by virtual processes depicted in the lower part
of Fig. 1, while the spin-independent parts of such virtual
processes lead to the orbital Kondo term in Eq. (5) with
similar amplitudes.

We first focus on the case of a fully symmetrical DD.
Then the sum of Egs. (3) and (4) can be rewritten as

HKondo + Hassist = %J'_S‘)(l/ff&lp) + QZTZS)(l/ITTZa)'l//)
+ Q[T Syt~ Gy) + he)l  (6)
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where J = Q. = (J; +J_)/4. The couplings in Egs.
(3)—(5) are not entirely independent, but are related by
the constraints V, = 0, and J = Q,.

Scaling Analysis.—The perturbative scaling analysis
follows that of a related model in Ref. [23]. In the per-
turbative RG one performs the scaling by integrating out
conduction electrons with energy larger than a scale D <
D, and thus obtains an effective Hamiltonian that de-
scribes the physics at energies D. For zero 8E, t, and B, in
the leading logarithmic approximation we find that all
couplings diverge at the Kondo temperature T, where
the perturbative scaling breaks down. Nevertheless,
the structure of the divergent couplings suggests that at
low energies J =V, =V, =0, = Q,. Thus at small
energies—apart from a trivial potential scattering—the
effective model is a remarkably simple SU(4) symmet-
rical exchange model:

Hy(T—0)=7 > plyglpXal, ()

a,B=1,..4

where « labels the four combinations of spin and pseudo-
spin indices, and the |«)’s denote the DD states. This can
be more rigorously proven too using strong coupling ex-
pansion, conformal field theory, and large f (flavor) ex-
pansion techniques [24-26], and is also confirmed by our
numerical computations.

Numerical Renormalization Group (NRG).—To access
the low-energy physics of the DD, we used Wilson’s NRG
approach [27]. In this method one defines a series of
rescaled Hamiltonians, Hy, related by the relation [27]:

Hy. = AV?Hy + Z ENFlorfrsror The),  (8)

where o, = ,./v/2 and Hy = 2AY2/(1 + A)H,,, with
A ~ 3 as discretization parameter, and £y = 1. (For the
definition of f, see Ref. [27].) We have defined H;, =
Hyo + Hxondo T Hassist T Hom- The original Hamiltonian
is related to the Hy’s as H = limy_., o yHy With wy =
A~NFD2(1 4+ A)/2. Solving Eq. (8) iteratively we can
then use the eigenstates of Hy to calculate physical quan-
tities at a scale 7, v ~ wy.

Results.—First let us consider the case Hy,, = O.

Fixed point structure—The finite size spectrum pro-
duced by the NRG procedure contains a lot of informa-
tion. Among others, we can identify the structure of the
low-energy effective Hamiltonian from it [27], and also
determine all scattering phase shifts.

In particular, we find that for 6E =t = B =0 the
entire finite size spectrum can be understood as a sum
of four independent, spinless chiral fermion spectra with
phase shifts 6 = 7r/4. This phase shift is characteristic
for the SU(4) Hamiltonian, Eq. (7), and simply follows
from the Friedel sum rule [24]. Application of an external
magnetic field B to the DD gradually shifts 6 to the values

Spectral functions.—To learn more about the dynamics
of the DD we computed at 7 = (0 the spin spectral
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function @%(w) = —(1/m)Im{xj(w)}, and pseudospin
spectral function 7(w) = —(1/7)Im{x>(w)} by the den-
sity matrix NRG method [29].

At B = 0 the various spectral functions exhibit a peak
at the same energy, T ;?), corresponding to the formation
of the SU(4) symmetric state (see Fig. 2). Below T,? all
spectral functions become linear, characteristic to a
Fermi liquid state with local spin and pseudospin suscep-
tibilities yg ~ xr ~ 1/ TK , where the SU(4) hyperspin”
of the dot electron (formed by {f +,| +,T —, | —} compo-
nents) is screened by the lead electrons.

Now let us c0n51der the case Hy, # 0. In a large
magnetic field, TK < B, spin-flip processes are sup-
pressed: The spin spectral function therefore shows only
a Schottky anomaly at w ~ B. Nevertheless, the cou-
plings V, and V, still generate a purely orbital Kondo
state in the spin channel with the same orientation as the
DD spin, with a reduced Kondo temperature Tx(B) <
TK , and a corresponding phase shift §; = 7/2.

Because of the spin-pseudospin symmetric structure of
the Hamiltonian, Eq. (6), the opposite effect occurs for a
large O E: In that limit the charge is localized on one side
of the DD, charge fluctuations are suppressed, and the
system scales to a spin Kondo problem. A large tunneling,
t> TK) is also expected to lead to a somewhat similar
effect, though the conductance through the DD behaves
very differently in the two cases [28].

dc Conductivity—First we focus on the conductivity
across the DD assuming a small tunneling . Then we can
assume that the two dots are in equilibrium with the leads
connected to them, and we can compute the induced
current perturbatively in z. A simple calculation yields
the following formula [30]:

10° |
2 >
N
210° 0—O0B=00
N~—AB=028
B=281
10° *—* B =281
100 |
-~
Qe:i ol A/A/A/A/M
5. T
T«(B)
10_4 1 1 1
10° 10° 100” 10°
T

FIG. 2 (color online). T =0 spin and pseudospin spectral
functionsforJ = Q, =V, =0.14,V;, = Q, = 0.13, and vari-
ous values of B = B/ T,?f For B = 0 both spectral functlons
exhibit ~w behavior below the Kondo temperature T
10 3. Applying a magnetic field the situation changes: The B >
T magnetic field destroys the spin Kondo correlations and
leads to a purely orbital Kondo effect.
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The normalized dc conductance at 7 = 0 temperature is
shown in Fig. 3. Below the orbital Kondo temperature
07(w) ~ w/T%(B), leading to a dimensionless conduc-
tance ~[t/Tx(B)]>. However, Tx(B) strongly decreases
with increasing B implying a large negative magnetore-
sistance in the T =0 dc conductance. This effect is
related to the correlation between spin and orbital degrees
of freedom. We have to emphasize that the simple con-
siderations above only apply in the regime t << Tx(B). For
larger values of ¢ a more complete calculation is needed.

Having extracted the phase shifts from the NRG spec-
tra, we can construct the scattering matrix in more gen-
eral geometries too and compute the 7 = 0 conductance
using the Landauer-Buttiker formula [28,31,32]. In the
perfectly symmetrical two terminal four-lead setup of
Fig. 4 with 6E = t = 0, e.g., the dc conductance is G|3 =
3Goisin?[8)(B)] + sin’[8;(B)]}, where G, = 2¢*/h is the
quantum conductance. By the Friedel sum rule 6;(B) =
m/2 — 8,(B), and thus G;(T = 0) = G,/2, indepen-
dently of B. However, the polarization of the transmitted
current P = 2sin*(8;) — 1 tends rapidly to one as B >
TK ,and the DD thereby acts as a perfect spin filter at T =
O with B > TK ,and could also serve as a spin pump. Fora
typical Ty = 0.5 K and a g factor g = —0.4 as in GaAs,
e.g., a field of 2.5T would give a 97% polarized current,
comparable to other spin filter designs [33]. Lowering Tk
even higher polarizations could be obtained.

Robustness.—Since the spin S* and pseudospin T¢ are
both marginal operators at the SU(4) fixed point [25], we
conclude that the SU(4) behavior is stable in the sense that
a small but finite value of 6F, B, t < T O will lead only to
small changes in physical properties such as the phase
shifts. The anisotropy of the couplings is also irrelevant
in the RG sense [25,26], and the role of J_ # J, symme-
try breaking is only to renormalize the bare value of JF,
which is a marginal perturbation itself. Therefore the
SU(4) Fermi liquid state is robust under the conditions
discussed in the Introduction.

0 0.05 0.1

0 50 100 150
BT

FIG. 3 (color online). The T = 0 conductance of DD system
atw=0forJ=0,=0.14,V, =0, =0.13,V, =0.14 and
different magnetic field values. Inset: small B limit of the
conductance.
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FIG. 4 (color online). Top: Magnetic field dependence of the
phase shifts for + = 6E = 0. Bottom: Corresponding 7 = 0
dimensionless conductance and spin polarization of the current
in the four-lead setup shown in the top inset.

Experimental accessibility—For our scenario it is cru-
cial to have large enough charging energy and level
spacing E., A > T;?) > t. With today’s technology it is
possible to reach A ~2-3 K. The dot-dot capacitance
(and thus E. [7]) can be increased by changing the
shape of the gate electrode separating the dots, using a
columnar geometry as in Refs. [19,34], where the two-
dimensional dots are placed on the top of each other, or
placing an additional electrode on the top of the DD
device [21]. We could not find a closed expression for
T;?) in the general case. However, for a symmetrical DD
J=V,=V,=Q, =Q.~T/2wE,, provided that
fluctuations to the (0, 0) state give the dominant contri-
bution. Then we obtain T}?) ~ De V% and Tg(B = o) ~
Cst[Tg))]z/D. Thus the value of J and thus T;?) can be
tuned experimentally to a value similar to the single dot
experiments. Indeed, an orbital Kondo effect has recently
been observed [19].

Summary—We have studied a DD system with large
capacitive coupling close to its degeneracy point, in the
Kondo regime. Using both scaling arguments and a non-
perturbative NRG analysis, we showed that the simulta-
neous appearance of the Kondo effect in the spin and
charge sectors results in an SU(4) Fermi liquid ground
state with a phase shift 77/4. Upon applying an external
magnetic field, the system crosses over to a purely charge
Kondo state with a lower Tk. In a four-terminal setup, the
DD could thus be used as a spin filter with high trans-
mittance. We further predict a large serial magnetocon-
ductance at T = 0. The SU(4) behavior in this system is
robust, and is experimentally accessible.
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