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Chapter 1

Introduction

1.1 Quantum computation

It has been shown that several existing algorithmic problems might gain a significant speedup
by the use of quantum computation [1, 2, 3]. Different from a classical bit, a quantum
bit (in the following called “qubit”) can be prepared in a superposition of states, namely
|ψ〉 = α |0〉+ β |1〉. Furthermore, systems of at least two qubits can be prepared in an entan-
gled state, e.g. |ψ〉 = (1/

√
2)(|0〉 |0〉+ |1〉 |1〉) [4]. To perform operations with a qubit quantum

coherence has to be kept over a sufficiently long timescale.

David DiVincenzo summarized the design requirements for a quantum computer (a device
which acts on a scale on which it obeys the laws of quantum mechanics) [5]. He introduced five
requirements for such a quantum computer: (i) The degrees of freedom needed to compute
and hold the data should be available as dimensions of the Hilbert space of the quantum sys-
tem. As a consequence the basis states must be exactly enumerable, i.e. it is not sufficient to
define basis states as two plus/minus one charge on a quantum dot. (ii) It should be possible
to prepare a well-defined initial state, which is for superconducting solid state qubits rela-
tively easily achieved by simply cooling down the system. Qubits based on Nuclear Magnetic
Resonance (NMR), where an ensemble of many spins is observed, are operated at room tem-
perature. Therefore, in NMR experiments the initial state is an equally populated state. (iii)
Quantum coherence needs to be kept over a suffienciently long time; more precisely, it should
be possible to at least perform 105 quantum logic operations within the dephasing time. (iv)
One must at least have complete control over two independent unitary gates. (v) It should
be possible to apply a “strong” (von Neumann-type) measurement to each qubit. However,
for example in NMR quantum computation only repeated weak measurements (without a
complete collapse of the wavefunction) of an ensemble of many spins are performed. The fact
that NMR qubits have already been used to build a small working quantum computer [6],
shows that not all of these requirements need to be strictly fulfilled in practice.

1.2 Realizations of quantum bits

Today there exist several proposals [7, 8] for the realisation of devices that might be suitable
as quantum bits. Examples are atoms trapped in an ion trap or optical realizations of qubits.
Today the most advanced experimental realizations are qubits based on Nuclear Magnetic
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Resonance [6]. Shortcomings of these NMR qubits are the poor scalability to systems with
more than approximately ten useable qubits and the huge experimental setups needed for
NMR quantum computation. Solid state realisations such as superconducting loops (“flux
qubits”), where the current states define the basis, or quantum dots (either “spin” [9] or
“charge” [10, 11] qubit), have the advantage of being easily scalable to large numbers of
qubits which might be individually adressed. Drawbacks are relatively short coherence times,
due to the high number of degrees of freedom in solid state devices, and usually (similar to
the NMR qubits) also the huge experimental setups (e.g. dilution refrigerators). However,
superconducting qubits are promising candidates for the realization of a quantum computer
[12]. Usually any system of qubits is coupled to a dissipative environment which causes
decoherence, i.e. dephasing and relaxation. The dephasing time is the characteristic time
scale on which the off-diagonal elements of the density operator describing the dynamics of
our system turn to zero, and the relaxation time is the characteristic time scale on which the
diagonal elements of the density matrix go towards the value given by the Boltzmann factors.

1.3 Coupled qubits

About decoherence of single solid state qubits quite a lot is known [13, 14, 15]. Not so much
is known about coupled qubits [16, 17, 18, 19]. However, only for coupled qubits, the key
properties of entanglement can be studied. At least two qubits are needed to perform a CNOT
(or XOR) operation. This gate is important because any unitary transformation might be
decomposed into (several) single-qubit gates and CNOT gates. Therefore the CNOT (XOR)
gate is the most common building block of a universal quantum computer [20].

The goal of this thesis is therefore to study in some detail the decoherence properties of
two coupled qubits for a specific model system, in which the decoherence is generated by
coupling the qubit to a standard bosonic environment. The properties of two inductively

coupled charge qubits, with an inter-qubit coupling of the type σ
(1)
y ⊗ σ(2)y (σx,y,z denote the

Pauli-spin-matrices), were investigated in [16]. In contrast, we shall study here a two-qubit
Hamiltonian that describes two flux qubits coupled inductively by a flux transformer, which

gives rise to a σ
(1)
z ⊗ σ(2)z coupling. This type of coupling actually occurs quite often in other

pseudo-spin systems, too. It arises, for example, also for capacitively coupled charge qubits,
that can be realized by connecting superconducting boxes directly via a capacitor. We shall

find that the σ
(1)
z ⊗ σ(2)z coupling leads to results very different from those of the σ

(1)
y ⊗ σ(2)y

coupling. We shall also study the differences between coupling both qubits to the same bath,
or each to its own bath.

1.4 Overview

This thesis is organized as follows: In chapter 2 we discuss structure and properties, such as
eigenenergies and transition frequencies, of the two-qubit system Hamiltonian and provide a
convienient representation. In chapter 3 we investigate the effects of weak symmetric driving
in the energy bias ε. Furthermore we illustrate the behaviour of the transition frequencies of
the unperturbed Hamiltonian. In chapter 4 we study the dynamics of the system and evaluate
decoherence times by applying the well established Bloch-Redfield formalism [21, 22], which
has been shown to be equivalent to path-integral methods [23]. We then use in chapter 5
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several standard quantifiers from quantum information theory to provide a convienient way
to characterize the two qubit system: to quantify the efficiency of the gate operations which
might be performed with the two coupled solid state qubits, we calculate the gate quality
factors introduced in [24]. In chapter 6 we investigate the properties of a flux transformer,
which is a device to couple two flux qubits inductively. We discuss a JoFET (Josephson
field effect transistor) as a switch, which might be inserted into the flux transformer loop
surrounding the two qubits to turn on and off the coupling between the two qubits. Since
this device introduces a noise source that leads to decoherence, we investigate in chapter 6
the noise properties of the flux transformer.
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Chapter 2

Modelling the two-qubit
Hamiltonian

2.1 Josephson effect

Cooper pairs on superconducting electrodes seperated by a thin insulator may tunnel through
the thin non superconducting layer. There will be a phase difference between the wavefunc-
tions in the two electrodes [25]. According to Josephson at zero voltage a supercurrent

Is = Ic sin∆ϕ (2.1)

flows. Here Ic is the maximum possible supercurrent passing the junction. In the case of an
applied electromagnetic field the phase difference ∆ϕ is replaced by the gauge invariant phase
difference γ which is defined by

γ ≡ ∆ϕ− 2π

Φ0

∫
A · ds. (2.2)

The integration is from one electrode to the other and effects of a magnetic field are treated
by introducing the vector potential A. The coupling free energy is given by

F = −EJ cos∆ϕ, with EJ ≡
h̄Ic
2e

, (2.3)

where we disregarded a possible constant energy offset.

Figure 2.1 is an equivalent circuit diagram of a Josephson tunnel junction. In figure 2.1
the junction is shunted by a capacitor reflecting the geometric shunting capacitance between
the two superconducting electrodes. Thus the two superconducting electrodes effectively be-
have like a parallel plate capacitor and the junction is characterized by the Josephson energy
EJ and the single-electron charging energy EC = e2/2Ct, where Ct is the total capacitance
of the superconducting electrode.

2.2 Single-qubit Hamiltonian

There exist several implementations of superconducting solid state qubits [26, 27, 28]. One
implementation of a solid state qubit device is an rf-squid, which consists of a superconducting
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γ

EJ

C

Figure 2.1: Left picture is an equivalent circuit diagram of a Josephson junction. The junction
itself is depicted by a cross, and might be described as a junction that is shunted by a shunt
capacitor C, reflecting the geometric capacitance between the electrodes. EJ is the Josephson
energy defined in equation (2.3). The right picture is a SEM image of a Josephson junction
(TU Delft). A thin oxide layer is fabricated in-between the aluminium layers.

loop interrupted by a Josephson junction. For a simple single Josephson junction rf-squid the
phase difference across the junction is connected to the flux Φ in the loop and the Hamiltonian
including contributions from Josephson coupling, charging energy and magnetic contributions
reads [14]

H =
Q2

2CJ
− EJ cos

(
2π

Φ

Φ0

)
+

(Φ− Φx)
2

2L
. (2.4)

Here Φ0 = h/2e is the magnetic flux quantum, Q is the charge on the electrodes, L the self-
inductance of the loop and CJ the capacitance of the junction. The charge Q = −ih̄∂/∂Φ is
canonically conjugate to the flux Φ. In the case of a large self-inductance and if the external
applied flux is close to Φx = 1

2Φ0 the first two terms of (2.4) form a double-well potential
around 1

2Φ0 as depicted in figure 2.3.

Icirc
1

2
qubit 1

Φx

1

Figure 2.2: The Delft design of a flux qubit: Superconducting loop interrupted by three
Josephson junctions. Left figure: SEM picture by A.C. Wallast (TU Delft); right figure:
equivalent circuit diagram. The nodes 1 and 2 are superconducting islands. They are con-
nected to capacitors reflecting both the capacitance between the islands and ground and
background charges. Usually the nodes are not connected by gate capacitors to gate voltages.
The flux Φx is taken out of the page.

The device first developed at the TU Delft and MIT [29] depicted in figure 2.2 is a low
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Figure 2.3: Schematic representation of the persistent-current states of a superconducting
qubit loop. For large self-inductance of the loop and flux bias near half a flux quantum the
two potential terms of (2.4) form a double-well potential.

inductance superconducting loop interrupted by three Josephson tunnel junctions. The loop
is biased by an externally applied flux Φx which induces a persistent supercurrent in the loop.
In this device the third junction has a slightly smaller Josephson energy ẼJ than the two
other junctions, namely for ẼJ/EJ > 0.5 a double-well potential is formed. Then the two
states are nearly degenerate, separated by an energy barrier. The phase differences accross
the three junctions are constrained by fluxoid quantization (γ1 + γ2 + γ3 = 2π(Φ/Φ0)), and
the energy landscape has the following shape [29]

U(γ1, γ2) = −EJ cos γ1 − EJ cos γ2 − ẼJ cos(2πΦx/Φ0 − γ1 − γ2). (2.5)

At low temperatures only the lowest state in the well contributes, and phonons are suppressed.
The two states of our two level system then correspond to currents running clockwise and
counterclockwise through the loop as depicted in figure 2.3. Here the classical states have
well defined flux, therefore these qubits are called ‘flux-qubits”. Flux and charge are quantum
mechanical canonical conjugate variables in this system, so a state with well defined flux must
have large quantum fluctuations in the charge and vice versa. In our case the Josephson
energy EJ is much bigger than the charging energy EC , so that the phase is well defined and
the charge fluctuates. Here the phase barrier originates from extra inductive or Josephson
energies and tunneling between the two wells is driven by capacitive quantum fluctuations.
A comprehensive review of the work done on flux qubits in Delft can be found in [13].
The resulting two level system might be represented in spin-1/2 notation using the Pauli
matrices in standard representation

H = −1

2
εσ̂z −

1

2
∆σ̂x, (2.6)

where ε is the asymmetry e.g. the energy bias and ∆ is the transmission amplitude through
the barrier. This provides a convenient representation of the single-qubit Hamiltonian. Here
we focus on the behaviour of the system near the degeneracy point at f = 1/2 (the exter-
nally applied bias flux Φx is near (1/2)Φ0) where only two states are important because all
other states have much higher energies and can thus be neglected. However, if the externally
applied flux Φx is swept away from (1/2)Φ0, or temperature is increased, also higher energy
levels might contribute.
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Figure 2.4: Superconducting single qubit loop and the switching SQUID (outer loop). The
outer SQUID loop is used as a measurement device to read out the state of the qubit. SEM
picture by A.C.J. ter Haar (TU Delft).

Quantum coherent Rabi-oscillations have already been observed in charge qubit devices [30].
Recently Nakamura et al. also reported the observation of quantum coherent Rabi-oscillations
in flux qubit devices [31]. However, compared to earlier qubit realizations depicted in figures
2.2 and 2.4, Nakamura et al. used a strongly modified qubit design where sensitivity to noise
is greatly reduced. They used a gradiometer type qubit, where no net flux is coupled into the
superconducting qubit loop.

The state of the single qubit might be measured for example by fabricating a DC-SQUID
around the qubit loop, and measuring the switching current ISW when increasing the bias
current [13, 32]. The switching current ISW , at which the DC-SQUID switches from the su-
percurrent branch to a finite voltage state, is a measure for the magnetic flux in the SQUID.
Thus by measuring the flux through the DC-SQUID loop, the state of the qubit can be
determined. In other words, when ramping the bias current the system and the meter get
entangled, as required for a measurement. But, one should note that the switching current in
the measurement is not perfectly correlated with the state of the qubit and strictly speaking
no von Neumann measurement is performed [33]. Figure 2.4 depicts both the qubit and the
readout device described here.

Coupling of the two level system to a dissipative environment is conviently modeled by the
Spin-Boson model [34] where the qubit is described as a spin-1/2 coupled to a bosonic bath
(harmonic oscillator bath). Every Gaussian noise source may be modeled (when introduc-
ing a corresponding spectral function) as a harmonic oscillator bath [35]. For example the
impedances in our circuit leading to Johnson-Nyquist voltage noise and therefore to flux noise
can be described by LC-oscillators. Thus it is possible to model flux noise which is the most
important source of decoherence in flux qubits. But, 1/f-noise is not Gaussian, and thus
1/f-noise can not be modeled by an environmental bath of harmonic oscillators.
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2.3 Two-qubit Hamiltonian

To model the two qubit Hamiltonian, we first describe each of the two qubits by the single
qubit Hamiltonian (2.6) which is reflected by the sum over the two single qubit Hamiltonians
in (2.7). Next, we insert an inter-qubit coupling term that originates either from direct
inductive coupling of the qubits, coupling via a flux transformer as investigated in chapter 6,
or other equivalent coupling schemes. In our case the inter-qubit coupling term is of the form

σ
(1)
z ⊗ σ(2)z . The importance of this type of inter-qubit coupling was already emphasized in

chapter 1. Here, K is the strength of the inter-qubit coupling. Without taking into account
the effects of the dissipative environment, the two qubit Hamiltonian reads

H2qb =
∑

i=1,2

(
−1

2
εiσ̂

(i)
z −

1

2
∆iσ̂

(i)
x

)
− 1

2
Kσ̂(1)z σ̂(2)z . (2.7)

We model the dissipative (bosonic) environment as either a common bath or as two distinct
baths of harmonic oscillators coupling to the σ̂z-components of the two qubits. For example,
long correlation length electromagnetic noise which is irradiated onto the qubit circuit or the
flux transformer (the flux transformer will be further elucidated in chapter 6) is a dissipative
environment which affects both qubits in the same correlated manner. This dissipative en-
vironment might be described by coupling the two qubits to one common bath of harmonic
oscillators. Short correlation length irradition, or the readout of only one of the qubits by
electronics might be described as coupling each of the two qubits to one of two uncorrelated
baths of harmonic oscillators. This means that each qubit couples exclusively to one of two
baths wich are uncorrelated. One should note that if the number of qubits is increased to
more than two qubits, there might also occur dissipative effects which neither affect all qubits
nor only a single qubit, but rather a cluster of qubits thus enhancing the complexity of our
considerations [36].

In the first case (2.8) each qubit couples to its own harmonic oscillator bath via the cou-

pling term σ̂
(i)
z X̂(i), i = 1, 2 which bilinearly couples a qubit to the coordinate X̂(i) of the

harmonic oscillator

H2b
op =

∑

i=1,2

(
−1

2
εiσ̂

(i)
z −

1

2
∆iσ̂

(i)
x +

1

2
σ̂(i)z X̂(i)

)
− 1

2
Kσ̂(1)z σ̂(2)z +HB1 +HB2 , (2.8)

where HBi , = 1, 2, are two distinct baths of harmonic oscillators. We again sum over the
two qubits. In the case of two qubits coupling to one common bath, we model our two qubit
system with the Hamiltonian

H1b
op =

∑

i=1,2

(
−1

2
εiσ̂

(i)
z −

1

2
∆iσ̂

(i)
x

)
+

1

2

(
σ̂(1)z + σ̂(2)z

)
X̂ − 1

2
Kσ̂(1)z σ̂(2)z +HB, (2.9)

where X̂ is the coordinate of the bath of harmonic oscillators and HB denotes one common
bath of harmonic oscillators.

The singlet/triplet basis states are defined according to | 〉 := (1, 0, 0, 0)T , (1/
√
2)(| 〉+

| 〉) := (0, 1, 0, 0)T , | 〉 := (0, 0, 1, 0)T and (1/
√
2)(| 〉− | 〉) := (0, 0, 0, 1)T ; here we

denote the qubit states by clockwise and counterclockwise flowing currents in the qubit. Some-
times it is also convienient to write | 〉 = |11〉, (1/

√
2)(| 〉+| 〉) = (1/

√
2)(|10〉+|01〉),
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| 〉 = |00〉 and (1/
√
2)(| 〉 − | 〉) = (1/

√
2)(|10〉 − |01〉). In singlet/triplet basis the

Hamiltonian H2qb, equation (2.7), of the two qubit system (not including dissipative effects,
e.g. neither the coupling to the bath nor the bath itself) assumes the matrix form

H2qb = −1

2




ε+K η 0 −∆η
η −K η ∆ε
0 η K − ε ∆η
−∆η ∆ε ∆η −K


 (2.10)

with ε = ε1 + ε2, η = (∆1 +∆2)/
√
2, ∆η = (∆1 −∆2)/

√
2 and ∆ε = ε1 − ε2. If we now also

regard the dissipative environment, we may distinguish the two cases of one common and two
distinct baths discussed above. In the case of two qubits coupling to two distinct baths the
system is described by the Hamiltonian (2.8), which possesses the following matrix form

H2b
op = −1

2




ε− s+K η 0 −∆η
η −K η ∆ε−∆s
0 η K + s− ε ∆η
−∆η ∆ε−∆s ∆η −K


 (2.11)

with s = X̂1 + X̂2 and ∆s = X̂1 − X̂2. In the case of two qubits with equal parameters
(i.e. both qubits have the same energy bias ε1 = ε2 and transmission amplitude ∆1 = ∆2),
coupling to two uncorrelated distinct baths the Hamiltonian reads in the singlet/triplet basis

H2b
op = −1

2




ε− s+K η 0 0
η −K η −∆s
0 η K − ε+ s 0
0 −∆s 0 −K


 . (2.12)

Here, the bath mediates transitions between the singlet and triplet states, the singlet is not
a protected subspace (see below).

In the case of two qubits with equal parameters, coupling to one common bath, the ma-
trix (2.12) simplifies to

H1b
op = −1

2




ε− s+K η 0 0
η −K η 0
0 η K − ε+ s 0
0 0 0 −K


 , (2.13)

where s = 2X̂ and ∆s = 0. One directly recognizes that compared to (2.12) in this case
thermalization to the singlet state is impeded, because (2.13) is block-diagonal in the singlet
and triplet states. It splits into a part that is already diagonal (the singlet) and an upper three
by three matrix (the triplet part). The singlet and triplet states are completely decoupled
from each other and the singlet is in the case of one common bath completely decoupled
from the bath and thus from any dissipative effects. Therefore, a system in contact with one
common bath that is prepared in the singlet state will never show any decoherence effects.
The singlet state is a protected (decoherence free) subspace (DFS) [37]. Obviously “half” a
decoherence free qubit is not very useful, but one could imagine to increase the number of
qubits (easy especially in solid state systems) to receive a bigger DFS [38]. And it should be
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noted that deviations from the ideal case of exactly same qubit parameters for both qubits
(needed here to get a DFS) enter the theory of DFS’s only in second order [39]. Therefore,
scaling up the system to more qubits and taking advantage of the properties of DFS’s seems
very promising.

2.4 Eigenenergies and eigenstates of the two-qubit Hamilto-
nian

Eigenvalues and eigenvectors of the unperturbed two-qubit system Hamiltonian are needed
to apply Bloch-Redfield theory. The matrix shape of (2.10) is very inconvient, if one tries to
diagonalize this Hamiltonian. For the sake of simplicity (and when regarding DFS’s without

Figure 2.5: Energy spectrum of the coupled two-qubit system. Here the analytical results
calculated in appendix A are plotted. In the left plot η = 5 GHz, ε and K are varied. Usually
for superconducting flux qubits ε > η is assumed [32]. The right plot depicts the eigenenergies
for K fixed to 1 GHz, ε and η are varied.

loss of generality) we assume two qubits with equal qubit parameters. Thus the Hamiltonian
(2.10) is modified to become

H2qb = −1

2




ε+K η 0 0
η −K η 0
0 η K − ε 0
0 0 0 −K


 . (2.14)

The Hamiltonian (2.14) is diagonalized exactly in appendix A and an analytic result for the
eigenenergies and eigenstates of the two qubit system is given. In the following, |E1〉, |E2〉,
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|E3〉 and |E4〉 denote the eigenstates of the two-qubit system.

The eigenenergies of the unperturbed Hamiltonian (2.14) depend on the three parameters
K, ε and η. For an overview we visualize the energy landscape in the 3D plots of figure 2.5.
In figure 2.5 either η (left plot) or K (right plot) is fixed. From the left plot one observes
clearly, that the singlet crosses a triplet state indicating that the singlet does not interact
with triplet states as was already found from the above analysis of the two qubit Hamilto-
nian. In the left panel K is tuned from large positive to large negative values corresponding
to large ferromagnetic coupling and large anti-ferromagnetic coupling respectively. For sev-
eral parameter sets, which will be discussed in the following, chapters figure 2.6 displays the
eigenenergies in more detail.
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Figure 2.6: Plot of the eigenenergies of the eigenstates |E1〉, |E2〉, |E3〉 and |E4〉. From upper
left to lower right: 1) K = 1 GHz, η = 1 GHz and ε is varied, 2) K = 10 GHz, η = 1 GHz
and ε is varied; the inset resolves the avoided level crossing due to the finite transmission
amplitude η, 3) η = 1 GHz, ε = 1 GHz and K is varied, 4) K = 1 GHz, ε = 1 GHz and η is
varied.

The energies that are choosen for the parameters ε, η and K in figure 2.6 are all in the
typical energy range of a few GHz resembling the parameters of known single- and two-
qubit experiments in Delft [13] and at MIT. Panel 1) shows that for large values of ε two
of the eigenenergies are degenerate (namely for ε À η,K the states |E1〉 and |E4〉 equal
(1/
√
2)(| 〉 − | 〉) and (1/

√
2)(| 〉 + | 〉), hence the eigenenergies are degenerate)
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while near zero energy bias (magnetic frustation f = 1/2) all four eigenenergies might be
observed. Note also that therefore at zero energy bias the transition frequency ω14 = −ω41
has a local maximum.

If K is set to a big positive value corresponding to large ferromagnetic coupling (figure 2.6,
panel 2), K = 10 GHz) the Hamiltonian (2.14) is nearly diagonal and hence the eigenstates
in good approximation are equal to the singlet/triplet basis states. In this case |E3〉 equals
the triplet state (1/

√
2)(| 〉 + | 〉), |E2〉 and |E4〉 equal | 〉 and | 〉 respectively

for positive values of ε. For large negative values of ε the two states |E2〉 and |E4〉 become
equal | 〉 and | 〉 with a spin-flip at ε = 0. In the case of large ferromagnetic coupling
the ground state tends towards the superposition (1/

√
2)(| 〉 + | 〉). Of course panel

2) shows that only for ε equal to zero both |E2〉 = | 〉 (|E2〉 = | 〉 for negative ε) and
|E4〉 = | 〉 (|E4〉 = | 〉 for negative ε) have the same energies (which one would expect

if the −(1/2)Kσ(1)z σ
(2)
z term in the Hamiltonian dominates) because if ε is increased the εiσ̂

(i)
z

(i=1,2) terms in the Hamiltonian change the energy.

For negative K and |K| À ε,∆ and hence large antiferromagnetic coupling, the states | 〉
and | 〉 are emphasized. In this case, the ground state tends towards (1/

√
2)(| 〉+| 〉).

The energies of (1/
√
2)(| 〉+ | 〉) and (1/

√
2)(| 〉− | 〉) are the same, independent

of the value of ε. If ε and η are kept constant and K is negative with |K| À ε,∆ (antiferro-
magnetic coupling, large positive K describes ferromagnetic coupling) the singlet state and
the triplet state (1/

√
2)(| 〉+ | 〉) are indistinguishable having the same energies.

From figure 2.6, panel 3), one directly sees (the singlet eigenenergy crosses the triplet eigenen-
ergies) that regarding only (2.14) (no dissipative environment) the singlet does not interact
with any triplet states. At zero energy bias (magnetic frustation f = 1/2) none of the eigen-
states equal one of the triplet states (e.g. as observed for a large energy bias ε). This means
that at zero energy bias ε three eigenstates (one eigenstate always equals the singlet) are
superpositions of triplet states. This is elucidated further in the next paragraph. The inset of
panel 2) depicts the level anti-crossing between the eigenenergies of the two states |E2〉 and
|E4〉 due to quantum tunneling.

Figure 2.7 shows which singlet/triplet states the eigenstates consist of, for different qubit
parameters. The first eigenstate |E1〉 = (1/

√
2)(|10〉 − |01〉) for all times while the other

eigenstates |E2〉, |E3〉 and |E4〉 are in general superpositions of the singlet/triplet basis
states. For large values of |ε| the eigenstates approach the singlet/triplet basis states. Espe-
cially at typical working points, where ε ≈ 5 ·∆ [32] the eigenstates already nearly equal the
singlet/triplet basis states. However in figure 2.7 the inter-qubit coupling strength K is fixed
to a rather high value of 1 GHz. (Usually a value of K ≈ 0.5 ·∆ is assumed [24].) This rather
high value of K accounts for faster convergence towards the singlet/triplet basis states when
|ε| is increased.
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Figure 2.7: Plot of the amplitude of the different singlet/triplet states of which the eigenstates
denoted by |E1〉, |E2〉, |E3〉 and |E4〉 are composed for the four eigenstates. In all plots ε is
varied and K and η are fixed to 1 GHz.
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Chapter 3

Weak symmetric driving in ε

To make quantitative predictions that might be compared with experimental results on the
spectroscopy of coupled qubits, we consider the case of weak symmetric driving in the energy
bias ε. We calculate the transitions induced by small perturbations of ε using the Hamilto-
nian (2.10) which describes two coupled flux qubits. Experiments investigating two directly
inductively coupled flux qubits are currently done in Delft [40]. We assume a small time
dependent periodic perturbation κ(t) of ε in the Hamiltonian (here given in singlet/triplet
basis representation)

Hop = −1

2




[ε+ κ(t)] +K η 0 −∆η
η −K η ∆ε
0 η K − [ε+ κ(t)] ∆η
−∆η ∆ε ∆η −K


 , (3.1)

which in the case of two identical qubits (all terms including ∆ε and ∆η vanish) has the form

Hop = −1

2




ε+K η 0 0
η −K η 0
0 η K − ε 0
0 0 0 −K


−

1

2




κ(t) 0 0 0
0 0 0 0
0 0 −κ(t) 0
0 0 0 0


 . (3.2)

Here we identify the periodic perturbation as

V̂ (t) = −1

2




κ(t) 0 0 0
0 0 0 0
0 0 −κ(t) 0
0 0 0 0


 . (3.3)

For a periodic perturbation we may rewrite V̂ (t) as

V̂ (t) = −1

2




1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0


κ exp(±iωt)

= −1

2
V̂0κ exp(±iωt) (3.4)
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where κ is the amplitude and ω the frequency of the perturbation. In the eigenbasis of Hop

the matrix elements of V̂0 read (the constants ki, i = 1, . . . , 9, are defined in appendix A)

〈1|V̂0|2〉 = 〈1|V̂0|3〉 = 〈1|V̂0|4〉 = 〈2|V̂0|1〉 = 〈3|V̂0|1〉 = 〈4|V̂0|1〉 = 0 (3.5)

〈2|V̂0|2〉 =
|η|2
k23

(
k21 − k22

)
(3.6)

〈2|V̂0|3〉 = 3
|η|3|k2|
k6k3

(
9
k1
k2
− k5
η2

)
(3.7)

〈2|V̂0|4〉 = −3 |η|
3|k2|
k9k3

(
k7k1
η2k2

+ 9

)
(3.8)

〈3|V̂0|2〉 = 3
|η|3|k2|
k6k3

(
9
k1
k2
− k5
η2

)
(3.9)

〈3|V̂0|3〉 =
|η|4
k26

(
81− k25

η4

)
(3.10)

〈3|V̂0|4〉 = −9 |η|
2

k6k9
(k7 + k5) (3.11)

〈4|V̂0|2〉 = −3 |η|
3|k2|
k9k3

(
k7k1
η2k2

+ 9

)
(3.12)

〈4|V̂0|3〉 = −9 |η|
2

k6k9
(k7 + k5) (3.13)

〈4|V̂0|4〉 =
|η|4
k29

(
k27
η4
− 81

)
(3.14)

According to first order perturbation theory, the eigenenergies of the two-qubit system are
modified

E′i = Ei + 〈i|V̂ (t)|i〉 . (3.15)

Due to the symmetry of the Hamiltonian, equation (3.2), which is respected by the driving
there are still no transitions possible between the singlet state and the triplet states. To
calculate the probability to find the system at time t in state |m〉 if it started in state |n〉
(with m 6= n; first order perturbation theory)

Pmn = |c(1)m (t)|2 (3.16)

we need to evaluate the coefficient [41]

c(1)m (t) = − i
h̄
〈m|V̂0|n〉

∫ t

0
dt′ exp(iΩt′), (3.17)

with Ω = ωmn ± ω, where ω denotes the frequency of the perturbation. The integral on the
right hand side of (3.17) can easily be calculated

∣∣∣∣∣

∫ t

0
dt′ exp(iΩt′)

∣∣∣∣∣

2

=

∣∣∣∣∣
exp(iΩt)− 1

iΩ

∣∣∣∣∣

2

=
4 sin2(Ωt/2)

Ω2
. (3.18)

Gathering all the previous results we get [41]

Pnm = |c(1)m (t)|2 = 1

h̄2
| 〈m|V̂0|n〉 |2

4 sin2(Ωt/2)

Ω2
. (3.19)
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From the matrix elements of V̂0 and the plots in figure 3.1 one concludes that the perturbation
does not induce transitions between the singlet and triplet states. And figure 3.1 shows that
within the triplet the transitions 2→ 4 (4→ 2) and 3→ 4 (4→ 3) are favored compared to
the transition 3→ 2 (2→ 3) which is always suppressed.

In experiments with flux qubits usually the transition frequencies between certain energy
levels are probed. Therefore, figures 3.2 and 3.3 depict the transition frequencies between
the four eigenstates. The transition frequencies are defined as ωnm = (En − Em)/h̄. Note
that ωnm = −ωmn. Here, we either fixed K = 0.2 GHz, η = 0.2 GHz and varied ε or fixed
K = 0.2 GHz, ε = 1 GHz and varied η. The transitions between the singlet state |E1〉 and the
triplet states are forbidden in the case of one common bath, due to the special symmetries of
the Hamiltonian (2.9). (The transition frequencies corresponding to transitions to and from
the singlet states are ω21 = −ω12, ω31 = −ω13 and ω41 = −ω14.) However, in the case of
two distinct baths the environment can mediate transitions between the singlet state and the
triplet states.

Not all transition frequencies have local minima at ε = 0. The frequencies ω41 and ω34
have local maxima at zero bias ε. This, one can understand when looking at figure 2.6, panel
1), (despite the fact that there larger values of η and K have been used; the overall behaviour
stays the same): the energy of the eigenstate |E4〉 has a local minimum at ε = 0. Also the
substructure of ω34 can be understood from figure 2.6: the frequency ω34 has a local maxi-
mum at ε = 0, because of the local minimum of the eigenenergy of the state |E4〉. First, if
ε is increased, the level spacing of |E4〉 and |E3〉 decreases. Then, for larger values of ε the
level spacing of |E4〉 and |E3〉 increases again. Thus, the structure observed for ω34 around
ε = 0 emerges in figure 3.3.
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Figure 3.1: Plot of the squared absolute value of the matrix elements (3.5)-(3.14) for different
values of K, ε, η. Parameters for the upper panel are K = 1 GHz, ε = 0, 1, 103 GHz and for
the lower panel η = 1 GHz, ε = 0, 1, 103 GHz.
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Figure 3.2: Plot of the transition frequencies ω32, ω42 and ω31. In the left column K = 0.2
GHz, η = 0.2 GHz and ε is varied. Right column K = 0.2 GHz, ε = 1 GHz and η is varied.
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Chapter 4

Bloch-Redfield-Formalism

The so called Bloch-Redfield-Formalism provides an important tool for finding a set of coupled
master equations which describes the dynamics of the reduced (i.e. the reservoir coordinates
are traced out) density matrix for a given system in contact with a dissipative environment.
As we discussed in chapter 2, we model the dissipative (bosonic) environment as either a
common bath or two distinct baths of harmonic oscillators coupling to the σ̂z-components of
the two qubits. The Hamiltonian of our two qubit system including the bath of harmonic
oscillators, the coupling to the bath and a driving field reads [21]

Hop(t) = H2qb +HB +Hint +H1(t), (4.1)

where H1(t) is the interaction energy with a weak driving field, HB a bath of harmonic
oscillators and Hint inherits the coupling to a dissipative environment. In our case the effects
of driving are not investigated. The Liouville equation for the density operator ρT of the
whole system is

ih̄
d

dt
ρT (t) = [Hop(t), ρT (t)]. (4.2)

Then Bloch-Redfield formalism is derived from a projector approach. It bestows an equation
of motion for the reduced density matrix by separating the density operator into two parts,
the part we are interested in and the remainder. Then a set of coupled master equations is
derived [21]. The Bloch-Redfield approach is valid for a weak coupling to the environment. In
Born approximation it provides the following set of equations for the reduced density matrix
ρ describing the dynamics of the system [22, 42]

ρ̇nm(t) = −iωnmρnm(t)−
∑

kl

Rnmk`ρk`(t), (4.3)

where ωnm = (En−Em)/h̄, and max
n,m,k,`

|Re(Rnmk`)| < min
n6=m
|ωnm| must hold. The tensor Rnmk`

is called Redfield relaxation tensor and comprises the dissipative effects of the coupling of the
system to the environment.

4.1 Redfield relaxation tensor

The elements of the Redfield relaxation tensor read [42]

Rnmk` = δ`m
∑

r

Γ
(+)
nrrk + δnk

∑

r

Γ
(−)
`rrm − Γ

(+)
`mnk − Γ

(−)
`mnk. (4.4)
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The rates are given by the Golden Rule expressions

Γ
(+)
`mnk = h̄−2

∫ ∞

0
dt e−iωnkt

〈
H̃I,`m(t)H̃I,nk(0)

〉
, (4.5)

Γ
(−)
`mnk = h̄−2

∫ ∞

0
dt e−iω`mt

〈
H̃I,`m(0)H̃I,nk(t)

〉
. (4.6)

Where H̃I(t) = exp(iHBt/h̄)HI exp(−iHBt/h̄) denotes the interaction in the interaction pic-
ture, and the bracket denotes thermal average of the bath degrees of freedom. One can
recognize that the Bloch-Redfield approach leads to equations of Markovian shape. However,
by the time integrals in (4.5) and (4.6) we take account of the bath correlations.

4.2 Two qubits coupled to two distinct baths

We evaluate the expressions (4.5) and (4.6) in the case of two qubits, each coupled to a

distinct bath. The coupling to the bath is described by the coupling term σ
(i)
z ⊗ X̂(i), where

X̂ = ζ
∑

ν λνxν is the coordinate of the bath of harmonic oscillators. First we evaluate (4.5).
The calculation is done in more detail in appendix C. Writing down the coupling to the bath
as the interaction in the interaction picture and inserting this expression into (4.5) gives

Γ
(+)
`mnk = h̄−2

∫ ∞

0
dt e−iωnkt〈ei(HB1

+HB2
)t/h̄) ×

×
(
σ
(1)
z,`m ⊗

∑

i

λix
(1)
i + σ

(2)
z,`m ⊗

∑

j

µjx
(2)
j

)
e−i(HB1

+HB2
)t/h̄) ×

×
(
σ
(1)
z,nk ⊗

∑

α

λαx
(1)
α + σ

(2)
z,nk ⊗

∑

β

µβx
(2)
β

)
〉, (4.7)

where σ
(i)
z,nm (i = 1, 2) are the matrix elements of σ̂

(i)
z with respect to the eigenbasis of the

unperturbed Hamiltonian (2.14). The explicit shape of the matrix elements σ
(i)
z,nm is given

in appendix B. We assume ohmic spectral densities with a Drude-cutoff. This is a realistic
assumption [13] and leads to integrals in the rates which are tractable by the residue theorem
(see for example chapter 4.6). The cutoff frequency ωc for the spectral functions of the two
qubits should be the largest frequency in the problem, this is discussed further in chapter 4.6

J1(ω) =
α1h̄ω

1 + ω2

ω2c

and J2(ω) =
α2h̄ω

1 + ω2

ω2c

. (4.8)

The dimensionless parameter α describes the strength of the dissipative effects that enter the
Hamiltonian via the coupling to the environment, described by s and ∆s. After tracing out
over the bath degrees of freedom (explicitly calculated in appendix B1), the rates read

Γ
(+)
`mnk =

1

8h̄

[
σ
(1)
z,`mσ

(1)
z,nkJ1(ωnk) + σ

(2)
z,lmσ

(2)
z,nkJ2(ωnk)

]
(coth(βh̄ωnk/2)− 1) +

+
i

4πh̄

[
σ
(2)
z,`mσ

(2)
z,nk

∞∫

0

dω
J2(ω)

ω2 − ω2
nk

(coth(βh̄ω/2)ωnk − ω) +

+ σ
(1)
z,`mσ

(1)
z,nk

∞∫

0

dω
J1(ω)

ω2 − ω2
nk

(coth(βh̄ω/2)ωnk − ω)
]

(4.9)
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and

Γ
(−)
`mnk =

1

8h̄

[
σ
(1)
z,`mσ

(1)
z,nkJ1(ω`m) + σ

(2)
z,lmσ

(2)
z,nkJ2(ω`m)

]
(coth(βh̄ω`m/2) + 1) +

+
i

4πh̄

[
σ
(2)
z,`mσ

(2)
z,nk

∞∫

0

dω
J2(ω)

ω2 − ω2
`m

(coth(βh̄ω/2)ω`m + ω) +

+ σ
(1)
z,`mσ

(1)
z,nk

∞∫

0

dω
J1(ω)

ω2 − ω2
`m

(coth(βh̄ω/2)ω`m + ω)

]
. (4.10)

The rates Γ
(+)
`mnk and Γ

(−)
`mnk might be inserted into (4.4) to build the Redfield tensor. Note

here that for ωnk → 0 and ωlm → 0 respectively the real part of the rates (which is responsible
for relaxation and dephasing) is of value

Γ
(+)
`mnk = Γ

(−)
`mnk =

1

4βh̄

[
σ
(1)
z,`mσ

(1)
z,nkα1 + σ

(2)
z,lmσ

(2)
z,nkα2

]
(4.11)

as evaluated in appendix C. To solve the set of differential equations (4.3), it is convenient
not to use the superoperator notation were ρ(top) = νopρ(0) but either write ρ as a vector. In
general the Redfield equations (4.3) without driving are solved by an ansatz of the type ρ(t) =
B exp(R̃i)B

−1ρ(0), where R̃i is a diagonal matrix. The entries of this diagonal matrix are the
eigenvalues of the Redfield tensor (4.4), written in matrix form, including the contribution
from the term iωnm (cf. equation 4.3). Here, the reduced density matrix ρ = (ρ11, . . . , ρ44)

T

is written as a vector. The matrix B describes the basis change to the eigenbasis of R̃i, in
which R̃i has diagonal shape.

4.3 Two qubits coupled to one common bath

For the case of two qubits coupled to one common bath we perform the same calculation as
in the last section, which leads to expressions for the rates

Γ
(+)
`mnk =

1

8h̄

[
σ
(1)
z,`mσ

(1)
z,nk + σ

(1)
z,`mσ

(2)
z,nk + σ

(2)
z,`mσ

(1)
z,nk + σ

(2)
z,lmσ

(2)
z,nk

]
J(ωnk)×

× (coth(βh̄ωnk/2)− 1) +
i

4πh̄

[
σ
(1)
z,`mσ

(1)
z,nk + σ

(1)
z,`mσ

(2)
z,nk +

+ σ
(2)
z,`mσ

(1)
z,nk + σ

(2)
z,lmσ

(2)
z,nk

] ∞∫

0

dω
J(ω)

ω2 − ω2
nk

(coth(βh̄ω/2)ωnk − ω)

(4.12)

and

Γ
(−)
`mnk =

1

8h̄

[
σ
(1)
z,`mσ

(1)
z,nk + σ

(1)
z,`mσ

(2)
z,nk + σ

(2)
z,`mσ

(1)
z,nk + σ

(2)
z,lmσ

(2)
z,nk

]
J(ω`m)×

× (coth(βh̄ω`m/2) + 1) +
i

4πh̄

[
σ
(1)
z,`mσ

(1)
z,nk + σ

(1)
z,`mσ

(2)
z,nk +

+ σ
(2)
z,`mσ

(1)
z,nk + σ

(2)
z,lmσ

(2)
z,nk

] ∞∫

0

dω
J(ω)

ω2 − ω2
`m

(coth(βh̄ω/2)ω`m + ω) .

(4.13)
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The difference between the rates for the case of two distinct baths (4.9), (4.10) are the two

extra terms σ
(1)
z,lmσ

(2)
z,nk and σ

(2)
z,lmσ

(1)
z,nk. They originate from the prcoess of tracing out over

the bath, because in the case of one common bath all creation and annihilation operators
(harmonic oscillator coordinate X̂ written in terms of creation and annihilation operators) in
the interaction Hamiltonian Hint ∝ σ̂iz ⊗ X̂ (i=1,2) act on the same bath and therefore also

the mixed terms a(1)
†
a(2) and a(2)

†
a(1) contribute to the rates. In the case of one common

bath there is only one spectral function J(ω) = (αh̄ω)/(1 + ω2

ω2c
) which we also assume to be

ohmic. For ωnk → 0 and ωlm → 0 respectively the real part of the rates is of the value

Γ
(+)
`mnk = Γ

(−)
`mnk =

α

4βh̄

[
σ
(1)
z,`mσ

(1)
z,nk + σ

(1)
z,`mσ

(2)
z,nk + σ

(2)
z,`mσ

(1)
z,nk + σ

(2)
z,lmσ

(2)
z,nk

]
. (4.14)

4.4 Dynamics of dissipative coupled flux qubits

The dissipative effects affecting the two qubit system lead to decoherence. The system re-
laxes due to energy relaxation on a timescale τR = Γ−1R (ΓR is the sum of the relaxation
rates for the four diagonal elements), called relaxation time, into a thermal mixture of the
system’s energy eigenstates. Therefore the diagonal elements of the reduced density matrix
decay to the factors given by the Boltzmann factors. The quantum coherent dynamics of
the system are superimposed on the relaxation and decay on a shorter time scale τϕij = Γ−1ϕij
(i, j = 1, . . . , 4; i 6= j) termed dephasing time. Thus dephasing causes the off diagonal terms
(coherences) of the reduced density matrix to tend towards zero.

First, we investigate the relaxation of the two qubit system which was prepared in an eigen-
state. If the system is prepared in an eigenstate, no phase coherence and thus no dephasing
is present. In thermal equlibrium we receive ρ = (1/Z)e−βH . Special cases are T = 0 K
where ρ equals the projector on the ground state and T → ∞ where we receive an equal
distribution of all basis states. Figure 4.1 and 4.2 illustrate the relaxation of the system
prepared in one of the four eigenstates for temperatures T = 0 K and T = 100 mK respec-
tively. The qubit energies K, ε and η are all set to 1 GHz and α is set to α = 10−3. From
figure 2.6 one recognizes that the eigenstate |E2〉 is the ground state for this set of parameters.

At low temperatures (T = 0 K), we observe that for the case of two distinct uncorrelated
baths a system prepared in one of the four eigenstates always relaxes into the ground state.
Of course in the case of two qubits coupling to one common bath the singlet is a protected
subspace and there never will be any transitions between the eigenstate |E1〉 (singlet) and the
eigenstates |E2〉, |E3〉 and |E4〉. Thus the cases of one common and two distinct baths show
the same behaviour, the only difference is that a system prepared in the singlet eigenstate |E1〉
will not show any transitions in the case of one common bath. This is nicely observed in figures
4.1 and 4.2. Relaxation to the ground state happens by populating intermediate eigenstates
with a lower energy than the initial state the system was prepared in at t = 0 s (cf. figure 2.6).

For high temperatures (T ≈ 10 K) the system thermalizes into thermal equilibrium, where
all four eigenstates have equal occupation probabilities. However, in the case of one common
bath thermalization of the singlet state again is impeded because no tranisitions between the
singlet and triplet states are possible, as one can see from the Hamiltonian (2.13). Therefore,
in the case of both qubits coupling to one common bath the three eigenstates |E2〉, |E3〉 and
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Figure 4.1: Plot of the occupation probability of the four eigenstates |E1〉 , |E2〉 , |E3〉 and
|E4〉 for initially starting in one of the eigenstates at T = 0 K. The left column illustrates the
case of two qubits coupling to one common bath and the right column the case of two qubits
coupling to two distinct baths. The energies K, ε and η are all fixed to 1 GHz.

|E4〉 have equal occupation probabilites of 1/3 after the relxation time.

Figure 4.3 displays the dynamics of the system of two qubits prepared in an off-diagonal
pure state, namely |11〉 = | 〉 = 0 · |E1〉+0.94 · |E2〉+0.22 · |E3〉−0.27 · |E4〉 at time t = 0 s
(ε = η = K = 1 GHz). Temperature is set to T = 0 K. In figure 4.3 the left colum displays
the case where α = 10−2 (the time scale on which decoherence happens is t ≈ 2 · 10−7 s for
this choice of parameters), while the right column illustrates the case where α = 10−3. For
the latter case the dissipative effects are smaller. The occupation probability shows coherent
oscillations which are damped due to dephasing and finally, at T ≈ 0 K, the system relaxes
into the ground state of the system. Here the superposition of basis states, in which the sys-
tem was prepared, did not contain the singlet state. For low temperatures the timescale on
which dephasing and relaxation happen is somewhat shorter for the case of one common bath
(approximately 1.5 · 10−7 s compared to 2 · 10−7 s for α = 10−2). This can be explained by
observing the temperature dependence of the rates shown in figure 4.5. Though for the case
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Figure 4.2: Plot of the occupation probability of the four eigenstates |E1〉 , |E2〉 , |E3〉 and
|E4〉 for initially starting in one of the eigenstates at T = 100 mK. The left column illustrates
the case of two qubits coupling to one common bath and the right column the case of two
qubits coupling to two distinct baths. The energies K, ε and η are all fixed to 1 GHz.

of one common bath two of the dephasing rates are zero at T = 0 K, the remaining rates are
always slightly bigger for the case of one common bath compared to the case of two distinct
baths. If the system is prepared in a superposition of three of the eigenstates, namely |E2〉,
|E3〉 and |E4〉, nearly all rates become important thus compensating the effect of the two
rates which are approximately zero at zero temperature and leading to faster decoherence.
If α and therefore the strength of the dissipative effects is increased from α = 10−3 to α = 10−2

(left plot in 4.3) the observed coherent motion is significantly damped. Variation of α leads
to a phase shift of the coherent oscillations, due to renormalization of the frequencies [16].
However, in our case the effects of renormalization are very small, as discussed in chapter 4.6,
and can not be observed in our plots.

If the system is prepared in a superposition of eigenstates |E3〉 and |E4〉 which are nei-
ther protected subspaces (of course, only in the case of one common bath the singlet is a
protected subspace) nor the ground state, we observe coherent oscillations between the eigen-
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Figure 4.3: Plot of the occupation probability P|11〉(t) = P|↑↑〉(t) = 〈11|ρ(t)|11〉 for starting in
the initial state |11〉 at t = 0 s. Temperature is set to T = 0 K. First row shows the behaviour
for two qubits coupling to two uncorrelated baths both for α = 10−3 and α = 10−2. The
lower two plots show the behaviour for two qubits coupled to one common bath. The qubit
parameters ε, η and K are all set to 1 GHz.

states and after the decoherence time the occupation probability of the eigenstates is given
by the Boltzmann factors. This behaviour is depicted in figure 4.4. Here for α = 10−3 the
cases of T = 0 K and T = 100 mK are compared. When the temperature is low enough the
system will relax into the ground state, as illustrated by the right column of figure 4.4. Thus
the occupation probability of the state (1/

√
2)(|E3〉+ |E4〉) goes to zero because |E2〉 is the

ground state. Here, in the case of zero temperature, the decoherence times for the case of one
common or two distinct baths are of the same order of magnitude. The left column illustrates
the behaviour when the temperature is increased. At T = 100 mK the system relaxes not yet
(temperature is not high enough) into an equally populated state but tends towards it.

When calculating the elements of the Redfield tensor and evaluating the reduced density
matrix it is instructive to demonstrate that at zero temperature the general relation holds
[16]

Γ1b,2b
R =

2

Nlev − 1

∑

n>m

Γ1b,2b
nm , at T = 0 K, (4.15)
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Figure 4.4: Plot of the occupation probability P(1/
√
2)(|E3〉+|E4〉)(t) when starting in the initial

state (1/
√
2)(|E3〉+|E4〉), which is a superposition of eigenstates |E3〉 and |E4〉 at T = 0.1 K.

First row shows the behaviour for two qubits coupling to two uncorrelated baths. The lower
row shows the behaviour for two qubits coupled to one common bath. The qubit parameters
ε, η and K are set to 1 GHz, α is set to α = 10−3. The inset resolves the time scale of the
coherent oscillations.

where Nlev = 4 for coupled qubits and ΓR is the relaxation rate, defined as the sum of the
four relaxation rates for the diagonal elements of the reduced density matrix ΓR = −∑n Λn,
where Λn are the four eigenvalues of the matrix Rn,m,n,m with n,m = 1 . . . 4. The dephasing
rates are defined as

Γ1b,2b
ϕnm = −ReR1b,2b

n,m,n,m, (4.16)

with n,m = 1 . . . 4, n 6= m. From this follows that the dephasing rates are always smaller
than the relaxation rate Γ1b,2b

R . However one should be aware that in the case of a two qubit
system there exist six dephasing and only four (three non-zero) relaxation channels.

4.5 Temperature dependence of the rates

Figure 4.5 displays the dependence of selected dephasing rates and the relaxation rate ΓR
(defined as the sum of the relaxation rates of the individual diagonal elements of the reduced
density matrix) on temperature. The decoherence rates are the inverse decoherence times.
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The rates are of the same magnitude for the case of one common bath and two distinct baths,
but in the case of one common bath the dephasing rates Γϕ21 = Γϕ12 go to zero when the
temperature is decreased while all other rates saturate for T → 0. If the temperature is
increased from T ≈ 5 · 10−2 K = 1 GHz the increase of the dephasing and relaxation rates
follows a power law dependence. In the case of one common bath the slope b assumes values
between 1.2 · 108 and 3.8 · 108 for the different rates. If the two qubits couple to two distinct
baths b reaches values between 1.3 · 108 and 3.6 · 108. At temperature T ≈ 10−2 K the rates
show a sharp increase for both cases. This roll off point is set by the characteristic energy
scale of the problem which in turn is set by the energy bias ε, the transmission amplitude
η and the coupling strength K. For the choice of parameters in figure 4.5 the characteristic
energy scale expressed in temperature is T ≈ 0.5 · 10−2 K. Note that there is also dephasing
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Figure 4.5: Log-log plot of the temperature dependence of the sum of the four relaxation
rates and selected dephasing rates. Qubit parameters K, ε and η are all set to 1 GHz and
α = 10−3. The upper panel shows the case of one common bath, the lower panel the case of
two distinct baths. At the characteristic temperature of approximately 5 · 10−2 K (set by the
characteristic energy scale of the system; here 1 GHz = (kB/h) · 5 · 10−2 K) the rates increase
very steeply.

between the singlet and the triplet states. When the system is prepared (by application of a
suitable interaction) in a coherent superposition of singlet and triplet states the phase evolves
coherently. Then two possible decoherence mechanisms can destroy phase coherence. First
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there exist “flipless” processes, which can easily be explained when referring to the Bloch
sphere, where the σ̂z eigenstates | 〉 and | 〉 are the poles [43, 44]. If a spin-vector moves on
a great circle which lies in a plane parallel to the plane spanned by the σ̂x- and σ̂y-axis, only
the expectation value of the σ̂z component will not change. Thus the processes where the
spin-vector gets random kicks on a great circle in a plane parallel to the plane spanned by the
σ̂x and σ̂y components are called “flipless” processes. These flipless processes are described
by the terms (4.11) and (4.14) in the rates respectively. Obviously these terms vanish for
T → 0. This and the fact that for T → 0 there are no transitions of the triplet part |E2〉
(ground state) to other triplet states possible (this will be explained below), explains why the
rate Γϕ21 vanishes. Secondly, if the system is prepared in a superpostion of a singlet and a
triplet state, transitions between the triplet state (if the triplet state is not the ground state)
and other triplet states (with lower energies) are possible. Therefore the triplet component
is unstable and the other dephasing rates which involve the singlet state and a triplet state
do not vanish. For our choice of parameters |E2〉 is the ground state and thus no transitions
between the triplet state |E2〉 and other triplet states are possible at T = 0 K. If the system
is prepared in a superposition of the singlet state and the states |E3〉 or |E4〉 (not the ground
states), there might be transitions between the triplet state the system was prepared in and
a triplet state with lower energy. These transitions will not vanish for T → 0 and thus the
dephasing rates Γϕ31 and Γϕ41 will not vanish for T → 0. The described behaviour can be
observed in figure 4.5.

If the parameters ε and η are tuned to zero, thus K being the only non-vanishing parameter
in the two qubit operation (this is excactly the case for the two qubit operation needed when
performing the XOR as described in the next chapter), all dephasing and relaxation rates will
vanish for T = 0 K in the case of one common bath. This behaviour is depicted in figure 4.6.
It originates from the special symmetries of the Hamiltonian in this case and the fact that for
this particular two qubit operation the system Hamiltonian and the coupling to the bath are
both diagonal. Therefore all rates vanish in the case of one common bath for T → 0. This
behaviour is also observed in the two gate quality factors fidelity and purity (figure 5.2) that
are described in chapter 5.

Interestingly enough, for σ
(1)
z ⊗σ(2)z type of inter-qubit coupling and σ

(i)
z ⊗X̂ type of qubit-bath

coupling, in the case of the two-qubit operation depicted in figure 4.6, the system Hamilto-
nian and the coupling to the bath do commute. (In this case ε = 0 and η = 0.) Therefore
the effects of decoherence are weaker compared to other types of inter-qubit coupling and
coupling to the bath.

4.6 Discussion of the renormalization effects

Renormalization of the oscillation frequencies ωnm is controlled by the imaginary part of the
Redfield tensor [16]

ωnm → ω̃nm := ωnm − ImRnmnm. (4.17)

Thus the real part of the Redfield tensor yields the relaxation and dephasing rates while the
imaginary part causes an environment induced shift of the oscillation frequencies ωnm. The
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Figure 4.6: Plot of the temperature dependence of the sum of the four relaxation rates and
selected dephasing rates. Qubit parameters ε and η are set to 0, K is set to 1 GHz, α = 10−3

corresponding to the choice of parameters used for the XOR operation. The upper panel
shows the case of one common bath, the lower panel the case of two distinct baths. In the
case of one common bath the system will experience no dissipative effects at T = 0 K.

imaginary part of the Redfield tensor is given by the imaginary part of the rates

Im Γ
(+)
`mnk = C1b,2b

1

πh̄

∞∫

0

dω J(ω)P

(
1

ω2 − ω2
nk

)
[coth(βh̄ω/2)ωnk − ω] (4.18)

and

Im Γ
(−)
`mnk = C1b,2b

1

πh̄

∞∫

0

dω J(ω)P

(
1

ω2 − ω2
lm

)
[coth(βh̄ω/2)ωlm + ω] , (4.19)

where P denotes the principal value and C1b,2b are defined in equations (4.25) and (4.26).

Therefore one has to evaluate the integral (the corresponding term for Γ
(−)
`mnk is not explicitly

discussed here because the calculation is completely analogous; the result is given below)

h̄−1
∞∫

0

dω J(ω)P

(
1

ω2 − ω2
nk

)
[coth(βh̄ω/2)ωnk − ω] , (4.20)
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with an ohmic spectral density J(ω) = (h̄αω)/(1+ω2/ω2
c ). This integral (4.20) might be split

into two parts

I1 =

∞∫

0

dω f1(ω) =

∫ ∞

0
dω

αω

1 + ω2

ω2c

1

ω − ωnk
1

ω + ωnk
coth(βh̄ω/2)ωnk (4.21)

−I2 =

∞∫

0

dω f2(ω) =

∫ ∞

0
dω

αω

1 + ω2

ω2c

1

ω − ωnk
1

ω + ωnk
ω. (4.22)

After a lengthy calculation (see appendix C) we receive for Γ
(+)
`mnk

Im Γ
(+)
`mnk = C1b,2b

αω2
cωnk

2π(ω2
c + ω2

nk)

[
ψ(1 + c2) + ψ(c2)− 2Re[ψ(ic1)]− π

ωc
ωnk

]
, (4.23)

with c1 := (ωnkβh̄)/(2π), c2 := (βh̄ωc)/(2π). In the case of Γ
(−)
`mnk the expression is

Im Γ
(−)
`mnk = C1b,2b

αω2
cω`m

2π(ω2
c + ω2

`m)

[
ψ(1 + c2) + ψ(c2)− 2Re[ψ(ic1)] + π

ωc
ω`m

]
, (4.24)

with c1 := (ω`mβh̄)/(2π). Here C1b,2b denotes a pre-factor, which reads in the case of two
distinct baths

C2b =
1

4

[
σ
(1)
z,`mσ

(1)
z,nk + σ

(2)
z,`mσ

(2)
z,nk

]
(4.25)

and in the case of one common bath

C1b =
1

4

[
σ
(1)
z,`mσ

(1)
z,nk + σ

(1)
z,`mσ

(2)
z,nk + σ

(2)
z,`mσ

(1)
z,nk + σ

(2)
z,`mσ

(2)
z,nk

]
. (4.26)

The terms in (4.23) and (4.24) which are linear in ωc give no net contribution to the imaginary
part of the Redfield tensor [16]. To illustrate the size of the renormalization effects, the ratio
of the renormalization effects to the frequencies which are renormalized is depicted in figure
4.7.

If c1 and c2 are big and the Ψ-functions can be approximated by a logarithm the resulting
expression for the renormalization effects will be independent of temperature. Therefore it
only makes sense to plot the temperature dependence of (4.23) and (4.24) for high tempera-
tures, where c1 and c2 are small and the renormalization effects are very weak. For the case
of small c1 and c2, the temperature dependence of the renormalization effects is depicted in
figure 4.7.

The rates (4.23) and (4.24) diverge logarithmically with ωc. When comparing the upper
left (T = 0 K) and upper right (T = 100 mK) panel, one recognizes that for the first case
one common bath gives smaller renormalization effects than two distinct baths, while in the
second case for T = 100 mK the renormalization effects deviate only slightly (see the be-
haviour for ω23) and the renormalization effects are smaller for the case of two distinct baths.
(This temperature dependence can also be observed in the gate quality factors. These are
discussed in chapter 5.) The effects of renormalization are always very small (below 1% for
our choice of parameters) and are therefore neglected in our calculations. The case of large
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Figure 4.7: From upper left to lower right: 1) Plot of the ratio of the renormalization effects
and the corresponding transition frequencies. Parameters: α = 10−3, T = 0 K and ωc is
varied between 1011 and 1014 for several frequencies (ω12, ω14 and ω23) for the case of two
baths and in the case of ω23 also for the case of one common bath, 2) The parameters for the
upper right plot are α = 10−3, T = 100 mK and ωc is varied between 1012 and 1014, 3) Plot
of the the dissipation strength dependence of the renormalization effects. The parameters
are T = 0.1 K, ωc = 1013 and α is varied between 10−7 and 10−1, 4) Log-log plot of the
temperature dependece of the renormalization effects. Here α = 10−3 and ωc = 1013. Note
that for small temperatures the renormalization effects do not depend on temperature. (This
is elucidated further in chapter 4.6.) Plot 1) and 2) are scaled logarithmically to emphasize
the logarithmic divergence of the renormalization effects with ωc.
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renormalization effects is discussed in [45]. However, having calculated (4.23) and (4.24) these
are easily incorporated in our calculation. We only plotted the size of the renormalization
effects for ω12, ω14 and ω34, because in general all values of ωnk are of the same magnitude
and give similar plots. Figure 4.7 also shows the depence on α. Here the temperature T
is fixed to T = 0.1 K. From figure 4.7 we can conclude that the size of the renormalization
effects diverges linearly with α, the dimensionless parameter which describes the strength of
the dissipative effects.

The cutoff frequency ωc is given by the circuit properties. For a typical first order low-
pass LR filter in a qubit circuit [13] one can insert R = 50 Ω (typical impedance of coaxial
cables) and L ≈ 1 nH (depends on the length of the circuit lines) into ωLR = R/L and gets
that ωLR ≈ 5 · 1010 Hz. ωLR is the largest frequency in the problem (see again [13], chap-
ter 4.5) and ωc À ωLR should hold. Then ωc ≈ 1013 Hz as cutoff frequency seems to be a
reasonable assumption.
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Chapter 5

Gate Quality Factors

In the last chapter 4 we evaluated the dephasing and relaxation rates (and thus the dephasing
and relaxation times) of the two qubit system that is affected by a dissipative environment.
Furthermore we visualized the dynamics of the two qubit system. However, qubits are thought
to perform gate operations and with these measures one can not judge how well quantum gate
operations might be performed with the two qubit system. Therefore, to get a quantitative
measure of how our two qubit system behaves when performing a quantum logic gate oper-
ation, one can evaluate the gate quality factors proposed by Poyatos, Cirac and Zoller [24].
They define four quantities which quantify a quantum logic operation: the fidelity, purity,
quantum degree and entanglement capability. The fidelity is defined as

F =
1

16

16∑

j=1

〈Ψj
in|U+

XORρ
j
XORUXOR|Ψj

in〉 , (5.1)

where ρjXOR = ρ(tXOR) with initial condition ρ(0) = |Ψj
in〉 〈Ψ

j
in|. The fidelity is a measure of

how well a quantum logic operation was performed. Without dissipation the reduced density
matrix ρjXOR after performing the quantum XOR operation, applying UXOR and the inverse
U+
XOR would equal ρ(0). Therefore the fidelity for the ideal quantum gate operation should

be 1. The second quantifier is the purity

P =
1

16

16∑

j=1

tr
(
(ρjXOR)

2
)
, (5.2)

which should be 1 for the ideal quantum gate operation without dissipation. The purity
characterizes the effects of decoherence. The third quantifier, the quantum degree, is defined
as the maximum overlap of the resulting density matrix after the XOR-operation with the
maximum entangled Bell-states

Q = max
j,k
〈Ψk

me|ρjXOR|Ψk
me〉 , (5.3)

where the Bell-states Ψk
me are defined according to

|Ψ00
me〉 =

| 〉+ | 〉√
2

, |Ψ01
me〉 =

| 〉+ | 〉√
2

, (5.4)

|Ψ10
me〉 =

| 〉 − | 〉√
2

, |Ψ11
me〉 =

| 〉 − | 〉√
2

. (5.5)
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For the ideal operation the quantum degree should be 1. The quantum degree characterizes
nonlocality. It has been shown [46] that all density operators that have an overlap with a
maximally entangled state that is larger than the value (2 + 3

√
2)/8 ≈ 0.78 [47] violate the

Clauser-Horne-Shimony-Holt inequality. Thus these density operators are non-local. The
fourth quantifier, the entanglement capability C, is the smallest eigenvalue of the partial
transposed density matrix for all possible unentangled input states |Ψj

in〉. (See below for the
definition of all possible input states needed to build all possible initial density matrices.)
It has been shown [48] to be negative for an entangled state. Ideally this quantifier should
be -0.5 for the ideal operation thus characterizing a maximally entangled state. Two of the
gate quality factors, namely the fidelity and purity might also be calculated for single qubit
gates [44]. However, entanglement can only be observed in a system of at least two qubits.
Therefore the quantum degree and entanglement capability can not be evaluated for single
qubit gates.

To form all possible initial density matrices, needed to calculate the gate quality factors,
we use the 16 unentangled product states |Ψj

in〉, j = 1, . . . , 16 defined [47] according to
|Ψa〉1 |Ψb〉2, (a, b = 1, . . . , 4), with |Ψ1〉 = |0〉, |Ψ2〉 = |1〉, |Ψ3〉 = (1/

√
2)(|0〉 + |1〉), and

|Ψ4〉 = (1/
√
2)(|0〉 + i |1〉). They form one possible basis set for the superoperator νXOR

with ρ(tXOR) = νXORρ(0) [24, 47]. The states are choosen to be unentangled to avoid the
preceeding application of a two qubit gate to prepare the initial state of the system.

5.1 Implementation of the XOR-operation

Due to the fact that the XOR (or CNOT) gate, together with the set of all one-qubit rotations,
is complete for quantum computation [49], the XOR gate is the most important two-qubit
gate operation. Therefore we further investigate the behaviour of the four gate quality factors
when performing a XOR operation. The classical XOR operation switches the second bit,
depending on the value of the first bit of a two bit system. In the computational basis
(|00〉 , |01〉 , |10〉 , |11〉) this operation has the following matrix form

UXOR =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (5.6)

Up to a phase factor the two qubit XOR (or CNOT) operation is given by the following
sequence of five single-qubit and one two-qubit quantum logic operation. Each of these six
operations has to be modeled by an appropriate Hamiltonian undergoing free unitary time
evolution exp(−(i/h̄)Hopt). The single-qubit operations are handled with Bloch-Redfield
formalism, like the two-qubit operations. We assume dc pulses (instantaneous on and off
switching of the Hamiltonian with zero rise time of the signal) or rectangular pulses

UXOR = exp

(
−iπ

2

(
σ
(2)
x + σ

(2)
z√

2

))
exp

(
i
π

4
σ(1)z

)
exp

(
i
π

4
σ(2)z

)
×

× exp

(
i
π

4
σ(1)z σ(2)z

)
exp

(
i
π

2
σ(1)z

)
exp

(
−iπ

2

(
σ
(2)
x + σ

(2)
z√

2

))
. (5.7)
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No. operation parameters [GHz] time [s]

1 exp
(
−iπ2

(
σ2x+σ

2
z√

2

))
ε2 = −2ξ, ∆2 = −

√
2ξ τ1 =

√
2

8ξ

2 exp
(
iπ2σ

1
z

)
ε1 = −ξ τ2 =

1
2ξ

3 exp
(
iπ4σ

1
zσ

2
z

)
K = −ξ τ3 =

1
4ξ

4 exp
(
iπ4σ

2
z

)
ε2 = ξ τ4 =

1
4ξ

5 exp
(
iπ4σ

1
z

)
ε1 = ξ τ5 =

1
4ξ

6 exp
(
−iπ2

(
σ2x+σ

2
z√

2

))
ε2 = −2ξ, ∆2 = −

√
2ξ τ6 =

√
2

8ξ

Table 5.1: Parameters of the Hamiltonians, only the non-zero parameters are listed; ξ = 1 GHz
in our case.

Table 5.1 shows the parameters we inserted into the one- and two-qubit Hamiltonian to re-
ceive the XOR operation. In our case we assumed ξ = 1 GHz. However, there is no restriction
in the usage of other values for ξ. As one can see from table 5.1 the times of unitary evo-
lution which are approximately the inverse of the corresponding energies in GHz are in the
nanosecond range.

To better visualize the pulse sequence, needed to perform the quantum XOR operation that
was already given in table 5.1, figure 5.1 depicts the values of the elements of the Hamiltoni-
ans. Interestingly enough we find that for the only two-qubit operation included in the whole
XOR operation ε and η are zero. Thus K is the only non-zero parameter and H2qb assumes
diagonal form. Negative and positive values of the energies can be accomplished by tuning
the magnetic frustration through the qubit loop below f = 1/2 or above f = 1/2.

To obtain the final reduced density matrix after performing the six unitary operations (5.7),
we iteratively determine the density matrix after each operation with Bloch-Redfield theory
and insert the attained resulting density matrix as initial density matrix into the next oper-
ation. This procedure is repeated for all possible unentangled initial states given in the last
section. We inserted no additional time intervals between the operations. This is usually
needed, if one applies Bloch-Redfield formalism, because Bloch-Redfield formalism is known
to violate positivity on short timescales. However, we circumvent this problem in our calcula-
tions by dropping the memory after each operation, when we iteratively calculate the reduced
density matrix.

5.2 Temperature dependence

The dependence of the four gate quality factors on temperature is depicted in figure 5.2. At
temperatures below T = 2.5 · 10−2 K= 0.5 GHz the purity and fidelity are clearly higher
for the case of one common bath, but if temperature is increased above this characteristic
threshold, fidelity and purity are higher for the case of two baths.

In the case of one common bath the fidelity and purity are approaching their ideal value
1, when temperature goes to zero. This is related with the fact that in the case of one com-
mon bath all relaxation and dephasing rates vanish, due to the special symmetries of the
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t

Figure 5.1: Pulse sequence needed to perform the quantum XOR operation. Here the elements
of the unperturbed single- and two-qubit Hamiltonian needed to perform a certain operation
undergoing free unitary time evolution are shown. The arrow denotes ξ = 0 and the horizontal
lines are spaced by |ξ| = 1 GHz. The durations of each pulse are not equal in general τj 6= τi,
i, j = 1, . . . , 6 (cf. table 5.1)

Hamiltonian, when temperature goes to zero as depicted in figure 4.6. However, the quantum
degree and the entanglement capability tend towards their ideal values for both the case of
one common and two distinct baths. This is due to the fact that both quantum degree and
entanglement capability are, different than fidelity and purity, not defined as mean values but
rather characterize the “best” possible case of all given input states. Figure 4.6 shows that
also for the case of two distinct baths there are only 3 non-vanishing rates for T → 0. The
system, being prepared in one of the 16 initial states, might relax into one of the eigenstates
that is an entangled state. Because of this, both the entanglement capability and the quan-
tum degree tend towards their ideal values for T → 0.

From comparison of the value of the quantum degree for the case of one common and two
distinct baths, we see that the quantum degree is always bigger for the case of two qubits
coupling to one common bath. This is due to the fact, that the decoherence rates are always
slightly bigger for the case of one common bath. Thus, even if only the state of all 16 input
states is selected, which gives the maximal possible overlap, also this state will experience
bigger decoherence effects for the case of one common bath. However, when looking at the
entanglement capability, we observe that the case of two distinct baths always leads to a
better value, thus meaning that the two qubits are higher entangled.

Compared to a recent work by Thorwart and Hänggi [47] where the authors stated that
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Figure 5.2: Temperature dependence of the four gate quantifiers. Here the temperature is
varied from 10−10 K to 0.1 K. Here α = α1 = α2 = 10−3 and for the case of one common
bath also α = 10−4 is shown. All other parameters are given by table 5.1.

for the case of one common bath the gate quality factors depend only very weakly on tem-
perature we find similar results. They set the strength of the dissipative effects to α = 10−4.
Their choice of parameters was ε = 10 GHz, ∆ = 1 GHz and K = 0.5 GHz which is on the
same order of magnitude as the values given in table 5.1. In figure 5.2 we observe a linear
decrease of the gate quality factors for the case of one common bath in the same temperature
range discussed by Thorwart and Hänggi, both for α = 10−3 and α = 10−4, but in the latter
case the slope is much smaller and the gate quality factors exhibit a weaker temperature
dependence.

In figure 5.3 the deviations of the gate quality factors from their ideal values are depicted as
a log-log plot. Here, we can observe the saturation of the deviation for the case of two baths
much more clearly than in figure 5.2. For given α the fidelity and purity can not be increased
anymore by lowering the temperature in the case of two distinct baths. Interestingly enough,
we observe that for the quantum degree and entanglement capability the two cases of one
and two baths exchange their roles. This behaviour was already explained in the last para-
graph. The quantum degree is always bigger for the case of one common bath whereas the
entanglement capability is always closer to its ideal value for the case of two distinct baths.
Above a temperature of 10−2 K the decrease of the gate quality factors shows a power law
dependence for both cases. We observe finite decoherence effects in the fidelity and the purity
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Figure 5.3: Log-log plot of the temperature dependence of the deviations of the four gate
quantifiers from their ideal values. Here the temperature is varied from 10−10 K to 0.1 K.
In all cases α = α1 = α2 = 10−3. The dotted line indicates the upper bound set by the
Clauser-Horne-Shimony-Holt inequality.

also at T = 0 for the case of two distinct baths, resulting from the coupling of the system to
the environment of harmonic oscillators which (at T = 0 K) are all in their ground states.
But for the case of one common bath, the deviation from the ideal fidelity goes to zero when
temperature goes to zero. This is due to the special symmetries (K is the only nonvanishing
parameter in the two-qubit operation) of the Hamiltonian. This symmetries are also reflected
in the temperature dependence of the rates, figure 4.6. There, for one common bath, all rates
vanish for T → 0.

The dotted line in figure 5.3 shows that the temperature has to be less than about T = 1 K
in order to obtain values of the quantum degree being larger than Q ≈ 0.78. Only then, the
Clauser-Horne-Shimony-Holt inequality is violated and non-local correlations between the
qubits occur as described in [47].

5.3 Dependence on the dissipation strength

To improve the gate quality factors one could try to lower the temperature of the environment.
However, generally (if no special symmetries of the Hamiltonian are present) there are always
finite decoherence effects also at T = 0 K, at least for the case of two distinct baths. Therefore
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we can not improve the gate quality factors, for the case of two distinct baths, below a
certain saturation value when lowering the temperature. By better isolating the system from
the environment one can decrease the strength of the dissipative effects characterized by α.
Figure 5.4 illustrates the α-dependece of the deviation of the gate quality factors from their
ideal values. The deviations from the ideal values of the gate quantifiers possess a powerlaw
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Figure 5.4: Dissipation strength dependence of the deviations from the ideal values in log-log
representation. The dimensionless parameter α (here both the single- and the two-qubit α
have the same value) which describes the strength of the dissipative effects is varied from
10−7 to 10−2. The temperature is fixed to 10 mK.

dependence. We observe that the dependence of the gate quality factors on α is linear as
expected. In order to obtain the desired value of 0.999 99 for F , P and Q [47] α needs to be
below α = 10−6 at T = 10 mK.

5.4 Time resolved XOR operation

To investigate the anatomy of the XOR quantum logic operation we calculated the occupation
probabilities of the singlet/triplet states after each of the six operations, of which the XOR
consists. This time resolved picture of the dynamics of the two-qubit system, when perform-
ing a gate operation, gives insight into details of our implementation of the XOR operation
and the dissipative effects occuring during the operation. Thus we are able to completely
characterize the physical process which maps the input density matrix ρ0 to ρout in an open
quantum system [24]. When the system is prepared in the state | 〉 = |00〉 the XOR oper-
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ation (5.6) does not alter the initial state and after performing the XOR operation the final
state should equal the initial state | 〉 = |00〉. This can clearly be observed in figure 5.5.
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Figure 5.5: Time resolved XOR operation. Occupation probabilities of the singlet/triplet
states are shown after completion of a time step τi (i = 1, . . . , 6). The system is initially
prepared in the state |00〉. For α = α1 = α2 = 10−2 and T = 1 K clearly deviations from the
ideal case can be observed. Qubit parameters are set according to table 5.1.

During the XOR operation occupation probabilities of the four states change according to
the individual operations given in (5.7). At T = 1 K, the case of 2 baths differs significantly
from the case of one common bath. After the third operation (the two-qubit operation; only
there the distinction between one common or two distinct baths makes sense) occupation
probabilities are different for both environments resulting in a less ideal result for the case
of two baths. This is also reflected in figure 5.2 where compared to the case of one common
bath at T = 1 K the purity is much smaller for the case of two baths and hence the resulting
state | 〉 = |00〉 is less pure for two distinct baths.

In figure 5.5 the resulting state after performing the XOR operation always deviates more
from the ideal value (for α = 0, i.e. no dissipation) for the case of two distinct baths if all
other parameters are fixed and set to the same values for the both cases. The state P|00〉 is
less close to the ideal occupation probability 1 and the other singlet/triplet states are also
less close to their ideal value for the case of two distinct baths. The case of two distinct baths
also shows bigger deviations from the ideal case (α = 0) during the XOR operation (see figure
5.5). But, if the system is initially prepared in the state | 〉 = |11〉 the case of two dis-
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tinct baths shows bigger deviations from the ideal case during the XOR operation, while the
resulting state is closer to the ideal case for two distinct baths compared to one common bath.

Gazing at figure 5.6 we recognize that when preparing the system in the state | 〉 = |11〉
we do receive the state | 〉 = |10〉 after performing the XOR operation, which flips the
state of the second bit iff the state of the first bit is | 〉 = |1〉. In figures 5.5 and 5.6 it looks
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Figure 5.6: Time resolved XOR operation. Occupation probabilities of the singlet/triplet
states are shown after completion of a time step τi (i = 1, . . . , 6). The system is initially
prepared in the state |11〉. For α = α1 = α2 = 10−2 and T = 1 K deviations from the ideal
case can be observed. Qubit parameters are set according to table 5.1.

like there would be no decoherence effects (or at least much weaker decoherence effects) after
performing the (first two) single-qubit operations. However, not all input states are affected
by the decoherence effects the same way and when regarding all possible input states there
are finite decoherence effects. This can be explained with figure 5.7. Figure 5.7 depicts the
time resolved purity when performing the XOR operation. We clearly observe that there are
finite decoherence effects for the first single-qubit operations in 5.7. The difference between
the single-qubit and two-qubit operations is the steeper decrease of the purity due to stronger
decoherence in the case of the two-qubit operation. The upper panel in figure 5.7 depicts the
behaviour of the purity for T → 0. We still observe relatively strong decoherence in the case
of two distinct baths, but single-qubit decoherence is very small and will vanish for T → 0.
This can be seen from the inset where the case of one common bath is enlarged.
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Figure 5.7: Time resolved Purity for the XOR operation. The value of the purity after each
time step τi (i = 1, . . . , 6) is shown. Here α = α1 = α2 = 10−2 and T = 100 mK or T ≈ 0 K.
Qubit parameters are set according to table 5.1.
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Chapter 6

Flux transformer

6.1 Josephson field-effect transistor (JoFET)

A Josephson field-effect transistor is assembled much like a metal-oxide-semiconductor field-
effect transistor (MOSFET). Here, the source and drain contacts are superconducting nio-
bium pads [50]. Under the channel defined by the SiO2 in between the Nb contacts, the

Vg

Nb

V

Nb

InAlAs buffer

GaAs substrate

InGaAs/InAs

Si doping

2SiO  gate insulator

Al gate metal

I

Figure 6.1: Left picture is a schematic sketch of a Josephson field-effect transistor. An oxide
layer separates the aluminium gate and the SNS contact. A typical width of the contact is
w = 20 µm and length l = 600 nm [50]. Right picture is a micrograph of a SNS transistor.
Different from a JoFET, there is no gate fabricated on top of the junction and contacts are
fabricated on both sides of the SNS transistor [50].

inversion layer constitutes a quasi two-dimensional electron gas (2DEG). By applying a gate
voltage it is possible to tune the electron density of the 2DEG which may be considered as a
weak link between the two superconductors. Critical current for the devices depicted in figure
6.1 increases with the gate voltage up to a typical value of approximately 50 µA at Vg = 20 V.
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For T → 0, in short clean SNS junctions the critical supercurrent carried by a single conduct-
ing channel depends only on the superconducting energy gap ∆ which is the smallest energy
scale. Here the formula of Kulik and Omel’yanchuk [25, 51, 52]

Ic =
π∆

RNe
(6.1)

for the critical current Ic holds. RN = h/(2e2M) is the point-contact resistance of the region
N containing M . Here, the backgate changes M .

6.2 Properties of the Flux Transformer

As a possible scheme to couple two qubits we investigate a flux transformer consisting of a
SQUID loop around the two qubits with a JoFET whose circuit diagram is an overdamped
Josephson junction as an on/off switch (cf. fig. 6.2). The two flux qubits are both coupled

xΦ

RSJ model

1 2

1 2
qubit 1

Φx

qubit 2
1 2

I

I

I 2

S

1

Figure 6.2: The flux transformer couples two flux qubits inductively. The JoFET is modeled
as an overdamped Josephson junction.

inductively to the flux transformer loop that mediates the coupling.

In the following two sections we calculate the strength K of the coupling between the two
qubits for the two cases of no switch, to turn the coupling on and off, and a tunable Josephson
junction as a switch.

6.2.1 No switch

The change of the flux through qubit 1 (2) can be calculated by multiplying the circulating
currents in each device (the two qubits and the flux transformer) by the mutual inductance
between qubit 1 (2) and the device. With picture 6.2 we note the following equations for the
flux through qubit 1 and 2 induced by currents in the qubits and the flux transformer

∆Φ1 = I1MQ1Q1 + ITMQ1T + I2MQ1Q2 (6.2)

∆Φ2 = I2MQ2Q2 + ITMQ2T + I1MQ2Q1 , (6.3)

where the inductances are explained in table 6.1.
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MQ1Q1 =MQ2Q2 =MQQ : self-inductance of the qubit
MQ1T =MQ2T =MQT =MTQ : mutual inductance transformer-qubit
MQ1Q2 ≈ 0 : mutual inductance between qubit 1 and qubit 2

(assumed to be small: no direct inductive
coupling between the two qubits)

Table 6.1: Explanation of the several inductances introduced the circuit depicted in figure
6.2.

Introducing the screening flux ΦS = ∆ΦT and writing it in a similar form like equations (6.2)
and (6.3) yields together with the equations for ∆Φ1 = Φ1 and ∆Φ2 = Φ2 (we introduced the
abbreviations just for the sake of simplicity) the system of equations

ΦS = MTT IS +MTQI1 +MTQI2 (6.4)

Φ1 = MQT IS +MQQI1 (6.5)

Φ2 = MQT IS +MQQI2 (6.6)

or in matrix form

~Φ = M~I


ΦS

Φ1

Φ2


 =



MTT MTQ MTQ

MTQ MQQ 0
MTQ 0 MQQ






IS
I1
I2


 (6.7)

If no net flux is coupled into the transformer the superconducting loop will only respond to
spatial variations of the magnetic field. This kind of configuration is called “gradiometer”
[25]. We first evaluate the gradiometer case where ΦS = 0. Then equation (6.4) gives us an
expression for IS

IS = −MTQ

MTT
(I1 + I2) (6.8)

which we might insert into (6.7) to reduce (6.7) to

~Φ′ = M′~I ′

(
Φ1

Φ2

)
=




(
MQQ −

M2
TQ

MTT

)
−M2

TQ

MTT

−M2
TQ

MTT

(
MQQ −

M2
TQ

MTT

)




(
I1
I2

)
(6.9)

Eind = ~I ′TM′~I ′ (6.10)

=

(
MQQ −

M2
TQ

MTT

)
(I21 + I22 )− 2

M2
TQ

MTT
I1I2. (6.11)

The terms resulting from the off-diagonal elements of (6.9) can directly be identified as the
interqubit coupling strength K

K = −2
M2

TQ

MTT
I1I2 (6.12)

which is symmetric regarding the circulating currents I1 and I2 in the qubits.
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6.2.2 Tunable Josephson junction as a switch

The gauge invariant phase in fluxoid quantization is given by

∑

i

γi = γ = −2πΦS

Φ0
+ 2nπ, (6.13)

where Φ0 = h/(2e) is the magnetic flux quantum. If we insert γ into the Josephson relation
[25] we get

IS = Ic sin γ = Ic sin

(
−2πΦS

Φ0

)
. (6.14)

Generally ΦS is of the form

ΦS = −Φ0

2π
arcsin

IS
Ic

(6.15)

We now explicitly evaluate K for two different cases. 1) If |IS/Ic| ¿ 1 then sin(x) ≈ x ≈
arcsin(x) and similar to (6.8) the first equation of (6.7) gives us

IS = −MTQ

M?
TT

(I1 + I2), with M
?
TT :=MTT +

Φ0

2π

1

Ic
=MTT + Lkin(0). (6.16)

Then the same calculation as for ΦS = 0 yields

K = −2
M2

TQ

M?
TT

I1I2. (6.17)

K is compared to the gradiometer case decreased because the self inductance MTT of the
flux transformer is increased by the kinetic inductance. 2) The other case is determined by
|IS/Ic| À 1. If z ∈ R and |z| ≈ 1 then arcsin z = −i ln(iz+

√
1− z2) gives us (ln z = ln ρ+iϕ)

arcsin z = −i ln(iz) ≈ π

2
+ i ln(z) ≈ π

2
. (6.18)

From this simple analysis follows that we may express the screening flux as

ΦS = −Φ0

2π
arcsin

IS
Ic
≈ −Φ0

2π

π

2

IS
|IS |

= −Φ0

2π

π

2

IS
|Ic|

. (6.19)

Overall we get

IS = − MTQ

MTT + Φ0
4|Ic|

(I1 + I2). (6.20)

From this follows

K = −2
M2

TQ

M ′
TT

I1I2, with M
′
TT =MTT +

Φ0

4|Ic|
. (6.21)

By comparison of the two limits 1) and 2) we observe that for a given critical current of the
junction the “renormalized” self inductanceM ′

TT of the flux transformer is slightly larger than
M?

TT . Therefore the coupling strength K between the two qubits is slightly larger if IS ¿ Ic.
For typical values of Ic the term added to the self-inductance MTT of the transformer loop is
only slightly modified.
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6.3 RSJ-model

We use the RSJ-model (resistively shunted Josephson junction) to calculate the fluctuations
of the current between two points of the flux transformer loop sketched in figure 6.2. L is the
geometric inductance of the loop, LJ is the Josephson inductance characterizing the Joseph-
son contact and R is the shunt resistance. The correlation is given [53] by the fluctuation-

L R LJ

Figure 6.3: Equivalent circuit diagram of the flux transformer. The JoFET is modeled by a
resistively shunted Josephson junction. We evaluate the current fluctuations between the two
contacts.

dissipation theorem

〈δIδI〉ω = coth

(
βh̄ω

c

)
h̄ωχ(ω), (6.22)

where χ(ω) denotes the real part of the admittance which can easily be calculated from figure
6.3:

Y −1 = iωL+ ZRSJ (6.23)

The total resistance and admittance of the shunt circuit evaluates to

ZRSJ =
iωLJR

R+ iωLJ
⇒ Y =

R+ iωLJ
iωL(R+ iωLJ) + iωLJR

. (6.24)

Multiplying with the complex conjugate and simplifying gives the real part:

χ(ω) = Re Y =
L2
JR

ω2L2L2
J +R2(L+ LJ)2

. (6.25)

With δΦq =MTQδI

〈δΦqδΦq〉ω =M2
TQ

L2
JR

ω2L2L2
J +R2(L+ LJ)2

ωh̄ coth

(
1

2
βh̄ω

)
(6.26)

From ε = (Φq − 1
2Φ0)Icirc follows that δε = 2δΦqIcirc (see [13]) which we can use to express

the fluctuations of the energy levels of a qubit

〈δεδε〉ω =
4I2circM

2
TQL

2
JR

ω2L2L2
J +R2(L+ LJ)2

ωh̄ coth

(
1

2
βh̄ω

)
. (6.27)

Here we define J(ω) for our environment

J(ω) :=
ω

h̄

4I2circM
2
TQL

2
JR

ω2L2L2
J +R2(L+ LJ)2

, (6.28)
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where

LJ =
Φ0

2π

1

Ic
(6.29)

is the Josephson inductance. One can immediately recognize that J(ω) resembles an ohmic
spectral function with an intrinsic Drude cutoff. Therefore there is no need to introduce an
artifical cutoff. Now we evaluate the typical size of the dimensionless parameter α which
characterizes the strength of the dissipative effects [34] for a JoFET by inserting typical
parameters. The normal resistance of a JoFET is around R ≈ 10 Ω, which we use as an
estimate for the size of the shunt resistance in the RSJ model. The geometric inductance
of the loop is L ≈ 1 nH, the circulating current in the qubit is Icirc ≈ 100 nA, the mutual
inductance between the flux transformer and the qubit is MTQ ≈ 100 pH, the critical current
of the Josephson junction is Ic ≈ 30 µA and the Josephson inductance is LJ ≈ 100 nH. The
dimensionless dissipation parameter α is determined by the slope of the spectral function
J(ω) at low frequencies [13]

α = lim
ω→0

J(ω)

2πω
, (6.30)

which can be taken as

α =
1

2π

∂J(ω)

∂ω
(6.31)

at ω ≈ 0. Using this knowledge we may calculate α from (6.28):

α =
1

2π

∂J(ω)

∂ω

∣∣∣∣∣
ω≈0
≈

2I2circM
2
TQL

2
J

h̄πR(L+ LJ)2
. (6.32)

Inserting the estimates which were given above we get

α ≈ 7 · 10−6. (6.33)

This means that the dissipative effects should be weak and a JoFET might be a reasonable
switch, e.g. for the flux transformer. From chapter 5.3 and figure 5.4 we found that α ≈ 10−6

poses an upper bound for gate operations to be useful. Then errors occuring during the gate
operation are are small enough to be corrected. Therefore using a JoFET with (6.33) as a
switch should introduce no new constraints to the design of coupled qubits. However the
technical effort to build such a device is huge [54]. One drawback of JoFETs is that due to
wide junctions with dimensions of around w = 500 nm vortices are possibly trapped [40]. If
vortices are hopping between different pinning sites they cause 1/f noise [55]. One solution
might be to employ stronger pinning so that vortices can be regarded as quasi static and
therefore the effect of 1/f noise is reduced.

A different approach would be to construct another SQUID loop around the Josephson junc-
tion of the transformer loop to tune EJ and therefore switch the coupling on and off. This
extra loop is easily fabricated and was proposed in [56]. Drawbacks of this type of switch are
that even more fluxes are introduced and one might imagine that tuning the flux through a
qubit might also modify the flux through the steering loop and vice versa. Another problem
poses that the flux through the steering loop must exactly equal half a flux quantum while
the JoFET is simply steered by a gate voltage.
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Chapter 7

Conclusions

We presented a full analysis of the dynamics and decoherence properties of two solid state
qubits coupled to each other via a generic type of Ising coupling and coupled, moreover, either
to a common bath, or two independent baths.

In chapter 2 we exactly diagonalized the unperturbed Hamiltonian H2qb, depicted the be-
haviour of the transition frequencies (figures 3.2 and 3.3) between the energy levels, and in
chapter 3 we investigated the effects of a weak symmetric driving in the energy bias ε. This
work is directly related to experiments currently done in Delft [40] considering spectroscopy
of inductively coupled flux qubits. In the case of two qubits with identical qubit parameters,
(such as energy bias and transmission amplitude) coupling to one common bath, one can
easily observe that in the singlet/triplet basis representation, the singlet part of the Hilbert
space is a protected subspace where no transitions between singlet and triplet states can be
mediated. (In chapter 2 the close and promising connection of this protected subspace with
the theory of decoherence free subspaces (DFS) was already discussed.)

In chapter 4 we calculated the dynamics of the system and evaluate decoherence times. From
the temperature dependence of the decoherence rates (figure 4.5), we conclude that both types
of environments show a similar behaviour; however, in the case of one common bath two of
the decoherence rates are zero, and the remaining ones are slightly larger than in the case
of two distinct baths. This temperature dependence is also reflected in the characteristics of
the so-called gate quality factors from quantum information theory, which are, in chapter 5,
introduced as robust measures of the quality of a quantum logic operation. We illustrate that
the gate quality factors depend linearly on α, as expected. The time resolved XOR operation
(figures 5.5 and 5.6) again illustrates the difference between one common and two distinct
baths, and moreover we observe that single-qubit decoherence effects during the XOR oper-
ation are weak.

We showed in chapter 5 that generally by decreasing the temperature of the environment,
the decoherence effects can not be arbitrarily suppressed. (However, in the special case of
the two-qubit operation needed when performing the XOR gate, due to the symmetries of
the Hamiltonian, decoherence effects vanish when temperature is decreased. See figure 4.6 for
reference.) Rather, to suppress them more, the system needs to be better decoupled from the
dissipative environment. The time scales of the dynamics of the coupled two qubit system
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are comparable to the time scales which were already observed in experiments and discussed
in the literature [13]. Quantum coherent evolution and decoherence effects can nicely be il-
lustrated by displaying the dynamics of the system. The question whether one common bath
or two distinct baths are less destructive regarding quantum coherence can not be clearly
answered. For low enough temperatures clearly coupling to one common bath yields better
results. However, when the temperature is increased two distinct baths do better; in both
temperature regimes, though, the gate quantifiers are only slightly different for both cases.

In chapter 6 the noise properties of a flux transformer with a tunable coupling are discussed.
Therefore a Josephson field-effect transistor is inserted as a switch to turn on and off the
inductive coupling between two flux qubits. It is shown that the noise properties of a JoFET
which is fabricated by present day technology allow for using it as such a switch.

As a next step one should consider driving, to be able to observe and discuss Rabi oscil-
lations in systems of two coupled qubits. It should be investigated, how the decoherence
properties are modified if one adds more qubits to the system, and the theory of decoherence

free subspaces should be applied to σ
(1)
z ⊗ σ(2)z type of coupling.
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Chapter 8

Deutsche Zusammenfassung

Die Lösung einiger Probleme der klassischen Informationstheorie (z.B. Faktorisierung eines
Produktes zweier Primzahlen, Suchalgorithmen) wird durch Algorithmen, die auf Quanten-
Bits (“Qubits”) arbeiten, stark (exponentiell im Falle des Faktorisierungsalgorithmus) be-
schleunigt. Durch diesen enormen Zeitgewinn, z.B. bei Faktorisierungsalgorithmen, die für
krytographische Anwendungen von sehr großem Interesse sind, ist die physikalische Reali-
sierung von “Quanten-Computern” zu einem sich extrem schnell entwickelnden Feld der
Physik geworden. Die Erkenntnisse über die Manipulation und Dekohärenz offener Quanten-
systeme aber, die beim Studium von Qubits gewonnen wird, ist von grundsätzlichem Interesse
für viele physikalische Fragestellungen.

Es wurden bereits verschiedene Implementierungen dieser Bits, die quantenmechanischen Ef-
fekten gehorchen, vorgeschlagen. Dazu zählen z.B. Atome in Ionenfallen oder Moleküle in
einem Kernspinresonanz-Aufbau (NMR). Mit NMR-Qubits wurden bereits einfache Algorith-
men implementiert [6, 57], allerdings sind Systeme mit mehr als etwa zehn Qubits praktisch
nicht realisierbar, da sehr komplizierte Molekülstrukturen benötigt würden. Der Vorteil von
Quantenbits, die in Festkörpern realisiert sind ist, daß sich die Anzahl der Quantenbits sehr
leicht hochskalieren läßt. Als Nachteil wird allerdings die kurze Dekohärenzzeit, aufgrund der
vielen internen Freiheitsgrade eines Festkörpersystems, angesehen.

Die vorliegende Arbeit quantifiziert die Dekohärenzeiten gekoppelter Festkörper-Quantenbits
mit Ising-Kopplung. Dazu wird in Kapitel 4 mittels des Bloch-Redfield Formalismus die
Dynamik gekoppelter Festkörper-Quantenbits untersucht. Verschiedene dissipative Umge-
bungen werden durch Kopplung der beiden Quantenbits an ein gemeinsames oder eines von
zwei unkorrelierten harmonischen Oszillator-Bädern modelliert. Die Dekohärenzzeiten liegen
für typische Parameter, in Übereinstimmung mit experimentellen Ergebnissen, im Bereich
weniger µs. Die aus dem Bloch-Redfield Formalismus gewonnenen Informationen über die
Dynamik des Systems werden ausführlich diskutiert und beide Dekohärenzmechanismen, De-
phasierung und Relaxation werden demonstriert.

Die Quanten-Informationstheorie liefert mit den Gatter-Qualitätsfaktoren [24] ein Maß, mit
dem die Qualität einer Quanten-Logik Operation bzw. eines Gatters bewertet werden kann.
Für supraleitende Fluß-Qubits [13] ergibt sich, daß bei einer Temperatur von T = 10 mK
der Parameter α, welcher die Stärke der dissipativen Effekte charakterisiert, nicht größer als
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α ≈ 10−6 werden darf, um einen Grad der Fehlerfreiheit zu erreichen, der es erlaubt unter
Berücksichtigung von Fehlerkorrektur-Schemata eine große Anzahl von Quanten-Logik Oper-
ationen auszuführen.

Durch den Vergleich der Gatter-Qualitätsfaktoren für den Fall eines gemeinsamen oder zweier
unkorrelierter Bäder lässt sich beurteilen, welche dissipativen Umgebungen die Eigenschaften
eines Systems am stärksten (negativ) beeinflussen. Für niedrige Temperaturen (T < 0.05
K, Parameter aus Abbildung 5.2) führt eindeutig der Fall eines gemeinsamen Bades zu
besseren Gatter-Qualitätsfaktoren, während für höhere Temperaturen (T = 1 K) der Fall
zweier Bäder im Bezug auf die Gatter-Qualitätsfaktoren vorteilhafter ist. Die Vorteile eines

Kopplungsterms zwischen den beiden Qubits, der die Form σ
(1)
z ⊗σ(2)z hat, wurden in Kapitel

4 aufgezeigt.

Mittels eines Fluß-Transformators können supraleitende Fluß-Qubits induktiv gekoppelt wer-
den. Um die Kopplung der beiden Fluß-Qubits, die jeweils induktiv an den Fluß-Transformator
aber nicht aneinander koppeln, an- und abschalten zu können, wird ein Schalter benötigt.
Die Eignung eines Josephson Feldeffekt-Transistors als Schalter wird durch Untersuchung der
Rauscheigenschaften eines JoFETs in Kapitel 6 nachgewiesen.
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Appendix A

Eigenvalues and eigenstates of the
two qubit Hamiltonian

We diagonalize the unperturbed Hamiltonian (2.14) to get the eigenenergies and eigenstates.
Because the singlet part of the Hamiltonian is already diagonal we only have to diagonalize
the upper three by three matrix. In this case one can simply apply Cardano’s formula

y =

(
−q +

√
q2 + p3

) 1
3

+

(
−q −

√
q2 + p3

) 1
3

(A.1)

to find the solutions of y3 + 3py + 2q = 0, with

2q =
2b3

27a3
− bc

3a2
+
d

a
and 3p =

3ac− b2
3a2

. (A.2)

And therefore after applying the simple transformation y = x+ b/(3a) one finds the solutions
of the general third order equation ax3 + bx2 + cx+ d = 0. The eigenenergies of (2.14) read

E1 =
1

2
K (A.3)

E2 = ρ
1
3

(
− cos

(
1

3
Φ

)
−
√
3 sin

(
1

3
Φ

))
− 1

6
K (A.4)

E3 = 2ρ
1
3 cos

(
1

3
Φ

)
− 1

6
K (A.5)

E4 = ρ
1
3

(
− cos

(
1

3
Φ

)
+
√
3 sin

(
1

3
Φ

))
− 1

6
K (A.6)

and the corresponding eigenstates in the singlet/triplet basis read

|E1〉 =




0
0
0
1


 |E2〉 = |k2||η|

k3




3k1
k2
k1
η

3
0




|E3〉 = |η|2
k6




9

−3k4η
k5
η2

0


 |E4〉 = |η|2

k9




−k7
η2

3k8η
9
0


 .

(A.7)
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Where we introduced the following abbreviations:

q = − 1

27
K3 +

1

12
Kε2 − 1

12
Kη2 (A.8)

p = −3ε2 − 6η2 − 4K2

36
(A.9)

ρ =

√√√√q2 +
∣∣∣∣∣q

2 +

(
− 1

12
ε2 − 1

9
K2 − 1

6
η2
) ∣∣∣∣∣ (A.10)

Φ = arccos

(
−q
ρ

)
(A.11)

k1 = −2K + 3ε+ 6ρ
1
3 cos

(
1

3
Φ

)
+ 6ρ

1
3 sin

(
1

3
Φ

)√
3 (A.12)

k2 = −2K − 3ε+ 6ρ
1
3 cos

(
1

3
Φ

)
+ 6ρ

1
3 sin

(
1

3
Φ

)√
3 (A.13)

k3 =
√
9|k1|2|η|2 + |k1|2|k2|2 + 9|k2|2|η|2 (A.14)

k4 = 3ε+ 2K + 12ρ
1
3 cos

(
1

3
Φ

)
(A.15)

k5 = −9η2 − 12Kε− 8K2 − 24Kρ
1
3 cos

(
1

3
Φ

)
+

+ 36ρ
1
3 cos

(
1

3
Φ

)
ε+ 144ρ

2
3 cos2

(
1

3
Φ

)
(A.16)

k6 =
√
81|η|4 + 9|k4|2|η|2 + |k5|2 (A.17)

k7 = 8K2 − 12Kε− 12Kρ
1
3 cos

(
1

3
Φ

)
+ 12Kρ

1
3 sin

(
1

3
Φ

)√
3−

− 18ρ
1
3 cos

(
1

3
Φ

)
ε− 36ρ

2
3 − 72ρ

2
3 sin2

(
1

3
Φ

)
+

+ 72ρ
2
3 cos

(
1

3
Φ

)
sin

(
1

3
Φ

)√
3 + 18ρ

1
3 sin

(
1

3
Φ

)
ε+ 9η2 (A.18)

k8 = −2K + 3ε+ 6ρ
1
3 cos

(
1

3
Φ

)
− 6ρ

1
3

√
3 sin

(
1

3
Φ

)
(A.19)

k9 =
√
|k7|2 + 9|k8|2|η|2 + 81|η|4. (A.20)

Figure 2.6 depicts the eigenenergies of (2.13) for several parameter sets. Figure 2.7 illustrates
of which singlet/triplet states the eigenstates consist for different qubit parameters.
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Appendix B

Matrix representation of σz

In Bloch Redfield formalism the matrix elements of σz with respect to the eigenbasis of the
unperturbed Hamiltonian are used. For convenience, here the analytic results for the matrix

elements are given. For σ
(1)
z we receive

σ
(1)
z,11 = 0, σ

(1)
z,12 =

|k2||η|k1
k3η

, σ
(1)
z,13 = −

|η|23k4
k6η

, σ
(1)
z,14 =

3|η|2k8
k9η

, (B.1)

σ
(1)
z,21 =

|k2||η|k1
k3η

, σ
(1)
z,22 =

|k2|2|η|2
k23

(
9
k21
k22
− 9

)
, σ

(1)
z,23 =

|k2||η|3
k3k6

(
27
k1
k2
− 3

k5
η2

)
, (B.2)

σ
(1)
z,24 =

|k2||η|3
k3k9

(
−3k1k7
k2η2

− 27

)
, σ

(1)
z,31 = −

3|η|2k4
k6η

, σ
(1)
z,32 =

|k2||η|3
k6k3

(
27
k1
k2
− 3

k5
η2

)
, (B.3)

σ
(1)
z,33 =

|η|4
k26

(
81− k25

η4

)
, σ

(1)
z,34 =

|η|4
k6k9

(
−9k7

η2
− 9

k5
η2

)
, σ

(1)
z,41 =

3|η|2k8
k9η

(B.4)

σ
(1)
z,42 =

|η|3|k2|
k9k3

(
−3k1k7

k2η2
− 27

)
, σ

(1)
z,43 =

|η|4
k6k9

(
−9k7

η2
− 9

k5
η2

)
, (B.5)

σ
(1)
z,44 =

|η|4
k29

(
k27
η4
− 81

)
(B.6)

and for σ
(2)
z

σ
(2)
z,11 = 0, σ

(2)
z,12 = −

k1|k2||η|
ηk3

, σ
(2)
z,13 =

3|η|2k4
k6η

, σ
(2)
z,14 = −

3|η|2k8
k9η

, σ
(2)
z,21 = −

|k2||η|k1
k3η

, (B.7)

σ
(2)
z,22 =

|k2|2|η|2
k23

(
9
k21
k22
− 9

)
, σ

(2)
z,23 =

|k2||η|3
k3k6

(
27
k1
k2
− 3

k5
η2

)
, (B.8)

σ
(2)
z,24 =

|k2||η|3
k3k9

(
−3k1k7
k2η2

− 27

)
, σ

(2)
z,31 =

3|η|2k4
k6η

, σ
(2)
z,32 =

|k2||η|3
k6k3

(
27
k1
k2
− 3

k5
η2

)
, (B.9)

σ
(2)
z,33 =

|η|4
k26

(
81− k25

η4

)
, σ

(2)
z,34 =

|η|4
k6k9

(
−9k7

η2
− 9

k5
η2

)
, σ

(2)
z,41 = −

3|η|2k8
k9η

, (B.10)

σ
(2)
z,42 =

|η|3|k2|
k9k3

(
−3k1k7

k2η2
− 27

)
, σ

(2)
z,43 =

|η|4
k6k9

(
−9k7

η2
− 9

k5
η2

)
, (B.11)

σ
(2)
z,44 =

|η|4
k29

(
k27
η4
− 81

)
. (B.12)
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Appendix C

Calculation of the rates

C.1 Two qubits coupled to two distinct baths

Here we evaluate the Golden Rule expressions for the rates Γ
(+)
`mnk and Γ

(−)
`mnk defined in (4.5)

Γ
(+)
`mnk = h̄−2

∫ ∞

0
dt e−iωnkt

〈
H̃I,`m(t)H̃I,nk(0)

〉
(C.1)

and (4.6). Here H̃I(t) = exp(iHBt/h̄)HI exp(−iHBt/h̄) denotes the interaction in the inter-
action picture. The interaction part of the Hamiltonian (2.8) is

HI =
1

2
σ̂(1)z ⊗ X̂(1) +

1

2
σ̂(2)z ⊗ X̂(2), (C.2)

where Xj = ζ
∑

i λixi (j = 1, 2) describes the coupling to the bath via position coordinate of
the harmonic oscillator bath. In the case of two qubits each coupling to a distinct uncorrelated
bath, the resulting bath Hamiltonian is the sum of the two Hamiltonians

HB = HB1 +HB2 . (C.3)

We explicitly calculate only the rates Γ
(+)
`mnk because calculation of Γ

(−)
`mnk is easily done in a

completely analogous manner. Inserting (C.2) into (C.1) we receive

Γ
(+)
`mnk =

1

4h̄2

∫ ∞

0
dt e−iωnkt〈ei(HB1

+HB2
)t/h̄) ×

×
(
σ
(1)
z,`m ⊗

∑

j

λjx
(1)
j + σ

(2)
z,`m ⊗

∑

s

µsx
(2)
s

)
e−i(HB1

+HB2
)t/h̄) ×

×
(
σ
(1)
z,nk ⊗

∑

α

λαx
(1)
α + σ

(2)
z,nk ⊗

∑

β

µβx
(2)
β

)
〉. (C.4)

In the following, we sum over the indices j, s, α and β.

Γ
(+)
`mnk =

1

4h̄2

∞∫

0

dt e−iωnkt
[
σ
(1)
z,`mσ

(1)
z,nk〈ei(HB1

+HB2
)t/h̄λjx

(1)
j e−i(HB1

+HB2
)t/h̄λαx

(1)
α 〉+

+ σ
(1)
z,`mσ

(2)
z,nk〈ei(HB1

+HB2
)t/h̄λjx

(1)
j e−i(HB1

+HB2
)t/h̄λβx

(2)
β 〉+

+ σ
(2)
z,`mσ

(1)
z,nk〈ei(HB1

+HB2
)t/h̄µsx

(2)
s e−i(HB1

+HB2
)t/h̄λαx

(1)
α 〉+

+ σ
(2)
z,`mσ

(2)
z,nk〈eiHB2

t/h̄µsx
(2)
s e−iHB2

t/h̄µβx
(2)
β 〉
]

(C.5)
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Now we rewrite the harmonic oscillator Hamiltonian as HBj =
∑

i(n̂i + 1/2)h̄ω(j) (j =

1, 2) in terms of annihilation and creation operators, express the position operator as X̂ =√
h̄/(2mω)(â+â†) and trace out over the bath degrees of freedom. Then only the terms acting

on the same bath survive, because if we denote the oscillator states of the two distinct baths

with f1 and f2 then clearly 〈f1 ⊗ f2|â(1)
†

j â
(2)
j |f1 ⊗ f2〉 = 0 holds. Moreover we can deduce

that 〈f1 ⊗ f2|â(1)
†

j â
(1)
α |f1 ⊗ f2〉 = 1 only holds for j = α. Therefore C.5 simplifies to

Γ
(+)
`mnk =

1

4h̄2

∞∫

0

dt e−iωnkt
[
σ
(1)
z,`mσ

(1)
z,nk〈eiHB1

t/h̄λjx
(1)
j e−iHB1

t/h̄λαx
(1)
α 〉+

+ σ
(2)
z,`mσ

(2)
z,nk〈eiHB2

t/h̄µsx
(2)
s e−iHB2

t/h̄µβx
(2)
β 〉
]

(C.6)

=
1

4h̄2

∞∫

0

dt e−iωnkt
(
σ
(1)
z,`mσ

(1)
z,nk

1

Z

∑

f1

[
(f1 + 1)e−β(f1+

1
2
)h̄ω(1)e−iω

(1)t +

+ f1e
−β(f1+ 1

2
)h̄ω(1)eiω

(1)t

]
e−β[(f1+

1
2
)h̄ω(1)+(f2+

1
2
)h̄ω(2)] +

+ σ
(2)
z,`mσ

(2)
z,nk

1

Z

∑

f2

[
(f2 + 1)e−β(f2+

1
2
)h̄ω(2)e−iω

(2)t +

+ f2e
−β(f2+ 1

2
)h̄ω(2)eiω

(2)t

]
e−β[(f1+

1
2
)h̄ω(1)+(f2+

1
2
)h̄ω(2)]

)
(C.7)

To trace out the bath degrees of freedom we need to evaluate the partition function

Z = tr

[
e−β(HB1

+HB2
)

]
(C.8)

=
∑

f1,f2

〈f1 ⊗ f2|e−β((n̂f1+
1
2
)h̄ω(1)+(n̂f2+

1
2
)h̄ω(2))|f1 ⊗ f2〉 (C.9)

=
∑

f1,f2

e−β(nf1+
1
2
)h̄ω(1)e−β(nf2+

1
2
)h̄ω(2) =

∑

f1,f2

e−
1
2
βh̄ω(1)

1− e−βh̄ω(1)
e−

1
2
βh̄ω(2)

1− e−βh̄ω(2)
. (C.10)

We may treat J(ω) as a continous function because of the dense spectrum of the environmental
degrees of freedom in the solid state device [32]. Therefore we might replace the sum over the
eigenfrequencies by an integral. Inserting this and the partition function into (C.7) we get

Γ
(+)
`mnk =

1

4h̄2

∞∫

0

dt e−iωnkt
[
σ
(1)
z,`mσ

(1)
z,nk

∞∫

0

dω(1) J1(ω
(1))( cos(ω(1)t)

[
2e−βh̄ω

(1)

1− e−βh̄ω(1)
]
+

+ cos(ω(1)t)− i sin(ω(1)t)) + σ
(2)
z,`mσ

(2)
z,nk

∫ ∞

0
dω(2) J2(ω

(2))( cos(ω(2)t)×

×
[

2e−βh̄ω
(2)

1− e−βh̄ω(2)
]
+ cos(ω(2)t)− i sin(ω(2)t))

]
. (C.11)

With some simple calculus this can be expressed as

Γ
(+)
`mnk =

1

4h̄2

∞∫

0

dt e−iωnkt
[
σ
(1)
z,`mσ

(1)
z,nk

h̄

π

∞∫

0

dω J1(ω)

(
coth

(
h̄ω

2kBT

)
cos(ωt)− i sin(ωt)

)
+
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+ σ
(2)
z,`mσ

(2)
z,nk

h̄

π

∞∫

0

dω J2(ω)

(
coth

(
h̄ω

2kBT

)
cos(ωt)− i sin(ωt)

)]
. (C.12)

One might now swap the t and ω integration

Γ
(+)
`mnk =

1

4πh̄2
σ
(1)
z,lmσ

(1)
z,nk

∞∫

0

dω h̄J1(ω)

[ ∞∫

0

dt e−iωnkt(coth(βh̄ω/2) cos(ωt)− i sin(ωt))
]
+

+ σ
(2)
z,lmσ

(2)
z,nk

1

4πh̄2

∞∫

0

dω h̄J2(ω)

[ ∞∫

0

dt e−iωnkt(coth(βh̄ω/2) cos(ωt)− i sin(ωt))
]

(C.13)

and evaluate the time integrals

∞∫

0

dt e−iωnkt cos(ωt) =
1

2

∞∫

0

dt e−i(ωnk−ω)t +
1

2

∞∫

0

dt e−i(ωnk+ω)t

= lim
ε→0

1

2

∞∫

0

dt
[
e−i(ωnk−ω)te−εt + e−i(ωnk+ω)te−εt

]
(C.14)

=
1

2
lim
ε→0

[
e−i(ωnk−ω)te−εt

−i(ωnk − ω)− ε
+

e−i(ωnk+ω)te−εt

−i(ωnk + ω)− ε

]∞

0

(C.15)

= iP

(
ωnk

ω2 − ω2
nk

)
+
π

2
(δ(ω − ωnk) + δ(ω + ωnk)) (C.16)

correspondingly the second term gives

i

∞∫

0

dt e−iωnkt sin(ωt) = iP

(
ωnk

ω2 − ω2
nk

)
+
π

2
(δ(ω − ωnk)− δ(ω + ωnk)). (C.17)

Note that the fact that we integrated over the upper half of the complex plane also affects
the frequency integrals, because we interchanged the t and ω integration in equation (C.13).
This is important when calculating the renormalization effects. Thus we may rewrite (C.13)
as

Γ
(+)
`mnk = i

1

4h̄π
σ
(1)
z,lmσ

(1)
z,nk

∫ ∞

0
dω J1(ω) coth(βh̄ω/2)

ωnk
ω2 − ω2

nk

+

+
1

8h̄
σ
(1)
z,lmσ

(1)
z,nk

∞∫

0

J1(ω) coth(βh̄ω/2)δ(ω − ωnk)−

− i

4h̄π
σ
(1)
z,lmσ

(1)
z,nk

∞∫

0

dω J1(ω)
ω

ω2 − ω2
nk

−

− 1

8h̄
σ
(1)
z,lmσ

(1)
z,nk

∫ ∞

0
J1(ω)dω δ(ω − ωnk) +

+ (1↔ 2). (C.18)
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The second term needs special treatment if ωnk = 0. In this case we may write

I2 =

∞∫

−∞
J(ω) coth(βh̄ω/2)δ(ω − ωnk) dω (C.19)

and the first term of the Taylor-series for coth gives (only first order, all other terms vanish
fast for ωnk → 0)

I2 = lim
ωnk→0

J(ωnk)
1

1
2βh̄ωnk

. (C.20)

Therefore we receive for ωnk → 0

I2 = lim
ε→0

[
J(ωnk + iε)

2

βh̄ωnk + iβh̄ε

]

= lim
ωnk→0

J(ωnk)
2

βh̄

[
P (1/ωnk)− iπδ(ωnk)

]

=
2

βh̄
lim

ωnk→0

J(ωnk)

ωnk
=:

2

βh̄
α (C.21)

where P denotes the principal value of 1/ωnk. The δ-term vanishes because ωnk we consider
the limit such that ωnk is not exactly zero. α is the usual parameter characterizing the
strength of the dissipative effects. Quoting all calculations done in the preceding lines we
may write the rates as

Γ
(+)
`mnk =

1

8h̄

[
σ
(1)
z,`mσ

(1)
z,nkJ1(ωnk) + σ

(2)
z,lmσ

(2)
z,nkJ2(ωnk)

]
(coth(βh̄ωnk/2)− 1) +

+
i

4πh̄

[
σ
(2)
z,`mσ

(2)
z,nk

∞∫

0

dω
J2(ω)

ω2 − ω2
nk

(coth(βh̄ω/2)ωnk − ω) +

+ σ
(1)
z,`mσ

(1)
z,nk

∞∫

0

dω
J1(ω)

ω2 − ω2
nk

(coth(βh̄ω/2)ωnk − ω)
]

(C.22)

and (we do not explicitly calculate the rate Γ
(−)
`mnk because this is done completely analogous

to the rate Γ
(+)
`mnk)

Γ
(−)
`mnk =

1

8h̄

[
σ
(1)
z,`mσ

(1)
z,nkJ1(ω`m) + σ

(2)
z,lmσ

(2)
z,nkJ2(ω`m)

]
(coth(βh̄ω`m/2) + 1) +

+
i

4πh̄

[
σ
(2)
z,`mσ

(2)
z,nk

∞∫

0

dω
J2(ω)

ω2 − ω2
`m

(coth(βh̄ω/2)ωlm + ω) +

+ σ
(1)
z,`mσ

(1)
z,nk

∞∫

0

dω
J1(ω)

ω2 − ω2
`m

(coth(βh̄ω/2)ωlm + ω)

]
. (C.23)

The rates Γ
(+)
`mnk and Γ

(−)
`mnk might be inserted into (4.4) to form the Redfield tensor. Note here

that for ωnk → 0 (and ωlm → 0 respectively) the real part of the rates (which is responsible
for relaxation and dephasing) is of value

Γ
(+)
`mnk = Γ

(−)
`mnk =

1

4βh̄

[
σ
(1)
z,`mσ

(1)
z,nkα1 + σ

(2)
z,lmσ

(2)
z,nkα2

]
(C.24)

as evaluated in equation (C.21).
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C.2 Two qubits coupled to one common bath

If both qubits couple to a common environment described by one common bath of harmonic
oscillators one has to perform the same calculation which was done in chapter C.1 except that
the interaction Hamiltonian (C.2) has to be replaced by

HI =
1

2

(
σ(1)z + σ(2)z

)
⊗ X̂ (C.25)

and (C.3) by
HB = HB1 . (C.26)

The resulting rates read

Γ
(+)
`mnk =

1

8h̄

[
σ
(1)
z,`mσ

(1)
z,nk + σ

(1)
z,`mσ

(2)
z,nk + σ

(2)
z,`mσ

(1)
z,nk + σ

(2)
z,lmσ

(2)
z,nk

]
J(ωnk)×

× (coth(βh̄ωnk/2)− 1) +
i

4πh̄

[
σ
(1)
z,`mσ

(1)
z,nk + σ

(1)
z,`mσ

(2)
z,nk +

+ σ
(2)
z,`mσ

(1)
z,nk + σ

(2)
z,lmσ

(2)
z,nk

] ∞∫

0

dω
J(ω)

ω2 − ω2
nk

(coth(βh̄ω/2)ωnk − ω)

(C.27)

and

Γ
(−)
`mnk =

1

8h̄

[
σ
(1)
z,`mσ

(1)
z,nk + σ

(1)
z,`mσ

(2)
z,nk + σ

(2)
z,`mσ

(1)
z,nk + σ

(2)
z,lmσ

(2)
z,nk

]
J(ω`m)×

× (coth(βh̄ω`m/2) + 1) +
i

4πh̄

[
σ
(1)
z,`mσ

(1)
z,nk + σ

(1)
z,`mσ

(2)
z,nk +

+ σ
(2)
z,`mσ

(1)
z,nk + σ

(2)
z,lmσ

(2)
z,nk

] ∞∫

0

dω
J(ω)

ω2 − ω2
`m

(coth(βh̄ω/2)ωlm + ω) .

(C.28)

The difference between the rates for the case of two distinct baths (4.9), (4.10) are the two

extra terms σ
(1)
z σ

(2)
z and σ

(2)
z σ

(1)
z . They originate in the tracing out over the bath because

in the case of one common bath all creation and annihilation operators (harmonic oscillator
coordinate X̂ written in terms of creation and annihilation operators) in the interaction

Hamiltonian Hint ∝ X̂σ
(i)
z (i=1,2) act on the same bath and therefore also terms a(1)

†
a(2)

and a(2)
†
a(1) contribute to the rates. In the case of one common bath there of course is only

one spectral function J(ω) = (αh̄ω)/(1 + ω
ω2c

) which we also assume to be ohmic.
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Appendix D

Calculation of the renormalization
effects

Renormalization of the oscillation frequencies ωnm is mediated by the imaginary part of the
Redfield tensor [16]

ωnm → ω̃nm := ωnm − ImRnmnm. (D.1)

Thus the real part of the Redfield tensor yields the relaxation and dephasing rates while the
imaginary part causes an environment induced shift of the oscillation frequencies ωnm. The
imaginary part of the Redfield tensor is given by the imaginary part of the rates

Im Γ
(+)
`mnk =

1

π

∞∫

0

dω J(ω)P

(
1

ω2 − ω2
nk

)
[coth(βh̄ω/2)ωnk − ω] (D.2)

and

Im Γ
(−)
`mnk =

1

π

∞∫

0

dω J(ω)P

(
1

ω2 − ω2
lm

)
[coth(βh̄ω/2)ωlm + ω] . (D.3)

Therefore one has to evaluate the integrals

1

2

∞∫

−∞
dω J(ω)P

(
1

ω2 − ω2
nk

)
[coth(βh̄ω/2)ωnk − ω] (D.4)

and

1

2

∞∫

−∞
dω J(ω)P

(
1

ω2 − ω2
lm

)
[coth(βh̄ω/2)ωlm + ω] . (D.5)

For the sake of simplicity we first only consider the case

1

2

∞∫

−∞
dω J(ω)

1

ω2 − ω2
nk

[coth(βh̄ω/2)ωnk − ω] =
1

2

∞∫

−∞
dω f1(ω)−

1

2

∞∫

−∞
dω f2(ω), (D.6)

with an ohmic spectral density J(ω):

J(ω) =
αω

1 + ω2

ω2c

= αω
ω2
c

ω2
c + ω2

= αω
ω2
c

(ωc + iω)(ωc − iω)
. (D.7)
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This integral (D.6) might be split into two parts

I1 =
1

2

∞∫

−∞
dω f1(ω)

=
1

2

∞∫

−∞
dω

αω

1 + ω2

ω2c

1

ω − ωnk
1

ω + ωnk
coth(βh̄ω/2)ωnk (D.8)

I2 =
1

2

∞∫

−∞
dω f2(ω) =

1

2

∞∫

−∞
dω

αω

1 + ω2

ω2c

1

ω − ωnk
1

ω + ωnk
ω. (D.9)

Both f1(ω) and f2(ω) are even: we can integrate from −∞ to ∞ and simply multiply the
result by 1/2 to obtain the correct expression. The poles are ±ωnk, ±iωc (only the “+” counts
because we have chosen the upper imaginary half plane), 0, ±i2nπ/βh̄ (n ∈ N, n > 0) [58].
Carrying out the integration (D.8) yields

I1 = i
1

2
π




1

2ωnk

αωnk

1 +
ω2
nk

ω2c

coth(βh̄ωnk/2)ωnk


+

+ i
1

2
π

(
1

−2ωnk
−αωnk
1 +

ω2
nk

ω2c

coth(−βh̄ωnk/2)︸ ︷︷ ︸
−coth(βh̄ωnk/2)

ωnk

)
+

− i1
2
2π

(
iαωc

iωc − ωnk
1

iωc + ωnk

ω2
c

2iωc
coth(βh̄iωc/2)︸ ︷︷ ︸

1
i
cot(βh̄ωc/2)

ωnk

)
+

+ 0 (removable discontinuity of the coth at 0) +

+ i
1

2
2π

∞∑

n=0

α2nπi
βh̄

1−
(
2nπ
βh̄

)2
1
ω2c

1
2πni
βh̄ − ωnk

1
2πni
βh̄ + ωnk

ωnk
2

βh̄︸︷︷︸
a−1

. (D.10)

The first element a−1 of the Laurent-series expansion can easily be calculated:

a−1 =
fn(z0)

f ′d(z0)

(
with f =

fn
fd

)

=
eβh̄ω/2 + e−βh̄ω/2

1
2βh̄(e

βh̄ω/2 + e−βh̄ω/2)

∣∣∣∣∣
ω= 2nπi

βh̄

=
2

βh̄
. (D.11)

Now we consider only the last term of (D.10) enumerated by I1,5
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+
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]
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= −αωnkω
2
c (c

2
2 + c21)

(ω2
nk + ω2
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[
1

2
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c22 + c21

+
1

2

ψ(ic1)
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− 1

2

ψ(−c2)
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]
. (D.13)

The properties of the digamma-function are summarized in [59]. Inserting the reflection
formula ψ(1− z) = ψ(z) + πcotπz [60] into (D.13) leads to

I1,5 = − αωnkω
2
c

2(ω2
nk + ω2

c )

[
ψ(ic1) + (ψ(1 + ic1) + πcot(π(1 + ic1)))−
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]

= − αωnkω
2
c

2(ω2
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c )

[
ψ(ic1) + ψ(1 + ic1)− iπcoth(πc1)− ψ(1 + c2)−

− πcot(πc2)− ψ(c2)
]
. (D.14)

Evaluation of the second integral (D.9) gives (poles +iωc and ±ωnk)
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c

1
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2
. (D.15)

Now we sum up all terms for both integrals

I = I1 − I2

= −π
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The result (D.16) is discussed in chapter 4.6. To circumvent problems with the points c1 = 0
or c2 = 0 when implementing the formula with a computer, one could also start summation
in (D.12) at n = 1. The resulting expressions are
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`mnk = C1b,2b

1

π

αω2
cωnk

2(ω2
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and
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[
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where c1 := (ωlmβh̄)/(2π) for Γ
(−)
`mnk. Here C1b,2b denotes a pre-factor, which reads in the case

of two distinct baths

C2b =
1

4
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σ
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and in the case of one common bath
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List of symbols

Symbol Explanation Equation

σ̂x,y,z Pauli spin operators
, (| 〉 = |1〉) Clockwise flowing current
, (| 〉 = |0〉) Counterclockwise flowing current

Ic Critical current of a Josephson junction (2.1)
γ Gauge invariant phase (2.2), (6.13)
EC Charging energy Section 2.1
EJ Josephson energy (2.3)
F Coupling free energy (2.3)
Q Charge (2.4)
CJ Capacitance of a Josephson junction (2.4)
Φ0 Magnetic flux quantum Φ0 = h/2e (2.4)
Φx Externally applied bias flux (2.4), figure 2.2
∆1,2 Transmission amplitude of a single qubit (2.6)
ε1,2 Energy bias of a single qubit (2.6)
K Inter-qubit coupling strength (2.7)
ε Energy bias of the two-qubit

system (ε = ε1 + ε2) (2.10)
η Transmission amplitude of the two-qubit

system (η = ∆1 +∆2) (2.10)
H2qb Two qubit Hamiltonian (2.7), (2.10), (2.14)
H2b

op Two qubit Hamiltonian; the two qubits

couple to two distinct baths (2.8), (2.11), (2.12)
H1b

op Two qubit Hamiltonian; the two qubits

couple to one common bath (2.9), (2.13)
|E1〉 , |E2〉 , |E3〉 , |E4〉 Eigenstates of the two qubit system Section 2.4
ωnm Transition frequency between energy

levels n and m Section 2.4, (4.3)

V̂ (t) Periodic perturbation of the
two-qubit Hamiltonian (3.3)
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Symbol Explanation Equation

T Temperature
β Inverse temperature, β = 1/(kBT )
PΨ(t) Occupation probability of the

state Ψ at time t
ρ(t) Reduced density matrix (4.3)
Rnmk` Redfield relaxation tensor (4.4)

Γ
(+),(−)
`mnk Golden Rule rates (4.5), (4.6)
α Dimensionless parameter which gives the

strength of the dissipative effects [34] (4.8)
ωc Cutoff-frequency (4.8)
J(ω) Spectral function (4.8)

R̃i Eigenvalues of the Redfield-tensor,
written as a diagonal matrix Section 4.2

X̂ Coordinate of the bath of harmonic oscillators Section 4.2
Γϕij Dephasing rates Section 4.4
ΓR Relaxation rate Section 4.4
F Fidelity (5.1)
P Purity (5.2)
Q Quantum degree (5.3)
C Entanglement capability Chapter 5
UXOR XOR (CNOT) quantum gate operation (5.6), (5.7)
I1 Circulating current in qubit 1 Figure 6.2, (6.2), (6.3)
I2 Circulating current in qubit 2 Figure 6.2, (6.2), (6.3)
MQQ Self-inductance of a qubit Table 6.1
MTT Self-inductance of the flux transformer Table 6.1
MQT Mutual inductance between qubit and

flux transformer Table 6.1
IS Screening current in the flux transformer loop Figure 6.2, (6.7)
ΦS Screening flux Section 6.2.1
L Geometric inductance Figure 6.3
Y Admittance (6.23)
LJ Josephson inductance (6.29)
Z Partition function (C.8)

List of constants

Symbol Explanation

e = 1.60 · 10−19 C Electron charge
h = 6.63 · 10−34 Js Planck constant
h̄ = 1.05 · 10−34 Js Reduced Planck constant
kB = 1.38 · 10−23 J/K Boltzmann constant
Φ0 = 2.07 · 10−15 Wb Magnetic flux quantum
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