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Algebraic Bethe ansatz for a discrete-state BCS pairing model

J. von Delft?* and R. Poghossian
IPhysikalisches Institut der Universtt8onn, NuRallee 12, D-53115 Bonn, Germany
2Sektion Physik, Ludwig-Maximilians-Univerditsliinchen, D-80333 Muchen, Germany
(Received 29 June 2001; published 4 October 2002

We show in detail how Richardson’s exact solution of a discrete-state(BBES) model can be recovered
as a special case of an algebraic Bethe-ansatz solution of the inhomogeneous XXX vertex model with twisted
boundary conditions: by implementing the twist using Sklyanif’snatrix construction and taking the quasi-
classical limit, one obtains a complete set of conserved quanitiésom which the DBCS Hamiltonian can
be constructed as a second order polynomial. The eigenvalues and eigenstated;afithieh reduce to the
Gaudin Hamiltonians in the limit of infinitely strong couplingre exactly known in terms of a set of param-
eters determined by a set of on-shell Bethe ansatz equations, which reproduce Richardson’s equations for these
parameters. We thus clarify that the integrability of the DBCS model is a special case of the integrability of the
twisted inhomogeneous XXX vertex model. Furthermore, by considering the twisted inhomogeneous XXZ
model and/or choosing a generic polynomial of Hiés as Hamiltonian, more general exactly solvable models
can be constructed. To make the paper accessible to readers that are not Bethe-ansatz experts, the introductory
sections include a self-contained review of those of its feature which are needed here.
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I. INTRODUCTION AND SUMMARY and explicitly constructed all the constants of the mofsee
Eq. (10) below]. In 2000, Amico, Falci, and FaAaealized
In a series of pioneering experiments in the mid-1990’sthat the DBCS integrals of motion are in fact very similar to
Ralph, Black, and Tinkham observed a spectroscopic gathe integrals of motion of the XXX Gaudin modgee Eg.
indicative of pairing correlations in Al nanografrthat were  (11) below], differing from the latter only by an addition&},
so small that their electronic excitation spectra were discretderm, and that Richardson’s equations are very similar to the
Their results inspired a growing number of theoretical stud-so-called Gaudin equations, differing from the latter only by
ies of superconducting pairing correlations in nanograinsgn additional constant term. Now, it has long been known
with a fixed number electron&ee Refs. 2,3 for recent re- (see, e.g., Chap. 13.2 of Gaudin’s b&pkhat the Gaudin
views). These works are based on a model, to be callednodel can be derived from the inhomogeneous XXX vertex
discrete-state BCEDBCS) model below, described by a re- (IXXX) model with periodic boundary conditions, by taking
duced BCS Hamiltonian for a discrete set of doubly degenthe so-called quasiclassical limit, and that, correspondingly,
erate energy levels, with a pairing interaction that scatterthe Gaudin equations can be derived by taking the quasiclas-
pairs of electrons from one level to the next. The DBCSsical limit of Bethe-ansatz equations of the IXXX model.
model was solved exactly by Richardson in a series of paperSince Richardson’s ansatz satisfies the Gaudin equations
starting in 1963 he explicitly constructed all eigenstates and modified by the additional constant term, Amico, Falci, and
eigenenergies of the DBCS Hamiltonian in terms of a set ofazid referred to Richardson’s ansatz as an “off-shell Bethe
energy parameters whose values are determingdioyeri-  ansatz,” i.e., an ansatzot satisfying the Bethe equations of
cally) solving a set of algebraic equations, to be called “Ri-the original XXX model, but of a modified version thereof.
chardson’s equations.” Though his work had, for a long time,(The off-shell Bethe ansatz was originally introduced by
been overlooked by the condensed matter community, it haBabujian and Flume in a context quite different than finding
recently received increasing attention in the context of studyeigenstates and eigenvalues of integral models, namely, to
ing pairing correlations in nanoscale Al grains, where thesolve Knizhnik-Zamolodchikov differential equations arising
existence of an exact solution has turned out to be as usefiri conformal Wess-Zumino modefs.
as it had been unexpected. In this paper, we address the following question: can one
The existence of an exact solution to a nontrivial model ofconstruct a vertex model, integrable by the algebraic Bethe
course immediately raises the question whether it is relatednsatz(ABA), whose quasiclassical limdirectly gives the
to any of the standard ways of exactly solving solvable modDBCS model, in other words, which is directly solved by a
els. The goal of this paper is to show that this is indeed thaormal “on-shell” Bethe ansatz? The answer is positive: we
case:Richardson’s solution of the DBCS model is a specialshow that the sought-after model is an IXXX model with
case of an algebraic Bethe-ansatz solution of the so-calletwisted(instead of periodicbhoundary conditions, which we
inhomogeneous XXX vertex model with twisted boundarghall call the TIXXX model; its transfer matrix yields, in the
conditions. quasiclassical limit, a complete set of conserved quantities,
This insight builds upon a series of recent observation$d;, from which the DBCS Hamiltonian can be constructed as
regarding exact properties of the DBCS model: In 1997 a second order polynomial. Our emphasis on twisted bound-
Cambiaggio, Rivas, and Saracérsmowed(though unaware ary conditions, in order to arrive at on-shell Bethe ansatz
of Richardson’s workthat the DBCS model was integrable, equations, is the main difference between our work and that
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of Refs. 6,9. We implement the twist using the boundarythe transfer matrices for different spectral parameters com-
K-matrix construction of Sklyanin, which he introduced mute, which is the underlying reason for the integrability of
while developing his method of separation of variaBfss?  the model. In Sec. IV we exploit the exchange relations of
an alternativeand in some cases more powejfuiay to the the components of the Monodromy matrix to construct the
ABA for constructing wave functions. In fact, Sklyanin him- €eigenstates and eigenvalues of the model. In Sec. V, we ex-
self mentioned in a side remark in Ref. 11 that the quasiclasPl@in how the results of Secs. Ill and IV can be straightfor-
sical limit of the IXXX model with twisted boundary condi- Wardly generalized to the case of twisted boundary condi-
tions (using a diagonalk-matrix) produces a modified tONs using Sklyanin'sK -matrix. Section VI contains our
version of the Gaudin modéthough he was not aware, at N€W results: we show that by taking the quasiclassical limit

the time, of the connection of the latter to the DBCS madel ©f the TIXXZ model, one recovers a generalized version of
We hope that our work fully clarifies the origin of the the DBCS model. We also show that if one specializes these

integrability of the DBCS model by explicitly constructing results to the TIXXX model, one recovers the DBCS model.

the integrable TIXXX model from which the latter can be Section VIl contains some brief conclusions and an outlook
derived. Moreover, by this construction we pave the way forfor future applications of our results.

using the powerful algebraic Bethe-ansatz machinery to cal-

culate various quantities that have not yet been studied for Il. THE DBCS AND GAUDIN MODELS

the DBCS model. For example, there has recently been great The DBCS model that is commonly ugédto describe

progress in using the ABA to calculate matrix elemefus superconducting pairing correlations in nanoscale metallic

form factorg and correlation functions in vertex modetee grains is defined as follows: one consideres a reduced BCS
Ref. 13, and Ref. 14 for a more recent developmeBy Hamiltonian

building upon our work, it should now be possible to fruit-
fully apply these results to the DBCS model, t5o.

Our work also suggests ways for constructing integrable H= > 8jCJTng(r_gz CLCLCqujw ) (1)
generalizations of the DBCS model, by considering other ho== i’
vertex models with twisted boundary conditions. In fact, onefor electrons in a set of pairs of time-reversed single-particle
such generalization, which is Bethe-ansatz solvable, has retates|j, +) with energiess;, which are scattered pairwise
cently been found independently by Amico, Di Lorenzo, andfrom level j’ to j, with interaction strengtly. Richardson
Osterloh? They showed that by a slight generalization of themanaged to solve this model exactly, for an arbitrary set of
integrals of motion of the DBCS model, another integrablelevelse; (although his solution includes the case of multiply
model is obtained. We shall show that the latter can be obdegenerate levels, we shall here consider only the case where
tained by taking the quasiclassical limit of the inhomoge-¢;+#¢; for i #j): Since any level occupied by only a single
neous XXZ vertex model with twisted boundary conditionselectron does not participate in and remains “blocked” to the
(TIXXZ model), in complete ananology to the derivation of pairscattering described By, the labels of all such single-
the DBCS model from the TIXXX model. occupied levels are good quantum numbers. The eigenstates

Another interesting direction in which our work could be |«) and corresponding eigenenergi@&sof H thus have the
pursued, is to consider boundary conditions witmdiago-  following general form:
nal K-matrices. These generally lead to models which are
not solvable by the ABA. However, their eigenstates and _ -~
eigenvalues can, in many cases, nevertheless be found using |0‘>_£IB C;rai|qlp>’ SQ_SPJF;B &i- 2)
Sklyanin’s method of separation of variables. ] ) )

The paper is intended to be accessible also to readers thAgre B is the set of singly-occupied, blocked levels, and
are not thoroughly familiar with the details of the algebraic|¥e) is an eigenstate, with eigenvaléig and containing pre-
Bethe ansatz; those of its features which are needed here dfisely P pairs of electrons, of a Hamiltoniad, which has
therefore introduced and reviewed in pedagogical detail. Th@recisely the same form as theof Eq. (1), except that now
structure of the paper is as follows. In Sec. Il we introduceth€ j-sums are restricted to run only over the &ebf all
the DBCS and Gaudin models, recall how their integrals ofinblockedor nonsingly-occupied levels. Itis now convenient
motion are constructed, and give the equatigishardson’s 10 introduce the pseudospin variables
or Gaudin’g that have to be satisfied in order to obtain eigen-
states and eigenvectors. Sections Il and IV contain a review
of well-known material, in a form that is useful for the novel ~ 4 ot
developments of subsequent sections: they give a self- S =Cj ¢y, )

z__ 1 T T + _
Sj=2(1-cj cjs—Cj_Cj-), S =¢j-Cj,

]
contained introduction to the ABA method, as applied to theyhich satisfy the standard $) relations

XXX and XXZ vertex models. Since both are special cases

of the so-called six-vertex model, we shall actually begin by [S'.S 1= 528, [S ST ==+ éii,-S]-i , (4)
discussing the latter in full generality, before specializing ) .

later on. In Sec. Il we explain how the Yang-Baxter equa-and in terms of whictHy takes the form

tions satisfied by th&®-matrices of local Boltzmann weights u

lead to the exchange relations for the components of the - _ _Qzy_ — ot
Monodromy matrixZ. Furthermore, we derive the fact that A EJ: 2e,(1/2-5)) g% S5 ©®
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Our choice(3) for the pseudospin variables differs from that T Y Y T T Y

used in many other publicatioh$® by the replacement A i l A l A
S'—S, S—-%, (6) a a b b c c

which preserves the SP) relations(4). With our choice, the FIG. 1. The six allowed configurations of arrows at a vertex of

physical vacuum stat®), containing no pairs, has the maxi- the six-vertex model, with their corresponding Boltzmann weigths
mum possibleS, eigenvalue and hence is a “highest-weight” a b, andc.
state. This is convenient for our present purpose, namely to

establish contact with the ABA, because in the Bethe-ansatz Gaudi P 1 1
literature it is standard practice to use highest-weight states h2n= —2 26— +§ E (12)
as reference statésee Eq(36) below]. e e
Now, Richardson showed that the sought-afiepair e
eigenstatesunnormalizedl and eigenenergies have the gen-
eral fornt® Ill. ALGEBRAIC BETHE ANSATZ
FOR THE INHOMOGENEOUS SIX-VERTEX MODEL
P U -
|‘1’P>:H S_(M|)|0> with S_(M):z , S|_ , | A. Definition of m-odel -
=1 LT It is well known that the Gaudin model can be obtained

() by taking the quasiclassical limit of the IXXX mod&lThe
b main result of this paper will be to show that a similar con-
=3 ®) struction can be used to obtain the DBCS model from the
PT & M TIXXX model, as well as generalized DBCS models from
the TIXXZ model. To set the scene for these developments,
Here theP parametersu, (I=1,...,P) are a solution of a the next two sections give a pedagogical review of the ABA
set of P coupled algebraic equations, which we shall call theas applied to IXXX and IXXZ models. Since both are special
“Richardson equations,” cases of the so-called 6-vertex model, we begin by discuss-
ing the latter in full generality. Bethe-ansatz experts may

1 2 1 N P want to skip directly to Sec. V.
g T 2e—m 2_ L =0 for [=1,... P. The six-vertex model is a classical statistical mechanics
'I,;Il Ul model on a two-dimensional regular quadratic lattice, whose

9) dynamical variables are arrows living along the horizontal

. . and vertical edges of the lattice, labeledrby1,... M and
These are to be solvedumerically, see Appendix B of Ref. j_1 "N respectively. At each vertex, only those six con-

3) subject to the restrictiong), # u if I’ #1. A simple proof i ;ration of arrows are “allowed,” i.e., have nonzero local

of this result may be found in Appendix B of Ref. 3; its gojrzman weightsBW's), for which the total flux into the
strategy is to verify thatil,— £p)|Wp)=0 by simply com- | artex is zerdsee Fig. 1

muting Hy to the very right past all of th&~ operators in Thus, every allowed configurations has exactly two in-
Eq. (7). S coming and two out-coming arrows. Furthermore, we take
Moreover, Cambiaggio, Rivas and Saracesicowed that  the |ocal BW's to be invariant with respect to the simulta-
the constants of the motion ¢f, have the form’ neous reflection of all four arrows. This leaves only three

U o 1t independent BW's per ve_rtex, t_o be denotgdd}M, Bmi s

, SS+2(S§+S§)) andc,;, where the subscripts give the locatiam,() of the

Hi=S +9j§=:1 ei—e; ' (10 vertex(intersection of rowm and column). Since the BW's
j#i : are allowed to depend on the location of the vertex, we are
The operatorsl;, i=1,2, ... N commute with each other as con_sidering an “inhomoggneous" '.“Ode': AS. usugl, the total
well as with the Hamiltoniar(5). In the limit g—c, the statistical weight of any given configuration is defined as the

product of the BW's of all vertices, and the partition function
is defined as the sum of these statistical weights over all
gallowed configurations.
(11) It is convenient to associate a two-dimensional vector
&7 & spaceC? with each row, sayJ , for row m, and another with
each column, say; for columni, in such a way that the

coincide with the Hamiltonians of the Gaudin chaisee basis vectors
Chap. 13 of Ref. ¥ The common eigenstates of the Gaudin
Hamiltonians are given by the same E#g), but with the (m)=(1)= (m)=(o)=

S . . e} = =—, 6,'= =<, (13@
parametersu, satisfying the so-called Gaudin equations, 0
which are simply thegy— limiting casé® of Richardsons
Egs.(9). The corresponding eigenvalues of the Hamiltonians (i):(l)
HEaudNare given by €1 =lo

operators

U o) liate 4 oot
. SS+3(5S +S'S)
HiGaUdI_ lim H|/g:J§=:l 1] 2 (B | (|

gﬂw

j#i

. 0
=1, e&”z(l)zi, (13b)
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represent right- and left-pointing arrows along raow or N N-I ... 2 1

upward and downward arrows along colummespectively.

Then the local BW's at vertexnf,i) may be viewed as the _ by k=i ’ ke ki

matrix elements of a linear operatBy,; that acts as follows U Ty | s L L1

on the tensor product of thath “horizontal” andith “ver- m ‘ ‘ m

tical” spaceU,,®V;: %N zN_l %2 %1
Rmiefm)‘@eﬁi):(Rmi)”Tkef“m)®(¥U) ) (149 FIG. 2. Construction of the Monodromy matrix: the matrix ele-

where the usual covention of summation over repeated indiMent (m) ", i ..\, IS equal to the total Boltzmann weight of the
cesl,ke{1,2 is implied. (As a rule, we shall put bars over mth row, for a fixed configuration of external arrogpecified by
all repeated indices, and tilde’s or nothing over nonrepeate'® indices ofl,), obtained by summing over all allowed configu-
upper or lower indices, respectivelyt follows that the ac- rations of arrows on internal lingsvhose indices carry bars here

- : Ik _ _ . . .
tion of Rmi_orzmt)he g?ord'nateswmi) of a general vector  anq the “vertical” spacev; . To illustrate this action explic-
Wini=(Wn)'*e; " @ 6’ € Up® V; takes the form itly, we note that the matrix elements @f, are constructed
as follows from those oR;:

(Rmini)Ik:(Rmi)lﬁ(ﬂwmi)lk- (14b) TR %
» KN K
The only nonzero matrix elements of the operdRgy; are (Tm), Kn oo kg
Tk Tt Ky Tk
(Rmi)'1'1=(Rm)%2%2=2ami, =(Rmn) TN,lkEN(Rmel) T*N_lzkENfl- : -(le)lfklkl-
(Rm)'1%2=(Rm) %' 1=bp, (19 (18b)

(R L2 = (Ry)?y L= o This equation has a simple physical interpretation: each such
miJ 2 1A mis L 27 i matrix element of7, gives the total Boltzmann weight of the

A convenient matrix representation f&,; is mth row, depicted in Fig. 2, for a fixed configuration of ex-

ternal arrowg specified by the indices df,, on the left-hand

side of Eq.(18b)], obtained by summing over all allowed

(@m) % (Bm)*& | e
% % ; (163 configurations of arrows on internal horizontal edfte | ;
(Ymi) % (Bmi)"%/ sums, fori=2, ... N, on the right-hand side of E¢18b)].
where @i, Bmi, Bmi» Ym are operators acting on the two- Likewisg,_ using th.is one row construption as building block,
dimensional vertical spac : the partition function of arM—ro_w lattice can be expressed
via the matrix elements of a suitable product of Méviono-
an O 0O O dromy matrices, as will be seen below.
0 b ) ﬁmi=< ) Because of the different roles played by the horizontal
mi spaceU, (usually reffered as the auxiliary spacand the
tensor product of remaining vertical spadés - -V (the so
ml)

(Rmi)TIT(k:

Mni—

Cmi O
Yini= ( 0 Cm‘), Sni= ( O (16p  called quantum spageit is convenient to arrange the matrix
0 O 0 elements ofZ,, that correspond to the horizontal spadg,

Even more explicitly,R.,; can be expressed as follows in i-€., (Zw)'| in the notation of Eq(18b), into a 2<2 matrix
terms of the unit operator and the Paulic-matriceso?,

. . A B
o =(*xid")/2, =" " 1
e b 19)
amit bmi ami— bmi
Rmi=— " (In®1) + ———" ( 0%,® o7) Its entriesA, B, C, andD are, of course, operators acting on
2 2 the quantum space, which implicitly carry tkendices that
+Cmi(om®@ 0, +o,®07), (17 e displayed in Eq(18b) (for brevity, we suppressed these

above. Each of these four matrix elements corresponds to
where the lower indices of the operators indicate the spacene of four possible kinds of rows in Fig. 2, depending on
(U, orV;) on which they act. how the arrows on the first and lask., external horizontal
edges are fixed:

5. Monodromy marx A=), Bi(—c), Ci(—,—), Di(—,e).
One of the most important objects in the ABA method is (20

the Monodromy matrixZ,,. It is defined to be the operator Note that in this matrix representation, the producRgf.-

T =RunRn_1- - - Rt (183 matrices on the right-hand side of E4.8a may be viewed
as conventional multiplication of’22 matriced of the form
which acts on the spadd,,®V;---®Vy, with each factor (163], whose entries are, however, operators on the quantum
R acting nontrivially only on the “horizontal” spac®),,  space(and hence carry suppressechdices.
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C. Transfer matrix is why we could introduce functionts(\,£) andc(\, ¢) that

In order to investigate our model in the case of periodicd® Not carry the indicesng,i) any longer. Note also that the
boundary conditions in the horizontal direction, it is natural"atio ¢/b is antisymmetric under an interchange of its argu-

to consider the operatdr,, (called transfer matrix defined =~ MeNts
as the trace of, in the horizontal spac¥,:

c(A,§) _ cEN)
b(\,&)  DB(EN)’

a property that will be useful later.
) T K i Usually the rational case(x)=x is referred to as the

Its matrix elements Tr) " i give the total Boltzmann  xxx model and the trigonometric casg(x) = sinhx as the
weight of themth row depicted in Fig. 2 for a fixed configu- XXZ model, since the Hamiltonians of the XXX and XXZ
ration of arrows on the vertical edgespecified by the indi- Heisenberg magnetic chains can be derived from the corre-
ces of T,], obtained by summing over all allowed configu- sponding(homogeneoystransfer matrices, by taking a loga-
rations of arrows on horizontal edges, with the boundaryithmic derivative with respect to the spectral parameter at
condition that the arrows of the first and last horizontal edgesome specific pointsee, e.g., Chap. 10.14 of Ref.)19
are equal. For the choice of BW's of Egs(25), the R,;-matrices

It follows that the full partition function for a lattice dl have the following very important property, which ultimately
rows andN columns can readily be constructed by a suitabldeads to the solution of the problem: they satisfies the Yang-
product ofM transfer matrices: for the case of double peri-Baxter(YB) equation
odic boundary conditions, it is equal to

(26)
TmETrm{Tm}Elg,z (Ty)l=Am+Dpy. (21)

Rmm’()\mv)\m’)Rmi()\mafi)Rm’i()\m’ ygi)

MM MMt
Zyun=(Tyn) Su1" (Tm-1) -2 2" B
M.N M mil“‘wil kNiz“'kl -2 :Rm’i()\m’:Ei)Rmi()\m:gi)Rmm’()\ma)\m’)r (278)
K where the operator products on both sides act on the space
X(Ty) WML (22 Un,®U,®V;, and the arguments in brackets indicate ex-
plicitly on which parameters the corresponding operators de-
=Tre{TuTu_1---T1}, (23)  pend. As before, th&,;-operators act on one horizontal and
. ) ) one vertical spaceJ,,®V;; their nonzero matrix elements
i.e., the trace is over the entire quantum spélge® - - - V. are given in Eq(15), with the parametera,,;, by, andcp;

The distinguishing feature afitegrablemodels is thatthe 55 defined in Eq(25a, with argumentsy,, and & . In con-

transfer matrices for different rows commutd,, T, = .
. . trast, the operatoR,,,y acts ontwo horizontalspacesU,,
=T Tm- In this case, all transfer matrices have common

. e " andU,,, ; apart from this replacement of vertical spateb
eigenstates, with eigenvaluad® , say, so that the partition m' > 8p P DAGEDY
; the horizontal spac¥,, , however, the structure &,y is
function takes the form .
exactly the same as that Bf,,;: the nonzero matrix elements
M of R,y are likewise given by Eq(15), where now the pa-
ZM,N:%: n:!'_:'[l AL (24 rameterSnny » by @ndCpqy have arguments , and
(i.e., two\'s instead of\ and¢):
Thus, the calculation of the partition function reduces to the
problem of finding the eigenvalues of the transfer matrices.  @mm' =21, Bmpw=b(Am:Am/), Cmpy =C(Am,Am).
To be explicit, the Yang-Baxter equation implies the follow-
D. Yang-Baxter relations ing relations between matrix elements of the transfer matri-

It turns out(and will be shown belowthat the transfer C€S:
matrices commute if the local BW'a,,;, by, ¢ are pa-

rametrized as follows: (R |||_|r(Rmi)| |k§(Rm'i)| ;Ifk
ami=1, bp=b(\m.&), Ccmi=c(\pm.&), (253 = (Roy) e Rey) £ (Ry) 1. (27D)
d(N—§) d(27) (As usual, we used bars for repeated indices, which are
b(\, &)= BO—E+27) c(\, &)= B—E+27) summed ovey.Graphically, this equation can be represented
7 2 as the equality of the BW's of the configurations depicted in

Fig. 3b), where the left and right diagrams have teame
where form of the functionp(x) can be eitherp(x)=x or  configuration of arrows on all external edges, and sums over
¢(x)=sinhx. The parameteir, (called “spectral param- all possible configurations of internal indices are implied.
eter”) is associated with theth horizontal line, and; (the  The verification of the YB equatio(R739 is straightforward
inhomogeneity parametewith the ith vertical line. Note (though rather tediogsand reduces to some simple rational
that the dependence of the local BV, b, Cmi on their  or trigonometric identitieg.Actually, the solvability of these
indices thus enters only via their spectral parameters, whicNang-Baxter equations dictated the choice of parametrization
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EOWT R )

TT<
(Rmm’) ||/ f

ST ) TR ) R
(30b)

Figure 4 is a graphical representation of this relation. To
prove it, one successively “pulls” the crossing of the two
horizontal lines across from the right-most edge of the quan-
tum space to the left-most edge, using the graphical repre-
sentation Fig. 3 of the YB equatiof27a. Rewriting Eq.
(303 in the form

FIG. 3. Graphical depiction of the Yang-Baxter equatiofas.

Schematic depiction of the action oﬁ,ﬁlm,)'ll;,, which inter-

changes the order of the rows andm. (b) General graph for the
Yang-Baxter equatiof27b). (c) Specific graph for a particular con-
figuration of external arrows, representing the specific Yang-Baxtebl,Operty of the trace operation, one immediately concludes

equation(28). Summing over all possible configurations of internal hat the corresponding transfer matrices commute:
arrows consistent with the given choice of external arrows turns ou& '

to give two graphs on the left-hand side, but only one on the right-

R TO\m) T\ )Ry = T ) T\ ), (31)

taking traces over the spackes,, U, and using the cyclic

hand side.

of a, b, and ¢ made in Eq.(25b).] As an illustration, the
graph in Fig. 8b) corresponds to the following explicit real-
ization of Eq.(27b):

(Rmm) 31 (Rmi) %55 (Rpri) '
+ (R ) 22 Rni) 21(R )12
= (Rn1)%52 (Rmi) 32 (R ) 12 (283
or, using Eqgs(15),
Cmm’amibm’i + bmm’CmiCm’i :am’ibmicmm/ y (28b)

which can be verified to hold i,,;, b,,;, andc,,; have the
form specified in Eqs(25).
Now consider two Monodromy matricég, and 7, with

identical sets of inhomogeneity parametéys . . . &y,
ﬂ)\m)ETm()\m;gli s vgN)v
TO‘m’)ETm’()\m’ ;gl! PR 7§N)1 (29)

TAMTAm)=TAm)T(A ). (32

It is the existence of a one-parameter family of commuting
transfer matices that makes the exact calculation of their ei-
genvalues and construction of their common eigenstates pos-
sible.

IV. EIGENSTATES AND EIGENVALUES
OF THE TRANSFER MATRIX

Equation(309 represents in a compact form 16 commu-
tation relations among the matrix entriég§\,), B(An),
C(\n), andD(\,,) of the Monodromy matrixZ(\,) [see
Eqg. (19)]. Below we wright down three of them, which are
essential for solving our eigenvalue eigenstate prokéna
full set of relations can be found, e.g., in Chap VIl of Ref.
13):

(33a

[B()\m):B(}\m’)]zoy

ANp)B(A )= B(Am/)A(Np)

b()\m' 1)\m)
C()\m:)\m’)

33b
b(7\mv)\m') ( )

B()\m)A()\m’),

so that it suffices to display only the functional dependence

on the (arbitrary spectral parameters,, or A\, . For this
case, we shall write the components Ai\,) as A(\,),

B(Ay), C(Ny), and D(\,,), and the transfer matrix as

T(\;), while usingR,,,,y as shorthand foR (A, A )

A direct consequence of the YB equation is that two such
Monodromy matrices satisfy the following exchange rela-

tions:
R TAm) T\ ) =Ty ) TN ) Ry (308

or, in terms of matrix elements,

D(Am)B(A )= B(Am/)D(\p)

mytm’

+ C()\m’ 1)\m)

BOAm)D(Ap).
b(vr o) (A)D(Nmr)

(330

These three equations correspond to the graphical equations
of Figs. 4b), 4(c), and 4d) (in that ordey; for example, Fig.

4(d) represents the following specific realization of E8Qb)
(whosek-indices we suppress here
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N N-1 21 N N-1 21

(a)

(b)

" X =" 24 i " X
m - ’ m - m’ m m’'

(©)

m - ‘m‘_i_m - ~-— m’ m m’
? ’>< ’ ><m

m m m - m m

(d

FIG. 4. lllustration of the exchange relatio(80a for the Monodromy matrix(a) The general relatiof304a. (b), (c), (d). Three specific
choices of external arrows, leading to the three Eg33), (33b), and(33¢), respectively.

(ﬁmml)Zzlszz()\m)le()\m,) To chgck, e.g., Eq(37.c), recall thgt the opergtdb has t.he.
graphical representation shown in Fig. 2, with left-pointing
+ (R 2 BT T2 (N ) (34)  arrows put on the first and last horizontal edges. The action

on |0) implies arranging upward-pointing arrows on all the

_71 2 (s 22 vertical edges above the horizontal line, but then the only
=T ) T m) (R )22 B9 Zilowed arrangement of arrows on the edges below the hori-
Using Egs.(15 and the antisymmetry propert§26), this  zontal line is again a sequence of exclusively upward-
readily reduces to Eq330¢). pointing arrows. By Eq.18b), this implies that we must

Now we are ready to construct some eigenstates of thbaveN successivé-type vertices, as specified in E@70).
model. As reference state we use the following so-called To obtain more general states, one can act on the refer-
vacuum state or highest-weight state, ence stat¢0) by an arbitrary numbeP (with 1<P<M) of

operatorsB:
0)=eMe . .-2efNeV,- - -aVy, (36)

which can be visualized as a row of vertical edges, each of |1, - - e} =Blua) - - Blp)|0). (38)
which carries an upward-pointing arrow. It is easy to verify Ngte that the parameteys , |=1, ... P, in the arguments
that of the B's are arbitrary now, and unrelated to the spectral

_ parameters introduced earlier, for whieh, is associated

C(\m)[0)=0, (373 \iith row m. We shall now show that when thegg param-

eters are solutions of a particular system of equatjths
famous Bethe-ansatz equations, see(E§). below], the vec-

N tor (38) becomes an eigenstate of the transfer mati(ix)
D(Km)|0>=H b(Am,&)|0). (379 (we shall henceforth usually drop the indexon \,,, since
i=1 only the functional dependence is importaf this end, let

A(\m)|0)=10), (37b
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us analyze in detail the action by the operdidin) on the

Bethe vecto(38) [subsequently, the action 8(\), whichis  AN)|uq, . .. .up)= H |1, P
analogous, will be outlined somewhat more brigfl@ur 1 b(uiN)

strategy is simple: using the exchange relatié83c), we

move the operatoD to the right past alB’s until it appears +2 f|A|M1, 1 N 1y - e P,
next to the vacuum staf®), on which it acts according to =1
Eq. (37¢. The result can be represented as (433
P
C(A, 1
D(N)|eq, -« - otp)= H e M)H b\, &)|pas - - up) fA= ) , (43b)
DOV 1) 721 by )
1" #1
D
+|21 Flpas oo M, o opee), (393 Combining Eqgs(39) and(43), we see that the sta(@8) is an
eigenstate of the transfer mati(\)=A(\) +D(\)
P
C(per,N)
f|D=b : N 11 b(w,&). (39D T)[pg, - ) =t g, - op)| g, - up)
(N2 by, )i=1 (443

1" #1
The first (so-called “wanted’) term on the right-hand side with the eigenvalue

(RHY of Eq. (399 arises from the case for which one picks

P P
up, at each of the series of commutations, the first term of thq \: b\,
exchange rulé33c), which in our case is equal to A pp) = 1;[1 b(,U«| ) H b(A, ,U«|)H (M &),
(44b)
1
b()\—MI)B(M)D()\)- (40)  provided thatf*+fP=0 for everyl=1,2, . .. P. Using the

antisymmetry property of the ratwb, Eq.(26), it is easy to
Below we will refer to this term in exchange relation as asee that this condition is satisfied provided thatRhgaram-
“regular” term. All other terms (the so called unwanted etersu,, ...,up satisfy the following system oP equa-
term9, which have contributions from the second term oftions:

(330), are combined in the second line of E§9a. The form

of the coefficientfP occuring in this term is given in Eq. P by )

(39b) and can be derived as follows: the left-hand <iddS) IT ———==11I b(w,&), (45)
of the Eq.(399 is symmetric with respect to the permuta- I'=1 blair ) =1

tions of the parameteys, . .. ,up, due to the commutativ- e

ity (333 of B’s. Since the first term on the RHS of E@99  which are known as the Bethe equations. Every solution of
is symmetric as well, the second should be too. This meange system of Bethe equations defines an eigenstate and cor-
that if one succeedes to determine a single coeffidiBrfor responding eigenvalue of the transfermaffig\) via Egs.
some fixedl, then all otherf’'s can be straightforwardly (38) and(44b).
found using the symmetry. Let us consider the dasé. It
is no.t difficult t'o see that the only possibility to obtain a tgrm V. SKLYANIN'S K-MATRIX
that is proportional tg\,u,, . . . ,up) and does not contain
the operatoB(u ), is to choose the “wrong” term o330, In this section, we shall generalize, following
Sklyanini®12 the formalism described above to the case
c(pmq,N) when the boundary conditions in the horizontal direction is
mB()‘)D(“l)* (4D not strictly periodic: instead, the first aint- first horizontal
bonds are to be identified only up to a “twist,” implemented
at the very first step when commutily\) with B(x1), and  using a(fixed) linear transformation. We will show later on
then everywhere else to choose “regular” ones. Thus,ffor that the DBCS modef{and also some of its possible gener-

we obtain alizationg is some special limiting case of the inhomogeneus
XXX (XXZ) model with such a twisted boundary condition.
o S N) o 1 N Consider a diagonal 22 matrix K, first introduced by
f1= PR H (M1,M|)|H b(ur1,&). (42)  sklyanini®*acting on the horizontal spa¢s,, :
The abovementioned symmetry under the permutations of (Km0
'S then immediately implies that in generﬁﬂ must have Km= 0 (K)o (46)

the form given in Eq(39b).
A similar consideration of the action by the operaoon It is easy to check that the following relation hci8isillus-
the Bethe vecto(38) gives trated in Fig. 3:
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m m m m
" _O_ " m’><g: m= m’£>< m
(a) (b)

FIG. 5. (a) Sklyanin’sK-matrix and(b) a graphical depiction of

Eq. (47).

[Rim KmKm1=0, (47)

where, in accord with our earlier conventions, the subscripts
(m,m’") specify the horizontal spaces on which the operator:
act non trivially. Let us define a modified monodromy matrix

as
To=T\ ) =K T\ ), (48)
or, in the 2x2 block form of Eq.(19),
= _[An Bu _((Kmm 0 )(Am Bm>
" \C, D, 0 (Kn22/\Cy Dm/
(49

Equation (47) ensures that the new monodromy matfix
obeys exactly the same exchange relati@dg as7, so that
in particular Eqs(32) and (33) remain valid also after the

substitutionT—T, A—A, B—B, C—C, D—D. Further-
more, the analogs of Eq&37) take the form
Cvj0)=0,

A(M)]0)=K44/0),

N

(50)

It follows that the Bethe vectdisee Eq.(38)]

11, )k =B(p1)- - -B(up)|0) (51)
is an eigenstate of (\),
TOOlg1s - ey =N g, - mp) g, ek

(52

with eigenvalue

T()\;Iu/lv e yMP) 111_[ b(:U/I )\)
+KzzH e M|)H b(N\, &),

(53

provided that the paramete;:@ satisfy the following Bethe
equations, fot=1, ... P:

PHYSICAL REVIEW B 66, 134502 (2002

P
b /
11H (ersr) —Kzzl—[ b(u,&).
1"=1 b(pyr,pm)
171

(59

VI. THE “QUASICLASSICAL" LIMIT

In this section we show how the DBCS pairing model, or
a generalisation thereof, can be recovéteuy taking the
so-called “quasiclassical” limit g—0) of the TIXXX or
TIXXZ model, respectively. We shall present explicitly cal-

gulatlons for the TIXXZ case, i.e., fap(x) =sinh); to re-

cover the corresponding results for the TIXXX case, one
simply has to replace all hyperbolic functions by the corre-
sponding rational ones.

A. Generator for conserved operators

Before taking the limity— 0, it is convenient to write the
inhomogeneity parameters as

§&i=2¢gi+ 7, (55

where the new parametesss are taken to be independent of
7, and rescale th&,; operators by a scalar factor, as fol-
lows:

2Rnmi, sinh(\,,—2¢;+ 7)

R B me&) 71 SN 25)C08M 7)™

(56)

These transformations are convenient because, first, then the
leading term inR,; is simply a direct product of unit matri-
ces[see Eq.(57) below]; and second, as we will see later,
then many equations transform simply under — 7 (being
either symmetric or antisymmetjjovhich considerably sim-
plifies all expansions in powers af. When written in terms

of a direct product of X2 Pauli matrices as in Eq17), the
rescaledR,,; of [Eq. (56)] takes the form

Rpi=| I+ tanhz of
mi= Im®l; tanhh—2s,) m® O
2 sinhy . .
+m(0’m®ﬂi +0,®0; ). (57
Now choose the following form for th& matrix:
K=1+ ga'z, (58)

and expand the transfer matrix in powers of the paramter
using Egs.(57) and(58). This readily yields

T =Tl KR - - )+0(7°),

(59

4
R} =21+ P\

where
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N o B. Eigenvectors
I
P(N) = Ei:El tanh(\ —2¢;) To obtain the quasiclassical limit of the Bethe eigenvec-
tors|uq, .. .,up)k Of Eqg. (51), we have to investigate the
N % oo} n—0 limit of the operator® which enter in its definition of
g_i,j_ 2 tanf{\ — 2¢;)tani(\ — 2¢) Eq. (51). Now, recall that the operatds,,=B(\,,) is the
1<l (1,2) componentin auxiliary spacdJ,,) of the monodromy
o/ o] +o o matrix Zy,= K mRmn- - - Rm1, Which has the following expan-
+ Sinh(\— 2e,)sinHA—2¢)) (60 sion[using Egs(57) and (59)]:

and to the commutativity32) of transfer matrices for differ-

ent spectral parameters guarantees that ~ N
b g ? ﬂhm)=|+g<ﬁn+2 mﬂﬁﬂf
[P(\),P(A)]=0. (61) ! moe
P(\) can be viewed as the generating operator for all pos- I 27 oot |4 2
sible conserved operators of the model. sinh(\,,— 2¢;) (Omoi + ooy )| +0(7).

A convenient way of obtaining a complete set of commut-
ing conserved operators, is to take the residudy b} at the
pointsA=2¢; fori=1---N,

(67)

In this equation, the only terms having non-z€to2) com-

ponents and hence contributing B¢\ ,,,) are those propor-

dn
Hi=Re¢P(\ )\ —25;]= fﬁciﬁp()\)’ 62 fional to o . Thus we have

where(; is a small contour in the complex-plane, encir-

cling the point ;. Explicitly evaluating the residues for the B(\) =295 (\)+0(7d), (68)
present model, one obtains
o olo] o/ o] +o of where
2 i=1 2tanr(28i_28j) Slnl’(28i_28j)
j#i N _
(63 B o
o S M= o e (69)
Equation(61) immediately implies that all of these operators i=1 sinf( &i)

commute:[H; ,H;]=0. Furthermore, it is not difficult to
show that the set of alt; is complete, in the sense tf\)  \ve see that the quasiclassidahnormalizedl Bethe vector
can be expressed purely in terms of these operators. Indeggg Eq. (51) takes the form
P(\) is a rational(matrix-valued function of the variable
=exp(2), which is regular az—«~ and has simple poles at
z—exp(4;); it is thus completely determined in terms of the | mp)k=S (1) --S (p)|0), (70)
corresponding residues, which are equal to 2 ex4, so
that we have where, as before, the reference std® is defined by
N 2848iHi Eq (36)
POV =P()+ 2, — . (64)
=1 62)\_ eAsi
) ) C. Eigenvalues
The termP(«) itself also can be expressed \HR: .
The eigenvalues; of the conserved operatoks can be

N 2 N Ng found from the eigenvalu@(\) of their generatorP(\).
P()=g 21 H, +Z Hi— 7 (65  Since (44)P()\) is the ordern? coefficient of the transfer
a a matrix T(\) [Eq. (59)], its eigenvalue (4)p(\) is given by
where we have used the fact that the orders? coefficient of the corresponding eigenvalue
N LN ;f()\), which can be found by multiplying Eq53) by the
actor
Zl Hi:i 21 o (66)

The commuting operatorkl; are in fact just the so-called 1’_“[ sinh A —2¢;+ 7)
genergllzeq Gaudin Hamiltonians. Moroever', in the lignit Ll Sinh(x—2¢,)cosl 7)

—oo, in whichK=1 so that one recovers periodic boundary

conditions, theH;/g reduce to the standard Gaudin Hamil-

toniansH 24" of Eq. (11). [see Eq(56)] and settings;=2¢;+ 7 [see Eq.(55)]:

(71
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N sinh(A—2&;+ 7)
t)=|| 1+ H sinh(\ —2&;)cosh 7)
1_”[ sinh(\ — ;= 27)

X .
i1 sinh(N— )

g0

P sinh(\—u;+27)
N =g

sinh(\ —2&;— )
sinh(\ — 2&;)cosh 7)

\Ez

(72

Expanding this expression in, the coefficient of?, mul-
tiplied by g/4, is found to be

N

1 1 P
P(M)=Pg+3 .Zl tanh A — 2¢;) E

anf(?x M)

g
iir tanh(A —2¢;)tani(\ —2¢;,)

i<i’

1
"2

P 29

+
I% tanh(A — ) tanh(h — u)

<1’

—zz 2

7 7 tanh(A —2¢g;)tanh(A — )

(73

The eigenvalues of the generalized Gaudin Hamiltonkns

sayh;, can be obtained by taking the residues at the points

)\:28i:

8
1 tanf(2£i—28i,) .
i

(74)

1 P
i_E_E

1
=1 tanl‘(28, M) E

;uMz
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The latter are of course not affected by the rescaling trans-
formation (56), and take the following form upon inserting
&=2¢;+ 7 of Eq. (55):

1+27)
—27)

sin r—=
(1+2> | Wi —u
9/=1 sinh(u, —

I"#1

N .
:(1_2) sinh(u—2&;—7)
g/i=1 sinh(p—2¢;+ 1)

In the “quasiclassical” limit »—0 we obtain the following

set of equations, fok=1, ... P, which may be viewed as
generalized Gaudin equations:

Z

—+
= tanf'(Zsl ,LL|)

P
=0. (76

1"=1 tanh( ) —
1" #1
We would like to emphasize that these are dheshellBethe
equations of quasiclassical limit of the TIXXZ model. In
contrast, in Refs. 6 and 9, who did not consider twisted
boundary conditions as we do here, these equationsfére
shell Bethe-ansatz equations.

Of course, Eqs(76) can be derived, if desired, without
reference to the ABA, by pursuing the following strategy
(described in detail in Appendix B of Ref):3in order to
show that the statgu,- - - up)k Of Eq. (70) is an eigenstate
of any H;, one would commutéH; past all the operators
S (w) in Eq. (70) [whose form(69) is reminiscent of the
operatorsB,, defined Ref. 3 if we identifyo; with b]]; this
would generate “unwanted” terms that only vanish if Egs.
(76) are satisfied.

E. Specialization to Richardson’s equations

It is straightforward to recover the DBCS model and Ri-
chardson’s solution thereof, as summarized in Sec. Il, by
considering the caseb(x)=x appropriate for the XXX
model (instead of the XXZ caseb=sinhx), and replacing
everywhere

tanhx— X, sinhx—X.

(77

Finally, since all theH; commute, we can immediately write First, we note that the generalized Gaudin equatitit
down the eigenvalue of any function of these operators. Irihen reduce to Richardson’s equatid®s Furthermore, the

particular, the general Hamiltonian

HZP(Hl, ...,HN), (75)

generalized Gaudin Hamiltoniart$; of Eq. (63) reduce to

the form given in Eq(10) for the conserved operators of the

DBCS model. This fact was noted by Sklyanin himself in a
side remark in Ref. 11, and first derived by him already in

where P is some arbitrary polinomial of its arguments, has 1989 in Ref. 12. However, he was at the time unaware of the
eigenvaluesP(h; , . . .hy). For example, the general class of fact that the result_mg-ii were useful in the context of the
models recentlyy discussed by Amic;o Di Lorenzo andDBCS model, and in particular, that they be used to construct

. S .~ the HamiltonianH of Eq. (5) of the DBCS model. It is
_Osterlo_ﬁ’ in the context pf superc_onductlwty in small grains, straightforward to check that this can be done through the
is obtained by considering certain second order polynomial

(i.e., quadratic combinations &f;'s). ?ollowmg construction:

Hu<Hi>=i§l [(g—2¢))H;+(s;—30/4)]+g

N 2
D.B i > Hi| .
. Bethe equations <1
The quasiclassical Bethe stdje,, . . . ,up)k is an eigen- (78)
state of the generat®(\), and consequently also of each of To calculate its eigenvalue&=H(h;) explicitly, the fol-
the generalized Gaudin HamiltoniaHls, only if the param-  lowing identities[derived by repeated use of Eq34) and
etersu, satisfy the limitp— 0 of the Bethe equation&4). (76)] are useful:
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N VII. CONCLUSIONS
El hi= £i— The TIXXZ results of the previous section for the con-
served operatorsl;, their eigenvalue$; and eigenvectors
P 29 N |1, ... .up)k, and the corresponding consistency condi-
- [ 1+ X =5~ P (798 tion (76), have been found independently before by Amico,
Di Lorenzo and OsterloAThey managed to construct thk
apparently by inspection, without presenting a systematic ap-
N N P proach for their derivation, and in their approach the consis-
E Zsihi:E e+ 2 gei _E 2 2ge;i tency conditic_)n(76) appears as a set of off-shell Bethe—.
i=1 =1 1 2(ej—ep) i=11=128— ansatz equations. In our work, we presented a systematic
i#i’ derivation of these results from a vertex model with twisted
(790 boundary conditions, and the consistency conditith) cor-
responds directly to then-shell Bethe-ansatz equations of
this model. Thus, we hope to have shed some additional light
2 itgN(N—-1)/4 on the reasons why the DBCS model and its generalizations
are integrable and Bethe-ansatz solvable, and on the under-
P lying algebraic structure of the solutions. We hope that our
— 2 m+gPN—gP(P—-1)|, (790  work shows the way towards further progress in applying the
=1 powerful formalism of the ABA to the DBCS and related

where the last term of Eq790 was obtained from the last models, e.g., for the calculation of correlation functitns

n
term of Eq.(79b) by rewriting the latter as follows: such ag(S'S]) or (S §j"), which are of importance for un-
derstanding the nature of pairing correlations in nanoscale
2 E 28| W ) superconducting grairfs
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integrability, using more general choices Kf for the XXX ansatz methods. The off-diagonal cases are solvable, however,
model, Eq.(47) holds for an arbitrary £ 2 K-matrix. For the using Sklyanin's method of separation of variables.

XXZ model, Eq.(47) holds for any diagonaK-matrix, or any  >*Note that our derivation below of the mutually commuting opera-
purely-off-diagonal K-matrix (i.e., vanishing diagonal ele- tors in the quasiclassical limit does not need to introduce the
ments. For both the XXX and XXZ models, though, only the notion of a “quantum determinant,” and thus is slightly more
case of a diagond{-matrix is solvable by conventional Bethe- direct than the method used by Sklyanin in Ref. 12.
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