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Several recent papers have predicted parity effects, based on even-odd ground state energy differences, in
ultrasmall(nm scal¢ superconductors having a discrete electronic eigenspectrum with mean level spacing
=A (bulk gap. The motivation for the present paper is to analyzentieasurabilityof these and related parity
effects in the present generation of experimé¢atg., those of Ralph, Black, and TinkhgRBT)]. To this end
we develop a general theory of superconductivity in ultrasmall metallic grains, based on calculating the
eigenspectrum using a generalized BCS variational approach. We discuss how conventional mean field theory
breaks down with decreasing sample size, how the so-called blocking effect weakens pairing correlations in
states with nonzero total spin, and how this affects the discrete eigenspectrum’s behavior in a magnetic field,
which favors nonzero total spin. Our calculations qualitatively reproduce the magnetic-field-dependent tunnel-
ing spectra for individual aluminum grains measured by RBT. Our main results regarding parity effdcts are
the conclusion that those based on even-odd ground state energy differences are currently not measurable and
(i) the proposal of a parity effect for the pair-breaking energy, which should be measurable provided that the
grain size can be controlled sufficiently wel§0163-1829)07613-4

I. INTRODUCTION namic properties of small superconducting grains. However,
since experiments at the time were limited to studying en-
What happens to superconductivity when the sample isembles of small graing.g., granular films there was no
made very very small? Andersbmaddressed this question experimental incentive to develop a more detailed theory for
already in 1959: he argued that if the sample is so small thadn individual ultrasmall superconducting grain, whose
its electronic eigenspectrum becomes discrete, with a meagigenspectrum, for example, would be expected to reveal
level spacing d=1/M{(eg)~1/Vol, “superconductivity very directly the interplay between level discreteness and
would no longer be possible” whed becomes larger than pairing correlations.
the bulk gapA. Heuristically, this is obviougsee Fig. 1 This changed dramatically in 1995, when Ralph, Black,
below): A/d is the number of free-electron states that pairand Tinkham(RBT) (Ref. 6 succeeded in constructing a
correlate (those with energies withirk of er), i.e. the single-electron transistaiSET) whose island was an ultra-

“number of Cooper pairs” in the system; when this becomesSMmall metallic grain: by studying the tunneling current
=1, it C|ear|y no |Onger makes sense to call the System “Su.through the device, they achieved the first measurement of

perconducting.” the discrete eigenspectrum of a single grain. This enabled
Giaever and Zellér were among the first to probe them to probe the effects of spin-orbit scatterfifgyonequi-
Anderson’s criterion experimentally: studying tunneling librium excitations, and superconductivit{;y which mani-
through granular thin films containing electrically insulatedfests itself through the presen¢absenck of a substantial
Sn grains, they demonstrated the existence of an energy gapectral gap in grains with an evéadd number of elec-
for grain sizes right down to the critical size estimated bytrons.
Anderson(radii of 25 A in this casg but were unable to RBT’s work stimulated several theoretical investigations.
prove that smaller particles are always normal. Their conBesides discussing nonequilibrium effetis! these focused
cluding comments are remarkably perspicudti¥here can  mainly on superconductivit}? ¢ and revealed that the
be no doubt, however, that in this size region the bulk theorjsreakdown of pairing correlations with decreasing grain size
of superconductivity loses its meaning. As a matter of factpredicted by Anderson harbors some surprises when scruti-
perhaps we should not even regard the particles as metalligzed in more detail: von Delfet al'2 showed that this
because the energy-level spacing is large comparedlto preakdown is affected by thparity (p) of the number of
and because there are very few electrons at the Fermi SUecirons on the grain: using parity-projected mean-field
f_ac_:e. _The guestion of the lower size Ilmlt for supt_ergpnduc-theor)}7,18 and variational methods and assuming uniformly
tivity is, therefore, strongly correlated with the definition of spaced electron levels, they solved the parity-dependent gap

superconductivity itself.” : .
These remarks indicate succinctly why the study of Supergaquatlon for the even or odd ground state pairing parameters

conductivity near its lower size limit is of fundamental inter- Ae OF A, as function ofd (using methods adapted from

: 4 :
est: the conventional bulk BCS approach is not directly ap_Strongm_e_t al.), and found thatd o(d) <A4(d), €., ground :
plicable, and some basic elements of the theory need to bggte pairing cor_relatlon_s break down sooner with increasing
rethought, with the role of level discreteness demanding spé! in @n odd grain than in an even gréthe difference be-
cial attention. coming significant ford=A). This is due to the so-called
First steps in this direction were taken by Strongtral*  blocking effect® the odd grain always has one unpaired
and by Mihlschlegelet al.® who calculated the thermody- electron, which blocks pair scattering of other pairs and
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thereby ~weakens pairing correlations. Smith andfixed electron number Nfor reasons explained in detail in
Ambegaokal® showed that this parity effect holds also for @ sec. v A). In this and the next section, we therefore con-

random distribution of level spacingas also anticipated by siger an ultrasmall grainompletely isolatedom the rest of
Blanter®), and Matveev and Larkifi investigated a ground the world, e.g., by infinitely thick oxide barriers.

state parity effect occurring in the limiti>A. Though When considering a truly isolated supercondudtan-
stimulated by experiments neither of the theoretical works omther example would be a superconductor levitating in a
parity effects did analyze their measurability in detail. magnetic field due to the Meissner effeone needs to ad-

The A,<A, parity effect has an obvious generalization, dress the question: How is one to incorporate the fiXed-
studied by Brauret al*® using a generalized BCS variational condition into BCS theory, and how important is it to do so?
approach due to SolovieV:any state with nonzero spis Although this issue is well understood and was discussed at
(not just the odd ground statexperiences a significant re- length in the early days of BCS theory, in particular in its
duction in pairing correlations, since at leastéectrons are  application to pairing correlations in nucleee Ref. 22, p.
unpaired, leading to an enhanced blocking efféci<¢A, if 439, for pedagogical reasons the arguments are worth reca-
s>s'). The latter's consequences can be observed in thpitulating in the present context. We shall first recall that the
magnetic-field dependence of SET tunneling spectra, since rotion of pair mixing? that lies at the heart of BCS theory is
magnetic field favors states with nonzero spin and conseby no means inherently grand canonical and can easily be
guent enhanced blocking effect. In ultrasmall grains, spirformulated in canonical language, then summarize what has
magnetism dominates orbital magnetism, just as in thin flmbeen learned in nuclear physics about fiXédsrojection
in a parallel field?* but whereas in the latter the magnetic- techniques, and finally conclude that for present purposes,
field induced transition to a normal state is known to be firststandard grand-canonical BCS theory should be sufficient.
order, Brauret al. showed that in ultrasmall grains the tran- Readers familiar with the relevant arguments may prefer to
sition is softened due to finite size effects. Moreover, theyskip this section.
argued that some of RBT's grains fall in a region of “mini-
mal superconductivity,” in which pairing correlations mea- A. Canonical description of pair mixing
surably exist atH=0, but are so weak that they may be

destroyed by the breaking of a single p@ince the number Conventional BCS theory gives a grand-canonical de-

scription of the pairing correlations induced by the presence

of electron pairs that take part in the formation of a corre- , L9 .
P P ~ of an attractive pairing interaction such as the reduced BCS
lated state becomes of order one e A). interaction

In the present paper we elaborate the methods used an
results found by Braust al.in Ref. 15 and present a detailed
theory of superconductivity in ultrasmall grains. Our discus- Hieq= —2 veliel cjiociy (with V>0). (1)
sion can be divided into two parts: in the fif8ecs. Il and i’
llI), we consider an isolated ultrasmall grain diagldefine  (The c;.. are electron destruction operators for the single-
when and in what sense it can be called “superconducting,’particle stategj,=), taken to be time-reversed copies of
(b) use a generalized BCS variational approach to calculateach other, with energies.. .) The theory employs a grand-
the eigenenergies of various variational eigenstates of gercanonical ensemble, formulated on a Fock space of states in
eral spin|s), which illustrates the breakdown of mean-field which the total particle numbeN is not fixed, as illustrated
theory, and(c) discuss how an increasing magnetic field in-by BCS'’s variational ground statensatz
duces a transition to a normal paramagnetic state. In the sec-
ond part(Sec. IV), we consider the grain coupled to leads as _ RN | 2, 2_
in RBT’s SET experiments and discuss observable quanti- |BCS>_H (Uj+vjcici-)lvag  (ui+oi=1). (2
ties: (@) We calculate theoretical tunneling spectra of the .
RBT type, finding qualitative agreement with RBT’s mea- This is not an eigenstate of the number operabdr
surements(b) show that the above-mentioned ground state=2jf,c;r,,cjg and its particle number is fixed only on the

energy parity effects can presently not be observed, and prazverage by the conditiofBCYN|BCS)=N, which deter-

pose an analogous pair-breaking energy parity effect thainines the grand-canonical chemical potengial Likewise,
should be observable in experiments of the present kmd the commonly used definition

three appendixes we discuss various analytical limits of our

theory, the general-V characteristics expected for an ul-

trasmall NSN SET, and explain how RBT’s experiments ABCS:V; (Cj+C-) ©)

give direct evidence for the dominance of time-reversed pair-

ing, at least for small field§mplying that the sufficiency of for the superconducting order parameter only makes sense in
using only a reduced BCS Hamiltonian, well established ford grand-canonical ensemble, since it would trivially give
bulk systems and dirty superconductors, holds for ultrasmafero when evaluated in a canonical ensemble, formulated on
grains, to. a strictly fixedN Hilbert space of states.

A theory of strictly fixedN superconductivity must there-
fore entail modifications of conventional BCS theory. In par-
ticular, a construction different fromcg is needed for the
order parameter, which we shall henceforth call “pairing pa-

The discrete energies measured in RBT’s experiments esameter,” since “order parameter” carries the connotation
sentially correspond to the eigenspectrum of a grain wittof a phase transition, which would require the thermody-

II. PAIRING CORRELATIONS AT FIXED
PARTICLE NUMBER
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namic limit N—. The pairing parameter should capture in (a) Large Grain
a canonical framework BCS'’s essential insight about the na- e

ture of the superconducting ground state: an attractive pair- S mmﬂmm
ing interaction such aBl.q will induce pairing correlations

in the ground state that involveair mixing acrosseg (see T (b) Small Grain
also Ref. 12, i.e., a nonzero amplitude to find a pair of o A

time-reversed states occupied abayeor empty belows . ~ M
BCS chose to express this insight through thesatz(2), :

which allowsv;#0 for ¢ >er and u;#0 for ¢, <ep. It - , .
should be appjreciated, iﬂoervéand Jis made (J:IearF on p. - © Ultrasma"f(;am
1180 of their original papé?), that they chose arand- I d
canonicalconstruction purely for calculational convenience s

(the trick of using commuting products in E(2) makes it =3 =2 j=1& j0 j=1 i=2

brilliantly easy to determine the variational parameters

L{j ,v,—), and proposed themselves to use its projection tc31own” when the sample becomes sufficiently small. Each vertical
fixed N, |BCS>NA' as the actual ground state. line represents a pair of single-particle sthte:) with energys;,
Since[H,¢q,N]=0, one would expect that the essence offor three different mean level spacings corresponding tqa) a
BCS theory, namely, the presence of pair mixing and thearge” grain (d<3), (b) a “small” grain (d=0.288), (c) an
reason why it occurs, can also be formulated in a canonically,, ;.2 smai grain (d=3). In all three plots, the height of each

meanlngful .vvay.£1dee$|, t?'s IS eas;l//:z pair mixing 'S.presenbertical line equals the function’v?= 3[A%(e2+A?)] of standard
if the amplitudev;=(cj,cj_c;_c;,)~ to find a pair of

S . bulk BCS theory, illustrating the energy regiref rangeA around
states occupied is nonzero also fgr>cg, and the ampli- .y yithin which electrons are affected by pairing correlations.
tUdequ<ijCj+CjT+ CJT7>1/2 to find a pair of states empty is | gosely speaking, the number of single-electron statksin this
nonzero also foej<gF (the bars indicate that thg; andvj regime correspondNS to “the number of Cooper pairs” of the system.
defined here differ in general from the andv; used by Evidently, whend/A=1 as in(c), “the number of Cooper pairs”
BCS; note, though, that the former reduce to the latter ifoecomes less than one and it no longer makes sense to call the
evaluated usingBCS)). The intuitive reason whyH,eq in-  system “superconducting.”

duces pair mixing in the exact ground stat€s despite the

kinetic energy cost incurred by shifting pairing amplitude  _

from below t%yabove:F, is that tr{is freesgug phage spgce for A'EVE [(CLCJ+CJT701—>—<CJT+C|'+><CJT701—)]1/2-
pair-scattering, thus lowering the ground state expectation J (4)
value ofH 4 in (G|H{G), thejj’ term can be nonzero

only if both d,c/_cj/_c;/.|G)#0, implying wj)e#0and  Both A andA’ were constructed such that they reduce, as is
(uj)e#0, and also<G|c;’+cJ—T,cj,,cj,+¢0, implying (vj)¢  desirable, to the same result Agcs when each is evaluated
#0 and (i;:)c+#0. By pair mixing, the system can arrange using |[BCS) (with real coefficientsu;,vj), namely, to

for a significant number of states to simultaneously have/Z;u;v;. An appealing feature o’ is that by subtracting
both @;)¢#0 and (;)c#0; this turns out to lower the out(cl, c;,)(c/_c;_), it transparently emphasizes thair-
ground state energy sufficiently througB|H,.{G) that the  ing nature of superconducting correlgtions, i.e., the fact that
kinetic energy cost of pair mixing is more than compensatedif |j + ) is empty(or filled), so is|j—):A" will be very small
Furthermore, an excitation that disrupts pairing correlationsf the occupation ofj +) is uncorrelated with that dff —),

in the ground state by “breaking up a pair” will cost a finite as it is in a normal Fermi liquid. The overall behavi@s
amount of energy bylocking pair scattering invoIvi_ng that  fynction of energye;) of the summands in both and A’

pair. For example, the energy cost of havig ) definitely il be similar to that ofu;v; (though not identical taijv; or
occupied (1;=0) and|j—) definitely empty ¢;=0) is to each other; a quantitative evaluation of the differences,

which increase with increasing/A, requires an honest ca-

gl 1—(G|> ¢l ¢i,|G) | +V(Gl|cl, ¢l > ciicii\|G) nonical calculatiof). The quantityu;v; is shown in Fig.
i jotio R R B K LR Al - O ,
o i £ 1(a), which illustrates that pair-mixing correlations are stron-

FIG. 1. An illustration of why ‘“superconductivity breaks

in which the restricted sum reflects the blocking of scatteringgeSt within a region of widti\ gs.
involving the jth pair. When evaluated usin8CS), this

quantity reduces te;(1—2vf)+ujp;Agcs= [+ Ajcd M2 B. On the breaking of gauge symmetry
wpich is the well-known quasiparticle energy of the state |n some discussions of conventional BCS theory the de-
7;+|BCS>- fining feature of superconductivity is taken to be the break-

The above simple arguments illustrate that there is nothing of gauge symmetry by the order parameter. This concept
ing inherently grand canonical about pair mixing. Indeed, afs illustrated by the BCS order parametiegs of Eq. (3): if
least two natural ways suggest themselves to measure itfonzero, it has a definite phase and is not gauge invariant
strength in a canonically nieaningiulway, using, for in- (undercj0—>ei¢cjg, it changes t®'??Agco). Note, though,
stance, the pairing paramet&=VZX;u;v; proposed in Ref. that this point of view cannot be carried over to fixsld-
12, or one proposed by Ralfth systems. First, these trivially hau®g:s=0, and secondly
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and more fundamentally, the breaking of gauge symmetrgary, since their corrections can be shown to vanisk a&.
necessarily presupposes a grand-canonical ensemble: sindewever, even in nuclei the corrections to unprojected BCS
phase and particle number are quantum-mechanically conjuheory are smal(a few percentin most cases, the only ex-
gate variables, formal considerations dictate that the ordereption being very large couplingg=d. Thus, in most
parameter can acquire a definite phase only if the particleases fixedd systems can perfectly adequately be described
number is allowed to fluctuate, i.e., in a grand-canonical enby BCS’s grand-canonical wave function. It indefinite-
semble. ness(and the associated breaking of gauge symmaeatgn

Of course, in certain experimental situations whé&te simply has the status of a clever calculational trick: it allows
manifestly doesfluctuate, such as the celebrated Josephsothe use of a wave function so simple that the pair-occupation
effect of two superconductors connected by a tunnel juncamplitudesvj can be found with a minimum of effort. The
tion, their order parametero acquire definite phases, and trick’s justification is that the correctionsv;’s produced by
their phase difference is a measurable quantity. However, famore careful approaches usually are sm@he device of
a truly isolated superconductor with fixédithe “phase of using symmetry-breaking wave functions purely for the
the order parameter” isot observable, and the concept of sake of calculational convenience is widespread in nuclear
gauge symmetry breaking through an order parameter with physics, and lucidly discussed in Ring and Schuck’s Bbok
definite phase ceases to be useful. Indeed, the canonicalily a chapter entitled “Restoration of Broken Symmetrigs.”
meaningful pairing parameters andA’ defined above are ~ The above conclusions imply that the following strategy
manifestly gauge invariant. should suffice for equalitative description(more is not at-
tempted hereof pairing correlations in isolated ultrasmall
grains: although strictly speaking a fix&ttechnique would
be appropriate, we shall adopt BCS’s grand-canonical ap-

It is easy to construct a variational ground state exhibitingsroach throughout, using; ,v; as grand-canonical approxi-
pair-mixing and having definite particle nlémbber,cl%/ sihmply mations tou; ,v; . Quantitatively, this strategy is expected to
projecting|BCS) to fixed N, as suggested by BCS.This become unreliable in the limit of large level spacidgﬁ

can be achieved by the projection integral >1 (corresponding to “strong coupling” in nuclear applica-
o tions). However, the corrections due to a fixBidealculation
|BCS>NEJ do e—i¢NH (uj+e2i¢ij;L+C;r_)|VaC), (currently under investigation applying projectfdrand ex-
0 i act diagonalizatiofl method$, which should become sig-
(5 nificant in this regime, are not expected to be more severe
than, for example, corrections arising from a nonequidistant
level spectrum, which qualitatively are insignificant.

C. Fixed-N projections

whose randomization of the phases of thes illustrates,

incidentally, why gauge invariance is not broken at fixéd
This and related fixed\ projections were studied in great

detall in nuclear physics, with the aim of variationally calcu- lll. GENERALIZED VARIATIONAL BCS APPROACH

lating nuclear excitation spectra for finite nuclé\l<240) ] . i ~

exhibiting pairing correlation§Ring and Schuck provide an  Since in RBT's experiment¥ =50 mKk<d,A, we setT

excellent review of the extensive literature, see chapter 11 gF 0- Our goal in this section is to calculate the discrete

Ref. 22; Ref. 26 is a recent referencehe simplest approach €igenenergies of an isolated, nm-scale metallic grain with

is called “projection after variation”: the unprojected expec- Pairing correlations, and understand their evolution in a mag-

tation value{BCSH|BCS) is minimized with respect to the netic field. To th|_s gnd, we study the sm_1p|_est conceivable

variational parameterf;}, which thus have their standard P2ailng model within a generalized variational BCS ap-

BCS valueg 2= Y1, /(812+Aécs)1/2]- but then these are Proach. The results will be used in the next section as input

inserted into BCS)y and expectation values evaluated with into the calc.ulat|on of the SET tunneling spectrum of such a

the latter instead dfBCS). This elimination of “wrongN” grain (see Fig. 6 below

states after variation turns out to lower the ground state en-

ergy relative to the unprojected cadey a few percent in A. The model

nucle) and thus improves the trial wave function. Further

improvements are possible using the more sophisticatepdr

“projection before variation” strategy, where the projected . et .
expectation value(BCSH|BCS)y is minimized with re- reversal symmetry. We therefore adopt a single-particle basis

of pairs of time-reversed stat¢p*), whose discrete ener-
spect to the{v;}. However, these then no longer have the P ¢pt)

! : . ies ¢; are assumed to already incorporate the effects of
simple BCS form, but m_stead_are determined through a set cfqmpurijty scattering and the average of electron-electron in-
coupledrelations, egch involving all th_e othegs, that have teractions, etc. As simplest conceivable model describing a
to be solved numericall§© The correctionsiu; to the BCS airing interaction and a Zeeman coupling to a magnetic
pair-occupation amplitudes so produced further lower th ield, we adopt the following (reduced BCS
ground state energy relative to projection after variation. Ham,”tonianELZJS
Extensive applications of such and related approaches in

nuclear physics have led to the following conclusions: For
reasonably smal, as in nuclei, the explicit implementation i toAt

O ' e S = gi—ptoh)c Cci,—Nd2, C . Ci_Ciy_Cjry .
of projection techniques is tractable, though cumbersome. j,a§=:i (&)= n CiaCio %: I
For very largeN they become intractable, but also unneces- (6)

The only symmetry expected to hold in realistic, irregu-
ly shaped ultrasmall grains at zero magnetic field is time-
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Due to level repulsion the;’s will be approximately uni- @ B (b)

formly spaced. For simplicity, we take a completely uniform : . =27

spectrum withlevel spacing de;=jd+e,. Fluctuations in :_ 0 iz0 i

the level spacings have been studied with methods of random “4+ — = =

matrix theory'® with qualitatively similar results. For a sys- ==

tem with a total ofN=2m+ p electrons, where thelectron ==

number parity pis O for evenN and 1 for oddN, we use the A

label j=0 for the first level whose occupation in tie=0

Fermi sea is not 2 byp. FIG. 2. Two examples of states in the séirsector of Hilbert

The pairing interaction is taken to include only states withspace:(@) the ground staté5) and (b) the excited staté,2). The
|dj | <w.. Experimental evidence for the sufficiency of ne- single-particle levels are drawn lat=0, and we indicated schemati-
glecting couplings between non-time-reversed pairs of state§ally how states are paired according tp-{ vic{, ¢/ in the BCS-
i.e., of using only aeducedBCS Hamiltonian, are given in like Ansaze (15) and(17) for |3) and|3,2), with solid or dashed
Appendix C. For convenience we wrote the pair-couplingellipses connecting states that would be completely filled or empty
constant in Eq(1) asV=\d, where\ is a dimensionless in the absence of pairing correlations.

parameter. Thel—0 “bulk gap” of the model thus isA o , i i )
= w./sinh(1A). The nonzero spin is achleved by_placmgl?npalred spin-up

An applied magnetic field will completely penetrate an glectrons in a set of¥single parpcle stat_es, say Wlth.|E-ibe|S
ultrasmall grain, since its radiugypically r=5 nm is much 1= a(1),@(2), ... ,«(2s) (see Fig. 2 while the remaining
smaller than the penetration length of 50 nm for bulk Al. TheSingle-particle p(alr)s of states have I(3C)S-I|ke _ampllt%Jde):szto be
Zeeman term in Eq(6), with =h=+usgH, models the ~€ither filled ©>¥) or empty @>®), with (u*®)
fact that the measured tunnel spectra of RB8Refs. 7,9 +(vi(s'.“)).2=1- The prime over product@nd over sums be-
(shown in Fig. 6 in Sec. IV Bevolve approximately linearly low) indicates exclusion of the singly occupied states

as a function of magnetic field, witt factors between 1.95 a@(1),a(2), .. .,a(2s) (for which u®®® v are not de-
and 2 (determined from the differences between measuredined.
slopes of up- and down-moving linesDeviations fromg A short standard calculation reveals that the constructed

=2 probably result from spin-orbit scattering, known to bewave functions are orthogonaks,a|s’,a')= sy Spu -
small but nonzero in thin Al filmé! but neglected below Therefore, the variational parameter§'® and u{>® must
(whereg=2 is usedl. Furthermore, orbital diamagnetism is be foundindependentlyfor each §,a) (hence the super-
also negligible, just as for thin films in a parallel magnetic scripf). This is done by minimizing the variational “‘eigenen-
field®! but in marked contrast to bulk samples where it causesrgies”
the Meissner effect: the grains are so small that evena 7 T
field produces a flux through the grain of only about 5% of a
flux quantume,, which is too small to significantly affect  &s.a(h,d)=(s,&{H|[s,a)= —25h+Z €a(j)
the orbital motion of the electrons between subsequent re- =
flections off the grain boundary. Some larger grains do show , , 2
slight deviations fromH-linearity,” which probably reflect +22 Sj(vfsm)z—)\d(Z U}S’a)vl(s’a))
the onset of orbital magnetisfwhich gives correctiort$ to : )
the eigenenergies of the order o cr3(H/ ¢,)?]; however,
L ", (sa)y4

these effects are much smaller than Zeeman energies in the A" ({4, ()
grains of present interest, and will be neglected here. Thus, )
our model assumes that Pauli paramagnetism due to the Ze\ﬁhwh we use to approximate the model's exact eigenener-
man energy completely dominates orbital diamagnetismgiesg, ,(h,d). Note that singly occupied states are excluded
similarly to the case of thin films in parallel magnetic from all primed sums involving);'s ando;'s. The last term,
fields: proportional tov?, is not extensive and hence neglected in

the bulk case where only effects proportional to the system

B. The variational ansatz volume are of interest. Here we retain it, since in ultrasmall

The Zeeman term favors states with a nonzero tatal SYSt€mS it is non-negligiblébut not dominant either
component of the total spis=Z3;s? (henceforth simply Solving the energy-minimization conditions
called “spin”), so that increasing will eventually lead to a (s.a)_
series of ground state changes to states with successively 9ol 07" =0 ©)
larger spins. Therefore, we are interested in general in ok, standard BCS fashion yields
related states with nonzero spin, and in particular in their
eigenenergies. We calculate these variationally, using the (03M)2=(1— ¢ [+ A2 1Y2)/2 (10)
following generalAnsatzfor a state|s,a) with a definite ! e s ’
total spin s (introduced by Soloviev for application in where the “pairing parameterAs, is determined by the
nuclet%): generalized “gap equation”

2s

2s
S,a>=jHl CL“—HH' (uS9+ps9ct ¢l )vag. (7) Agq=NdY" U@ or (11)
= J

J
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1 1 decrease with increasing larger s means more unpaired
X:dZ’ T (12 electrons, more terms missing from the primed sum, less
I 2VE A, correlated pairs and hence smalley,,. The physics behind

this has been called tHglocking effect in nuclear physics:
Singly occupied states cannot take part in the pair scattering
caused by the BCS-like interactigh) and hence decrease
the phase space for pair scattering, as explained in Sec. Il A.
(Their absence in the primed sum simply reflects this ¥act.
The blocking effect becomes stronger with increasihg
since then the relative weight of each term missing in the
primed sum increases. It also is stronger the closer the
) blocked state lies teg, since the excluded(®v (% con-
2m+p=(s,a|N|s,@)=2s+2>"(v{>¥)%. (139 tribution to the primed sum is largest negr, as is evident
J from Fig. 1. On the other hand, an unpaired electron will
Generally Eqs(10), (12), and(13) have to be solved simul- have almost no blocking effect hTsj—sF|>Z, since

taneously numerically. In the limit/A—0 (investigated Uu{>®v{>® vanishes there anyway.
analytically in Appendix A }, Eg. (12) reduces to the stan- Finally, note that the @) dependence of\, for d
dard bulkT=0 gap equation. =~A illustrates why in this regime a conventional mean-field
In contrast to conventional BCS theory, the pairing pa-treatment is no longer sufficient: the system cannot be char-
rameterAg , can in general not be interpreted as an energyacterized by a single pairing parameter, since the amount of
gap and ishot an observable. It should be viewed simply aspairing correlations vary from state to state, each of which is
a mathematical auxiliary quantity which was introduced tocharacterized by its own pairing parameter.
conveniently solve Eq(9). However, by parametrizing the
variational quantities > andu(>®, A, does serve as a D. General numerical solution
measure of the pairing correlations present in a §&i®), . . - . .
since for vanishing\s , the latter reduces to an unjorre>lated It '.S‘ poss@lg to sol\~/e the modified gap equa.t|on analyti-
paramagnetic state with sp& namely, cally in two limits, d<A r':mdd>AS (see Appendix A but
generally the gap equation and E43) have to be solved
2s numerically. In doing so, some assumptions are necessary
Is,a)o=[1 ¢l [ 'cl,cl o). (14  about parameter valudthough using slightly different val-
=1 1<0 ues would not change the results qualitatiyelife measure
We shall denote the energy of this uncorrelated state bwll energies in units of the bulk gap= w.sinh(1A) of the
£2 =o(s,alH|s,a),, and define the “correlation energy” model. However, its experimental value differs from that of a
of'|s,a) as the energy differenc&g’y= & a_gg o truly bulk system, since it is known from work with Al thin
' ’ ' *28 that the effective dimensionless pairing-interaction

and §jEsj—,u—7\d(v](S'“))2. Note that we retain the
)\d(uj(s"’))2 shift in §;, usually neglected because it simply
renormalizes the bare energies, since for latgesomewhat
increases the effective level spacing neafand its neglect
turns out to produce a significant upward shift in the
& o(h,d)’s, which one is trying to minimize The chemical
potentialu is fixed by requiring that

films
strength is larger in Al samples of reduced dimensionality
than in truly bulk three-dimensional systeni$hough true
BefO!’e I.aUnChing into numel.’ical resu|tS, let us anticipatefor Al, this is not a universal property of small Samp|eS,
by qualitative arguments what is to be expected. though, for Nb.A is larger in the bulk than in thin film&)
Flrst,_the gap equation falk;, o(d) IS h mt_jependent. The Since thin films in a parallel magnetic field are analogous in
reason is that only thogelevels contribute in the gap equa- many ways to ultrasmall grains, we shall assume that the

tion that involve correlategbairs of states, each of which ffective coupling constank is the same in both. Adopting
have spin 0 and hence no Zeeman energy. Consequently, the ’ '

: o therefore, the valud =0.38 meV found for thin Al films in
—2sh-dependence of; , in Eq. (8) is simply that of the 2 ' .
unpaired electrons. s, Ref. 29, and taking the cutoff .to 7ble ths Djbye frequency
Secondly, the discreteness of the sum in the gap equationc=34 meV of Al, we use\ =[sinh™*(w./A)]"~=0.194 for

(12) will causeA , to decrease with increasimgy To see the dimensionless pairing-interaction strength. Furthermore,
this, inspect Fig. 1, in which the height of each vertical linewe smeared the cutoff of the BCS interaction over two

represents the value afv; for a time-reversed paifj + ). single-electron levels, to ensure that discontinuities do not
Figures 1a)—1(c) illustrate that an increase in level spacing occur in d-dependent quantities each time the energy
implies a decrease in the number of pairs with significanil?deZoJ of some |3r9é1| level moves beyond the cut-
pair-mixing, i.e., those withilk of e which have nonzero ©" @c @SdIS increasea. . .

Ujv;. This number can roughly ;peaking be called the S0lving Eqs(10), (12), and(13) is a straightforward nu-

. ber of C irs” of th N Si @A merical exercise which we performed, for the sake of “nu-
number of Looper pairs™ ot the system. since MO merical consistency,” without further approximations.

pairs lie in the correlated regimie;—eg[<A where pair  (Since some minor approximations were made in Ref. 15,
mixing occurs,A_s,a will be zero in this _Iimit, o) tha_t in e.g., dropping the\duf term in &, and slightly different
generalAg ,(d) will be a decreasing function @, dropping  parameter values were used, the numerical results there
to zero at abouti=A. sometimes differ slightly from the present ones; see, e.g.,
Thirdly, the (s,a)-dependent restriction on the primed Fig. 3) It should be understood, though, that only qualitative
sum in the gap equation implies that ,(d) at fixedd will significance can be attached to our numerical results, since

C. Qualitative discussion
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FIG. 3. Properties of spis-ground stategs) [compare Eq.
(15)]: (a) The pairing parameterﬁs(d)/ﬁ for some spins ground
states|s), as a function ofi/A. The critical level spacingd, s at
which A(d. s)=0 are found to be 2.36,0.77,0.44,0,31., fors
=0,1/2,1,3/2, .., respectively. (b) The energy densities &
— &9 dIA? (solid liney, plotted as functions of/A for h=0, of
some pair-correlated spgground statess) relative to the uncor-
related spinp/2 Fermi sedp/2),, and for comparision the relative

energy densitiesé(g—Sg,z)dll2 (dashed linesof the correspond-
ing uncorrelated paramagnetic stafs$, (obtained from|s) by

settingA;=0). We call the plotted quantities energy densities since,

the normalization factod/A? containsd~Vol~. The solid and
dashed spirs- lines meet at the critical level spacinfy s, above
which no pairing correlations survivéso that the relative energy

densities equdls?— p/4+ (s— p/2)A]d%/A2? thers.
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mean-field theory within the spis-sector of Hilbert space.
(Note that one should not attach too much significance to the
precise numerical values of thik ¢ reported in Fig. 3, since
they depend sensitively on model assumptions: for example,
the values ford, o and d. ;/, differ somewhat from those
reported in Refs. 12 and 15, due to their use of a slightly
different A and minor numerical approximations not used
here, as mentioned above. Moreover, Smith and
Ambegaokal® showed that the precise distribution of levels
used influencesl; ¢ significantly)

Secondly,A¢ decreases rapidly with increasisat fixed
d (andd s<d. ¢ if s>s’), illustrating the blocking effect.
This result, which is expected to be independent of model
details, is a generalization of the parity effect discussed by
von Delft et al'? [They studied only ground state pairing
correlations and found that these are weaker in odd (
=1/2) grains than in evensE0) grains,A gq= A12<Aegven
=A,.] The blocking effect is most dramatic in the regime
d/A €[0.77,2.3 in which Ag#0 but A..,=0. This is a
regime of “minimal superconductivity,*® in the sense that
all pairing correlations that still exist in the even ground state
(sinceAy#0) are completely destroyed by the addition of a
single electron or the flipping of a single spisinceAq.,
=0).

Figure 3b) shows the eigenenergi€s (solid lines of |s)
and the energiegg (dotted line$ of the corresponding un-
correlated paramagnetic states

s—1+p/2

Il

j=—s+pl2

¢/, cl.cl_|vac). (16

Is)o= )
i<—s+pl2

The solid and dashed spmlines meet at the critical level

our model is very crude: it neglects, for instance, ﬂUCtuatlon%pacmgdc <, above which no pairing correlations survive.
in level spacing and in pair-coupling constants, and we do

not carry out a fixedN projection, all of which presumably
would somewhat influence the results quantitatively.

1. Spin-s ground states

In a given spins sector of Hilbert space(with p
=2smod 2), lets) be the variational state with the lowest
energy, i.e., the “variational spia-ground state.” It is ob-

tained by placing the 2 unpaired electrons as close as pos-

sible to e¢ [Fig. 2(@)], because this minimizes the kinetic
energy cost of having more spin ups than downs:

s—1+p/2

i1

|s>=]_ J+H (uS+vicl.cl)|vac). (15
[The particular choice of in the generaAnsatz(7) to which
|s) corresponds isx(n)=n—[s]—1 forn=1.--.2s, where
[s] is the largest integexs.] The numerical results for the
corresponding pairing parameteig(d), shown in Fig. 8)
for some several smadi, confirm the properties anticipated
in the previous subsection’s qualitative discussion.

First, eachA decreases withd, vanishing at a critical

2. Spin-s excited states

Among all possible excited states with defirteve con-
sider here only those created frgg) by exiting one electron
from the topmost occupied level-1+p/2 of s) to some
higher levelj +s— 1+ p/2:

s—2+pl2
- T
|SiJ>:ng+sfl+p/2)+, H Ciy 17
j=—s+p/2
><H (uS+ovscl ¢l )|vac). (18)

[This reduces tds) if j=0; the particular choice of in
Ansatz(7) to which |s,j) corresponds isy(n)=n—[s]—1
forn=1...25—1 anda(2s)=[s]—1+]j.]

Interestingly, one finds that the larggrthe longer the
pairing correlations survive with increasimy This is illus-
trated by the simple examp$e= 1/2: Fig. 4a) shows that the
critical spacingsd ,,; [at which the pairing parameters
Aq1;(d) vanish increase withj, approaching the valué, o
of the spin-0 case ag—<. This result is reflected in the

level spacingﬂc,s beyond which no pair-mixing correlations excitation energies of Fig.(): the excited states of the
exist in this level of approximation. In Appendix A 2 it is spin-1/2 sector have nonzero correlation energiéerence
shown that nead. s, Ag(d) has the standard mean-field between solid and dashed linest d values for which the
form y1—d/d. s this was to be expected, since the varia-spin-1/2 ground state correlation energy of Figo)3is al-
tional approach to findings) is equivalent to doing standard ready zero. The intuitive reason why more highly excited
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sufficiently largeh by Pauli paramagnetism. This occurs via

7 a first order transition to a paramagnetic state, as predicted
by Clogston and Chandrasekh@C) (Refs. 30,31 by the

- following argument(for bulk systems A pure Pauli para-
magnet has ground state energyh?A(sg) and spins
=hMeg) [since it chooses its spin such that the sum of the
kinetic and Zeeman energies at sgins’M(eg)—2hs, is
minimized|. When this energy drops below the bulk correla-

tion energy —1A2M(eg) of the superconducting ground
state, which happens at the critical figldc=A/2, a tran-
sition will occur from the superconducting to the paramag-
i netic ground state. The transition is first order, since the
, , change in spin, from 0 ta&cc=hcoMer)=A/(dV2), is
0 1 2 macroscopically largéN{(eg) = 1/d=Vol]. In tunneling ex-
Level spacing d/A periments into ultrathif5 nm) Al films (A=0.38 meV and
Hce=4.7 T) this transition has been obserdeds a jump in

the tunneling thresholéfrom A —hcc to zer at hec.

In isolated ultrasmall grains, the above picture of the tran-
sition needs to be rethought in two respects due to the dis-
creteness of the electronic spectrum: First, the spin must be
o o 1 . N . treated as a discret@gnstead of continuoysvariable, whose
—&10d/A% (solid lines of |3, ) relative to|3,00=[3)o. and for  changes with increasing can only take or{parity conserv-
comparison the relative energy densitieg%;—£3,0d/A*  ing) integer values. Secondly, one needs to consider more
(dashed linesof the corresponding uncorrelated stéjej)o. For  carefully the possibility ofh-induced transitions to nonzero
excited states the solid and dashed lines meet at a ldrtiem for ~ spin states that are stippair correlated (instead of being
the ground state, i.e., in excited states pairing correlations survivpurely paramagneticsuch as the variational statesa) dis-
down to smaller grain sizes than in the corresponding ground statgyssed aboveln the bulk case, it is obvious that such states

play no role: the lowest pair-correlated state with nonzero
states have more pairing correlations than the correspondirgpin obtainable from the ground state by spin flips is a two-

spin-1/2 ground stat¢l/2) is of course quite simple: The quasiparticle state, costing energi 2 2h; when h is in-

largerj, i.e., the further the unpaired electron sits from theCreaseol from 0, the paramagnetic transitiorh@é=3/\/§
Ferm_| sgrface Whgre pairing correlations are strongest, thﬁms occurs before a transition to this state, which would
less it disrupts pair mixingsinceu;v; becomes very small . ~

requireh=A, can occun.

for largej, see Fig. 1 In fact, for very largg, the statds,j) Within our variational approach, the effect of increasing
will have just about the same amount of pairing correlations,om o can be analyzed as follows: At givehand h, the

as the even ground sta@) (Ay;=A,), since the unpaired grain’s ground state is the lowest-energy state among all pos-
electr_on sits so_far fronag that the pairing correlations are gjpje spins ground states|s) having the correct parity
effectively identical to those oD). 2smod 2= p. Since&(h,d)=&4(0,d)—2hs, level crossings

Similar effects are seen for excited states in other spiRyccyr with increasind), with &, dropping belows, at the
sectorss# ;. The higher the excitation, the larger the pairing |oy g crossing field

paramete\g ,. Nevertheless the energy of the excited states

is always higher than that of the corresponding spgreund

state, since the kinetic-energy cost of having an unpaired Es+(0d)—&,0d)
electron far fromeg can be shown to always outweigh the hs,sr(d)= - :
interaction-energy gain due to having less blocking and 2(s'=s)
hence a largef ,.

Energy density

FIG. 4. Properties of excited spi-states|3,j) [compare Eq.
(17]: (@ The pairing paramete\;,; for some spin% states
|%,j> (j=0,...,4),together withA, of the spin-O ground state
|0) (the outermost curye The largerj, the closerA,; approaches
the spin-0 valued,. (b) The relative energy densitiestys;

(19

Therefore, ash is slowly turned on from zero with initial

E. Magnetic field behavior ground statds,= p/2), a cascade of successive ground-state

o ~changes(GSC'’s to new ground statefs,),|s,), . .., will
In a magnetic field, the Zeeman energy favors states witlccur at the field$is s ,hs . - - - - Wedenote this cascade
nonzero spin. However, since such states have smaller COfy (S0,51):(S1,5,); . .., and foreach of its ground state

re!ation energy due to the blocking effect a c:ompetitionchanges the corresponding level-crossing fidids (d) is
arises between Zeeman energy and correlation energy. TRéon in Fig. 5. Generalizing CC’s critical field to nonzero
manifestations of the blocking effect can thus be probed b¥j, we denote thdparity-dependentfield at which thefirst

turning on a magnetic field; if it becomes large enough toy.o«ition s.) occurs by heo(d D)=h d). which
enforce a large spin, excessive blocking will destroy all pair-_. . S0,51) Y hed(d,p) =N, 5,(d), L
ing correlations simply is the lower envelope of the level-crossing fields

The situation is analogous to ultrathin films in a parallelhsoﬁsl in Fig. 5. In the limitd—0 we find numerically that it
magnetic field* where orbital diamagnetism is negligible correctly reduces to the Clogston-Chandrasekhar value
for geometrical reasons and superconductivity is destroyed dt.(0,p) =A//2.
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1.0

on the exact eigenenergids; ,. The variational energies
&, could be lowered further by choosing better trial wave
functions that sample larger parts of a given spiHlilbert
space, i.e., by including “fluctuations” about the chosen

12

Rl \_
= 11 | |
g 0.5 = = — b
S Chhaile |3 o states.
< g E E Secondly, the abrupt vanishing of the pairing parameters
I H}&J: ! 2 | & | & Ag o(d)=y1-d/d, ¢ at a critical level spacinds , [see Ap-
0.0 il 11 \ L . pendix and Fig. @&)] is unphysical: in a finite system, any

02 04 0.6 08 1.0 nonzero pair-interaction constant will always induce a non-
Level Spacing d/A . . . —,
zero amount of pairing correlations, i.e., the canonicg(d)

FIG. 5. The level-crossing fields, . (d)/A [see Eq.19)] for  ©f EQ- (4) will always be nonzero, though it could become
the cascade of ground state changéSCE) (50,51):(51,S)’ - - - arbitrarily small fpr suﬁ|c[?ntly _Iarged. (This statement is
that occurs a& increases from 0 at giveth Some lines are labeled a”a'QQOUS to stating that “in a finite system no abrupt phase
by the associated GSG,§') (where&, drops belowé, ashin-  transition between a zero and nonzero or_der parameter oc-
creases past, .). (Level crossing fieldsiot associated with a GSC ~ €urs.”). The abrupt, mean-field-like vanishing &f ,(d) is
are not shown.The order in which GSCs can occur within a cas- Of course an artifact, that occurs since the grand-canonical
cade(i.e., the order oh, , lines encountered when moving verti- VariationalAnsatas equivalentat least for the spiis-ground
cally upward in the figuredepends sensitively oy and an infinite ~ states|s)) to doing mean-field theory in a fixeslHilbert
number of distinct regimegcascadesl,IL Il , ..., can bedistin- Space.
guished. The lower curves show the first jump in the lowest line of  Thijrdly, the variational states of course are ﬁbeigen-

a tunneling spectrum_ that occurs at the Ievel-crosging fie|dstates(th0ugh they do have definite panifyand Eq.(13)
heo(p,d)=hs, s, The size of this JumpAEs, 1 —AEs 4 differs gy fixes themeanelectron number. Our reasons for never-
for e—o (solid line) ando— e (dashed lingtunneling spectra but - theless adopting them to describe an isolated grain were
in both cases approaches the CC value11y2=0.29 asd—0. iven in Sec. I C: a large body of experience in nuclear
The ponmonotonlc behavior is due to the discreteness of the lev: hysics showed that fixel- projections generally produce
spacing. only minor corrections to the grand-canonical BCS results.
Nonetheless, note that we expect a fixégrojection(cur-
rently under investigatiorl) to somewhat ameliorate the first
two of the abovementioned deficiencies of the variational

In general, the order in which the GSC’s occur with in-
creasingh depends sensitively ashand an infinite number of

gg:gﬁ;reaﬂ”?;zzzsﬁg %?In(lj”yhe typlg:? gilr?wt;rllgg:hh;v?br approach: projection after variation ¢f) to fixed N will
(0,1):(1,2):(2,3): for even grains and lower the energy a bit, and presumably projection before
Lo g ) _ variation will in addition result in a canonical pairing param-

(2,2):(2,2); . . ., for oddgrains, withho < (OF >) N2z eterA(d) that decays smoothly with increasidgrom finite

in regimes |(or Il). In regimes Ill and IV of somewhat ., arbitrarily small but nonzero values. Note, though, that

smaller d, the order of GSC's is (0)2(2,3);..., and

L s _ . _ . this is not expected to change the eigenenergies very much,

3:2):(3,3); ..., etc., i.e., the spis, attained after the first since the correlation energies rapidly approach zero anyway
GSC (sp,Ss;) has increased to 2 in the even case. This illusawhen the correlations become weak. In other words, we ex-
trates a general trend: the sgE(d) after the first transition pect the variational scheme for calculating eigenenergies to
increases with decreasing) and becomes macroscopically break down only whem\; becomes so small that it has no
large in thed—0 limit, wheres,=hcc/d=2A/(dv2), as ex- experimental relevance any mo(® check this in detail,
plained in recounting CC’s argument above. strictly canonical calculations are neeéd).

Furthermore, it turns out thalsl(d)zo for all d, imply-
ing that after the first GSC the new ground stésg) is
always(not only in CC's bulk limi) an uncorrelated, purely
paramagnetic state. In this regard, CC’s picture of the tran- In this section, we consider the grain coupled to leads as
sition remains valid throughout asl is increased: at in RBT's SET experiments. After explaining what kind of
hee(d,p), a transition occurs from the superconductinginformation can and can not be extracted from their data, we
ground state to a paramagnetic, uncorrelated $sajg, the  turn to the calculation of observable quantities. We cal-
transition being first-order in the sense that(d)=0; how- culate theoretical tunneling spectra and compare these to
ever, the first-order transition is “softened” with increasing RBT'S measurements an) address the question of the
d, in the sense that the size of the spin chasges, de- observa_blhty pf varlous_parlty e_ffects, proposing to search
creases from being macroscopically large in the bulk to befor one involving the pair-breaking energy

ing equal 1 at>A (regimes | and I\.

IV. OBSERVABLE QUANTITIES

A. Experimental details

F. Deficiencies of the variational ansatz In RBT’s experiment§;”°an ultrasmall grain was used as

Though the variational method we used to calculate theentral island in a SET: it was connected via tunnel barriers
systems ‘“eigenenergies” is expected to yield qualitativelyto external leads and capacitively coupled to a gate, and its
correct results, it does have some deficiencies. First, a varialectronic spectrum determined by measuring the tunnel cur-
tional approach by construction only gives an upper boundent through the grain as a function of transport voltagg, (
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gate voltage Y4) and magnetic fieldl =h/ug, with ug (
=0.0571 meV/7 at a fixed temperature of 50 mK.

The particular graifRef. 9, Figs. 1b),2,3] with which we
shall compare our theory had the following parameters: Its
radius was estimated @s=4.5 nm by assuming the grain to
be hemispherical, implying a volume (5.7 nm) and a to-
tal number of conduction electromé of about 3< 10°. The
crude order-of-magnitude free-electron estimatd
=2m’h?/(mk:Vol) for the mean level spacing near:
yieldsd=0.45 meV. The SET had lead-to-grain capacitances
C,=35 aF, C,=9.4 aF, gate-to-grain capacitandg,
=0.09 aF, and charging enerdyc=e%/2C,y,=46 meV.
The tunnel current is on the order of 18 A, implying an
average time of X 10 ° sec between subsequent tunneling
processes.

Since the charging enerdy. was very much larger than

all other energy scales, such as the bulk gap-0.38 meV,
typical values of the transport voltag®¥£1 mV) and the
temperature, fluctuations in electron number on the grain are i
strongly suppressed, so that coherent superpositions betweer
states with differeniN need not be considered. The energy- |
balance condition that determines through which eigenstates 0.0 ' ' '
of the grain electrons can tunnel for given values of transport 0 1 2 3 4
and gate voltage thus involve differences between the H (Tesla)
eigenenergies of a grain witlixed particle number Nr N
*1, FIG. 6. Experimental tunneling spectra measured by RBEJ.
3 of Ref. 9. The distances between lines give the fix¢dxcitation
_ /N Ny =N=1 N+1 spectra of(a) an even andb) an odd grain, as explained in Sec.
AR =(Br+Eo)— (B +Ec ), (20 I\F/)A. The vertical dashed lines indicat?e the first foEr level-crossing

. fields Hg s (assigned by comparison with Fig. 7, see Sec. )Y B
corresponding to the energy cost needed for some ratq..—amely Ho1=4T, Hipa=4.25T, Hy,=5.25T, and Hapepn

limiting electron tunneling procegs)y.1—|f)y off or onto  _g 51 with uncertainty+ 0.13T (half the H resolution of 0.25).
the grain. Here|f)y denotes a discrete eigenstate of the

N-electron grain with eigenenergg}“Jr Eg. Following the

“orthodox model" of SET charging, we takEg , the grain’s SEc=EN-EN*1=E,
electrostatic energgrelative to a neutral grain withl; elec-

trons as Eg=Ec(N—No—Qg/e)?, where Qz=CyV,

+const is the gate charge, and assume the Coulombwhich dependsgvia Qg) in an imprecisely known way on the
interaction to be screened sufficiently well that its sole effectadjustable gate voltagé,. ThisV, dependence can usually

is to shift all fixedN eigenstates by the same constant(e.g., in SET’'s with much smaller charging energies than
amountEY . (The latter assumption is somewhat precarioushere be quantified precisely by studying the Coulomb oscil-

it becomes worse with decreasing grain size, and was showations that occur as function &y at fixedV. Unfortunately,

to break down in grains half the present si%e. in the present case a complication arféekie to the small-

RBT were able to extract the energy differenckE;;  ness of the gate capacitance: to swegthrough one period
from their data: the differential conductand&dV as func-  of 2e, the gate voltag®, must be swept through a range so
tion of V at fixedV, has a peak whenevel times a known large (2/C4=3.5 V) that during the sweep, RBT routinely
capacitance ratio Is equal to one of thE;;’s, at which point  observed small “rigid” shifts of the entire tunneling spec-
another channel for carrying tunneling current through thgrum at random values of ;. They presumably are due to
grain opens ugthe inclusion of the capacitance ratio takessingle-electron changes in the charge contained in other
into account that the voltage drop across each of the twenetal grains in the neighborhood of the grain of interest;
tunnel junctions can be different if their capacitances are nothese changes produce sudden shifts in the electrostatic po-
identicaP). Plotting the position of each conductance peak agential of the grain, and thus spoil the exae Reriodicity
function of h gives the so-called experimental tunneling that would otherwise have been expected for the spectra.
spectrum shown in Fig. 6, in which each line reflects lthe In contrast to the threshold energy, however, the separa-
dependence of one of the energy differenadg( h). tions between lines,

It is important to note that the experimental threshold en-
ergy ath=0 for the lowest-energy tunneling processig-
tercept of the lowest line, the so-called “tunneling thresh-
old”) yields no significant information, since it depends on
the grain’s change in overall charging energy due to tunnelareindependent of gate voltage and hence known absolutely;
ing, they simply correspond to the differences between eigenen-

Energy (meV)

G

nergy (meV)

Qg/e—<N—N0i%”, (22)

AE”/_AE”:E?‘,_EN, (22)
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ergies of afixedN grain, i.e., give its fixedN excitation (a) 3 w ;
spectrum, and these are the quantities that we shall focus on 2 ] i &
calculating below. 8 s e, e D
The most notable feature of RBT's measured tunneling 12 R e s I
spectra is the presenéabsenceof a clear spectroscopic gap 2) | ] I
2Q0.>d between the lowest two lines of the odd-to-even | Br T ! 1o

(even-to-odd measured spectra in Figsiap and &b). This ]

Energy

reveals the presence of pairing correlations: in even grains, 2 ]
all excited states involve at least two BCS quasiparticles and 1 W i v
hence lie significantly above the ground state, whereas odd (o) 0 L12=0 sz 1hyy iy O
grainsalwayshave at least one quasiparticle and excitations 0 : — — &
need not overcome an extra gap. 012 I
Since theAE;;’s in Eq. (20) are constructed frorfixedN 1t . | s 1a
and fixedN*=1 eigenenergies, we shall approximate these 0.0 05 1.0
using the variational energieg,, discussed in previous sec- Magnetic Field /A

tions for a completelysolatedgrain. (We thereby make the
implicit assumption that the grain’s coupling to the leads is FIG. 7. The theoretical odd-to-even and even-to-odd tunneling
sufficiently weak that this does not affect its eigenenergiesspectra AE;;— AE;,(0)]/A predicted for an ultrasmall supercon-
i.e., that the leads act as “ideal” probes of the graifihe  ducting grain as a function of magnetic fiefdl for two different
Esa Will be used as a starting point to discuss various observievel spacings(a) d=0.67A and (b) d=0.34A (corresponding to
able quantities; in particular, we shall make contact withregimes | and Ill of Fig. 5, respectivelySome lines are labeled by
RBT'’s experimental results by constructing the theoreticathe correspondings;—s/ tunneling transition. Not all possible
tunnel spectrunias function ofh andd) predicted by our higher lines(corresponding to excited final statessj)) are shown.
model. Vertical dashed lines indicate those level-crossing fidlgs [see

Eq. (19)] at which kinks or jumps occur, withg <<hy/, 35<h; ,

<h in (a) andh < hgo<h,5in (b).
B. The tunneling spectrum in a magnetic field 325210 (3 w237=Noz<hz;3n (b)

~ The kind of tunneling spectrum that results depends in &pectrum ends and another begins. A line from the former
distinct way on the specific choice of level spacid@nd  connects continuously to one from the latter only if its final
final-state parityp (i.e., the parity of the grain after the rate- state|f) can be reached from bofls,) and|s;.) [i.e., if s
limiting tunneling process has occurjedio calculate the —s=—(s{—s/)]; in this case, the two linefs;)—|f) and
spectrum for giver andp, we proceed as follows below: we |S~r|>*>|f> joinl at h. - via a kink sinceAlE (h) and
first analyze at each magnetic fighdwhich tunneling pro- ' S5 o It
cessesi)y.,—|f)y are possible, then calculate the corre-AEir'(N) have slopes of opposite sign. However, for most
sponding energy costAE;((h) of Eq. (20) and plot lines this is not _the casesmce_ usually|sf—s!/|¢1/2) , SO
AE;;(h)— AE,;(0) as functions oh for various combina- that athg s the line|s;)—|f) simply endswhile new lines
tions ofi,f, each of which gives a line in the spectrum. Wels;:)—|f’) begin. This results in discontinuities
subtractAE,,(0), theh=0 threshold energy cost for the (or “jumps”) in the spectrum atg ! of size AE;/ ¢

lowest-lying transition, since in experiment it dependsvgn —AEjf)(hs, '), unless by chance some other final stéte

and hence yields no significant information, as eXplainechappens to exist for which this difference equals zero
above. Figure 7 shows four typical examples of such theo- Since the order in which the GSC's:(s/) occur és

retical tqnnglmg spectra,. W'th some lines labeled by the O unctions of increasingp depend ord andp, as indicated by
respondingdi)— |f) transition.

When taking the data for Fig. 6, RBT took care to adjustthe distinct regimes LILIW. .. , inFig. 5, one fmd;; a d'Stht
) o kind of tunneling spectrum for each regime, differing from
the gate voltagé/, such as to minimize nonequilibrium ef-

. ) the others in the positions of its jumps and kinks. In regime
fects, which we shall therefore neglect. For giverwe thus SR :
consider only those tunneling progesses forgwhich the initial’ where Eh(: order ofso;:currence of GSC's W'Fh mcr.eagz?ng
stateli) corresponds to the grain’s ground stkgg at thath 1S (0,1):(,2):(1,2);(z,2); - . ., there are no discontinuities
the grain’s large charging energy ensures that only one ele@mple, for thee—o spectrum, the lowesi0) —[1/2) line
tron can tunnel at a time, the sgf)} of possible final states changescontinuouslyto |1)—[1/2) at ho,, since|si—s|

satisfies the “spin selection rule/s;—s;|=3 and includes, =1/2. However, in all other regimes the first change in
besides the spis; ground state|s;), also excited spis; ~ ground state spirat hos from 0 tos;) is >1, implying a
states. jump (though possibly smallin all e— o lines, as illustrated

Wheneverh passes through one of the level-crossingby Fig. 7b).
fieldshs s, of Eq.(19), the grain experiences a ground state  The jump’s magnitude for the tunneling thresholds, i.e.,
change §;,s/). After this GSC|s;,) is the new initial state the loweste— o0 ando—e lines, is shown as function afin
for a new set of allowed tunneling transitiofs)—{|s;,)}  the lower part of Fig. 5. It starts a=0 from the CC value
(satisfying|s; —s;/|=1/2). Since this new set in general dif- A(1—1/\/2) measured for thin Al film&! and with increas-
fers from the previous set of transitiopg)—{|f)} allowed ing d decreases to (honmonotonically, due to the discrete
before the GSC, ahs 5, one set of lines in the tunneling spectrun. This decrease of the size of the jump in the tun-
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neling thresholdreflects the fact, discussed in Sec. Ill E, thatplitude and are difficult to followwith increasingh, or be-
the change in spin at the first ground state chargges{)  cause the widths of the excited resonance®(13A) limit
decreases with increasimiy(ass; — sy~ hcc/d), and signals  energy resolution?
the softening of the first-order superconducting-to- For somewhat larger grains, the present theory predicts
paramagnetic transition. jumps even in the lowest line. It remains to be investigated,
The fact that the measured tunneling thresholds in Fig. 8hough, whether orbital effects, which rapidly increase with
show no jumps at aliwhich might at first seem surprising the grain size, would not smooth out such jumps.
when contrasted to the threshold jumps seehaatin thin Finally, note that more than qualitative agreement be-
films in a parallel field®), can therefore naturally be tween theory and experiment can not be expected: in addi-
explained® by assuming the grain to lie in the “minimal tion to the caveats mentioned in the seq(_)nq paragraph_ of Sec.
superconductivity” regime | of Fig. Swhere the jump size I D, we furthermore neglected nonequmbnum.effects in the
predicted in Fig. 5 is zebo Indeed, the overall evolution tunneling process and assumed equal tunneling matrix ele-
(i.e., order and position of kinks, etof the lowest lines of ments for all processes. In reality, though, random var|at|qns
Fig. 6 qualitatively agrees with those of a regime | tunnelingOf tunneling matrix elements CQUId SUppress some t“”ﬂe"”g
spectrum, Fig. @). This allows us to deduce the following processes which would otherwise be expected theoretically.

values for the level-crossing field$ o (indicated by ver-
17

tical dashed lines in Figs. 6 and):7H;=4T, Hyjpqp C. Parity effects

=4.25T, H;,=5.25T, andHgp,57=6.5T. As correspond- As mentioned in the Introduction, several auth®rs®

ing uncertainties we takAHSi & =0.13T, which is half the have discussed the occurrence of a parity effect in ultrasmall
H resolution of 0.2% used in elxperiment. grains: “superconductivity” (more precisely, ground state

By combining the abovéd, o values with Fig. 5, some p'airin.g correlationsdisappears sooner with decreasing grain
- i .__Size in an odd than an even graid (,<Ag, and d;

of the grain’s Iess—welljknown .parameters can be determlnegdcyo)_ This is a consequence of the blocking effect, which

somewhat more precisely: First, the grain's “bulkcc” s always stronger in the presence of an odd, unpaired elec-

field can be estimated by noting from Fig. 5 thaf;/hcc  tron than without it. This section is devoted to discussing to

=0.95, so thatHcc=H,1/0.95=4.2T. This is in rough what extent this and related parity effects are measurable.

agreement with the valud cc=4.7T found experimentalf®  Since pairing parameters such/g,,A, are not observable

in thin films in a parallel field, confirming our expectation quantities, measurable consequences of parity effects must

that these correspond to the “bulk limit” of ultrasmall grains be sought in differences between eigenenergies, which in

as far as paramagnetism is concern@ecall that our nu- principle are measurable.

merical choice ofA=0.194 in Sec. Ill D was based on this

correspondence.Secondly, the grain’s corresponding bulk 1. In ultrasmall grains, E;,—E, is currently not measurable

gap isA=\2ugHcc=0.34 meV. Thirdly, to estimate the e might expect that the odd-even ground state energy

level spacingd, note that sincé y, 3,,/Hg 1= 1.06, this grain differenceE"G/eE(El,z— Eo) should reveal traces of the par-

lies just to the right of the boundary between regions Il andyy effect. Regrettablyin ultrasmall grains this quantity not
l'in Fig. 5 whered/A=0.63, i.e.,d=0.21 meV.(The crude directly measurable in the current generation of experiments
volume-based valud=0.45 meV of Sec. IV A thus seems by RBT, for the following reasons.
to have been an overestimatdt would be useful if the If the transport voltagd/ is varied at fixed gate voltage
above determination af could be checked via an indepen- Vg, the energy cost of changing the grain’s electron number
dent accurate experimental determinatiorddfirectly from  py 1 (theh=0 threshold tunneling energygependgsee Eq.
the spacing of lines in the tunnel spectrum; unfortunately(zo)] not only on E%/e but also on the changéE. in the
this is not possible: the measured levels are shifted togeth%{ramys charging energy due to tunneling. However, as ex-
by interagtions, implying that their spa(_:ing does not reflecblained in Sec. IV ASE. dependsin an imprecisely known
the meanindependent-electrokevel spacingd. way) on the actual value of4. Therefore only the grain’s
The higher lines plotted in Fig. 7 correspond to stategiyed-N excitation spectrunidistance between lines of tun-

where the electron tunnels into an excited sirstate. For  gjing spectrumcan be measured accurately in this way, but
simplicity we considered only excited sta{ss,j) involving not E%/e_

a single electron-hole excitation relative |&), such as the
example discussed in Sec. Il D 2 or as sketched in Fig), 2
though in general others are expected to occur too. Th
jumps in these linege.g., in Fig. Ta) at hy ;] occur when-
e\r/]ﬁr tgert\;\;]o f'gglce);'ted ita\t/dasij’i{‘praﬂ?'&;rijlf’ii br:aforr]er ing the amount of deviation from the periodicity (see Ap-

and atter the 5. Nave difierent correlation ener- pendix B for details Analyzing these deviations thus in
gies. (Recall that the correlation energy of an excited stateyrinciple allows one to experimentally determii®/®, as
|st,ar) can be nonzero even if that of the correspondinghas been demonstrated convincingly  inem-scale
ground statgs;) is zero, since the former’s unpaired elec- geyices233

trons are further away frome, so thatAs , >As, see Sec. However, the parity effects discussed in the present paper
IIl D 2.) Experimentally, these jumps have not been ob-are only expected to occur in devices very much smaller than
served. This may be because up-moving resonances lose athese of Refs. 32 and 33, namely, in nm-scale devices such

If the gate voltagé/, is varied at a fixed transport voltage
in the linear response regimé=0, i.e., Coulomb oscilla-
flons are studied, one expects to find e &riodicity in the
so-called gate charg@y= C4V,+const, withEg’e determin-
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as those of RBT. Regrettably, for these it is at present not 2.0
possible to study(as suggested in Ref. l4e or
2e-dependent features with sufficient accuracy to carry
through the procedure described above: due to the extremely .
small size of nm-scale grains, their charging energy is so

<

O}h 1 O Y A L

< . .

& — with parity effect

large that the predicted pairing-induced deviation free- 0.0 .~~~ without parity effect
riodicity is a very small effecta fractional change of order 0.0 0 ) 2.0
EY®/E.<0.01). Moreover, even if observable in principle, Level spacing d/A

in present experiments this small effect would be obscured
by deviations from periodicity of a different origin: as ex-
plained in Sec. IVA, RBT routinely observed sudden
Vg-dependent shifts in background chdfeear the transis-
tor when they sweep/y through the large range necessary to
cover more than one period, and according to RBThe
resulting random deviations from periodicity make it impos-
sible to analyzes vs 2e effects with the accuracy required to
extract EX®-induced effects. Thus we conclude that at

FIG. 8. Parity effect for the pair-breaking energﬁ\'gz%(E1
—Eg)h_o and Q,=3(Es,—E1)n_o (see Sec. IV CR when cal-
culated naively using conventional mean-field the@ashed lines

the pair-breaking energies ob&y,>Q, for all d/A; in contrast,
when calculated within generalized variational BCS the@ylid
lineg), Q,<Q, for d/A<0.6; this reflects a parity effect, namely
that A;,<A,, which is caused by the extra unpaired electron in
|3/2) relative to|1).

ole ; .
presentEs” is not directly measurable. potentiat? jtp=e0—pd/2. This would giveQSCS=[(d/2)2
_ o . _ +A2]Y2 and Q8S=[d?+A2]"2, implying that the differ-
2. Parity effect in pair-breaking energies enceQECS— Qgcs is strictly >0 (Fig. 8, dotted lines For

Since the quantities that RBT can measure accurately aig¢/A —« this difference reduces td, which is simply the
fixed-N excitationspectra, let us investigate what parity ef- difference in the kinetic energy cost required to flip a single

fects can be extracted from these. Since any parity effect is &vin when turning 4)o into |2)o (namely, 2i), relative to
consequence of the blocking effect, we begin by discussin%at when turning02> Ointo |1>2 O(namely d') ’
the latter's most obvious manifestation: it is simply the fact In contrast usingothe presoent theoril to' go beyond mean-
that breaking a pair costs correlation energy, since the resulﬁ—eld BCS the,or one finds numerically thet,> Q. onl
ing two unpaired electrons disrupt pairing correlations. This, dicient Iy’ evel inasd Z};O 6 eF' y8
of course, is already incorporated in mean-field BCS theor%Or su '_C'erf y large level spacingsd( ).6, see Fig. 8,
. L = . : otted lineg; for smallerd one had),< (., implying that it
via the excitation energy of at leasthZinvolved in creating

two quasiparticles. It directly manifests itself in the qualita- costs less energy to break a pair in an odd grain than an even

tive difference between RBT's even and an odd excitatiorpram’ even though the kinetic-energy cost is larged (&

i : d). This happens sinc&;,<A;, which reflects a parity
spectra(explained in Sec. IV A namely, that the former X . .
shows a large spectral gag22>d between its lowest two effect caused by pair blocking by the extra unpaired electron

lines that is absent for the lattéFig. 6). in |3/2) relative to|1). The theoretical result thaf),/Q,

The parity effect discussed by von Dedftal2and Smith <1 for sufficiently small dA can be viewed as a “pair-
and Ambegaoka referred to a more subtle consequence oforéaking energy parity effect” which is analogous to the
the blocking effect that goes beyond conventional BCS 9round state parity effect”A,,<Ao, but which, in con-
theory, namely, that the pairing parametétshave a signifi- trast to the latter, should be observable in the experimentally

cants dependence onad/A becomes sufficiently large. Al- available fixed-N eigenspectra.

i ’ i 2 -
though these authors only considered the ground state pariw What are(}, and {1, in RBT§ experiments? Unfortu ]
X ; . ately, the present data do not give an unambiguous answer:

effect A1»<<Ay, the same blocking physics will of course

also be manifest in generalizationsste 3. In fact, the prob- on the one hand, the=0 data allow the determination of

lems with measuring the odd-even ground state energy difge: 0.25 meVihalf theh=0 energy difference between the

ferenceEY® discussed above leave us no choice but to turr;[WO lowest lines of Fig. @], but not of(),, since breaking

: . a pair is not the lowest-lying excitation of an odd system at
to s>1 cases when looking for a measurable parity effect P ying y

2 . ~~~h=0 [which is why Fig. §b) has no spectral ggpOn the
Specifically, we shall now §h0_w that a parity effec_t resultlngOther hand, botif), and Q, can be found fromh+0 data,
from A5,<A,; should in principle be observable in present

experiments. since by Eq.(19) they are equal to the level-crossing fields

. : : ho 1= Q¢ andhy, 3= Q,, whose values were deduced from
_To this end, let us compare t."'FO pa|r-break|ng ener e experimental tunneling spectra in Sec. IV B. This yields
giesin an even and an odd grain, defined as the energy p

. . o ‘i’)e: 0.23+0.01 meV and(},=0.24+0.01 meV, i.e., &),
e_Iectron _needed to break a sw_ngle paithaio by f"pp"?g 4 yalue somewhamallerthan the above-mentioned 0.25 meV
single spin: for an even grain, it @.=5(E;—Eg)n-o, i-€.,

imolv half th ral di d above: f d etermined ah=0. The reasons for this difference are pre-
simply ha _el spectral gap discussed above, for an o umably(i) that the actuay factors are not precisely @s
grain, it isQ,=3(Esp—Eyan-o-

D \ assumej and(ii) that the experimental spectral lines are not
Within mean-field BCS theory~, one would evaluate theseperfectly linear inh (having a smalh? contribution due to
using the same pairing parameterfor all states and(e;  orbital diamagnetism, neglected in our model
— up)?+A%]Y2 for the quasiparticle excitation energies as-  Nevertheless, if we assume that these two complications
sociated with having the single-particle sthjte~ ) definitely  will not significantly affect the ratidny, 32/ho 1 (Sincehy 37
occupied or empty, with parity-dependent chemicalandhg; presumably are influenced by similar amountge
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may use it to estimate the rati®),/(Q,=4.25/4=1.06
+0.1. This ratio is slightly smaller than that expected from

the mean-field BCS ratid22“%05%5=1.1 at d/A=0.63,

i.e., consistent with the pair-breaking energy parity effect.

2.0
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1.0 T
o \r////
0.0

However, the difference between 1.06 and 1.1 is probably 0.0

2.0

4.0

6.0

8.0

too small to regard this effect as having been conclusively Level spacing @/A

observed.

We suggest that it should be possible to conclusively o
serve the pair-breaking energy parity effect in a somewha
larger grain with hy, 3,<hg ; (implying Q,/Q¢<1), i.e., in
regime Il of Fig. 5.(This suggestion assumes that in regime
Il the complicating effect of orbital diamagnetism is still
nondominant, despite its increase with grain giZe look
for this effect experimentally would thus require good con
trol of the ratio dA, i.e., grain size We suggest that this
might be achievable if a recently reported new fabrication(see Fig. 9, which reduces to the perturbative restffPe"
method, which allows systematic control of grain sizes byfor d>d, ,. The reason why this parity effect did not surface
using colloidal chemistry techniquéScould be applied to i the discussions of previous sections in spite of its linear
Al grains. increase withd is simply that there we were interested in

B correlation energies of the forn€—£° in which effects as-
3. Parity effect in the limit dA>1 sociated with “uncorrelated” states were subtracted[set,

Since the parity effects discussed above are based on tffed- Figs. &) and 4b)]. MLpert_ 1+ 4 i o
observation that the amount of pairing correlations, as mea- TNe perturbative resulip™"""= 3 d is in a sense trivial.
sured byA,, have a significans dependence, they by defi- However, ML showed that a more careful calculation in the
nition vanish ford>d.y, because them\s=0 for all s. regimed/A>1 leads to a nontrivial upward renormalization

Matveev and LarkifML) (Ref. 14 have pointed out, how- X of the bare interaction constant given with logarithmic
ever, that there is a kind of parity effect that persists even imccuracy by

the limit d/A> 1, which in the present theory we would call

the “uncorrelated regimeTsince there tha’ defined in Eq. N~ ;
(4) would be<§]: when one extra electron is added to an 1=An(wc/d)
even grain, it does not participate at all in the pairing inter-To obtainAM-, \ in A’@,,"L’Pe“ is replaced by this renormal-
action, simply because this adsly between pairs; but when ;4% with the result

another electron is added so that now an extra pair is present '
relative to the initial even state, it does feel the pairing inter- AMLNd/(Z Ind/A). (26)
action and makes a self-interaction contributioind to the

ground state energy. To characterize this effect, they introT his logarithmic renormalization, which is beyond the reach
duced the pairing parameter of our variational methodbut was confirmed using exact

diagonalization in Ref. 27 can be regarded as the “first
signs of pairing correlations” in what we in this paper have
called the “uncorrelated regime[in particular sincg A¥-|
increasesupon renormalization only if the interaction is at-
tractive, whereas it decreases for a repulsive interaction, see
Eq. (25)]. Unfortunately,AM" is at present not measurable,
for the same experimental reasons as apply@@ Esee Sec.

IV C1.

b. FIG. 9. The parity parametek- discussed by Matveev and
tarkin (Ref. 14, calculated perturbatively for the uncorrelated
ermi sea AM-Pe'=2)\d, dashed ling and using our generalized
variational BCS approachAM-"" of Eq. (24), solid ling. The
renormalized resulaM-~d/[2 In@ad/A)] given by ML is shown
(dashed-dotted linein its range of validityd/A>1. The parameter
~a=1.35 is chosen to ensure quantitative agreement with exact di-
agonalization results for extremely small graifef. 27.

(25

1
A“F,"L:EQ‘,gl—E(E?,'JrEQ“), (23)

with N=even. In first order perturbation theory M i.e.,
using Eg,zpso<p|H|p)0 (where |p), is the uncorrelated
Fermi ground state withN+p electrony, one obtains
AM-Pe=1)\d. This illustrates that this parity effect exists
even in the complete absence of correlations, and increases
with d.

Since our variational ground statgs) reduce to the un- Citing the extensive literature in nuclear physics on fixed-
correlated Fermi statdp), whenAp=0, the above pertur- N projections of BCS theory, we argued that a reasonable
bative result fod/A can of course also be retrieved from our description of ultrasmall grains is possible using grand-
variational approach: we approximaf&) and E);* by  canonical BCS theory, despite the fact that such grains
Eo(d) and &;,(d), respectively, both of which were calcu- Would strictly speaking require a canonical description. Us-
lated above, an€}) "2 by &(d)—\d, since it differs from N9 a gene_rahzed vanatpnal approach to calculqte various
&y(d) only by an extra electron pair at the band’s bottom,€igenenergies of the grain, we demonstrated the importance
whose interaction contribution in Eq8) is _)\d(v}s))4_ of the blocking effectthe reduction of pair-mixing correla-

Thus the variational result for ML’s parity parameter is tions by “F‘pa”ed ele_ctrohapd _showed that it becomes_
stronger with decreasing grain size. The blocking effect is

revealed in the magnetic-field dependence of the tunneling
spectra of ultrasmall grains, in which pairing correlations can

V. CONCLUSIONS

ML= gy ()~ Eg(d) + A2, 24
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be sufficiently weak that they are destroyed by flipping aThis can be done by rewriting Eq12) using the Euler-
single spin(implying “minimal superconductivity’). Our  MacLaurin summation formula
theory qualitatively reproduces the behavior of the tunneling

thresholds of the spectra measured by Ralph, Black, and i1 jyd d

Tinkham as a function of magnetic field. In particular, it 1/)\=dz f(jd)zf‘ dgf(§)+§[f(j0d)+f(j1d)]
explains why the first order transition from a superconduct- 1=lo Jod

ing to a paramagnetic ground state seen in thin films in a d2

parallel field is softened by decreasing grain size. Finally, we +1—2[f’(j0d)+f’(j 1d) ], (A2)

argued that a pair-breaking energy parity effétat is
analogous to the presently unobservable ground state ener SN N2 A1 .
parity effect discussed previouslghould be observable in %Xth FI)=[1d)"+A] 7% Jo=s+(1+A)/2, and j;
experiments of the present kind, provided the grain size ca[T
be better controlled than in RBT’s experiments. 0

w./d. The s dependence has now been absorbed in the

wer boundj, of the sum. The negative branch of the sum

is identical to the positive sincg lies halfway between the

topmost doubly occupied and lowest completely empty level.
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We next calculate the eigenenergigsby evaluating Eqg.

APPENDIX A: ANALYTICAL LIMITS (8) up to first order ind, where the sums again are evaluated
with the help of the Euler-MacLaurin formula. Since we are
interested in the effects of pairing correlations we subtract

When the level spacind tends to zero the theory reduces the energ}ﬁg of the uncorrelated Fermi sép),:
to the conventional BCS variational and mean field ap-
proach. We can calculate the properties of a superconducting X2
system to first order ird by expanding the BCS solution (ever gs_ggz_ —
aroundd=0. In doing so, we focus on the ground staf&s 2d
of each spirs sector of Hilbert space. 1 7+6

While in the bulk limit (d=0) the shift—\d(v{”)? in the - ( §2— —+ —)\s) d,

. S . . 12 4

single-electron energieg just after Eq.(12) is unimportant,
it influences the behavior of an ultrasmall grain by effec-
tively increasing the level-spacing near the Fermi surface. Its 0 T o~ ~
effect is largest fors=0, since fors#0 the states at the (040 &—E&1=—55+ 7 A+2sA
Fermi surface, where the deviation of>* from 0 or 1 is
largest, are blocked. For simplicity we neglect t}fé“) de-
pendence ing; in the following calculation, using;=g;
—u—Ndo[—(e;—u)], and therefore good agreement with . _ _ o
numerics can only be expected forcX ands#0. Within  Thed ™~ term is the bulk correlation energy, which is slightly

this approximation fok;, w lies halfway between the top- renormalized by the intensive (17/4)AA term, which in

most double occupied and lowest completely empty level irturn stems from the* terms of Eq.(8). 2sA is the bulk

IS)o: m=e09—d(8p0+\)/2. Note thatu doesnot lie ex-  excitation energy for & quasiparticles. Thel* term is the

actly on one of the levels in the odd cage=(1) as one first-order correction for discrete level-spacing.

might have expected at first sight, but halfway between the

topmost doubly occupied and lowest completely empty level.
We shall calculate the pairing paramet&g(d) in the

smalld limit by calculating the first terms of its Taylor se- ~ The other analytically tractable limit is>Ag, which
ries: holds ford near the critical spacind. s whereA vanishes.

First, we derive an expression for the criticklg by solving

1. d—0 and Euler-MacLaurin expansion

v ~ ~
1+Z ANA+2sA

(Ada)

A2

2+1+7T+6)\+)\
St g Aty

d. (Adb)

2.d near d. and the small delta expansion

d? the gap equation with vanishing pairing parameterfor d:
Ag(d)=| 1+daq+ 705 A((0). (A1) gap eq g pairing p e
wc/dc,s
To this end, it suffices to solve the gap equatip®), as well %: D .E:‘l’(wcldc 1) (jy). (AB)
] ’

its first and second derivatives with respectdiofor d=0. i=io
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¥ (x) denotes the digamma function afg equalss+ (1

+\)/2 again. Remembering thah =1/In(2w./A) and
exd W(x)]~x—3 for largex this equation reduces to

| 2dcs| v 1+ AS
n X =—-V| s+ 5 (A6)
A 1+\
dc,s=§ex -¥ S+T . (A?)
Fors=1 this can be simplified to
d —Z 8
GST 25+ )\ (A8)

Numerical values oﬁc,S/Z(x=O.194) are 2.36,0.77,0.44,
03%..., fors=04,13, ..., respectively. Nead, s the
pairing parameter vanishes as

B
dC,S

which we shall now show.
Since for the spirs ground states with vanishing pairing

A=A for d>A4 ands>0, (A9)
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hand sid¢ for the large w./d argument. Also theV”(s

+3) term is approximated by its asymptotic forms™2:

od Az
d_:_ﬁql (S+ 5), (A13)
c,s
2 2 2de5_
As=4d S d—, (A14)
c,s
~ d
A=A 1— d_ (A15)

C,S

The last step was performed by remembering thafsa
=4dZ ;s*=A2 for s#0.

Although Eq.(A9) was derived ford neard, s, it turns
out to have a surprisingly large range of validity: its snuall-
expansion in powers of/A agrees(at least up to second
order with Eq.(A3), and fors=1 it in fact excellently re-
produces the numerical results farg(d) for all d. For s
=0 the asymptotic expansion 8" breaks down. Therefore
directly from Eq.(A13) we deduce

parameter electron and hole pairs are symmetrically distrib-

uted around the Fermi surface, E43) again yieldsu=¢,
—d( 8,01 N2). We turn to the gap equatidd2). The spin
dependence has been absorbefinThe positive and nega-
tive branches of the restricted sum are identit@cause of
the special symmetric value qf), with |£| ranging from
d[s+(1+X\)/2]=dj, to .. It therefore suffices to calculate
the positive branch times 2:

w./d w.ld 2
1 ° ¢ 1 A
o 24 A2/g2) V2~ —_ S ,
N j:EjO 4 S/d%) j:s+%+>\)/2 I 2d?j®
(A10)
a)§0’5 1 w:/d 1 Ag
j=st T | j=seTene | 2d%j3)

4d* d.s—d
121 dgs

Ag= (A16)

where we usedV”[(1+\)/2]=-12.1. This result gives
good agreement with numerics nedys_o, but obviously
has the wrongl—0 limit.

APPENDIX B: 1-V CHARACTERISTICS
OF AN ULTRASMALL NSN SET

In this appendix we discuss how th&/ characteristics of
a SET in principle allow one to deduce even-odd ground
state energy differences as mentioned in Sec. IV C 1. Tichy
and von Delft> examined thd-V characteristics of a SET
with an ultrasmall superconducting grain as island, i.e., an

To obtain Eq.(A10), the square root was expanded usinguitrasmall NSN SET. They described the discrete pair-
Ag<d. The remaining sums can be expressed by the polycorrelated eigenstates of the grain using the parity-projected

gamma functiongl' (W using the identity

PM-D(n41)

1
Kkm (m—1)!

> —={(m)—(-1)" (A11)
k=1 k

mean-field BCS theory of Ref. 12. Although this approach is

too crude to correctly treat pairing correlations of excited

stateq since for all ever(or odd ones thesameA, (or Ay)))

is used, it does treat the even and odd ground states cor-
rectly. It therefore enables one to understand how the odd-

Replacing the sums by the polygamma functions and collectayen ground state energy differerigg®= (E,,— E,) should

ing terms leads to

(O (OF
‘I’(I’S'Fl - F+1
5 . @c ; 1+\
Z—E[\I’ F‘l‘l)—\l’ S+T
(A12)

Now assume thatl is close tod.s: d=d.s—d and 5d
<d. 5. Expand the left hand side ifd and use the asymp-
totics for ¥’ (on the left hand sideand V" (on the right

influence the SET’$-V characteristics.

Using tunneling rates given by Fermi's golden rule and
solving an appropriate master equation, Tichy calculated the
tunnel current through the SET as a function of transport
voltageV and gate voltag®/, at zero magnetic field. In an
ideal sample, the-V characteristics areeperiodic in the
gate charg®,=V,C4+const; one such period is shown in
Fig. 10. The usual Coulomb-blockade “humps” centered
roughly around the degeneracy poir@,/e=2mi% are
decorated by discrete steps, due to the grain’s discrete
eigenspectrum. In RBT's experimerig was fixed near a
degeneracy point and the current measured as functidh of
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FIG. 11. Schematic representations of the non-time-reversed-
pairing statef3/2)’ defined in Eq(C2). The energieg;+h of the
single-particle statel,=) are drawn(a) for h=0 and(b) for 2h
=3d. We indicated schematically how non-time-reversed states are
paired according to U +v;C 5 ,Cl-) in the BCS-like Ansatz
(C2), with solid or dashed ellipses encircling states that would be
completely filled or empty in the absence of pairing correlations.

EY Ec Ey /Ec

FIG. 10.1-V characteristics for a SET with an ultrasmall super-

conducting grain as islandrom Ref. 35. The current is plotted as  Sults of RBT provide strikingly direct support for the correct-

a function of gate chargeQ/e) and transport voltagee(V/Ec). ness of neglecting interactions between non-time-reversed
Pairing correlations shift the degeneracy-point valueQ pfe away  pairs of the form(C1) at h=0: Suppose the opposite,
from their e-periodic values of t=; by =EZ%/Ec (see text To  namely, that the matrix elemends(j+k,j,j’+k,j’) were
better reveal the figure’s characteristic features, it was plotted using|| roughly equal ta\ for a finite range ok values(instead

a ratio EOG/e/EC:O.l, very much larger than the typical values of ¢ being negligible fork#0, as assumed iRl ,og). Then for
<0.01. 2s<k, one could construct a spsstate|s)’ with mani-
festly lower energy ') than that €) of the statgs) of Eq.

(for a set of differentH valueg. When following a line par- (15):

allel to theV axis in Fig. 10, the positions of the steps in the
current thus correspond to tie=0 eigenenergies of RBT's

tunneling spectra in Fig. 6. Cme2s—1 w0
The reason for & instead ofe periodicity are pairing / t (s) o .(s)T +
. . . = / Sl / .
correlations: First, the grain’s odd-even ground state energy s) j:Hm C'+i:11m (U7 +017C]1 29 +.¢1-)Vag)
differenceEg/e causes a shift in the degeneracy-point values (C2

for Qq/e from 2m=3 to 2m= (3 + EY®/Ec). Secondly, tun-
neling spectra measured in tiedirection in Fig. 10 show a _Whereas in|s) pair mixing occurs only between time-

plateau after the first step if the final state after tunneling S eversed partners, ifs)’ we have allowed pair mixing be
; / / : , -
even(i.e., for+ E%e/ECSQQ/e$%_E%e/EC)’ but notif  veennontime-reversed partners, while choosing theud-

itis odd, corresponding to the presence or absence of alarggyire spin-up electrons that occupy their levels with unit
spectral gap in the tunneling spectra of Fige) @r 6(b); this 55t de to sit at the band'sottom (see Fig. 11 To see
is due to the energy cost to break a pair, and the plateau;

that|s)’ has lower energy thal
width is simply twice the even pair-breaking energ{)2 ) W gy thafs),
(see Sec. IVCP

By analyzing the derivation frone periodicity along the ! _ crcorry er0_- acorr, o0

: R ) = +&'.< +E:=

Qg axis ate V=0, one can in principle experimentally deter- Es=8 T HEETHE=Es ©3

mine Egje. Unfortunately in present devices this is not pos-

sible in practice for reasons explained in Sec. IV C 1. we argue as follows: Firsg'9=£9, since the corresponding

uncorrelated statds), and|s), are identicaland given by
APPENDIX C: TIME REVERSAL SYMMETRY Eq. (16)]. Secondly, Al=Ay(>Ag), and hence& "

When defining our model in E¢6), we adopted ae-  ~£o (<&5"'<0), because the 2unpaired electrons in

ducedBCS Hamiltonian, in analogy to that conventionally |S)’ Sit at the band’s bottom, i.e., so far away fram that

interaction terms of the form electrons ins) sit arounde and cause significant blocking

Thus Eq.(C3) holds, implying that/s’) would be a better
variational ground state for the interacti¢é@l) than|s).
—d_Z, NG Del el e ey (€Y Now, the fact that’ "= £5°" is independenbof s means
R that flipping spins injs)’ does not cost correlation energy.
between non-time-reversed pai c/_, following Ander- ~ Thus, the energy cost for turnii@)’ into [1)" by flipping
son’s argumenitthat for a short-ranged interaction, the ma- One spin is simply the kinetic energy codt implying a
trix elements involving time-reversed state$,c/ are  threshold fieldn, ;=d/2 [see Eq(19)]; in contrast, the cost
much larger than all others, since their orbital wave functiondor turning |0) into [1), namely, 2}, implies a threshold
interfere constructively® Interestingly, the experimental re- field ho 1=, which (in the regimed=<A) is rather larger
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thand/2. The fact that RBT’s experimeniBig. 7(b)] clearly  that£;<&;. Thus the premise of the argument was wrong,
show a threshold fieldhy; significantly larger thand/2  and we can conclude that those terms in Efl) not con-
shows that the actual spin-1 ground state chosen by nature tained inH 4 can indeed be neglected, as done in the bulk of
better approximated bjl) than by|1)’, in spite of the fact this paper.
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