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We generalize Emery and Kivelson's (EK) bosonization-refermionization treatment of the 2-channel
Kondo model tofinite system sizand on the EK line analytically construct its exact eigenstates and
finite-size spectrum. The latter crosses over to conformal field theory’s (CFT) universal non-Fermi-
liquid spectrum (and yields the most-relevant operators’ dimensions), and further to a Fermi-liquid
spectrum in a finite magnetic field. Our approach elucidates the relation between bosonization, scaling
techniques, the numerical renormalization group (NRG), and CFT. All CFT Green’s functions are
recovered with remarkable ease from the model’s scattering states. [S0031-9007(98)06260-7]

PACS numbers: 72.15.Qm, 11.25.Hf, 71.10.Hf, 75.30.Hx

A dynamical quantum impurity interacting with defined byH = Hy + H, + H, (h = vy = 1):
metallic electrons can cause strong correlations and

sometimes lead to non-Fermi-liquid (NFL) physics. A  Ho = Zk:CZajCkaj:a Hy = hiS; + he Ny,
prototypical example is the 2-channel Kondo (2CK) kaj 1

model, in which a spin-12 impurity is “overscreened” H.+H =AY A Cka/ ) TaarSaCliasj:-
by conduction electrons, leaving a nontrivial residual spin kk'ecal ja

object even in the strong-coupling limit. Many theoreticalHere Cza/ creates a free-electron stalfea j) with spin
treatments of this model have been developed [1], inw = (1,]), flavor j = (1,2) = (+, —), radial momen-
cluding Wilson’s numerical renormalization group (NRG) tum k = |p| — pr, and normallzatlon{cka,,ck/aj}
[2,3] for the crossover from the free to the NFL regime, SiwSaardjy. We let the largdk| cutoff go to infinity,
Affleck and Ludwig'’s (AL) conformal field theory (CFT) and quantize by defining 1D fields with, for simplicity,
[3,4] for exact thermodynamic and transport quantitiesantiperiodic boundary conditions at= +L1/2 [4],

valid only near the NFL fixed point, and Emery and ‘

Kivelson’s (EK) bosonization-refermionization mapping Yaj(x) = AL Ze_lkakaj, 1)
onto a resonant-level model [5], valid on a line in param-

eter space that connects [6] the free and NFL fixed pointgvherek = Ay (nx — 1/2) and Ap =27/L is the mean
In this Letter we elucidate the well-known yet remarkablelevel spacing. By : : we denote normal ordering relative
fact that these three approaches, despite tremendot® the Fermi ground statl)o. H. + H. is the Kondo
differences in style and technical detail, yield mutuallycoupling (with dimensionlesa, # A, = A, = Ay) to a
consistent results: We show that EK bosonizatiora  local spind/2 impurity S, (with S. elgenstate$ﬂ> 1)),
system of finite size yields NRG-like finite-size spectra, andH), describes magnetic fields andhA coupled to the
and reproduces all known CFT results. impurity spin and the total electron spil;.

Our method requireso knowledge of CFT, only that Conserved quantum numbersDiagonalizing H re-
we bosonize and refermionize with care: Firstly, wequires choosing a suitable basis. Let any (nonunique) si-
construct the boson fieldé and Klein factorsF in the  multaneous eigenstate &aj =3 :Cl-l-ajckozj:v counting
bosonization relation) ~ Fe™'¢ explicitly in terms of  he number of(«) electrons relative td0), be denoted
the model’s original fermion operatofs,,;}. Secondly, by IN) = INn) ® IN;) ® |Np) ® [Np), with N € 74,
we clarify how the Klein factors for EK's refermionized gjncep conserves charge, flavor, and total spin, it is natu-

operators act on the original Fock space. Thirdly, we keepal to define new countina operato
track of the gluing conditions on all allowed states. This gop & (v = cs.f.x),

enables us (i) to explicitly contruct the model’'s finite- N. 1 1 1 1 Ny

size eigenstates; (ii) to analytically obtain NRG-like finite- Nl 1)1 =1 1 -1 Ny

size spectra that cross over from free to CFT universal N | T2 1 -1 =1 || A |’ @)
NFL spectra; (iii) to describe magnetic-field-induced cross N, 1 -1 -1 1 Np

overs exactly; (iv) to recover with remarkable ease all AL

CFT results [4] forL — = [7]. which give half the total electron number, the electron

The modek—We consider the standard anisotropicspin, flavor, and spin difference between channels, re-
2CK model with a linearized energy spectrum [3—5],spectively. Equation (2) implies that the elgenvaILNs
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are either all integers or all half-integers (i.ely €  S. = e**#©g. andg, incurs a phase shift:

(Z + P/2)*, with P = (0, 1) for even/odd total electron t_ _ _

number), and that they obey tfree gluing condition Ups(U @s(0) = A mSSgrx) = y(x). - (8)
We henceforth focus on the EK line of fixed, = 1.

Ne = Ny = (N; = Ny)mod 2. () Here ¢, decouples fromS+, and by (4) and (8) the
All nonzero matrix elements off | have the form{(ZN.,  .;’s have phase shiftst7/4. Since this is just the
Sr — A NG NGMIH LN, Sy + L NG N, + 1;1),  value known for the NFL fixed point [3,10], tha, -
and since the total spis; = Ny + S., is conserved, induced crossover between the free and NFL fixed points
the N, eigenvalue flips only betweeS; ¥ 1, i.e, it ~¢an be studied on the EK line [6] by solving’ by

fluctuates only “mildly.” In contrastthe N, eigenvalue '€férmionizing. , _ .
fluctuates “wildly” [an appropriate succession of spin Refermionization—We first have to define Klein fac-

flips can produceany AN, satisfying (3)]; this will toJ[s for the N, basis. Sinc§ an “off-diagonal” product
be seen below to be at the root of the 2CK model'sFq,Fqj acting on any statgV) just changes some of its

NFL behavior (in revealing contrast to the 1CK model, No; (@nd henceN,) quantum numbersye write

which has no wildly fluctuating quantum number, and tot — FTF t— FTF
lacks NFL behavior). For a giverN,, Sr, Ny) it Fi ¥ 1 “; ‘fxﬁ 12tz
thus suffices to solve the problem in the corresponding FrF = FiFp, 9

invariant subspace g a; [N, St — %,:N}',M;ﬂ) o

INL Sy + L N NG + 1), to be denoted byS thereby defining new Klein factorgf,, F,[ satisfying
cr»OT 2 f> X N y ,

_ — Ty
where the prime on the sum indicates its restrictiodNg [Fs. Nyr] = 8y F, [ F - @] = 0, and{Fy, Fyr} = 28,y
values respecting (3). Formally, these operators act on an extended Fock space

. . 4
Bosonization—To bosonize [5] the model in terms of [11] of states with arbitraryN" € (Z + P/2)". Its
the originalc.,;’s [8,9], we define bosonic fields through Physical subspace contains only those states that obey
o (3), and by (9) it is closed under thmairwise action of
blyi=—= > clipajckajy  (q=An, >0), F's. This simple construction for keeping track 4,
g ez ' guantum numbers is the main innovation of this Letter.
-1 ‘ . Next we define gseudofermiofield ¢, (x) [5] b
baj(r) = D —= (e Wbya; + bl e, P A wA( ) 5] by
0<n, €7+ \/n_q ¢x(x) = a*I/Zﬁeﬂ( .;71/2)2WX/L671¢7X(X)’ (10)

which account for particle-hole excitations (tlkes by it as/A; & —ikx . ;
construction satisfy [b,4 bl i] = 8490406y and and expand. } é A 27 eT s, by analogy with (4)

- qaj>Vq'a’jl qq'Caa’9jj"  © and (1), which imply{cz,,cp } = 6. In the ciq; ba-
[bgaj Najr] = 0). Then the usuabosonization relation  sjs the c;,’s create highly' nonlinear combinations of

Yaj(x) = Faje*i(ﬁar1/2)27rx/Le*i¢a.f<x), (4) electron-hole excitations, as in clear from thekxplicit
holds as operator identity, where thdein factors[g] ~ definition, Via ex and . in terms of thecy,,'s. Since
Foj = \/E%j(o)eiqsa,w) (see [9]) satisfy[Faj,Narjr] - N; € Z + 7, we note that), has aP-dependent bound-

s . . - 1-P
(Saa’(sjijaj, [F, ¢] =0, and {Faj,Fct’j’} = 23aa’6jj" ahry CﬁndlAtlonj:Nl'gnplymg £ AL(']"1E - _T), and Tur-
ThusF,;, F\; ladder between th&/,;, N,; = 1 Hilbert ther thatA, (N.'/2 t 2420 b sbex) = Hou + P/8,
spaces without creating particle-hole excitations, andVhereHox = 373 k : ¢z cx, : and : : means normal order-
ensure prope¢, 1 anticommutation relations. ing of cz,’s, with >z : c%xch c= N, — P/2. We fur-
To exploit the conservc_ed guantities !n thé, basis, we ther define the “local pseudofermiory = F.1s_, im-
now use the transformation (2) to define new Bose f'eld"plying C;Cd — 5. + % Eliminating A, in the subspace

byaj — bgy @ande,; — ¢,. Writing H in terms of these . o i t .
; ; ; . S using N; = St + 5 — C4Cq, WE Can rewriteH' as
[via (4)], only ¢, and golx couple to the impurity [5]: Hoyy (be. by, be, Nos NJ) + H, + Eg, whereH,,, has a
Ho = A, Z 5 A2+ Z qb;fybqy, (5) trivial spectrum andd, is quadratic:
y

) y.ng>0
A ' ; Hy = eqchcq + Hoe +ALT Z(c%x + ¢z, (ca — ehy,
H. = MALS. NG + LA Y figilby — by, z

ngy>0
> 6)  Eg=AL(SE— 5+ P/81— Lhi + ho(Sr — ).

\ Here T = A% /4a and e, = h; — h, is the spin flip

= 2L o005 N FlFee© + He. (7)  energy cost. As first noted by EK [5], who derived!
2a j=* for L — oo, impurity properties show NFL behavior since

To eliminateH_, make the EK [5] unitary transformation “half the pseudofermion,lc; + c}), decouples.

H' = UHU', with U(A;) = *5¢O0 " This yields Diagonalizing H,.—To study the NFL behavior of

H) = H), (Hy + H,) = Hy + A, AL NS, + const, electronproperties, caused by the nonconservatiof\gf
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we diagonalizeH,. First, define further pseudofermions ~Figure 1 displayS(E — Emin)/A; for the lowest few
having all non-negative energies; = % (cr, + szx) |E) that satisfy the GGC. Figure 1(.a) shows the evolution
and B = (e + cT—) for E> 0 if P =1 then of the spectrum_toward the EI_< line for A, e.[o,l]

k+ iv2 \"kx —kx ; ' at I' = ¢, =0 [i.e., free fermions, phase shifted by
ag = cox, and ag = ¢4 (0r cg) for €4 >0 (or =0).  *A.7/2 in the spin sector, see (8)]. Figure 1(b) shows
Then thept's decouple inH,, and a Bogoliubov transfor- its further evolutionon the EK line for I'/A; € [0, %]
mationa, = > ,_;% Y=+ Bens(a) + va,)yields[11] at A, = 1, e, = 0. DecreasingA; at fixed I' yields

&y . 1 — + 1 an NRG-like crossover spectrum that thy — 0 indeed
H, = B3 + Z 8(% Xe — E) + _Z k<BEBE + E>’ reproduces the NRG’s universal NFL fixed point spectrum
e=0 k>0 [2,3] (irrespective of the specifit value, illustrating the

47Te/(e* — &%) = —cotm(e/A;, — P/2). (11) irrelevance of spin anisotropy [3]). This NFL spectrum

Equation (11) for the pseudofermion eigenenergies also agrees with that found by AL using a so-calfiesion
implies that eaclt smoothly evolves into a corresponding hypothesis4], which our GGC thus proves simply and
(k) asT is turned on. Since(k) = & + % (or =k) for  directly (in contrast to the CFT proof of Ref. [14(b)]).
k < (or >) T, we see very nicely that the spectrum’s NOte that the ground state (with degeneracy 2) has entropy
low- and high-energy parts are strongly and weaklylnz’ a? it must f(_)r flnlteL_ [15] (in contrast, the celebrated
perturbed, respectively, with crossover scBle= T [5].  result;In2 requires taking. — « beforeT — 0).

As mentioned above, the pseudofermions act on an Next we illustrate W|Ison_’s program of extracting the
extended Fock space. To identify which eigenstafes MOst relevant operator's dimensions from thedepen-
of H' are physical, note that each has to adiabaticallyjence of the finite-size correction® (L) = E(I'/A.) —
develop, ad" increases from 0, from some state obeyingf(®), to the universal NFL spectrum: Foe; = 0,
the free gluing condition (3). The latter can be shownEq. (11) gives‘z—f ~ % thus on the EK line the least
[11] to develop into the general gluing condition (GGC) irrelevant operator has dimension 1, but perturbative cor-
[12] that(E|[Y .= & @, + Yg-o BiBr] mo2 |E) must rections inA, — 1 yield §- ~ 57, thus the general
be equal td N, + N; — (Sp + % + g — P,)] mod2, Ie_adlng_lrrellevant operators (absen_tthe EK line) haye
where P, = 0(1) for &, >0 (<0). The GGC and dimension; [4,11,14]. Next, turning on a local field
Egs. (11) together constitute an exact analytical solutio¢ = %i, we find from (11) that forh; < h = {/I'/L
of the 2CK model at the EK line for arbitrary,, #;,  the NFL spectrum is only slightly affected, while for
andh,. h. < h; < T the spectrum has three distinct regions: It

Relation to RG methods-Our exact solution allows S Fermi-liquid-like [3] (with uniform level spacing) for
us to implement Anderson “poor man’s scaling” and Wil- ¢ < hg = hT and ¢ > I', and NFL-like (nonuniform
son’s NRG treatments of the Kondo problem analytically,level spacings) forhy < ¢ < I'. Both the L depen-
thus illustrating the main idea behind bothamely, to dence ofs. and theh; dependence of the crossover scale
try to uncover the low-energy physics via an RG trans-hg show that the local magnetic field is relevant, with di-
formation. In the first, the RG is generated by reducing mension—%; it causes a crossover, shown in Fig. 1(c), to
(at fixed L, usually = «) the bandwidth while adjusting a Fermi-liquid spectrum for all states with<< h.
the couplings to keep the dynamical properties invariant. For I'/A; — «, h — 0, we find logarithmic diver-
Since the cutoff used when bosonizinglifa(~pr) and  gences for the susceptibility ~ ;- In('L) and the
Z"?A(?curs de;ﬁ’AE)nly throughI’, the scaling equations [6] . fluctuations <5sz> ~ % In(T'L) (with () = 0).

ana = 0. Tmg = 1/2, which imply thatA, grows un-  Both are clear signs of 2CK NFL physics: The first shows
der rescaling [13], are exact along the EK line. Renor-

malizing the spin flip vertex, possible only approximately
in the originalc,; basis by summing selected diagrams, 1.5 IC

thus becomes trivial after bosonizing and refermionizing _ AEtree i) (8)/AEK% AFen
which in effect resumall diagrams into a quadratic form. - 1.0 (2458) S /)/(1737

Wilson's NRG [2,3] is, in effect, a finite-size scaling — N (18> &/ @ ©)
method which increases (at fixed bandwidth and cou, & | (8 ® 1 ®
plings) the system size, thus decreasing the mean lev |, 0.5 \ ) ((15;)
spacing and pushing ever more eigenenergies down infra i (8 SR =
the spectrum’s strongly perturbed regime belby Each 0.0 2 @ @ O ()
RG step enlarges the system by order> 1 by includ- 0.0 0.5 1.0 10-5 01 10 10 2.0 3.0
ing an extra “onion-skin shell” of electrons, then rescales Az /AL led /T

H — AH to measure energy in units of the new re-FIG 1. Al eigenenergiesA? — (E — Ev)/AL = 1 (de
. o : . 1. = (E — Epin) /AL = .

duced /Ievel spacing. We can mimick this by tra.nSformmggeneracies in parentheses) of the fHll as functions of (a)

L—L"= AL (thusI'/A, — AT'/A;) and plotting the 3 c0/1] at T = &, = 0; (b) T/A, € [0,%] at A. = 1,

T

spectrum in units of; = 7. eq = 0; (C) |eql/T €[0,3.5] at fixed[ /A, > 1, A, = 1.
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that no spin singlet is formed due to “overscreening,” therelations such as (13); it directly yields, e.g., the so-called

second how strongly this perturbs the electron sea. “unitarity paradox” [7] (e k(X)L (x)) ~ 0 (for
Relation to CFT-—Recent CFT [7] and scaling [6] [ — o, then|x’ — x| — «). Note, though, that proba-

arguments showed that the NFL regime can be describegllity is not lost during scatteringy (x) shows that each

by free boson fields.This can be confirmed very easily pseudoparticlecg/ incident from x > 0 is “Andreev-

by finding the scattering state operatcif%‘x [and field  gcattered,” emerxging ak < 0 as pseudoholec .,

#1(x)] into which the freech’s [4!(x)] develop when orthogonal to what was incidentthis very NFL-like

I' is turned on adiabatically as”'T" (at e, = 0), and behavior dramatically illustrates the effects diV,

deducing from these the behavior of thg, fields. nonconservation.

In the continuum limit [ — o, then (A, <) n — 0%], To find AL’s boundary operatorsn terms of the,’s
the 5%):15 obey [16] the Lippmann-Schwinger equation [~6,11]~,Tone calculates the operator product expansion of
[H., el 1= kel + i@l — ¢l), which gives [16] Yraj¥La . Sincem, = —1, all terms contain a factor
> Y kx kx kx kx *ig, _ : : [ I : :
e~'® (y = s, f or x) with dimensions; this ultimately
LI T T causes the famoug'/? in the resistivity [4,6,7].
kx kx i In conclusion, finite-size bosonization allows one (i) to
% zrk(cz’x + ey mimick, in an exactway, the strategy of standard RG
[((k + in)(k + i4nT) — &3] (k — % + in) approaches and (ii) to recover with remarkable ease all

exact results known from CFT for the NFL fixed point. It
thus constitutes a bridge between these theories.
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