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Abstract

Since 26 years, it is well known that quantum point contacts (QPCs) show quantized
conductance steps in terms of the conductance quantum GQ = 2e2

h when the voltage of
the applied gates and thus the barrier height of the QPC is varied. This behavior can
be understood in a non-interacting particle picture, assuming that the transport stems
from single electrons traveling through the QPC. However, since the earliest experiments
there were deviations from this ideal behavior observed. The most striking one, the so
called ”0.7-anomaly” is a dip in the conductance step between the pinch-off and the first
conductance plateau at roughly G ≈ 0.7 · GQ. Ever since, that anomaly has been the
subject of controversial discussion which is still going on. Recently, Bauer et al. [1]
managed to give a consistent explanation for the 0.7-anomaly, identifying it’s origin in a
smeared van Hove singularity in the center of the QPC. Using an short ranged interaction
model for the QPC, the conductance was explicitly calculated, employing the functional
renormalization group (fRG) method. As an approximation within this method they
applied a so called ”coupled ladder approximation” (CLA) which reduces efficiently the
degrees of freedom by exploiting the particular structure of the fRG flow equations.
In this thesis, we will develop an fRG scheme suitable to take longer ranged interactions

into account. Explicitly, we will set up a coupled ladder approximation (CLA) similar
to the one of Bauer et al., but allowing also longer ranged contributions for the bare
interaction. Using various symmetries of our system, we end up at a system of ODEs
which we solve numerically.
We then study the results of this new algorithm using the previous model with short
ranged interactions, as well as models with longer ranged interactions. For the latter,
we observe that in a certain regime increased long ranged interactions are capable of
actually increasing the conductance. We study this -on first sight- contra intuitive result
by examining conductance, density, and magnetic susceptibility for various parameters.
As cause of this physical behavior we suspect a Wigner like crystallization process of the
QPC in the presence of long ranged interactions.
To conclude this thesis, we further examine two more cases modeled by short ranged
interactions, namely the transition between a QPC and a quantum dot (QD) and a QPC
with non-parabolic potential. This was motivated by the improved convergence of our
new algorithm compared to the previous method since the last two cases are known to
suffer from convergence issues due to the relative flat barrier top.
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1. Introduction

The transport through devices on the nano-scale has been studied extensively in the
last decades involving a wide range of experiments. From the ”classical” quantum point
contact and quantum dots in 2 dimensional electron gases (2DEG) studied in [2] one has
evolved to using various kinds of other structures, including actuall ”wires”. A prominent
example for this development is the use of single carbon nanotubes, see for example [3]
which are there grown to connect two electrodes. Nevertheless, the understanding of
the transport mechanisms in this devices is still a topic of extensive research. One of
the interesting many body features, the 0.7-anomaly which was already observed back
in [2] and first reported in [4], has received a lot of controversy discussion over the years.
Prominent approaches to explain the 0.7-anomaly where for example based on the Kondo
effect [5], [6] or a spontaneous spin polarization [7] in the QPC.
The 0.7 feature was also extensively studied in our group, foremost by Florian Bauer and
Jan Heyder who managed to give a consistent and physical intuitive explanation for this
effect [1]. They actually computed the drop in the conductance at the 0.7 shoulder using
an numerical fRG-approach. Furthermore, they where also able to explain the reason
for this anomaly, namely a smeared out van Hove singularity [8] in the local density of
states at the center of the QPC. When measuring a conductance trace of a QPC by
varying the gate voltage, this smeared out singularity causes the anomalous effects in
the observables whenever it is close to the chemical potential.
This many-body effects of the QPC will be elaborated in detail in chapter 5. As a

starting ground, we will use this introductory chapter to explain the concept of a QPC
and briefly summarize it’s non-interacting key features.

1.1. The experimental setup: 2DEG
The typical environment in which quantum point contacts (QPCs) are realized is a 2-
dimensional electron gas (2DEG) at the junction of oppositely doped semiconductors.
A often used setup is, for example, a thin layer of n-doped GaAlAs on a p-doped semi-
conductor of GaAs [9]. Since the two materials have the same lattice constant, one gets
a clean interface without defects acting as impurities. Due to the different doping we
have a difference in the bare chemical potentials (i.e. the potentials before the two layers
are brought together). Thus, when the two layers touch, the conductance band of the
GaAlAs will be depleted and the electrons wander to the valence band of the GaAs 1

(see fig. 1.1).

1The interested reader may find a thorough introduction to the physics in the 2DEG in the textbook
”Quantum Transport” by Nazarov & Blanter [9], from which we have adopted fig. 1.1 and fig. 1.2
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Figure 1.2.: Cut through the semiconducting layers of our GaAlAs-GaAs structure. The
2DEG (here depicted in red) formes at the junction between the layers.

e−1
µ1

µ2
GaAlAs

GaAs

Figure 1.1.: Bandstructures of the semiconductors GaAlAs and GaAs. Note the different
chemical potentials due to the respective doping.

If one inspects this redistribution of electrons closer, one finds the structure indicated
in Figure 1.2.
The feature relevant for our considerations is the metallic behavior which is narrowly

constricted in z direction, at the junction of the two layers. This forms then effectively a
two dimensional electron gas (2DEG). Via electrodes, so called gates, attached on top of
our GaAlAs-GaAs structure, one can realize a multitude of different potential shapes in
this two dimensional plane. A quantum point contact (QPC) is given by such a special
potential shape explained in the next section.

1.2. The quantum point contact

A QPC is given by a narrow constriction in the otherwise non depleted 2-dimensional
electron gas. Essentially, this can be modeled by a saddlepoint potential like the one
shown in fig. 1.3. If one applies a voltage difference Vsd between the leads L (source) and
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y − direction

x− direction

V(x, y)

Figure 1.3.: Saddlepoint like potential form which we assume to model the shape of our
QPC.

R (drain), i.e. if one effectively changes the chemical potential between the right and
the left hand side of our QPC, an electric current from L to R will be induced. To linear
order in V , this current I will be given by I = G · V , where G is the linear conductance
of our QPC. The probably most astonishing feature of the conductance, namely the
quantization of G in steps of GQ = 2e2

h in terms of the gate voltage Vg (and thus in the
barrier height of the QPC) can already be seen in a very simple, non interacting model.
In fact, this quantization was predicted by Landauer already in 1957 [10] but was the
first time observed in an experiment only back in 1988 by Van Wees et al. [2].
If we assume that the potential V (x, y) in fig. 1.3 changes only adiabatically in x, the
“walls” of our QPC are locally flat and we can make a local separation of variables

Ψn(x, y, z) = ψ(x)φn(a(x), b(x), y, z), (1.1)

where the wave functions φn(a, b, y, z) are determined by the local shape of the con-
striction (here assumed to be rectangular with side lengths a(x), b(x))2. Due to the
finite shape of the constriction, these transverse wave functions φn are quantized with a
discrete quantum number n and obey the differential equation[

− ~
2m

(
∂2

∂y2 + ∂2

∂z2

)
+ Ux(y, z)

]
φn(x, y, z) = En(x)φn(x, y, z). (1.2)

On the other hand, the longitudinal wave function ψ(x) has then to fulfill the differential
equation (

− ~2

2m
∂2

∂x2 + En(x)
)
ψ(x) = Eψ(x), (1.3)

2The actual shape of the walls does not really matter for our argument
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Figure 1.4.: Left: Measurement of the quantized conductance in the original paper by
Van Wees et al. [2] from 1988. The height of the barrier is here reduced
with increasing the gate voltage. Right: Graphical depiction of the chan-
nels leading to the conductance quantization. We sketched here a set of
curves En(x) corresponding to different channels; the ones below the E line
represent open channels, the one which intersects E is a closed channel.

thus En(x) acts like an effective one-dimensional potential. The quantization of the
Conductance (see fig. 1.4) can then be understood in the following way:
At an given energy E of an incoming electron there are only a finite number of En(x)

which are everywhere smaller than E (see fig. 1.4). For this so called ”channels” the QPC
is open, and one can show that each of this channels contributes to the conductance with
the conductance quantum GQ = 2e2

h (see for example [9][chapter 1.2]).
Thus, if in our case one increases the gate voltage Vg, the constriction gets narrower

and therefore the quantization of φn changes, namely the energies En(x) become smaller.
As soon as they are so small that the number of En(x) which are everywhere below E
changes by one, the conductance increases by a step ∆G = GQ. In our work, we will
exclusively study the transition between G = 0 and G = GQ, i.e. the behavior of
the lowest sub-band in the QPC. In order to get a more quantitative description of
transport, we will study models which take also an interaction between electrons into
account. Since these models will be in general not analytically solvable, one has to
apply numerical methods to obtain approximate solutions. Our tool of choice will be
the numerical renormalization group (fRG), discussed in the next chapter.



2. The functional renormalization group - a
summary

2.1. General definitions

As starting point for the physical description of our many body system, we use the
partition function in the grand canonical ensemble

Z = Tr e−β(Ĥ−µN̂), (2.1)

where Ĥ is the Hamiltonian of our system, N̂ the particle number operator and we
assume thermal equilibrium. If we express Ĥ in terms of creation and annihilation
operators and bring it in normal order, we can use coherent states, i.e. eigenstates of the
annihilation operators to cast it into the usual functional integral form. In our case of
interest, i.e. fermionic systems these coherent states will be constructed as an expansion
of our Hilbert space using Grassmann numbers. Without elaborating to much on this
we recommend the book of Negele-Orland [11] to the interested reader. The final form
of the partition function, under the assumption of thermal equilibrium thus reads:

Z =
∫
Dψ∗ψe−

∫ β
0 dτ [

∑
l
ψ∗l (τ+0+)( ∂

∂τ
−µ)ψl(τ)+H({ψ∗},{ψ})], (2.2)

where is already employed a rewriting in a continuous form for the limit of the actual
discrete functional integral.
In the following, we will usually be concerned with an Hamiltonian of the form

H(ψ∗, ψ) =
∑
l

εlψ
∗
l (τ + 0+)ψl(τ)︸ ︷︷ ︸

a

+ 1
4
∑
i,j,k,l

v̄i,j,k,lψ
∗
i (ψ + 0+)ψ∗j (τ + 0+)ψl(τ)ψk(τ)

︸ ︷︷ ︸
b

,

(2.3)
i.e. with an quadratic part (a) (for notational simplicity assumed to be diagonal) ex-
pressing the non interacting properties and a second, two particle part (b) expressing
the interaction between particles.
To outline the idea of the function renormalization group (fRG) 1 approach, we introduce
first a few nomenclature conventions2. We define the n-particle imaginary-time Green’s

1For getting an overview in this technique, the author would like to recommend the works of V. Meden
[12], C. Karrasch [13], and S. Andergassen [14]

2We will mainly follow here the conventions of Bauer et al.

11
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function as follows:
G(n)(α1τ1, . . . , αnτn|α2nτ2n, . . . , αn+1τn+1) =

(−1)n 1
Z

∫
D[ψ∗α(τ)ψα(τ)]e−

∫ β
0 dτ [

∑
α
ψ∗α(τ)( ∂

∂τ
−µ)ψα(τ)+H(ψ∗α(τ),ψα(τ))]

× ψα1(τ) . . . ψαn(τn)ψ∗αn+1(τn+1) . . . ψ∗α2n(τ2n)

(2.4)

and the corresponding generating function as

W (J∗α(τ), Jα(τ)) := 1
Z

∫
D[ψ∗α(τ)ψα(τ)]e−

∫ β
0 dτ [

∑
α
ψα(τ)(∂τ−µ)ψα(τ)+H(ψ∗α(τ),ψα(τ))]

× e−
∫ β

0 dτ
∑

α
[J∗α(τ)ψα(τ)+ψ∗α(τ)Jα(τ)]

=: 〈e−
∫ β

0 dτ
∑

α
[J∗α(τ)ψα(τ)+ψ∗α(τ)Jα(τ)]〉,

(2.5)

where we have as usual denoted the thermal average as 〈〉. With this generating function,
the n-particle imaginary-time Green’s function can be expressed as:

G(n)(α1τ1; . . . ;αnτn|α′1τ ′1; . . . ;α′nτ ′n) = δ2nG(J∗α(τ), Jα(τ))
δJ∗α1(τ1) . . . δJ∗αn(τn)δJα′n(τ ′n) . . . δJα′1(τ ′1)

∣∣∣∣∣
J∗=J=0.

(2.6)
If we furthermore denote with G(n)

c (α1τ1; . . . ;αnτn|α′1τ ′1; . . . ;α′nτ ′n) the n-particle con-
nected Green’s function, i.e the parts of the n-particle Green’s function which consist
of diagrams in which all the external legs are connected, it can be shown via the linked
cluster theorem (see for example the book of Negele-Orland [11][chapter 2.4]) that

G(n)
c (α1τ1; . . . ;αnτn|α′1τ ′1; . . . ;α′nτ ′n) = δ2nW c(J∗α(τ), Jα(τ))

δJ∗α1(τ1) . . . δJαn(τn)δJα′n(τ ′n) . . . δJα′1(τ ′1)

∣∣∣∣∣
J∗=J=0

,

(2.7)
where the generating function of the connected Green’s function W c is given by

W c(J∗α(τ), Jα(τ)) = lnW (J∗α(τ), Jα(τ)). (2.8)

Finally, we can define the generating functional of the one-particle irreducible vertex
function as the Legendre transform of W c

Γ[φ∗α(τ), φα(τ)] :=−W c(J∗α(τ), Jα(τ))−
∑
γ

∫ β

0
dτ ′[φ∗γ(τ ′)Jγ(τ ′) + J∗γ (τ ′)φγ(τ ′)]

+
∑
γ,γ̃

∫ β

0
dτ ′dτ ′′φ∗γ(τ ′)[G0]−1

γγ̃ (τ ′, τ ′′)φγ̃(τ ′′),
(2.9)

where the last term in this line, which does not depend on the source fields J∗α(τ) and
Jα(τ) was merely added for later convenience, and φ∗α(τ), φα(τ) are defined in terms of
the source fields J∗α(τ), Jα(τ) as:

φα =〈aα〉connectedJ∗,J = 〈ψα〉connectedJ∗,J =

− δ

δJ∗α(τ)W
c[J∗α(τ), Jα(τ)],

(2.10)
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and analog for φ∗α(τ):

φ∗α(τ) = 〈a†α(τ)〉connectedJ∗,J = −(−1) δ

δJα(τ)W
c[J∗α(τ), Jα(τ)] = δ

δJα(τ)W
c[J∗α(τ), Jα(τ)].

(2.11)
The one-particle irreducible vertex functions can then be obtained via

Γmφ∗,nφ(α1τ1, . . . αmτm|α′1τ ′1, . . . , α′nτ ′n) =
δm+n

δφ∗α1(τ1) · · · δφ∗αm(τm)δφα′n(τ ′n) · · · δφα′1(τ ′1)Γ[φ∗α(τ), φα(τ)]
∣∣∣∣∣
J∗α=Jα=0

.
(2.12)

2.2. A comment on symmetry breaking
If we look at the partition function (2.2), we see that both the measure Dψ∗ψ as well as
the action S(ψ,ψ∗) are invariant under the U(1) symmetry

ψl → ψle
iα , ψ∗l → ψ∗l e

−iα (2.13)

for all indices l. We assume that this symmetry is also manifest in our physical system,
i.e. the set of paths M over which we integrate in (2.2) is also invariant under this
transformation. Because of this unbroken U(1) symmetry of our system it is immediately
clear that expectation values of products of unequal numbers of ψ’s and ψ∗’s vanish. For
example we have:

〈ψα〉 = eiα〈ψα〉∀α ∈ [0, 2π]
⇒ 〈ψα〉 = 0.

(2.14)

Thus, this U(1) symmetry of our system translates into particle conservation, i.e. the
number of electrons in our system does not change. Furthermore, we show in the fol-
lowing that this symmetry implies that the only non vanishing vertex functions have an
equal number of incoming and outgoing legs, i.e. the only non zero terms in equation
(2.12) will be of the form

γm(α1τ1, . . . , αmτm|α′1τ ′1, . . . , α′mτ ′m) =
δ2mΓ[φ∗α(τ), φα(τ)]

δφ∗α1(τ1) · · · δφ∗αm(τm)δφα′m(τ ′m) · · · δφα′1(τ ′1)

∣∣∣∣∣
J∗α=Jα=0

.
(2.15)

To show this, it suffices to prove that Γ(φ∗, φ) is invariant under the U(1) symmetry
φ → eiαφ, φ∗ → e−iαφ∗, which makes sure that Γ(φ∗, φ) consists only of terms with
equal powers in φ and φ∗. For this we first look back at (2.5). By performing a change of
variables ψ → eiαψ, ψ∗ → e−iαψ∗ and using the invariance of M, Dψ∗ψ and S under this
transformation, we see immediately thatW (e−iαJ∗α(τ), eiαJα(τ)) = W (J∗α(τ), Jα(τ)), i.e.
W is U(1) symmetric. Then also W c has this symmetry, which can be expressend in
infinitesimal terms as∫ β

0
dτ

[
iαJα(τ)δW

c(J∗, J)
δJα(τ) + (−iα)J∗α(τ)δW

c(J∗, J)
δJ∗α(τ)

]
= 0. (2.16)
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We now look at the definition of Γ(φ∗, φ) as the Legendre transform of W c (eq. (2.9))
and obtain the reciprocal relations for the effective potential

δΓ(φ∗α(τ), φα(τ))
δφα(τ) =

∑
γ

∫ β

0
dτ ′

[
− δW c

δJ∗γ (τ ′)
δJ∗γ (τ ′)
δφα(τ) −

δW c

δJγ(τ ′)
δJγ(τ ′)
δφα(τ) + φ∗γ(τ ′)δJγ(τ ′)

δφα(τ)

−
δJ∗γ (τ ′)
δφα(τ) φγ(τ ′) + J∗γ (τ ′)δαγδ(τ − τ ′)− φ∗γ(τ ′)[G0]−1

γα(τ ′, τ)
]

=J∗α(τ)−
∑
γ

∫ β

0
dτ ′φ∗γ(τ ′)[G0]−1

γα(τ ′, τ)

(2.17)

and

δΓ(φ∗, φ)
δφ∗α(τ) =

∑
γ

∫ β

0
dτ ′

[
− δW c

δJ∗γ (τ ′)
δJ∗γ (τ ′)
δφ∗α(τ) −

δW c

δJγ(τ ′)
δJγ(τ ′)
δφ∗α(τ)

−δαγδ(τ ′ − τ)Jγ(τ ′) + φ∗γ(τ ′)δJγ(τ ′)
δφ∗α(τ) −

δJ∗γ (τ ′)
δφ∗α(τ) φγ(τ ′) + [G0]−1

αγ (τ, τ ′)φγ(τ ′)
]

=− Jα(τ) +
∑
γ

∫ β

0
dτ ′[G0]−1

αγ (τ, τ ′)φγ(τ ′).

(2.18)

If we use this relations in equation (2.16) we get

0 =
∫ β

0

[
(iα)

(
− δΓ
δφ∗α(τ) +

∑
γ

∫ β

0
dτ ′[G0]−1

αγ (τ, τ ′)φγ(τ ′)
)
φ∗α(τ)

+(−iα)
(

δΓ
δφα(τ) +

∑
γ

∫ β

0
dτ ′φ∗γ(τ ′)[G0]−1

γα(τ ′, τ)
)

(−φα(τ))
]

=
∫ β

0
dτ

[
(iα)

(
− δΓ
δφ∗α(τ)

)
φ∗α(τ) + (−iα)

(
− δΓ
δφα(τ)

)
φα(τ)

]
.

(2.19)

Thus, Γ(φ∗, φ) is invariant under the U(1) symmetry φ → eiαφ, φ∗ → e−iαφ∗ which we
wanted to show.

2.3. Derivation of the flow equations
By further examination of W and Γ (which we will do a little bit later) it can be
established that the self-energy Σ which is given by the famous Dyson equation

G−1 = [G0]−1 − Σ, (2.20)

can be expressed as

γ1(α1, τ1|α′1, τ ′1) = δ2Γ
δφ∗α1δφα1

∣∣∣∣∣
φ=φ∗=0

= −Σ. (2.21)
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Thus, in order to get the full propagator of the system it suffices to determine the self
energy (we assume that G0 of the non-interacting system is known), which we can relate
to determining the vertex functions {γm} or Γ, respectively. This is the purpose of our
fRG-scheme. The general idea is to introduce a flow parameter Λ into the propagator G0

of the non-interacting system, i.e. we consider a function G0(Λ) with G0(Λfinal) = G0 and
G0(Λinitial) is something very simple, in our case G0(Λinitial) = 0. Thinking in terms of
diagrams, this initial conditions immediately imply for the one- and two-particle vertices:
γΛinit

1 = 0 and γΛinit
2 = ν, where ν is the bare vertex.

We can now derive a flow equation for our system in Λ and follow the flow of this equa-
tion from the simple system at Λinitial to the full interacting system at Λfinal. Concretely,
we consider for this purpose the vertex functions. Via (2.9) the flow parameter Λ is intro-
duced in the generating functional of the vertex functions and therefore also contained
in them. In order to get the desired system of differential equations, we differentiate
(2.9) with respect to Λ and get

d

dΛΓΛ(φ∗, φ) = d

dΛ

[
−W cΛ(J∗α(τ), Jα(τ))−

∑
γ

∫ β

0
dτ ′[φ∗γ(τ ′)Jγ(τ ′) + J∗γ (τ ′)φγ(τ ′)]

+
∑
γ,γ̃

∫ β

0
dτ ′dτ ′′φ∗γ(τ ′)[G0]−1

γγ̃ (τ ′, τ ′′)φγ̃(τ ′′)


=− d

dΛW
cΛ(J∗Λα (τ), JΛ

α (τ),Λ)− (φ∗, d
dΛJ

Λ)

− ( d
dΛJ

∗Λ, φ) + (φ∗, d
dΛ[G0Λ]−1φ)

=− ∂

∂ΛW
cΛ(J∗, J,Λ)− d

dΛJ
∗ δW

c

δJ∗
− d

dΛJ
δW c

δJ

− (φ∗, d
dΛJ

Λ)− ( d
dΛJ

∗Λ, φ) + (φ∗, ∂
∂Λ[G0−1]Λφ),

(2.22)
and by definition of φ∗, φ (equations ((2.11)),((2.10))) we arrive at

d

dΛΓΛ(φ∗, φ) = − ∂

∂ΛW
cΛ + (φ∗, ∂Λ[G0]−1Λφ) (2.23)

(where we have employed the anticommutation relations for Grassmann variables). The
partial derivative ∂

∂ΛW
cΛ can be obtained from differentiating equation (2.8) partially

with respect to Λ:3

WΛ(J∗, J) = 1
Z(Λ)

∫
dψ∗dψ exp{S0(Λ)− Sint − (ψ∗, J)− (J∗, ψ)} =

Z0(Λ)
Z(Λ) ·

1
Z0(Λ)

∫
dψ∗dψ exp{S0(Λ)− Sint − (ψ∗, J)− (J∗, ψ)}

⇒ ∂

∂ΛW
c = ∂

∂Λ ln
(
Z0(Λ)
Z(Λ)

)
︸ ︷︷ ︸=: c(Λ) + 1

W
· ∂ΛW.

(2.24)

3To illustrate the idea clearly and don’t get lost in notation we forgo indices.
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For this expression one evaluates first

∂Λ
eS0(Λ)

Z0(Λ) = 1
Z0(Λ)∂ΛS0(Λ)eS0(Λ) −

( 1
Z0(Λ)

)2
eS0(Λ)∂ΛZ0(Λ)

= 1
Z0(Λ) Ṡ0(Λ)eS0(Λ) −

( 1
Z0(Λ)

)2
eS0(Λ)

∫
Dψ∗ψṠ0(Λ)eS0(Λ)

= eS0(Λ)

Z0(Λ)

[
(ψ∗, ∂Λ[G0(Λ)]−1ψ)− (ψ∗, e

S0(Λ)

Z0
∂Λ[G0(Λ)]−1ψ)

]

= eS0(Λ)

Z0(Λ)
[
(ψ∗, ∂Λ[G0(Λ)]−1ψ)− Tr(G0(Λ)∂Λ[G0(Λ)]−1)

]
.

(2.25)

and therefore
∂

∂ΛW
c(Λ) = −Tr(G0(Λ)∂Λ[G0(Λ)]−1)− 1

W (Λ)

(
δ

δη
, ∂Λ[G0(Λ)]−1 δ

δη∗

)
W (Λ)︸ ︷︷ ︸

=:(2)

+c(Λ).

(2.26)
For (2) we can straight forwardly evaluate

(2) =e−W c(Λ)
(
δ

δJ
, ∂Λ[G0(Λ)]−1 δ

δJ∗

)
eW

c(Λ) + c(Λ) =

=
(
δW c(Λ)
δJ

, ∂Λ[G0(Λ)]−1 δW
c(Λ)
δJ∗

)
+
(
δ

δJ
, ∂Λ[G0(Λ)]−1 δ

δJ∗

)
W c(Λ) + c(Λ)

=
(
∂W c(Λ)
δJ

, ∂Λ[G0(Λ)]−1 δW
c(Λ)
δJ∗

)
+
∑
k,k′

[
δ2W c(Λ)
δJkδJ

∗
k

∂Λ[G0(Λ)]−1
k,k′

]
+ c(Λ) =

=
(
δW c(Λ)
δJ

, ∂Λ[G0(Λ)]−1 δW
c(Λ)
δJ∗

)
− Tr

(
∂Λ[G0(Λ)]−1 δ

2W c(Λ)
δJ∗δJ

)
+ c(Λ).

(2.27)

And thus we have

∂

∂ΛW
c(Λ) =− Tr(G0(Λ)∂Λ[G0(Λ)]−1) + Tr

(
∂Λ[G0(Λ)]−1 δ

2W c(Λ)
δJ∗δJ

)

−
(
δW c(Λ)
δJ

, ∂Λ[G0(Λ)]−1 δW
c(Λ)
δJ∗

)
.

(2.28)

If we now insert this into (2.23), we end up with

d

dΛΓΛ(φ∗, φ) =
(
δW c(Λ)
δJ

, ∂Λ[G0(Λ)]−1 δW
c(Λ)
δJ∗

)
− Tr

(
∂Λ[G0(Λ)]−1 δ

2W c(Λ)
δJ∗δJ

)
+ Tr(G0(Λ)∂Λ[G0(Λ)]−1) + (φ∗, ∂Λ[G0]−1Λφ)

(2.10),(2.11)= − Tr
(
∂Λ[G0(Λ)]−1 δ

2W c(Λ)
δJ∗δJ

)
+ Tr(G0(Λ)∂Λ[G0(Λ)]−1)− c(Λ).

(2.29)

By looking at this differential equation, one sees that the only remaining task is to
express the term δ2W c(Λ)

δJ∗δJ in terms of derivatives of ΓΛ. If we succeed in this, we remain
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with our desired system of differential equations for the vertex function. In order to
proceed, we use the identity

∫
d2

 δ2W c

δJ∗(3)δJ(2) (−1) δ2W c

δJ∗(3)δJ∗(2)
(−1) δ2W c

δJ(3)δJ(2)
δ2W c

δJ(3)δJ∗(2)

 δ2Γ
δφ∗(2)δφ(1) + [G0]−1 δ2Γ

δφ∗(2)δφ∗(1)
δ2Γ

δφ(2)δφ(1)
δ2Γ

δφ(2)δφ∗(1) − [[G0]−1]T


︸ ︷︷ ︸

:=A

=δ(31)
(

1 0
0 1

)
,

(2.30)

which can be obtained straight forwardly by calculation of the derivative

δφ

δφ
= δ

δφ

(
− δ

δJ∗
W c

)
(2.31)

and the corresponding derivates δφ
δφ∗ ,

δφ∗

δφ and δφ∗

δφ∗ .
Thus, in order to determine δ2W c(Λ)

δJ∗δJ in (2.29), we have to expand (A−1)11 in powers
of φ∗, φ. By looking at the structure of A, this is most conveniently achieved by first
expanding (A−1)11 in powers of

U(Λ) := δ2Γ(Λ)
δφ∗δφ

− δ2Γ(Λ)
δφ∗δφ

∣∣∣∣∣
φ=φ∗=0

, (2.32)

which has by default no 0-th order term in the fields φ, φ∗. Thus, if we have an expansion
of (A−1)11 = δ2W c(Λ)

δJ∗δJ in U(Λ) and compare powers of φ, φ∗ in equation (2.29), we have
to consider for terms of power (φφ∗)n only terms on the r.h.s. up to power Un. Our
desired expansion in U is achieved by writing

δ2Γ
δφ∗δφ

+ [G0]−1 = δ2Γ
δφ∗δφ

− δ2Γ(Λ)
δφ∗δφ

∣∣∣∣∣
φ=φ∗=0

+ δ2Γ(Λ)
δφ∗δφ

∣∣∣∣∣
φ=φ∗=0

+ [G0]−1 =

Dyson= δ2Γ
δφ∗δφ

− δ2Γ(Λ)
δφ∗δφ

∣∣∣∣∣
φ=φ∗=0︸ ︷︷ ︸

U(Λ)

+G−1,
(2.33)

and analog

δ2Γ
δφδφ∗

− [G0]−1T = −U(Λ)T − G−1T . (2.34)
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Therefore, we end up with

A−1 =
(

δ2Γ
δφ∗δφ + [G0]−1 δ2Γ

δφ∗δφ∗

δ2Γ
δφδφ

δ2Γ
δφδφ∗ − [G0]−1T

)−1

=
(
U(Λ) + G−1 δ2Γ

δφ∗δφ∗

δ2Γ
δφδφ −U(Λ)T − G−1T

)−1

=

[(
G−1 0

0 −G−1T

)
+
(
U(Λ) δ2Γ

δφ∗δφ∗

δ2Γ
δφδφ −U(Λ)T

)]−1

=

1−
(
−G−1 0

0 G−1T

)−1

︸ ︷︷ ︸
=:B

(
U(Λ) δ2Γ

δφ∗δφ∗

δ2Γ
δφδφ −U(Λ)T

)
︸ ︷︷ ︸

=:C


−1

·
(
G−1 0

0 −G−1T

)−1

,

(2.35)

and by expanding the inverse into a power series

A−1 =[1−BC]−1(−B) =
∞∑
k=0

(BC)k(−B) = 1(−B) +BC(−B) + · · · =

(
G 0
0 −GT

)
−
(
G 0
0 −GT

)(
U(Λ) δ2Γ

δφ∗δφ∗

δ2Γ
δφδφ −U(Λ)T

)(
G 0
0 −GT

)
+ . . . .

(2.36)

we arrive at
A−1

11 = G − GU(Λ)G + . . . (2.37)
Now we can determine the hierarchy of flow equations by plugging expansion (2.36) in
equation (2.29) and count powers of φ, φ∗. As we have already seen in our section about
symmetry breaking, Γ can only contain products of equal powers of φ and φ∗ and we
get for the first two vertex functions:

d

dΛγ0 = Tr[G0(Λ)∂Λ[G0(Λ)]−1]− Tr[∂Λ[G0(Λ)]−1G]− c(Λ)

d

dΛγ1 = Tr[G∂Λ[G0(Λ)]−1Gγ2] = Tr[Sγ2],
(2.38)

where S := G∂Λ[G0(Λ)]−1G is the so called ”single scale propagator” since it will turn
out that S depends only on the scale Λ and not on another frequency. Last but not least,
we obtain for the flow of the two-particle vertex:

d

dΛγ2(k′1, k′2; k1, k2) = Tr[Sγ3(k′1, k′2, ·; k1, k2, ·)]

+ Tr[Sγ2(·, ·; k1, k2)GTγ2(k′1, k′2; ·, ·)]
− Tr[Sγ2(k′1, ·; k1, ·)Gγ2(k′2, ·; k2, ·)]
− Tr[Sγ2(k′2, ·; k2, ·)Gγ2(k′1, ·; k1, ·)]
+ Tr[Sγ2(k′2, ·; k1, ·)Gγ2(k′1, ·; k2, ·)]
+ Tr[Sγ2(k′1, ·; k2, ·)Gγ2(k′2, ·; k1, ·)].

(2.39)

In this work we will make the usual fRG-approximation, namely to truncate the hierarchy
of flow equations at this point and set all vertices γm>2 = 0.



3. Modeling of QPCs

3.1. From the continuous to a discrete model
In chapter 1, we have modeled our QPC by two semi-finite leads joined by a narrow
constriction which is described by a potential V (x, y), see figure 1.3. Furthermore, we
have seen that we get an essentially one dimensional model whose Hamiltonian is given
by

H0 = − ~2

2m∂2
x + V (x)− σ

2B, (3.1)

where we have inserted a Zeeman term to include the effects of an external magnetic field
coupled to the spin of the electrons. As discussed, the one-dimensional potential consists
of the ”real” part, that is the part of V (x, y) along y = 0, as well as the part En(x)
coming from the energy of the transverse component of the wave function. Therefore,

V (x) = V (x, y = 0) + En(x). (3.2)

In order to carry out numerical calculations, it is convenient to discretize this model by
assuming x = ja to be lattice points where a is the lattice spacing and j ∈ Z is the site
index. In this discrete form the spacial derivatives become

∂xψ(x) =ψ((j + 1)a)− ψ(ja)
a

∂2
xψ(x) =ψ((j + 1)a)− 2ψ(ja) + ψ((j − 1)a)

a2 .

(3.3)

Thus, we can rewrite our continuous Hamiltonian (3.1) in discrete form as

H0(ψ) = − ~2

2m
ψ((j + 1)a)− 2ψ(ja) + ψ((j − 1)a)

a2 + (Vj −
σ

2B)ψ(ja). (3.4)

Since our systems contains not only one but many electrons, it is convenient to employ
second quantization and rewrite this single particle Hamiltonian on Fock space. If the
energy is measured relative to the chemical potential at half filling µ = 0 where the
hopping τ is defined via m

~2 = 1
2τa2 , we end up with

H0 =
∑
j,σ

[(Vj −
σ

2B − µ)d†j,σdj,σ − τ(d†j+1,σdj,σ + h.c.)]. (3.5)

In the following, we will divide this H0 in two parts H0 = Hc +Hl
1, where Hc consists

of the sites in the center of our QPC, i.e the sites we assume to have Vj 6= 0. On the
other hand, Hl consists only of sites where Vj = 0, namely the leads. For a graphical
depiction of this model, see fig. 3.1.
1H” center” and H” lead”

19
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left lead right leadcentral region

−τ
−τ

U0

U1

Figure 3.1.: Graphical depiction of our model. We have the hopping −τ between neigh-
boring lattice sites, a quadratic potential barrier in the central region, as
well as off- and on-site interactions. In the leads neither a potential nor
interactions are present, leaving us thus just with two semi-infinite tight
binding chains. Notice that due to the Pauli principle, the on-site inter-
action can only occur between electrons with opposite spins, whereas the
off-site interactions are spin independent.

3.2. Hilbert space and model Hamiltonian
Before we proceed further and introduce interactions, we will just say a few words about
the Hilbert space H of our model to make sure everything is well defined. In the discrete
form, the Hilbert space of a single electron is Hs = L2(Z) 2. The full physical Hilbert
space of our model will then be

H = F
( ∞⊗
N=0

L2(Z)N
)
, (3.6)

i.e. the fermionic Fock space over L2(Z). Lastly, for our fRG approach we have expanded
this physical Hilbert space using a Grassmann algebra generated by ξj , ξ∗j where j ∈ Z
as scalars, instead of the complex numbers C.
Having specified our Hilbert space, we can now write down the full model including
interactions

H = Hl +Hc +Hlc, (3.7)
with

Hl =−
∑
σ

∑
s=L,R

∞∑
j=1

[µsc†j,s,σcj,s,σ + τ(c†j+1,s,σcj+1,s,σ + h.c.)]

Hc =
N∑

j=−N

∑
σ

[Ej,σd†j,σdj,σ − τ(dj+1,σdj,σ + h.c.)]

+ 1
2
∑
σ1,σ2

∑
l,k

U(l, k)d†l,σ1
d†k,σ2

dk,σ2dl,σ1

Hlc =− τ
∑
σ

(c†1,L,σd−N,σ + d†N,σc1,R,σ + h.c.),

(3.8)

2Note that due to the discreteness of our model, we don’t have to worry about the differentiability of
our functions. Thus, we are allowed to consider here simply L2(Z) without additional restrictions.
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where Ej,σ = (Vj − µ− σB
2 ). We take here interactions U(l, k) only in the central region

into account. This is physical sensible due to the following reasoning: The effective inter-
action strength is given by the product U · Aj(µ) -which we will see later- where Aj(µ)
is the local density of states at the chemical potential. Since Aj(µ) has its maximum in
the central region but is outside of it much smaller, we can neglect it in the leads and
therefore start from the beginning with non interacting leads. As mentioned before, our
goal is now to obtain the full propagator G of our system.

3.3. Integrating out the leads
By construction, the bare interaction in the leads is zero. Looking at the fRG equations
(2.38) and (2.39), we see that this property remains during the whole flow. Both the
derivatives of the self-energy Σ as well as of the two particle vertex γ2 have on their right
hand side (r.h.s.) a vertex γ2. Thus, if one index in d

dΛΣ or d
dΛγ2 is taken from the leads,

this particular index enters also in γ2 in the r.h.s.. Since at the beginning of the flow
γ2 = ν = 0 in the leads and thus d

dΛΣ = 0, d
dΛγ2 = 0, the self-energy and the two particle

vertex will remain zero during the flow. What remains is a system of flow equations with
a number of spacial degrees of freedom (dof) ≤ (2N+1)2 +(2N+1)4, since the indices in
γ1(j1, j′1) and γ2(j1, j2; j′1, j′2) have to be taken only from the 2N + 1 sites of the central
region. Thus, the interaction does not enter the leads. It is then convenient to split
our single particle Hilbert space between the interacting central region and the leads.
According to this splitting, the Hamiltonian can be divided into Hcc, Hcl, Hlc, and Hll:

H =
(
Hcc Hcl

Hlc Hll

)
. (3.9)

Using Dyson’s equation
G = 1

[G0]−1 + γ1
(3.10)

the full propagator G can be obtained via

G(z) =
(
z −Hcc − Σcc −Hcl

−Hlc z −Hll

)−1

=:
(
Gcc Gcl
Glc Gll

)
(3.11)

since Σlc = Σcl = Σll = 0.
Using the general formula for the inverse of a block matrix[

A B
C D

]−1

=
[

(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
, (3.12)

we straight forwardly end up with

Gcc = 1
z −Hcc − Σcc −HclglHlc

,

Gll = 1
z −Hll −HlcgcHcl

,

Gcl =GccHclgl = gcHclGll,
Glc =glHlcGcc = GllHlcgc,

(3.13)
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with gl = 1
z−Hll and gc = 1

z−Hcc . Furthermore, we can also express Gll in terms of Gcc as

Gll = gl + glHlcGccHclgl. (3.14)

We note here that these expressions for the different parts of the propagator in terms of
Gcc can be interpreted very easily. For example, Gcl = GccHclgl describes the movement
of a particle from the leads to the central region. The internal sums are easily evaluated
since Hcl consists only of two entries, namely the coupling of the uttermost sites of the
central region to the first sites of the corresponding leads. Since the leads themselves
are not coupled directly, i.e.

Hll =
(
HLl 0

0 HRl

)
, (3.15)

the lead propagator splits also in this blocks

gl =
(
gLl 0
0 gRl

)
(3.16)

and equation Gcl = GccHclgl describes the following electron movement: Assume we start
at some point in the right lead. From there we can move arbitrarily in the right lead
till at some time we end up at the first site of the lead and then hop to the site N (the
right outermost site) of the dot. From that site, we can then move arbitrarily (including
moving back into the leads) to the point of the central region where the movement is
supposed to end. Equation Gll = gl + glHlcGccHclgl admits an analogous interpretation.
The movement to go from one lead point to another lead point consists of the motion
which is purely contained in the leads (gl), as well as the motion where at least once we
enter and leave the central region (glHlcGccHclgl).
From the relations (3.13) we see that the only remaining task is to calculate the prop-
agator Gcc = 1

z−Hcc−Σcc−HclglHlc . To achieve this, we notice again that the internal
summation over site indices in HclglHlc collapses into a single term since the coupling
in Hlc connects only the outermost sites of the central region with the respective leads
and the leads themselves are not directly coupled. It thus suffices to know the value
of gl at the innermost sites R,1 and L,1 of the leads. Since the right and the left lead
are symmetric to each other, these two values are the same. This leaves us just with
the task to calculate the one-one component g11(z) of the propagator of a semi-infinite
tight binding chain, which again is most easily established via the matrix identity (3.12).
The Hamiltonian is here (for notational convenience we will not explicitly right down
a possible Zeeman term in the leads but absorb it into the chemical potential µ which
thus might depend on spin)

Htb =



µ −τ 0
−τ µ −τ

−τ
. . .

. . .

0
. . .

. . .

. . .


(3.17)



3.4. The linear response conductance 23

and therefore the propagator reads

g(z) =


z − µ τ 0 · · ·
τ z − µ τ

0 τ
. . .

...
. . .

. . .


−1

. (3.18)

If we use now the inversion formula for block matrices (3.12), we get

g11(z) =[z − µ−
(
τ 0 · · ·

)
g(z)

(
τ 0 · · ·

)
]−1
11

= [z − µ− τ2g11(z)]−1
11

⇒ (z − µ)g11(z)− τ2g11(z)2 − 1 = 0

⇒ g11(z) = 1
2τ2

[
z + µ± i

√
4τ2 − (z + µ)2

]
.

(3.19)

To determine the ”±” sign, we use the general properties a propagator has to satisfy.
Firstly, it must hold lim|z|→∞ g11(z) = 0. We immediately see that limR→∞ g11(iR) = 0,
only if we choose the ”−” sign and limR→∞ g11(−iR) = 0, only if we choose the ”+” sign.
Secondly, since the only brunch cut of the propagator can be at the real axis, this sign
change has to occur there:

g11(z) =
{

1
2τ2 [z + µ− i

√
4τ2 − (z + µ)2] , if Im(z) > 0

1
2τ2 [z + µ+ i

√
4τ2 − (z + µ)2 , if Im(z) < 0 . (3.20)

Thus, we end up with

Gcc =
[
z −Hcc − Σcc −

(
g11 · τ2 0

0 g11 · τ2

)]−1

(3.21)

and equipped with this machinery, we can come to the calculation of our observables in
the next sections.

3.4. The linear response conductance
In physical terms, the conductance is the dependence of the current in our system on an
external applied source-drain voltage. Since this is obviously a non equilibrium quantity,
we use linear response theory to calculate it in 1st order. For our derivation, we will first
specify what we understand as the current. Due to the form of our Hamiltonian

H = Hl +Hc +Hlc (3.22)

with
Hl = −

∑
σ

∑
s=L,R

∞∑
j=1

[µsc†j,s,σcj,s,σ + τ(c†j+1,s,σcj,s,σ + h.c.)] (3.23)
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j

︷ ︸︸ ︷Nj

j + 1

Jj

Figure 3.2.: The current operator at site j measures the change of the total particle
number Nj to the left of site j

Hc =
N∑

j=−N

∑
σ

[Ejσd†jσdjσ − τ(d†j+1σdjσ + h.c.)]

+ 1
2
∑
σ1,σ2

∑
l,k

U(l − k)d†lσ1
d†kσ2

dkσ2dlσ1

(3.24)

and
Hlc = −τ

∑
σ

(c†1,L,σd−N,σ + d†N,σc1,R,σ + h.c.), (3.25)

we define the current operator Jj at an arbitrary site j (in the leads or in the interacting
region) as

Jj = −i
∑
σ

[τ(a†jσaj+1σ − a†j+1σajσ)], (3.26)

where aj can either be cj or dj , depending on whether we are in the leads or in the
central region of the QPC.
As one can easily check, these currents satisfy the continuity equation

d

dt
ρ+∇J = 0 ⇔ −i[ρ,H] +∇J = 0, (3.27)

i.e. in discrete terms −i[a†jσajσ, H] + Jj+1 − Jj = 0.
Thus, the current operator simply counts the particles moving to the right and sub-

stracts the number of particles moving to the left. This is also expressed in the straight
forward relation Ṅj = −Jj , where Nj is the particle number operator which counts all
particles on sites to the left (including j) from site j.
After having established the current operator, we can specify the response of this op-
erator to external perturbations3. In our case, we apply an external voltage difference
between the left and the right lead. This induces an electric field in our QPC, which we
can describe by a vector potential (φext, Aext).4 We assume that this external potential

3We will follow here the derivation in the book of Bruus-Flensberg [15]
4Since our model is one dimensional, Aext has only one component.
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couples to our Hamiltonian in the usual way

Hext(t) = −e
∑
j,σ

nj,σφext(j) + e
∑
j,σ

Jj,σAext,j(t). (3.28)

To make our life easier, we adopt a gauge where φext = 0 and thus end up with

Hext = e
∑
j,σ

JjσAext,j(t). (3.29)

We can now compute the change in the expectation value of the current

δ〈Jjσ〉(t) := 〈Jjσ〉(t)− 〈J (H)
jσ (t)〉0, (3.30)

where
〈Jjσ〉(t) = 1

Z0
Tr[ρ(t)Jjσ] (3.31)

is the expectation value of Jjσ at time t, calculated using the full Hamiltonian Hfull =
H +Hext. We assume here, as usual, the system to be in equilibrium at t = −∞:

ρ(−∞) = e−βH =
∑
n

|n〉〈n|e−βEn (3.32)

and then get
ρ(t) =

∑
n

|n(t)〉〈n(t)|e−βEn (3.33)

by letting the eigenstates |n〉 of the unperturbed Hamiltonian evolve in time using the
full Hamiltonian

i∂tn(t) = H(t)|n(t)〉, (3.34)

where Hext is switched on at a certain time t0 → ∞. On the other hand, 〈J (H)
jσ (t)〉0

simply denotes the expectation value of the current operator in the Heisenberg picture
using only the unperturbed Hamiltonian H and an usual equilibriums average 〈〉0. Since
〈J (H)
jσ (t)〉0 = 0 in equilibrium, we have

δ〈Jjσ〉(t) = 〈Jjσ〉(t). (3.35)

Due to the usual Kubo formula (see for example [11, chapter 2.1]), we get then for the
response of the total current to an external potential

DR
J(j)J(l)(t− t

′) := δ〈
∑
σ Jjσ〉(t)

δ(eAext,l(t′))
= −iθ(t− t′)

〈[∑
σ1

J
(H)
jσ1

(t),
∑
σ2

J
(H)
lσ2

(t)
]〉

0

, (3.36)

whereDR
J(j)J(l) denotes the retarded current-current correlation function. Due to Maxwell’s

equation and our choice of gauge, we have E(t) = −∂tA(t) and after a Fourier transfor-
mation E(ω) = iωA(ω). Up to linear order in Aext one gets

〈Jj〉(t) =
∑
σ

〈Jjσ〉(t) =
∑
σ

δ〈Jjσ〉(t) =
∫ ∞
−∞

dt′DR
J(j)J(l)(t− t

′)eAext,l(t′). (3.37)
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Using again Fourier transformation in t, the convolution on the r.h.s. becomes a simple
product and we have

〈Jj(ω)〉 =
∑
l

DR
J(j)J(l)(ω)eAext,l(ω) =

∑
l

DR
J(j)J(l)(ω)e 1

iω
Eext,l(ω). (3.38)

In the end, we will only be interested in the DC current, i.e. 〈Jj(ω → 0)〉. To proceed
further, two important observations are in order:

1. We assume that after a while, when we have turned on the external voltage differ-
ence, the system will be in a steady state in the sense of 〈ρ̇(t)〉 = 0, i.e. 〈∇J〉 = 0
and therefore 〈J〉 is constant in space. This is simply the statement that the DC
current will be conserved, i.e. it does not matter whether we measure the current
at site i or site j.

2. The second observation will be a bit trickier, namely we will show 5 that the
retarded current-current correlation function in the DC-limit DR

J(j)J(l)(ω → 0) is
in fact symmetric in j and l, i.e.

DR
J(j)J(l)(ω) = DR

J(l)J(j)(ω). (3.39)

With this observations we can make an important conclusion. Since equation (3.38) does
not depend on j (observation 1), DR

J(j)J(l)(ω) is symmetric in j and l, and we are allowed
to apply arbitrary external probes Aext,l(ω), we must in fact have that DR

J(j)J(l)(ω) does
neither depend on j nor l. Therefore, it suffices to evaluate it at two points j = j1,
l = l1 which we can choose to our convenience. In practice different choices of l and j
will simply lead to different representations of the conductance in terms of the Green’s
functions. Equation (3.38) then yields

〈Jj(ω)〉 = e

iω
DR
J(j1)J(l1)(ω)

∑
l

Eext,l(ω). (3.40)

As said before, in our considerations we will only be interested in the DC conductance,
i.e. the limω→0〈Jj(ω)〉 case. We see from (3.40) that

∑
lEext,l(0) = V is simply the

voltage difference between our two leads. Since the electric current (due to electrons) is
Ie = −e〈Jj〉, we get in the DC case:

Ie = lim
ω→0

ie2

ω
DR
J(j1)J(l1)(ω) · V (3.41)

and therefore for the linear response conductance

G = lim
ω→0

ie2

ω
DR
J(j1)J(l1)(ω). (3.42)

5This we will see a little bit later when we explicitly calculate DR
J(j)J(l).
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Thus, our remaining task is to calculate

DR
J(j)J(l)(ω) = FT

[
−iθ(t− t′)〈

∑
σ1

J
(H)
jσ1

(t),
∑
σ2

J
(H)
lσ2

(t′)〉0

]
. (3.43)

To accomplish this, we use a quite general statement about the connection between a
retarded response function in real time

DR
AB(t, t′) = −iθ(t− t′)〈A(H)(t), B(H)(t′)〉 (3.44)

and the thermal response function DAB(τ, τ ′) in imaginary time

DAB(τ, τ ′) = −〈T [A(H)(τ)B(H)(τ ′)]〉, (3.45)

where T [] denotes the time ordered product (here in imaginary time). If we have time
translational invariance, we have of course DR

AB(t, t′) = DR
AB(t − t′) and DAB(τ, τ ′) =

DAB(τ − τ ′). A general argument using the spectral representation of the response
functions shows (see for example [15, chapter 11]) that DR

AB(ω) can be extracted from
DAB(ωn) via analytic continuation from above. The frequencies ωn denote her even
or odd Matsubara frequencies, depending on the symmetry or antisymmetry of the
operators A,B. Stated in formulas, this means

DR
AB(ω) = DAB(ω + i0+). (3.46)

Therefore, in our application we must calculate

DJ(j)J(l)(τ) = −
〈
T

[∑
σ1

J
(H)
jσ1

(τ),
∑
σ2

J
(H)
lσ2

(0)
]〉

0

. (3.47)

or in terms of frequencies

DJ(j)J(l)(ωn) = −
∫ β

0
dτeωnτ

〈
T

[∑
σ1

J
(H)
jσ1

(τ),
∑
σ2

J
(H)
lσ2

(0)
]〉

0

, (3.48)

where ωn = i2nπ
β denote even Matsubara frequencies.

At this point, it is a good time to stop for a moment and show the symmetry of
DJ(j)J(l)(ωn) or equivalently DR

J(j)J(l)(ω) in l ↔ j which we have stated before. Us-
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ing the periodicity in β, one gets

DJ(j)J(l)(ωn) =−
∫ β

0
dτeωnτ

〈
T

[∑
σ1

J
(H)
jσ1

(τ)
∑
σ2

J
(H)
lσ2

(0)
]〉

0

=−
∫ 0

−β
dτeωnτ

〈
T

[∑
σ1

J
(H)
jσ1

(τ)
∑
σ2

J
(H)
lσ2

(0)
]〉

0

=−
∫ 0

−β
dτeωnτθ(−τ) Tr

[
eβ(H−µN)∑

σ2

Jlσ2e
(H−µN)τ∑

σ1

Jjσ1e
−(H−µN)τ

]

=−
∫ 0

−β
dτeωnτ

〈
T

[∑
σ2

J
(H)
lσ2

(−τ)
∑
σ1

J
(H)
jσ1

(0)
]〉

0

=−
∫ β

0
dτe−ωnτ

〈
T

[∑
σ2

J
(H)
lσ2

(τ)
∑
σ1

J
(H)
jσ1

(0)
]〉

0
=DJ(l)J(j)(−ωn).

(3.49)

Therefore, we have in the DC case

DJ(j)J(l)(0) = DJ(l)J(j)(0). (3.50)

After having shown the second observation, we can now explicitly calculate

DJ(j)J(l)(ωn) =−
∫ β

0
dτeωnτ

〈
T

[∑
σ1

J
(H)
jσ1

(τ)
∑
σ2

J
(H)
lσ2

(0)
]〉

0

=−
∫ β

0
dτeωnτ

∑
σ1

∑
σ2

〈
T
[(
a
†(H)
j,σ1

(τ)a(H)
j+1,σ1

(τ)− a†(H)
j+1,σ1

(τ)a(H)
jσ1

(τ)
)

(−iτ)

×
(
a
†(H)
l,σ2

(0)a(H)
l+1,σ2

(0)− a†(H)
l+1,σ2

(0)a(H)
l,σ2

(0)
)

(−iτ)
]〉

0

=τ2
∫ β

0
dτeωnτ

∑
σ1,σ2

{〈
T
[
a
†(H)
j,σ1

(τ)a(H)
j+1,σ1

(τ)a†(H)
l,σ2

(0)a(H)
l+1,σ2

(0)
]〉

−
〈
T
[
a
†(H)
j,σ1

(τ)a(H)
j+1,σ1

(τ)a†(H)
l+1,σ2

(0)a(H)
l,σ2

(0)
]〉

0

−
〈
T
[
a
†(H)
j+1,σ1

(τ)a(H)
jσ1

(τ)a†(H)
lσ2

(0)a(H)
l+1,σ2

(0)
]〉

0

+
〈
T
[
a
†(H)
j+1,σ1

(τ)a(H)
j,σ1

(τ)a†(H)
l+1,σ2

(0)a(H)
l,σ2

(0)
]〉}

(3.51)

and thus in terms of two particle Green’s functions

DJ(j)J(l)(ωn) = −τ2
∫ β

0
dτeωnτ

∑
σ1,σ2

{
G(2)(j+1σ1 τ, l+1σ2 0|l σ2 0, j σ1 τ)

− G(2)(j+1σ1 τ, l σ2 0|l+1σ2 0, j σ1 τ)
− G(2)(j σ1 τ, l+1σ2 0|l σ2 0, j+1σ1 τ)

+G(2)(j σ1 τ, l σ2 0|l+1σ2 0, j+1σ1 τ)
}
.

(3.52)
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To evaluate this two-particle Green’s functions, we divide them into the connected part
G(2)
c consisting of all diagrams in which all external legs are connected and the parts

consisting of diagrams in which a pair of external legs each is connected. In obvious
short notation:
G(2)(1, 2|1′, 2′) = G(2)

c (1, 2|1′, 2′) + G(1)
c (1|1′)G(1)

c (2|2′)− G(1)
c (1|2′)G(1)

c (2|1′). (3.53)
Let’s first focus on the parts which consist of products of one-particle Green’s functions.
Moreover, in order to proceed further we will have to choose which currents J(j), J(l) we
take to evaluate the current-current correlation function. Here we will follow a common
approach (see [16, 13, 17]) and take JL and JR, where JL is the current operator at the
right end of the left lead and JR the current operator at the left end of the right lead,
respectively. Explicitly,

JL =− i
∑
σ

[τ(c†L 1σd−N σ − d†−N σcL 1σ)]

JR =− i
∑
σ

[τ(d†N σcR 1σ − c†R 1σdN σ)].
(3.54)

The one-particle product part reads then

K(1)(ωn) :=− τ2
∫ β

0
dτeωnτ

∑
σ1,σ2

{

G(j+1σ1 τ |l σ2 0)G(l+1σ2 0|j σ1 τ)− G(j+1σ1 τ |j σ1 τ)G(l+1σ2 0|l σ2 0)
−G(j+1σ1 τ |l+1σ2 0)G(l σ2 0|j σ1 τ) + G(j+1σ1 τ |j σ1 τ)G(l σ2 0|l+1σ2 0)
−G(j σ1 τ |l σ2 0)G(l+1σ2 0|j+1σ1 τ) + G(j σ1 τ |j+1σ1 τ)G(l+1σ2 0|l σ2 0)
+ G(j σ2 τ |l+1σ2 0)G(l σ2 0|j+1σ1 τ)− G(j σ1 τ |j+1σ1 τ)G(l σ2 0|l+1σ2 0)} .

(3.55)
We notice that the terms in which the Green’s functions are evaluated at equal times
do not depend on time at all. Therefore, since ωn are even Matsubara frequencies, the
Fourier transform of this terms is zero and thus they vanish in K(1)(ωn). We are then
left with

K(1)(ωn) = −τ2
∫ β

0
dτeωnτ

∑
σ

{G(j+1σ τ |l σ 0)G(l+1σ 0|j σ τ)

− G(j+1σ τ |l+1σ 0)G(l σ 0|j σ τ)
− G(j σ τ |l σ 0)G(l+1σ 0|j+1σ τ)
+G(j σ τ |l+1σ 0)G(l σ 0|j+1σ τ)} ,

(3.56)

where we furthermore used that the one-particle Green’s functions are diagonal in spin
space for our system. And with our particular choice of the currents6

j + 1 =c,−N
j =L, 1

l + 1 =R, 1
l =c,N

(3.57)

6The index ”c,j” stands here for site j of the central region.
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we get

K(1)(ωn) = −τ2
∫ β

0
dτeωnτ

∑
σ

{G(c,−N σ τ |c,N σ 0)G(R, 1σ 0|L, 1σ τ)

− G(c,−N σ τ |R, 1σ 0)G(c,N σ 0|L, 1σ τ)
− G(L, 1σ τ |c,N σ 0)G(R, 1σ 0|c,−N σ τ)
+G(L, 1σ τ |R, 1σ 0)G(c,N σ 0|c,−N σ τ)} .

(3.58)

For our ultimate goal, namely the calculation of the conductance G (3.42) we will have to
perform the limit K(ω)

ω → 0. Therefore, we will now work out the frequency dependence
of K(1)(ωn). We have7

K(1)(ωn) =− τ2
∫ β

0
dτeωnτ

∑
σ

( 1
β

)2 ∑
ω1,ω2

e−(ω1τ−ω2τ) {

G(c,−N σ|c,N σ)(ω1)G(R, 1σ|L, 1σ)(ω2)
−G(c,−N σ|R, 1σ)(ω1)G(c,N σ|L, 1σ)(ω2)
−G(L, 1σ|c,N σ)(ω1)G(R, 1σ|c,−N σ)(ω2)
+ G(L, 1σ|R, 1σ)(ω1)G(c,N σ|c,−N σ)(ω2)}

= − 1
β2 τ

2 ∑
ω1,ω2

∑
σ

δ(ωn + ω2 − ω1) {. . . }

= − 1
β
τ2∑

ω2

∑
σ

{G(c,−N σ|c,N σ)(ω2 + ωn)G(R, 1σ|L, 1σ)(ω2)

− G(c,−N σ|R, 1σ)(ω2 + ωn)G(c,N σ|L, 1σ)(ω2)
− G(L, 1σ|c,N σ)(ω2 + ωn)G(R, 1σ|c,−N σ)(ω2)
+G(L, 1σ|R, 1σ)(ω2 + ωn)G(c,N σ|c,−N σ)(ω2)} .

(3.59)

With our earlier derived formulas for the Green’s functions GL,1 j(ω) and GR,1 j(ω) con-
necting the last site of the leads with an arbitrary index in the central region (3.13), we
can rewrite this as

K(1)(ωn) = − 1
β
τ2∑

ω′n

∑
σ

{
Gσ−N,N (ω′n + ωn)GσN,−N (ω′n)τ2gσL(ω′n)gσR(ω′n)

− Gσ−N,N (ω′n + ωn)τgσR(ω′n + ωn)GσN,−N (ω′n)τgσL(ω′n)
− Gσ−N,N (ω′n + ωn)τgσL(ω′n + ωn)GσN,−N (ω′n)τgσR(ω′n)

+Gσ−N,N (ω′n + ωn)τ2gσL(ω′n + ωn)gσR(ω′n + ωn)GσN,−N (ω′n)
}

=− 1
β
τ4∑

ω′n

∑
σ

Gσ−N,N (ω′n + ωn)GσN,−N (ω′n)

{gσL(ω′n)gσR(ω′n)− gσR(ω′n + ωn)gσL(ω′n)− gσL(ω′n + ωn)gσR(ω′n)
+ gσL(ω′n + ωn)gσR(ω′n + ωn)}.

(3.60)
7ω1, ω2 are now fermionic Matsubara frequencies
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C1

C3

C2

Reω

Imω

−ωn

0

Figure 3.3.: Due to the two branch cuts at the real axis Imω = 0 and the axis
Imω = −ωn, the complex plane is split into three regions. Since ωn is an
even Matsubara frequency, this second branch cut always lies in the middle
between two odd Matsubara frequencies and thus we can evaluate the sum
over the fermionic Matsubara frequencies (crosses on the imaginary axis) by
computing the line integral over the shown paths C1 ∪ C2 ∪ C3.

In our case gσR = gσL =: g and with the definition

λ(ω′n, ω′n + ωn) =
(
g(ω′n)− g(ω′n + ωn)

)2 (3.61)

we get

K(1)(ωn) = − 1
β
τ4∑

ω′n

∑
σ

Gσ−N,N (ω′n + ωn)GσN,−N (ω′n)λ(ω′n, ω′n + ωn)2. (3.62)

To evaluate the sum over the odd Matsubara frequencies ω′n we use the residue theorem
and write sums of the form 1

β

∑
ω′n
F (ω′n) as the complex contour integral 1

2πi
∫
dzF (z)f(z),

where f(z) is simply the Fermi function f(z) = 1
eβz+1 . Since the propagators have branch

cuts at the real axis, we see that in order to calculate (3.62) we have to divide the complex
frequency plane like shown in fig. 3.3.
Thus, we get

K(ωn) = −τ4 1
2πi

∫
dωf(ω)Fωn(ω), (3.63)

where Fωn(ω) is given by equation (3.62). Since the products Gσ−N,N (ω′n+ωn)GσN,−N (ω′n),
gσ(ω′n)2, and gσ(ω′n)gσ(ωn+ω′n) vanish like 1

|ω′n|2
for |ω′n| → ∞, we can neglect the parts



32 3. Modeling of QPCs

of the arc contributions (by taking the arc radius to ∞) and finally end up with

K(1)(ωn) =− τ4 1
2πi

∫
C1∪C2∪C3

dωf(ω)F (ω)

=− τ4

2πi

∫ ∞
−∞

dωf(ω)
∑
σ

{
Gσ−N,N (ω+ωn+iε)GσN,−N (ω+iε)λ(ω+iε, ω+iε+ωn)2

− Gσ−N,N (ω + ωn − iε)GσN,−N (ω − iε)λ(ω − iε, ω − iε+ ωn)2

+ Gσ−N,N (ω − ωn + iε+ ωn)GσN,−N (ω − ωn + iε)λ(ω − ωn + iε, ω + iε)2

−Gσ−N,N (ω − iε)GσN,−N (ω − ωn − iε)λ(ω − ωn − iε, ω − iε)2
}
.

(3.64)

To analyze now the behavior for ωn → 0, we use (3.20)

g(z) = 1
2τ2

{
z + µ− i

√
4τ2 − (z + µ)2, for Im(z) > 0

z + µ+ i
√

4τ2 − (z + µ)2, for Im(z) < 0 (3.65)

Therefore, we have for δ > 0 and x ∈ R

g(x± iδ) = 1
2τ2

{
x+ iδ + µ− i

√
4τ2 − (x+ iδ + µ)2

x− iδ + µ+ i
√

4τ2 − (x− iδ + µ)2

= 1
2τ2

{
x+ µ− i

√
4τ2 − (x+ µ)2 +O(δ)

x+ µ+ i
√

4τ2 − (x+ µ)2 +O(δ)

(3.66)

Thus, we get for the λs appearing in (3.64) and ωn/i > 0 8

λ(ω + iε, ω + iε+ ωn)2 =(g(ω + iε+ iωn)− g(ω + iε))2 ∼ O(ω2
n)

λ(ω − iε, ω − iε+ ωn)2 =(g(ω − iε+ ωn)− g(ω − iε))2

=
(
− i

τ2

√
4τ2 − (ω + µ)2

)2
+O(ωn)

λ(ω − ωn − iε, ω − iε)2 =(g(ω − iε)− g(ω − ωn − iε))2 ∼ O(ω2
n).

(3.67)

Therefore,

K(1)(ωn) =− τ4

2πi

∫ ∞
−∞

dωf(ω)
∑
σ

{
−Gσ−N,N (ω+ωn−iε)GσN,−N (ω−iε)λ(ω−iε, ω−iε+ωn)2

+Gσ−N,N (ω + iε)GσN,−N (ω − ωn + iε)λ(ω − ωn + iε, ω + iε)2 +O(ω2
n)
}
.

(3.68)

If we now perform the analytic continuation ωn → Ω + i0+ (which is easy in the zero
temperature case) and substitute ω → ω + Ω in the second term, we can safely take the
8It suffices here to consider only the ωn/i > 0 case since we have to perform analytic continuation from
above.
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limit ε→ 0 in the 0+ ± ε terms and finally end up with

K(1)(Ω) =− τ4

2πi

∫ ∞
−∞

dω(f(ω)− f(Ω + ω))
∑
σ

Gσ−N,N (ω + Ω + i0+)GσN,−N (ω − i0+)

× λ(ω − i0+, ω + Ω + i0+)2.

(3.69)

Using our formula (3.42) we thus get for the one-particle product part of the linear
response conductance

G(1) = lim
Ω→0

ie2

Ω K(1)(Ω) = lim
Ω→0

τ4e2

2π

∫ ∞
−∞

dω
f(Ω + ω)− f(ω)

Ω∑
σ

Gσ−N,N (ω + Ω + i0+)GσN,−N (ω − i0+)λ(ω − i0+, ω + Ω + i0+)2︸ ︷︷ ︸
− 1
τ4 (4τ2−(ω+µ)2)+O(Ω)

= − e
2

2π

∫ ∞
−∞

dωf ′(ω)
∑
σ

Gσ−N,N (ω + i0+)GσN,−N (ω − i0+) · (4τ2 − (ω + µ)2).

(3.70)

Due to the general properties of Green’s functions, we have for the retarded propagator
Gσ−N,N (ω+ i0+) = Gσ−N,N (ω− i0+)∗, i.e. it is the complex conjugate of the advanced one.
Using the symmetry of our Hamiltonian, i.e. H = HT , we furthermore get Gσ−N,N (z) =
GσN,−N (z) and thus (3.70) becomes

G(1) = − e
2

2π

∫ ∞
−∞

dωf ′(ω)
∑
σ

|Gσ−N,N (ω + i0+)|2 · (4τ2 − (ω + µ)2). (3.71)

A similar analysis can be done for the part of the conductance which arises form the con-
tributions of the connected two-particle parts of the correlation function in the splitting
(3.53). Going back to equation (3.52) and using that the two-particle (and one-particle ir-
reducible) vertex γ2 is simply the two-particle connected Green’s function with amputed
legs9 (see for example [11, chapter 2.4] )

G(2)
c (α1 β1, α2 β2|α′1 β′1, α′2 β′2) =

−
∑

α3 α4 α′3 α
′
4

∫ β

0
dτ3dτ4dτ

′
3dτ
′
4G(1)

c (α1 β1|α3 τ3)G(1)
c (α2 β2|α4 τ4)

× γ2(α3 τ3, α4 τ4|α′3 τ ′3, α′4 τ ′4)G(1)
c (α′3 τ ′3|α′1 β′1)G(1)

c (α′4 τ ′4|α′2 β′2),

(3.72)

or in frequency space

G(2)
c (α1 β1, α2 β2|α′1 β′1, α′2 β′2) = −

∑
α3 α4 α′3 α

′
4

( 1
β

)4 ∑
ω1 ω2 ω′1 ω

′
2

δ(ω1 + ω2 − ω′1 − ω′2)

× e−(ω1β1+ω2β2−ω′1β
′
1−ω

′
2β
′
2)

× G(α1, α3;ω1)G(α2, α4;ω2)γ2(α3 ω1, α4 ω2|α′3 ω′1, α′4 ω′2)G(α′3, α′1;ω′1)G(α′4, α′2;ω′2)
(3.73)

9where the β’s are imaginary time indices and α = j, σ labels site and spin.
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we obtain

K(2)(ωn) =τ2∑
σ

( 1
β

)3 ∑
α3 α4 α′3 α

′
4

∑
ω1 ω2

{G(j+1σ, α3;ω1 + ωn)G(l+1σ, α4;ω2)

× γ2(α3 (ω1+ωn), α4 ω2|α3 (ω2+ωn), α′4 ω1)G(α′3, l σ;ω2+ωn)G(α′4, j σ;ω1)
− G(j+1σ, α3;ω1+ωn)G(l σ, α4;ω2)γ2(α3 (ω1+ωn), α4 ω2|α3 (ω2+ωn), α′4 ω1)
× G(α′3, l+1σ;ω2 + ωn)G(α′4, j σ;ω2)
− G(j σ, α3;ω1+ωn)G(l+1σ, α4;ω2)γ2(α3 (ω1+ωn), α4ω2|α3 (ω2+ωn), α′4 ω1)
× G(α′3, l σ;ω2 + ωn)G(α′4, j+1σ;ω2)
+ G(j σ, α3;ω1 + ωn)G(l σ, α4;ω2)γ2(α3(ω1 + ωn), α4 ω2|α3 (ω2 + ωn), α′4 ω1)
×G(α′3, l+1σ;ω2 + ωn)G(α′4, j+1σ;ω2)

}
.

(3.74)

The trick is now that in our later on adopted approximation scheme the two-particle
vertex γ2 does not depend on the frequency at all (except for frequency conservation, of
course). Thus, it can be taken out of the sums and the dependence of the remaining
structure on ωn can be analyzed as in the one-particle product case. Since this is
completely analogous to what we have done above, we simply state here the result,
namely10

K(2)(ωn) ∼ O(ω2
n). (3.75)

Therefore, due to the limit limω→0
K(w)
w , which is taken in (3.42), the two-particle part

in the conductance G(2) is zero. At the end of the day, we remain with the formula for
the conductance

G = −GQ ·
1
2

∫ ∞
−∞

dωf ′(ω)[4τ2 − (ω + µ)2] ·
∑
σ

|Gσ−N,N (ω + i0+)|2, (3.76)

which was here rewritten in terms of the Conductance quantum 2e2

h = GQ and reintro-
ducing the appropriate powers of ~. At this point, we remind ourselves that a possible
Zeeman term induced through a external magnetic field was absorbed into the chemical
potential and would lead to a shift of the bare µ, according to µ→ µ+ σ

2B.

3.5. The density
The density of electrons can easily be calculated, using

nσj =〈a†j σaj σ〉 = 〈T [a†(H)
j σ (τ + i0+)a(H)

j σ (τ)]〉 = −〈T [a(H)
jσ (τ)a†(H)

jσ (τ + i0+)]〉

= Gσjj(τ, τ + i0+) = 1
β

∑
ωn

eωn0+Gσjj(ωn),
(3.77)

where ωn = i (2n+1)π
β are as usual the odd Matsubara frequencies. The sum in (3.77)

over the Matsubara frequencies can be evaluated via the residue theorem, transforming
the sum in a contour integral, as seen in Fig. 3.4
10The interested reader can find a complete calculation in [13].
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C1

C3

C2

C4

Reω

Imω

Figure 3.4.: The summation over fermionic Matsubara frequencies (crosses on the imagi-
nary axis) is equivalent to the evaluation of the line integral over the shown
paths C =: C1 ∪ C2 ∪ C3 ∪ C4.

where the real axis is not in the interior of the integration paths since Gσjj has a branch
cut there. Thus, we get

nσj = 1
β

∑
ωn

eωn0+Gσjj(ωn) = − 1
2πi

∫
C
dωeω0+Gσjj(ω)f(ω), (3.78)

where f(ω) = 1
eβω+1 is again the Fermi function which has simple poles at the odd

Matsubara frequencies with residues − 1
β . Furthermore the line integrals over the arcs

go to zero if we let their radius go to infinity, since

eω0+

eβω + 1 ∼ e
ω(0+−β) exponentially→ 0 (3.79)

and

eω0+

eβω + 1
exponentially→ 0, (3.80)

if we let Re(ω) → ∞ or Re(ω) → −∞, respectively. Thus, according to fig. 3.4 we end
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up with

nσj =− 1
2πi

∫ ∞
−∞

dω
[
e(ω+i0+)0+Gσjj(ω + i0+)f(ω + i0+)− e(ω−i0+)0+Gσjj(ω − i0+)f(ω − i0+)

]

=− 1
2πi

∫ ∞
−∞

dωf(ω)

 Gσjj(ω + i0+)− Gσjj(ω − i0+)︸ ︷︷ ︸
GRσjj (ω)−GAσjj (ω)ω real= GRσjj (ω)−GRσ∗jj (ω)


=− 1

2πi

∫ ∞
−∞

dωf(ω)2i Im[GRσjj (ω)] =
∫ ∞
−∞

dωf(ω)
[
− 1
π

Im[GRσjj (ω)]
]

=

=
∫ ∞
−∞

f(ω)Aj(ω),

(3.81)

where

Aσj (ω) := − 1
π

ImGRσjj (ω) = − 1
π

ImGσjj(ω + i0+) (3.82)

is the local density of states. In the second line of the above calculation, we have dropped
the convergence factors, since the difference Gσjj(ω + i0+)−Gσjj(ω − i0+) is proportional
to 1

ω2 if |ω| → ∞.
In principle, we could use now formula (3.81) to compute the electron density. However,
since Aj(ω) = − 1

π ImGRσjj (ω) has it’s poles infinitesimally near the real axis it would be
numerically very hard to perform the frequency integral along that axis. Therefore, we
use here a slightly different approach. We start again from

nσj = 1
β

∑
ωn

eωn0+Gσjj(ωn) = − 1
2πi

∫
C
dωeω0+Gσjj(ω)f(ω) =

− 1
2πi

∫
C1∪C2

dωeω0+Gσjj(ω)f(ω)− 1
2πi

∫
C3∪C4

dωeω0+Gσjj(ω)f(ω),
(3.83)

where we have split the line integral in the contributions C1, C2 along the real axis
and the arc contributions C3, C4. Above we have seen that for the first integral the
convergence factor is meaningless, however, it is important for the second term in the
limit of the arc radius going to infinity. If one calculates the second integral without the
convergence factor, one obtains

− 1
2πi

∫
C3∪C4

dωGσjj(ω)f(ω) = − 1
2πi

∫
C3∪C4

dω
1

eβω + 1G
σ
jj(ω). (3.84)

For the arc contribution where Reω → +∞ the integral is zero, but for the contribution
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with Reω → −∞ we get a finite value11

− 1
2πi

∫
C′3∪C

′
4

dω
1

eβω + 1 ·
1
ω

= − 1
2πi lim

R→∞

∫ 3
2π

π
2

dφ
1

eβReiφ + 1
· 1
Reiφ

· iReiφ =

− 1
2πi lim

R→∞

∫ 3
2π

π
2

dφ
i

eβReiφ + 1
maj. Conv.= − 1

2π

∫ 3
2π

π
2

dφ lim
R→∞

1
eβReiφ + 1

=

− 1
2π

∫ 3
2π

π
2

dφ1 = −1
2 ,

(3.85)

where we used again that Gσjj(ω) ∼ 1
ω for |ω| → ∞. Therefore, we have for the density

nσj =− 1
2πi

∫
C1∪C2

dωGσjj(ω)f(ω)− 1
2πi

∫
C3∪C4

dωGσjj(ω)f(ω) + 1
2 =

1
β

∑
ωn

Gσjj(ωn) + 1
2 = 1

β

 ∑
ωn>0

GRσjj (ωn) +
∑
ωn<0

GAσjj (ωn)︸ ︷︷ ︸
=[GRσjj (−ωn)]∗

+ 1
2 =

1
β

∑
Im(ωn)>0

2 ReGRσjj (ωn) + 1
2 .

(3.86)

In our work, we will exclusively consider the zero temperature limit, i.e. the case β →∞.
For this case, the summation 1

β

∑
ωn becomes an integral over frequencies 1

2π
∫
dω and

we end up with
nσj = 1

π

∫ ∞
0

dωReGRσjj (iω) + 1
2 . (3.87)

For numerical computations we use this with the variable transformation ω = x
1−x and

get

nσj = 1
π

∫ 1

0

dx

(1− x)2 Re
[
GRjj

(
i

x

1− x

)]
+ 1

2 . (3.88)

3.6. The susceptibility
Another important physical quantity of our system is the response of the magnetization
to a variation of the external magnetic field, i.e the magnetic susceptibility. Per site we
get here

Xi = ∂Bmi|B=0 = 1
2∂B(n↑i − n

↓
i )|B=0. (3.89)

In principle, we have two ways to determine the magnetic susceptibility. Possibility one
is to take a simple ”numerical” derivative via

Xi ≈
1
2

(n↑i − n
↓
i )(∆B)− (n↑i − n

↓
i )(0)

∆B (3.90)

11We denote the parts of the arcs with Re(ω) < 0 as C′3 and C′4, respectively.
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for a small magnetic field ∆B. This is the numerically cheapest method and we used
this to generate most of our susceptibility plots.
The second possibility is to use again the Kubo formalism (as in our calculation of the
conductance) to determine the response of the magnetization to a change in the magnetic
field. However, our fRG approach grants us here a very elegant way to get our hands on
the Kubo susceptibility. For this, we observe the following

Xj =1
2∂B(n↑j − n

↓
j )|B=0 = 1

2∂B
∑
σ

σ

(
1
β

∑
ωn

GRσjj (ωn) + 1
2

)
=

1
2β

∑
σ,ωn

σ∂BGRσjj (ωn)
(3.91)

and since
GRσjj (ωn) =

[
1

ωn + σB2 − Σσ(ωn)−H

]
jj

(3.92)

the derivative yields

∂BGRjjσ(ωn) =− GRσjα (ωn)∂B
[
ωn + σ

B

2 − Σσ(ωn)−H
]
αβ
GRσβj (ωn)

=− GRσjα (ωn)
[
σ

2 − ∂BΣσ(ωn)
]
αβ
GRσβj (ωn).

(3.93)

Plugging everything together, we get

Xj = − 1
2β

∑
σ,ωn

GRσjα (ωn)
[1

2 − σ∂BΣσ(ωn)
]
αβ
GRσβj (ωn), (3.94)

where the internal summation indices α and β run over all sites, including the leads.
The trick is now to consider a fRG flow with magnetic field B as flow parameter instead
of the usual frequency cutoff. If we look then at the flow equation of the self energy
(2.38) and insert there our new single scale propagator

Sσ,B=0 = G∂B[Gσ0 ]−1
B=0G = σ

2G
2 (3.95)

we end up with

∂BΣσ
kl(ωn) = −T2

∑
n′,j1,j2,j3,σ′

σ′Gσ′j1 j2(ω′n)Gσ′j2 j3(ω′n)γ2(j3 σ′ ω′n, k σ ωn; j1 σ′ ω′n, l σ ωn).

(3.96)
And thus, we arrive at the Kubo formula for the magnetic susceptibility (cf. [18, chapter
3])

Xj = −T4
∑
σ,ωn

GRσjk (ωn)GRσkj (ωn)− T

4
∑
σ,ωn

GRσjαl(ωn)GRσαlj(ωn)

− 1
2β

∑
σ,ωn

σGRσjk (ωn)T2
∑

n′,j1,j2,j3,σ′
σ′Gσ′j1 j2(ω′n)Gσ′j2j3(ω′n)

× γ2(j3 σ′ ω′n, k σ ωn; j1 σ′ ω′n, l σ ωn)GRσl j (ωn),

(3.97)
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where we have split the summation over site indices into two terms: In the first term
the summation index k runs over the central region, whereas the index αl in the second
term runs exclusively over the leads. In fact, we can use in the second term our relations
(3.13) to obtain

∑
αl

GRσjαl(ωn)GRσαlj(ωn) =
∞∑
α=1

(
GRσj−N (ωn)τ2g1αGRσ−N j(ωn)gα1 + GRσj N (ωn)τ2g1αGRσN j(ωn)gα1

)
=τ2h

(
GRσj−N (ωn)GRσ−N j(ωn) + GRσj N (ωn)GRσN j(ωn)

)
,

(3.98)

where we have defined h as the one-one element of the squared lead propagator

h := [g2]11 =
∞∑
α=1

g1αgα 1. (3.99)

In fact, h can be calculated analytically, as was done, for example, in [19] and one obtains

h(ωn) = 1
2τ2

(
ωn + µ

ωn + µ− 2τ

√
ωn + µ− 2τ
ωn + µ+ 2τ − 1

)
. (3.100)

The complete formula in terms of the numerical quantities introduced in the next
chapter, including our approximation schemes for the calculation of the γ2 vertex via
the fRG flow, can be found in the appendix A.



4. Approximative treatment of longer
ranged feedback

In this chapter, we will finally apply the general fRG technique introduced in chapter 2
to our problem at hand. The approach we choose here, is to first set up the concrete
fRG equations for our system with a full feedback, i.e. correct in the sense of the
equations 2.39 without additional approximation. In this form the flow equations have a
very simple structure which we use to explain the coupled ladder approximation (CLA)
(which in this context introduces only an approximation in frequency space but is still
correct in the space indices). Furthermore, we will use this simple form to identify various
symmetries in our flow equations. In the sections 4.6 and 4.7 we will then transform
these symmetries and equations into a basis more suited for numerical calculations. In
this basis, the symmetries and equations will look more difficult but it will be obvious
how we can change from the full feedback to an approximate one using the CLA. At
the end of this chapter, we will briefly comment on the actual numerical form of our
quantities.

4.1. The bare vertex
Having established the general fRG equations and keeping in mind our desired observ-
ables, we are now at the point to specify the concrete form of the interaction and apply
various approximations to end up at a numerical differential equation which can be
implemented on a computer. On the specific form of the interaction strength we will
elaborate at a later point. Here, it is sufficient to assume the general form of the bare
vertex as

ν(j1 σ1, j2 σ2; j3 σ3, j4 σ4) =Uj1δj1j2δj3j4δj4j1δσ1σ̄2δσ3σ̄4(δσ1σ3 − δσ1σ4)︸ ︷︷ ︸
=:ν1

+ Uj1j2(δj1j3δσ1σ3δj2j4δσ2σ4 − δj1j4δj2j3δσ1σ4δσ2σ3)(1− δj1j2)︸ ︷︷ ︸
=:ν2

,

(4.1)

where ν1 represents the on-site and ν2 the off-site interaction. Of course, we could write
this in a more compact notation

ν(j1 σ1, j2 σ2; j3 σ3, j4 σ4) = [Uj1j2(1− δj1j2) + Uj1δj1j2δσ1σ̄2 ]︸ ︷︷ ︸
=:Ũj1j2

× (δj1j3δσ1σ3δj2j4δσ2σ4 − δj1j4δj2j3δσ1σ4δσ2σ3),
(4.2)

40
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however, we will in several occasions explicitly distinguish between on-site and off-site
interactions and thus (4.1) is more handy.
We assume the interaction to be symmetric in the site indices, i.e. Uj1j2 = Uj2j1 , and

therefore have the following symmetries for ν2:

ν2(j3 σ3, j4 σ4; j1 σ1, j2 σ2) =ν2(j1 σ1, j2 σ2; j3 σ3, j4 σ4)
ν2(j3 σ1, j4 σ2; j1 σ3, j2 σ4) =ν2(j1 σ1, j2 σ2; j3 σ3, j4 σ4)
ν2(j1 σ3, j2 σ4; j3 σ1, j4 σ2) =ν2(j1 σ1, j2 σ2; j3 σ3, j4 σ4)
ν2(j2 σ2, j1 σ1; j3 σ3, j4 σ4) =− ν2(j1 σ1, j2 σ2; j3 σ3, j4 σ4)
ν2(j1 σ1, j2 σ2; j4 σ4, j3 σ3) =− ν2(j1 σ1, j2 σ2; j3 σ3, j4 σ4)
ν2(j1 σ2, j2 σ1; j3 σ4, j4 σ3) =ν2(j1 σ1, j2 σ2; j3 σ3, j4 σ4).

(4.3)

For ν1 we get the symmetries

ν1(j3 σ3, j4 σ4; j1 σ1, j2 σ2) =ν1(j1 σ1, j2 σ2; j3 σ3, j4 σ4)
ν1(j2 σ2, j1 σ1; j3 σ3, j4 σ4) =− ν1(j1 σ1, j2 σ2; j3 σ3, j4 σ4)
ν1(j1 σ1, j2 σ2; j4 σ4, j3 σ3) =− ν1(j1 σ1, j2 σ2; j3 σ3, j4 σ4).

(4.4)

And thus we have as symmetries of the bare vertex:

ν(j3 σ3, j4 σ4; j1 σ1, j2 σ2) =ν(j1 σ1, j2 σ2; j3 σ3, j4 σ4)
ν(j3 σ1, j4 σ2; j1 σ3, j2 σ4) =ν(j1 σ1, j2 σ2; j3 σ3, j4 σ4)
ν(j1 σ3, j2 σ4; j3 σ1, j4 σ2) =ν(j1 σ1, j2 σ2; j3 σ3, j4 σ4)
ν(j2 σ2, j1 σ1; j3 σ3, j4 σ4) =− ν(j1 σ1, j2 σ2; j3 σ3, j4 σ4)
ν(j1 σ1, j2 σ2; j4 σ4, j3 σ3) =− ν(j1 σ1, j2 σ2; j3 σ3, j4 σ4)
ν(j1 σ2, j2 σ1; j3 σ4, j4 σ3) =ν(j1 σ1, j2 σ2; j3 σ3, j4 σ4).

(4.5)

4.2. The splitting in different channels

Since the evaluation of the complete fRG flow equations including frequency and space
structure is numerically not feasible (see the discussion in section 4.3), we will use an
approximation scheme called the coupled ladder approximation (CLA). This scheme was
introduced as approximation for the frequency structure of the single impurity Anderson
model (SIAM) in [20, 21] and extended for inhomogeneous systems in [19]. The basic
idea is here to divide the two-particle vertex into different channels

γΛ
2 = ν + γΛ

p + γΛ
x + γΛ

d , (4.6)

where ν is the bare vertex and γΛ
p , γΛ

x , and γΛ
d are referred to as the particle-particle

channel, the exchange part and the direct part of the particle-hole channel, respectively.
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These channels are defined by the flow equation of the two-particle vertex γ2 (2.39) via

d

dΛγ
Λ
p (q′1, q′2; q1, q2) =T

∑
q3,q4,q′3,q

′
4

γΛ
2 (q′1, q′2; q3, q4)SΛ

q3,q′3
GΛ
q4,q′4

γΛ
2 (q′3, q′4; q1, q2)

d

dΛγ
Λ
x (q′1, q′2; q1, q2) =T

∑
q3,q4,q′3,q

′
4

γΛ
2 (q′1, q′4; q3, q2)

[
SΛ
q3,q′3
GΛ
q4,q′4

+ GΛ
q3,q′3
SΛ
q4,q′4

]
γΛ

2 (q′3, q′2; q1, q4)

d

dΛγ
Λ
d (q′1, q′2; q1, q2) =− T

∑
q3,q4,q′3,q

′
4

γΛ
2 (q′1, q′3; q1, q4)

[
SΛ
q4,q′4
GΛ
q3,q′3

+ GΛ
q4,q′4
SΛ
q3,q′3

]
γΛ

2 (q′4, q′2; q3, q2),

(4.7)

where we applied the earlier mentioned truncation of the fRG flow γn = 0 for n > 2, and
thus

d

dΛγ
Λ
2 = d

dΛ(γΛ
p + γΛ

x + γΛ
d ). (4.8)

For completeness, we write here also the flow equation for the 1PI one-particle vertex
which remains

d

dΛγ
Λ
1 (q′1, q1) = T

∑
q′2,q2

SΛ
q2,q′2

γΛ
2 (q′2, q′1; q2, q1). (4.9)

In fact, this division is based on the index structure of the r.h.s of the flow equations. This
is most clearly seen by looking at Figure 4.1, where we have drawn the flow equations of
γΛ

2 in a diagrammatic fashion. The advantage of the division will become clear as soon
as we set up the CLA. The indices q of the particles consist in our case of three different
parts, namely the site j, the spin σ, as well as the Matsubara frequency ωn. Since the
frequency is conserved at each vertex

γ1(q′1, q1) ∼δ(ωn′1 − ωn1)
γ2(q′1, q′2; q1, q2) ∼δ(ωn′1 + ωn′2 − ωn1 − ωn2)

(4.10)

we can parametrize the frequency dependence of our vertices in terms of the three bosonic
frequencies

Π =ωn′1 + ωn′2 = ωn1 + ωn2

X =ωn′2 − ωn1 = ωn2 − ωn′1
∆ =ωn′1 − ωn1 = ωn2 − ωn′2 ,

(4.11)

or solved for the fermionic frequencies

ωn′1 =1
2(Π−X + ∆)

ωn′2 =1
2(Π +X −∆)

ωn1 =1
2(Π−X −∆)

ωn2 =1
2(Π +X + ∆).

(4.12)
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=

q′1

q′2

q3

q4

q1

q2
q′4

q′3

GΛ
q4q′4

SΛ
q3,q′3

T

SΛ
q3,q′3

GΛ
q4q′4

SΛ
q3,q′3

GΛ
q4q′4

q1

q2

q′3

q′4

= T

= T

q′3

q2q′4

q1

p

x

d

q′1 q1

q2q′2

q1q′3

q′4 q2

q′4 q2

q′3 q1

Figure 4.1.: The flow equations of the two particle vertex written in a diagrammatic fash-
ion. The vertices with diagonal stripes correspond to the 1PI two-particle
vertices, lines with an arrow are Green’s functions, a line with an arrow fol-
lowed by a bar denotes the single scale propagator, and the vertices with an
letter p, x, d denote the channels as introduced above. Note that we employ
here no conventions regarding implicit factors, in particular there are no
implicit minus signs.
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When we apply the coupled ladder approximation in the next section, it will turn out
that in this approximation each of the different γ2’s depends only on one of these bosonic
frequencies.

4.3. The coupled ladder approximation
In order to arrive at the CLA, we will now sweep through a chain of improved approxi-
mation schemes. If we make the replacement

γΛ
2 (Π, X,∆)→ ν (4.13)

on the r.h.s. of the equations (4.7), we end up in generating all the diagrams appearing
in second order perturbation theory with an additional feedback in the self energy. By
looking at this second order diagrams, we notice that the generated index, spin, and
frequency structures of the channels are of the form

P σσj3j4j1j2(Π) = γΛ
p (j3 σ Π− ω′n, j4 σω′n; j1 σ Π− ωn, j2 σ ωn) (4.14)

Π− ω′′n σ

ω′′n σ

j1 σ Π− ωn

j2 σωn

j3 σ Π− ω′n

j4 σ ω′n

i3 σ

i4 σ

i1 σ

i2 σ

O(U2)
=̂

∑
i1,i2,i3,i4

∑
ω′′n

P σσ̄j3j4j1j2(Π) = γΛ
p (j3 σ Π− ω′n, j4 σ̄ ω′n; j1 σ Π− ωn, j2 σ̄ ωn) (4.15)

Π− ω′′n µ̄

ω′′n µ

j1 σ Π− ωn

j2 σ̄ωn

j3 σΠ− ω′n

j4 σ̄ω′n

i3 µ

i4 µ̄

i1 µ

i2 µ̄

O(U2)
=̂

∑
µ

∑
i1,i2,i3,i4

∑
ω′′n

P̄ σσ̄j3j4j1j2(Π) = γΛ
p (j3 σ Π− ω′n, j4 σ̄ ω′n; j1 σ̄ Π− ωn, j2 σ ωn) (4.16)

Π− ω′′n µ̄

ω′′n µ

j1 σ̄ Π− ωn

j2 σ ωn

j3 σ Π− ω′n

j4 σ̄ ω′n

i3 µ

i4 µ̄

i1 µ

i2 µ̄

O(U2)
=̂

∑
µ

∑
i1,i2,i3,i4

∑
ω′′n

Xσσ
j3j4j1j2(χ) = γΛ

x (j3 σ χ+ ω′n, j4 σ ωn; j1 σ χ+ ωn, j2 σ ω
′
n) (4.17)
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j2 σω′n

i3 µ

j4 σ ω′n

j3 σ X+ωn

i4 µ i2 µ

X + ω′′n µ

ω′′n µ

i1 µ
j1 σX+ωn

O(U2)
=̂

∑
µ

∑
i1,i2,i3,i4

∑
ω′′n

+ G ↔ S

Xσσ̄
j3j4j1j2(χ) = γΛ

x (j3 σ χ+ ω′n, j4 σ̄ ωn ; j1 σ χ+ ωn, j2 σ̄ ω
′
n) (4.18)

j2 σ̄ω′n

i3 σ

j4 σ̄ ω′n

j3 σ X+ωn

i4 σ̄ i2 σ̄

X + ω′′n µ

ω′′n µ̄

i1 σ
j1 σX+ωn

O(U2)
=̂

∑
i1,i2,i3,i4

∑
ω′′n

+ G ↔ S

X̄σσ̄
j3j4j1j2(χ) = γΛ

x (j3 σ χ+ ω′n, j4 σ̄ ωn; j1 σ̄ χ+ ωn, j2 σ ω
′
n) (4.19)

j2 σω′n

i3 µ

j4 σ ω′n

j3 σ X+ωn

i4 µ̄ i2 µ̄

X + ω′′n µ

ω′′n µ̄

i1 µ
j1 σX+ωn

O(U2)
=̂

∑
µ

∑
i1,i2,i3,i4

∑
ω′′n

+ G ↔ S

Dσσ
j3j4j1j2(∆) = γΛ

d (j3 σ ∆ + ω′n, j4 σ ωn; j1 σ ω′n, j2 σ ∆ + ωn) (4.20)

j1 σω′n

i3 µ

j4 σ ω′n

j3 σ ∆+ωn
i4 µ i2 µ

∆ + ω′′n µ

ω′′n µ̄

O(U2)
=̂

∑
µ

∑
i1,i2,i3,i4

∑
ω′′n

+ G ↔ S-
i1 µ

j2 σ∆ + ωn

Dσσ̄
j3j4j1j2(∆) = γΛ

d (j3 σ ∆ + ω′n, j4 σ̄ ωn; j1 σ ω′n, j2 σ̄ ∆ + ωn) (4.21)
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j1 σω′n

i3 µ

j4 σ̄ ω′n

j3 σ ∆+ωn
i4 µ i2 µ

∆ + ω′′n µ

ω′′n µ̄

O(U2)
=̂

∑
µ

∑
i1,i2,i3,i4

∑
ω′′n

+ G ↔ S-
i1 µ

j2 σ̄∆ + ωn

D̄σσ̄
j3j4j1j2(∆) = γΛ

d (j3 σ ∆ + ω′n, j4 σ̄ ωn; j1 σ̄ ω′n, j2 σ ∆ + ωn) (4.22)

j1 σ̄ω′n

i3 σ̄

j4 σ̄ ω′n

j3 σ ∆+ωn
i4 σ i2 σ̄

∆ + ω′′n µ

ω′′n µ̄

O(U2)
=̂

∑
i1,i2,i3,i4

∑
ω′′n

+ G ↔ S-
i1 σ

j2 σ∆ + ωn

The idea of the CLA is now to improve this second order results by instead of making
replacement (4.13), to distinguish between the three channels and set

γ2(Π, X,∆)→ ν + γa(A) (4.23)

in the r.h.s. of the flow equation of γa(A), where a = p, x, d and A = Π, X,∆. The
crucial point is that by this improved feed back we do not generate diagrams with new
structures in the external indices, but remain with the external index structures we
have listed above. To illustrate this, we look at some diagrams of the p- and x-channel
generated by that feedback method (cf. the diagrams below), which are essentially RPA
like diagrams. The only difference is that here the propagators GΛ and SΛ also take
contributions from the other channels into account.

Π− ω′′n σ

ω′′n σ

j3 σ Π− ω′n

j4 σ ω′n

i7 σ

i8 σ

i5 σ

i6 σ

Π− ω′′n σ

ω′′n σ

j1 σ Π− ωn

j2 σωn

i3 σ

i4 σ

i1 σ

i2 σ

and analog for the x-channel

i3 σ

j4 σ̄ ω′n

i8 σ̄ i6 σ̄

X + ω′′n µ

ω′′n µ̄

i7 σ
j1 σX+ωn

j2 σ̄ω′n

i1 σ
j3 σ X+ωn

i4 σ̄ i2 σ̄

X + ω′′n µ

ω′′n µ̄

i5 σ

.
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Thus, we see that in each diagram generated in the p-channel the two incoming legs
are at the same vertex, as well as the outgoing ones. The overall frequency dependence
is again given by the single frequency Π. In the x-channel each one incoming and
one outgoing line are attached to the same vertex and the frequency structure is again
specified by the frequency X. Analogous statements hold for the d-channel.
Here, it is maybe a good point to comment on the names of our channels, which originate
in fact, in the on-site interaction case (cf. [19]), i.e. where the bare vertex is given by

ν(j1 σ1, j2 σ2; j3 σ3, j4 σ4) = Uj1δj1j2δj3j4δj1j4δσ1σ̄2δσ̄3σ4(δσ1σ3 − δσ1σ4). (4.24)

The legs attached to one bare vertex all have the same site index. After reducing
our second order vertex equations above to this case, only three independent matrix
quantities remain (cf. [19]), namely

PΛ
ji(Π) =P ↑↓ji (Π)

XΛ
ji(X) =X↑↓ji (X)

DσΛ
ji (∆) =Dσσ

ji (∆).

(4.25)

Thus, in the p-channel two incoming particles at site j with opposite spin interact and
scatter both to some site i, hence the name particle-particle channel. In the x-channel
we have incoming particles at site j with spin σ and site i with spin σ̄, which after
interacting result in one particle at site j with spin σ̄ and one particle at site i with spin
σ. Hence the effective result is a switching of the spins, which may be interpreted as
an exchange of the two incoming particles. The d-channel on the other hand has two
incoming particles at sites i, j and two outgoing particles at sites i, j, all with the same
spin. This can be seen as a direct density-density interaction of the particles, without
having to exchange them. Therefore, one ends up with the commonly used names, we
introduced above.
Looking again at the diagrams in section 4.3 and section 4.3 above, these parquet like
diagrams remind us strongly of the type of diagrams summed in an RPA treatment of
the individual channels. However, our channels are at this point already coupled via the
self energy entering in the propagators G and S and are therefore not independent.
The last step in our CLA treatment is to notice that for certain external site and

spin indices and disregarding the frequency dependence, the index structure of different
channels can coincide. In fact, this is trivial in the notation we have employed up
to now, namely where each of the quantities Aσµj1j2j3j4 is considered to be a function of
independent site indices. Thus, they have (2N+1)4 different values arrising from different
site combinations. In this notation, the direct feedback of the different channels into each
other reads simply

γ2 → ν + γa(A) + γb(0) + γc(0), (4.26)

i.e. the only artificial restriction to conserve the index structure, is to set the frequencies
B = 0 and C = 0 in order to avoid frequency mixing.
However, later on we will consider only bare off-site interactions with a finite range, i.e.
there exists an 0 ≤ L ≤ 2N + 1 such that Uj1j2 = 0 for all j2, j2 with |j1 − j2| > L.
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Usually, we will think of L� 2N + 1, thus we have a near on-site interaction. Since in
our channels two external legs each are attached to the same bare vertex, it would be an
numerical overkill to consider γa j1j2j3j4(A) as a function with (2N + 1)4 different values
in the site indices. Due to the revoked independence of the j1, j2, j3, j4 indices, most of
these values would be zero. To encounter this problem, we will introduce a smaller basis
j, i, l, k where γlka ji(A) has again only independent values. In this smaller basis, though
more suited for actual numerical computations, the feedback of the different channels
will become more messy and also the symmetries of the channels will be not so clearly
visible. Hence, in order to investigate these symmetries and write down the first version
of our fRG flow equations, we will stick with our somewhat ”overcomplete” basis. For
the numerical treatment it is then easy to transform these symmetries and equations
into our new basis.

4.4. A comment on symmetries
Due to the symmetries of our bare vertex and the symmetry HT = H (i.e. the Hamilto-
nian H is real), we have lots of symmetries satisfied by our γp, γx and γd channels, as
well as the propagators and the self energy. Our approach to study these symmetries,
was to first look for symmetries in second order and then check if this symmetries are
conserved in the flow equations, thus being correct to arbitrary order in perturbation
theory. Since there are many of these symmetries, we will here not derive all of them,
but rather show in some exemplary cases the general procedure and then simply state
the rest.
Before we look at the individual channels, let’s start with a very basic symmetry involv-
ing the propagator G, the selfenergy Σ, and the general two-particle vertex γ2. First we
take a look at the non-interacting propagator G0:

G0(ωn) = 1
ωn −H0

, (4.27)

where H0 is the Hamiltonian without the interaction term. Since H0 is symmetric, so is
G0, i.e. G0

ji(ωn) = G0
ij(ωn). Furthermore, we have already seen that the bare interaction

ν is symmetric under exchange of the incoming with the outgoing legs:

ν(j1 σ1, j2 σ2; j3 σ3, j4 σ4) = ν(j3 σ3, j4σ4; j1 σ1, j2 σ2). (4.28)

Using the interplay of the different flow equations, we now show that these properties
hold in fact for the full propagator GΛ as well as for the full vertex γΛ

2 at each step of
the flow. Moreover, we will see that the self energy is symmetric in it’s indices 1, too:

GΛ(q′1, q1) =GΛ(q1, q
′
1)

ΣΛ(q′1, q1) =ΣΛ(q1, q
′
1)

γΛ
2 (q′1, q′2; q1, q2) =γΛ

2 (q1, q2; q′1, q′2).
(4.29)

1For the following derivation, it suffices to consider composite indices q = (j, σ, ω) without distinguishing
between the space, spin, and frequency component.
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Since at the beginning of the flow ΣΛinitial = 0, GΛinitial = 0, as well as γΛinitial
2 = ν

satisfy this properties trivially, we just have to show that they are conserved under the
flow equations. Thus, let’s look at the derivative of ΣΛ (2.38)

d
dΛΣΛ(q′1, q1) = −T

∑
q′2,q2

SΛ
q2q′2

q′1 q1

= −T
∑
q′2,q2

q′1 q1

q′2 q2
q′2 q2

SΛ
q2q′2

= −T
∑
q′2,q2

q1 q′1

q2 q′2

SΛ
q′2q2

= −T
∑
q′2,q2

SΛ
q′2q2

q1 q′1

q2 q′2

d
dΛΣΛ(q1, q

′
1)=

Therefore, the self energy is symmetric in it’s indices. In the same way, it is easy to
show that the self energy is diagonal in spin and frequency space. If one then computes
the new propagator GΛinitial−∆Λ from the Dyson equation, it also will be diagonal in
spin space and symmetric in the site indices. It remains to show the symmetry in γ2.
For this we look back at equations (4.7). For example one can easily calculate for the
p-channel:

d
dΛγ

Λ
p (q′1, q′2; q1, q2) = T

∑
q′3,q3,q′4,q

′
4

q′1

q′2

q3

q4

q1

q2q′4

q′3

SΛ
q3q′3

GΛ
q4q′4

T
∑

q′3,q3,q′4,q
′
4

q′1 q3

q′2 q4

·
q′3 q1

q′4 q2

SΛ
q3q′3
GΛ
q4q′4

=
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T
∑

q′3,q3,q′4,q
′
4

q3 q′1

q4 q′2

·

q1 q′3

q2 q′4

SΛ
q′3q3
GΛ
q′4q4

=

= T
∑

q′3,q3,q′4,q
′
4

q1

q2

q′3

q′4

q′1

q′2q4

q3

SΛ
q′3q3

GΛ
q′4q4

d
dΛγ

Λ
p (q1, q2; q′1, q′2)=

and likewise for the other channels:

d

dΛγ
Λ
x (q′1, q′2; q1, q2) = d

dΛγ
Λ
x (q1, q2; q′1, q′2)

d

dΛγ
Λ
d (q′1, q′2; q1, q2) = d

dΛγ
Λ
d (q1, q2; q′1, q′2)

(4.30)

Therefore, we indeed have shown that (4.28) holds for the new Λinitial + δΛ when we
go an infinitesimal step δΛ with the flow. Thus, in the interplay with each other these
three symmetries are conserved during the whole flow.
From this basic symmetry follow as a direct consequence lots of symmetries in the
individual vertex quantities, for example

P σσj3j4j1j2(Π) = P σσj1j2j3j4(Π). (4.31)

For the previous symmetries we used just the properties of the general flow equations
(4.7). However, there are also symmetries especially introduced by our CLA treatment
of the flow. As an example we show here one of them, namely

Xσσ̄
j3j4j1j2(X) = X σ̄σ

j4j3j2j1(−X). (4.32)

Since the symmetry is trivially satisfied at Λinitial it again suffices to show that it is
conserved under the flow (with the applied CLA)
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+

+ G ↔ SSΛσ
i3i1(X + ω′′n)

GΛσ̄
i4i2(ω′′n)

d
dΛX

σσ̄
j3j4j1j2(X) =

i1σX+ω′′n j1σX+ωn

j4σ̄ωn i4σ̄ω
′′
n

j3σX+ω′n i3σX+ω′′n

i2σ̄ω
′′
n j2σ̄ω

′
n

SΛσ
i3i1(X + ω′′n)

j1σX+ωn

GΛσ̄
i4i2(ω′′n)

j4σ̄ωn

j3σX+ω′n

j2σ̄ω
′
n

G ↔ S

=

+ G ↔ SSΛσ
i3i1(X + ω′′n)

j1σX+ωn

i4σ̄ω
′′
n i2σ̄ω

′′
n

GΛσ̄
i4i2(ω′′n)=

i1σX+ω′′n

j4σ̄ωn

j3σX+ω′n i3σX+ω′′n

j2σ̄ω
′
n

+

SΛσ
i3i1(X+ω′′n)

j1σX+ωnj3σX+ω′n

G ↔ S=

GΛσ̄
i4i2(ω′′n)

j4σ̄ωnj2σ̄ω
′
n

+

SΛσ
i3i1(ω′′n)

j1σωnj3σω
′
n

G ↔ S=

GΛσ̄
i4i2(ω′′n−X)

j4σ̄ωn−Xj2σ̄ω
′
n−X

= d
dΛX

σ̄σ
j4j3j2j1(−X)

CLA

=

∑
ω′′n

∑
i1i2i3i4

∑
ω′′n

∑
i1i2i3i4

∑
ω′′n

∑
i1i2i3i4

∑
ω′′n

∑
i1i2i3i4

∑
ω′′n

∑
i1i2i3i4
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Likewise we can argue in a lot of other cases and end up with a long list of symmetries

GσΛ
ij (ωn) =GσΛ

ji (ωn) = [GσΛ
ij (−ωn)]∗

ΣσΛ
ij (ωn) =ΣσΛ

ji (ωn) = [ΣσΛ
ij (−ωn)]∗

P σσj3j4j1j2(Π) =P σσj1j2j3j4(Π)
P σσj4j3j1j2(Π) =− P σσj3j4j1j2(Π)
P σσj3j4j2j1(Π) =− P σσj3j4j1j2(Π)
P σσ̄j3j4j1j2(Π) =P σσ̄j1j2j3j4(Π)
P σσ̄j3j4j1j2(Π) =P σ̄σj4j3j2j1(Π)
P̄ σσ̄j3j4j1j2(Π) =P̄ σ̄σj1j2j3j4(Π) = P̄ σσ̄j2j1j4j3(Π)
P̄ σ̄σj3j4j1j2(Π) =P̄ σσ̄j4j3j2j1(Π)
P σσ̄j3j4j1j2(Π) =− P̄ σ̄σj4j3j1j2(Π) ⇒ P̄ σσ̄j3j4j1j2(Π) = −P σ̄σj4j3j1j2(Π)

[P σσj3j4j1j2(Π)]∗ =P σσj3j4j1j2(−Π)
[P̄ σσ̄j3j4j1j2(Π)]∗ =P̄ σσ̄j3j4j1j2(−Π)
[P σσ̄j3j4j1j2(Π)]∗ =P σσ̄j3j4j1j2(−Π)

Xσσ
j3j4j1j2 =Xσσ

j1j2j3j4

Xσσ̄
j3j4j1j2 =Xσσ̄

j1j2j3j4

X̄σσ̄
j3j4j1j2 =X̄ σ̄σ

j1j2j3j4

[Xσσ
j3j4j1j2(χ)]∗ =Xσσ

j3j4j1j2(−χ)
[Xσσ̄

j3j4j1j2(χ)]∗ =Xσσ̄
j3j4j1j2(−χ)

[X̄σσ̄
j3j4j1j2(χ)]∗ =X̄σσ̄

j3j4j1j2(−χ)
Xσσ̄
j3j4j1j2(−χ) =X σ̄σ

j4j3j2j1(χ)
X̄σσ̄
j3j4j1j2(−χ) =X̄σσ̄

j2j1j4j3(χ)
Xσσ
j3j4j1j2(−χ) =Xσσ

j4j3j2j1(χ)

(4.33)

Xσσ
j3j4j1j2(χ) =−Dσσ

j3j4j2j1(χ) ⇒ Dσσ
j3j4j1j2(χ) = −Xσσ

j3j4j2j1(χ)
Xσσ̄
j3j4j1j2(χ) =− D̄σσ̄

j3j4j2j1(χ) ⇒ D̄σσ̄
j3j4j1j2(χ) = −Xσσ̄

j3j4j2j1(χ)
X̄σσ̄
j3j4j1j2(χ) =−Dσσ̄

j3j4j2j1(χ) ⇒ Dσσ̄
j3j4j1j2(χ) = −X̄σσ̄

j3j4j2j1(χ)
(4.34)

Due to the symmetries above, there exist only seven independent vertex quantities.
Namely,

P σσj3j4j1j2(Π) =γΛ
p (j3 σΠ− ω′n, j4 σ ω′n; j1 σΠ− ωn, j2 σ ωn)

P ↑↓j3j4j1j2(Π) =γΛ
p (j3 ↑ Π− ω′n, j4 ↓ ω′n; j1 ↑ Π− ωn, j2 ↓ ωn)

X↑↓j3j4j1j2(X) =γΛ
x (j3 ↑ X + ω′n, j4 ↓ ωn; j1 ↑ X + ωn, j2 ↓ ω′n)

X̄↑↓j3j4j1j2(X) =γΛ
x (j3 ↑ X + ω′n, j4 ↓ ωn; j1 ↓ X + ωn, j2 ↑ ω′n)

Dσσ
j3j4j1j2(∆) =γΛ

d (j3 σ∆ + ω′n, j4 σ ωn; j1 σ ω′n, j2 σ∆ + ωn),

(4.35)
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where σ can take both the values ↑ and ↓. Thus, we will write down the flow equations
for this vertex quantities in the next section.

4.5. The flow equations in general coordinates

The derivation of the flow equations for the individual vertex quantities always goes
along the same line. First we use in the general equations (4.7) the coupled ladder ap-
proximation and write down the resulting equations in terms of γΛ

p , γΛ
x and γΛ

d , including
the direct feedback of the different channels into each other. As an example we write
this down here for P σσj3j4j1j2(Π):

Ṗ σσj3j4j1j2(Π) = γ̇Λ
p (j3 σΠ− ω′n, j4 σ ω′n; j1 σΠ− ωn, j2 σ ωn) =

=
∑
ω′′n

TγΛ
2 (j3 σ Π− ω′n, j4 σ ω′n; i3 σ Π− ω′′n, i4 σ ω′′n)SσΛ

i3i1(Π− ω′′)GσΛ
i4i2(ω′′n)·

γΛ
2 (i1 σ Π− ω′′n, i2 σ ω′′n; j1 σ Π− ωn, j2 σ ωn)

=
∑
ω′′n

T
{
ν(j3 σ, j4 σ; i3 σ, i4 σ) + γΛ

p (j3 σ Π− ω′n, j4 σ ω′n; i3 σ Π− ω′′n, i4 σ ω′′n)

+γΛ
x (j3 σ − ω′n, j4 σ ω′n; i3 σ − ω′′n, i4 σ ω′′n) + γΛ

d (j3 σ − ω′n, j4 σ ω′n; i3 σ − ω′′n, i4 σ ω′′n)
}
·

SσΛ
i3i1(Π− ω′′n)GσΛ

i4i2(ω′′n)·{
ν(i1 σ, i2 σ; j1 σ, j2 σ) + γΛ

p (i1 σ Π− ω′′n, i2 σ ω′′n; j1 σ Π− ωn, j2 σ ωn)

+γΛ
x (i1 σ Π−ω′′n, i2 σ ω′′n; j1 σ Π−ωn, j2 σ ωn) + γΛ

d (i1 σ Π−ω′′n, i2 σ ω′′n; j1 σ Π−ωn, j2 σ ωn)
}

=
∑
ω′′n

T
{
ν(j3 σ, j4 σ; i3 σ, i4 σ) + P σσj3j4i3i4(Π) +Xσσ

j3j4i3i4(0) +Dσσ
j3j4i3i4(0)

}
SσΛ
i3i1(Π− ω′′n)GσΛ

i4i2(ω′′n)·{
ν(i1 σ, i2 σ; j1 σ, j2 σ) + P σσi1i2j1j2(Π) +Xσσ

i1i2j1j2(0) +Dσσ
i1i2j1j2(0)

}
(4.36)

Using all our symmetries from above 4.33, the flow equations can finally be cast into
the form

Ṗ σσj3j4j1j2(Π) = T
{
ν(j3σ, j4σ; i3σ, i4σ) + P σσj3j4i3i4(Π)−Dσσ

j3j4i4i3(0) +Dσσ
j3j4i3i4(0)

}
∑
ω′′n

SσΛ
i3i1(Π− ω′′n)GσΛ

i4i2(ω′′n)

{
ν(i1σ, i2σ; j1σ, j2σ) + P σσi1i2j1j2(Π)−Dσσ

i1i2j2j1(0) +Dσσ
i1i2j1j2(0)

}
(4.37)

Analogous we proceed for our other channels and end up with
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Ṗ σσ̄j3j4j1j2(Π) = T
{
ν(j3σ, j4σ̄; i3σ, i4σ̄) + P σσ̄j3j4i3i4(Π) +Xσσ̄

j3j4i3i4(0)− X̄σσ̄
j3j4i4i3(0)

}
∑
ω′′n

SσΛ
i3i1(Π− ω′′n)Gσ̄i4i2(ω′′n)

{
ν(i1σ, i2σ̄; j1σ, j2σ̄) + P σσ̄i1i2j1j2(Π) +Xσσ̄

i1i2j1j2(0)− X̄σσ̄
i1i2j2j1(0)

}
+ T

{
ν(j3σ, j4σ̄; i3σ̄, i4σ)− P σσ̄j3j4i4i3(Π) + X̄σσ̄

j3j4i3i4(0)−Xσσ̄
j3j4i4i3(0)

}
∑
ω′′n

Sσ̄Λ
i3i1(Π− ω′′n)GσΛ

i4i2(ω′′n)

{
ν(i1σ̄, i2σ; j1σ, j2σ̄)− P σσ̄i2i1j1j2(Π) + X̄ σ̄σ

i1i2j1j2(0)−X σ̄σ
i1i2j2j1(0)

}
(4.38)

Ẋσσ̄
j3j4j1j2(χ) = T

{
ν(j3σ, i4σ̄; i1σ, j2σ̄) +Xσσ̄

j3i4i1j2(χ) + P σσ̄j3i4i1j2(0)− X̄σσ̄
j3i4j2i1(0)

}
∑
ω′′n

[
SσΛ
i1i3(χ+ ω′′n)Gσ̄Λ

i2i4(ω′′n) + G ↔ S
]

{
ν(i3σ, j4σ̄; j1σ, i2σ̄) +Xσσ̄

i3j4j1i2(χ) + P σσ̄i3j4j1i2(0)− X̄σσ̄
i3j4i2j1(0)

}
(4.39)

˙̄Xσσ̄
j3j4j1j2(χ) = T

{
ν(j3σ, i4σ; i1σ, j2σ)−Dσσ

j3i4j2i1(χ) + P σσj3i4i1j2(0) +Dσσ
j3i4i1j2(0)

}
∑
ω′′n

[
SσΛ
i1i3(χ+ ω′′n)GσΛ

i2i4(ω′′n) + G ↔ S
]

{
ν(i3σ, j4σ̄; j1σ̄, i2σ) + X̄σσ̄

i3j4j1i2(χ)− P σσ̄i3j4i2j1(0)−Xσσ̄
i3j4i2j1(0)

}
+ T

{
ν(j3σ, i4σ̄; i1σ̄, j2σ) + X̄σσ̄

j3i4i1j2(χ)− P σσ̄j3i4j2i1(0)−Xσσ̄
j3i4j2i1(0)

}
∑
ω′′n

[
Sσ̄Λ
i1i3(χ+ ω′′n)Gσ̄Λ

i2i4(ω′′n) + G ↔ S
]

{
ν(i3σ̄, j4σ̄; j1σ̄, i2σ̄)−Dσ̄σ̄

i3j4i2j1(χ) + P σ̄σ̄i3j4j1i2(0) +Dσ̄σ̄
i3j4j1i2(0)

}
(4.40)
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Ḋσσ
j3j4j1j2(∆) = −T

{
ν(j3σ, i4σ; j1σ, i2σ) +Dσσ

j3i4j1i2(∆) + P σσj3i4j1i2(0)−Dσσ
j3i4i2j1(0)

}
∑
ω′′n

[
SσΛ
i2i3(∆ + ω′′n)GσΛ

i1i4(ω′′n) + G ↔ S
]

{
ν(i3σ, j4σ; i1σ, j2σ) +Dσσ

i3j4i1j2(∆) + P σσi3j4i1j2(0)−Dσσ
i3j4j2i1(0)

}
− T

{
ν(j3σ, i4σ̄; j1σ, i2σ̄)− X̄σσ̄

j3i4i2j1(∆) + P σσ̄j3i4j1i2(0) +Xσσ̄
j3i4j1i2(0)

}
∑
ω′′n

[
Sσ̄Λ
i2i3(∆ + ω′′n)Gσ̄Λ

i1i4(ω′′n) + G ↔ S
]

{
ν(i3σ̄, j4σ; i1σ̄, j2σ)− X̄ σ̄σ

i3j4j2i1(∆) + P σσ̄j4i3j2i1(0) +X σ̄σ
i3j4i1j2(0)

}
(4.41)

γ̇Λ
1 (j1σωn; j2σωn) =

T
∑
ω′′n

SσΛ
i1i3(ω′′n)

{
ν(i3σ, j1σ; i1σ, j2σ) + P σσi3j1i1j2(ω′′n + ωn)−Dσσ

i3j1j2i1(ω′′n − ωn) +Dσσ
i3j1i1j2(0)

}
+ T

∑
ω′′n

Sσ̄Λ
i1i3(ω′′n)

{
ν(i3σ̄, j1σ; i1σ̄, j2σ) + P σσ̄j1i3j2i1(ω′′n + ωn) +X σ̄σ

i3j1i1j2(ω′′n − ω)− X̄ σ̄σ
i3j1j2i1(0)

}
(4.42)

4.6. A suitable basis transformation
Having derived the flow equations and the various symmetries for our quantities, we are
now in the position to make the transformation to the numerical basis mentioned above.
Since we will in the end consider the vertex quantities to be frequency independent, i.e.
Π = X = ∆ = 0, we drop from now on the frequency labels on the vertex quantities
for notational convenience. This simplification originates in numerical reasons since
the longer ranged feedback introduces a computational factor of ∼ L3 compared to
the on-site interaction case. Taking also the frequency dependence into account, we
would at least need up to a factor of 102 frequencies to get a realistic modeling and
the computation time would exceed reasonable boundaries. But we want to emphasize
that there is no principal difficulty to take also the frequency dependence into account.
Now, for the transformation to a numerical basis, we remind our selves of the fact that
during the flow we generate only diagrams in which two external legs each are attached
to the same bare vertex ν. If we now assume the range of the interaction in (4.1) to be
0 ≤ L ≤ 2N + 1, where 2N + 1 is the number of sites in the interacting region, only two
external legs have independent site indices and the other two have to be in the range
of the former with a distance smaller or equal to L. According to the different external
index structure of the three channels (see (4.3)-(4.3) above), we choose our basis in the
following way. For the p-channel set

Pj3j4j1j2 = P
(j4−j3)(j2−j1)
j3j1

=: P lkji , (4.43)
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where j, i, l, k are given by j3 = j, j4 = j + l, j1 = i, j2 = i + k. In a diagrammatic
fashion this is of the form

i

i+k

j

j+l

i3

i4

i1

i2

Thus, if we take l, k as the free site indices, running independently from −L to L, j
and i will run in the following ranges

−N ≤ (j + l) ≤ N
−N ≤ j ≤ N

}
⇒ max(−N,−N − l) ≤ j ≤ min(N,N − l)

−N ≤ (i+ k) ≤ N
−N ≤ i ≤ N

}
⇒ max(−N,−N − k) ≤ i ≤ min(N,N − k).

(4.44)

Analogous we proceed for the X-and the D-Channel and write

Xj3j4j1j2 = X
(j2−j3)(j4−j1)
j3j1

:= X lk
ji (4.45)

j + l

i3

i+ k

j

i4 i2

i1
i

and
Dj3j4j1j2 = D

(j1−j3)(j4−j2)
j3j2

:= Dlk
ji , (4.46)

j+l

i3

i+k

j
i4 i2

i1

i

with the same ranges for the indices as above. The new quantities Alkji can be in-
terpreted as block matrices, with the block structure given by the l, k indices, and the
internal structure of each block given by the indices j, i. One has to keep in mind that
the range of j, i depends on the value of l and k, respectively. Thus, each of this block
matrices will be a quadratic matrix with an odd dimension 2L+1 in the blocks, where the
blocks become smaller when we move from the central block outside. This is illustrated
in Figure fig. 4.2 for L = N = 2
These block matrices are actually the form of our quantities which is perfectly suited

for numerical purposes. By transforming the flow equations into this representation, it
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k

l

−2 −1 0 1 2

−2

−1

0

1

2

j

i

−2
−1

0
1
2

−2−1 0 1

Figure 4.2.: The block matrix structure of the vertex quantities. l and k denote the
free block indices, while j and i are the dependent indices within the single
blocks. Note that the blocks become smaller the wider their distance to the
central block is.
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will turn out that their right hand sides reduce to simple matrix products in the block
matrices. This actually is a crucial point. For matrix multiplications we can apply the
full might of the algorithms in the linear algebra packages BLAS and LAPACK. If we
just had arbitrary summations over a tensor quantity with four indices and doing them
naively, this would rise the computation time by a tremendous amount.
For further use, we will state here first the vertex symmetries in the new representation,

translating into symmetries of the corresponding block matrices.
P σσlkji =P σσj(j+l)i(i+k) = P σσi(i+k)j(j+l) = P σσi(i+k)j(j+l) = P σσklij

P σσlkji =P σσj(j+l)i(i+k) = −P σσ(j+l)ji(i+k) = −P (−l)k
(j+l)i

P σσlkji =P σσj(j+l)i(i+k) = −P σσj(j+l)(i+k)i = −P l(−k)
j(i+k)

P σσ̄lkji =P σσ̄j(j+l)i(i+k) = P σσ̄i(i+k)j(j+l) = P σσ̄klij

P σσ̄lkji =P σσ̄j(j+l)i(i+k) = P σ̄σ(j+l)j(i+k)i = P
σ̄σ(−l)(−k)
(j+l)(i+k)

P̄ σσ̄lkji =P̄ σσ̄j(j+l)i(i+k) = P̄ σ̄σi(i+k)j(j+l) = P̄ σ̄σklij = P̄ σσ̄(i+k)i(j+l)j = P̄
σσ̄(−k)(−l)
(i+k)(j+l)

P̄ σ̄σlkji =P̄ σ̄σj(j+l)i(i+k) = P̄ σσ̄(j+l)j(i+k)i = P̄
σσ̄(−l)(−k)
(j+l)(i+k)

P σσ̄lkji =P σσ̄j(j+l)i(i+k) = −P̄ σ̄σ(j+l)ji(i+k) = −P̄ σ̄σ(−l)k
(j+l)i

⇒ P̄ σσ̄lkji =P̄ σσ̄j(j+l)i(i+k) = −P σ̄σ(j+l)ji(i+k) = −P σ̄σ(−l)k
(j+l)i

[P σσlkji ]∗ =P σσlkji

[P̄ σσ̄lkji ]∗ =P̄ σσ̄lkji

[P σσ̄lkji ]∗ =P σσ̄lkji

(4.47)

For the X-channel
Xσσlk
ji =Xσσ

j(i+k)i(j+l) = Xσσ
i(j+l)j(i+k) = Xσσkl

ij

Xσσ̄lk
ji =Xσσ̄

j(i+k)i(j+l) = Xσσ̄
i(j+l)j(i+k) = Xσσ̄kl

ij

X̄σσ̄lk
ji =X̄σσ̄

j(i+k)i(j+l) = X̄ σ̄σ
i(j+l)j(i+k) = X̄ σ̄σkl

ij

[Xσσlk
ji ]∗ =Xσσlk

ji

[Xσσ̄lk
ji ]∗ =Xσσ̄lk

ji

[X̄σσ̄lk
ji ]∗ =X̄σσ̄lk

ji

Xσσ̄lk
ji =Xσσ̄

j(i+k)i(j+l) = X σ̄σ
(i+k)j(j+l)i = X

σ̄σ(−l)(−k)
(j+l)(i+k)

X̄σσ̄lk
ji =X̄σσ̄

j(i+k)i(j+l) = X̄σσ̄
(j+l)i(i+k)j = X̄

σσ̄(−l)(−k)
(j+l)(i+k)

Xσσlk
ji =Xσσ

j(i+k)i(j+l) = Xσσ
(i+k)j(j+l)i = X

σσ(−l)(−k)
(j+l)(i+k)

(4.48)

Connection to the D channel
Xσσlk
ji (χ) =Xσσ

j(i+k)i(j+l) = −Dσσ
j(i+k)(j+l)i = −Dσσlk

ji

Xσσ̄lk
ji =Xσσ̄

j(i+k)i(j+l) = −D̄σσ̄
j(i+k)(j+l)i = −D̄σσ̄lk

ji

X̄σσ̄lk
ji =X̄σσ̄

j(i+k)i(j+l) = −Dσσ̄
j(i+k)(j+l)i = −Dσσ̄lk

ji

(4.49)
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At the end of this chapter we have depicted these symmetries graphically.

4.7. The flow equations in the new notation
Our flow equations derived above can easily be rewritten in the new representation. The
only thing we have now to take care of are the feedback terms which become slightly
more complicated. We will explicitly show the transformation for Ṗ σσj3j4j1j2 and then
simply state the results for the other flow equations.
We have

Ṗ σσlkji = Ṗ σσj(j+l)i(i+k)

=T
{
ν(jσ, j + lσ; i3σ, i4σ) + P σσj(j+l)i3i4 −D

σσ
j(j+l)i4i3 +Dσσ

j(j+l)i3i4

}
∑
ω′′n

SσΛ
i3i1(Π− ω′′n)GσΛ

i4i2(ω′′n)

{
ν(i1σ, i2σ; iσ, (i+ k)σ) + P σσi1i2i(i+k) −D

σσ
i1i2(i+k)i +Dσσ

i1i2i(i+k)

}
=T

{
ν(jσ, j + lσ; i3σ, i4σ) + P

σσl(i4−i3)
ji3

−Dσσ(i4−j)(j+l−i3)
ji3

+D
σσ(i3−j)(j+l−i4)
ji4

}
∑
ω′′n

SσΛ
i3i1(Π− ω′′n)GσΛ

i4i2(ω′′n)

{
ν(i1σ, i2σ; iσ, (i+ k)σ) + P

σσ(i2−i1)k
i1i

−Dσσ(i+k−i1)(i2−i)
i1i

+D
σσ(i−i1)(i2−(i+k))
i1(i+k)

}
=T

{
ν(j σ, j + l σ; i3 σ, i3 + p σ) + P σσlpji3

−Dσσ(i3+p−j)(j+l−i3)
ji3

+D
σσ(i3−j)(j+l−(i3+p))
j(i3+p)

}
∑
ω′′n

[SσΛ
i3i1(Π− ω′′n)GσΛ

i3+p,i1+q(ω′′n)]

{
ν(i1 σ, i1 + q σ; i σ, (i+ k)σ) + P qki1i −D

σσ(i+k−i1)(i1+q−i)
i1i

+D
σσ(i−i1)(i1+q−(i+k)
i1(i+k)

}
,

(4.50)

where the sums over the internal variables have the ranges

−L ≤ p, q ≤ L
max(−N,−N − p) ≤ i3 ≤ min(N,N − p)
max(−N,−N − q) ≤ i1 ≤ min(N,N − q)

(4.51)

and it is understood implicitly that any quantity Alkji is zero if any of the indices is out
of the appropriate range −L ≤ l, k ≤ L, max(−N,−N − l) ≤ j ≤ min(N,N − l) and
max(−N,−N − k) ≤ i ≤ min(N,N − k).
At this point, we note that with the definitions

1P
σσlk
ji :=

{
ν(j σ, j + l σ; i σ, i+ k σ) + P σσlkji −Dσσ(i+k−j)(j+l−i)

ji

+Dσσ(i−j)(j+l−(i+k))j(i+ k)
}

W σσpq
ji :=T

∑
ω′′n

[Sσσpqji (Π− ω′′n)GσΛ
i3+p,i1+q(ω′′n)]

(4.52)
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we can write this in the form

Ṗ σσlkji = 1P
σσlp
ji3
·W pq

i3i1
· 1P σσqki1i

. (4.53)

That is just the product form in the block matrix space which we mentioned above.
Analogously one can proceed for the other flow equations. Here, we need the definitions:

1P
σσlk
ji :=ν(jσ, j + lσ; iσ, i+ kσ) + P σσlkji3 −Dσσ(i+k−j)(j+l−i)

ji +D
σσ(i−j)(j+l−(i+k))
j(i+k)

1P
σσ̄lk
ji :=ν(jσ, j + lσ̄; iσ(i+ k)σ̄) + P σσ̄lkji +X

σσ̄(i+k−j)(j+l−i)
ji − X̄σσ̄(i−j)(j+l−(i+k))

j(i+k)

1X
σσ̄lk
ji :=ν(jσ, (i+ k)σ̄; iσ, (j + l)σ̄) +Xσσ̄lk

ji + P
σσ̄(i+k−j)(j+l−i)
ji − X̄σσ̄(i−j)(i+k−(j+l))

j(j+l)

1X̄
σσ̄lk
ji :=ν(jσ, (i+ k)σ; iσ, (j + l)σ)−Dσσlk

ji + P
σσ(i+k−j)(j+l−i)
ji +D

σσ(i−j)(i+k−(j+l))
j(j+l)

2X̄
σσ̄lk
ji :=ν(jσ, (i+ k)σ̄; iσ̄, (j + l)σ) + X̄σσ̄lk

ji − P σσ̄(i+k−j)(i−(j+l))
j(j+l) −Xσσ̄(i−j)(i+k−(j+l))

j(j+l)

3X̄
σσ̄lk
ji :=ν(jσ̄, (i+ k)σ̄; iσ̄, (j + l)σ̄)−Dσ̄σ̄lk

ji + P
σ̄σ̄(i+k−j)(i−(j+l))
ji +D

σ̄σ̄(i−j)(i+k−(j+l))
j(j+l)

1D
σσlk
ji :=ν(jσ, (i+ k)σ; (j + l)σ, iσ) +Dσσlk

ji + P
σσ(i+k−j)(i−(j+l))
j(j+l) −Dσσ(i−j)(i+k−(j+l))

j(j+l)

2D
σσlk
ji :=ν(jσ, (i+ k)σ̄; (j + l)σ, iσ̄)− X̄σσ̄lk

ji + P
σσ̄(i+k−j)(i−(j+l))
j(j+l) +X

σσ̄(j+l−(i+k))(j−i)
j(j+l) .

(4.54)

Furthermore, we define the bubbles

Πσµ lk
ji :=T

∑
ω′′n

[SσΛ
ji (Π− ω′′n)GµΛ

(j+l)(i+k)(ω
′′
n)]

χσµ lkji =:T
∑
ω′′n

[SσΛ
ji (X + ω′′n)GµΛ

(j+l)(i+k)(ω
′′
n) + S ↔ G]

(4.55)

and then we can cast the flow equations into the simple form

Ṗ σσlkji =1P
σσlp
ji1
·Πσσpq

i1i2
· 1P σσqki2i

Ṗ σσ̄lkji = 2·1P σσ̄lpji1
·Πσσ̄pq

i1i2
· 1P σσ̄qki2i

Ẋσσ̄lk
ji =1X

σσ̄lp
ji1
· χσσ̄pqi1i2

· 1Xσσ̄qk
i2i

˙̄Xσσ̄lk
ji =1X̄

σσlp
ji1
· χσσpqi1i2

· 2X̄
σσ̄qk
i2i + 2X̄

σσ̄lp
ji1 · χ

σ̄σ̄pq
i1i2
· 3X̄

σ̄σ̄qk
i2i

Ḋσσlk
ji =−1 D

σσlp
ji1
· χσσpqi1i2

·1 Dσσqk
i2i

− 2D
σσ̄lp
ji1
· χσ̄σ̄pqi1i2

· 2Dσσ̄kq
ii2

(4.56)

and the flow of the self energy reads

γ̇Λσ
ji = ΓσΛ

(i−p)(j−q)(ν((j − q)σ, jσ; (i− p)σ, iσ) + P σσqp(j−q)(i−p))

− ΓσΛ
(j−q)(i−p)D

σσpq
(i−p)(j−q)

+ ΓσΛ
i1(i1−p)D

σσp(j−i)
(i1−p)i

+ Γσ̄Λ
(i+p)(j+q)(ν((j + q)σ̄, jσ; (i+ p)σ̄, iσ) + P σσ̄qpji )

+ Γσ̄Λ
(j−q)(i−p)X

σσ̄(−q)(−p)
ji

− Γσ̄Λ
i1(i1−p)X̄

σσ̄(j−i)p
i(i1−p) ,

(4.57)
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where

ΓσΛ
ij := T

∑
ω′′n

SσΛ
ij (ω′′n). (4.58)

After having set up the flow equations, we can tackle the internal frequency summations
over ω′′n. Here we will finally make the transition to the zero temperature limit, i.e the
Matsubara frequencies will become dense and we can replace the summation over them
by an integral. In this context, we will also have to specify the concrete form of the
cutoff in our non interacting propagator which introduces the flow parameter. We will
use 2

G(iωn,Λ) = θT (|ωn| − Λ)G0(iωn). (4.59)

This immediately determines the single scale propagator

S(ωn,Λ) =GΛ(ωn)∂Λ[G0Λ(ωn)]−1GΛ(ωn) =
G0θT (|ωn| − Λ)

1 + G0θT (|ωn| − Λ)γ1
[G0θT ]−1GδT (|ωn| − Λ)[G0θT ]−1 G0θT

1 + G0θTγ1
=

G0δT (|ωn| − Λ)
(1 + G0θTγ1)2 =

δT∂θT

[
G0θT

1 + G0θTγ1

]
=

δT (|ωn| − Λ)∂θT G
Λ(ωn).

(4.60)

At this point, the name ”single scale” propagator becomes apparent since due to the
δ-function S depends only on the Λ scale and not on the frequency ωn. As mentioned
above, we will take the zero temperature limit and make therefore the replacement
T
∑
ωn →

1
2π
∫
dω. With this we can calculate the bubbles Πσµ lk

ji , χσµ lkji as well as ΓσΛ
ij .

Let’s start with

∑
ωn

ΓσΛ
ij (ωn) =

∑
ωn

TSσΛ
ij (ωn) = 1

2π

∫
dωδ(|ω| − Λ)∂θGΛ(iω) (4.61)

in the evaluation of the ω integral, the product of the δ-function and the function
∂θGΛ(iω) must be treated carefully. For this purpose, we will exploit Morris’ lemma
[22] which basically states that

lim
ε→0

δε(x− Λ)f [θε(x− Λ)] = δ(x− Λ)
∫ 1

0
f(t)dt, (4.62)

where f is a continuous function in θ and the δ- as well as the θ-function are implemented

2θT (ω) denotes a step function which is broadened on a scale set by T
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via a convergent sequences δε → δ and θε → θ. Thus, we get

∑
ωn

ΓσΛ
ij (ωn) = 1

2π

∫
dωδ(|ω| − Λ)∂θGΛ

ij(iω) = 1
2π

∫
dωδ(|ω| − Λ)

∫ 1

0
∂tGΛ

ij(iω)

= 1
2π

∫
dωδ(|ω| − Λ)

∫ 1

0
∂t

[
G0t

1 + G0tγ1

]
ij

= 1
2π

∫
dωδ(|ω| − Λ)

[
G0

1 + G0γ1

]
ij

= 1
2π

∑
ω=±Λ

G̃Λ
ij(iω),

(4.63)

where we have defined

G̃(Λ) =: 1
[G0]−1(Λ) + γΛ

1 (Λ)
. (4.64)

According to the symmetries G0(iω) = G0(−iω)∗ and γΛ
1 (Λ) = γΛ

1 (−Λ)∗ (see (4.33)), we
end up with ∑

ωn

ΓσΛ
ij (ωn) = 1

π
Re G̃Λ(iΛ). (4.65)

We can do an analogous calculation to evaluate the ω′′n sum in the bubble-terms. For
this we first notice that due to the symmetries of P σσlkji we have

Ṗ σσlkji =1P
σσlp
ji1
·Πσσpq

i1i2
· 1P σσqki2i

=1
21P

σσlp
ji1
·Πσσpq

i1i2
· 1P σσqki2i

+ 1
21P

l(−p)
j(i1+p)Π

(−p)(−q)
(i1+p)(i2+q)1P

(−q)k
(i2+q)i

=1P
σσlp
ji1

1
2[Πσσpq

i1i2
+ Π(−p)(−q)

(i1+p)(i2+q)]1P
qk
i2i
.

(4.66)

Thus, we see that we can actually make the replacement

Πσµlk
ji → Π̃σµlk

ji := 1
2[Πσσpq

i1i2
+ Π(−p)(−q)

(i1+p)(i2+q)] (4.67)

in the flow equations for the p-channel. Therefore, if we evaluate the frequency sum over
ω′′n in (4.56), we get

∑
ωn

Π̃σµlk
ji =T

∑
ωn

1
2[Sσji(−ω′′n)Gµ(j+l)(i+k)(ω

′′
n) + Sσ(j+l)(i+k)(−ω

′′
n)Gµji(ω

′′
n)], (4.68)
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which then can again be evaluated via Morris’ lemma:

∑
iωn

Π̃σµlk
ji = 1

4π

∫
dωδ(|ω| − Λ)

∫ 1

0
dt
{
∂t[GσΛ

ji (−iω)]G(j+l)(i+k)(iω)

+ ∂t[GσΛ
(j+l)(i+k)(−iω)]GµΛ

ji (iω)
}

=
1

4π

∫
dωδ(|ω| − Λ)

∫ 1

0
dt∂t[GσΛ

ji (iω)GσΛ
(j+l)(i+k)(−iω)] =

1
4π

∫
dωδ(|ω| − Λ)G̃σΛ

ji (iω)G̃µΛ
(j+l)(i+k)(−iω) =

1
4π

∑
ω=±Λ

G̃σΛ
ji (iω)G̃µΛ

(j+l)(i+k)(−iω) =

1
2π Re

[
G̃σΛ
ji (iΛ)G̃µΛ

(j+l)(i+k)(−iΛ)
]
.

(4.69)

Completely analogous we can proceed for the second bubble

∑
ωn

χσµlkji = T [SσΛ
ji (ω′′n)GµΛ

(j+l)(i+k)(ω
′′
n) + SµΛ

(j+l)(i+k)(ω
′′
n)GσΛ

ji (ω′′n)] (4.70)

which yields

∑
iωn

χσµlkji = 1
π

Re
[
G̃σΛ
ji (iΛ)G̃µΛ

(j+l)(i+k)(iΛ)
]
. (4.71)

With these statements plugged in (4.56), we have reached the final form of our flow
equations which is simply a system of ordinary differential equations.

The last part in this rather technical section concerns the numerical initial conditions
of the flow. In our analytical considerations, the initial conditions where simple, namely
γΛinit=∞

1 = 0 and γΛinit=∞
2 = ν. However, when we implement the flow on a computer,

Λinit = ∞ is not accessible and is morally replaced by Λinit = Λ0, where Λ0 is chosen
to be large in terms of our energy unit τ . This replacement will give rise to a change in
the initial conditions in the flow of γΛ

1 . To compute this contribution, it is convenient
to use not our numerical form 4.57 but the more compact form 4.42. If we express the
latter in the notation introduced above, we have

γ̇Λσ
1ji = 1

π
Re[G̃(iΛ)]klγΛ

2 (lµ, jσ; kµ, iσ). (4.72)
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Now one can integrate this equation from Λ0 to ∞ and consider the limit Λ0 →∞

lim
Λ0→∞

∫ ∞
Λ0

γ̇Λσ
1ji = 1

π
lim

Λ0→∞

∫ ∞
Λ0

Re[eiΛ0+ G̃(iΛ)]klγΛ
2 (lµ, jσ; kµ, iσ)

⇒ γ∞σ1ji︸︷︷︸
=0

−γΛ0σ
1ji = 1

π
lim

Λ0→∞

∫ ∞
Λ0

Re
[
eiΛ0+ δlk

iΛ

]
ν(lµ, jσ; kµ, iσ)

= 1
π

lim
Λ0→∞

∫ ∞
Λ0

[
sin(Λ0+)

Λ

]
ν(lµ, jσ; lµ, iσ)

= 1
π

lim
Λ0→∞


∫ ∞

0
dΛ
[

sin(Λ0+)
Λ

]
︸ ︷︷ ︸

=π
2

−
∫ Λ0

0
dΛ
[

sin(Λ0+)
Λ

]
︸ ︷︷ ︸

=0

 ν(lµ, jσ; kµ, iσ)

= 1
π

lim
Λ0→∞

π

2 ν(lµ, jσ; lµ, iσ).

(4.73)

In the second line we used limΛ→∞ γ
Λ
2 → ν and that for large Λ the leading order of Λ

in G̃µlk(iΛ) is proportional to δlk
iΛ . Thus, we end up with the numerical initial conditions

for our flow equations:

γΛ0σ
1ji =− 1

2ν(lµ, jσ; lµ, iσ)

γΛ0
2 (j3σ3, j4σ4; j1σ1, j2σ2) =ν(j3σ3, j4σ4; j1σ1, j2σ2).

(4.74)

For the concrete solution of these differential equations, we apply a fourth order Runge
Kutta method with adaptive step size using the Dormand-Prince Butchers tableau [23].
Again, we emphasize that the r.h.s. in the differential equation is given by a matrix
product in block matrix space.
Note that in our actual calculations we will always use a potential which is parity sym-
metric, i.e. Vi = V−i for all sites i. This leads to the fact that our whole system is
invariant under parity, i.e. we cannot distinguish between left and right. Therefore, we
have for our propagators

Gij = G(−i)(−j), Sij = S(−i)(−j) (4.75)

and for an arbitrary of our vertex quantities Alkji :

Alkji = A
(−l)(−k)
(−j)(−i) or Aj3j4j1j2 = A(−j3)(−j4)(−j1)(−j2), (4.76)

respectively. Using this together with the symmetries established earlier, we can reduce
our needed memory significantly by only saving the independent quantities. Furthermore,
we can also reduce computation time by transforming Alkji into an odd-even representa-
tion according to

Ã := W T ·A ·W, (4.77)
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where the orthonormal matrix W is given by

W = 1√
2



1 1
. . . . .

.

1 1√
2

−1 1

. .
. . . .

−1 1


. (4.78)

Note that the dimension of Alkji as a whole block matrix is always odd. If we define the
function

f(l, j) :=
l−1∑
α=−L

(2N + 1− |α|) + j, (4.79)

we can get our hands on the indices of the whole block matrix:

Alkji = Af(l,j)f(k,i). (4.80)

Thus, we get for the transformation defined above:

Ãαγβδ :=[W T ·A ·W ]αγβδ = W Tαl
βj AlkjiW

kγ
iδ =

=1
2
[
Af(α,β)f(γ,δ) + sgn(f(γ, δ))Af(α,β)f(−γ,−δ)

+ sgn(f(α, β))Af(−α,−β)f(γ,δ) + sgn(f(α, β)) sgn(f(γ, δ))Af(−α,−β)f(−γ,−δ)
]
,

(4.81)

where we adopted the convention sgn(0) :=
√

2−1. Since our As respect parity symmetry,
we see immediately that Ãf(α,β)f(γ,δ) is zero whenever f(α, β) and f(γ, δ) have opposite
signs. Furthermore, we have for f(α, β) = 0 and f(γ, δ) < 0:

Ã0f(γ,δ) = 1
2
[
A0f(γ,δ) −A0f(−γ,−δ) + (

√
2− 1)

(
A0f(γ,δ) −A0f(−γ,−δ)

)]
= 0, (4.82)

and also analog for f(γ, δ) = 0 and f(α, β) < 0. Thus, we have the following two block
structure

Ã =
(
Ãodd 0

0 Ãeven

)
, (4.83)

where Ãodd and Ãeven are square matrices with dim(Ãeven) = dim(Ãodd)+1 since the even
part contains the central element. This transformation can be exploited to reduce the
computational cost of matrix multiplication in our channels. If we denote the dimension
of the whole block matrices as dim(A) = Nges, the cost of a multiplication A · B is
proportional to N3

ges. But the cost of the transformations A → Ã and B → B̃ is
proportional to N2

ges and the multiplication

Ã · B̃ =
(
Ãodd · B̃odd 0

0 Ãeven · B̃even

)
(4.84)



66 4. Approximative treatment of longer ranged feedback

goes like 2 ·
(
Nges

2

)3
= 1

4N
3
ges.

Thus, by exploiting parity symmetry we can reduce the leading order term in computa-
tion time to a quarter.
As completion of this chapter, we will graphically depict the independent elements in
the block matrices of our channels, using all the previous stated symmetries as well as
parity. Here we consider the L = 2, N = 2 case. Then the seven independent vertex
quantities P σσ, P ↑↓, X↑↓, X̄↑↓, Dσσ are of the forms depicted in the subsequent figures.

Figure 4.3.: The independent elements of the P σσ channel. The relevant symmetries are
here: P σσlkji = P

σσ(−l)(−k)
(−j)(−i) , P σσlkji = P σσklij , P σσlkji = P

σσ(−l)(−k)
(j+l)(i+k) , P σσlkji =

−P σσ(−l)k
(j+l)i , and P σσlkji = −P σσlkj(i+k).

Figure 4.4.: The independent elements of the P ↑↓ and X↑↓ channels. The relevant sym-
metries are here (A = X,P ): A↑↓lkji = A

↑↓(−l)(−k)
(−j)(−i) and A↑↓lkji = A↑↓klij .
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Figure 4.5.: The independent elements of the X̄↑↓ channel. The relevant symmetries are
here: X̄↑↓lkji = X̄

↑↓(−l)(−k)
(−j)(−i) and X̄↑↓lkji = X̄

↑↓(−l)(−k)
(j+l)(i+k) .

Figure 4.6.: The independent elements of the Dσσ channel. The relevant symmetries are
here: Dσσlk

ji = D
σσ(−l)(−k)
(−j)(−i) , Dσσlk

ji = Dσσkl
ij , and Dσσlk

ji = D
σσ(−l)(−k)
(j+l)(i+k) .

In the next chapters, we will use our developed machinery to study various problems
around QPCs and Quantum Dots (QDs).



5. A brief revision of the physics in
quantum point contacts

In this chapter, we will continue with the explanation of physics in QPCs. In our
second chapter on the experimental realization of QPCs, we have already commented
on the general conductance quantization that occurs when varying the gate voltage and
therefore the barrier structure of the QPC. In the following, we will just study the
behavior of the lowest sub-band, i.e. the transition from a closed QPC to an open one
with G = 1 ·GQ in terms of the conductance quantum GQ = 2e2

h . Thus, let us look again
at our model (3.8).
First, we will have to specify our potential Ej = (Vj −µ− σB

2 ) as well as the interaction
U(k, l). In this section we summarize the results Bauer et al. have obtained, using a
potential barrier parabolic around the QPC’s maximum

V (x) ' Vg + µ+ 2τ − m

2~2 Ω2
xx

2 (5.1)

or in a discrete version
Vj ' Vg + µ+ 2τ − Ω2

x

4τ j
2. (5.2)

For our actual computations we used a barrier of the form below which satisfies these
requirements:

V (j) = (µ+ Vg + 2τ) exp

−
(
j
N

)2(
1−

(
j
N

)2
)
 . (5.3)

In order to determine the curvature we use

V (j) ≈ (µ+ Vg + 2τ)
(

1−
(
j

N

)2
)

(5.4)

and by comparing this with (5.2) and assuming (Vg +µ+ 2τ) ≈ 2τ +µ, we immediately
obtain for the approximate curvature

Ωx = τ · 2
√

2
N

, (5.5)

where 2N + 1 gives the length of the interacting region. For U(k, l) we will assume here
a simple on-site interaction U(k, l) ∼ Ukδkl. To get a grasp of the physics, let us study
the non interacting behavior first. We begin with determining the characteristic scales of

68
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−τ −τ

︸︷︷︸
a

Figure 5.1.: Tight binding chain with hopping amplitude −τ and lattice spacing a

our problem. The time independent Schrödinger equation of the non-interacting single
particle system is(

− ~2

2m
d2

dx2 + Vg + 2τ + µ− m

2~2 Ω2
xx

2
)
ψ(x) = Eψ(x). (5.6)

In order to end up with a dimensionless equation we have to rescale x, via χ := x
lx
. Then

we obtain (
− ~2

2m
1
l2x

d2

dχ2 + Vg + µ+ 2τ − m

2~2 Ω2
xl

2
xχ

2
)
ψ(lxχ)︸ ︷︷ ︸
=:ψ̃(χ)

= Eψ(lx · χ)

⇒
(
− d

dχ2 + (Vg + µ+ 2τ) · 2m
~2 l

2
x −

m2

~4 Ω2
xl

4
xχ

2
)
ψ̃(χ) = E

~2 ψ̃(χ)

(5.7)

Now we demand m2

~4 Ω2
xl

4
x

!= 1 and thus lx = ~√
mΩx

=
√

2·a·
√

τ
Ωx , with the massm = ~2

2τa2

(see (3.5)) and (
− d

dχ2 − χ
2 + (Vg + µ+ 2τ) · 2

Ωx

)
ψ̃(χ) = 2 EΩx

ψ̃(χ). (5.8)

Thus, the natural scale of energy is given by the curvature Ωx and the natural scale
of length by lx ∼ a

√
τ

Ωx . Let us now analyze our model by recreating it step by step,
starting from a tight binding chain (see Figure 5.1).
The local density of states (LDOS) can easily be calculated

A(ω) = − 1
aπ

ImGjj(ω + i0+) = 1
πa
√
ω(4τ − ω)

ω�τ≈ 1
2πa
√
τω
∝ 1
vclas

, (5.9)

where the last proportionality to the inverse of the electron velocity is understood in
semiclassical terms via

ω = 1
2mv

2 = 1
2

~2

2τa2 v
2 ⇒ v2 = 4ωτa2

~2 (5.10)

and therefore v ∼ a
√
τω. This LDOS has the form depicted in Figure fig. 5.2 with an

∼ 1√
ω
van Hove singularity at the band edges. These are just determined by the usual

dispersion relation of a tight binding chain

εk = −2τ cos(ka) (5.11)

to be −2τ , 2τ , respectively. Our total band width is thus 4τ . In the following, we will
often look at the LDOS Aj(ω) in a 2d color plot like the one in fig. 5.3.
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− 2

0

2

ω
/
τ

A0(ω)a

Figure 5.2.: LDOS of a tight binding chain. Near the lower and upper band edges at
−2τ and 2τ we have a van Hove singularity ∼ 1√

ω
.
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Figure 5.3.: LDOS of a tight binding chain in a color plot.
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Figure 5.4.: LDOS of a chain with hopping −τ and a potential barrier with quadratic top.
The band of the tight binding chain is deformed by the quadratic potential.
The length of the central region was here 2N + 1 = 201 sites.



71

−2 −1 0 1 2 3 4 5

(ω + µ−Vc)/Ωx

A
0 c
(ω

)√
Ω

x
τ
a
2

0

0.2

0.4

0.6

0.21

0.55

Figure 5.5.: Dependence of the LDOS at the center of the QPC on the frequency ω, at
an gate voltage Vc/Ωx = 0.025. The upper and lower band edges are at
−2τ and 2τ as above. The blue solid curve is the LDOS for the QPC, the
black dashed curve is the LDOS for a tight binding chain with no potential.
We see that the deviation of the peak in the LDOS with potential from the
one without potential is given by 0.21Ωx, and the width of the peak is also
smeared out on a energy scale given by Ωx. In this plot, the length of the
central region is 2N + 1 = 101 sites, implying a curvature Ωx = 0.0566τ .

The next step in the development of our model is to switch on the parabolic potential.
Again we evaluate Aj(ω) and see that the band bottom (and the upper band edge, which
is not relevant in our considerations) are lifted and mainly follow the form of the applied
potential (see fig. 5.4)1. Thereby, the van Hove singularity is smeared out on a scale
∼ Ωx and ceases to diverge, becoming a finite peak of magnitude 1√

τΩx
in the LDOS.

This scale dependence will become clear from our plot below, see fig. 5.5. Keeping in
mind the peaks origin, we will refer to this structure as the van Hove ridge. The apex of
this ridge, which contains the most weight, lies just in the center of the QPC. The fringes
at the flanks of the QPC near the lower and upper band edges are Friedel oscillations
caused by the formation of standing waves due to reflection of electrons on the barrier.
In fig. 5.5, one sees that the smearing scale is indeed ∼ Ωx, in the j = 0 case the

peak of A0
c(ω) differs from the band bottom by the value 0.21Ωx and has the height of

0.55(ω)a
√
τΩx. Furthermore, A0

c(ω) → Atight binding(ω) if ω becomes much larger than
the band bottom ωmin. This corresponds to the case when electrons start to be able to
move freely above the barrier2.
The conductance behavior is dominated by the effect that we have already seen in the
beginning. The QPC is closed if ωmin > µ and opens up if ωmin . µ. In the non

1For all actual calculations in this chapter, we have set µ = 0
2To reduce the computational cost, we will use for the remainder of this work always 2N + 1 = 81 as
length of the central region if not explicitly stated otherwise. This implies a curvature Ωx = 0.0707τ .
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0

0.5
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−2−1012
Vg/Ωx

G
/
G

Q

Figure 5.6.: The non-interacting conductance G/GQ as a function of the gate voltage
Vg/Ωx. Note that the non-interacting conductance is antisymmetric with
respect to the point (0, 0.5). On this we will further elaborate below.
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Figure 5.7.: Conductance G/GQ for different on-site interaction strengths U0 plotted
against the gate voltage Vg/Ωx. Note the slow development of the 0.7
shoulder.

interacting case (U = 0) the linear conductance looks then like shown in fig. 5.6.
Turning on the interaction U , things become more interesting (cf. fig. 5.7) and we see

that with increasing U the conductance develops a shoulder at roughly g = 0.7, therefore
known as the 0.7-anomaly. As explained by Bauer et al., this behavior arises essentially
due to the shape of our van Hove ridge. In the sub-open regime, i.e. when we are in
the area around g ≈ 0.7, the apex of the van Hove ridge crosses the chemical potential.
This has a major effect on our observables. For example, we have for the density

nj =
∫ ∞
−∞

dωAj(ω)f(ω) T=0=
∫ µ

−∞
dωAj(ω). (5.12)

Now, since Aj(ω) is not constant, nj(µ) is obviously not linear in µ (we have ∂µni ∝
Ai(µ)). The most non linear behavior will occur when the apex of the LDOS, which is
quite sharply localized and has a huge weight, crosses the chemical potential. In first
order in the interaction, our self energy is just

Σii = Ui · ni, (5.13)
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to which we will refer as the Hartree barrier. In the case U = 0, the on-site energy in
the Hamiltonian grows linearly in the gate voltage Vg. If U 6= 0, this linear grow will
be disturbed by the Hartree barrier since ni(Vg) is not linear, especially in the sub-open
regime around g ≈ 0.7. There, the density grows by a huge amount due to the passing
of the LDOS apex through the chemical potential. Thus, the conductance will in this
region be suppressed by the Hartree barrier. That is essentially the cause for the 0.7
shoulder and this effect increases the bigger the interaction strength U becomes. The
effect can be further amplified by introducing a external magnetic field B. To explain
this, let us first look again at the case where U = 0. If we switch on B, the on-site
energy for electrons will be shifted by −σ

2B, causing the barrier for spin up electrons to
decrease and for spin down electrons to increase. Thus, the spin resolved conductances
will be merely shifted in Vg, see fig. 5.8.
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Figure 5.8.: The spin resolved, non-interacting conductances G↑/GQ and G↓/GQ for
increasing magnetic fields, plotted against the gate voltage Vg.

Likewise, this shift will be visible in our other observables, the density and the sus-
ceptibility. But the whole conductance g = g↑ + g↓ should stay symmetric to the point
Vg = µ = 0. (In fact, one can show for a pure quadratic barrier [24] that g0

σ = T 0
σ (0)

with the bare transmission probability

T 0
σ (ω) ' 1

e−2π(ω−Ṽc)/Ωx + 1
(5.14)

and thus T 0
σ (Ṽc, 0) = 1− T 0

σ (−Ṽc, 0)).
If we now switch on U, we get a Hartree barrier which is much stronger for spin-down
than spin-up electrons since it is determined in 1st order by the density of the opposite
spin species:

Σσ
ii = nσ̄i Uii. (5.15)

In this case, a lowering of Vg will induce the following behavior. At first, the spin-up
electrons can pass the barrier and behave almost as if no interaction U is present because
the density of the spin-down electrons is still low. If Vg is then small enough that also
the spin-down electrons are energetically above the chemical potential, the density of
the spin-up electrons in the QPC is already high. Therefore, the Hartree barrier for the
spin-down electrons is much bigger than for the spin-up ones and thus their conductance
is much more suppressed (cf. fig. 5.9).
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Figure 5.9.: The on-site interacting, spin resolved conductances G↑/GQ and G↓/GQ for
increasing magnetic fields, plotted against the gate voltage Vg. The on-site
interaction strength was here set to U0 = 0.6τ which is in characteristic
units U0

√
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This effect causes the whole conductance to develop from the 0.7 shoulder in a spin
split plateau, see fig. 5.10.
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Figure 5.10.: The on-site interacting conductance G/GQ plotted against gate voltage for
different values of the magnetic field B.

To conclude our brief summary of the low energy QPC physics, we just take a short
look at our other main observables. The density looks essentially like shown in fig. 5.11
for the transition of the closed to the open QPC.
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This is the behavior one would intuitively expect: The density is smallest where the
barrier height is biggest and in the open case we have a higher density in the center as
in the closed case, for which the center of the QPC is depleted.
Our third observable is the susceptibility. As mentioned before, we can compare the
Kubo and the numerical susceptibility. However, for clarity we will just look at the
numerical one first and comment on the use of the Kubo susceptibility in the next
chaper. In general, the susceptibility (3.89) is given by

χi = 1
2∂B(n↑i − n

↓
i )
∣∣∣∣
B=0

T=0= 1
2∂B

∫ µ

−∞
(A↑i (ω)−A↓i (ω))

∣∣∣∣
B=0

, (5.16)

where Aσi = − 1
π ImGRσii (ω + i0+) (3.82). Since we have in the non-interacting case

Gσii(ω) = 1
ω −H

= 1
ω −Hdiag −Hnon−diag

= 1
ω − (Vj − µ− σ

2B)−Hnon−diag
(5.17)

we get ∂BAσi = σ
2∂µA

σ
i and thus end up with

χi = 1
4

∫ µ

−∞
dω∂µ(A↑i +A↓i ) = 1

2Ai(µ), (5.18)

where Ai(µ) = A↑i = A↓i for B = 0. Thus, in the bare, i.e U = 0 case, the magnetic
susceptibility is largest when the apex of the van Hove ridge passes the chemical potential.
If we now turn on interactions, ∂B(A↑i (ω)−A↓i (ω)) is increased by the same mechanism
as above, namely the different rise in the Hartree barriers which leads to an imbalance
of the spins in favor for spin up. We can either consider the total susceptibility, i.e.
summed over all sites (see fig. 5.12)
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or we can also look at the site resolved susceptibility, which is plotted in fig. 5.13
for the gate voltage Vgmax at which χtot is maximal in the above plot at the moderate
interaction strength U0

√
Ωxτ = 1.5.
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Figure 5.13.: The local susceptibility for the gate voltage Vg = −0.1697/Ωx with increas-
ing interaction strength

With this considerations, we have the T = 0 temperature physics of a QPC with short
ranged interactions pretty much at hand.
In the next chapter, we will compare the numerical results of an on-site model computed
first with the old algorithm with feedback length L = 0 and then with our new algorithm
for feedback lengths L > 0.



6. Numerical results

6.1. Test of the new method on the on-site model
In this section, we will take a look on the results we get with our derived method. The
first model we will try to solve with the new method is the previously described QPC,
where we assume the interaction in (4.1) to be point like

Uij ∼ Uiδij . (6.1)

This case has been studied extensively by Bauer et al. and provides us with a starting
ground to check if our algorithm produces in this case the known results. In a perturba-
tive picture, we should basically get the same up to second order in the interaction and
then differ in higher order terms. However, there is a subtlety. If one derives the flow
equations having in mind from the start that the interaction will be point like, there is
no need to include the flow of the quantities P σσ00

ji and X̄σσ̄00
ji since these quantities are

zero in second order. P σσ00
ji will in fact remain zero in every order thus it is also vanishes

in our method, as can be seen in the figure below:

, . . .,

σ σ σ σ σ

︸ ︷︷ ︸
=0

︸ ︷︷ ︸
=0

The quantity X̄σσ̄00
ji , however, is different. If we use our method with an arbitrary

interaction, this quantity is in general generated in second order in the interaction. In
the on-site case, one sees that the second order vanishes

, , . . .
σ̄

σ̄ σ̄

σ̄

σ̄

σ̄

σ̄

σ̄

σ̄

σ̄σ

σ

σ

σ

σ

σ σ

σ σ

σ

︸ ︷︷ ︸
=0

︸ ︷︷ ︸
6=0

but higher orders still exist. Our algorithm takes these higher orders always into
account, even if we are in the on-site case. Therefore, our results should deviate slightly
from the previous ones by Bauer et al. In a recent paper by Goulko et al. [25], this
contributions where taken into account in the framework of studying QPCs with spin-
orbit coupling. Here, one has a similar situation: X̄σσ̄00

ij is generated in 2nd order for finite
spin orbit interaction (SOI) and therefore is taken into account in Goulko’s work, also

77
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Figure 6.1.: The conductance for on-site interaction strength U0 = 2.26/
√

Ωxτ plotted
against gate voltage for increasing values of the feedback length L.

in the limit of the SOI going to zero. Thus, our special case of ”pure on-site interaction”
should correspond to Goulko’s special case of ”non spin-orbit coupling”. Indeed, we
compared here results for the self-energies with different parameters of our model and
obtained that we have a good numerical agreement with an maximal relative error of
approximately 10−6. Next, we study how our observables depend on the feedback length
L using various parameters for the magnetic field and the interaction strength U , while
the chemical potential is set to zero, implying half filled leads. To begin with, let us look
again on same plots for the conductance, see fig. 6.1.
We first notice that independently of the shape of the conductance curves our method

for longer ranged feedback seems to converge in the limit of large L, which certainly is
reassuring. In the chosen parameter regime, there is actually no point to increase L & 5.
Comparing the conductance curves for different L, we first clearly observe a shift in the
gate voltage Vs which marks the onset point of the conductance. The higher the value
of L the larger is the shift of the pinch-off voltage Vs to lower conductance values. This
shift arises due to the different types of diagrams which are involved when we increase L.
Therefore, the comparison of those curves is not as straight forward as the one, e.g., for
different values of the interaction strength U at the same value of L. Nevertheless, we
will later trace back this shift in Vg to the off-central blocks in our vertex quantities which
arise when L becomes bigger than zero. At this point, however, we remark that in actual
experimental implementations the onset point in the conductance can be observed but
it depends on many details and therefore is often not the quantity of primary interest.
Instead, it is the shape of the conductance curves that is usually measured to great
accuracy. Thus, at this point we shift our conductance curves to have the same onset
point Vs in order to compare there shapes modulo the shift in Vg. For clarity, we plot
in fig. 6.2 only the curves for L = 0 and L = 5 for which the shape of the conductance
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Figure 6.2.: The on-site interaction conductance curves for L = 0 and L = 5 plotted as
above but with the latter curve shifted to a more positive Vg value, such
that the pinch-off of the two curves becomes equal.

differs most.
We notice further that this development from small to larger L looks in fact somewhat

similar to the dependence of the conductance on U (cf. fig. 5.7).With increasing L the
curve becomes less steep in the onset and the 0.7 shoulder seems to be weakened. Thus,
we get a first hint that the method with longer ranged feedback L and some interaction
UL may be compared to the method with L = 0 and some interaction U0 > UL. Let’s
look if this tendency can be supported by the comparison of different susceptibility values.
We get here for different L in a moderate parameter regime the total susceptibility shown
in fig. 6.3 or the site resolved susceptibility at the gate voltage Vg/Ωx = −0.23 (that is
the position of the maximum of the L = 0 curve in fig. 6.3) which is depicted in fig. 6.4.

Keeping in mind the shift in Vg, the behavior with increasing L is again similar to
that in fig. 5.12 and fig. 5.13 which is obtained by decreasing the interaction strength U .
We emphasize that this results were obtained in a parameter regime where both methods
are convergent. If we now raise the interaction strength U , we observe the following
behavior. In the on-site case, using the algorithm without l.r. (longer ranged) feedback
the point up to which fRG is convergent is around U = 4

√
Ωxτ . However, with our new

method using longer ranged feedback we can increase the on-site interaction strength
much farther, see fig. 6.5 and fig. 6.6. At this point, a technical comment may be in
order. In the derivation of the fRG equations, we assumed U to be small compared to the
energy τ . Nevertheless, in fig. 6.5 and fig. 6.6 we have increased the interaction strength
to values U > τ and obtain still convergent (and apparently physical meaningful) results.
This astonishing feature of fRG has been noted before, cf. [13] and is known to give for
various applications the right results. Therefore, we will at this point not worry too



80 6. Numerical results

 

 

0

2

4

6

8

10

12

−2−1012
Vg/Ωx

χ
to

t

√
Ω

x
τ
a
2

0

1

2

3

5

LU0/
√
Ωxτ = 3.0
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Figure 6.6.: The total susceptibility as a function of gate voltage plotted for the same
parameters as the conductance above.

much about this, and continue to use bare interaction strengths U & τ 1.
As conclusion we state here that the longer ranged feedback seems to admit a much

higher interaction strength U before our fRG flow begins to diverge. This alone would
not be remarkable since we have seen that for physical comparison of the two methods
we would have needed in any case a higher U . The astonishing fact is that with the
l.r. technique we can in fact go beyond the correspondence point where the old tech-
nique already diverges. Thus, we can really reach a new physical parameter regime. A
first indication for this can be seen by comparing fig. 6.6 with fig. 5.12. The height
of the susceptibility χ, which is a real measurable physical quantity, can in the longer
ranged feedback case increased beyond the height which was previously possible within
the well behaved regime of our old algorithm. Here, this argumentation may seem a
bit far fetched, but we will see stronger evidence for this at a later point, namely when

1Of course, we could also hold the bare interaction strength U < τ and obtain nevertheless a high
effective interaction strength by reducing the curvature Ωx. However, we would then have to use a
longer central region, i.e. increase N and would have to increase the computation time significantly
since it scales like (2N + 1)3.
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Figure 6.7.: The two different site resolved susceptibilities (numerical: solid lines, kubo:
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on-site interaction strength U0. Note that both susceptibilities are reduced
when the longer ranged feedback is used. For large interaction strengths the
relative error between the numerical- and Kubo susceptibility in the L = 5
case is slightly reduced.

studying the transition from a QPC to a quantum dot (QD).
At this point, we also comment on the Kubo susceptibility we have defined earlier. Of
course, one can also study the behavior of this susceptibility with increasing feedback
length L. We didn’t dwell to deep into this but took only a short look, see fig. 6.7.
Reassuringly, the relative error at larger interaction strengths between the two suscepti-
bilities (which stems from our approximative treatments) seems to be slightly reduced
for the longer ranged feedback case. Concretely, if we compare the susceptibility values
for U0/

√
Ωxτ = 3.00 at the center j = 0, we get in the L = 0 case a relative error of

(χkubo − χnum)/χnum = 0.21 whereas it is in the L = 5 case only −0.11.
Now let us look into the reasons for the behavior we have observed so far and try

to determine it’s mechanisms. Our starting point will be the resulting self energies,
calculated at L = 0 and L = 5. By looking at fig. 6.8, we see that the self energies are
dominated by the diagonal parts and have relatively weak off-diagonal structures. Thus,
let us first compare the two diagonals of our different methods, see fig. 6.9. In the self
energy for the bigger L, the barrier in the middle of the constriction is slightly lower,
causing a shift in Vg. Nevertheless, this resulting shift is actually over a magnitude
weaker than the one observed in the conductance (cf. fig. 6.1) and additionally goes in
the wrong direction. Thus, in order to determine the difference between our methods we
have to study the weak off-diagonal parts of the self-energies. In the following diagram in
fig. 6.10 we have plotted the first and the second off-diagonals. The striking observation
is here that the self-energies deviate by a substantial amount in the center region of
the off-diagonal terms. We observe here for L > 0 a visible upward shift, which is, for
example, in the first off-diagonal of a value around 2.5 · 10−3τ .
Before we try to use this observation in order to explain the Vg shift in the conductance,

we first comment on how the conductance curves evolve by taking different numbers of
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Note that the main difference occurs in the central region, approximately
given by the site interval [−7a, 7a] which is on the scale of the characteristic
length lx ≈ 3.76a of our quadratic potential.

off-diagonals in the self-energy into account. We found that in principal one has to take
a large number of off-diagonals to get the conductance quantitatively right.
However, to observe the main effect, namely the shift of the conductance to smaller

Vg values and a smaller effective interaction strength it suffices to take only the first
off-diagonal into account, see fig. 6.11. By including the upwards shift in the first off-
diagonal, we can explain shift in the gate voltage Vg. To realize this, let us assume
we start from the L = 5 case. Since the self-energy is in our approximation frequency
independent, we can define an effective Hamiltonian Heff = H + Σ. Thus, the first
off-diagonal of the self-energy will merely change the hopping −τ to an effective hopping
−τeff := −τ + Σj j+1. The upward shift in the first off-diagonal -compared to the L = 0
case- of the self-energy by 2.5 · 10−3 > 0 leads to a reduced hopping amplitude in the
center of the QPC: ∆τeff = ∆Σj j+1 with j taken to be in the central region. This
reduced hopping leads to a narrowing of the band in the center, see fig. 6.12. Since the
band edges are given by −2τ and 2τ , the effective barrier in the center of the QPC is
shifted upwards by an amount ∼ 2∆τeff ≈ 5 · 10−3. In our above case, this fits perfectly
with the observed shift in the conductance which is also around 5 · 10−3. On the other
hand, this central upward shift also leads to a slightly larger curvature at the center of
the QPC, see fig. 6.13. Since the width of the conductance step is determined by Ωx,
this leads to a less steep conductance step L = 5 compared to the L = 0 case. However,
the lesser effective interaction strength at L = 5 seems to arise mainly from the better
coupling between the channels. Concretely, if we look at the maxima of the different
channels, plotted in fig. 6.16 we see that in the convergent regime of the L = 0 case the
positive contribution from the X↑↓ channel is compensated by the negative contribution
of the P ↑↓ channel. When we then rise the bare interaction strength U0/

√
Ωxτ from 3.0
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Figure 6.12.: The effectively reduced hopping in the center for the L = 5 case leads to a
reduced bandwidth compared to the L = 0 case. The physical relevant be-
havior is the resulting upwards shift of the band bottom causing a changed
height and shape of the potential.
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Figure 6.13.: Sketch of the change in the potential shape due to the effectively reduced
hopping in the L = 5 case. As usual, the blue line denotes the L = 0
potential, and the red line the L = 5 potential. Note that aside from the
upwards shift, the curvature for the L = 5 case becomes slightly smaller
than for the L = 0 case.

to 4.51, the X↑↓ contribution starts to diverge to +∞ while P ↑↓ roughly stays the same.
In the L = 5 case, however, we see that due to the improved feedback the increase of
X↑↓ is compensated by P ↑↓ and the flow still converges without problems. Thus, the
effective interaction strength gets weaker, when the same bare interaction strength U
enters in both methods. This lesser effective interaction strength then leads to a much
larger bare interaction U which is needed to reproduce the 0.7 shoulder in the L > 0 case.

Let’s now see if we can relate this shift in the first off-diagonal of the self-energy closer
to the off-center terms in the constituents of our two-particle vertex γ2. For this purpose,
we use a relation which connects the self-energy Σ with the two-particle vertex (cf. [26]):

Σ(q1, q8) =
∑
q2,q3

ν(q2, q1; q3, q8)Gq3,q2

− 1
2

∑
q2,q3,q4,q5,q6,q7

ν(q2, q1; q3, q4)Gq4,q6Gq3,q5γ2(q5, q6; q7, q8)Gq7,q2 .
(6.2)

In a diagrammatic language this could be expressed as in fig. 6.14:
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= +

Figure 6.14.: Diagrammatic relation between the selfenergy and the two particle vertex.
The double lines denote here the full Green’s functions G, round black dots
the bare vertices, and the dashed dot and the dashed square the self-energy
and the two-particle vertex, respectively.

Using this relation we could now study what effects we get if we only insert certain
parts of the two-particle vertex at the right hand site, namely the term arising from the
central blocks or the off-site blocks, respectively. However, since the numerical evaluation
of the second diagram term on the r.h.s. tends to be tedious due to the convolution in
frequency space, we notice that there is in fact a nice way to compute the corresponding
quantities in our fRG-scheme. For this purpose, we simply introduce in our flow two
additional self-energy quantities, to be called ΣΛ

c and ΣΛ
off and define them by splitting

the flow (4.9) for the self-energy in two terms

d

dΛΣΛ = d

dΛΣΛ
c + d

dΛΣΛ
off (6.3)

where
d

dΛΣΛ
c/off (q′1, q1) = −T

∑
q′2,q2

SΛ
q2,q′2

γΛ
2c/off (q′2, q′1; q2, q1). (6.4)

Here, γΛ
2c/off (q′2, q′1; q2, q1) refers to the central or off-site constituents of the two-particle

vertex, which arise naturally from the equations (4.7)

γ2(j′1 σ, j′2 σ; j1 σ, j2 σ) =ν(j′1σ, j′2σ; j1σ, j2σ) + P
σσ(j′2−j′1)(j2−j1)
j′1j1

−Dσσ(j2−j′1)(j′2−j1)
j′1j1

+D
σσ(j1−j′1)(j′2−j2)
j′1j2

(6.5)

and

γ2(j′1σ, j′2σ̄; j1σ, j2σ̄) =ν(j′1σ, j′2σ̄; j1σ, j2σ̄) + P
σσ̄(j′2−j′1)(j2−j1)
j′1j1

+X
σσ̄(j2−j′1)(j′2−j1)
j′1j1

− X̄σσ̄(j1−j′1)(j′2−j2)
j′1j2

,
(6.6)

when we set on the r.h.s. all off-site or all central terms to zero. In this manner we
actually produce something similar to the diagrammatic equation fig. 6.14 and split
the self energy in two parts, one corresponding to the central terms in γ2 and one
corresponding to the off-site blocks. Of course, this splitting in the two contributions is
far from complete. Since we use the whole single scale propagators (or the whole Green’s
functions in diagram fig. 6.14) in our flow, we actually have nevertheless a mixing of the
two contributions. However, as a first estimate this should give us at least the right
tendency in the first order of the interaction. If we compare the predictions for the first



88 6. Numerical results

 

 

− 40 −20 0 20 40

site j

Σ
ji
/
τ

−0.004

−0.002

0

0.002

Σ↑

Σ↑
cent

Σ↑
off

U0/
√
Ωxτ = 3.0, L = 5
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again evaluated at a gate voltage Vg/Ωx = −0.36. Note that the main effect
of the off-site contribution is indeed to cause an upwards shift in the central
region, thus effectively reducing the hopping.

off-diagonal in the self-energy, see fig. 6.15, we indeed observe that the off-site terms
cause a upward shift. Of course, this shift is somewhat mediated in comparison to the
one observed in fig. 6.10 by about an factor of 2 due to the reasons mentioned above,
but we can qualitatively see the right behavior.
Concluding this section, let us briefly comment on the better convergence of our longer
ranged feedback algorithm compared to the L = 0 case. For this we take first a look at
the maximum values of the different channels during a sweep of the gate voltage Vg over
the conductance step, cf. fig. 6.16.
We see that the quantities with the largest contributions are theXσσ̄ and X̄σσ̄ channels.

In fig. 6.17 and fig. 6.18 we have explicitly plotted the Xσσ̄ channel for our default gate
voltage Vg/Ωx = −0.36.

We observe that the peaks in the center block get damped when we increase L from
zero to larger feedback lengths which effectively causes the better numerical convergence
of the flow equations. Again, this alone is not remarkable, since we have to compare
different bare interaction strengths U for our methods to obtain the same physical results.
However, for our algorithm with longer ranged feedback the interplay between off-site and
central blocks seems to stabilize each other far over the point where the simpler L = 0
algorithm tends to diverge. In intuitive terms, it seems as if the effective additional
degrees of freedom which are represented by the off-site blocks can take some weight of
the interaction which would otherwise be concentrated simply in the central block. For
a more thorough analysis, one could study the interplay between the central- and off-site
terms using the flow equations (4.7) much in the same way as in (6.4) where we studied
the influence of the offsite blocks on the self-energy. However, at the moment we will
simply accept the better convergence of the longer ranged feedback as a fact and see if
we can use this to explore new parameter regimes in the onsite-model. Explicitly, our
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Figure 6.16.: The magnitude of the different channels plotted against gate voltage for
the interaction strengths U0/
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feedback lengths L = 0 and L = 5. Note that for the minor interaction
strength the results for different feedback do not differ much. However,
in the second row of plots U0 is raised into the regime where the L = 0
method is close to divergence, which results in large peaks in it’s channels.
On the contrary, the channels of the L = 5 method are still well behaved
and, in fact, converge without problems.
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point of interest will be to study systems with a relative small curvature and a large
maximum of the LDOS close to the chemical potential. Prominent examples for this
are QPCs with non parabolic potential, i.e. quartic, sextic, etc. potentials as well as
the transition between a QPC and a quantum dot (QD), where the crossover occurs in
the sub-open regime of the nano structure. We will further pursue this in the last two
sections. At this point, we will at last introduce the actual longer ranged interactions
which where the driving cause to establish the whole new formalism in the first place.

6.2. Introduction of longer ranged interactions
Here, finally we comment on the role of off-site interactions in our system. In order to
do this, we first explain the formation of the bare interaction in the QPC. Naively, one
would assume to take a one dimensional coulomb interaction, since we have an effectively
one dimensional system. However, this would be not correct, since in order to get to
this model we have to integrate out the other two spacial dimensions and therefore have
to modify the interaction accordingly. To get a somewhat more realistic estimate on the
structure of longer ranged interactions, we follow an approach by Lunde et al. [27] and
try to integrate out the y- and the z-direction explicitly. For the latter, we assume here
first a simple δ-function, corresponding to a perfect two dimensional electron gas. In
the y-direction we assume quadratic potential barriers much in the same way as in the
x-direction, but with a much greater curvature Ωy � Ωx, see fig. 1.3. We begin with the
Hamiltonian in the continuous form H = H0 +H1, with

H0 =
∑
σ

∫
d3x(U(x) + T )ψ†σ(x)ψσ(x) (6.7)
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non central blocks more visible, we used a color scale in the range
[−8 · 10−3τ, 1 · 10−3τ ]. We have plotted the channel in it’s block matrix
representation which we derived above. The central block is clearly domi-
nant, the off-blocks become weaker with increasing block indices l, k. Note
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ones where during the effective interaction only one of the two particles is
scattered.
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and

H1 = 1
2
∑
σ1,σ2

∫
d3xd3yV (x− y)ψ†σ1(x)ψ†σ2(y)ψσ2(y)ψσ1(x), (6.8)

where T is the matrix element of the kinetic and U(x) the matrix element of the potential
energy, while V (x − y) denotes the matrix elements of the interaction. In our case, we
take the potential U(x, y) in the x,y-plane to be

U(x, y) = U0 −
1
2mω

2
xx

2 + 1
2mω

2
yy

2, (6.9)

which is of the saddle point form mentioned above and we further assume a very narrow
constriction in z-direction. Of course, this is a simplification and in a realistic material
the density profile is of a form like depicted in fig. 6.19.
For the eigenfunctions of the non-interacting Hamiltonian we can make the separation

of variable ansatz
Ψ(x1, x2, x3) = ψ(x1)φn(x2)φ̃n(x3), (6.10)

where we assume to have quantized eigenfunctions φn(x2) and φ̃m(x3) in y- and z-
direction. If we now make a basis transformation by changing the y- and z- components
from the spatial- into the eigenbasis

|x1〉 ⊗ |x2〉 ⊗ |x3〉 → |x1〉 ⊗ |φn〉 ⊗ |φ̃m〉, (6.11)
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we can transform the interaction term H1 accordingly:

H1 = 1
2
∑
σ1σ2

∫
dx1dx2dx3

∫
dy1dy2dy3〈x1, x2, x3|V |y1, y2, y3〉

×
[∑
m,n

(〈x1| ⊗ 〈φn| ⊗ 〈φ̃m|)(|x1〉 ⊗ |x2〉 ⊗ |x3〉)a†σ1(x1, φn, φ̃m)
]

×
[∑
m,n

(〈y1| ⊗ 〈φn| ⊗ 〈φ̃m|)(|y1〉 ⊗ |y2〉 ⊗ |y3〉)a†σ2(y1, φn, φ̃m)
]

×
[∑
m,n

(〈y1| ⊗ 〈y2| ⊗ 〈y3|)(|y1〉 ⊗ |φn〉 ⊗ |φ̃m〉)aσ2(y1, φn, φ̃m)
]

×
[∑
m,n

(〈x1| ⊗ 〈x2| ⊗ 〈x3|)(|x1〉 ⊗ |φn〉 ⊗ |φ̃m〉)aσ1(x1, φn, φ̃m)
]
.

(6.12)

Since we are only interested in the low energy physics, we can take in all of the sum-
mations above only the eigenfunctions of the lowest energy. This would be φ0(y) in
y-direction:

φ0(y) = 〈y|φ0〉 = 1
π1/4√l2

e−
y2/2l22 , (6.13)

which is simply the ground state wavefunction of a harmonic oscillator with characteristic
length l2 and and in z-direction

〈z|φ̃0〉 = φ̃0(z) = δ(z). (6.14)

As we have said above, we take here a δ-function for φ̃0 according to the assumption of
a very thin 2DEG, only having a small extent in the z-direction. We end up with

H1 =1
2
∑
σ1σ2

∫
dx1dx2dx3

∫
dy1dy2dy3〈x1, x2, x3|V |y1, y2, y3〉

× |〈φ0|x2〉|2 · |〈φ̃0|x3〉|2 · |〈φ0|y2〉|2 · |〈φ̃0|y3〉|2

×a†σ1(x1, φ0, φ̃0)︸ ︷︷ ︸
=:ψ†σ1 (x1)

a†σ2(y1, φ0, φ̃0)︸ ︷︷ ︸
=:ψ†σ2 (y1)

aσ2(y1, φ0, φ̃0)︸ ︷︷ ︸
=:ψσ2 (y1)

aσ1(x1, φ0, φ̃0)︸ ︷︷ ︸
=:ψσ1 (x1)

(6.15)

and thus finally arrive at an effective one-dimensional model

H1 =1
2
∑
σ1σ2

∫
dx1

∫
dy1

[∫
dx2dx3

∫
dy2dy3〈x1, x2, x3|V |y1, y2, y3〉

|〈φ0|x2〉|2 · |〈φ̃0|x3〉|2 · |〈φ0|y2〉|2 · |〈φ̃0|y3〉|2
]

ψ†σ1(x1)ψ†σ2(y1)ψσ2(y1)ψσ1(x1)

=:12
∑
σ1σ2

W (x1, y1)ψ†σ1(x1)ψ†σ2(y1)ψσ2(y1)ψσ1(x1).

(6.16)
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Within our above approximation for the lowest eigenfunctions φ0(y) = 1
π1/4√l2

e−
y2/2l22

and φ̃0(z) = δ(z), the expression for W (x1, y1) can be calculated analytically:

W (x1, y1) =
∫
dx2dx3

∫
dy2dy3

× 1√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 · δ(x3)δ(y3) ·

(
e−

x2
2/2l22

π1/4√l2

)2(
e−

y2
2/2l22

π1/4√l2

)2

= e2

πl22

∫ ∞
−∞

dx2dy2
e−

(x2
2+y2

2)/l22√
(x1 − y1)2 + (x2 − y2)2

= e2

2πl22

∫ ∞
−∞

drdR
e−

(r2+R2)/2l22√
(x1 − y1)2 + r2

= e2

πl22

(∫ ∞
−∞

dRe−
R2/2l22

)
·
∫ ∞

0
dr

e−
r2/2l22√

(x1 − y1)2 + r2 .

(6.17)

The first integral is of gaussian form and yields a factor of
√

2πl2. The second one is
also elementary and yields (see [29])

∫ ∞
0

dr
e−

r2/2l22√
(x1 − y1)2 + r2 = 1

2e
(x1−y1)2/4l22K0

(
(x1 − y1)2

4l22

)
, (6.18)

where K0 denotes the 0-th order modified Bessel function of the second kind. Thus, we
end up with

W (x1, y1) = e2
√

2πl2
e

(x1−y1)2/4l22K0

(
(x1 − y1)2

4l22

)
. (6.19)

Since we measure in our one dimensional system the distances x1 and y1 in units of the
characteristic length lx = ~√

mΩx
, it is actually the ratio l2/lx that defines the amplitude

of the interaction modification due to l2. To illustrate this further, we have compared
in fig. 6.20 the functional dependence of the off-site interaction for several values of l2
with the pure Coulomb interaction which one would obtain by setting in our earlier
derivation φ0(y) = δ(y). We see that for l2 → 0 the l2-dependent curves converge
against the Coulomb interaction, as it should be. Furthermore, we notice that the main
difference between the two interactions lies in the central region around x = 0, whereas
the outer tails become quickly the same. In our modeling, this will cause the differences
in U to be mainly in the nearest neighbour interaction. Here, it may be a good time to
make a final comment on the choice of the eigenfunction φ̃0(z) in z-direction. Till this
point, we have assumed this function to be δ-like, but of course the 2DEG is not entirely
two dimensional but has also some small extent in z-direction, compare fig. 6.19. Of
course, one can also try to model this, for example with an infinite square well of length
l3. In principle all we have to do, is to set in formula (6.15)

|〈φ̃0|x3〉|2 = 2
l3

sin2
(
x3
l3

)
, |〈φ̃0|y3〉|2 = 2

l3
sin2

(
y3
l3

)
, (6.20)
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Figure 6.20.: The interaction strengthWl2(x1−y1) =: Wl2(∆x) plotted for several values
of the characteristic length in y-direction l2. Note that the curves differ
in their divergence at ∆x = 0 but that they have asymptotically the same
tail, namely the Coulomb one. Furthermore, for decreasing l2 the curves
converge against the case l2 = 0 which is a pure Coulomb interaction.

which are just the groundstate probability densities of the infinite square well. Then we
can do the same calculation as above and end up with

W̃ (x1, y1) = e2
√

2π

∫
dx3

∫
dy3

1
l2

4
l23

sin2
(
x3
l3

)
sin2

(
y3
l3

)
× e[(x1−y1)2+(x3−y3)2]/4l22K0

[
(x1 − y1)2 + (x3 − y3)2

4l22

]
.

(6.21)

This integral could now be calculated numerically. We won’t do this here, but just notice
that this would lead to a further decrease in our interaction strength since M(x) :=
exK0(x) is monotone decreasing in x:

M

[
(x1 − y1)2 + (x3 − y3)2

4l22

]
< M

[
(x1 − y1)2

4l22

]
. (6.22)

Due to the form of M(x) (see fig. 6.20), this decrease will be again most significant in
the central region.
Last but not least, we have to take into account the screening effect of the surrounding
gates. This stems form the fact that in a experimental environment we have to induce our
desired potentials by charging electrodes in the structure. The electrons which occupy
these gates will then redistribute themselves in order to screen the interaction of the
electrons in our effective one dimensional system. The main effect of this screening will
be to cut the tail of the effective interaction calculated above.
For the practical purpose of modeling our system, we have chosen to condense our above
results in the following way: In our discretized interaction, we can choose first the
interaction strength on the central site (∆x = 0) U0 and the first off-site (∆x = 1) U1,
see fig. 6.21. The rest of the interaction is then given by the form derived above:
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U1 ·
1√
2πl2

e
x2/4l2K0

(
x2

4l2

)
· e−x/χ, (6.23)

i.e. an interaction of the form Ml2(x) = 1√
2πl2

e
x2/4l22K0( x2

4l22
), with an cutoff e−x/χ to

model the screening of the surrounding gates. In the following, we will refer to this in-
teraction as the M -type. Furthermore, we introduce another parameter LU with which
we can regulate the range of the bare interaction. LU just gives the maximal interaction
range, i.e. U(i, j) = 0 for all i, j with |i − j| > LU . The influence of these scales can
be seen in fig. 6.21. An ideal realization of the scales should be in a range according to
χ � LU � L � 2N + 1. The limiting quantities in our implementation are clearly the
feedback range L and the number of sites 2N + 1, since the computation time scales in
leading order like L3 · (2N + 1)3. In our usual setup of a central region consisting of
2N + 1 = 81 sites, our maximal achieved L was 30 sites. In this regime, the integration
of the fRG-flow, for moderate parameters took up computation time in the range of
∼ 8h− 10h.

6.2.1. Results for longer ranged interactions
Let us now look at the results we obtained here. First, we choose a moderate screening
χ ∼ 5 and look at the development of the conductance with the interaction strength U
and with varying our parameter l2 from a Coulomb- to a M -type form with an larger l2,
see fig. 6.22
We observe that there are mainly two parameter regimes, determined by the strength

of the off-site interaction U1. In the first regime where U1/Ωx . 0.37 − 0.75 which are
essentially the first 3-4 curves in fig. 6.22, changing l2 will only slightly modify the shape
of the conductance, but in sensible bounds it does not affect the physics too much. This
indeed justifies a posteriori in this parameter regime the previous modeling of the QPC
by using just a pure Onsite interaction: The specific form of the interaction on the first
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peculiar behavior in dependence of the off-site interaction strength, as it is
shifted to larger Vg values when U1/

√
Ωxτ is increased over ≈ 0.37− 0.75.



98 6. Numerical results

few neighbouring sites is not too important. The agreement of the onsite results with
the experimental data (cf. [1]) is clear evidence for that.
We will not concern us further with this regime, but look at the entirely different behavior
which manifests itself when we increase U1 beyond the mentioned limit. Here, we get
large shifts for the conductance curves when we change U1. Also, irrespectively what
exact value of U1 we take, we get huge deviations between the curves for the same
interaction strength U1 but with different l2. This is actually is consistent since the
effect of changing l2 lies mainly in a effective change of the interaction strength U1 on
the first few off-sites. In the last three of the above diagrams, we can see a somewhat
strange development in the conductance with increasing the interaction strength U : The
pinch-off Vs of the conductance curve is shifted to larger Vg values, i.e. in this regime
the increase in interaction strength improves the conductance of our system. In the last
plot of fig. 6.22 this shift becomes very large, actually the pinch-off of the conductance
is increased beyond the non interacting one.
This behavior looks of course enormously strange, since from a physical point of view

interactions should naturally increase the effective barrier height, i.e. the barrier height
the electrons would see in a effective system when the interactions are integrated out.
Before studying this behavior further (in the following we will refer to this as ”the effect”),
let us first take a look at the other observables.
For the susceptibility we show the results for the Coulomb case l2 = 0 and the case

l2 = 1.88, see fig. 6.23. This l2 = 1
2 lx may seem still a bit large but was chosen to

make the difference to the Coulomb case clearly visible, even if this might in physical
terms not be the most appropriate choice. We see that that the susceptibility reflects
the same behavior observed in the conductance. At an off-site interaction strength
U1/
√

Ωxτ ≈ 0.37 − 0.75, the susceptibility starts to decrease with increasing offsite
interaction strength. This is consistent with the effect we have seen in the conductance
since the susceptibility is always largest in the sub-open regime (cf. fig. 5.12 and fig. 6.3)
and this regime is shifted with increasing U1 to larger Vg values. Independent of the
amplitude of χ this is also reflected in the form of the susceptibility. If we look, e.g,
at the plot with U1/U0 = 1/4 and l2 = 0, we see that we start at U0/

√
Ωxτ = 1.5 ⇒

U1/
√

Ωxτ = 0.375 with the characteristic double peak of the sub-open regime (due to
the form of the LDOS). With increasing U1 this structure develops into the single peak
of the open regime.
And for completeness we also show here the dependence of the conductance on the

external magnetic field, see fig. 6.24. This seems to depict pretty much the same behavior
as we had already known: the 0.7 shoulder develops into a spin split plateau with
increasing the magnetic field strengthB. We note here, however, the following interesting
property. As before, an increase in U1/

√
Ωxτ around 0.75 seems to shift the onset point

for the spin up species to slightly higher Vg values. However, the down species shows the
behavior one would intuitively expect, namely a shift to lower Vg values with increasing
interaction strength. We will further comment on this below when we have introduced
a possible explanation for this strange effect.
Now, we take a closer look at how this effect works. Since we have already seen that

it seems to depend mainly on the strength of U1, we set in the following analysis for
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simplicity l2 = 0, therefore setting the effective one dimensional interaction to a pure
Coulomb one. Furthermore, we choose χ = 105, rendering the screening to be essentially
inexistent and thus giving the off-site interaction the most weight, increasing the effect.
At this point, we will first make a technical comment on our method. Using static fRG
we have obtained an effective system where we have mapped H0+Hint → Heff = H0+Σ,
assuming the 1PI two-particle vertices and thus also the selfenergy to be frequency in-
dependent and the higher order vertices to be zero. In order to determine the cause of
the effect, we will study this effective system more closely. However, we should men-
tion that, at this point, it is not completely clear how this effect can arise physically
although we will take an educated guess on this later. Provided we made no mistake
in our calculations, it could of course be that this strange behavior is an artifact of the
approximations we have made. This type of shift in the conductance pinch-off to larger
Vg values was for example observed also in the so called ”fRG1-scheme”, where one ne-
glected the flow of the two particle vertex entirely. In our case we applied static fRG and
thus the two particle vertex and the self energy are frequency independent. Due to this
frequency independence of the self energy we in fact map here the interacting system
to a effective non-interacting one, as mentioned above. This approximation works fine
when pure on-site interactions are used (see [19]). In fact, it was shown there that the
dynamical fRG-scheme had no real advantage over the static one. Now, a system with
longer ranged interactions could be classified as somewhat ”more interacting” and thus
one could suspect to loose more of the original behavior by mapping it onto a effective
non-interacting system.

For the moment, we will put this technical considerations aside and just study the
different physical observables in this parameter regime a bit closer. First we look again
at the conductance, but now we specifically study the transition point of the two U1
regimes, see fig. 6.25. By increasing U1 beginning from very small values of the gate
voltage, we see that the conductance follows at first the behavior one would expect from
the first order Hartree term: the larger U1 becomes the more is the pinch-off shifted
to lower Vg values and the 0.7 shoulder becomes more pronounced. However, at the
point U1/

√
Ωxτ ≈ 0.56 the conductance begins suddenly to shift to larger Vg values.

By looking at the self energy, cf. fig. 6.26, one can clearly see where the mysterious
shift in the conductance stems from. Compared to the on-site interacting case, the self-
energy in the central region is slightly smaller. Thus, in our effective system with off-site
interaction it is for an electron more attractive to sit in the center of the QPC than in
the pure on-site interacting system. In the last plot of fig. 6.26 the self-energy in the
central region even becomes slightly negative, implying that the barrier top becomes
even more attractive than in an non interacting system.
Let us look if this behavior can be supported by studying the density in the sub-

open region, see fig. 6.27. Generally, the longer ranged interactions seem to massively
deplete the flanks of the QPC, but in the right parameter regime they (more or less)
slightly increase the density in the central region. For some physical insight, it might
be instructive to think of our QPC to be first interaction free and than imagine that
we can turn on our interactions on demand. If we look again at the density in the non
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Figure 6.25.: The conductance curves for the on-site interaction strengths U0/
√

Ωxτ =
1.5 and U0/

√
Ωxτ = 3.0 for increasing the off-site interaction U1 beginning

from very small values. Note that by increasing U1 the conductance behaves
up to a certain point as if we would simply increase the on-site interaction:
it shifts to lower Vg-values and develops the 0.7-shoulder. However, when
U1/
√

Ωxτ is raised above approximately 0.56 the conductance begins to
shift to larger Vg-values. This is different from the on-site case, where
increasing the interaction always leads to a shift to lower Vg-values.
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Figure 6.26.: First row: The main diagonals of the self-energies, plotted for the same
parameters as the conductance curves above. We used here a gate voltage
of Vg/Ωx = −0.17 which lies in the conductance step of our above curves.
Second row: The same curves but only the central region. Note that in the
parameter regime where we observe the strange shift in the conductance,
the diagonal part of the self-energy becomes smaller in the center with
increasing off-site interaction strength. In the curve for U0/
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Ωxτ = 0.75 this central part even becomes negative (!)



102 6. Numerical results

 

 

0

0.2

0.4

0.6

0.8

1

−40 −20 0 20 40

n
j

−40 −20 0 20 40

0.02

0.04

0.06

−10 −5 0 5 10

n
j

site j
−10 −5 0 5 10

site j

0.04

0.19

0.38

0.56

0.75

U1/
√
ΩxτU0/

√
Ωxτ = 1.5 U0/

√
Ωxτ = 3.0

Figure 6.27.: First row: The electron density nj plotted for our usual parameters and
again a gate voltage of Vg/Ωx = −0.17. For clarity, we plotted here only
the curves for U1/

√
Ωxτ equal to 0.04, 0.38 and 0.75. Second row: The

same curves again but only the central region. Here, in the density we
note a effect which is consistent with the one observed in the self-energy
and conductance: For U1/

√
Ωxτ & 0.56 the electron density in the central

region starts to become larger with rising the off-site interaction strength.

interacting case, cf. fig. 5.11, we see that the density in the flanks is significantly higher
than in the center. It makes sense that turning on interactions, especially ones with
longer ranges, should here increase the selfenergy to a large amount. This is, indeed,
visible in the above plots and leads to a massive depletion of the density in the flanks of
the QPC. Most of the electrons will, of course, simply leave the interacting region and
escape in the leads. But according to the plots of the density there seem to be some
electrons which instead increase the density in the center of the QPC. An attempt to
think about this would be to assume that at a certain value of the off-site interaction
a electron can enter the center of the QPC, since it is energetically more favorable to
actually sit on the barrier top and escape thus the interaction with the other electrons,
giving rise to a Wigner like crystallization effect (cf. [30]). We have illustrated this effect
in the sketch below, see fig. 6.28.
This picture is somewhat supported, when one looks at the development of the density

minimum in the center of the QPC as a function of gate voltage, see fig. 6.29. As
a comparison, we have plotted the same curves for the longer ranged and the on-site
interaction case. We see that at a certain gate voltage the density minimum rises very
fast up to a certain point and then continues to increase almost linearly in gate voltage.
In contrast, for the on-site interaction the rise of the density minimum is more or less
linearly all the time. This indicates that in the case of longer ranged interactions there
is indeed a gate voltage where a certain amount of charge can enter the QPC at once
leading to the steep increase in density. By further lowering the gate voltage, the density
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Figure 6.28.: Graphical depiction of our speculation: due to longer ranged interactions
with the bulk a single electron is able to enter the central region (here
depicted in red) of the QPC at a much higher gate voltage than in the
pure onsite interacting case.
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with the same onsite interaction and an rather strong off-site interaction
U1/
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Ωxτ = 1.5. First, notice that we observe the same shift to lower gate
voltage in the density as in the conductance. Furthermore, note that in the
pure on-site case the slope of the density curve increases up to a certain
point and stays then almost constant. In contrast, the density curve with
off-site interaction increases rather steep up to a certain point (here ≈ 0.07)
and then continues to grow in a much slower pace.



104 6. Numerical results

minimum develops then the almost linear dependence which is also seen in the other case.
To study this further, we have additionally summed the density over different ”inner

areas” of the QPC: nInt =
∑k
j=−k nj , where the extent of this inner region is determined

by k. If we then study this summed density as a function of gate voltage, we can see
essentially the same behavior as in the minimum of the conductance. The hope was, of
course, to see some sort of real discretization in the number of electrons which enter the
QPC. However, such a statement is hard to make since it is not really clear how the size
of the inner area, i.e the extent of the barrier top of the QPC should be defined. For
our above plot fig. 6.29, we would have to choose the number of central sites equal to
2k + 1 = 13 such that we would obtain by integration over that area a curve for nInt
in Vg which has it’s kink exactly at one electron. In principle, the size of the central
region of the QPC should be given by the characteristic length of our system as well as
the range scale of the interactions. In our case, both those scales where of the order of
the diameter k = 6 of the inner region: the characteristic length of our system was here,
as always, lx = 3.76 sites and the range scale of the interaction could be determined
approximately by the screening length χ = 5.0. Of course, we didn’t scale here the
interactions between the different cases and we didn’t try to define some weight in the
interaction. This would be a interesting topic of further study.

In the next two sections, we will study again the on-site model for QPCs with higher
order potentials and the transition between a QPC and a QD.

6.3. Higher order potentials for QPCs

At the end of this chapter, we show some results which we have obtained using the pure
on-site interaction. Our previous comparison between the two algorithms suggested that
the new method with longer ranged feedback is more stable in regimes where the older
algorithm did not converge. Thus, we looked here especially on phenomena which occur
in difficult regions of parameter space. One particular of this situations arises if one
considers potentials which are not purely parabolic. In this case, one encounters in the
non-interacting case Fabry-Perot like resonances (see Heyder et al. [31]) and is in the
case of on-site interactions in general very fast at the divergence point of fRG. We will
here successively show results for quartic, sextic, and octic potential barriers. As far as
we know, the tunneling problem through those non quadratic barriers is not solved ana-
lytically, yet there are various approximation schemes like WKB or instanton approxima-
tions. However, we will here simply accept the form of the non-interacting conductance
as it is obtained by our numerical approach and just look at it’s development when we
turn on interactions. Nevertheless, to plot the quantities in their respectively natural
units one can make again a nondimensionalization as done in chapter 5 for the quadratic
barrier. Completely analogous, we end here up with the natural parametrization of the
potential

V (n) = Vg + 2τ + µ− Ωx

(
x

2lx

)n
, lx =

√
~2

2mΩx
. (6.24)
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where again lx gives the characteristic length scale and Ωx determines the natural energy
scale.
For our concrete potential barrier we have chosen the form

V (j) = (µ+ Vg + 2τ) exp

−
(
j
N

)n(
1−

(
j
N

)2
)
 , (6.25)

which leads by comparison with (6.24) using the same approximations as in chapter 5
to a approximate curvature of

Ωx =
(

2n+1

Nn

) 2
2+n

τ. (6.26)

Below we have plotted our results for some potential forms, see fig. 6.30 - fig. 6.32.
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Figure 6.30.: The conductance curves of a quartic barrier QPC plotted against gate
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√
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there are -in contrast to the pure parabolic case- some ”wiggles” in the
conductance plateau. As the interaction is increased, the conductance is
shifted to lower gate voltages and becomes less steep, while the qualitative
behavior seems to stay the same.
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Figure 6.32.: At last the plot for an octic barrier top. We observe again the qualitative
behavior as in the last two plots.

We observe that the conductance develops some ”wiggles”, following the first reach
of the conductance maximum 1 · GQ. As in [31] by Heyder et. al, we shall refer to
them as Fabry-Perot like resonances. With increasing the interaction strength U0 the
conductance step and the structure of the Fabry-Perot like resonances broadens up and
gets shifted to lower gate voltage.
A more detailed study of these phenomena, however, is beyond the scope of this work.

6.4. Transition between QPC and quantum dot

At the very end of this master thesis, we consider once more a situation which was
point of earlier research, namely the transition between a quantum point contact and a
quantum dot. During this transition we deform the QPC by indenting the barrier top
till it be becomes a valley, see the figure below. This potential structure leads to an
entirely different non-interacting LDOS than the one observed before in the QPC case,
cf. fig. 5.4.
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Figure 6.33.: The non-interacting LDOS for a quantum dot potential. As explained later,
the chemical potential was here chosen to be µ = −1.5τ . Note that in
difference to the previous QPC we have discrete levels representing bound
states inside the QD. The potential was here chosen as the green one from
fig. 6.35.

Instead of the ridge like structure with the large apex seen in our plot in fig. 5.4, we
get additionally to the continous part of the spectrum discrete levels, corresponding to
bound states in the dot. In an non-interacting picture, we will get a conductance peak
whenever an effective level of a bound state in the LDOS crosses the chemical potential,
i.e. whenever the occupation of the dot changes by two electrons (each bound state
can host two electrons with opposite spins). However, when interactions are turned on,
this levels split up due to the energy difference between a single occupied and a double
occupied state. When we lower now the gate voltage, the dot will be filled up one by one
with electrons. As in the non-interacting case one gets a conductance peak whenever
one of those levels crosses the chemical potential and the occupation number changes by
one. However, there arises an additional feature: between each of those levels where the
occupation of the dot is an odd number of electrons, i.e. if there is a single occupied level
in the quantum dot (”odd valley”) we get also conductance, whereas in the even valleys
the conductance stays zero. This behavior is known as the Kondo effect in quantum
dots and is in fact closely related to the ”original” Kondo effect, described by Kondo in
[32]. The main reason for this effect was identified as the spin degeneracy in the single
occupied level in the dot. This degeneracy enables resonant spin-flip electron scattering
and leads to conductance G = GQ in the odd valleys between the peaks. A sort of ”toy
model” for this is the single impurity Anderson model (SIAM), where one can observe a
very ”clean” Kondo effect. In the fRG framework this was done, e.g., by C. Karrasch in
[13]. However, Kondo physics will also appear in our model introduced above. Recently,
Heyder et al. [31] used our above chain model to study the transition between a quantum
dot and a QPC, by applying the deformation of the potential described above. Since fRG
suffers from convergence problems when the barrier top of the used potential becomes
to flat, their transition was done in the following way. First they observed the QPC
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Figure 6.34.: The transition from a QPC to a QD hosting one electron. We have here
chosen a width wd = 20 sites of the dot and a side gate voltage of 0.007.
Left: The actual development of the potential shape with gate voltage
Vg. The blue and the red curve indicate the final and the initial potential
form, respectively, while the green curve indicates the potential at the gate
voltage in the middle of the Kondo plateau (see the plot in the middle).
Note that the chemical potential was here set to −1.5τ . This was done
in order to enable us to have a relative long and flat barrier top without
making the flanks of the QD to steep, causing a non adiabatic change in the
barrier. Middle: The conductance plotted against gate voltage, sweeping
over the first Kondo plateau. Right: Plot of the density in the QD at the
same gate voltage as the green curve in the potential plot. As guide for the
eye, black lines indicate the position of the minima in the density.

in the sub-open regime. Then changing the potential form they applied a simultaneous
shift in the gate voltage Vg tuning the QPC in the open regime when the transition is in
the state of the flat barrier top and ending up at a QD which may or may not be open,
depending on its actual filling with electrons. In our case we will not change the site gate
voltage during the transition thus always staying in the region where the flat barrier top
is close to the chemical potential. This transition could not be tackled via fRG in the
old method, since due to the flat potential at the center of the interacting region during
the crossover the convergence was not given. Furthermore, Heyder et al. used very large
dots containing up to ∼ 49 electrons which again improves the convergence of fRG. In
our case, we were able to really observe the transition between a QPC to a QD with only
one electron, while the flat barrier top stayed close to the chemical potential, see fig. 6.34.
For this plot, we have used a feedback range of L = 20 in order to render our fRG flow
convergent. Note that this value is on the scale of the dot width, which was here chosen
to be also 20 sites. Looking at the conductance plot, we indeed see the development
of the Kondo plateau, predicted by general theoretic considerations. By summing over
the density in the inner region of the dot, naturally defined by the two minima in the
density, we can get the occupation number of the dot. If we carry this out for the density
profile in our right plot in fig. 6.34, we obtain a occupation of 0.9952 electrons, which
is in astonishing good agreement with theory. Note that additionally to the predictions
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Figure 6.35.: The same plots as in fig. 6.34 but with a dot width wd = 30 sites, Vs = 0.007
and a slightly lower gate voltage interval, enabling us to observe the 3
electron Kondo plateau. Again, the actual electron number 2.9854 was
very close to the ideal theoretical prediction. Note that the Kondo plateau
is somewhat broader than in our plot above and we observe again the
shoulder at the flank of the conductance leading to lower gate voltage.

of the simpler SIAM, we observe here another interesting feature, namely a shoulder in
the conductance on the flank of the conductance leading to lower gate voltage. We will
look at this particular behavior further below.
In the next two plots fig. 6.35 and fig. 6.36, we have studied the same observables, but

for the Kondo plateaus where the filling of the dot were 3 and 7 electrons, respectively.
Let us now take a look at the dependence of the conductance on the magnetic field, see

fig. 6.37. Switching on such an external magnetic field lifts the spin degeneracy for the
single occupied levels since the Zeeman term leads to a higher energy for the spin down
electrons and favors the spin up ones. Theory predicts that with lifting this degeneracy,
the Kondo effect should be suppressed, since scattering processes which flip the spin of
the electron of the bound state become more and more unlikely. In fact, this is exactly
what we observe in fig. 6.37: The larger the external magnetic field strength becomes,
the more gets the conductance on the Kondo plateau suppressed and eventually develops
into the two peak structure we have mentioned above. At this point, we want to finally
comment on the shoulder that we have observed above in the flank of the conductance
leading to lower gate voltage. For this purpose, we tracked the position of the effective
level position ωeff in our QD during a sweep over the gate voltage. The relevant effective
level position ωeff we evaluated here by simply keeping track of the corresponding peak
in the LDOS, cf. fig. 6.33. In order to make the very sharp peak visible, we have added
a small imaginary part to the real frequency argument of the LDOS which broadens the
peak a bit and makes is numerically traceable. Concretely, we studied here again the
Kondo plateau with 3 electrons, see fig. 6.38. We see that during the conductance sweep,
coming from higher Vg values, the effective level position shows the following behavior.
First, it decreases linearly with Vg, then it enters a region in which it stays almost
constant and then begins again to decrease linearly in Vg. In an ideal SIAM as was for
example studied in [13] and [33], in this region where it’s drop is reduced the effective
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Figure 6.36.: Again, the same plots as in fig. 6.34, now with a dot width wd = 30 sites
and a site gate voltage of Vs = 0.007. The gate voltage interval was now
chosen to cover the Kondo plateau with 7 electrons. Note that this time
the left flank of the conductance is steeper than in the 3 electron case,
becoming more of the form one would expect in an idealized model as the
SIAM (cf. [13]. However, the shoulder in the other flank is still there, in
fact, becoming once again slightly more prominent than in the 3 electron
case. The actuall electron number in the QD was here evaluated to 6.9504.
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Figure 6.37.: The conductance plotted against gate voltage for the 3 electron dot, used
in fig. 6.35 and different magnetic fields B. When the strength of the mag-
netic field is increased, the conductance at the Kondo plateau becomes
suppressed and eventually develops into a two peak structure. Note that
this behavior seems not to effect the shoulder on the ”right” conductance
flank. In fact, the conductance is there slightly increased with rising mag-
netic field strength.
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Figure 6.38.: Study of a quantum dot with width dw = 30 and a site gate voltage of
Vs = 0.001, in which case the shoulder in the conductance is slightly more
pronounced than in the case studied in fig. 6.35. Blue curve: The conduc-
tance plotted against gate voltage. Red curve: the effective level position
plotted against gate voltage. We remark here that for numerical reasons
we had to insert a small imaginary part in the calculation of the LDOS
in order to render the very sharp peak of the level visible. Note that the
effective level position develops two plateaus, one at the Kondo plateau in
the conductance and one at the position of our shoulder.
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level position stays pinned exactly at the chemical potential µ. In our case, however, we
note a slightly different behavior, since we seem to have two plateau like regions. The
first lies at the same gate voltage as the Kondo plateau in the conductance and slightly
above the chemical potential, while the second one corresponds to the shoulder we have
observed earlier and lies slightly under the chemical potential. Thus, we see that the
behavior in the conductance is consistent with the one observed in the LDOS. However,
the physical origin for this shoulder is still unknown to us and could be a topic for further
research.



7. Summary and outlook

Here, we will briefly summarize our work and give an outlook on possible future research
topics.
The intent of this thesis was to try to understand the influence of longer ranged inter-
actions in QPCs. For this purpose, we employed the functional renormalization group
(fRG) which is known from previous works (cf. [13, 33]) to be a flexible and relatively
cheap tool in computation time. We used the fRG-flow equations in the typical fRG-
approximation, namely setting all vertices γn involving more than n = 2 particles to
zero. The next step was to split the vertex flow into three different channels which than
were treated by a coupled ladder approximation (CLA). This scheme was introduced in
[20] and [21] to study the frequency dependence of the single impurity Anderson model
(SIAM) and has been extended in [19] to spacial inhomogeneous models. From a dia-
grammatic point of view, the idea is closely related to summing up RPA-diagrams for
the individual channels but taking a controlled feedback between the channels into ac-
count. By controlled we mean in this context that the index structure of the individual
channels should be conserved under this feedback. Eventually, we ended up with a set
of ordinary differential equations which we tackled numerically, employing the Dormand-
Prince Runge Kutta method [23]. Furthermore, in the actual solution of the equations
we assumed the two-particle vertex as frequency independent, causing the self-energy
to be frequency independent, too. This approximation, called ”static fRG” was seen to
produce the results of the on-site interaction case reasonable well. (For a comparison
between static fRG and a dynamic one, i.e. one with frequency dependent two particle
vertex see [19]). By doing a comparison on the on-site model between our new algorithm
with the previous one, i.e. the one without longer ranged feedback, we saw that our
new algorithm tends to be somewhat more convergent. Due to this fact, we applied it
to two situations which tend to be difficult for fRG for essentially the same reason: The
effective interaction strength in our systems is measured in units of

√
Ωxτ where Ωx is

the curvature of the potential barrier at the top. Thus in simple words: the flatter the
barrier, so much the worse becomes the convergence of the fRG flow. Our particular
cases at hand were, firstly, the transition from a quantum point contact to a quantum
dot, while the barrier top stays near the chemical potential during this transition. This
essentially leads to a point where one has a almost horizontal barrier top, implying very
small curvature and therefore a high effective interaction strength. The second case was
to look at the behavior of a QPC with a non-parabolic potential when turning on inter-
actions. For this purpose, we used quartic, sextic and octic potential barriers. Each of
this barriers leads to a non monotonic increase -showing Fabry-Perot like resonances- of
the conductance, see [31]. Since higher order potentials are flatter around their extrema,
the fRG convergence is again challenging.
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Finally we proceeded to apply our new method to QPCs with longer ranged interactions.
To get a grasp at a physical reasonable model of this interactions, we used the approach
of [27] and first integrated out the z- and y-direction to arrive at an effective one dimen-
sional model. Of course, there are still some parameters which have to be fixed manually,
like the ratio of the on-site and the off-site interactions or the screening caused by the
surrounding gates. We used different values for this parameters and tried to determine
the different regimes which can be observed in the observables. Most noticeable, we en-
countered the fact that in the right regime an increase in the off-site interaction can lead
to an increase in the conductance. By examining this effect in more detail, in particular
the electron density in the center of the QPC we tried to give an physical explanation
of this strange behavior. In fact, we speculated that the effect in this regime is caused
by the relatively strong off-site repulsion making it possible for a single electron to enter
the center of the barrier at a far higher gate voltage than in the on-site case and thus
giving rise to a Wigner like crystallization effect [30].

So far, we have summarized our methods and results which we have obtained until
now. Additionally, we want to give some outlook on interesting questions that could be
studied further. At first, we will mention here again our Wigner like crystallization effect
in the QPC for longer ranged interactions. In this context, it would be an interesting
task to define some weight with which one could compare the strength of the on- and
off-site interactions. If one succeeded in this, the next step could be to try to understand
the behavior that electrons can enter the barrier top due to longer ranged interactions
in a more quantitative way and estimate the resulting pinch-off in the conductance. To
achieve this, one would have to develop an understanding of the connection between
interaction strength and range and the characteristic length lx of the potential in order
to give a precise definition of the ”inner region” of the QPC.
Another interesting behavior which would need further investigation, is the shoulder in
the conductance flank to lower Vg values that we have observed in our study of the QPC-
QD transition. We could trace this behavior back to a second plateau in the dependence
of the effective level position on the gate voltage but weren’t able to identify it’s physical
origin.
A more technical task would be to actually implement our algorithm with longer ranged
feedback without neglecting the frequency dependence of the two-particle vertices and
thus also in the self-energy. Since in our algorithm the self-energy was frequency inde-
pendent, we effectively mapped our interacting model to a non-interacting one. In the
on-site case this procedure is known (cf. [19]) to give quite accurate results. In the case
of longer ranged feedback, however, it remains an open task to use a ”dynamical” longer
ranged fRG scheme to see if this approximation is indeed justified. If such an dynamical
method led to significant discrepancies, it would be very interesting to see how the spa-
cial structure of the interaction is exactly connected to the frequency structure of the
self-energy.
We end with an final remark on the treatment of the non-equilibrium physics in QPCs.
In [1], Bauer et al. used second order perturbation theory in the Keldysh formalism
to get a grasp on the behavior of the QPC when a finite source-drain voltage Vsd is
applied. Additionally to this non-equilibrium quantity, the Keldysh technique also fa-
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cilitated calculations for finite temperature which turned out to be quiet tedious using
the Matsubara formalism. This second order calculations were able to give the right
qualitative behavior but give in the zero temperature case not quantitatively the same
as the fRG approach. Therefore, our group is currently working on the development of
an Keldysh fRG scheme for spatially inhomogeneous systems in order to combine the
advantages of both methods.



A. Concrete form of the Kubo susceptibility

In this appendix, we will supply for the interested reader the explicit form of the equation
for the Kubo susceptibility in the notation introduced in chapter 4. We recall the formula
(3.97) from section 3.6

Xj = −T4
∑
σ,ωn

GRσjk (ωn)GRσkj (ωn)− T

4
∑
σ,ωn

GRσjαl(ωn)GRσαlj(iωn)

− 1
2β

∑
σ,ωn

σGRσjk (ωn)T2
∑

n′,j1,j2,j3,σ′
σ′Gσ′j1 j2(ω′n)Gσ′j2j3(ω′n)

× γ2(j3 σ′ ω′n, k σ ωn; j1 σ′ ω′n, l σ ωn)GRσl j (ωn),

(A.1)

where we assume summation over all repeated indices, except j. We have already com-
mented on the evaluation of the first two terms, thus we will here focus on the last term.
Splitting the γ2 vertex into the different channels we obtain

−1
4T

2 ∑
σ,σ′,ωn,ω′n

σσ′GRσjk (ωn)GRσ′j1j2(ω′n)GRσ′j2j3(ω′n)GRσlj (ωn)

×
[
P σ
′σ

j3kj1l +Xσ′σ
j3kj1l +Dσ′σ

j3kj1l + ν(j3σ′, kσ; j1σ′, lσ)
]
.

(A.2)

Since B = 0, we can drop the spin labels on the propagators and obtain after performing
the spin summation

−1
2T

2 ∑
ωn,ω′n

GRjk(ωn)GRj1j2(ω′n)GRj2j3(ω′n)GRlj (ωn)

×
[
P
↑↑(k−j3)(l−j1)
j3j1

+X
↑↑(l−j3)(k−j1)
j3j1

+D
↑↑(j1−j3)(k−l)
j3l

+ ν(j3 ↑, k ↑; j1 ↑, l ↑)

−
(
P
↑↓(k−j3)(l−j1)
j3j1

+X
↑↓(l−j3)(k−j1)
j3j1

+D
↑↓(j1−j3)(k−l)
j3l

+ ν(j3 ↑, k ↓; j1 ↑, l ↓)
)]
.

(A.3)

Using our previously established symmetries (4.33) we can cast this into the form

−1
2T

2 ∑
ωn,ω′n

GRjk(ωn)GRj1j2(ω′n)GRj2j3(ω′n)GRlj (ωn)

[
P
↑↑(k−j3)(l−j1)
j3j1

−D↑↑(l−j1)(k−j3)
j1j3

− P ↑↓(k−j3)(l−j1)
j3j1

−X↑↓(l−j1)(k−j3)
j1j3

+D↑↑(j1−j3)(k−l)
j3l

+ X̄
↑↓(j1−j3)(k−l)
j3l

+ ν(j3σ, kσ; j1σ, lσ)− ν(j3σ, kσ̄; j1σ, lσ̄)
]
.

(A.4)

Now we can take advantage of our approximative treatment of longer ranged feedback
and replace two summations over the whole central region by reduced summations over
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p, q from −L,L where L is the feedback range. We finally end up with

−1
2T

2 ∑
ωn,ω′n

GRj(p+j3)(ωn)GRj1j2(ω′n)GRj2j3(ω′n)GR(q+j1)j(ωn)

×
[
P ↑↑pqj3j1

−D↑↑pqj3j1
− P ↑↓pqj3j1

−X↑↓pqj3j1

+ν(j3σ, p+j3σ; j1σ, q+j1σ)− ν(j3σ, p+j3σ̄; j1σ, q+j1σ̄)]

−1
2T

2 ∑
ωn,ω′n

GRj(q+l)(ωn)GR(j3+p)j2(ω′n)GRj2j3(ω′n)GRlj (ωn)

×
[
D↑↑pqj3l

+ X̄↑↓pqj3l

]
(A.5)

In the T → 0 case, the frequency summations become integrals, which can be computed
numerically. However, this integrations are relatively expensive in computation time
and thus our preferred method for computing the susceptibility was to use a difference
quotient, as explained earlier in section 3.6.
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