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We present a controlled bond expansion (CBE) approach to simulate quantum dynamics based on the
time-dependent variational principle (TDVP) for matrix product states. Our method alleviates the numerical
difficulties of the standard, fixed-rank one-site TDVP integrator by increasing bond dimensions on the fly

to reduce the projection error. This is achieved in an economical, local fashion, requiring only minor

modifications of standard one-site TDVP implementations. We illustrate the performance and accuracy of
CBE-TDVP with several numerical examples on finite quantum lattices, including new results on bipolaron
formation in the Peierls-Hubbard model and spin pumping via adiabatic flux insertion in a chiral spin

liquid.
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Introduction.—The time-dependent variational principle
(TDVP) [1-4] is a standard tool for time-evolving the
Schrodinger equation on a constrained manifold parame-
trizing the wave function. Tensor networks (TN) offer
efficient parametrizations based on low-rank approxima-
tions [5—12]. Their combination, TN-TDVP, holds much
potential for studying the dynamics of quantum lattice
models [13-32], quantum field theories [33,34], and
quantum chemistry problems [35-40].

Here, we focus on matrix product states (MPSs), an
elementary class of TN states. Their time evolution,
pioneered in Refs. [41-43], can be treated using a variety
of methods, reviewed in Refs. [8,44]. Among these, MPS-
TDVP [15,18-22], which uses Lie-Trotter decomposition
to integrate a train of tensors sequentially, arguably gives
the best results regarding both physical accuracy and
performance [44]: it (i) is applicable for long-ranged
Hamiltonians, and its one-site (1s) version (1TDVP)
ensures (ii) unitary time evolution, (iii) energy conservation
[15,45], and (iv) numerical stability [18,21,23].

A drawback of 1TDVP, emphasized in Refs. [46-48], is
use of a fixed-rank integration scheme. This offers no way
of dynamically adjusting the MPS rank (or bond dimen-
sion), as needed to track the entanglement growth typically
incurred during MPS time evolution. For this, a rank-
adaptive two-site (2s) TDVP (2TDVP) algorithm can be
used [22], but it has much higher computational costs and
in practice does not ensure properties (ii)—(iii).

To remedy this drawback, we introduce a rank-adaptive
integrator for ITDVP that is more efficient than previous
ones [49-52]. It ensures properties (i)—(iv) at the same
numerical costs as 1TDVP, with marginal overhead. Our
key idea is to control the TDVP projection error [22,49,53]
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by adjusting MPS ranks on the fly via the controlled bond
expansion (CBE) scheme of Ref. [54]. CBE finds and adds
subspaces missed by 1s schemes but containing significant
weight from HY. When used for DMRG ground state
searches, CBE yields 2s accuracy and energy reduction per
sweep, at 1s costs [54]. CBE-TDVP likewise comes at
essentially 1s costs.

MPS basics.—Let us recall some MPS basics, adopting
the notation of Refs. [54,55]. For an L-site system an open
boundary MPS wave function ¥ having dimensions d for
physical sites and D for virtual bonds can always be written
in site-canonical form,

B Ay Ay Apr Cp Beyn By By (1)
V=~ " Yofo 7V v T

The tensors C;(¢), A¢(¥) and B¢(¥") are variational
parameters. A, and B, are left- and right-sided isometries,
respectively, projecting Dd-dimensional parent (P) spaces
to D-dimensional kept (K) images spaces; they obey

Ay B,
A== BE=-0=)=-1, @
Ag By

The gauge relations C, = A,A, = A,_;B, ensure that
Eq. (1) remains unchanged when moving the orthogonality
center C, from one site to another.

The Hamiltonian can likewise be expressed as a matrix
product operator (MPO) with virtual bond dimension w,
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Its projection to the effective local state spaces associated
with site £ or bond 7 yields effective one-site or zero-site
Hamiltonians, respectively, computable recursively via
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These act on Is or bond representations of the wave
function, 1} =Cy(?)or ¢p = Ay(<), respectively.

Let A, () and B, (7) be isometries that are orthogonal
complements of A, and B,, with discarded (D) image
spaces of dimension D = D(d — 1), obeying orthonormal-
ity and completeness relations complementing Eq. (2) [54]:

q::[:n?, q::(), :[D:]:ﬂ?—f ;D:O,

(5a)
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Tangent space projector—Next, we recapitulate the
TDVP strategy. It aims to solve the Schrodinger equation,
i¥ = HY, constrained to the manifold M of all MPSs of
the form (1), with fixed bond dimensions. Since HY
typically has larger bond dimensions than ¥ and hence
does not lie in M, the TDVP aims to minimize ||i¥ — H¥||
within M. This leads to

(1) = PIS(1)HP(1), (6)

where P'3(¢) is the projector onto the tangent space of M at
W¥(1), i.e., the space of all 1s variations of ¥(7):

1s &,
PT =%

=1 1

1 o!
/|/|/| I;I; é‘ié{ié{i I;I;
\i\i\i/ /' l+11 4

_ }\}\}\
gfz C'I/I/I/sf

The form in the first line was found by Lubich, Oseledets,
and Vandereycken [21] (Theorem 3.1) and transcribed into
MPS notation in Ref. [22]. For further explanations of its

form, see Refs. [55,56]. The second line, valid for any
¢ =1,....L — 1, follows via Eq. (5b); Eq. (5a) implies that
all its terms conveniently are mutually orthogonal, and that
the projector property (P'$)2 = P's holds [55].

One-site TDVP.—The 1TDVP algorithm [21,22] repre—
sents Eq. (6) by 2£ — 1 coupled equations, iC, = HC,
and iA, = —H®A,, stemming, respectively, from the L
single-site and £ — 1 bond projectors of P! [Eq. (7), first
line]. Evoking a Lie-Trotter decomposition, they are then
decoupled and for each time step solved sequentially, for
C, or A, (with all other tensors fixed). For a time step from
tto ' =t + & one repeatedly performs four substeps, e.g.,
sweeping right to left: (1) Integrate iC,., = H}SHCKH
from 7 to 7'; (2) QR factorize Cy (7)) = Ay (Y')By 1 (1);
(3) integrate iA, = —H?Ag from ¢ to t; and (4) update
Ap(1)Cpi1(t) = Cr(1)Bpiy (1), with Cp(1) = Ap(1)Ag(1).

1ITDVP has two leading errors. One is the Lie-Trotter
decomposition error. It can be reduced by higher-order
integration schemes [45,60]; we use a third-order integrator
with error O(5%) [61]. The second error is the projection
error from projecting the Schrodinger equation into the
tangent space of M at W¥(r), quantified by Ap =
|(T=PS)HYP(1)|]>. Tt can be reduced brute force by
increasing the bond dimension, as happens when using
2TDVP [22,44,47]; or through global subspace expansion
[50], which enriches the basis representing ¥(¢) by adding
a few global Krylov vectors, {H¥(t), ..., H*¥(¢)}. Here,
we propose a local approach, similar in spirit to that of
Ref. [52], but more efficient, with 1s costs, and without
stochastic ingredients, in contrast to [40].

Controlled bond expansion.—Our key idea is to use
CBE to reduce the 2s contribution in Ap, given by
A3 = [P HY|?, where P* = P*(1-P"). Here,
7qu is the projector onto 2s variations of ¥, and P> its
component orthogonal to the tangent space projector (see
also [55]):

7-1 7-1
= > - , (8a)
(=1 1 < (=2 1 <
B -
l 041
(8b)

Now note that A% is equal to A%- = ||P?L(H — E)P|?,
the 2s contribution to the energy variance [53-55]. In
Ref. [54], discussing ground state searches via CBE-
DMRG, we showed how to minimize A% at ls costs:
each bond # can be expanded in such a manner that the
added subspace carries significant weight from P>LHW.
This expansion removes that subspace from the image of
P?L, thus reducing A%- significantly. Consider, e.g., a

026401-2



PHYSICAL REVIEW LETTERS 133, 026401 (2024)

Position
.

107
10
108

10710
-12

0 10 20 30 40 50 600 10 20 30 40 50 60

Time Time
2.5
® [ (@ S(mw/J)
= Thnax =20
2 & Tpax = 40
15 é Tmax =60
Q . E Analytical
3 )
1 g
<
0.5
O L
0 Relative Intensity
k/m
FIG. 1. 40-site SU(2) Haldane-Shastry model: Time evolution

of a spin excitation, computed with § = 0.05 and SU(2) spin
symmetry. (a),(b) Real and imaginary parts of C(x, 1), (b) entan-
glement entropy EE(7), and (c) bond dimensions Dj(f) and
D (t). (e) Error analysis for Dy, = 500: 5C(t), the maximum of
8C(x, t) over x, energy drift SE(¢) (should remain zero for unitary
time evolution), and discarded weight &(r). (f) Normalized
spectral function S(k,w)/S(x,0), obtained using f,,, = 60.
(2) S(x,w)/S(x,0), obtained using f,,, = 20, 40, 60; red lines
indicate exact peak heights.

right-to-left sweep and let KEY (7) be a truncation of
Ay (V) having an image spanning such a subspace, of
dimension D, say. To expand bond # from D to D + D, we
replace A¢() by AF*(Y), Cryq () by Coty () and HJS, |

by H ;iflx, with expanded tensors defined as

~ ex C
A AT Ay Co1 &1 g
DﬁD@Djﬁ_Dj\w+m%iD_CI?}()

1ex D+DrF @ ~D
i = Fe3 =" o
(+1 /+1

Note that ¥ remains unchanged, AZ*Cy, | = A,Cp ;.
Similarly, the projection error A%- can be minimized
through a suitable choice of the truncated complement
Atr(~) [54]. We find AY using the so-called shrewd
selection strategy of Ref. [54] (Figs. 1 and 2 there); it
avoids computation of ¥, ¥ and has Is costs regarding
CPU and memory, thus becoming increasingly
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FIG. 2. Peierls-Hubbard model: Real-space scattering of two
electron wave packets, computed for U = 10, w,, = 3,5 = 0.05,
n?nhax = 8 and U(1) spin symmetry. (a),(b) Spin magnetic moment
S%(x,t) for g =0, g = 1. (c) Phonon density nP"(x, ), (d) bond
dimensions, and (e) error analysis: energy SE(¢) and discarded
weight &(1), all computed for g = 1, Dy, = 500.

advantageous for large D and d. Shrewd selection involves
two truncations (D — D' and D — D in Ref. [54]). Here,
we choose these to respect singular value thresholds of ¢/ =
10~* and & = 107, respectively; empirically, we found
these to yield good results for various benchmark stud-
ies [56].

CBE-TDVP.—T1t is straightforward to incorporate CBE
into the 1TDVP algorithm: simply expand each bond 7
from D — D + D before time evolving it. Concretely,
when sweeping right-to-left, we add step (0): expand
Ap,Cpp HY | = AR, C2 HSS following Eq. (9)
(and by implication also A,, HY — A, HY®). The other
steps remain as before, except that in (2) we replace the QR
factorization by an SVD. This allows us to reduce (trim) the
bond dimension from D + D to a final value Dy, as needed
in two situations [49,51,62]: First, while standard 1 TDVP
requires keeping and even padding small singular values in
order to retain a fixed bond dimension [13,18], that is not
necessary here. Instead, for bond trimming, we discard
small singular values below an empirically determined
threshold € = 107!, This keeps the MPS rank as low as
possible, without impacting the accuracy [49]. Second,
once D + D exceeds D,,,,, we trim it back down to D,
aiming to limit computational costs. The trimming error is
characterized by its discarded weight, &(¢), which we
monitor throughout. The TDVP properties of (ii) unitary
evolution and (iii) energy conservation [51] hold to within
order &(1).

Results.—The Supplemental Material [56] benchmarks
the performance of CBE-TDVP for two exactly solvable
models. Here, we illustrate its power with three numerically
challenging applications containing interesting physics:
spin dynamics in the Haldane-Shastry model, scattering
dynamics in the Peierls-Hubbard model, and spin pumping
via flux insertion for a chiral spin liquid on a cylinder.
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Haldane-Shastry model: Spin dynamics.—The SU(2)
Haldane-Shastry model on a L-site ring is defined by

/2 Sf Sf/
11
Z L2in?Z (£ — ') (-7t (1)

0<e<'<L-1

Hyg =

Its ground state correlator, C(¢,1) = (¥y|S,(1)S(0)|¥y),
is related by discrete Fourier transform to its spectral
function [63,64], S(k,w), given by (0 < &' < £ < L]/2)

S<2(f+f’)Z E[(f+f’)£ 202+ %)+ ¢ - f’])
2201 = 20(L —27)
_(2f—1)(£—2f’—1)?£1(2?—1)(£—2?—1)'

(12)

Figures 1(a) and 1(b) show the real and the imaginary
parts of C(x,t), computed using CBE-TDVP. For early
times (¢ <20), the local excitation introduced at £ =0, = 0
spreads ballistically, as reported previously [28,65,66].
Once the counterpropagating wavefronts meet on the ring,
an interference pattern emerges. Figures 1(c)-1(e) show
that our numerical results remain accurate throughout: the
entanglement entropy EE(#) and bond expansion per time
step D (t) do not grow rapidly, and error measures remain
small. Figure 1(f) shows the corresponding spectral func-
tion S(k,®), obtained by discrete Fourier transform of
C(x, ) using a maximum simulation time of 7, = 60.
Figure 1(g) shows a cut along k = z: peaks can be well
resolved by increasing f,., With relative heights in
excellent agreement with the exact Eq. (12).

Peierls-Hubbard model: Scattering dynamics.—Next,
we consider the scattering dynamics of interacting electrons
coupled to phonons. This interaction leads to nontrivial
low-energy physics involving polarons [67-79]; the
numerical study of polaron dynamics is currently attracting
increasing attention [69,80-84]. Here, we consider the one-
dimensional Peierls-Hubbard model,

HPH = ZUnanﬂ + prhb;bbp
4 4
+ Z(C;gcf+lo' +H.c.)

x (= t—l—g(bT +bs=bl . —bsiy)). (13)
Spinful electrons with onsite interaction strength U and
hopping amplitude 7 =1, and local phonons with fre-
quency wyy, are coupled with strength g through a Peierls
term modulating the electron hopping.

We consider two localized wave packets with opposite
spins, average momenta k = +7/2 and width W = 4 [85,86],
initialized as |, ) = 3", Ae~[(eF%)/WF Fikxe T 10), where

|0) describes an empty lattice. Without electron-phonon
coupling [¢g = 0, Fig. 2(a)], there is little dispersion effect
through the time of flight, and the strong interaction causes an
elastic collision. By contrast, for a sizable coupling in the
nonperturbative regime [77,79] [¢g =1, Figs. 2(b)-2(e)],
phonons are excited by the electron motion [Fig. 2(c)].
After the two electrons have collided, they show a tendency
to remain close to each other (though a finite distance apart,
since U is large) [Fig. 2(b)]; they thus seem to form a
bipolaron, stabilized by a significant phonon density in the
central region [Fig. 2(c)].

We limited the phonon occupancy to nhh. =38 per site.
Then, d = 4(nﬁ?ax +1) =36, and D = 35Dy is so large
that 2TDVP would be utterly unfeasible. By contrast, CBE-
TDVP requires a comparatively small bond expansion of
only D(t) <4D,,, for the times shown; after that, the
discarded weight &(r) becomes substantial [Figs. 2(d)
and 2(e)].

Chiral spin liquid: Spin pumping via flux insertion.—A
hallmark of topologically ordered systems is the quantized
charge or spin transport. Laughlin famously argued that
adiabatically threading an axial magnetic flux through a
quantum Hall cylinder pumps quantized charge from one
side to the other. This thought experiment, requiring high
control of the time evolution, has recently been realized in
the lab using a cold-atom integer quantum Hall system [87],
but not yet for fractional quantum Hall systems. Here, we
numerically demonstrate quantized spin transport fora § =
% chiral spin liquid (CSL) model with same topological
order as the v = % fractional quantum Hall state [88]. The
spin Hamiltonian is

HCSL_ZS S, +Z(s xS;)-S  (14)

!]k

on a square lattice, (ij) enumerates nearest neighbors, and
A;jr the four clockwise three-site terms of each plaquette
[89,90]. We study a £, x L, = 20 x 4 cylinder threaded by
an axial flux 6, implemented via a twisted boundary

condition, S¥, i, = e*0SE [91-93]. Starting from the

ground state, we adiabatically ramp up the flux as 6(¢) =
2xt/T over a total time T = 20. According to Laughlin,
this transports one spinon from the left to the right edge of
the cylinder [94,95]. The challenge is to demonstrate this
numerically. To this end, we performed a single, unin-
terrupted CBE-TDVP evolution run [96].

Figure 3(a) shows the time evolution of the local spin
moment per column, M (¢) = Zj;l S5(t): it decreases
(increases) near the left (right) edge at x = 1 (£,) while
remaining close to zero in between. Importantly, the
transferred spin, i.e., the left deficit (right surplus),

L£./2 L,
M(t) = =30 ML () = S0 1y
hnearly and reaches 0.5 [Fig. 3(a), inset]. Thus, the final

M, (t), increases
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FIG.3. Adiabatic flux insertion for a chiral spin liquid (v = 1/2
Laughlin state) on a cylinder, computed with & = 0.05,
D .x = 4000, and U(1) spin symmetry. (a) Time evolution of
M (1), the local spin moment of column x. Inset: AM (), the spin
transferred between the left and right cylinder edges. (b) Spectral
flow of the six lowest entanglement eigenvalues for $° = 0, £1.
(c) Energy (Hcsy (7)); the initial and final values differ due to
finite-size effects. (d) Entanglement entropy EE(?). (e) Bond
dimensions Dj (), Dj(t). (f),(z) Momentum-resolved entangle-
ment spectra of the initial and final states.

state has a fractional Chern number, C = % in accord with
the fundamental bulk-edge correspondence [98].

Figure 3(b) shows the time evolution of the six lowest-
lying levels of the many-body entanglement spectrum (ES)
[97,99]. For an integer Chern insulator (C = n), a 2z flux
insertion is known to shift the ES by n units. Here, by
contrast, the degeneracy structure changes: the lowest four
levels at t = 0 form a singlet and triplet, those at ¢t = 7" form
two doublets. This suggest, again, that a spin—% entity has
indeed been pumped from left to right.

As a consequence, the initial and final states lie in
different topological sectors. Figures 3(f) and 3(g) confirm
this by displaying their momentum-resolved entanglement
spectra [95,100]. According to conformal field theory, the
ES levels in each sector can be labeled by the quantum
numbers (S¢, K,) with integer transverse momentum K,
and exhibit the multiplicities {1,1,2,3,...} [101]. The
initial state [Fig. 3(f)] shows a linear K, dispersion (up to
minor finite-size effects) with degeneracies that indeed
match this pattern, lying higher for /¢ = 1 than J* = 0. For
the final state [Fig. 3(g)], by contrast, the lowest-lying

levels (which again have nearly integer K,), are almost
degenerate for $* =0 and $* = 1.

Summary and outlook.—Among the schemes for MPS
time evolution, 1TDVP has various advantages (see
Introduction), but its projection error is uncontrolled.
2TDVP remedies this, albeit at 2s costs, O(d*wD?), and
is able to simulate dynamics reliably [44]. CBE-TDVP
achieves the same accuracy as 2TDVP, but at s costs,
O(dwD?) (see Ref. [56]). Our benchmark tests of CBE-
TDVP demonstrate its reliability. Our results on the Peierls-
Hubbard model suggest that bipolarons form during
electron scattering—an effect not previously explored
numerically. We further simulated adiabatic flux insertion
in a CSL and demonstrated the pumping of a spinon
through the system. This illustrates the potential of CBE-
TDVP for tracking complex dynamics over long times in
computationally very challenging models.

For applications involving the time evolution of MPSs
defined on “doubled” local state spaces, with effective
local bond dimensions d.; = d?, the cost reduction of
CBE-TDVP vs 2TDVP, O(d*wD?) vs O(d*wD?), will be
particularly dramatic. Examples are finite temperature
properties, treated by purification of the density matrix
[102], dissipation-assisted operator evolution [103], or
tangent tensor renormalization [104]; and the dynamics
of open quantum systems [105], described by Liouville
evolution of the density matrix [106—108] or by an in-
fluence matrix approach [109].

1TDVP-equivalent integrators are also used in computa-
tional chemistry for the computation of molecular quantum
dynamics [110], where d, the size of the basis sets
describing molecular orbitals, easily exceeds 100. There,
suboptimal subspace expansion schemes can lead to
dramatic problems—CBE offers a solution, and its d? to
d cost reduction relative to 2TDVP would be huge.
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S-1. SINGLE SITE (FIXED RANK) TANGENT
SPACE PROJECTOR

The structure (7) of the tangent space projector P
can be motivated by the following short-cut argument
(equivalent to invoking gauge invariance [21, 22]). If ¥
is represented as an MPS, then its tangent vectors J¥
under the fixed-rank approximation can be expressed as
a sum of MPSs each containing one derivative of a local
tensor. This representation is not unique, but its gauge
redundancy can be easily removed. To do so, let us first
consider the variation of MPS in Eq. (1) on a single bond
£, ie., ApCpy1 = ApAyByy1, while the other tensors re-
main fixed (and hence are not depicted below). Its first
order variation then gives us 0 AyA¢Bpy1 + AedN¢Bey1 +
AgA¢dByyy. By further rewriting §A,Ap as A\, + A A
and ApdBey1 as Ay Boya +K}’ Byy1, we obtain the following
unique decomposition,

5 S1)

(A(Z Ay B[.H) A, K/[ Bey1 Ay K[ By A KZEZJA
v =Yo7 tYev tyer
with /~\g = A}, + 0A; + Aj. The three terms on the right
are mutually orthogonal to each other. Each of them
belongs to the image space of one of the following three
orthogonal projectors:

4h b5 b5 o

their sum is a tangent space projector for AjAyByi1. Re-
peating the same argument for all the bonds, while avoid-
ing double counting, i.e., including every term only once,
we readily obtain P given by the second line of Eq. (7).

Therefore, given an MPS of the form (1), P is indeed
the orthogonal projector onto its tangent space under
the fixed-rank approximation. For real-time evolution,
applying the Hamiltonian to |¥) leads the state out of
its tangent space. In the 1TDVP scheme, H |¥) is ap-
proximated by PSH |¥), its orthogonal projection onto
the tangent space, leading to Eq. (6).

S-2.  BENCHMARK TESTS

In this section, we benchmark CBE-TDVP for two ex-
actly solvable spin models defined on quantum chains:
the XX model and the one-axis twisting model. Our

benchmark comparisons in Sections S-2 A and S-2 C track
the time evolution of the following quantities: the entan-
glement entropy EE(t) between the left and right halves
of a chain, the bond dimensions Dg(t) and D(t), the dis-
carded weight &(¢), the deviations from exact results of
spins expectation values, §5(t), and the energy change
JE(t) which should vanish for unitary time evolution.
Additionally, in Sec. S-2B we compare error propaga-
tion for CBE-TDVP and 1TDVP for the XX model; and
in Sec. S-2D we compare CBE-TDVP and 2TDVP run-
times for the OAT model. For both comparisons, the
advantages of CBE-TDVP become strikingly apparent.

A. XX model: domain wall motion

We consider a spin chain with Hamiltonian

Hxx = S (SESF 1 + SUSY,)- (33)
4

This model is exactly solvable through a mapping to
free fermions, and has proven useful for benchmark-
ing purposes in numerous studies [110]. We compute
the time evolution of the local magnetization profile
Si(t) = (¥(¢)|SF|T(t)), initialized with a sharp do-
main wall, |¥(0)) = [t1...1}}...]). For comparison,
the analytical solution for ¥ — oo reads [111] S} (t) =
—1/23°07 ,Jn(t)?, for £ > 1 (right half) and S} =
—S%_, otherwise, where J,(t) is the Bessel function of
the first kind. The domain wall spreads with time [Fig. S-
1(a)], entailing a steady growth of the entanglement en-
tropy (EE) between the left and right halves of the spin
chain [Fig. S-1(b)]. D(t) and D(t) [Fig. S-1(c)] start
from 1 and 0. Initially, D remains remarkably small
(< 10), while Dy increases in steps of D until reaching
Dyax. Thereafter D increases noticeably, but remains
below Dy, for all times shown here. This reflects CBE
frugality—bonds are expanded only as much as needed.

Figure S-1(d) illustrates the effects of changing Dy .x,
following the error analysis of Ref. 110. The leading error
is quantified by 0.5%(t) (solid line), the maximum devia-
tion (over £) of Sj(t) from the exact result. Comparing
the data for D, = 40, 80,120, we observe a finite bond
dimension effect: The error 657 increases appreciably
once the discarded weight £ (dotted line) becomes larger
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FIG. S-1. 100-site XX spin chain: Time evolution of a do-
main wall, computed with time step 6 = 0.05 and U(1) spin
symmetry. (a) Local magnetization profile S7(¢). (b) Entan-
glement entropy EE(t) between the left and the right half of
the chain. (c¢) Bond dimension D¢(t) and its pre-trimming
expansion l~)(t) per time step, for Dmax = 120. (d,e) Error
analysis: magnetization 65 (t) (solid line),i.e., the maximum
deviation (over £) of S7(t) from the exact result, , energy
0E(t) (dashed line), and discarded weight £(¢) (dotted line)
for Dimax =40 (red), 80 (blue) and 120 (black), computed with
(d) CBE-TDVP or (e) 2TDVP. Remarkably, the errors are
comparable in size, although CBE-TDVP has much smaller
computational costs.

than 107!, By contrast, the energy drift (dashed line)
stays small irrespective of the choice of Dy,,x. Figure S-
1(e) shows a corresponding error analysis for 2TDVP,

computed using D = Dy,.x; its errors are comparable to
those of CBE-TDVP, though the latter is much cheaper.

B. XX model: Comparison of error propagation
for CBE-TDVP and 1TDVP

The TDVP time evolution of an MPS under the fixed-
rank approximation is unitary, with energy conservation
if the Hamiltonian is time-independent. Expanding the
tangent space does not spoil these desirable properties,
provided that no truncations are performed. However,
then the bond dimension would keep growing with time,
which is not practical for studies of long-time dynamics.

With our CBE approach, we instead restrict the bond
dimension growth by bond trimming using e = 10712,
and also stopping the increase of Dy once it has reached
a specified maximal value Dy,.x. Due to these trunca-
tions, the desirable TDVP properties are no longer sat-
isfied exactly. However, for each time step they do hold
within the truncation error, as shown by Ceruti, Kusch,
and Lubich [51]. Thus, the time evolution per time step
is almost unitary. Nevertheless, errors can accumulate
with time, hence it is unclear a priori to what extent the
desirable TDVP properties survive over long times.

To investigate this, we revisit our first benchmark ex-
ample for the domain wall motion of the XX model. We
use CBE-TDVP (while exploiting U(1) spin symmetry)

0.5 ITDVPp 12

Position

=1
£
h=
8 ey g e ST TSV L Y|
A~ e 100
D] OO
-0.5
0 20 40

t

FIG. S-2. (a) Forward-backward time evolution for the com-
putation of F(t). (b,c) Back-evolution of the domain wall,
described by |¥_ (%)), computed using (b) CBE-TDVP and
(¢) ITDVP. (d) Time evolution of 6 F'(t) = 1— F(t), computed
via 1TDVP with D = 120 (dash-dotted line), and via CBE-
TDVP using three values of €, and either with Dmax = 120
(dashed lines) or Dmax =00 (solid lines). (e) Time evolution
of the corresponding bond dimensions D (%) (solid lines) and

D(%) (dots). (The solid green curve shows Dy /5.)

to compute the forward-backward fidelity [Fig. S-2(a)]
F(t) = |<\I/,(t_)|\ll+(t)>|2, t=tmax—t € [0,tmax] . (54)

Here, [U(t)) = e "#|¥(0)) is obtained through for-
ward evolution for time ¢, and |¥_(£)) = e |, (tax))
through forward evolution until time ¢ =t,,x, then back-
evolution for £ =t.,—t to get back to time t. The de-
viation of the fidelity from unity, 6F(f)=1—F(¢), equals
zero for unitary evolution; increases with ¢ if time evo-
lution is computed using truncations; and tends to 1 for
t — tmax if truncations are too severe.

Figure S-2(b) shows the back-evolution of the domain
wall described by |¥_(¢)) as t increases from 0 t0 typax =
40, where both |U,(¢)) and |¥_(f)) were computed us-
ing CBE-TDVP with the truncation parameters stated
in the main text, namely €=10"% and Dy, =120. The
corresponding 6F'(#) (Fig. S-2(d), black dashes) shows
initial transient growth, but then saturates at a remark-
ably small plateau value of 6.7 x 1072, Moreover, the cor-
responding bond expansion per update, D(t) (Fig. S-2(e),
black dots), increases only fairly slowly. For these trun-
cation settings, the CBE-TDVP errors are thus clearly
under good control and do not accumulate rapidly, so
that long-time evolution can be computed accurately.

The fidelity becomes worse (6F(t) increases) if the
singular-value threshold for bond expansion, €, is raised
(Fig. S-2(d), dashed lines). Nevertheless, even for € as
large as 1072 we find long-time plateau behavior for
dF(t), implying that the errors remain controlled. This
illustrates the robustness of CBE-TDVP. The plateau
value can be decreased by increasing D,.x, but the re-
duction becomes significant only if € is sufficiently small.
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FIG. S-3. 100-site one-axis twisting model: Time evolution of
an initially z-polarized spin state, computed using 6 = 0.01
and Z spin symmetry. (a) Total spin SL*(¢), (b) entan-

glement entropy, and (c) bond dimensions. (d) Error anal-

ysis: error in total spin density §si°*(t) (solid line), energy

0E(t) (dashed line), and discarded weight £(t) (dotted line),
for Dmax = 500.

Even for Dyax =00 (Fig. S-2(d), solid lines) the plateau
reduction relative to D. =120 is modest, whereas the
corresponding growth in D¢ (Fig. S-2(e), solid lines) be-
comes so rapid that this setting is not recommended in
practice.

Finally, Figs. S-2(c) and S-2(d) (dash-dotted, purple
line) also show 1TDVP results, computed with D = 120:
the domain wall fails to recontract to a point, and the
fidelity reaches zero (6F'(t) reaches 1). This occurs even
though 1TDVP uses no truncations besides the tangent
space projection, and hence yields unitary time evolu-
tion. This poor performance illustrates a key limitation
of 1TDVP when exploiting symmetries (as here): time
evolution involves transitions to sectors having quantum
numbers not yet present, but 1TDVP cannot include
these, due to the fixed-rank nature of its tangent space
projection. CBE-TDVP by construction lifts this restric-
tion.

C. OAT model: quantum revivals

The one-axis twisting (OAT) model has a very simple
Hamiltonian, Hoar = (3, 57)?/2, but its long-range in-
teractions are a challenge for tensor network methods
using real-space parametrizations. We study the evolu-
tion of SE°(t) = (¥(t)| >, S7 [¥(t)), for an initial |¥(0))
having all spins x-polarized (an MPS with D = 1). The
exact result, SI°'(¢) = (L/2)cosl~1(t/2), exhibits peri-
odic collapses and revivals [112]. Yang and White [50]
have studied the short-time dynamics using TDVP with
global subspace expansion, reaching times ¢t < 0.5 (see
their Fig. 4(a); note that their YW = 0.25 corresponds
to our t“6P = 0.5, due to a factor of 2 difference in
the definition of the Hamiltonians, HYY. = 2HESR).
CBE-TDVP is numerically stable for much longer times
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FIG. S-4. 60-site one-axis twisting model for spin S = 1/2:
Time evolution of an initially x-polarized spin state, com-
puted using § = 0.01, Dmax = 500, and Zs spin symmetry.
(a) Total spin Si°*(¢) for CBE-TDVP (blue), 2TDVP (red)
and the exact solution (black). (b) CPU time for CBE-TDVP
(blue) and 2TDVP (red). (c,d) Color scale plot of the bond
dimension as a function of time for all MPS bonds, for (c)
2TDVP and (d) CBE-TDVP.

[Fig. S-3(a)]; it readily reached ¢t = 127, completing three
cycles. (More would have been possible with linear in-
crease in computation time.) This stability is remark-
able, since the rapid initial growth of the entanglement
entropy, the finite time-step size, and the limited bond
dimension [Fig. S-3(b,c)] cause some inaccuracies, which
remain visible throughout [Fig. S-3(d)]. However, such
numerical noise evidently does not accumulate over time
and does not spoil the long-time dynamics: CBE-TDVP
retains the treasured properties (i-iv) of 1TDVP, up to
the truncation tolerance governed by &.

D. OAT model: Comparison of CPU times for
CBE-TDVP and 2TDVP

In this subsection, we compare the CPU time for CBE-
TDVP and 2TDVP for the OAT model discussed above.
All CPU time measurements were done on a single core
of an Intel Core i7-9750H processor.

First, we compare the early-time behavior of CBE-
TDVP and 2TDVP. From ¢t = 0 to 1.5, both methods
yield good accuracy as shown in Fig. S-4(a). The CPU
time spent to achieve this, however, is quite different. In
Fig. S-4(b), we see that while the 2TDVP takes about
two days, CBE-TDVP accomplishes the same time span
overnight.

The main reason for this difference does not lie in the
1s vs. 2s scaling of CBE-TDVP vs. 2TDVP (discussed
below), because d = 2 (for S = 1/2) is small, and CBE
involves some algorithmic overhead for determining the
truncated complement A{"(~). Instead, the difference
reflects the fact that the growth in MPS bond dimen-



sion D(t) with time is much slower for CBE-TDVP than
2TDVP. This implies dramatic cost savings, since both
methods have time complexity proportional to D3. Fig-
ure S-4(c,d) show the time evolution of bond dimensions
for all MPS bonds for CBE-TDVP and 2TDVP respec-
tively. For 2TDVP [Fig. S-4(c)], the bond dimensions
grow almost exponentially and quickly saturate to their
specified maximal value, here D, = 500. This sat-
uration is reflected by the early onset of linear growth
in the CPU time in Fig. S-4(b). By contrast, the bond
dimensions of CBE-TDVP show a much slower growth
[Fig. S-4(d)], yielding a strong reduction in CPU time
compared to 2TDVP.
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FIG. S-5. CPU time per sweep for the 20-site one-axis twist-
ing model, computed for several values of S, at Dmax = 500.

Second, we demonstrate that when D is fixed, the time
complexity of CBE-TDVP vs. 2TDVP scales as d vs.
d?, implying 1s vs. 2s scaling. Figure S-5 shows this by
displaying the CPU time per sweep for the OAT model
for several different values of the spin .S, with the MPS
bond dimension fixed at Dy, = 500.



