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We study paramagnetic quantum criticality in the periodic Anderson model (PAM) using cellular
dynamical mean-field theory (CDMFT), with the numerical renormalization group (NRG) as a cluster
impurity solver. The PAM describes itinerant c electrons hybridizing with a lattice of localized f electrons.
At zero temperature, it exhibits a much-studied quantum phase transition from a Kondo phase to a
Ruderman-Kittel-Kasuya-Yosida (RKKY) phase when the hybridization is decreased through a so-called
Kondo breakdown quantum critical point (KB QCP). There, Kondo screening of f spins by c electrons
breaks down, so that f excitations change their character from somewhat itinerant to mainly localized,
while c excitations remain itinerant. Building on Phys. Rev. Lett. 101, 256404 (2008), which interpreted
the KB transition as an orbital-selective Mott transition, we here elucidate its nature in great detail
by performing a high-resolution, real-frequency study of various dynamical quantities (susceptibilities,
self-energies, and spectral functions). NRG allows us to study the quantum critical regime governed by the
QCP and located between two temperature scales, TFL < TNFL. In this regime, we find fingerprints of non-
Fermi-liquid (NFL) behavior in several dynamical susceptibilities. Surprisingly, CDMFT self-consistency
is essential to stabilize the QCP and the NFL regime. The Fermi-liquid (FL) scale TFL decreases toward and
vanishes at the KB QCP; at temperatures below TFL, FL behavior emerges. At T ¼ 0, we find the following
properties. The KB transition is continuous. The f quasiparticle weight decreases continuously as the
transition is approached from either side, vanishing only at the KB QCP. Therefore, the quasiparticle weight
of the f band is nonzero not only in the Kondo phase, but also in the RKKY phase; hence, the FL
quasiparticles comprise c and f electrons in both phases. The Fermi surface (FS) volumes in the two phases
differ, implying a FS reconstruction at the KB QCP. Whereas the large-FS Kondo phase has a two-band
structure as expected, the small-FS RKKY phase unexpectedly has a three-band structure. We provide a
detailed analysis of quasiparticle properties of both the Kondo and, for the first time, also the RKKY phase
and uncover their differences. The FS reconstruction is accompanied by the appearance of a Luttinger
surface on which the f self-energy diverges. The volumes of the Luttinger and Fermi surfaces are related to
the charge density by a generalized Luttinger sum rule. We interpret the small FS volume and the emergent
Luttinger surface as evidence for f-electron fractionalization in the RKKY phase. Finally, we compute the
temperature dependence of the Hall coefficient and the specific heat, finding good qualitative agreement
with experiments.

DOI: 10.1103/PhysRevX.14.041036 Subject Areas: Condensed Matter Physics,
Strongly Correlated Materials

*Contact author: andreas.gleis@lmu.de
†Contact author: sslee@snu.ac.kr
‡Contact author: kotliar@physics.rutgers.edu
§Contact author: vondelft@lmu.de

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 14, 041036 (2024)

2160-3308=24=14(4)=041036(48) 041036-1 Published by the American Physical Society

https://orcid.org/0000-0001-6260-5281
https://orcid.org/0000-0003-0715-5964
https://ror.org/05591te55
https://ror.org/00chfja07
https://ror.org/00chfja07
https://ror.org/02ex6cf31
https://ror.org/05vt9qd57
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.14.041036&domain=pdf&date_stamp=2024-11-07
https://doi.org/10.1103/PhysRevLett.101.256404
https://doi.org/10.1103/PhysRevX.14.041036
https://doi.org/10.1103/PhysRevX.14.041036
https://doi.org/10.1103/PhysRevX.14.041036
https://doi.org/10.1103/PhysRevX.14.041036
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


I. INTRODUCTION

For more than 20 years, quantum criticality in heavy-
fermion (HF) systems has remained a subject of ongoing
experimental and theoretical research [1–3]. In this paper,
we study several open theoretical questions within a
canonical model for HF systems, the periodic Anderson
model (PAM) in three dimensions. Our new insights are
derived from real-frequency results with unprecedented
energy resolution at arbitrarily low temperatures. To set
the scene, we begin with a survey of the state of the field,
focusing, in particular, on aspects relevant for the sub-
sequent discussion of our own results. Readers well familiar
with HF physics may prefer to skip directly to Sec. I E,
which offers an outline of our own work and results.

A. Heavy-fermion compounds and phenomena

HF compounds are a class of strongly correlated sys-
tems. They contain partially filled, localized f orbitals
featuring strong local Coulomb repulsion. These localized
orbitals hybridize with weakly interacting itinerant con-
duction bands (c bands) [4]. Particularly interesting is the
appearance of a so-called Kondo breakdown (KB) quantum
critical point (QCP) [5–7], which is the subject of this work.
The most prominent HF compounds featuring a KB
QCP derive their f orbitals from Yb or Ce. Examples
are YbRh2Si2, CeCu6−xAux, or the so-called Ce-115
family, including CeCoIn5 or CeRhIn5. In the following,
we first introduce HF materials, in general, and then focus
on experimental and theoretical aspects of the KB QCP.
In HF systems, the hybridization between c and f

electrons in combination with the strong local repulsion
of f electrons generates Kondo correlations [4]. The strong
repulsion effectively leads to the formation of local
moments in the f orbitals. These experience an effective
antiferromagnetic interaction with the c electrons due to
hybridization. This promotes singlet formation between c
and f electrons, similar to the Kondo singlet formation
in the single-impurity Kondo or Anderson models [8]. At
temperatures below some scale TFL, these Kondo correla-
tions ultimately lead to the formation of a Fermi liquid (FL)
with quasiparticles (QPs) composed of both c and f
electrons. Because of the local nature of the f electrons,
these QPs usually have a large effective mass, hence the
name heavy fermions.
If Kondo correlations are strong, the f electrons effec-

tively become mobile and contribute to the density of
mobile charge carriers. This especially affects the Fermi
surface (FS) volume [9–14] and the Hall number nH [15],
which are both proportional to the charge density in a FL.
Kondo correlations compete with Ruderman-Kittel-

Kasuya-Yosida (RKKY) [16–19] correlations. The RKKY
interaction is an effective exchange interaction between f
electrons mediated by the c electrons. If the c band is close
to half filling, this interaction is antiferromagnetic and

promotes f-f singlet formation. This competes with the
aforementioned c-f singlet formation [20].
It is believed that quantum criticality in HF systems

is largely driven by this competition between RKKY
and Kondo correlations [4,19,20]. Many HF materials
can be tuned through a QCP by varying, e.g., magnetic
fields, pressure, or doping [1,2]. At these QCPs, a transition
from the Kondo-correlated heavy FL to some other, often
magnetically ordered, phase occurs. In some HF materials,
this quantum phase transition may be understood in terms
of a spin density wave (SDW) instability of the heavy FL,
i.e., a magnetic transition in an itinerant electron system,
described by Hertz-Millis-Moriya theory [21–24]. The
antiferromagnetic ordering occurring at this SDW QCP
leads to a doubling of the unit cell, but QPs remain intact
across the transition. In particular, the charge density
involved in charge transport does not change abruptly
across the SDW QCP. It is, therefore, expected that the
Hall coefficient, which is sensitive to the carrier density,
likewise does not abruptly change at such a QCP [6,7].
Furthermore, in d ¼ 3 spatial dimensions, such a QCP is
essentially described by a ϕ4 theory above its upper critical
dimension. The long-wavelength order parameter fluctua-
tions are, therefore, Gaussian. Because of that, ω=T scaling
of dynamical susceptibilities, a clear sign of an interacting
fixed point [24], is not expected at a SDW QCP.
Interestingly, however, there is a large class of HF

materials which show QCPs not compatible with the spin
density wave scenario [1]. Examples include YbRh2Si2
[25–28], CeCu6−xAux [29], CeRhIn5 [30,31], and CeCoIn5
[32]. In these materials, experimental observations point
toward a sudden localization of the f electrons as the
QCP is crossed from the Kondo correlation-dominated
heavy FL phase. In contrast to the SDW scenario, QPs
seem to be destroyed at this QCP [6,7,28]. It, thus, seems
that the Kondo correlations between f and c electrons
suddenly break down at the QCP, hence the name
KB QCP.

B. Experimental phenomena at the KB QCP

In the following, we briefly summarize some experi-
mental results indicative of the sudden breakdown of
Kondo correlations and a corresponding sudden localiza-
tion of the f electrons. We first focus on results close
to T ¼ 0 that indicate that the f electrons localize. After
that, we discuss some remarkable dynamical and finite-
temperature properties of the KB QCP. We focus on
universal phenomena and omit material-specific aspects.
Fermi-liquid behavior at low T.—In most HF systems,

FL behavior is observed at temperatures below some
FL scale TFL, on either side of the KB QCP (on the
RKKY side, the FL is often antiferromagnetically
ordered). Below TFL, ∼T2 behavior of the resistivity
and ∼T behavior of the specific heat is usually
observed [27,28,33,34].
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FS reconstruction at T ¼ 0.—A smoking gun signal of a
KB QCP is a sudden reconstruction of the FS at T ¼ 0. In a
FL, the volume of the FS is connected to the density of
charge carriers by Luttinger’s theorem [9,10,35,36]. Thus, a
sudden change in the FS volume is also a sign for partial
localization of charge carriers. A sudden change in the
carrier density has been observed in terms of a sudden jump
of the Hall number nH ∼ 1=RH (where RH is the Hall
coefficient) in many HF materials, including YbRh2Si2
[26,37], CeCu6−xAux [29], and CeCoIn5 [32]. Further
evidence for a FS reconstruction is due to de Haas–van
Alphen (dHvA) frequency measurements, with sudden
jumps of dHvA frequencies observed in CeRhIn5 [30,31]
and CeCoIn5 [32,38,39]. More direct access to the FS is
provided by angle-resolved photoemission (ARPES) mea-
surements [3], which have by now been performed on
several HF compounds like CeCoIn5 [40–43], CeRhIn5
[44], YbRh2Si2 [45–47], or YbCo2Si2 [48]. Close to
criticality, ARPES data on HF compounds are to date
not quite conclusive yet, since low-temperature scans
across the KB QCP (often tuned by magnetic field or
pressure) are challenging.
Possible absence of magnetic ordering.—The KB QCP

is not necessarily accompanied by magnetic ordering
[32,49,50]. In CeCoIn5, antiferromagnetic order occurs
only well away from the KB QCP inside the RKKY-
dominated phase where the f electrons are localized [32].
Furthermore, while for pure YbRh2Si2 antiferromagnetic
ordering sets in at the KB QCP, this may be changed by
chemical pressure [49]. In this way, the jump of nH can be
tuned to occur either deep in the antiferromagnetic phase or
deep in the paramagnetic phase. This fact suggests that the
KB QCP is not tied to magnetic ordering [49,51–53].
Continuous suppression of the FL scale to zero.—The

above-mentioned sudden FS reconstruction suggests that
the KB QCP marks a transition between two FL phases
with different densities of mobile carriers. Observations on
various different materials suggests that this transition is
continuous: The FL scale TFL decreases continuously to
zero at the KB QCP [28,34], and the QP mass at the QCP
diverges in many compounds [29,30,33] from both sides of
the transition.
Onset scale for c-f hybridization.—Besides the FL scale

TFL, another important scale in HF compounds is the
scale below which c-f hybridization begins to build up.
We denote this scale by TNFL, for reasons explained later.
(It is often also denoted T0.) This scale is visible, for
instance, in scanning tunneling spectroscopy (STS)
experiments [3] or in optical conductivity measurements
in terms of a distinct gap in the STS or optical spectra,
called the hybridization gap. TNFL is then the temperature
below which hybridization gap formation sets in.
This scale has been determined in many different HF
compounds via STS, for instance, in CeCoIn5 [54],

CeRhIn5 [55], and YbRh2Si2 [56,57], or via optical
conductivity measurements, e.g., in YbRh2Si2 [58,59],
CeRhIn5 [60], CeCoIn5 [60,61], and CeCu6−xAux [62].
These experiments unambiguously show that TNFL is
virtually unaffected by the distance to the KB QCP or
whether the f electrons are (de)localized at T ¼ 0.
Strange-metal behavior.—Close to the KB QCP, there is

a vast scale separation between TNFL and the FL scale,
giving rise to an intermediate quantum critical region with
NFL behavior. In this NFL region, a linear-in-temperature
resistivity is measured universally for all of the above-
mentioned materials [25,32,63–66]. Furthermore,
YbRh2Si2 [25,28], CeCu6−xAux [29,64], and CeCoIn5
[67] feature a ∼T lnðTÞ dependence of the specific heat.
Both observations are in stark contrast to the ∼T2 depend-
ence of the resistivity and ∼T dependence of the specific
heat expected from a FL [15]. Recent shot-noise measure-
ments on YbRh2Si2 nanowires further indicate the absence
of QP in the strange-metal region [68].
Furthermore, dynamical susceptibilities exhibit ω=T

scaling [69] at the KB QCP. This was initially observed
for the dynamical magnetic susceptibilities in UCu5−xPdx
[70], CeCu6−xAux [71], and CeCu6−xAgx [72] and very
recently also for the optical conductivities of both
YbRh2Si2 [63] and CeCu6−xAux [73]. Note that ω=T
scaling is a clear sign for a non-Gaussian QCP [24]; i.e.,
the critical fixed point is an interacting one. Particularly
interesting, too, are the recent observations of ω=T scaling
for the optical conductivity, as it shows that the critical
behavior is not limited to the magnetic degrees of freedom
only but also includes the charge degrees of freedom.
In summary, the following phenomena seem to be almost

universal for the KB QCP: (i) a sudden jump of nH as the
KB QCP is crossed at T ¼ 0; (ii) a sudden reconstruction of
the FS as the KB QCP is crossed at T ¼ 0; (iii) a diverging
QP mass as the KB QCP is approached from either side at
T ¼ 0; (iv) a lnðTÞ dependence of γ ¼ C=T at finite
temperatures above the KB QCP; (v) a linear-in-T depend-
ence of the resistivity at finite temperatures above the KB
QCP; (vi) ω=T scaling of dynamical susceptibilities at
finite temperatures above the QCP. All of these phenomena
are not compatible with a magnetic transition in an itinerant
electron system. To the best of our knowledge, a full
understanding of the KB QCP has not yet been achieved.

C. Theory of the KB QCP: Basics and challenges

Below, we introduce the basic models which have been
proposed to describe the essentials of HF physics, including
the KB QCP. We further review some basic intuitive,
qualitative notions associated with the physics of these
models. Then, we give a qualitative overview of the
challenges faced when attempting to describe the KB QCP.
Concrete approaches for tackling those challenges are
reviewed in the next subsection.
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The universal physics of HF systems is believed to be
described by the PAM:

HPAM ¼
X
iσ

ϵff
†
iσfiσ þ

X
i

Uf†i↑fi↑f
†
i↓fi↓

þ
X
iσ

Vðc†iσfiσ þ H:c:Þ þ
X
kσ

ϵckc
†
kσckσ; ð1Þ

which we consider here on a three-dimensional cubic
lattice. Here, fiσ and ciσ annihilate an f or c electron
with spin σ ∈ f↑;↓g at site i, respectively, ckσ is the
discrete Fourier transform of ciσ , while ϵf ¼ ϵ0f − μ and
ϵck ¼ ϵ0ck − μ, with ϵ0ck ¼ −2t

P
a¼x;y;z cosðkaÞ, denote the

local f energy and c-band dispersion relative to the
chemical potential μ, respectively. The f electrons expe-
rience a strong local repulsion U and hybridize with the c
electrons with hybridization strength V.
At U ¼ 0, the PAM features a two-band structure, with a

band gap determined by the hybridization strength V
(therefore also often called the hybridization gap). The
hybridization thereby shifts the FS such that both f and c
electrons are accounted for, and QPs in the vicinity of the
FS are hybrid c-f objects. The low-energy physics of the
Kondo-correlated FL phase can be thought of as a renor-
malized version of theU ¼ 0 case. The interaction does not
destroy the low-energy hybridization between c and f
electrons but merely renormalizes it. When approaching the
KB QCP from the Kondo-correlated phase, the interaction
renormalizes the hybridization to ever smaller values. The
point where the hybridization renormalizes to zero and c
and f electrons decouple at low energies marks the KB
QCP [74]. In the RKKY-correlated phase, c and f electrons
have been argued to remain decoupled, so that the FS is that
of the free c electrons, with QPs of purely c electron
character [3,74]. Surprisingly, we find a somewhat different
scenario. Indeed, we show in the present work that even in
the RKKY-correlated phase QPs close to the FS are c-f
hybridized; see Sec. VI C.
Description of the strange metal.—Arguably the most

challenging aspect of the KB QCP is the strange-metal
behavior at finite temperatures above the QCP. There are by
now various routes to microscopically realize NFL behav-
ior; see Ref. [75] for an extensive recent review. Rigorous
results on NFL physics can, for instance, be obtained
from Sachdev-Ye-Kitaev models [75] or from impurity
models featuring quantum phase transitions [76], e.g.,
multichannel Kondo impurities [77–80] or multi-impurity
models [81–91]. Despite considerable recent progress
[92–94], it is to date not fully clarified to what extent
known routes to NFL physics connect to the strange-metal
behavior observed experimentally in HF materials.
Description of the Fermi surface reconstruction.—

Another challenging issue is to explain how the FS can
change its size in the first place. The volume of the FS is
fixed to be proportional to the particle number by the

Luttinger sum rule [9,10], which involves the combined
particle number of the c and f electrons [10]. While the FS
volume matches the Luttinger sum rule prediction in the
Kondo-correlated phase, this is not the case in the RKKY-
correlated phase, where the f electrons seem to be missing
from the FS volume. A theoretical description of the KB
QCP also needs to correctly describe both the Kondo- and
RKKY-correlated phases, which is far from straightforward
especially in the latter case. Nevertheless, this aspect of the
KB QCP is better understood and intuitively more acces-
sible than the strange-metal physics.

D. Theory of the KB QCP: Approaches

The KB QCP has been subject to many theoretical
studies in the past, using both analytical and numerical
approaches. Below, we briefly list what has been achieved
so far and point out the main issues of the corresponding
approaches.
Numerically exact methods.—Significant progress on

physical phenomena can be made based on exact solutions
obtained with controlled numerical methods. The main
advantage is that such an approach is highly unbiased:
The bare PAM or the closely related Kondo lattice model
(KLM) is solved exactly, potentially in some simplified
geometry and usually in some constrained parameter
regime. Results have so far been obtained with quantum
Monte Carlo (QMC) methods [95–106] and the density
matrix renormalization group [107], some of which have
reported evidence of a Kondo breakdown [103,104,107].
Even though reports of dynamical or transport properties
are scarce, numerically exact studies can provide valuable
benchmarks for less-controlled approaches.
Slave-particle theories.—Considerable conceptual

progress on KB physics has been achieved using slave-
particle approaches [108–113]. These approaches decom-
pose the degrees of freedom of the PAM or the KLM in
terms of additional fermionic or bosonic degrees of freedom
(often called partons) which are subject to gauge constraints,
to ensure the mapping is exact [108–111,113–115]. While
the parton decomposition does not render the models
solvable, it allows for more flexibility when constructing
approximate solutions. For instance, a certain effective low-
energy form of the Hamiltonian and some effective dynam-
ics of the gauge fields (which are static after the initial exact
mapping) are usually assumed. The effective theory can then
be solved by means of approximate methods, for instance,
by taking certain large N limits and/or resorting to static
mean-field theory.
One of the early successes of slave-particle approaches

is the prediction of a RKKY phase in which f electrons
are localized and do not contribute to the FS in terms
of an orbital-selective Mott phase [110,111,113]. The
missing FS volume in the RKKY phase was linked to
emergent topological excitations of fractionalized spins
[110,111,116], thus coining the term fractionalized FL
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(FL*). It was further established that a continuous transition
between Kondo- and RKKY-correlated phases can
exist [111], including a FS reconstruction accompanied
by a sudden jump in the Hall coefficient [117]. Recently, by
considering spatially disordered interactions [94,115], it
has been possible to account for a strange-metal-like
∼T lnT resistivity using a slave-particle approach (though
to our knowledge, a lnT correction to the ∼T resistivity has
not been reported in YbRh2Si2 [118], which shows the
most extensive strange-metal regimes of all known HF
compounds).
Dynamical mean-field theory.—Dynamical mean-field

theory (DMFT) [119,120] and its extensions [121–123]
have been successfully used in many studies on HF systems
[5,124–132] and have lead to valuable new insights. DMFT
methods treat lattice models by mapping them on self-
consistent impurity models.
The most prominent approach, which has lead to many

insights, is the extended DMFT (EDMFT) approach to
KLM [5,124,133–143]. EDMFT maps the KLM on a
self-consistent Bose-Fermi-Kondo impurity model and is
able to capture a KB QCP due to the local competition
between Kondo screening and magnetic fluctuations.
One of the main successes of EDMFT is the explanation
of ω=T scaling of the dynamical spin structure factor in
CeCu6−xAux [71] at the KB QCP. However, to the best of
our knowledge, predictions of other thermodynamic and
transport properties, like the linear-in-T resistivity or the
T lnT dependence of the specific heat, are lacking to date.
It is, therefore, still unclear whether the EDMFT approach
correctly describes the experimentally observed strange-
metal behavior. We expect, though, that these gaps in the
literature will be filled in future studies.
A downside of the EDMFT approach is that full self-

consistency leads to a first-order phase transition [124,144]
at T > 0. A continuous transition can be recovered by
insisting on a featureless fermionic density of states [145],
at the cost of giving up self-consistency of the fermionic
degrees of freedom, as is routinely done in KB QCP studies
using EDMFT [136,137,139]. This downside of EDMFT
has lead to the proposal of using two-site cellular DMFT
(CDMFT) [121] to study Kondo breakdown physics [126].
Using exact diagonalization (ED) as an impurity solver, it
was shown that a two-site CDMFT treatment of the PAM
[Eq. (1)] can describe the KB QCP as an orbital-selective
Mott transition (OSMT) at T ¼ 0 [131,132], where the f
electrons localize while the c electrons remain itinerant.
Similar studies with QMC impurity solvers [130,146,147]
were, however, not able to find signs of a KB QCP in the
temperature range studied. Since ED suffers from limited
frequency resolution while QMC has trouble reaching low
temperatures, it is to date not clear to what extent CDMFT
can describe KB physics. The ED study was further not
able to establish conclusively whether the transition is first
or second order.

E. Overview of our main results

In this work, we revisit the CDMFT approach of
Refs. [131,132], now using the numerical renormalization
group (NRG) [148,149] as an impurity solver. The NRG is
numerically exact, produces spectral data directly on the
real-frequency axis, and is able to access arbitrarily low
temperatures and frequencies. NRG, therefore, eliminates
the limitations of both ED and QMC for studying quantum
critical phenomena. In particular, using NRG, we are
able to settle the question of whether a two-site CDMFT
approximation of the PAM on a simple cubic lattice is
capable of describing a KB QCP. Furthermore, leveraging
the high resolution of NRG, we find several new features
of the RKKY phase which were not accessible to lower-
resolution methods. Most important, NRG can explore
the quantum critical regime governed by the QCP.
We stick to the parameters used in Refs. [131,132] and
vary the c-f hybridization strength V and temperature T
[cf. Eq. (1) and Sec. II]. Similar in spirit as Ref. [131],
we focus on purely paramagnetic solutions by artificially
preventing the breaking of spin rotation symmetry. This is
motivated by experimental observations which suggest
that the KB QCP and magnetic ordering are distinct
phenomena [32,49,150]. Here, we decide to focus on the
paramagnetic KB QCP and refrain from the additional
complications introduced by possible magnetic ordering.
The interplay between KB physics and symmetry break-
ing will be considered in detail in future work.
The main goals of our work are to (i) establish that two-

site CDMFT is able to describes a continuous KB QCP;
(ii) establish that the QCP is governed by a NFL critical fixed
point and characterize its properties; (iii) make progress on
our understanding of the fate of c-f hybridization in the
vicinity of the QCP; and (iv) explore to what extent CDMFT
is able to qualitatively capture the experimental phenomena
described in Sec. I B. In the process, we reveal several new
aspects of the CDMFT solution. The remainder of this
subsection is intended as a summary of our main results and
a guide to where to find them in our paper.

1. The KB QCP is a continuous OSMT

Using NRG, we clearly establish that two-site CDMFT
describes a continuous KB QCP. First and foremost, this is
shown in Sec. III and Fig. 2, where we present the phase
diagram obtained with CDMFT-NRG. Here, we establish the
presence of two energy scales: the FL scale TFL, belowwhich
we find FL behavior, and a NFL scale TNFLð≥ TFLÞ, which
marks the onset of c-f hybridization (cf. Figs. 11 and 12) and
below which we find strange-metal-like NFL behavior in the
vicinity of the QCP. We find that as V approaches a critical
hybridization strength Vc from either side, TFL continuously
decreases to zero while TNFL remains nonzero throughout.
We identify Vc as the location of a KB QCP. While the FS
volume in theKondo-correlated phase atV > Vc counts both
the c and the f electrons, it counts only the c electrons in the
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RKKY-correlated phase at V < Vc (cf. Sec. VIII). The KB
QCP thereby marks a continuous transition between two FL
phases, which differ in their FS volumes (cf. Figs. 13 and 17
and their corresponding sections). The FS reconstruction,
which occurs at the KB QCP, is accompanied by the
appearance of a dispersive pole in the f-electron self-energy.
This also implies the appearance of a Luttinger surface [11],
the locus of points in the Brillouin zone at which the f
self-energy pole lies at ω ¼ 0 (cf. Secs. VI and VII).
Reference [151] recently suggested that Luttinger surfaces
may define spinon Fermi surfaces. The appearance of a
Luttinger surface, therefore, suggests that the f electron is
fractionalized (i.e., spinon degrees of freedom emerge at low
energies as stable spin-1=2 excitations) in the RKKY phase.
In the parlance of Refs. [110,111], this suggests that
the RKKY phase is a fractionalized FL (FL*). We will
explore this more concretely in future work. Following
Refs. [131,132], we therefore identify the KB QCP as a
continuous OSMT, in which the f electrons partially localize
while the c electrons do not.

2. NFL physics at intermediate T close to the QCP

In the vicinity of the QCP, there is a scale separation
between TFL and TNFL, giving rise to an intermediate NFL
region extending down to T ¼ 0 at Vc (cf. Fig. 2). Our
evidence that this intermediate region is a NFL region is
based on NRG finite-size spectra (Fig. 3), dynamical
correlation functions (Fig. 4), and a ∼T lnT of the specific
heat (Fig. 19). In a companion paper [152], we will present
a detailed analysis of the optical conductivity, showing
ω=T scaling, and the temperature dependence of the
resistivity, showing linear-in-T behavior in the NFL regime.
Moreover, our KB QCP for the PAM shows several
similarities with QCPs found for the two-impurity and
two-channel Kondo models (cf. Sec. X). Very surprisingly,
we find a stable NFL fixed point even though the effective
two-impurity model lacks the symmetries necessary to
stabilize a NFL fixed point without self-consistency
[82–85,87–89,153–156]. We find that the CDMFT self-
consistency conditions are essential for the stability of the
NFL fixed point (cf. Sec. IV and Appendix A 4).

3. Fate of c-f hybridization across the KB QCP

One of our most surprising findings is that low-energy
c-f hybridization is not destroyed as the KB QCP is
crossed from the Kondo (V > Vc) to the RKKY phase
(V < Vc). We elaborate this in detail in Secs. V–VIII.
Indeed, we find that the QP weights for both the c and f
electrons are nonzero in both T ¼ 0 phases adjacent to the
KB QCP, vanishing only at at the KB QCP (Fig. 9). This is
one of our most surprising results and in stark contrast
to previous work. It implies that, contrary to widespread
belief [3], the difference between the Kondo and RKKY
phases is not due to nonzero versus zero f-electron QP
weight. Instead, it is caused by a sign change of the effective

f-level position close to the center of the Brillouin zone
(Fig. 9 and its discussion; Sec. VIII). We connect this sign
change to the aforementioned emergence of a dispersive
self-energy pole (Fig. 10 and its discussion). It, thus, reflects
the orbital-selective Mott nature of the RKKY phase.
The nonzero f-electron QP weight and the dispersive

self-energy pole leads to the emergence of a third band in
the RKKY phase (cf. Figs. 13 and 14 and their discussion).
The emergence of a third band in a model constructed from
only two bands is our most striking and unexpected result.
Its emergence is previewed in Fig. 1, showing the total
(c and f) spectral function AkðωÞ: At high frequency
(jωj≲ 10−1, measured in terms of the bare c-electron half-
band width), its structure remains qualitatively unaltered as
the KB QCP is crossed—it seems as if, in both cases, there
is a two-band structure characteristic for HF systems.
However, as one enlarges further to lower frequencies, it
becomes clear that the low-frequency physics is entirely
different: A third band emerges in the RKKY phase,
and the FS is shifted relative to that in the Kondo phase.
The emergence of the third band is intimately tied to the
emergence of a Luttinger surface (cf. Secs. VII and VIII). It
was concluded in Ref. [151] that Luttinger surfaces may
define spinon Fermi surfaces. From that perspective, the
third band can be viewed as a direct manifestation of the
fractionalization of the f electrons in the RKKY phase:
Their spinon degrees of freedom become independent,
long-lived excitation, giving rise to the third band. A more
concrete investigation will be the subject of future work.

4. Relation to experiment

We repeatedly make contact to experimental observa-
tions in our manuscript. In Table I, we provide a list of
experimental observations which are qualitatively repro-
duced by our CDMFT-NRG approach. We include refer-
ences to the relevant experimental publications and reviews
(without claim of completeness) and pointers to where our
corresponding CDMFT results appear in this paper.
To conclude our overview, we summarize the structure of

the paper: After reviewing CDMFTand NRG in Sec. II, we
present and discuss the phase diagram in Sec. III. By detailed
discussion of real-frequency dynamical susceptibilities
and NRG finite-size spectra, we demonstrate in Sec. IV
that TFL vanishes at the QCP and gives rise to NFL behavior
at intermediate temperatures below TNFL. After reviewing
expectations on single-particle properties in HF systems in
Sec. V, a detailed discussion of single-particle properties of
the self-consistent two-impurity Anderson model follows
in Sec. VI. Using NRG, we show unambiguously that the f
electron QP weight is finite in both the Kondo- and RKKY-
correlated phases. In Sec. VII, we discuss how the single-
particle properties of the self-consistent impurity model
translate to lattice properties. There, we show that the FS
indeed reconstructs across the KB QCP. In Sec. VIII, we
discuss the details of this FS reconstruction in the context of
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Luttinger’s theorem and present our results for the Hall
coefficient. Section IX shows results on the specific heat.
Finally, in Sec. X, we discuss the similarities and differences
between the KB QCP in the PAM studied with two-site
CDMFTand the impurityQCPs in the two-channel and two-
impurity Kondo models. Section XI presents our conclu-
sions and an outlook. We discuss technical details regarding
CDMFT and NRG in Appendixes A and B; Appendixes C
and D discuss how relevant energy scales are determined;
see also Fig. 2 and its discussion.

II. MODEL AND METHODS

Although the CDMFT treatment of the PAM is well
established [130–132], we describe it in some detail, to

introduce notation and terminology that is used extensively
in subsequent sections.
Before starting, a general remark on notation. Matsubara

propagators analytically continued into the complex plane
are denoted GðzÞ, with z∈C. The corresponding retarded
propagators are GðωþÞ, with z ¼ ωþ i0þ, ω∈R. Ditto for
self-energies.

A. Periodic Anderson model

We consider the PAM on a three-dimensional cubic
lattice, where each lattice site hosts a noninteracting
conduction c orbital and an interacting localized f orbital.
The HamiltonianHPAM is given by Eq. (1). In this work, we
set t ¼ 1=6 so that the c-electron half-bandwidth is 1 and
use the latter as unit of energy. Following the choices of

TABLE I. Left: experimental phenomena associated with heavy-fermion behavior that can be recovered qualitatively from the periodic
Anderson model, treated using two-site CDMFT þ NRG. Middle: references and reviews (without claiming completeness) which have
inferred these phenomena from experimental data. Right: figures in this work or a follow-up paper [152] exhibiting these phenomena.

Phenomenon Experiment PAM, CDMFT

Phase diagram [3,28,34] Fig. 2
Sudden FS reconstruction [30–32,38,39] Figs. 13 and 17
Jump of Hall coefficient [26,32,37] Fig. 18, Appendix D
Control parameter dependence of THall [26] Fig. 2
Divergent QP mass [28–30,33] Figs. 9 and 19
TFL → 0 at KB QCP [3,28,34] Fig. 2
Hybridization gap forms at [3,54–62] Figs. 2, 11, and 12
TNFL; TNFL ≠ 0 at KB QCP
NFL: ∼T ln T specific heat [25,28,29,67] Fig. 19
NFL: linear-in-T resistivity [25,32,63–66] [152]
NFL: ω=T scaling [63,70–73] [152]

FIG. 1. Three left columns: k-dependent spectral function AkðωÞ of the PAM at T ¼ 0, enlarging frequencies jωj ≤ 10−1, 10−2, and
10−3. V is chosen close to the KB QCP, in either the Kondo phase (upper row) or the RKKY phase (lower row). At relatively high
frequencies (first column), the spectral functions of both phases seem to have a similar structure, involving two bands, labeled ① and ②.
However, enlarging to lower frequencies (second and third columns), we find a striking difference: In the RKKY phase, a narrow third
band emerges at low frequencies, labeled ③, as indicated by the dashed lines in the third column and in the schematic sketch of the band
structure in the fourth column. This difference also leads to different Fermi surfaces, shown on the far right as red surfaces; the blue
surface shows the Luttinger surface in the RKKY phase. For more details, see Sec. VII.
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De Leo, Civelli, and Kotliar [131,132], we set the chemical
potential to μ ¼ 0.2, the f-level energy to ϵ0f ¼ −5.5, and
the f-level Coulomb repulsion toU ¼ 10, so that the system
is electron doped. When exploring the phase diagram in
Sec. III, we vary the c-f hybridization V and temperature T.
In the momentum representation, the lattice propagators

can be expressed as

GkðzÞ ¼
�
z − ϵf − ΣfkðzÞ −V

−V z − ϵck

�−1

¼
�

GfkðzÞ GfckðzÞ
GfckðzÞ GckðzÞ

�
: ð2Þ

The matrix elements in the second line in Eq. (2), defined
by computing the matrix inverse stated in the first, are
given by

GfkðzÞ ¼ ½z − ϵf − ΔfkðzÞ − ΣfkðzÞ�−1; ð3aÞ
GckðzÞ ¼ ½z − ϵck − ΣckðzÞ�−1; ð3bÞ
GfckðzÞ ¼ ΣckðzÞGckðzÞ=V ¼ ΔfkðzÞGfkðzÞ=V; ð3cÞ
ΔfkðzÞ ¼ V2½z − ϵck�−1; ð3dÞ
ΣckðzÞ ¼ V2½z − ϵf − ΣfkðzÞ�−1: ð3eÞ

For brevity, we often omit momentum and/or frequency
arguments. The f-hybridization function Δf and the one-
particle irreducible f self-energy Σf describe, respectively,
the effects of hybridization and interactions on f electrons.
Their effects on c electrons are described by Σc, which is
not one-particle irreducible and a function of Σf. In
particular, hybridization leads to so-called hybridization
poles in ΣcðzÞ, which, in turn, cause so-called hybridization
gaps in the spectral functions AcðωÞ ¼ −ð1=πÞImGcðωþÞ
(discussed in detail in later sections).

B. Two-site cellular DMFT

We study the PAM using a two-site CDMFT approxi-
mation, considering a unit cell of two neighboring lattice
sites as a cluster impurity and the rest of the lattice as a
self-consistent bath. We choose to focus solely on solutions
with SU(2) spin rotation symmetry, U(1) total charge
symmetry, and inversion symmetry, i.e., solutions which
treat sites 1 and 2 as equivalent. Enforcing these sym-
metries may induce artificial frustration in some regions of
the phase diagram; in particular, they exclude the possibil-
ity of symmetry-breaking order such as antiferromagnet-
ism. We have two reasons for nevertheless focusing only on
non-symmetry-broken solutions. First, in some materials
the antiferromagnetic QCP (AFM QCP) and the KB QCP
do not coincide: in YbRh2Si2 they can be shifted apart
by applying chemical pressure [49], and in CeCoIn5 they
naturally lie apart [32]. This strongly suggests that the onset

of antiferromagnetic order is not an intrinsic property of the
KB QCP itself [150]. (The question why the AFM QCP
often coincides with the KB QCP is interesting but not
addressed in this paper.) Second, in experimental studies,
symmetry-breaking order is usually absent in the quantum
critical region. It is, therefore, of interest to understand
the properties of the KB QCP and the NFL regime above it
in the absence of symmetry breaking. Having chosen to
exclude symmetry breaking, we refrain from studying the
limit V → 0, where its occurrence is increasingly likely for
energetic reasons. Studies of symmetry-broken phases are
left for future work.
The CDMFT approximation for the PAM, excluding

symmetry breaking, leads to a self-consistent two-impurity
Anderson model (2IAM) defined by [130–132]

H2IAM ¼
X
iσ

ϵff
†
iσfiσ þ

X
i

Uf†i↑fi↑f
†
i↓fi↓

þ
X
iσ

Vðc†iσfiσ þ H:c:Þ −
X
ijσ

c†iσðtτx þ μ1Þijcjσ

−
X
ijλσ

Vijλðc†iσaλjσ þ H:c:Þ þ
X
λiσ

Eλia
†
λiσaλiσ: ð4Þ

Here, i∈ f1; 2g labels the two cluster sites in the “position
basis,” 1 ¼ ð1

0
0
1
Þ, and τx ¼ ð0

1
1
0
Þ. There are two spinful

baths, with annihilation operators aλiσ . Both baths hybrid-
ize with both cluster sites, whose assumed equivalence
implies Vijλ ¼ Vjiλ. These couplings, chosen to be real, and
the bath energies Eiλ together define the c-hybridization
function

ðΔcÞijðzÞ ¼
X
λl

VilλVjlλ

z − Eλl
: ð5Þ

The cluster correlators of the 2IAM are 2 × 2 matrix
functions. In the cluster position basis, they are given by

GfðzÞ ¼ ½z − ϵf − ΔfðzÞ − ΣfðzÞ�−1; ð6aÞ

GcðzÞ ¼ ½zþ μþ t · τx − ΔcðzÞ − ΣcðzÞ�−1; ð6bÞ

GfcðzÞ ¼ ΣcðzÞGcðzÞ=V ¼ ΔfðzÞGfðzÞ=V; ð6cÞ

ΔfðzÞ ¼ V2½zþ μþ t · τx − ΔcðzÞ�−1; ð6dÞ

ΣcðzÞ ¼ V2½z − ϵf − ΣfðzÞ�−1: ð6eÞ

These have to be solved self-consistently, by iteratively
computing Σf via an impurity solver and readjusting
the dynamical mean field Δc (see Appendix A and
Refs. [121,122]).
By SU(2) spin symmetry, the hybridization function Δc

is spin diagonal and spin independent. The same is true
for Δf, which is fully determined by Δc. Moreover, 1 ↔ 2
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inversion symmetry ensures that they are linear combina-
tions of 1 and τx. They can, therefore, be diagonalized
independently of ω using the Hadamard transformation
UH ¼ 1ffiffi

2
p ð1

1
1
−1Þ, which maps τx to τz ¼ ð1

0
0
−1Þ. It is, thus,

convenient to correspondingly transform H2IAM, express-
ing it through the bonding and antibonding operators

f�;σ ¼
1ffiffiffi
2

p ðf1σ � f2σÞ; c�;σ ¼
1ffiffiffi
2

p ðc1σ � c2σÞ: ð7Þ

After reperiodization (discussed in Appendix A 3),
these modes represent Brillouin zone regions centered at
Γ ¼ ð0; 0; 0Þ and Π ¼ ðπ; π; πÞ, respectively [157,158].
The labels α∈ fþ;−g on fασ and cασ are, thus, called
“momentum” labels. The � modes are coupled only via
the Coulomb interaction term, which can change the total
charge in each channel only by 0 or �2. This implies
two Z2 symmetries: The number parity operators
P̂� ¼ N̂� mod 2 for the þ and − channels are both
conserved, with eigenvalues P� ∈ f0; 1g. Because of the
P� symmetry, the Green’s functions and self-energies are
diagonal in the � basis.

C. Numerical renormalization group

We solve the 2IAM using the full-density-matrix
NRG [159–161]. Following Wilson [148,149], the bath’s
continuous spectrum is discretized logarithmically, and the
model is mapped onto a semi-infinite Wilson chain. We
represent the impurity f and c orbitals by sites n ¼ −1 and
0, respectively, and the bath by sites n ≥ 1. The hopping
amplitudes for n ≥ 1 decay exponentially, ∼Λ−n=2, where
Λ > 1 is a discretization parameter. This energy-scale
separation is exploited to iteratively diagonalize the model,
adding one site at a time while discarding high-energy
states. For a “length-N” chain (i.e., one with largest site
index N), the lowest-lying eigenenergies have spacing
∼Λ−N=2. By increasing N, one can, thus, resolve ever-
lower energy scales.
We set up the Wilson chain in the momentum basis, in

which the � modes are coupled only via the interaction
term on site −1. To reduce computational costs, we use an
interleaved chain [162,163] of alternatingþ and − orbitals.
(Interleaving slightly lifts degeneracies, if present, of the
sites being interleaved—but this is not an issue here, since
the � modes are nondegenerate due to τz contributions to
hopping terms. Indeed, we have double-checked, especially
close to the QCP, that our interleaved results are reproduced
when using a computationally more costly standard Wilson
chain geometry.) We exploit the SU(2) spin, U(1) charge,
and both Z2 parity symmetries in our NRG calculations
using the QSpace tensor library [164,165], further reducing
computational costs. Together with interleaving, this allows
us to achieve converged data using a fairly small
NRG discretization parameter of Λ ¼ 3 while keeping

Nkeep ≤ 25000 SU(2) multiplets. Because spectra close
to the QCP can be quite sensitive to z shift (see
Ref. [161] for the definition of z), we refrain from z
averaging, i.e., use only the logarithmic grid of z ¼ 1.
For further methodological details on achieving DMFT

self-consistency and reperiodization, see Appendix A; for
further information on NRG, see Appendix B.

III. PHASE DIAGRAM

Based on a detailed study of the dynamical properties
of various local operators, described in Sec. IV B, we
have established a phase diagram for the PAM, shown in
Fig. 2(a). While its generic structure has been known for a
long time [4,20,51–53,110,150], we reach orders of mag-
nitude lower temperatures and better energy resolution than
previously possible and characterize the various regimes
through a detailed analysis of real-frequency correlators.
We first focus on zero temperature, involving two distinct
phases separated by a QCP, then discuss finite-temperature
behavior, involving smooth crossovers between several
different regimes.
Zero temperature.—At T ¼ 0, we find two phases when

tuning V, separated by a QCP at Vc ¼ 0.4575ð25Þ. For
V > Vc, we find a Kondo phase, where the f and c bands
are hybridized to form a two-band structure and the
correlation between f-orbital local moments in the effective
2IAM is weak, as shown by the blue line in Fig. 2(b) and
discussed below. This phase is a FL, with a Fermi surface
(FS) whose volume satisfies the Luttinger sum rule [9,10]
when counting both the f and c electrons (see Fig. 17, to be
discussed later). We henceforth call a FS large or small if its
volume accounts for both c and f electrons or only c
electrons, respectively. The Kondo phase is adiabatically
connected to the case of U ¼ 0 and V > 0 and is, thus,
a normal FL.
For V < Vc, we find a RKKY phase, where the local

moments at nearest neighbors have strong antiferromag-
netic correlations [see the blue line in Fig. 2(b) and its
discussion below], while SU(2) spin symmetry is con-
served by construction. This phase, too, is a FL, with a
small FS accounting only for c electrons. While this phase,
thus, appears to violate Luttinger sum rule, it still obeys a
more general version of that rule [11,36,110]: We find a
surface of poles of Σfkðz ¼ 0Þ (Luttinger surface), which,
together with the FS, accounts for the total particle number.
We discuss this in detail in Secs. VII and VIII. In the
RKKY phase, the FS coincides with the FS of the free c
band, but the effective band structure differs from that of a
free c band: There are three bands (see Figs. 1 and 13
below, to be discussed later), including a narrow QP band
crossing the Fermi level. This narrow QP band is respon-
sible for the FL behavior we observe in the RKKY phase.
Based on Ref. [151] revealing that Luttinger surfaces may
define spinon Fermi surfaces, we conjecture that the RKKY
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phase is a fractionalized FL (FL*) [110,111]. We will
explore this conjecture in more detail in future work.
Figure 2(b) shows the equal-time f-f intersite spin

correlators hSf1 · Sf2i and the local c-f hSf1 · Sc1i of the

effective 2IAM at T ¼ 10−11, plotted as functions of V.
hSf1 · Sf2i smoothly evolves from ≃0 at V ¼ 0.6 deep in
the Kondo phase to ≃ − 0.75 deep in the RKKY phase. On
the other hand, the absolute value of hSf1 · Sc1i smoothly
decreases when going from the Kondo phase to the RKKY
phase. This shows that the Kondo phase is dominated by
local c-f correlations, indicative of spin screening, and has
only weak nonlocal f-f spin correlations. By contrast, the
RKKY phase is dominated by nonlocal antiferromagnetic
f-f spin correlations and has only weak local c-f corre-
lations. Note that equal-time spin correlations of the self-
consistent 2IAM are continuous across the QCP and do not
show nonanalytic behavior at Vc. Rather, we see below that
the QCP is characterized by a zero crossing of the effective
bonding f level (see discussion of Fig. 9 below). This is
accompanied by a sharp jump of the FS and the appearance
of a dispersive pole in the f self-energy (see the discussion
of Figs. 13, 14, and 17 below).
Figure 2(c) shows static susceptibilities for the total f-spin

Szf1 þ Szf2, the staggered intersite f-f-spin Szf1 − Szf2, and
the staggered local f − c-spin Szf1 − Szc1, plotted versus V at
T ¼ 10−11. [Susceptibilities are defined in Eq. (8) below.]
While the total f-spin susceptibility evolves smoothly across
the QCP, both staggered susceptibilities, which are related to
intersite f-f singlet formation and Kondo singlet formation,
respectively, show singular behavior near the QCP. This
suggests that the latter arises from a competition between
intersite f-f singlet formation and Kondo singlet formation.
Furthermore, both staggered susceptibilities become very
large deep in the RKKY phase, reflecting the tendency of
this phase toward antiferromagnetic order.
Finite temperature.—When the temperature is increased

from zero, both FL phases cross over, at a V-dependent
scale TFLðVÞ, to an intermediate NFL critical regime,
characterized by the absence of coherent QP (see
Fig. 15 and Sec. IVA). Importantly, the scale TFLðVÞ
vanishes when V approaches Vc from either side; thus,
the NFL regime extends all the way down to T ¼ 0 at
the QCP. With increasing temperature, the NFL regime
crosses over, at a scale TNFLðVÞ [larger than TFLðVÞ], to a
local moment (LM) regime, which is adiabatically con-
nected to V ¼ 0. There, free c electrons are decoupled
from f orbital local moments, resulting in a one-band
structure. The crossover scales TNFL and TFL can be
extracted from an analysis of dynamical susceptibilities at
T ¼ 0 (see Sec. IV B and Appendix C). To make
qualitative contact with experimental results on YbRh2Si2
[26], we also show a scale THall, which marks the cross-
over between large and small FS based on analyzing the
Hall coefficient in a way which closely resembles the
analysis done in Ref. [26] (see Fig. 18 and Appendix D).
In qualitative agreement with the experimental data in
Fig. 3 in Ref. [26], THall depends on the tuning parameter
(V in our case, B field in Ref. [26]) and bends toward the
Kondo side of the phase diagram.

FIG. 2. (a) Paramagnetic phase diagram of the PAM as a
function of the c-f hybridization V and temperature T (on a log
scale). At T ¼ 0, there are two distinct phases, the RKKY phase
and the Kondo phase, separated by a QCP at Vc ¼ 0.4575ð25Þ.
At T > 0, we find four different regimes, labeled LM (local
moment), RKKY, Kondo, and NFL, connected via smooth
crossovers. For the first three, associated band structures are
depicted schematically in insets. (See Figs. 1 and 13–15 for the
CDMFT band structure results.) The crossovers are characterized
by the temperature scales TNFL (orange solid line) and TFL
(purple and blue solid lines) below which NFL and FL behaviors
emerge, respectively. The scales TNFLðVÞ and TFLðVÞ are
determined by analyzing dynamical susceptibilities of the self-
consistent 2IAM at T ¼ 0, as explained in Sec. IV B and
Appendix C. The red dots marked THall (and the guide-to-the-
eye red dashed line) indicate how the crossover from a large FS in
the Kondo phase to the small FS in the RKKY phase evolves with
temperature. THall is determined by analyzing the Hall coefficient
similar to Ref. [26] (see Fig. 18 and Appendix D). (b) Equal-time
intersite f-f spin correlation hSf1 · Sf2i and local c-f spin
correlation hSf1 · Sc1i. (c) Static susceptibilities for the total f
spin Szf1 þ Szf2, the intersite staggered f-f spin Szf1 − Szf2, and the
local staggered f-c spin Szf1 − Szc1 of the effective 2IAM, all
plotted at T ¼ 10−11 as a function of V.
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IV. TWO-STAGE SCREENING

The presence of two crossover scales, TNFL and TFL,
implies that the evolution, with decreasing energy, from
unscreened local f moments to a fully screened FL
regime evolves through two stages. In this section, we
study this evolution from two perspectives, focusing first
on NRG finite-size spectra (Sec. IVA) and then on the
dynamical properties of various local susceptibilities at
T ¼ 0 (Sec. IV B).

A. Finite-size spectra

We begin our discussion of the physical properties of the
different regimes shown in Fig. 2(a) by studying NRG
energy-level flow diagrams of the self-consistent effective
2IAM. Such diagrams show the (lowest) rescaled eigene-
nergies ΛN=2EiðNÞ of a length-N Wilson chain as a
function of the energy scale Λ−N=2. Conceptually, the
EiðNÞ form the finite-size spectrum of the impurity plus
bath in a spherical box of radius RN ∝ ΛN=2, centered on
the impurity [148,166]: With increasing N, the finite-size
level spacing, ∼1=RN , decreases exponentially. The result-
ing flow of the finite-size spectrum is stationary
(N independent), while Λ−N=2 lies within an energy regime
governed by one of the fixed points, but changes when
Λ−N=2 traverses a crossover between two fixed points. We
label eigenenergies by the conserved quantum numbers
ðQ; 2S; Pþ; P−Þ, where Q is the total charge relative to the
ground state, S the total spin, and P� ∈ f0; 1g the number
parity eigenvalues in the � sectors.
Kondo phase.—Figure 3(a) shows the NRG flow dia-

gram for the self-consistent 2IAM at T ¼ 0 and V ¼ 0.46,
which is in the Kondo phase close to the QCP. The ground
state has quantum numbers (0, 0, 0, 0). As already indicated
in the discussion of Fig. 2(a), we find a FL at low-energy
scales and a NFL at intermediate-energy scales. In the
FL region below TFL > Vc, the low-energy many-body
spectrum can be constructed from the lowest particle and
hole excitations. These come with quantum numbers
ð�1; 1; 1; 0Þ and ð�1; 1; 0; 1Þ for the bonding and anti-
bonding channel, respectively, with the P� quantum
numbers identifying the channel containing the excitation.
The low-energy many-body spectrum can then be gener-
ated by stacking these single-particle excitations, leading to
towers of equally spaced energy levels, characteristic for
FL fixed points [149]. This directly shows that the Kondo
phase is a FL featuring a QP spectrum at low energies.
At intermediate-energy scales between TFL and TNFL, the

effective 2IAM flows through the vicinity of a NFL fixed
point. Our calculations strongly suggest that this NFL fixed
point also governs the low-energy behavior of the QCP at
T ¼ 0 and V ¼ Vc. We, thus, identify this NFL fixed point
with the critical fixed point of the QCP in the two-site
CDMFT approximation. As pointed out in subsequent
sections and summarized in Sec. X, this fixed point shares

several similarities with the NFL fixed points of the two-
channel Kondo model (2CKM) [77,78,167–171], the two-
impurity Kondo model (2IKM) [87–89,153–156], and the
2IAM without self-consistency [82–85], which is closely
related to the 2IKM. One may, therefore, argue that it is not
surprising to find such a NFL fixed point also in a self-
consistent solution of the 2IAM. On the other hand, the
NFL fixed points of the 2IKM and the 2IAM are known to
be unstable to breaking � mode degeneracy or particle-
hole symmetry [82,83,86,89]. Furthermore, for the 2IKM
and the 2IAM, the RKKY interaction has to be inserted by
hand as a direct interaction, because if � mode symmetry
and particle-hole symmetries are present (as needed to
make the NFL fixed point accessible), then these sym-
metries prevent dynamical generation of an antiferromag-
netic RKKY interaction [172]. It has, therefore, been
argued that this NFL fixed point is artificial and not
observable in real systems [172–174]. From this perspec-
tive, the behavior found here for our effective self-
consistent 2IAM is indeed unexpected and remarkable:
Although it lacks particle-hole symmetry or � mode

FIG. 3. NRG flow diagrams for the self-consistent effective
2IAM at T ¼ 0, in (a) the Kondo phase at V ¼ 0.46 and (b) the
RKKY phase at V ¼ 0.455, both close to the QCP. The rescaled
eigenenergies are plotted as functions of the energy scale Λ−N=2,
for odd values of N. The vertical dashed lines indicate the scales
TFL and TNFL. Quantum numbers for selected energy levels are
indicated in the legend. Energy levels with total charge jQj ¼ 0,
1, or 2 are shown using solid, dash-dotted, or dashed lines,
respectively.
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degeneracy and we do not insert the RKKY interaction by
hand, it evidently can be tuned close to a QCP controlled by
a NFL fixed point with 2IKM-like properties.
We note in passing that self-consistency is crucial to

reach the NFL fixed point—we checked that naively tuning
V without self-consistency leads to a continuous crossover
without a QCP (see also Appendix A 4 for more details).
It is not entirely clear to us why the self-consistency
stabilizes the NFL fixed point, though we suspect the
Luttinger sum rule [9,10] to play a crucial role. We discuss
the Luttinger sum rule in more detail in Sec. VIII. We also
remark that, for the non-self-consistent 2IKM mentioned
above, frequency-independent or only weakly frequency-
dependent hybridization functions were used in the analy-
ses of prior studies which concluded that its NFL fixed
requires some special symmetries to be stable. By contrast,
for the self-consistent 2IAM studied here, the self-
consistent hybridization functions acquire a rather strong
frequency dependence in the vicinity of the KB QCP
and appear to become singular at the QCP itself (see
Appendix A 4). Regarding the energy level structure of the
self-consistent 2IAM, we did not find obvious similarities
to the NFL fixed point of the 2IKM; i.e., the level structure
seems quite different.
RKKY phase.—Figure 3(b) shows the NRG flow dia-

gram for the self-consistent 2IAM at V ¼ 0.455 < Vc,
which is in the RKKY phase close to the QCP. Again, a NFL
is found at intermediate energies and a FL fixed point at low
energies. This directly establishes that the RKKY phase, too,
is a FL described by a QP spectrum at low energies.
However, note that, close to the QCP, the level structure
of the FL fixed point in the RKKY phase (V ¼ 0.455) is
quite different from that in the Kondo phase (V ¼ 0.46).
This suggests that these Fermi liquids are not smoothly
connected. Indeed, we see in Sec. VIII that their FS volumes
differ. This implies different scattering phase shifts and,
hence, different NRG eigenlevel structures, consistent with
the fact that the level structures in Figs. 3(a) and 3(b) differ
strikingly in the FL regimes on the left.

B. Dynamical susceptibilities

The characteristic level structure of RG fixed points
governs the behavior of dynamical properties at T ¼ 0,
causing striking crossovers at the scales TFL and TNFL.
In this section, we extract these from the dynamical
susceptibilities of local operators.
Let O be a local operator acting nontrivially only on the

cluster impurity in the self-consistent 2IAM. We define its
dynamical susceptibility as

χ½O�ðωþÞ ¼ −i
Z

∞

0

dt eiω
þth½OðtÞ; O†ð0Þ�i; ð8Þ

where h·i ¼ Trðρ·Þ denotes a thermal expectation value.
When ω lies within an energy range governed by a specific

fixed point, the imaginary part of such a susceptibility
typically displays power-law behavior, χ00½O�ðωÞ ¼
−ð1=πÞImχ½O�ðωþÞ ∼ ωα. When ω traverses the crossover
region between fixed points, the exponent α changes,
indicating a change in the degree of screening of the local
fluctuations described by O. A log-log plot of χ00 versus ω,
thus, consists of straight lines with slope α in regions
governed by fixed points, connected by peaks or kinks (see
Fig. 4). We, thus, define the crossover scales TNFL and TFL
via the position of these kinks, as described below.
(A systematic method for determining the kink positions
is described in Appendix C.) When discussing finite-
temperature properties in later sections, we see that the
scales so obtained also serve as crossover scales separating
low-, intermediate-, and high-temperature regimes.
We have computed χ00½O�ðωÞ for the following local

cluster operators, defined in the momentum-spin basis, with
indices α∈ fþ;−g and σ ∈ f↑;↓g:

Ta ¼ 1

2
f†αστaαα0δσσ0fα0σ0 ðmomentumÞ; ð9aÞ

Sb ¼ 1

2
f†ασδαα0σbσσ0fα0σ0 ðspinÞ; ð9bÞ

Xab ¼ 1

2
f†αστaαα0σ

b
σσ0fα0σ0 ðspin-momentumÞ; ð9cÞ

Wa ¼ f†αστaαα0δσσ0cα0σ0 þ H:c: ðhybridizationÞ; ð9dÞ

Pa ¼ 1ffiffiffi
2

p fαστaαα0 iσ
y
σσ0fα0σ0 ðsinglet pairingÞ; ð9eÞ

Qab ¼ fασfα0σ0 τ̂aαα0 Ĵ
b
σσ0 ðtriplet pairingÞ; ð9fÞ

j ¼ −iteðc†1σc2σ − H:c:Þ ðcurrentÞ: ð9gÞ

Here, sums over repeated indices are implied, τa and σb

are Pauli matrices in the momentum and spin sectors,
respectively, iσy ¼ ð 0

−1
1
0
Þ, and Ĵb are SU(2) generators in

the triplet representation. These operators can also be
expressed in the position spin basis via the Hadamard
transformation UH, which maps τx → τz, τy → −τy, and
τz → τx. For example, Tz can be expressed as

Tz ¼
X

α;α0¼�

1

2
f†αστzαα0fα0σ ¼

X2
i;j¼1

1

2
f†iστ

x
ijfjσ; ð10Þ

describing f hopping between sites 1 and 2. Similarly,
Sz describes the total f-electron spin, Xxz ¼ Szf1 − Szf2
the staggered magnetization, Wz ¼ P

ij f
†
iστ

x
ijcjσ þ H:c:

nearest-neighbor f − c hybridization, and Pz f-electron
nearest-neighbor singlet pairing.
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Figure 4 shows various χ00 susceptibilities at T ¼ 0 for
the choices V ¼ 0.46 [Figs. 4(a) and 4(c)] and V ¼ 0.455
[Figs. 4(b) and 4(d)], in the Kondo and RKKY phases
close to the QCP, respectively. For ω < TFL, all χ00’s
decrease linearly with decreasing ω, indicative of FL
behavior. Hence, all local fluctuations are fully screened
in that energy window, leading to well-defined Fermi-
liquid QPs. By contrast, for TFL < ω < TNFL only the χ00’s
in Figs. 4(c) and 4(d) (e.g., χ00½Sz�) decrease with decreas-
ing ω, while the ones in Figs. 4(a) and 4(b) (e.g., χ00½Tz�,
χ00½Xxz�, χ00½Wz�, and χ00½Pz�) all traverse plateaus. These
plateaus are reminiscent of those found for χ002CK½Sz� of the
overscreened, S ¼ 1

2
two-channel Kondo model (2CK)

and for χ002IKM½Sz1 − Sz2� of the two-impurity Kondo model
(2IKM) in their respective NFL regimes (see Fig. 20
below). This implies that the total spin in the � basis is
screened, whereas the momentum, spin-momentum, pair-
ing, and hybridization fluctuations are overscreened,
yielding the intermediate NFL.
The χ00 curves at T ¼ 0 in Fig. 4 clearly demonstrate that,

when V is close to Vc, the screening process evolves
through two stages, characterized by TNFL and TFL.
Precisely at the critical point, where TFL ¼ 0, the plateaus
would extend all the way to zero. Conversely, when V is
tuned away from the QCP, TFL tends toward TNFL [see
Fig. 2(a)]. The two scales merge for jV − Vcj≳ 0.1, where
the χ00 plateaus have shrunk to become mere peaks, shown
for χ00½Xxz� in Fig. 5. The curves in Fig. 5 further illustrate

that the KB QCP is continuous, because χ00½Xxz� evolves
smoothly without any discontinuities across the KB QCP.
We find similar behavior for the other dynamical suscep-
tibilities shown in Fig. 4. In a companion paper [152], we
show that those χ00 which exhibit a plateau [those shown in
Figs. 4(a) and 4(b)] exhibit logarithmic ω=T scaling in the
NFL region while the corresponding static susceptibilities
are singular at the KB QCP, where the NFL region extends
down to T ¼ 0. In Ref. [152], we also show that the plateau
and in χ00 and ω=T scaling in the NFL are a result of strong
vertex contributions (as also mentioned at the end of

FIG. 4. Dynamical impurity susceptibilities χ00ðωÞ for various operators defined in Eq. (9), computed in (a),(c) the Kondo phase, at
V ¼ 0.46, and (b),(d) the RKKY phase at V ¼ 0.455, both at T ¼ 0, close to the QCP. For the susceptibilities collected in (c),(d), the χ00
curves exhibit a maximum around TNFL; for those in (a),(b), they instead exhibit a plateau between TFL and TNFL. This plateau indicates
that the FL is reached in a two-stage screening process, leading to the emergence of NFL behavior at intermediate-energy scales. Gray
dashed lines are guides to the eye for ∼ω behavior.

FIG. 5. Evolution of χ00½Xxz� with V across the QCP at T ¼ 0.
Solid lines, RKKY phase; dashed lines, Kondo phase. As
V → Vc from either above or below such that TFL → 0, the
dashed and dotted plateaus both extend to ever lower scales (they
would coincide at Vc, where TFL ¼ 0), demonstrating that the KB
QCP is continuous.

EMERGENT PROPERTIES OF THE PERIODIC ANDERSON … PHYS. REV. X 14, 041036 (2024)

041036-13



Sec. VI D below). The fact that many static susceptibilities
with different symmetries diverge at the QCP suggests that
many different, possibly competing symmetry-breaking
orders may be possible in the vicinity of the QCP.
Which order prevails (if any) will be carefully studied in
future work.

V. SINGLE-PARTICLE PROPERTIES—
PRELIMINARIES

The fact that TFL → 0 at the QCP [Fig. 2(a)] indicates a
breakdown of the FL and QP concepts at the KB QCP.
Experimental evidence for such a breakdown is found
in the sudden reconstruction of the FS [26,37] and the
divergence of the effective mass [28] at the KB QCP.
It is to date not fully settled how this should be under-
stood [3,6]. In the next two sections, Secs. VI and VII, we
revisit such questions, exploiting the ability of CDMFT-
NRG to explore very low temperatures and frequencies.
This allows us to clarify the behavior of spectral functions
and self-energies in unprecedented detail. We discuss
their cluster versions for the self-consistent 2IAM in
Sec. VI and the corresponding lattice functions for the
PAM in Sec. VII.
In the present section, we set the stage for this analysis

by summarizing, for future reference, some well-
established considerations regarding single-particle proper-
ties. We first recall standard expressions for low-frequency
expansions of correlators and self-energies in the PAM and
the definition of its Fermi surface (Sec. VA). Even though
our focus here is on the PAM, we note that low-frequency
expressions similar to those reviewed in Sec. VA can be
obtained for the Kondo lattice using slave particles
[3,74,110,111]. In Sec. V B, we discuss possible scenarios
how the parameters appearing in the low-frequency expan-
sions in Sec. VA behave in the vicinity of a KB QCP.

A. Fermi-liquid expansions, Fermi surface,
Luttinger surface

In what follows, we often refer to the low-energy
expansions, applicable in conventional FL phases, of the
functions GxkðzÞ and ΣxkðzÞ (x ¼ f, c) defined in Eqs. (3).
We list them here for future reference.
Fermi-liquid expansions.—For z below a characteristic

FL scale, jzj ≪ TFL, and for k close to the FS, the self-
energies can be expanded as [175]

ΣxkðzÞ ¼ ReΣxkð0Þ þ zReΣ0
xkð0Þ þ δΣxkðzÞ; ð11Þ

where Σ0ðzÞ ¼ ∂zΣðzÞ and δΣxkðzÞ is of the order of
Oðz2=T2

FLÞ. Moreover, analyticity of GxkðzÞ in the upper
half-plane requires ImΣxkðzÞ < 0 for Imz > 0. For z ¼ ωþ,
this implies ImΣxkðωþÞ < 0 and ReΣ0

xkð0Þ ≤ 0 [the latter
follows since δΣxkðzÞ ∼ z2 implies ImΣxkð0Þ ¼ 0].

The expansion coefficients determine the so-called free
QP energies, weights, and the effective hybridization:

ϵ�xk ¼ Zxk½ϵxk þ ReΣxkð0Þ�; ð12aÞ

Zxk ¼ ½1 − ReΣ0
xkð0Þ�−1; ð12bÞ

V�
k ¼ ffiffiffiffiffiffiffiffi

Zfk

p
V; ð12cÞ

with ϵxk ¼ ϵf or ϵck for x ¼ f, c. Since ReΣ0
xkð0Þ ≤ 0, the

QP weights satisfy Zxk ≤ 1. The QP energies and weights,
in turn, appear in the low-frequency expansions of Σc and
Gc [cf. Eqs. (3)]:

ΣckðzÞ ¼
ðV�

kÞ2
z − ϵ�fk

þOðz2=T2
FLÞ; ð13aÞ

GckðzÞ ¼
Zck

z − ϵ�ck
þOðz2=T2

FLÞ: ð13bÞ

Evidently, the low-energy expansion of Σc is fully deter-
mined by that of Σf, with

ReΣckð0Þ ¼ −
V�2
k

ϵ�fk
; ReΣ0

ckð0Þ ¼ −
V�2
k

ϵ�2fk
; ð14Þ

Zck ¼
�
1þ V�2

k

ϵ�2fk

�−1
¼ ϵ�2fk

ϵ�2fk þ V�2
k
: ð15Þ

These expressions make explicit how c-f hybridization
effects c electrons: The sign of the energy shift ReΣckð0Þ is
determined by and opposite to that of ϵ�fk; and ReΣ0

ckð0Þ
changes from zero to negative, thereby decreasing Zck
below 1 and causing c electron mass enhancement [175].
Since ϵ�fk ∼ Zfk and V�

k ∼
ffiffiffiffiffiffiffiffi
Zfk

p
, Eq. (15) implies

Zck ∼ Zfk when Zfk ≪ 1.
Fermi surface.—Next, we recall the definition of the

FS. For the PAM, this is not entirely trivial, since the
correlators Gc and Gf are not independent but coupled
through Eqs. (3).
We focus on T ¼ 0 (else the FS is not sharply defined).

If there is no hybridization, V ¼ 0, the situation is simple:
The partially filled c band is metallic, and the half-filled f
band a Mott insulator. Then, the FS comprises essentially
only c electrons and is defined by the conditions [13,175]

ϵ�ck ¼ 0; Zck > 0; ImΣckð0Þ ¼ 0: ð16Þ

The first condition identifies the FS as the locus of k points
in the Brillouin zone for which the free QP energy vanishes;
the second states that the QP occupation should exhibit an
abrupt jump when this surface is crossed (Zck governs the
size of this jump); and the third requires the QP scattering
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rate to vanish at the FS. Together, they imply that the FS is
the locus of k points at which G−1

ckð0Þ ¼ 0.
More generally, for V ≠ 0, we start from the matrix form,

GkðzÞ, of the combined f and c correlators [Eq. (2)]. Then,
the FS is defined as the locus of k points for which some
eigenvalue of G−1

k ð0Þ vanishes. Thus, all points on the FS
satisfy the condition det ½G−1

k ð0Þ� ¼ 0, or

ϵckðϵf þ Σfkð0ÞÞ − V2 ¼ 0: ð17Þ

For V → 0, either the first or second factor on the left must
vanish, implying ϵck ¼ 0 or ϵf þ Σfkð0Þ ¼ 0, respectively.
The first condition defines the bare FS for the c band; the
second condition is never satisfied for the case of present
interest, where the bare f electrons form a half-filled Mott
insulator with μ lying within the gap.
If V is nonzero, Eq. (17) implies that both of the

following inequalities hold on the FS [assuming that
Σfkð0Þ does not diverge there]:

ϵck ≠ 0; ϵf þ Σfkð0Þ ≠ 0: ð18Þ

Thus, the bare and actual FS do not intersect. Dividing
Eq. (17) by the first or second factor, we obtain [131,132]

G−1
fkð0Þ ¼ 0; G−1

ckð0Þ ¼ 0: ð19Þ

These two conditions are equivalent, in that one implies
the other, via Eq. (17). Moreover, the second inequality in
Eq. (18) ensures that Σckð0Þ does not diverge; hence, the
second condition in Eq. (19) implies Eqs. (16). We thus
conclude that Eqs. (16) define the FS also for nonzero V.
Luttinger surface.—A second surface of importance is

the Luttinger surface (LS) [11,176,177]. For the PAM, it is
defined [131] as the locus of k points for which ΣfkðzÞ
has a pole at z ¼ 0. This definition, together with Eqs. (3a)
and (3e), implies that the following relations hold on
the LS:

jΣfkð0Þj ¼ ∞; Gfkð0Þ ¼ 0; Σckð0Þ ¼ 0: ð20Þ

The first relation just restates the definition of the LS; the
second should be contrasted with the relation Gfkð0Þ ¼ ∞
holding on the FS; and the third implies, via Eq. (12a), that
ϵ�ck ¼ Zckϵck; i.e., on the LS, the renormalized dispersion
is obtained from the bare one purely by rescaling, without
any shift. If the LS coincides with the bare FS, then the FS,
too, coincides with the bare c-electron FS (ϵck ¼ 0).
Note that jΣfkðωÞj can diverge only at isolated frequency

values, not on extended frequency intervals, since the
frequency integral over its spectral function must be finite.
Therefore, when jΣfkð0Þj diverges, jΣ0

fkð0Þj diverges, too.
By Eq. (12b), it follows that Zfk ¼ 0 on the LS.

The behavior of Zck depends on how strongly ΣfkðzÞ
diverges for z → 0. For example, suppose ΣfkðzÞ ∼ z−α for
some α > 0. Then, Eq. (3e) implies Σck ∼ zα, Σ0

ck ∼ zα−1.
Thus, we obtain Zck ∼ z1−α → 0 or ∈ ð0; 1Þ or ¼ 1 for
α < 1 or ¼ 1 or > 1, respectively; i.e., the c-QP weight
may or may not be renormalized.
We show results for the FS and LS in Sec. VII and

discuss their volumes together with Luttinger’s sum rule
in Sec. VIII.

B. Kondo breakdown

In the introduction, we have qualitatively described the
Kondo breakdown scenarios that have been proposed to
characterize the KB QCP. For future reference, we here
distinguish KB scenarios of two types: (i) a KB QCP with
Kondo destruction (KD), defined below, and (ii) a KB QCP
without KD. In both scenarios, the f electron quasiparticle
weight Zf decreases to zero when approaching the KB
QCP from the Kondo side. However, in (i), Zf remains
zero on the RKKY side (i.e., all Kondo correlations have
been destroyed, hence the moniker “KD”), whereas, in (ii),
Zf is nonzero on the RKKY side, too (i.e., some Kondo
correlations survive there). [Thus, our nomenclature dis-
tinguishes between KB, which happens only at the critical
point, and KD, which, in a type (i) scenario, happens
throughout the RKKY phase.] We emphasize that (ii) is
different from the Hertz-Millis-type SDW QCP, where
the QP weight is also nonzero at the QCP. Figure 6
sketches the different scenarios. Most of the scenarios
for the KB QCP proposed in the literature are of type (i),
with KD. By contrast, we find a KB QCP of type (ii),
without KD. We summarize below the concepts used to
describe the HF problem and, in particular, how type (i)
and (ii) scenarios differ.

1. Hybridization gap

The hybridization of c and f electrons leads to a
well-developed pole in ΣckðzÞ, called hybridization pole

FIG. 6. Sketch of the generic f-band QP weight in different
scenarios for quantum criticality. In the conventional SDW QCP
(red), the QP weight is finite at the QCP. At a KB QCP, it is zero at
the QCP. In a type (i) scenario with KD (green), it remains zero in
the RKKY phase; in a type (ii) scenario without KD (blue), it is
finite there.
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(h pole), lying at energies well above the FL scale TFL. It
manifests itself as a strong peak in −ImΣckðzÞ, causing
the corresponding c-electron spectral functions to exhibit
distinctive gaps or pseudogaps, called hybridization gaps
(h gaps). It occurs irrespective of whether the T ¼ 0 phase
is Kondo or RKKY correlated and is present for temper-
atures both above and below TFL. The formation of a h gap
has been observed in many experiments, as reviewed in the
introduction. Note that, while in the noninteracting PAM
(U ¼ 0), the h gap is positioned at ϵ�fk, this is not the case in
the interacting case: The h gap forms at scales which can
much larger than the FL scale (in our case, it forms at TNFL;
see the next section); i.e., ϵ�fk and the position of the h gap
are renormalized differently by interactions.

2. Kondo phase

In the Kondo phase, Zfk is nonzero for all k. The
presence of Kondo correlations is phenomenologically
described [3,74] by Eq. (13a). This situation can phenom-
enologically be interpreted as arising through an effective
hybridization with strength V�

k (sometimes referred to as
“amplitude of static Kondo correlations” [3,74]) of c
electrons with an effective f band with dispersion ϵ�fk.
This effective hybridization shifts the c-electron Fermi
surface from its V ¼ 0 form, defined by ϵck ¼ 0, to a form
defined by ϵ�ck ¼ 0, i.e.,

ϵck −
V�2
k

ϵ�fk
¼ 0: ð21Þ

Therefore, the FS volume changes, reflecting the influence of
f orbitals. Within the Kondo phase, V�

k remains nonzero but
continuously approaches zero as the KB QCP is approached.
Moreover, in the Kondo phase, the ratio ðV�

kÞ2=ϵ�fk remains
essentially constant as long as V�

k is finite, because both
ðV�

kÞ2∼Zfk and ϵ�fk∼Zfk [cf. Eq. (12a)]. Therefore, the FS
will remain basically unchanged in the Kondo phase, even
very close to the KB QCP.
Two comments are in order. First, in general, the first

term in Eq. (13a) usually does not represent an actual pole
of Σck: It was derived assuming jzj ≪ TFL and k close to
the FS, whereas ϵ�fk typically lies outside that window [i.e.,
for z → ϵ�fk, Eqs. (11) and (13a) no longer apply]. Second,
ϵ�fk is not directly related to the hybridization gaps, as
already mentioned in point (i) above: The latter are
determined by pseudogaps of Gck of Eq. (3b), and since
these lie at high energies of the order of �TNFL, their
positions are not governed by Eq. (13a) but rather by the
general form (3e) of Σck (see Sec. VII below).

3. Kondo breakdown

As summarized in Refs. [3,74], the following behavior is
expected when approaching the KB QCP from the Kondo

phase: V�
k, or equivalently Zfk, decreases continuously to

zero; hence, the low-energy hybridization becomes weaker,
while the ratio ðV�

kÞ2=ϵ�fk and, thus, the FS remain constant
and different from the bare c-electron FS. Since Zck ∼ Zfk

if Zfk ≪ 1 [cf. Eq. (15) and its discussion], e.g., close to
the KB QCP, both QP weights are expected to continuously
decrease to zero when approaching the KB QCP. At the KB
QCP, V� vanishes; i.e., low-energy hybridization and, thus,
Kondo correlations break down.

4. RKKY with Kondo destruction

In the type (i) KD scenario [3,74], V�
k, or equivalently

Zfk, remains zero in the RKKY phase; i.e., Kondo
correlations remain absent—i.e., they have been destroyed.
By Eq. (21), that implies the FS reduces to the bare
c-electron one, accounting for c electrons only. All in
all, the FS jumps across the KB QCP due to Kondo
destruction. Since Zfk ¼ 0 in this scenario, Eq. (11) for
the f electrons and, therefore, also Eq. (13a) do not apply
anymore. Equation (11) may, however, still apply for the
c electrons [see also the discussion below Eq. (20)],
leading to QP mass enhancement due to the existence of
c-f hybridization at finite frequencies. This is sometimes
referred to as “dynamical Kondo correlations” [27,178].
The type (i) KD scenario emerges from the Kondo lattice
model in both a slave-particle [110,111] or an EDMFT
treatment [5,135–137].

5. RKKY without Kondo destruction

Here, we describe the type (ii) scenario of a Kondo
breakdown without Kondo destruction in the RKKY
phase. We emphasize that, also in this scenario, the QP
weights become zero at the KB QCP and the FS is small
in the RKKY phase. Nevertheless, in the RKKY phase,
the f-electron QP weight is nonzero at the FS. In the
type (ii) scenario, Zfk becomes zero only at a LS [see
Eq. (20)], where the f-electron self-energy diverges.
If the LS does not coincide with the FS (the converse
would require significant fine-tuning), this implies non-
zero Zfk at the FS and c-f hybridized QPs also in the
RKKY phase.
The type (ii) scenario described above is not so unusual:

There is growing evidence that Mott insulators described
beyond the single-site DMFT approximation generically
feature momentum-dependent Mott poles [179–181], with
a singular part of the f self-energy of the form [181]

Σf;singular ∼
1

z − ϵ�Σk
: ð22Þ

Here, ϵ�Σk is related to the free dispersion with renormalized
parameters and opposite sign of the hopping amplitudes
[181]. Such a self-energy, therefore, features a LS, defined
by ϵ�Σk ¼ 0. It has been suggested that the LS is the defining
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feature of Mott phases and that this feature is stable to
perturbations [182–184]. The LS of a Mott phase should,
therefore, in principle, be stable to small hybridization with
a metal, provided the hybridization strength is not too large,
resulting in an orbital-selective Mott phase (OSMP). Zfk is
zero only at the LS where Σf diverges. If the LS and the FS
do not coincide, it follows that Zfk is nonzero at the FS.
A comment is in order regarding single-site DMFT or

EDMFT, where the Mott pole is not momentum dependent
and the QP weight is zero throughout the whole BZ. In
single-site DMFT, this phase is not stable to interorbital
hybridization [125,185]. As a result, single-site DMFTwill
always describe a Kondo phase at T ¼ 0 [125]. By contrast,
OSMPs described by EDMFT seem to be stable to
interorbital hybridization [186], leading to the type (i) sce-
nario described above.
In our own CDMFT-NRG studies of the PAM, we find

a KB scenario of type (ii). In Sec. VI, we establish this
by a detailed study the low-energy behavior of the self-
consistent effective 2IAM. There, the role of k is taken by
α ¼ �; i.e., we show that

ΣcαðzÞ ¼
V�2
α

z − ϵ�fα
þOðz2=T2

FLÞ ð23Þ

is valid, with V�
α ≠ 0 on both sides of the QCP. When V

approaches Vc from either side, V�
α approaches 0, leading to

a breakdown of Kondo correlations at the KB QCP. We
find that the FS reconstruction at Vc is caused by a sign
change of ϵ�fþ, as explained in Sec. VI. The consequences
for the lattice model are established in Sec. VII and for the
Luttinger sum rule in Sec. VIII.

VI. SINGLE-PARTICLE PROPERTIES—CLUSTER

In this section, we discuss the single-particle properties
of the self-consistent 2IAM, focusing on the spectral
functions and retarded self-energies of both c and f orbitals.
A discussion of the corresponding momentum-dependent
lattice properties follows in Sec. VII. We argue that the KB
quantum phase transition is a continuous OSMT at T ¼ 0.
The Kondo phase is a normal metallic phase, while in the
RKKY phase, the f electrons are in a Mott phase; i.e. this
phase is an OSMP. The defining feature of the OSMP is a
momentum-dependent pole in the f-electron self-energy, not
a single-particle gap. The RKKY phase is, thus, not an
orbital-selective Mott insulator. Indeed, we find that, even in
the OSMP, the f electrons exhibit a finite QP weight due to
finite hybridization with the c electrons.
In Secs. VI A and VI B, we discuss spectral functions

and self-energies at T ¼ 0 on the real-frequency axis,
exploiting the capabilities of NRG to resolve exponentially
small energy scales. We then investigate QP properties in
more detail in Sec. VI C: We clearly show that both the
c- and f-electron QP weights are finite in both the Kondo

and RKKY phases but vanish at the KB QCP. Finally, in
Sec. VI D, we discuss finite-temperature properties, show-
ing that c-f hybridization is already fully developed around
TNFL, whereas QP coherence and self-energy poles are
fully formed only at TFL.

A. Cluster spectral functions at T = 0: Overview

In this subsection, we provide a phenomenological
overview over the cluster spectral properties of the self-
consistent 2AIM at T ¼ 0 as functions of V; details and
physical insights follow in Sec. VI B. We adopt the� basis,
where Gf and Gc from Eq. (6) are both diagonal, and study
AðωÞ ¼ −ð1=πÞImGðωþÞ for both f and c orbitals. (When
referring to Af below, we mean both components Af�, and
likewise for Ac.) Our results for Af and Ac are shown in
Fig. 7 on a linear frequency scale to provide a coarse
overview. We enumerate some of their characteristic
features, proceeding from high- to low-frequency features.

1. Hubbard peaks, band structure

Figures 7(a), 7(b), 7(e), and 7(f) and Figs. 7(c), 7(d),
7(g), and 7(h) show the spectral functions AfðωÞ and AcðωÞ
for different V on a linear frequency scale, for the ranges
ω∈ ½−10; 10� and ω∈ ½−1.25; 1.25�, respectively, contain-
ing all significant spectral weight. Af has two Hubbard
bands around ω ≃�5 ¼ �U=2. They are almost indepen-
dent of V. Moreover, they show the same structure
for Afþ and Af−, implying that these high-energy features
are momentum independent. By contrast, Ac has no
Hubbard bands, since the c electrons do not interact, with
spectral weight only in the range of the noninteracting
bandwidth, ω∈ ½−1.2; 0.8�. Its shape mimics that obtained
for V ¼ 0 [insets in Figs. 7(c) and 7(d)], reflecting the bare
c-electron band structure, except for some sharp structures
at intermediate and low frequencies, discussed below.

2. Center of c band

For Ac, the highest-frequency sharp feature furthest from
ω ¼ 0 lies at ω ≃ −0.2, the middle of the bare c-electron
band. This feature is prominently developed deep in the
RKKY phase at V ¼ 0.4 [Figs. 7(g) and 7(h)] but almost
invisible deep in the Kondo phase at V ¼ 0.6 [Figs. 7(c)
and 7(d)]. It is due to scattering of c electrons by
antiferromagnetic fluctuations and reflects a tendency
toward antiferromagnetic order in the RKKY phase.
Though our CDMFT setup excludes such order, it does
find strong antiferromagnetic correlations in the RKKY
phase [see hSf1 · Sf2i in Fig. 2(b)], causing enhanced
scattering of c electrons at the band center.

3. Kondo peaks, hybridization gaps

Deep in the Kondo phase at V ¼ 0.6 (red lines), Af

shows a sharp Kondo peak near ω ≃ 0, while Ac has a
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distinct dip, known as the hybridization gap (h gap; see
also Sec. V), at a small, negative value of ω. Both these
features are indicative of strong c-f hybridization and
coherent QPs. By contrast, deep in the RKKY phase at
V ¼ 0.4 (blue lines), the Kondo peak in Af has disap-
peared, giving rise to a pseudogap [see the insets in
Figs. 7(e) and 7(f)], and the h gap in Ac has become very
weak. Nevertheless, we see in Sec. VI B that, even deep in
the RKKY phase, c-f hybridization is present even at low
energies and the f-electron QP weight is finite in this phase.
This leads to a sharp peak inside the h gaps of Ac [see the
insets in Figs. 7(g) and 7(h)]. As discussed in more detail in
Sec. VII, this sharp feature reflects a narrow QP band with a
FS close to Π ¼ ðπ; π; πÞ.

4. Momentum dependence

The spectral functions and self-energies show several
qualitative and/or quantitative differences between the þ
and − channels (different Kondo peak heights, different h
gap shapes, etc.). Such channel asymmetries reflect the fact
that our system is electron doped—the Fermi surface lies
closer to the Γ point than theΠ point, causing a stronger c-f
hybridization (encoded in Σc�) for bonding than antibond-
ing orbitals. This asymmetry leads to different behavior for
momenta near Γ ¼ ð0; 0; 0Þ and Π ¼ ðπ; π; πÞ. However,
these asymmetries in the spectral functions are not neces-
sarily indicative of nonlocal correlations. Especially deep in
the Kondo phase, the channel asymmetries are mostly due
to the single-particle dispersion and are not nonlocal self-
energy effects. We discuss this in more detail in Sec. VI B.

B. Cluster spectral functions and self-energies
at T = 0: Details

Next, we discuss the main spectral features relevant to
KB physics, referring to Fig. 8. It shows both the spectral

functions AxαðωÞ and retarded self-energies ΣxαðωþÞ using
a symmetric logarithmic frequency scale with jωj > 10−10.
Figures 8(a)–8(d) show this evolution for Af and Ac, while
Figs. 8(e)–8(h) show the corresponding self-energies.

1. Self-energy poles for Σf

The most important feature is the pole in Σf (denoted as
fs pole), which is present in the RKKY phase but not in the
Kondo phase, see Fig. 8(e) and 8(f). This fs pole in the
RKKY phase is indicative of Mott physics [131,132]
present in the f band but not in the c band (see also the
discussion in Sec. V B). This brings us to one of our main
conclusions: The RKKY phase is an OSMP, and the KB
quantum phase transition is an OSMT. Moreover, the fs
pole continuously disappears when approaching the KB
QCP from the RKKY phase. This further shows that the KB
quantum phase transition is a continuous OSMT (see also
Fig. 5 and its discussion). We also note that we found no
coexistence region, which further underpins our conclusion
of a continuous quantum phase transition (QPT).
Our conclusion that the KB is an OSMT matches the

conclusion of previous CDMFT plus ED studies of the
PAM using the same parameters [131,132]. Nevertheless,
the considerably improved accuracy of our NRG impurity
solver compared to the ED impurity solver used there
yields new conceptional insights and reveals new emer-
gent physics.
The fs pole in the RKKY phase is positioned at a

negative frequency for Σfþ (at ω ≃ −TFL) and at a positive
frequency for Σf− (at ω ≃ TFL). Therefore, its position
depends on momentum; i.e., it is dispersive. A dispersive fs
pole is a generic feature of Mott phases in finite dimensions
d < ∞ [179,181] (see also Sec. V B). By contrast, in the
d → ∞ limit (or, equivalently, in the single-site DMFT
approximation) where the self-energy and, thus, also the fs

FIG. 7. Cluster spectral functions at T ¼ 0, for V ¼ 0.6 (top row, deep in the Kondo phase) and for V ¼ 0.4 (bottom row, deep in the
RKKY phase). (a),(b),(e),(f) and (c),(d),(g),(h) show the f- and c-electron spectral functions, respectively. The insets in (c),(d) show the
c-electron spectral functions at V ¼ 0; the insets in all other panels show an enlargement into the low-frequency region.
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pole are momentum independent, the OSMP is not stable
against interorbital hopping [185] (i.e., against finite c-f
hybridization V in the present context). The momentum
resolution provided by two-site CDMFT, though coarse, is
therefore a crucial ingredient to stabilize the OSMP. We
show in Sec. VII that, after reperiodization of the CDMFT
self-energy, the dispersive nature of the fs pole leads to a
reperiodized self-energy with a continuous k dependence
of the form of Eq. (22). Based on the results in Ref. [151],
the fs pole can be associated with emergent spinon
excitations; its emergence, therefore, suggests a fraction-
alization of the f electron. Since the position of the sf pole
is momentum dependent, the emergent spinon is dispersive.
Even though the dispersive fs pole is the most pro-

nounced momentum-dependent feature of Σf, more subtle
momentum-dependent features are responsible for the NFL
physics close to the QCP: In the Kondo phase, shoulderlike
structures show up in Σf below TFL < jωj < 10−4 [see
insets in Figs. 8(e) and 8(f)]. These are more pronounced
for Σf− than for Σfþ, leading to momentum-dependent
scattering rates at the corresponding energy scales.
The features of Af [Figs. 8(a) and 8(b)], Ac [Figs. 8(c)

and 8(d)], and Σc [Figs. 8(g) and 8(h)] can largely be
understood in terms of a continuous OSMT. In the following,
we enumerate and describe the main spectral and self-energy
features and discuss their connection to the presence or
absence of fs poles in Σf. We follow the evolution, with
decreasing V, from the Kondo phase through the QCP into
the RKKY phase, noting the following salient features.

2. From Kondo peak to pseudogap for Af�
In the Kondo phase, the Kondo peak of Afþ lies slightly

below −TFL and that of Af− slightly below TFL. As V
decreases toward Vc, the Kondo peaks of both Afþ and
Af− shift toward zero and become higher and narrower
[Figs. 8(a) and 8(b)], leaving behind shoulderlike structures
at �TNFL (marked by triangles). The Kondo peak of Afþ is
higher than that of Af−, reflecting the fact that in the Kondo
phase the FS is positioned closer to the Γ point than to
the Π point. When V crosses Vc, the Kondo peak abruptly
changes into a pseudogap, flanked by the two shoulders.
The emergence of the pseudogap in Af is caused by the
appearance of fs poles in Σf in the RKKY phase. A further
decrease of V deepens the pseudogap, because the poles
in Σf become stronger. The pseudogap never becomes a
true gap (except for V ¼ 0), because the poles of Σf are
positioned away from ω ¼ 0. Thus, the QP weight of the f
electrons is finite even in the RKKY phase (see also
Sec. VI C). This is one of the crucial differences to the
findings of Refs. [131,132]; there, a charge gap in Af was
found due to the poor energy resolution of the ED impurity
solver used in these studies.

3. Pseudogap for Ac+ , Kondo-like peak for Ac−

Once V drops below Vc, Acþ rapidly develops a
pronounced pseudogap around ω ¼ 0, which weakens
(becomes less pronounced) when V is decreased further.
This pseudogap emerges because ϵ�fþ [see Eq. (23)]

FIG. 8. Evolution of cluster spectral functions AxαðωÞ and retarded self-energies ΣxαðωþÞ at T ¼ 0 as V is tuned across the QCP.
Colored curves correspond to V values marked by ticks on the color bar. A symmetric log scale with 10−10 < jωj < 1.25 is used. On
such a scale, the plateaus seen for all curves for very low frequencies, jωj < 10−8, demonstrate that no new features arise in that range.
Triangles and circles mark the crossover scales �TNFL and �TFL, respectively, with filled (open) symbols identifying curves in the
Kondo (RKKY) phase. The insets in (a)–(d) show the spectral functions on a linear frequency scale for jωj < 2 × 10−4.
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continuously changes sign at the KB QCP, from ϵ�fþ < 0

in the Kondo phase to ϵ�fþ > 0 in the RKKY phase [see
Fig. 9(b) below]. Because of the low-energy form of Σcþ
shown in Eq. (23), this leads to a h pole in Σcþ which is
close to ω ¼ 0 in the vicinity of the KB QCP and whose
position changes sign across the QCP, in the same way as
ϵ�fþ. This h pole is clearly visible in Fig. 8(g), where we
show −ImΣcþ. We discuss the sign change of ϵ�fþ in more
detail in Sec. VI C, where we also show that this sign
change is intricately connected to the emergence of the fs
pole in Σfþ. The sign change of ϵ�fþ and, therefore, also the
pseudogap in Acþ is, therefore, an integral part of the
OSMT.We further show in Sec. VIII that the sign change of
ϵ�fþ is ultimately tied to a reconstruction of the FS.
In striking contrast, Ac− develops a Kondo-like peak

around ω ¼ 0, whose peak height increases rapidly as V
drops below Vc and then decreases when V is decreased
further. The emergence of such a peak for delocalized
electrons is rather unexpected, which is why we call it
“Kondo-like” (in contrast to “Kondo peak” for localized
electrons). This sharp peak suggests that, close to the KB
QCP, the c electrons become more localized, i.e., that their
Fermi velocity is strongly renormalized downward due to
the momentum dependence of Σc.

4. Hybridization poles for ImΣc

The h gap at negative frequencies for Ac is caused by a
corresponding peak in ImΣc [Figs. 8(g) and 8(h)]. It reflects
a c self-energy pole, to be called left hybridization pole (left
h pole). The frequency location of the h gap and left h pole
is comparable in magnitude to the NFL scale. When V is
reduced toward and past Vc into the RKKY phase, the left h
pole in ImΣc weakens and almost disappears, causing the
same for the h gap in Ac. At the same time, for the bonding
channel, a peak in −ImΣcþ at positive frequencies emerges
in the RKKY phase. It corresponds to an additional pole
of Σcþ, to be called right h pole, located at ≃TFL. It causes
the h gap in Acþ around ω ¼ 0 close to the KB QCP. By
contrast, for the antibonding channel, ImΣc− does not have
a second pole—its very weak peak on the right, in fact, is
the tail of its left h pole. (This becomes more clear from the
temperature dependence of Σc and is explained in more
detail in Sec. VI D.)

5. Low-energy Fermi liquid

For all considered values of V, the ω ¼ 0 quantities
ImΣfði0þÞ and ImΣcði0þÞ all vanish. This implies FL
behavior at the lowest energy scales for all V ≠ Vc
(consistent with the results in Sec. IVA). Moreover,
Afð0Þ and Acð0Þ never vanish, even in the RKKY phase.
Thus, the pseudogap in Af never becomes a true gap,
implying that f electrons keep contributing to the QPs
constituting the low-energy FL.

C. Quasiparticle properties

In this subsection, we substantiate our claims made in
the previous subsection regarding QP weights and ϵ�f. In
particular, we seek to show that the low-frequency form
Eq. (23) applies to Σc on both sides of the KB QCP. Note
that Eq. (23) is meaningful only if the low-energy physics
shows FL behavior; our study of finite-size spectra in
Sec. IVA confirms that this is the case.
We define cluster QP weights and effective level posi-

tions for both f and c electrons by replacing k → α in
Eqs. (12a):

ϵ�xα ¼ Zxα½ϵxα þ ReΣxαð0Þ�; ð24aÞ

Zxα ¼ ½1 − ReΣ0
xαð0Þ�−1 ðx ¼ f; cÞ ð24bÞ

with ϵfα ¼ ϵf − μ and ϵcα ¼ −αt − μ. The f-electron QP
weight is nonzero as long as Σ0

fαð0Þ is not infinite, i.e., as
long as Σfα has no pole at z ¼ 0. In the Kondo phase, there
are no low-frequency poles in Σfα at all, while the poles
appearing in the RKKY phase are shifted away from z ¼ 0.
The QP weights Zfα and effective level positions ϵ�fα

can be extracted directly from NRG finite-size spectra
[187,188], which avoids fitting frequency-dependent data;
Zcα and ϵ�cα are obtained via Eqs. (14) and (15). Figure 9
shows them all. We see that both Zf and Zc vanish at the
KB QCP, as expected. However, Zf is finite not only in the
Kondo phase, but also in the RKKY phase. This further
substantiates our claim that the f electrons contribute to the
low-energy QP even for V < Vc.

FIG. 9. (a) QP weights and (b) effective level positions of the
self-consistent effective 2IAM, computed directly from the NRG
finite-size spectra at T ¼ 0. Blue and purple dashed lines in
(b) mark �TFL and �TFL� for reference, respectively.
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The key difference between the RKKY and Kondo
phases, therefore, is not zero versus nonzero Zf—instead,
the key difference turns out to be the sign of ϵ�fþ. Note that
our discussion below is applicable for the electron-doped
case considered in this work; a corresponding discussion of
the hole-doped case would follow along the same lines, but
with the signs of ϵ�fα flipped and the role of bonding and
antibonding cluster orbitals interchanged. Both ϵ�fþ and ϵ�f−
are negative in the Kondo phase; see Fig. 9(b). The same is
true for U ¼ 0, and in this sense the noninteracting limit is
adiabatically connected to the Kondo phase. However,
while ϵ�f− remains negative in the RKKY phase, ϵ�fþ
changes sign at the KB QCP and becomes positive. Now,
Eqs. (6e) and (24a) imply

V2Σ−1
cα ðzÞ ¼ z − ϵf − ΣfαðzÞ; ð25aÞ

sgnϵ�fα ¼ −sgnReΣ−1
cα ð0Þ: ð25bÞ

Thus, the sign change in ϵ�fþ is also visible in Fig. 10(a) as a
sign change of V2ReΣ−1

cþð0Þ. In Sec. VIII, where we
perform a careful analysis of the Luttinger sum rule for
the PAM, we show explicitly that this sign change of ϵ�fþ
leads to a jump of the FS volume corresponding to exactly
one electron per site.
Figure 10(a) also reveals how the sign change of ϵ�fþ is

connected to the fs pole in ΣfþðωþÞ. Close to the KB QCP,
in both the Kondo and RKKY phases, when ω is increased
(starting from large negative), V2ReΣ−1

cþðωþÞ increases
through zero around ω ≃ −TNFL. This sign change results
in the left h pole in Σcþ, visible in Fig. 8(g). [Deeper in the
RKKY phase, V2ReΣ−1

cþðωþÞ does not actually change sign
at ω ≃ −TNFL but, nevertheless, becomes almost zero,
again causing the left h pole of Σcþ.] This feature is
adiabatically connected to the U → 0 case, where it is also
present. It is an intermediate-energy feature which char-
acterizes the onset of NFL behavior. (We show in Sec. VI D

that the left h pole in Σc forms around T ≃ TNFL, irre-
spective of V > Vc or V < Vc.)
In the Kondo phase, the sign of V2ReΣ−1

cþðωþÞ changes
only once with increasing ω, remaining positive for
ω > −TNFL and, in particular, at ω ¼ 0, so that ϵ�fþ is
negative. By contrast, in the RKKY phase, the initial
increase with ω in V2ReΣ−1

cþðωþÞ for ω large negative is
counteracted by the fs pole in ΣfþðωþÞ, which induces a
double-wiggle structure in V2ReΣ−1

cþðωþÞ near ω ≃ −TFL.
As a result, V2ReΣ−1

cþði0þÞ is negative and ϵ�fþ positive in
the RKKY phase. The KB QCP lies in between, at ϵ�fþ ¼ 0.
In summary, in the Kondo phase, the sign change of

V2ReΣ−1
c ðωþÞ around ω ≃ −TNFL leads to the left h pole

and to V2ReΣ−1
c ð0Þ > 0, implying ϵ�fþ < 0. In the RKKY

phase, the formation of the fs pole in ΣfþðωþÞ at energy
scales between −TNFL and −TFL results in V2ReΣ−1

cþð0Þ<0
and, therefore, ϵ�fþ > 0.

D. Temperature dependence close to Vc

We next discuss the temperature dependence of cluster
spectral functions and self-energies close to the QCP at
Vc ¼ 0.4575. We first discuss the case V ¼ 0.46 > Vc
(Fig. 11) and then V ¼ 0.455 < Vc (Fig. 12), which at
T ¼ 0 yield the Kondo and RKKY phases, respectively.
For each, we proceed from high to low temperatures.
V ¼ 0.46, T ≳ TNFL.—When the temperature is lowered

in the LM regime from T ¼ 10−3 toward TNFL, the onset of
c-f hybridization leads to the emergence of a hybridization
gap in AcðωÞ [Figs. 11(c) and 11(d)] and a left h pole in
−ImΣcðωþÞ [Figs. 11(g) and 11(h)], all at ω ≃ −10−4 ≃
−TNFL. This triggers the onset of screening, signified by
increased spectral weight in Af around ω ¼ 0 [Figs. 11(a)
and 11(b)] and a decrease of −ImΣf at ω ¼ 0 [Figs. 11(e)
and 11(f)]. However, at TNFL, no coherent QPs have formed
yet: Both −ImΣf and −ImΣc have significant spectral
weight around ω ≃ 0, implying strong scattering for elec-
trons near the chemical potential.
V ¼ 0.46, TFL ≲ T ≲ TNFL.—When the temperature is

lowered further toward TFL, screening becomes stronger:
Both −ImΣf and −ImΣc at ω ≃ 0 decrease, albeit slowly,
as ∼ lnðTÞ. [In Figs. 11(e)–11(h), T values equally spaced
on logarithmic scale yield −ImΣði0þÞ values equally
spaced on a linear scale.] At the same time, coherent
QPs begin to form: A sharp Kondo peak gradually forms
in Af, and narrow structures Ac emerge.
V ¼ 0.46, T ≲ TFL.—Below TFL, coherent QP have

formed [Σfði0þÞ and Σcði0þÞ approach zero], and the T
dependence of the spectral functions becomes weak.
We next consider the case V < Vc.
V ¼ 0.455, T ≳ TNFL.—In the LM regime, the behavior

for V < Vc is similar to that for V > Vc: As T is lowered
from 10−3 toward TNFL, a hybridization gap emerges in
AcðωþÞ [Figs. 12(c) and 12(d)] and a left h pole in −ImΣc

FIG. 10. Evolution of V2ReΣ−1
c�ðωþÞ at T ¼ 0 as V is tuned in a

narrow range across the QCP. As V is lowered, nonmonotonic
behavior emerges, whose double-wiggle structure (local maxi-
mum followed by local minimum) reflects the fs poles of −ReΣf�
[cf. Eq. (25a)]. Circles, triangles, and tick marks on the color bar
have the same meaning as in Fig. 8. Black dashed lines indicate
linear behavior around ω ¼ 0.
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[Figs. 12(g) and 12(h)], all at ω ≃ −10−4. Correspondingly,
Af increases for frequencies near ω ¼ 0; the temperature
dependence at T > TNFL is, thus, similar to V > Vc, as
expected.
V ¼ 0.455, TFL ≲ T ≲ TNFL.—By contrast, below TNFL

the temperature dependence is quite different from V > Vc.
When T is lowered within the NFL regime from TNFL

toward TFL, ImΣf develops fs poles [Figs. 12(e) and 12(f)].
At the same time, −ImΣcþ develops a right h pole at a small
positive frequency, ω≳ TFL [Fig. 12(g)], causing a strong
increase of −ImΣcþð0Þ. The formation of the right h pole is
associated with the formation of the fs poles in Σf, as
discussed in Sec. VI C. On the other hand, −ImΣc− behaves
quite similar to its counterpart at V ¼ 0.46 in the NFL

FIG. 11. Evolution of cluster spectral functions and retarded cluster self-energies ΣxαðωþÞ at V ¼ 0.46 > Vc (Kondo phase at T ¼ 0)
as temperature is increased. Colored curves correspond to T values marked by ticks on the color bar. A symmetric log scale with
10−10 < jωj < 1.25 is used. Vertical blue and orange lines mark �TFL and �TNFL, respectively.

FIG. 12. The same as Fig. 11, but for V ¼ 0.455 < Vc (RKKY phase at T ¼ 0).
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region, decreasing logarithmically around ω ¼ 0. The
appearance of fs poles in the f-electron self-energies is
accompanied by the formation of (somewhat asymmetric)
pseudogaps in Af around ω ¼ 0 [Figs. 12(a) and 12(b)].
Moreover, the right h pole in −ImΣcþ in the NFL region
causes a pseudogap in Acþ in the same temperature window
[Fig. 12(c)]. Ac−, on the other hand, develops a sharp peak
around ω ¼ 0 in the NFL region, similarly to the behavior
of Afþ for V > Vc [Fig. 12(d)].
V ¼ 0.455, T ≲ TFL.—When T is lowered below TFL,

the imaginary parts of all self-energies quickly tend to zero
at ω ¼ 0, as expected in a FL. [Thus, the overall behavior
of −ImΣcþði0þÞ with decreasing temperature is nonmono-
tonic, first increasing in the NFL regime, then decreasing
down to zero in the FL regime.]
No marginal FL phenomenology.—In the NFL regime,

neither the f- nor the c-electron self-energies show mar-
ginal FL phenomenology. The latter would require
−ImΣðωþ; TÞ ∼maxðjωj; TÞ [69]. Instead, the imaginary
parts of the self-energies have a much weaker, namely
logarithmic frequency and temperature dependence.
Nonetheless, the spectral parts of various susceptibilities
all show the same phenomenological frequency depend-
ence [69] in the NFL region, namely, a plateau for
T ≲ jωj ≲ TNFL and a ∼ω dependence for ω < T [69].
This frequency dependence has already been shown above
in Fig. 4; we discuss the temperature dependence in a
companion paper [152]. There, we also emphasize that the
susceptibilities are not governed by the self-energy alone,
as would be the case, in diagrammatic parlance, when
evaluating only the bubble contribution—instead, vertex
contributions play a crucial role. This especially also
concerns the conductivity, which shows an ∼1=T depend-
ence in the NFL region despite the ∼ lnðTÞ dependence of
ImΣði0þÞ [152].

VII. SINGLE-PARTICLE PROPERTIES—LATTICE

Having focused on the single-particle properties of the
effective 2IAM in the previous section, we now discuss
how these translate to the lattice model. Our analysis
builds on that of De Leo, Civelli, and Kotliar [131,132],
but with our better energy resolution, we uncover much
additional detail and new emergent physics at low ener-
gies. In particular, we obtain a detailed understanding of
the Fermi surface reconstruction occurring when travers-
ing the KB QCP.

A. Reperiodization

Since the CDMFT artificially breaks translation invari-
ance, the c- and f-electron self-energies have to be
reperiodized before computing lattice spectral functions.
To this end, we reperiodize the cluster cumulant [157,158]

MðzÞ ¼ ½zþ μ − ΣcðzÞ�−1: ð26Þ

It may be viewed as a c-electron propagator excluding bare
nearest-neighbor hopping and in an expansion around the
t ¼ 0 limit [189] takes the role of the cluster self-energy.
Its reperiodized version MkðzÞ is defined as

MkðzÞ ¼ M11ðzÞ þM12ðzÞ
X

a¼x;y;z

1

3
cosðkaÞ: ð27Þ

Here, M11 and M12 are the local and nearest-neighbor
cluster cumulants, respectively, and the latter is accom-
panied by the cosine factors arising when diagonalizing
a noninteracting hopping Hamiltonian. At the points
Γ ¼ ð0; 0; 0Þ and Π ¼ ðπ; π; πÞ, the lattice cumulants
reduce to the cluster ones, Mþ ¼ M11 þM12 ¼ MΓ and
M− ¼ M11 −M12 ¼ MΠ. This reflects the correspondence,
mentioned in Sec. II, of the BZ points Γ and Π and the
bonding and antibonding cluster orbitals. The k-dependent
self-energies are then defined via the relations

MkðzÞ ¼ ½zþ μ − ΣckðzÞ�−1; ð28aÞ

ΣckðzÞ ¼ V2½z − ϵ0f þ μ − ΣfkðzÞ�−1: ð28bÞ

We see in Sec. VIII that the CDMFT solution to the PAM
must fulfill a generalized version of the Luttinger sum
rule—this sum rule is verifiable via cluster quantities
only, i.e., without reperiodization. The reperiodization
scheme above is, however, not guaranteed to preserve this
property. We, therefore, slightly modify the above scheme
by adjusting μ in Eqs. (26) and (28a) during the reperiod-
ization only, such that the reperiodized self-energies fulfill
this generalized Luttinger sum rule in the same way as the
corresponding cluster quantities. We describe our reper-
iodization procedure and evaluate its validity in detail in
Appendix A 3.

B. Lattice spectral functions

Figure 13 (top row) shows the evolution with V of the
(T ¼ 0) momentum-dependent spectral function AkðωÞ ¼
AfkðωÞ þ AckðωÞ and of the FS. [Corresponding retarded
self-energies ImΣfkðωþÞ and ImΣckðωþÞ are shown in
Fig. 14 below.] To highlight all relevant energy scales
and the changes of AkðωÞ at low frequencies close to the
QCP, we use a logarithmic frequency grid for jωj > 10−9

and a linear grid for jωj < 10−9 (gray shaded region) to
cross ω ¼ 0.
Figure 13 (bottom row) shows three different surfaces,

defined in Sec. VA: the free Fermi surface V ¼ 0 (FS0,
green), where ϵck ¼ 0; the actual Fermi surface (FS, red),
where ReG−1

xkði0þÞ ¼ 0 for both x ¼ f, c [numerically,
we use ReG−1

ckði0þÞ ¼ 0]; and the Luttinger surface (LS,
blue), where jΣfkð0Þj ¼ ∞, Gfkð0Þ ¼ 0, and Σckð0Þ ¼ 0

[numerically, we use ReΣckði0þÞ ¼ 0]. In summary,
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FS0∶ ϵck ¼ 0; ð29aÞ

FS∶ ReG−1
xkði0þÞ ¼ 0 ⇔

8>><
>>:

detG−1
k ði0þÞ

ϵ�ck

ϵ�fk − ðV�
kÞ2

ϵck

9>>=
>>;

¼ 0; ð29bÞ

LS∶ jΣfkð0Þj ¼ ∞ ⇔ Σckði0þÞ ¼ 0: ð29cÞ

Next, we discuss some salient features of Fig. 13.
Band structures.—In the Kondo phase, AkðωÞ has a

two-band structure [190] (marked ① and ② in Fig. 13) with
a well-defined QP peak in band ①, as expected in this
phase. The dispersion around ω ¼ 0 is clearly shifted away
from the V ¼ 0 dispersion (indicated by a dashed green line
in Fig. 13). As V is lowered toward the QCP at Vc, the
upper band develops a broad region of incoherent spectral
weight in the NFL energy window TFL < jωj < TNFL.
Interestingly, in the RKKY phase, the spectral function

shows a three-band structure (marked ①, ②, and ③ in
Fig. 13): The top and bottom bands (① and ②) do not
cross ω ¼ 0. In addition, there is a third, narrow middle
band (③) of width ∼TFL crossing ω ¼ 0 near Π. The
dispersion around ω ¼ 0 of band ③ almost matches the
V ¼ 0 dispersion. Band ③ is separated from the other two
bands by a region of incoherent spectral weight in the NFL

window TFL < jωj < TNFL. The additional band gap in
the RKKY phase comes from a dispersive fs pole in Σf

(see Figs. 8 and 14 and their discussions), associated with
orbital-selective Mott physics. Reference [151] suggests
that the fs pole may be interpreted as an emergent coherent
spinon excitation [151]. This suggests that the f electron
is fractionalized and the RKKY phase is a fractionalized
FL [110,111]. We will clarify this view in future work. As
discussed in Sec. V B, for non-single-site DMFT (as here,
where we use two-site CDMFT), it is natural for a Mott
insulator (the f band in the present case) to hybridize with a
metal (the c band) and contribute nonzero weight to the
low-energy QP, resulting in an OSMP. Because the f band,
which is in a (strongly correlated) Mott phase, contributes
nonzero QP weight, the QP dispersion is strongly renor-
malized, leading to the narrow middle band. Its narrow
width (∼TFL) for V < Vc indicates a large effective mass
m�, as observed experimentally, e.g., in Refs. [33,191] and
discussed in detail in Sec. IX below. Note that this strong-
correlation effect occurs even though the actual FS lies very
close to the free c-electron Fermi surface FS0, for reasons
discussed below.
Fermi surface reconstruction.—In the Kondo phase,

the FS (red) is electronlike and centered around the
Γ ¼ ð0; 0; 0Þ point, in contrast to the holelike free FS0
(green) of the c electrons, centered at Π ¼ ðπ; π; πÞ. The FS

FIG. 13. Top row: momentum resolved total spectral function AkðωÞ ¼ AckðωÞ þ AfkðωÞ at T ¼ 0, for various V crossing the QCP at
Vc ¼ 0.4575ð25Þ, plotted from X ¼ ðπ; π; 0Þ over Γ ¼ ð0; 0; 0Þ to Π ¼ ðπ; π; πÞ. AkðωÞ is shown on a logarithmic frequency scale for
jωj > 10−9 and on a linear scale for jωj < 10−9 (gray shaded region). The green dashed line marks the c-electron dispersion at V ¼ 0.
On the Kondo side (V > Vc), AkðωÞ shows a two-band structure, marked ① and ②, as expected from adiabatic continuation from the
U ¼ 0, with the upper band intersecting ω ¼ 0 close to Γ. On the RKKY side (V < Vc), AkðωÞ shows a three-band structure, marked ①,
②, and ③, with the narrow middle band intersecting ω ¼ 0 close to Π. Middle row: corresponding FS (red) where ϵ�ck ¼ 0, FS at V ¼ 0

(green, FS0) where ϵck ¼ 0, and LS where Σfkð0Þ ¼ ∞ (blue), in an octant of the first Brillouin zone. For V > Vc, the FS is centered
around Γ. Crossing the QCP toward V < Vc, the FS center point jumps toΠ and a LS emerges. Bottom row: Brillouin zone cuts showing
the FS (red lines), FS0 (green lines), and LS (blue lines) at constant kz ¼ 0 (solid) or kz ¼ π (dashed) versus kx and ky.
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depends only very weakly on V, because it is constrained
by the Luttinger sum rule: The latter relates the density
nf þ nc to the FS volume (see Sec. VIII for details), which
depends only very weakly on V (see Fig. 17). As the QCP
is crossed, the FS undergoes a sudden reconstruction and
becomes centered around Π, positioned close to FS0. This
leads to a jump of the Hall coefficient, as discussed with
Fig. 18. The FS reconstruction is accompanied by the
emergence of a LS (blue), which accounts for the change in
the FS volume (see Sec. VIII). The emergence of a LS is the
hallmark property of a Mott phase, and it has been shown
that the LS is stable to small perturbations [182]. This
emphasizes again our claim that the RKKY phase is an
OSMP. In the RKKY phase, the FS again depends only
very weakly on V due to the Luttinger sum rule constraint
(the weak V dependence is again due to a weak V
dependence of the filling).

C. Lattice self-energies

To get a better understanding how the features of the
spectral functions in Fig. 13 emerge, Fig. 14 shows
the imaginary parts of the momentum-dependent c- and
f-electron self-energies. In the Kondo phase at V > Vc,
−ImΣfkðωþÞ shows only weak momentum dependence. It
is large at high frequencies but vanishes toward ω ¼ 0,

consistent with the presence of coherent QP. Interestingly,
its structure is almost independent of V in the Kondo
regime. However, as we have seen in Sec. VI, the f-electron
self-energy becomes slightly nonlocal in the Kondo regime
close to the QCP (though this is not easily visible
in Fig. 14).
Crossing the QCP to the RKKY phase at V < Vc, the

nondispersive high-frequency structure remains essentially
the same as in the Kondo phase. However, additionally a
sharp dispersing pole emerges in Σfk at low frequencies
for jωj < TFL. As discussed in Secs. V B and VI, this
dispersive pole in Σfk in the RKKY phase is a clear sign
of Mott physics present in the f band. Importantly, the fact
that the pole is dispersive [cf. Eq. (22)] results from
employing cluster DMFT instead of single-site DMFT.
We are, therefore, not in the d → ∞ limit where the OSMP
(i.e., the RKKY phase) would be unstable to finite c-f
hybridization V [185].
The c self-energy, shown in the bottom row in Fig. 14,

has most of its spectral weight at ω ≃ −TNFL deep in the
Kondo phase. It is mostly momentum independent and
signals the position of the hybridization gap. As V is
decreased toward Vc, −ImΣckðωþÞ becomes increasingly
momentum dependent, with more spectral weight at Γ than
at Π. Furthermore, at V ¼ 0.46 close to the QCP on the
Kondo side, spectral weight starts to smear out significantly

FIG. 14. Momentum resolved f and c spectral functions and imaginary parts of retarded self-energies, AfkðωÞ (top row),−ImΣfkðωþÞ
(second row), AckðωÞ (third row), and −ImΣckðωþÞ (bottom row) at T ¼ 0, corresponding to the spectral functions shown in Fig. 13.
The three leftmost panels (V < Vc) in the top row show 5 × AfkðωÞ to improve the visibility of f-electron spectral features in the OSMP.
Note that, in the RKKY phase, the spectral weight of AfkðωÞ close to ω ¼ 0 is underestimated by our reperiodization scheme, as
discussed in Appendix A 3. We have scaled it by a factor of 5 to improve visibility. As discussed in Sec. VI, there is a nonzero f-electron
contribution to the FS throughout the RKKY phase. The markers ①, ②, and ③ mirror those in Fig. 13.
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over the NFL region, and significant weight appears at
positive frequencies. This suggests that f and c begin to
hybridize more strongly at positive frequencies. When the
QCP is crossed to V < Vc, the spectral weight of Σck is
now stronger at ω > 0 than at ω < 0, showing that c and f
now hybridize more strongly at positive frequencies than in
the Kondo regime. However, significant spectral weight
does also remain at ω < 0, reflecting the presence of a left
and right h pole, as discussed already in the previous
section. This suggests that, in the RKKY regime, the f
band is split apart by the pole in Σfk and the c electrons
then hybridize with both of the resulting two f bands,
leading to a three-band structure. Thus, the f electrons still
hybridize significantly with the c electrons in the RKKY
phase close to the QCP, explaining intuitively the strong
renormalization of m� in the RKKY regime mentioned
earlier and observed in experiments [192]. Finally, as V
is lowered further toward V ¼ 0, the overall magnitude
of −ImΣckðωþÞ decreases rapidly, suggesting that f and c
bands continuously decouple when V → 0.

D. Finite temperature

In Fig. 15, we show the temperature dependence of
AkðωÞ at both V ¼ 0.46 > Vc and V ¼ 0.455 < Vc. For
T < TFL, the spectral functions are mostly independent of
temperature as expected. As T crosses TFL into the NFL
region, the incoherent features at TFL < jωj < TNFL are
thermally broadened, and the sharp QP features at ω ¼ 0
are smeared out, indicating a thermal destruction of the QP.
Deep in the NFL region at T ≃ 10−5, spectral weight around
ω ¼ 0 is completely incoherent, and no FS with sharp
QP excitations can be made out. At T ¼ 10−2 > TNFL in
the LM region, the features of AkðωÞ become sharp again
around ω ¼ 0, and a single band forms which coincides
with the V ¼ 0 c-electron dispersion. In this temperature
regime, the f electrons can be viewed as free local moments
decoupled from the free c electrons. The interaction
between c electrons and fmoments then leads to scattering,
slightly smearing out the features in the spectral function
while leaving the qualitative picture of the LM region
unaltered.

FIG. 15. Temperature dependence of AkðωÞ at V ¼ 0.46 > Vc ¼ 0.4575 (rows 1 and 2) and V ¼ 0.455 < Vc (rows 3 and 4).
The layout of rows 1 and 3 mirrors that of the top row in Fig. 13. Rows 2 and 4 show cuts at ω ¼ 0 and kz ¼ 0. These illustrate how the
sharp FS at T ¼ 0, large for V > Vc and small for V < Vc, dissolves as T increases into the NFL regime and finally evolves to a
(temperature-broadened) small FS in the LM regime at high T.
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VIII. GENERALIZED LUTTINGER SUM RULE

In this section, we discuss the FS reconstruction of the
previous section from the perspective of the generalized
Luttinger sum rule [9–14,177,193,194]. It states that if a
Fermi surface exists, the density n of electrons in partially
filled bands can be expressed as n ¼ 2vFS þ 2IL, where vFS
is the FS volume and IL is an integral known as the
Luttinger integral. In case of a FL, the generalized Luttinger
sum rule as stated above can be derived from a simple,
exact decomposition of the Green’s function based on
Dyson’s equation (we review this decomposition below).
The sum rule becomes useful when it is possible to
formulate constraints on IL.
For instance, if the interacting and noninteracting ground

states are adiabatically connected [9,195], perturbative
arguments can be used to show that IL ¼ 0, leading to
the celebrated Luttinger sum rule n ¼ 2vFS (also called
Luttinger’s theorem). Subsequent work [193,194] has
shown that IL ¼ 0 is a consequence of U(1) charge
conservation in case Σ is Φ-derivable, i.e., if Σ ¼ δΦ=δG,
where Φ is the Luttinger-Ward (LW) functional.
Explicitly, consider a multiband model with a U(1)

total charge symmetry (we assume every band has the
same gauge charge). The Green’s function GkðzÞ is matrix
valued, with entriesGαβkðzÞ, where α and β label the bands.
If the matrix-valued self-energy is Φ-derivable, i.e.,
ΣkðzÞ ¼ δΦ=δGkðzÞ, then the Luttinger integral

IL ¼ −1
π

Im
Z
BZ

dk
VBZ

Z
0

−∞
dωTr½GkðωþÞ∂ωΣkðωþÞ� ð30Þ

equals zero, IL ¼ 0. Note that IL ¼ 0 holds only in the
T → 0 limit.
This extends the applicability of Luttinger’s theorem

beyond the perturbative regime (see also Ref. [10] for a
different approach) but requires the existence of the LW
functional Φ½G�, at least in the vicinity of the physical
Green’s function G (note that Φ can be constructed non-
perturbatively [196]). However, it has been established that,
in general, the LW functional is multivalued [197–199]
and does not exist for certain physically relevant Green’s
functions [14,200], which can lead to IL ≠ 0 [14,177,200].
A very instructive analysis of a situation where IL ¼ 0

breaks down is provided in Refs. [12,13] in terms of a
fermionic two-impurity model, where the role of the
Luttinger sum rule is taken by the Friedel sum rule [190].
This model exhibits a QPT from a Kondo-type to an
RKKY-type phase, with the local density remaining con-
stant while the free QP density changes abruptly. This
violates the Friedel sum rule, and the violation was traced to
a Luttinger integral abruptly becoming nonzero.
In this section, we perform a similar analysis for the KB

QPT of the PAM. We find that the Luttinger integral is
numerically zero in both the RKKYand Kondo phases; the
FS reconstruction is due to the appearance of a LS in the

RKKY phase and not due to a failure of Luttinger’s
theorem as formulated in Ref. [193]. As a warm-up, we
first consider a single partially filled band of conduction
electrons and briefly recall the origin of the generalized
Luttinger sum rule. Then, we focus on the PAM and derive
a generalized Luttinger sum rule for nc þ nf (there are no
useful separate sum rules for only nc or only nf, as these
are not conserved quantities). It involves not only the FS,
comprising all k points in the Brillouin zone at which
Gfkði0þÞ and Gckði0þÞ have poles, but also the LS, at
which Σfkði0þÞ diverges [11]. We then express our results
purely through cluster quantities that are directly available
from cellular DMFT calculations without requiring reper-
iodization or interpolation. Thereafter, we show that the
discontinuous jump of the FS volume when crossing
the QCP into the RKKY phase is accompanied by the
emergence of a LS while IL remains zero throughout.
Finally, we discuss this finding together with the Hall
coefficient calculated from our data and relate it to
experimental findings on YbRh2Si2 and CeCoIn5.

A. Luttinger’s theorem for a single band

We begin by recalling standard arguments leading
to Luttinger’s theorem, following Refs. [9,13,175,193].
We consider a one-band model at T ¼ 0, with propagator
GkðzÞ ¼ ½z − ϵk − ΣkðzÞ�−1. The average electron density
can be expressed as

n ¼ −2
π

Im
Z
BZ

dk
VBZ

Z
dωGkðωþÞθð−ωÞ; ð31Þ

where the prefactor 2 accounts for spin, VBZ is the volume
of the Brillouin zone, and the step function θð−ωÞ is the
zero-temperature limit of the Fermi function.
For the next step, we need the identity

Gk ¼ ∂z lnG−1
k þ Gk∂zΣk; ð32Þ

expressing the correlator through derivates. Using the latter
in Eq. (31), together with Im lnG−1

k ¼ argG−1
k , we obtain

n ¼ 2vFS þ 2IL; ð33Þ

vFS ¼
Z
BZ

dk
VBZ

δk
π
;

δk ¼ −Im
Z

0

−∞
dω∂ω lnG−1

k ðωþÞ ¼ −
h
argG−1

k ðωþÞ
i
0

−∞
;

ð34Þ

IL ¼ −1
π

Im
Z
BZ

dk
VBZ

Z
0

−∞
dωGkðωþÞ∂ωΣkðωþÞ: ð35Þ

Here, δk is the phase shift of G−1
k ðωþÞ ω ¼ −∞ and 0;

vFS is a shorthand for its integral over the BZ; and IL is the
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Luttinger integral [cf. Eq. (30)]. Equation (33) is the
generalized Luttinger sum rule. It is an exact expression
of the electron density n; no assumptions on FL behavior
have been made yet. We show below that, in a FL, the
average phase shift Eq. (34) is given by the FS volume.
As mentioned above, it can be argued on rather general

grounds that IL ¼ 0 in many cases [193]. Conditions are
that (i) the interaction preserves the U(1) charge symmetry
and (ii) Σ is Φ-derivable, i.e., Σ ¼ δΦ=δG, where Φ is
the LW functional. Condition (ii) breaks down if Σ is
sufficiently singular, i.e., if no functional Φ exists whose
variation with respect to G produces Σ [14,200]; in that
case, IL can become nonzero.
Now, if a sharp FS exists, i.e., if the imaginary part of the

retarded self-energy vanishes at ω ¼ 0 [cf. Eq. (16)],

ImΣkði0þÞ ¼ −0þ; ð36Þ

then the integral vFS defined in Eq. (34) gives the
FS volume. Let us recapitulate why this is the case.
Condition (36) holds for regular Fermi liquids and, more
generally, in the perturbative regime considered by
Luttinger and Ward [9,195]. Now, Eq. (36) implies
argG−1

k ði0þÞ ¼ πθð−ReG−1
k ði0þÞÞ, while ImΣkðωþÞ < 0

implies argG−1
k ð−∞þ i0þÞ ¼ π. Therefore, the phase

shift is

δk ¼ π − πθð−ReG−1
k ði0þÞÞ

¼ πθð−ϵk − ReΣkði0þÞÞ ¼ πθð−ϵ�kÞ: ð37Þ

By definition, the Fermi surface encloses all k points in the
Brillouin zone having ϵ�k < 0. For these, δk=π equals 1; for
all others, it vanishes. Hence, Eq. (34) reduces to

vFS ¼
Z
BZ

dk
VBZ

θð−ϵ�kÞ; ð38Þ

which is the FS volume measured in units of VBZ (hence,
dimensionless). Moreover, in a normal FL, Σ is not
singular; hence, IL ¼ 0 holds, and, hence, the generalized
Luttinger sum rule (33) reduces to the Luttinger sum rule
for a FL, n ¼ 2vFS, relating the density to the FS volume.

B. Generalized Luttinger theorem for the PAM

The PAM describes hybridized f and c electrons, the
former with local interactions, the latter without. Their
correlators Gf and Gc are coupled through Eqs. (3).
Importantly, because Φ does not depend on propagators
involving noninteracting orbitals [175], the LW functional
for the PAM depends only on Gf, not on Gc or Gfc.
Therefore, Σf ¼ δΦ=δGf is the only Φ-derivable, proper
(i.e., one-particle irreducible) self-energy in the PAM.
Σc knows about interactions only via its dependence on
Σf and, hence, is not a proper self-energy; in particular,

δΦ=δGc ¼ δΦ=δGfc ¼ 0. Analogous to the previous sub-
section, we first derive general formulas for the phase
shifts. We then make assumptions on the self-energies
compatible with our observations in Secs. VI and VII.
These allow us to write down expressions in terms of the
FS and LS volumes.
Our starting point again is an identity expressing

correlators through derivatives. Equation (2) implies

TrGk ¼ Gfk þGck ¼ TrGk∂zG−1
k þ Gfk∂zΣfk

¼ ∂zTr lnG−1
k þGfk∂zΣfk

¼ ∂z lnG−1
ck þ ∂z lnΣ−1

ck þ Gfk∂zΣfk: ð39Þ

To derive the last equality, note that the definitions (2)
and (3) for the lattice correlators imply the relation

detG−1
k ¼ ðz − ϵckÞðz − ϵf − ΣfkÞ − V2

¼
�
z − ϵck −

V2

z − ϵf − Σfk

�
ðz − ϵf − ΣfkÞ

¼ G−1
ckΣ−1

ck=V
2; ð40Þ

which, together with Tr ln G−1
k ¼ ln det G−1

k , yields
Eq. (39). Integrating Gf þGc as in Eq. (31),

nf þ nc ¼
−2
π

Im
Z
BZ

dk
VBZ

Z
0

−∞
dω½GfkðωþÞ þGckðωþÞ�;

and using Eq. (39), we obtain

nf þ nc ¼ 2vFS þ 2vLS þ 2IL; ð41Þ

with ingredients defined in analogy to Eqs. (34) and (35):

vFS ¼
Z
BZ

dk
VBZ

δck
π

; vLS ¼
Z
BZ

dk
VBZ

δΣk
π

; ð42Þ

δck ¼ −Im
Z

0

−∞
dω∂ω lnG−1

ckðωþÞ ¼ −
�
argG−1

ckðωþÞ�0−∞;
δΣk ¼ −Im

Z
0

−∞
dω∂ω lnΣ−1

ckðωþÞ ¼ þ�
argΣþ1

ck ðωþÞ�0−∞;
IL ¼ −1

π
Im

Z
BZ

dk
VBZ

Z
0

−∞
dωGfkðωþÞ∂ωΣfkðωþÞ: ð43Þ

Here, δck and δΣk describe the phase shifts of G−1
ck and Σþ1

ck
betweenω ¼ −∞ and 0; vFS and vLS are shorthand for their
integrals over the BZ; and IL is the Luttinger integral, now
involving only f (no c) functions. Equations (41)–(43) are
exact, and, in the spirit of Refs. [12,13], we refer to Eq. (41)
as the generalized Luttinger sum rule for the PAM, or
Luttinger-PAM sum rule, for short. To the best of our
knowledge, the existence of such a relation, involving the
phase shifts not only of G−1

ck , but also of Σ
þ1
ck , has so far not
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been appreciated in the literature. The form (41) is specific
to the PAM. For other multiband models, the arguments
presented here have to be suitably adapted.
Now, if a sharp FS exists, i.e., if

ImΣckði0þÞ ¼ −0þ; ð44Þ

then the integrals vFS and vLS defined in Eqs. (42) give the
FS and LS volumes, respectively. The argument proceeds
as in the previous subsection. Equation (44) implies
arg G−1

ckði0þÞ ¼ πθð−ReG−1
ckði0þÞÞ and arg Σckði0þÞ ¼

−πθð−ReΣckði0þÞÞ, while ImΣckðωþÞ < 0 implies
arg G−1

ckð−∞þ i0þÞ ¼ π and argΣckð−∞þ i0þÞ ¼ −π.
Therefore, the phase shifts in Eq. (43) yield

δck ¼ π − πθð−ReG−1
ckði0þÞÞ

¼ πθð−ϵck − ReΣckði0þÞÞ ¼ πθð−ϵ�ckÞ; ð45aÞ

δΣk ¼ π − πθð−ReΣckði0þÞÞ ¼ πθðReΣckði0þÞÞ: ð45bÞ

The phase shifts δck and δΣk are either 0 or π. The jump
between these values occurs at the FS, defined by
ReG−1

ckði0þÞ¼0 and the LS, defined by ReΣckði0þÞ ¼ 0,
respectively [see Eqs. (29b) and Fig. 16]. Thus, Eqs. (42)
reduce to

vFS¼
Z
BZ

dk
VBZ

θð−ϵ�ckÞ; vLS¼
Z
BZ

dk
VBZ

θðReΣckði0þÞÞ;

ð46Þ

giving the FS and LS volumes in units of VBZ. Thus, if a
sharp FS exists, the Luttinger-PAM sum rule (41) relates
the density of c and f electrons to the FS and LS volumes
vFS and vLS and the Luttinger integral IL.
The above arguments are directly applicable to our

CDMFTþ NRG results for the PAM, since the condition
(44) is consistent with our results for 0 < V ≠ Vc: indeed,
we find that the imaginary part of Σc vanishes at ω ¼ 0,
both in the effective impurity model (see Sec. VI) and after
reperiodization (see Sec. VII).
Since Φ depends only on Gf, so that δΦ=δGc ¼ 0 and

δΦ=δGfc ¼ 0, IL as defined in Eq. (43) has the same form
as Eq. (30). We, therefore, expect IL ¼ 0 if the functionalΦ
exists in the vicinity ofGf, but we do not concern ourselves
here with general considerations about the existence of
the LW functional. We have, however, checked numerically
that IL ¼ 0 holds in our study of the PAM, for all
considered values of V at T ¼ 0, i.e., in both the Kondo
and RKKY regimes. Thus, we henceforth assume that
IL ¼ 0 throughout.
While nc and nf evolve smoothly with V, sudden jumps

can occur for vFS and vLS, which must compensate each
other appropriately if IL remains zero. In particular, by

Eq. (41), a jump in vLS induces a jump in vFS, implying a
FS reconstruction, even though IL ¼ 0 remains unchanged.

C. Luttinger’s theorem in CDMFT:
Computing vFS, vLS, and IL without reperiodization

The formulas derived in Sec. VIII A require explicit
knowledge of the k dependence of Σf to compute vFS, vLS,
and IL. As CDMFT artificially breaks translation invari-
ance, we have to reperiodize Σf if we want to acquire
knowledge on its k dependence. Reperiodization is,
however, a postprocessing step which is to some extent
ad hoc. The specific choice of reperiodization affects the
values of the aforementioned quantities. In particular,
the question whether IL ¼ 0 holds can, therefore, not be
answered conclusively when relying on some reperiodiza-
tion scheme. In the following, we therefore provide and
motivate formulas for vFS, vLS, and IL which do not require
reperiodization.
First, we note that the momentum integrals in the

preceding part of this section represent a trace over all
quantum numbers. In the case of translational invariance,
it is convenient to use the momentum basis to perform
this trace, as the Green’s functions and self-energies are
diagonal in this basis. In the two-site CDMFT approach,

FIG. 16. Sketch of the qualitative behavior of ϵ�fk, ϵ
�
ck, and

ϵ�fk − ðV�
kÞ2=ϵck in (a) the RKKY phase and (b) the Kondo

phase. They are related to the Green’s functions and the
c-electron self-energy via ReG−1

ckð0Þ ¼ −ϵ�ck=Zck, ReG−1
fkð0Þ ¼

−½ϵ�fk − ðV�
kÞ2=ϵck�=Zfk, and ReΣckð0Þ ¼ −ðV�

kÞ2=ϵ�fk, respec-
tively. The FS (marked by kF) is defined by
ϵ�ck ¼ ϵ�fk − ðV�

kÞ2=ϵck ¼ 0; its inside is defined by ϵ�ck < 0.
jϵ�fkj ¼ ∞ [ReΣckð0Þ ¼ 0] defines the LS (marked by kL), with
its inside defined by ϵ�fk < 0. The function ϵ�fk − ðV�

kÞ2=ϵck
changes sign via a pole both at the LS (due to ϵ�fk) and at the
free FS (marked by kF0) due to ϵck ¼ 0. In the Kondo phase,
ϵ�fk remains negative everywhere in the BZ, while in the RKKY
phase, ϵ�fk changes sign between Γ and Π (cf. Fig. 9) via a pole
at the LS. As a result, ϵ�fk − ðV�

kÞ2=ϵck changes sign twice in the
Kondo phase (via a zero at kF and a pole at kF0) and three times
in the RKKY phase (via a pole at kL, a zero at kF, and a pole at
kF0). The pole at kL shifts the position of kF in the RKKY
phase compared to its position in the Kondo phase. Note that
the distance between kF and kF0 in (a) is exaggerated in the
sketch above.
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it is, however, more convenient to represent them as 2 × 2
matrices depending on momentaK in the cluster BZ (cBZ).
This leads to the replacement

Z
BZ

dk
VBZ

→
1

2
Tr

Z
cBZ

dK
VcBZ

ð47Þ

in the formulas presented in Sec. VIII B. Here, VcBZ ¼
VBZ=2 the volume of the cBZ, and Tr is the trace of the
K-dependent 2 × 2 matrices.
Now, within the CDMFT approximation, Σf and, there-

fore, also Σc are independent of K:

ΣxKðzÞ ¼ ΣxðzÞ ðx ¼ f; cÞ: ð48Þ
(This K independence breaks the translation invariance.)
Moreover, the cluster propagators in Eq. (6), defined as
K-integrated objects, are likewise K independent:

GxðzÞ≡
Z
cBZ

dK
VcBZ

GxKðzÞ ðx ¼ f; cÞ: ð49Þ

Using Eqs. (47)–(49), the ingredients (42) and (43) of
the Luttinger-PAM sum rule (41) can now readily be
transcribed to obtain the following expressions:

vFS¼Tr
Z
cBZ

dK
VcBZ

δcK
2π

; vLS¼Tr
Z
cBZ

dK
VcBZ

δΣ
2π

; ð50Þ

δcK ¼ −Im
Z

0

−∞
dω∂ω lnG−1

cKðωþÞ;

δΣ ¼ −Im
Z

0

−∞
dω∂ω lnΣ−1

c ðωþÞ ¼ þ
�
argΣþ1

c ðωþÞ
�
0

−∞
;

IL ¼ −1
2π

Im
Z

0

−∞
dωTr½GfðωþÞ∂ωΣfðωþÞ�: ð51Þ

Here, vFS and vLS are expressed as traces of the cBZ
integrals of the matrix-valued phase shifts δcK and δΣ,
respectively. For the latter, which is K-independent δΣ, the
integral is trivial. For the K-dependent, we use

∂z lnG−1
cKðzÞ ¼ GcKðzÞ½1 − ∂zΣcðzÞ�; ð52Þ

such that the K integral yields a local cluster quantity:

δc ¼
Z
cBZ

dK
VcBZ

δcK ¼ −Im
Z

0

−∞
dωGcðωþÞ½1 − ∂ωΣcðωþÞ�:

ð53Þ

Note that, in Eq. (53), 1 − ∂zΣcðzÞ ≠ ∂zG−1
c ðzÞ because

GcðzÞ is aK-integrated quantity, so thatG−1
c ðzÞ contains an

additional hybridization term ΔcðzÞ; cf. Eq. (6b). Thus,
Eqs. (50) reduce to

vFS ¼
1

2π
Trδc; vLS ¼

1

2π
TrδΣ: ð54Þ

Equations (54), (53), and (51) achieve our stated goal
of expressing vFS, vLS, and IL purely through the local
Green’s functions and self-energies of the effective 2IAM.
They can, hence, can be computed without using
reperiodization.

D. Results

Our CDMFT results for vFS, vLS, and IL (obtained with
the formulas from Sec. VIII C) are shown in Fig. 17,
together with the particle numbers nc and nf. As mentioned
before, we find IL ¼ 0 for all considered values of V. We
note that IL ¼ 0 is an empirical numerical finding and may
not hold if, e.g., different fillings are considered [201,202];
this will be explored in more detail in future work.
Furthermore, we find that the particle numbers nc and
nf evolve smoothly across the KB QCP, in contrast to vFS
and vLS, which exhibit a jump when crossing the KB QCP.
The jumps are such that 2vFS þ 2vLS ¼ nf þ nc evolves
smoothly across the KB QCP; i.e., the jumps of vFS and vLS
compensate each other.
In the Kondo phase, vLS ¼ 1 and vFS is such that,

together, vLS and vFS account for the total particle number.
Note that vLS ¼ 1means that the LS volume fills the whole
BZ; i.e., there is no LS in the Kondo phase. In the RKKY
phase, on the other hand, vLS ¼ 1

2
≃ 1

2
nf while vFS ≃ 1

2
nc.

vLS takes a fractional value in the RKKY phase, which
means the LS volume fills a fraction of the BZ and there is a
LS. The presence of a LS can be linked to an emergent
spinon FS [151], suggesting that the RKKY phase is a
fractionalized FL [110,111]. We will provide a more
detailed analysis of this in future work.
In the Kondo phase, vFS is the same as in theU ¼ 0 limit

at the same filling (the same is true for vLS). The FS in the
Kondo phase is, therefore, as expected in a normal FL in the
PAM. vFS “trivially” (in the sense that one can infer it from
the U ¼ 0 limit) accounts for both the f and c electrons,
which is why it is called a “large” FS, even though the
value of vFS is smaller than in the RKKY phase. In the
RKKY phase, by contrast, vFS ≃ 1

2
nc takes almost the value

expected for V ¼ 0 with U ≠ 0. The FS seems to account

FIG. 17. FS and LS volumes vFS (red line) and vLS (blue line)
and the Luttinger integral IL (pink line), together with the particle
numbers nf and nc (black dotted line) and their sum (green line),
plotted as functions of V at T ¼ 0.
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only for the c electrons and, hence, is called a “small” FS.
Based on the shape and volume of the FS in the RKKY
phase, one may be tempted to conclude that c and f
electrons have decoupled. However, this is not the case, as
elaborated in Secs. VI and VII above.
We now elaborate how the jump in vFS and vLS is

connected to the sign change of ϵ�fþ across the KB QCP,
which we have discussed in Sec. VI C. To make this
connection, we examine Eq. (54) for vLS (computed
without reperiodization) in more detail, while assuming
ImΣcð0Þ ¼ −0þ [Eq. (44)], consistent with our results.
Analogously to our discussion of δΣk under the aforemen-
tioned assumption [see Eq. (45b)], the corresponding
phase shift of the effective 2IAM [see Eq. (51) [is given
by δΣ ¼ πθðReΣcði0þÞÞ [note that both δΣ and Σcði0þÞ are
2 × 2 matrices which are in our case diagonal in the
� basis]. We can identify three different cases, which lead
to distinct values of vLS: Both eigenvalues of ReΣcði0þÞ are
(i) positive or (ii) negative, or (iii) the eigenvalues of
ReΣcði0þÞ have opposite signs—i.e., one is positive, the
other negative. Inserting these into vLS ¼ TrδΣ=ð2πÞ [see
Eq. (54)], we find (i) vLS ¼ 1, (ii) vLS ¼ 0, or (iii) vLS ¼ 1

2
.

The value of vLS is, therefore, connected to the signs of
the eigenvalues of ReΣcði0þÞ, which in our case are
ReΣc�ði0þÞ. The signs are related to those of ϵ�f� via
Eq. (25b), namely, sgnReΣc�ði0þÞ ¼ −sgnϵ�f�. Thus, we
find (i) vLS ¼ 1 if ϵ�f� are both negative, (ii) vLS ¼ 0 if ϵ�f�
are both positive, and (iii) vLS ¼ 1

2
if ϵ�f� come with

opposite signs.
In the Kondo phase, both ϵ�f� are negative (cf. Fig. 9),

just as in the U → 0 limit for the parameters we have
chosen, which leads to vLS ¼ 1 in the Kondo phase.
As discussed in more detail in Sec. VI C, when the KB
QCP is crossed from the Kondo to the RKKY phase, ϵ�fþ
changes sign and becomes positive while ϵ�f− remains
negative, which leads to vLS ¼ 1

2
in the RKKY phase.

Since vLS jumps due to the sign change of ϵ�fþ, vFS exhibits
a corresponding jump.
Therefore, the crucial ingredient for the emergence of a

LS resulting in a FS reconstruction is momentum differ-
entiation in ϵ�fk. The two-site cluster is the smallest unit
where momentum differentiation can occur, and our results
and analysis show that this momentum differentiation is
sufficient to stabilize the small FS of the RKKY phase.
Figure 9(b) also shows that jϵ�fþ − ϵ�f−j ∼ TFL; i.e., the
momentum differentiation is weak and occurs on the order
of the low-energy scale TFL.
We note that a jump of vLS and vFS is not at odds with a

continuous QPT. Indeed, ϵ�fþ changes smoothly across the
KB QCP. The reason why vLS jumps is because it is not
sensitive to the absolute value of ϵ�f�, but only to the signs.
Signs are, by definition, discrete quantities, and changes
can occur only via jumps, which is why both vLS and vFS

change via a jump, even though the QPT is continuous.
We emphasize that a prerequisite for this sign sensitivity is
that ImΣcði0þÞ ¼ 0−, i.e., that the T → 0 phase is a FL. If
ImΣcði0þÞ were finite, vLS and vFS could change contin-
uously. Because finite ImΣcði0þÞ would imply that the
T → 0 phase is not a FL, vLS and vFS then would not have
the interpretations of being volumes in the BZ bounded by
sharply defined Fermi or Luttinger surfaces.
Furthermore, our analysis shows that the FS

reconstruction is a priori independent of possible trans-
lation symmetry breaking like antiferromagnetic or
charge density wave order. Translation symmetry breaking
increases the size of the unit cell and, thus, reduces the size
of the BZ. While this may change the FS volume measured
in units of the smaller BZ, it does not change the average
phase shifts vLS and vFS as they appear in Eqs. (42)
and (50). For instance, the onset of antiferromagnetic order
without jumps in the phase shifts vLS and vFS marks a SDW
QCP, while jumps in the phase shifts vLS and vFS mark a
KB QCP, regardless of whether it is or is not accompanied
by the onset of, e.g., AFM order.
The generalized Luttinger’s theorem also offers a pos-

sible explanation why the QCP in the 2IAM is stabilized
by the CDMFT self-consistency condition. Without self-
consistency, the QCP in the 2IAM is stable only if the
scattering phase shifts are constrained by symmetry
[87,89,174]. The symmetry constraint then prevents a
smooth change of the phase shifts, resulting in a QCP
where the phase shifts jump between allowed values
[87,89]. However, if such symmetry constraints are absent,
the phase shifts will simply change without a QCP [89]. In
the self-consistent 2IAM, the phase shifts are constrained,
not by symmetry, but by the Luttinger sum rule, as we have
seen in the previous discussions in this section. We
conjecture that this Luttinger sum rule constraint is the
reason why the self-consistent 2IAM does have a QCP.
A more detailed analysis will be presented in future work.
One of the experimental hallmarks of a FS reconstruction

at a KB QCP is a sharp crossover of the Hall coefficient
RH ∼ 1=nH and, thus, of the Hall carrier density nH
[6,26,32]. This has been observed in experiments on
YbRh2Si2 [26,37,203] and CeCoIn5 [32]. A sign change
of RH has also been observed in CeCu6−xAux when
increasing x from 0 to 0.1 [204]. To make contact to these
experiments, we show the Hall coefficient calculated
from our data in Fig. 18, as a function of V at different
temperatures. It is calculated using reperiodized self-
energies with the formulas shown in Appendix A 5. At all
considered temperatures, we find two qualitatively distinct
values of RH deep in the Kondo regime (high V) and deep
in the RKKY regime (low V). It shows a sign change across
Vc, reflecting a reconstruction from a particlelike FS in the
Kondo regime to a holelike FS in the RKKY regime. These
are connected by a smooth crossover at high temperatures,
which becomes sharper as temperature is lowered and
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almost steplike at the lowest temperature. This is qualita-
tively very similar to the experimental findings on
YbRh2Si2 [26,37,203] and CeCoIn5 [32].
The analysis of generalized Luttinger sum rules for

coupled c and f bands presented in this section makes
no claims for generality—it focuses solely on the PAM and
is based on assumptions consistent with our numerical
results for this model. Nevertheless, similar analyses are
likely possible for related models hosting QPTs with FS
reconstruction, and we expect the LS to play a crucial role
there, too.

IX. SOMMERFELD COEFFICIENT AND ENTROPY

A further quantity showing interesting behavior at a
heavy-fermion QCP is the lattice Sommerfeld coefficient

γlatt ¼ Clatt=T ¼ ∂Slatt=∂T: ð55Þ

Here, Clatt and Slatt are the lattice specific heat and entropy
per two-site cluster (not just the impurity contribution),
respectively. Slatt can be computed from the f-electron
contribution to the entropy Sf of the effective 2IAM and a
correction term Scorr [119,205], as follows:

Slatt ¼ Sf þ Scorr; ð56aÞ

Sf ¼ −
∂Ωf

∂T

				
Δf¼const

; ð56bÞ

Ωf ¼ Φ½Gf� −
2

π
Tr

Z
ω
fTðωÞðδf − Im½ΣfGf�Þ; ð56cÞ

Scorr ¼
2

π
Tr

Z
ω

∂fTðωÞ
∂T

ðδc þ δΣ − δfÞ; ð56dÞ

δfðωþÞ ¼ −Im ln G−1
f ðωþÞ; ð56eÞ

δΣðωþÞ ¼ −Im ln Σ−1
c ðωþÞ; ð56fÞ

δcðωþÞ ¼ −Im
Z
cBZ

dK
VcBZ

lnG−1
cKðωþÞ: ð56gÞ

Here, Φ is the Luttinger-Ward functional of the 2IAM,
fTðωÞ ¼ 1=½expðω=TÞ þ 1� is the Fermi-Dirac distribu-
tion, Tr is a trace over the cluster indices, and δf, δΣ,
and δc are matrix-valued phase shifts. The derivative
in Eq. (56b), which is evaluated while keeping the
hybridization function Δf fixed, is accessible via NRG
[206]. The correction Scorr accounts for the fact that ΔfðTÞ
actually depends on temperature [205]. To compute the
Sommerfeld coefficient γlatt ¼ ∂Slatt=∂T, we numerically
differentiate SlattðTÞ.
The Sommerfeld coefficient is a measure of the density

of states. In a FL, it is proportional to the QP mass (m�)
and QP weight (Z), γ ∼m� ∼ Z−1 [15] and, hence, is
expected to be independent of temperature. By contrast,
a γlatt ∼ lnðTÞ dependence, indicating NFL behavior, has
been observed almost universally for numerous compounds
in strange-metallic regimes at finite temperatures above
QCPs [4,7,207,208], e.g., for YbRh2Si2 [25,28,192,209],
CeCu6−xAux [29,64], and CeCoIn5 [67]. Furthermore, γlatt
has been observed to diverge when approaching the KB
QCP from either side [28,191]; this implies a divergent
effective mass m� at the QCP. A divergence of m� when
approaching the KB QCP from either side has been
observed in many HF materials using different measure-
ment techniques [28–30,33]. This is direct evidence for a
breakdown of the FL at the QCP [28].
Our results for SlattðTÞ and γlattðTÞ are shown Figs. 19(a)

and 19(b). At very high temperatures (T ≫ TNFL), Slatt
decreases from some high-T value and, for V < 0.6,
exhibits a shoulder around 2 lnð2Þ (the entropy of
two local moments). This shoulder becomes more pro-
nounced for lower V (and is not visible for V ¼ 0.6). In the
same high-temperature range, γlatt shows a shoulder which
is also more pronounced for lower V (and again not visible
for V ¼ 0.6). Thus, the entropy in this high-temperature
regime has a linear T dependence, SlattðTÞ≃2 lnð2Þþa ·T,

FIG. 18. Hall coefficient versus V for different temperatures.

FIG. 19. Temperature dependence of (a) the lattice entropy and
(b) the specific heat coefficient per two-site cluster. Triangles
mark the position of TNFL=TFL.
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with a slope a which is almost independent of V (since
γlatt ¼ ∂TSlatt is roughly independent of V in the high-T
shoulder region). This behavior can be understood in terms
of thermally fluctuating f moments (leading to the shoulder
of Slatt) and unrenormalized thermally excited c electrons,
leading to the V-independent linear-in-T dependence and,
hence, a V-independent shoulder in γlatt. Such a temper-
ature dependence is characteristic for the LM regime,
which is also expected to be more pronounced for lower V.
As T is lowered, the free moments begin to hybridize

with the c electrons. This leads to screening of the
moments, by forming both Kondo singlets and interim-
purity singlets, thus reducing the entropy. Far away from Vc
(blue and red curves), where TFL ≃ TNFL, the entropy drops
to zero as T → 0 without notable features at intermediate
temperatures. Deep in the RKKY regime (V ¼ 0.3), this
entropy decrease reflects the formation of f-electron
singlets and is very rapid, leading to a pronounced hump
of γlatt around T ≃ TFL ≃ TNFL.
However, close to Vc (green and orange curves),

SlattðTÞ flattens considerably in the intermediate range
TFL ≲ T ≲ TNFL, resulting in a second shoulder near
ln

ffiffiffi
2

p
. Concurrently, γlattðTÞ shows a logarithmic T

dependence (black dashed lines), implying a T lnT behav-
ior for the specific heat. As mentioned above, this is
an almost universal feature of heavy-fermion compounds
with KB QCPs.
The shoulder at ln

ffiffiffi
2

p
for the lattice entropy suggests that

at the QCP, where TFL ¼ 0, the zero-temperature entropy
would be nonzero, SlattðT → 0Þ ¼ ln

ffiffiffi
2

p
. This value is also

found for the zero-temperature impurity entropy of the two-
channel Kondo model and the two-impurity Kondo model,
where it can be attributed to an unscreened Majorana zero
mode at the QCP [79,166,210] (see also the next section).
For the PAM, this means that two-site CDMFT predicts a
nonzero, extensive entropy at T ¼ 0 at the QCP. This
suggests that the KB QCP in two-site CDMFT would be
highly unstable to symmetry-breaking orders tending to get
rid of the nonzero entropy. It remains to be checked in
future work (by studying larger cluster sizes) whether this
extensive entropy is due to the finite cluster size, i.e.,
whether the entropy per lattice site at the KB QCP scales to
zero with increasing the cluster size or whether the nonzero
T → 0 entropy per lattice site is robust, independent of
cluster size.
When T is decreased to about 1–2 orders of magnitude

below TNFL, the lnT dependence of γlatt turns to a T−η

dependence, with η ≃ 4=3, before becoming constant
below TFL. A somewhat similar power-law T dependence,
with an onset temperature of less than 1 order or magnitude
below TNFL, has also been found in YbRh2Si2
[28,192,209], albeit with different exponent of η ¼ 1=3 <
1 [28]. Reference [28] suggested that, for YbRh2Si2, the
T−η dependence is a property of the NFL. For our PAM,
however, this cannot be the case: Since at Vc the NFL

regime reaches down T → 0, it cannot support T−η behav-
ior with η > 1, since its specific heat Clatt ¼ Tγlatt ∼ T1−η

would diverge, which is thermodynamically impossible.
Furthermore, since γlatt ¼ ∂TSlatt, the T−η behavior of γlatt
implies SlattðTÞ ∼ T1−η=ð1 − ηÞ þ const in this regime. If
the power-law dependence would extend all the way down
to T ¼ 0, η > 1 would imply SlattðT ¼ 0Þ ¼ −∞, which is
clearly nonsense. Therefore, we view the T−η power law of
γlatt to be a property of the NFL-FL crossover rather than
of the NFL regime itself. Since γlatt ∼ lnT in the NFL
region is a much weaker singularity than the T−η crossover
behavior, the latter takes over at a relatively high temper-
ature compared to TFL.
For T < TFL, γlattðTÞ is constant for all V values shown,

as expected in a FL. It is orders of magnitude larger close to
the QCP on either side (green and orange curves) than
further away from it (blue and red curves), reflecting the
divergence of the QP mass m� ∼ γlattðT ¼ 0Þ ∼ Z−1 at the
QCP. It is noteworthy that, far from the QCP, the value of
γlattðT ¼ 0Þ for the RKKY phase is comparable to that in
the Kondo phase. This suggests that in the RKKY phase
the localized spins, though tending to lock into nearest-
neighbor singlets, nevertheless contribute quite signifi-
cantly to the density of states. Understanding this aspect
in more detail is left as an interesting task for future work.

X. RELATION TO OTHER MODELS

The NFL regime in the PAM shares several similarities
with the NFL in the two-impurity Kondo model
[87–89,155,156] and the two-channel Kondo model
[77,78,167–171]: (i) The Sommerfeld coefficient γ shows
a region of lnðTÞ dependence [cf. Fig. 19(b)]; (ii) the
entropy takes the value of ln

ffiffiffi
2

p
; and (iii) plateaus in

dynamical susceptibilities imply overscreening.
In this section, we compare the features of the effective

2IAM describing the PAM at V ¼ 0.46 close to the QCP to
known features of the 2IKM close to its QCP. We also
include data on the 2CKM close its QCP [77,78,167–171],
since its critical behavior is known to be closely related to
that of the 2IKM [155,156].
The Hamiltonian describing the 2IKM is given by

H ¼
X
i¼1;2

�X
kσ

ϵkc
†
ikσcikσ þ JSi · si

�
þ KS1 · S2: ð57Þ

Here, cikσ destroys an electron in channel i ¼ 1, 2 with
energy ϵk and spin σ, si ¼ 1

2

P
kk0σσ0 c

†
ikσ σ̂σσ0cik0σ0 describes

the local spin of channel i at the origin, and Si describe
two impurity-spin-1=2 degrees of freedom at the origin.
The impurity spins are coupled antiferromagnetically
to the corresponding conduction electrons with coupling
strengths J > 0. S1 and S2 are further coupled antiferro-
magnetically with coupling strength K > 0. The 2IKM can
be tuned through a QCP from a Kondo regime at K < Kc,
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where Si is screened by its corresponding bath, to an
RKKY regime at K > Kc, where S1 and S2 form a singlet.
At the QCP, TFL vanishes and an intermediate NFL region
emerges, similar to the case of the PAM discussed in the
main text.
The NFL in the 2IKM is closely related to the NFL found

in the 2CKM, described by the Hamiltonian

H ¼
X
i¼1;2

�X
kσ

ϵkc
†
ikσcikσ þ JiS · si

�
: ð58Þ

Here, there is only one impurity spin, coupled antiferro-
magnetically to two channels, i ¼ 1, 2, with coupling
strengths Ji > 0. The 2CKM has a QCP at J1 ¼ J2, where
the impurity changes from being screened by channel 1 at
J1 > J2 to being screened by channel 2 at J1 < J2. Close to
its QCP, a NFL fixed point is found which extends to T ¼ 0
at the QCP and shows features similar to these of the NFL
in the 2IKM and in the PAM as presented in the main part.
In the following, we consider a 2IKM and a 2CKM

tuned close to their respective QCPs. We compare their
Sommerfeld coefficients, impurity contributions to the
entropy and dynamical correlation functions to the f
electron contribution to the entropy and Sommerfeld
coefficient of the self-consistent 2IAM describing the
PAM close to its QCP, shown in Fig. 20. For both the
2IKM and the 2CKM, a box-shaped, particle-hole sym-
metric density of states with width 2 and height 1=2 is
used for both channels. As parameters, J ¼ 0.256 and
K ¼ 7.2 × 10−4 were used for the 2IKM, and J1 ¼ 0.29
and J2 ¼ 0.2894 were chosen for the 2CKM. Both

models are solved with NRG using Λ ¼ 3 and keeping
Nkeep ¼ 2000 SUð2Þcharge × SUð2Þcharge × SUð2Þspin mul-
tiplets at every NRG iteration.
Figure 20(a) shows χ002IKM½Sz1 þ Sz2� and χ002IKM½Sz1 − Sz2�,

together with the NFL and FL scales extracted from the
kinks of χ002IKM½Sz1 þ Sz2� and χ002IKM½Sz1 − Sz2� on the ln-ln
scale, respectively, similar as described for the PAM before.
In Fig. 20(b), we show the impurity spin susceptibility of
the considered 2CKM, χ002CKM½Sz�, with the corresponding
NFL and FL scales both extracted from χ002CKM½Sz�. The
similarity of χ002IKM½Sz1 − Sz2� in Fig. 20(a), χ002CKM½Sz� in
Fig. 20(b), and χ00½Xzx� in Fig. 4 is evident.
The Sommerfeld coefficient γ ¼ dSf=dT and the impu-

rity contribution to the entropy Sf are shown in Figs. 20(c)
and 20(d), respectively, for the 2IKM, the 2CKM, and the
PAM at V ¼ 0.46. Qualitatively similar behavior is found,
most notably, a plateau in Sf with Sf ≃ 1

2
lnð2Þ for all three

models and a lnðTÞ dependence of γ at intermediate
temperatures for the 2CKM and the PAM [the 2IKM
shows similar behavior, though without a clean lnðTÞ
dependence]. A further elucidation of the nature of the
NFL in the PAM will require an impurity model analysis as
done in Refs. [211,212]. We leave this for future work.

XI. CONCLUSION AND OUTLOOK

We have presented an extensive two-site CDMFT plus
NRG study of the PAM, following up on and considerably
extending and refining previous work done with an ED
impurity solver [131,132]. Leveraging the capabilities of
NRG to resolve exponentially small energy scales on the

FIG. 20. (a),(b) Spectral part of the spin susceptibility of (a) a 2IKM and (b) a 2CKM close to their QCPs. χ002IKM½Sz1 − Sz2� and
χ002CKM½Sz� show similar features as χ00½Xzx� in the PAM close to the KB QCP (cf. Fig. 4). (c) Sommerfeld coefficient and (d) impurity
contribution to the entropy of the 2IKM, 2CKM, and PAM close to their QCPs. The data for the PAM are taken at V ¼ 0.46. Most
notable, in the NFL region, γ shows a lnðTÞ behavior for the 2CKM and the PAM, and Sf ≃ 1

2
· lnð2Þ for all three models.
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real-frequency axis, we confirmed the existence of the KB
QCP found in Refs. [131,132], which can be understood in
terms of a continuous OSMT at T ¼ 0.
Beyond that, we unambiguously showed that the KB

QCP marks a second-order transition between two
FL phases (Fig. 3) which differ in their FS volumes
(Sec. VIII), leading to a sharp jump of the FS volume
(Fig. 17) and the Hall coefficient (Fig. 18). We found that,
in contrast to widespread belief [3], the f-electron QP
weight is nonzero in both the Kondo and the RKKY
phases (Sec. VI, in particular Fig. 9) and becomes
zero only at the QCP itself. We showed that the FS
reconstruction across the KB QCP can be understood in
terms of a sign change of the effective level position ϵ�fþ
(Fig. 9 and Sec. VIII), which is connected to the
emergence of a dispersive pole in the RKKY phase
(Fig. 10). An interesting consequence of the nonzero
f-electron QP weight is that, in the RKKY phase, the
band structure consists of three bands, with a very narrow
band crossing the Fermi level (Sec. VII). We also showed
that, in both the Kondo and RKKY phases, the specific
heat is linear in T, as expected from a FL; we find that the
Sommerfeld coefficient diverges when the KB QCP is
approached from either side (Sec. IX).
We find that the physics at the KB QCP and at nonzero

temperatures in its vicinity is governed by a NFL fixed
point (Sec. IV), which has some resemblance to the NFL
fixed points in the two-impurity and two-channel Kondo
models (Sec. X). In this paper, we reported a strange-
metal-like ∼T lnT specific heat in the NFL region
(Sec. IX). A more detailed analysis of the NFL regime
is provided in a companion paper [152], where we show
data regarding ω=T of the optical conductivity closely
resembling experimental data [63] and evidence for
linear-in-T resistivity.
We should, however, also mention some caveats in our

work, which may be addressed in future work. For
instance, while we provided some extensive formal
treatment of Luttinger’s theorem (Sec. VIII), we refrained
from offering any physical interpretation on how and
why the FS in the RKKY phase can be small. Indeed,
Oshikawa’s nonperturbative treatment of Luttinger’s
theorem [10] implies that, in the case of a violation of
Luttinger’s theorem, additional low-energy degrees of
freedom must be present [110,116]. We leave their
identification within the context of the PAM to future
work. We expect that this could also lead to a connection
to slave-particle theories [110,115]. Further insights
could possibly be pursued along the lines of recent work
by Fabrizio [151,176,213]. As we have pointed out
repeatedly in this paper, the work cited above draws a
connection between Luttinger surfaces and fractionalized
spinon excitations. Our work paves the way to explore
this connection in detail in terms of a concrete example.

An obvious limitation of our CDMFT study is the small
cluster size of only two sites—which very likely over-
estimates the tendency for f singlet formation in the RKKY
phase. Therefore, an important line of future work should
be to check the cluster-size dependence of our results.
However, the two-site cluster is already sufficient to capture
momentum differentiation in ϵ�fk, which is crucial for the
occurrence of a LS and a FS reconstruction, as shown in
Sec. VIII. We expect that further improving the momentum
resolution via larger cluster sizes will mainly have a
quantitative impact and will not alter the qualitative picture
drawn by the two-site approximation.
Another unsatisfactory aspect of our two-site CDMFT

treatment is that it yields a nonzero entropy at the KB QCP
at T ¼ 0; see Sec. IX. As mentioned in that section, such a
nonzero entropy would render the KB QCP highly unstable
to symmetry breaking. Whether this is a finite cluster size
effect or continues to be the case also for larger cluster sizes
needs to be checked in future work.
Lastly, our CDMFT treatment requires reperiodization

of self-energies to obtain a periodic self-energy with k
dependence. Reperiodization is an ad hoc postprocessing
procedure. We have checked that our most important
claims are consistent with our nonreperiodized bare data.
Nevertheless, in our view, it would be important to cross-
check our results in future studies, for instance, with
numerically exact methods. Such studies will be very
useful for establishing the range of applicability of CDMFT
for describing KB physics.
Our work motivates several follow-up studies. For

instance, as mentioned before, it would be interesting to
explore the interplay between KB physics and potential
symmetry-breaking orders of all kinds, e.g., antiferromag-
netic or superconducting orders. Similar studies could also
be done for models appropriate to other classes of strongly
correlated materials. Obvious candidate material classes,
which experimentally show quantum critical behavior quite
similar to heavy fermions, are cuprates [214–219] or
twisted bilayer graphene [220–222].
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APPENDIX A: CDMFT FOR THE PAM

In the two-site CDMFT treatment of the PAM, the three-
dimensional lattice is tiled into a superlattice of two-site
clusters [121,130,132]. An effective action can then be
constructed via the cavity method [119]. It takes the form of
a 2IAM coupled to an effective bath, describing the rest of
the lattice from the point of view of the two-site cluster in the
CDMFTapproximation. The c electrons can either be treated
explicitly, or they can be integrated out and merged with
the effective bath, as they are noninteracting. We decided to
treat the c electrons explicitly, as this enables us to directly
calculate dynamical susceptibilities involving c-electron
degrees of freedom. Additional calculations, treating the c
electrons together with the bath, confirmed that both
methods give the same results. Note that both methods have
roughly the same amount of computational complexity for
the NRG impurity solver. Since the f electrons couple to the
bath only via the c electrons as they do not have any nonlocal
hopping term, one obtains two bands of spinful bath
electrons in both cases. For a detailed description of two-
site CDMFT for the PAM, see Ref. [130].

1. Self-consistency

In the CDMFT approximation, the cluster Green’s
function is given by

GlocðzÞ ¼
Z
k

� z − ϵf − ΣfðzÞ −V

−V G−1
0;ckðzÞ

�−1

ðA1aÞ

¼
�

Gloc;fðzÞ Gloc;fcðzÞ
Gloc;fcðzÞ Gloc;cðzÞ

�
; ðA1bÞ

where G0;ck is the c-band Green’s functions at V ¼ 0,

G0;ckðzÞ ¼
1

ðzþ μÞ2 − ðϵ0ckÞ2
�

zþ μ eikxϵ0ck
e−ikxϵ0ck zþ μ

�
; ðA2Þ

and ΣfðzÞ is the cluster f-electron self-energy (which is a
proper, single-particle irreducible self-energy),

ΣfðzÞ ¼
�Σf11ðzÞ Σf12ðzÞ
Σf21ðzÞ Σf22ðzÞ

�
; ðA3Þ

which is k independent in CDMFT. Gloc;cðzÞ can
be computed by performing a momentum integral
(cf. Sec. A 2):

Gloc;cðzÞ ¼
Z
k
½G−1

0;ckðzÞ − ΣcðzvÞ�−1; ðA4Þ

while Gloc;fðzÞ and Gloc;fcðzÞ are related to Gloc;cðzÞ via
Eq. (6c). ΣcðzÞ is the cluster c-electron self-energy (which
is not single-particle irreducible), related to ΣfðzÞ via
Eq. (6e). ΣfðzÞ can be computed from an auxiliary self-
consistent 2IAM [cf. Eq. (4)] with GlocðzÞ ¼ G2IAMðzÞ,
with the corresponding Green’s functions of the 2IAM
given in Eq. (6).
The self-consistent solution is not known a priori and

has to be computed via a self-consistency cycle. For that,
the hybridization function of the 2IAM Eq. (5) is initialized
with some guess. Then, (i) the self-energies are computed
via NRG, (ii) Gloc;cðzÞ is computed via Eq. (A4), and
(iii) the hybridization function is updated via

ΔcðzÞ ¼ zþ μþ t · τx − ΣcðzÞ −G−1
loc;cðzÞ: ðA5Þ

This cycle is repeated until convergence is reached.

2. Momentum integration

To achieve accurate results, a method for precise momen-
tum integration of propagators is needed in the CDMFT.
For this, we employ the tetrahedron method [223,224],
which is applicable for integrals of the form

Z
1:BZ

dk
fk
gk

; ðA6Þ

where fk and gk are smooth functions of k. The Brillouin
zone is tiled into tetrahedra, and both f and g are interpolated
linearly on this tetrahedron. The integral can then be
performed analytically, yielding

Itetra ¼
X
i

fiwiðfgigÞ: ðA7Þ

Here, fi and gi are the functions f and g evaluated at the
corners of the tetrahedron, and wiðfgigÞ are integration
weights which depend on g only. Formulas for these weights
are quite lengthy and can be found in Ref. [224] for one-,
two-, and three-dimensional integration. We further use an
adaptive momentum grid to reduce computational effort,
adjusting the grid size according to the degree of difficulty of
the integral in a certain region. This enables us to evaluate all
our integrals with an absolute error less than 5 × 10−4. For
this, the integration domain is tiled into a coarse and a fine
grid, and the grid is iteratively refined in regions where the
error bound is not fulfilled, until convergence is reached
within the error bounds. Using the tetrahedron method, we
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then calculate Gloc;cðωÞ via Eq. (A4). The computational
effort for this integral can be reduced by treating the integral
over ky and kz as a density of states integration, thereby
mapping Eq. (A4) to a two-dimensional integral:

ϵðkx; EÞ ¼ −2tðcosðkxÞ þ EÞ;

G−1
0;cðz; kx; EÞ ¼

�
zþ μ −eikxϵðkx; EÞ

−e−ikxϵðkx; EÞ zþ μ

�
;

Gloc;cðzÞ ¼
Z
kx

Z
E
ρ2DðEÞ½G−1

0;cðz; kx; EÞ − ΣcðzÞ�−1;

ρ2DðEÞ ¼
Z
ky

Z
kz

δ½E − cosðkyÞ − cosðkzÞ�; ðA8Þ

where ρ2D is the density of states of a square lattice.

3. Reperiodization of the self-energy

To determine transport properties such as the resistivity,
the Hall coefficient, or the FS, the lattice symmetries
have to be restored by reperiodizing the cluster self-energy.
We accomplish this via a modified periodization of the
cumulant MðzÞ ¼ ½zþ μ − ΣcðzÞ�−1 (M periodization)
[157,158]. As we discuss in Sec. VIII, the Luttinger integral
(at T ¼ 0) without reperiodization, i.e., Eq. (51), is zero
(cf. Fig. 17). This property is not respected by conventional
M periodization; the Luttinger integral with reperiodiza-
tion, i.e., Eq. (43), is generically nonzero. To ensure that
the Luttinger integral vanishes also after reperiodization,
we therefore modify the cumulant by a V-dependent shift
of the chemical potential in the denominator only for
reperiodization purposes:

M̃ðzÞ ¼ ½zþ μþ δμðVÞ − ΣcðzÞ�−1; ðA9aÞ

M̃kðzÞ ¼ M̃11ðzÞ þ M̃12ðzÞ
X3
α¼1

1

3
cosðkαÞ ðA9bÞ

¼ ½zþ μþ δμðVÞ − ΣckðzÞ�−1: ðA9cÞ

Here, Eq. (A9a) defines the modified cumulant used for
reperiodization, Eq. (A9b) defines the reperiodization of
M̃ðzÞ, and Eq. (A9c) relates it to Σck, thereby defining Σck;
quantities like Σfk or Gxk are obtained from Σck using the
relations Eqs. (3). Note that the shift δμðVÞ appears both in
Eq. (A9a) and in Eq. (A9c); it, therefore, does not constitute
an actual shift in the chemical potential but rather slightly
redefines the quantity used for reperiodization (i.e., M̃
instead of M is reperiodized). The shift δμðVÞ is chosen
such that the Luttinger integral after reperiodization
[Eq. (43)] coincides with that before reperiodization
[Eq. (51)] at T ¼ 0. The same shift δμðVÞ is then used
at T > 0 for the same V. After reperiodization, we have
M̃Γ ¼ M̃11 þ M̃12 ¼ M̃þ and M̃Π ¼ M̃11 − M̃12 ¼ M̃−;

the same relation also holds between Σxk and Σxα.
This establishes a correspondence between the Γ (Π) point
in the lattice model and þ (−) orbital in the effective
cluster model.
To benchmark our reperiodization scheme, we compare

the local spectral functions with and without reperiodiza-
tion, shown in Fig. 21. For V not too close to Vc ¼ 0.4575
and at elevated temperatures, these two functions agree,
implying that reperiodization works well here. Close to the
QCP (low temperatures, V ≃ Vc), however, reperiodized
and cluster results show differences. These differences
are mostly quantitative, while most of the qualitative
features remain similar. For instance, for Af at T ¼ 0,
both the Kondo peak height at V ¼ 0.46 and the pseudogap
at V ¼ 0.455 are more pronounced after periodization,
but the qualitative behavior is the same before and after
periodization [Fig. 21(c)]. The most severe qualitative
mismatch is the Ac;locð0Þ for V < Vc [Fig. 21(d)]: At
T ¼ 0 in the RKKY phase, as V is increased toward Vc,
a Kondo-like peak develops in Ac;loc before periodization
(see our discussion in Sec. VI B)—i.e., Ac;locð0Þ increases
as V approaches Vc (solid green curve lies above solid
blue curve at ω ¼ 0); after periodization, the converse
happens—i.e., Ac;locð0Þ decreases as V approaches Vc

(dashed green curve lies below dashed blue curve at
ω ¼ 0). Our periodization procedure, thus, misses the
development of the Kondo-like peak in Ac;loc.
We emphasize that reperiodization is an ad hoc post-

processing procedure. Features in reperiodized data should

FIG. 21. Comparison of local cluster spectral functions (solid
lines) and local lattice spectral function (dashed lines) after
periodization of the self-energies. The upper and lower rows
show the f- and c-electron spectral function, respectively. The
left show data for four different temperatures at fixed V ¼ 0.46,
close to Vc. The right show data for four different V at T ¼ 0.
The layout mirrors that in Fig. 8.
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always be substantiated by analyzing the raw data before
reperiodization. We have done so repeatedly in the main
text, for instance, for the FS and LS volumes, the dispersive
pole in Σf, or the two- and three-band structures in the
Kondo and RKKY phases, respectively.

4. Self-consistent hybridization function versus V

In the main text, we emphasize the importance of
self-consistency to access the KB QCP in two-site
CDMFT. Here, we elaborate this aspect by showing
that the self-consistent hybridization functions in the
vicinity of the KB QCP show (i) a strong ω dependence
and (ii) a strong V dependence. This implies that
self-consistency is of high importance if one wants
to capture the KB QCP.
Figure 22 shows the hybridization functions at T ¼ 0 on

a logarithmic frequency scale, plotted for several different
values of V close to the KB QCP. As seen from the insets,
showing the same data on a linear frequency scale, the
hybridization functions have sharp features at low frequen-
cies. The sharp features appear stretched out on the log
scale of the main panels, which reveal that, for V very close
to Vc (green and yellow), they occur at frequencies as low
as jωj ≃ 10−8. This shows that the hybridization functions
of the effective 2IAM describing the self-consistent PAM
depend strongly on frequency. For a non-self-consistent
2IKM with weakly frequency-dependent hybridization
functions, it has been shown that the NFL fixed point
and, thus, the QCP are unstable to the breaking of
symmetries which are indeed broken in our effective
2IAM [82,83,86,89]. Our work implies that this conclusion

does not generalize to the case of hybridization functions
displaying a strong frequency dependence.
Figure 22 shows that the hybridization functions are also

strongly V dependent, especially close to ω ¼ 0. A change
of V by 5 × 10−3 in the vicinity of the KB QCP induces
comparably large changes in the hybridization functions,
of the order of 10−1 at some frequencies. Thus, close to
the KB QCP, a tiny change in V leads to a considerable
readjustment of the self-consistent hybridization function
by iterating the CDMFT self-consistency cycle. This shows
that self-consistency is of high importance to capture the
KB QCP.
In Fig. 23, we plot the absolute value of the derivative of

the hybridization functions at ω ¼ 0, j∂ωΔxαðωþÞjω¼0, at
T ¼ 0 as functions of V. The zero-frequency derivative
of the hybridization functions has a peak at the KB QCP
at Vc, indicative of a divergence. This suggests that the
self-consistent hybridization functions become singular
at ω ¼ 0 at the KB QCP. This further emphasizes that
(i) results obtained on the 2IAM with weakly frequency-
dependent hybridization functions are not straightforwardly
applicable to the self-consistent 2IAM arising in our
CDMFT solution of the PAM, and (ii) self-consistency
is important to capture this singular behavior at the KB
QCP. A more detailed study investigating how the self-
consistency equations manage to drive the 2IAM to a stable
QCP will be subject to future work.

5. Transport properties

For the calculation of the resistivity and the Hall
coefficient, the M-reperiodized self-energy is used. The

FIG. 22. Evolution of the self-consistent hybridization functions ΔxαðωþÞ at T ¼ 0 as V is tuned across the QCP. Colored curves
correspond to V values marked by ticks on the color bar. The layout mirrors that in Fig. 8 in the main text. Top row: imaginary parts;
bottom row: real parts. The insets show the hybridization functions on a linear frequency scale for jωj < 2 × 10−4.
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formulas for the optical conductivity σðωÞ ignoring vertex
contributions, resistivity ρxx ¼ 1=σxx, and the Hall coef-
ficient RH ¼ σxy=ðσ2xxHÞ are given by [225,226]

σðωÞ ¼ 2πe2
Z

dϵΦxxðϵÞσ̃ðϵ;ωÞ;

σ̃ðϵ;ωÞ ¼
Z

dω̃
fðω̃Þ − fðω̃þ ωÞ

ω
Acðϵ; ω̃ÞAcðϵ; ω̃þ ωÞ;

σxx ¼ lim
ω→0

σðωÞ;

σxy ¼
4

3
π2e3H

Z
dϵΦxyðϵÞ

Z
dω

�
−
∂f
∂ω

�
A3
cðϵ;ωÞ;

ΦxxðϵÞ ¼
Z
1:BZ

dk
ð2πÞ3 ðϵ

x
kÞ2δðϵ − ϵckÞ;

ΦxyðϵÞ ¼
Z
1:BZ

dk
ð2πÞ3

				 ϵ
x
kϵ

x
k ϵxyk

ϵykϵ
x
k ϵyyk

				δðϵ − ϵckÞ; ðA10Þ

whereH denotes the magnetic field, e < 0 the charge of the
electrons, fðωÞ the Fermi function, ϵxk ¼ ∂kxϵck the deriva-
tive of the dispersion by kx (and, correspondingly, for,
e.g., ϵxyk ), and j · j the determinant. In the above formulas,
only the c-electron spectral function appears, as there are
no terms involving the f electrons which do not conserve
local charge. Note also that the k-dependent spectral
function depends on k only through ϵck after reperiodiza-
tion via Eq. (A9).
Equations (A10) include only the bubble contribution to

the conductivities and ignore vertex contributions. In a
companion paper [152], we show that vertex contributions
to the conductivity are qualitatively important in order
to capture the correct scaling of the optical conductivity in
the NFL region. A full treatment of vertex contributions is
currently computationally unfeasible with our NRG impu-
rity solver, because the computation of four-point correla-
tion functions for the 2IAM at hand is too expensive. To
compute the Hall coefficient shown in Fig. 18, we therefore
do not consider vertex contributions but just use the
formulas presented in Eqs. (A10).

APPENDIX B: CONVERGENCE OF NRG

In this section, we provide details on the reliability of our
NRG data. For that, we first show in Appendix B 1 that
our data are converged with the number of kept SU(2)
multiplets. In Appendix B 2, we then discuss how we
broaden our discrete spectral data. Appendix B 3 shortly
discusses how our results depend on the NRG discretiza-
tion parameter Λ.

1. Convergence with Nkeep

To obtain the data in the main text, we use Λ ¼ 3 as
our NRG discretization parameter and keepNkeep ¼ 25 000

SU(2) multiplets. For the most challenging Wilson shell
(typically l ¼ 3, the first shell where truncation occurs;
l ¼ 0 is the impurity), this results in a truncation energy
Etrunc ≃ 9El, where El ∝ Λ−l=2 is the energy scale of shell
l, which is normalized so that liml→∞ El=tl ¼ 1, and tl is
the hopping matrix element between sites l − 1 and l.
From experience, Etrunc > 7El usually leads to reliable

data. Therefore, our results with Etrunc ≃ 9El are expected
to be reasonably converged inNkeep. To explicitly check the
convergence in the challenging region close to the QCP,
we check that Nkeep ¼ 8000, i.e., less than 1=3 of the Nkeep

we use, is sufficient to obtain qualitatively correct data.
This is shown in Fig. 24, where we compare the f-electron
spectral function [Figs. B4(a) and B4(b)] and self-energy

FIG. 23. Absolute value of the derivative of the hybridization
function as zero frequency, j∂ωΔxαðωþÞjω¼0 at T ¼ 0, plotted as a
function of V.

FIG. 24. (a),(b) f-electron spectral function and (c),(d)
f-electron self-energy at V ¼ 0.46 and different temperatures
for Nkeep ¼ 25000 (solid lines) and Nkeep ¼ 8000 (dashed lines).
(a)–(d) mirror the layout in Figs. 15(a), 15(b), 15(e), and 15(f),
respectively. Both Nkeep ¼ 25000 and Nkeep ¼ 8000 capture the
same qualitative behavior. Visible differences are small and occur
at low frequencies and temperatures, jωj < TNFL and T < TNFL.
For the spectral functions in (a) and (b), visible differences (≲2%)
occur at low frequencies jωj ≪ TNFL and T < TNFL.
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[Figs. B4(c) and B4(d)] at V ¼ 0.46 and different temper-
atures for Nkeep ¼ 25000 (solid lines) versus Nkeep ¼ 8000

(dashed lines). Small differences of ≲2% are visible in
the spectral functions at low frequencies jωj < TNFL and
temperatures T < TNFL. Similar small visible differences
of ≲5% are visible in Σf�ðωÞ for jωj < TNFL in the NFL
region, TFL < T < TNFL.

2. Broadening

We broaden the discrete spectral functions obtained
from fdm-NRG using the scheme described in
Ref. [161]. There, a log-Gaussian broadening kernel
[cf. Eq. (17) in Ref. [161]] is applied first, followed by
a linear broadening kernel; cf. Eq. (21) in Ref. [161]. The
adaptive log-Gaussian broadening width introduced in
Ref. [161] is not used in this work.
Fermionic spectral functions.—For fermionic spectral

functions, we use a symmetric log-Gaussian kernel [161]:

δsσðω;ωkÞ ¼
θðωωkÞffiffiffi
π

p
σjωkj

e−ðln jω=ωkj=σ−σ=4Þ2 ; ðB1Þ

which preserves the height of spectral peaks. The spectral
peak heights are crucial to obtain correct scattering phase
shifts, which, at low temperatures, are usually tied to the
filling via the Friedel sum rule in impurity models or the
Luttinger sum rule in a lattice model; cf. Sec. VIII B.
Because of that, the δsσðω;ωkÞ is our kernel of choice for
fermionic spectra. For the data shown in the main text, we
use σ ¼ 0.75 lnΛ, which is chosen just large enough to
avoid visible broadening artifacts. As a linear broadening
kernel, we use the derivative of the Fermi-Dirac distribu-
tion, Eq. (21) in Ref. [161], with broadening width
γ ¼ T=5.
Bosonic spectral functions.—For bosonic spectra,

shown, for instance, in Fig. 4, we use a centered log-
Gaussian kernel:

δcσðω;ωkÞ ¼
θðωωkÞffiffiffi
π

p
σjωkj

e−ðln jω=ωkj=σÞ2eσ2=4; ðB2Þ

which preserves the positions of peaks. Since we determine
the energy scales TFL and TNFL from the positions where
power laws of bosonic spectra change (cf. Appendix C)
and since δcσðω;ωkÞ preserves these positions, our kernel
of choice for bosonic spectra is δcσðω;ωkÞ. As broadening
widths, we chose σ ¼ lnΛ and γ ¼ T=10 for bosonic
spectra.
We have checked that the main qualitative features

discussed in the main text, for both fermionic and bosonic
spectra, do not depend on the specific (reasonable) choices
of σ (of the order of lnΛ) and γ (≲T).

3. Λ dependence

To illustrate how the choice of discretization parameterΛ
influences our results, Fig. 25 shows the f-electron spectral
functions [Figs. B5(a) and B5(b)] and self-energies
[Figs. B5(c) and B5(d)] at V ¼ 0.46 and T ¼ 0 (our data
point closest to the QCP), computed for Λ ¼ 3 (our choice
in the main text) and, for comparison, for Λ ¼ 4. The
results for Λ ¼ 4 are obtained by a “single-shot” NRG
calculation using the converged Λ ¼ 3 hybridization
function as input. Both choices of Λ produce the same
qualitative results, albeit with small quantitative
differences. For example, Λ ¼ 4 yields somewhat narrower
Kondo peaks in Af and narrower gaps in Σf compared
to Λ ¼ 3.

APPENDIX C: DETERMINATION
OF ENERGY SCALES

To determine the crossover scales TFL and TNFL, we
exploit the fact that the spectral functions of particular
susceptibilities show a well-defined power-law dependence
in the fixed point regions, which changes when traversing
the crossover regions. On a log-log scale, this leads to
straight lines with kinks in the crossover regions, as can be
seen in Fig. 4 in the main text. The second derivative of
χ00½O�ðωÞ on the log-log scale,

χ̃½O�ðωÞ ¼ ∂
2 ln10fχ00½O�ðωÞg

∂ ln10ðωÞ2
; ðC1Þ

tracks the change in slope at the crossover, enabling us to
determine the corresponding scale. We use χ00½Sz� to
determine the NFL scale and χ00½Xxz�, χ00½Tz�, χ00½Ty�, and
χ00½Pz� to determine the FL scale. The corresponding
operators are defined in Eq. (9) in the main text.
χ00½Xxz�, χ00½Tz�, χ00½Ty�, and χ00½Pz� are shown in Fig. 2.

FIG. 25. (a),(b) f-electron spectral function and (c),(d)
f-electron self-energy at V ¼ 0.46 and T ¼ 0 for Λ ¼ 3 (red
solid lines) and Λ ¼ 4 (black dashed lines). Both Λ ¼ 3 and
Λ ¼ 4 capture the same qualitative behavior.
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Examples for the determination of the NFL scale
via χ00½Sz� and of the FL scale via χ00½Xxz� are shown in
Figs. 26(a) and 26(b), respectively. While χ00½Ty� and χ00½Pz�
are much smaller than χ00½Tz� and χ00½Xxz�, they are more
suitable than the latter two far away from the QCP,
especially for V < Vc. The reason for this is shown in
Fig. 26(c) for χ00½Tz�: The second derivative on the ln-ln
scale shows two minima, the first related to TFL and the

second related to TNFL. The same is true for χ00½Xxz� (not
shown). These two minima merge away from the QCP,
preventing the determination of TFL. The determination via
χ00½Ty� and χ00½Pz� is not faced with these difficulties, as they
have only one minimum, associated with TFL.
We note that the determination of TFL via χ00½Xxz� works

well in the Kondo regime for all V but in the RKKY regime
only close to the QCP, while χ00½Tz� works only close to the
QCP in both the Kondo and the RKKY regimes. As the FL
scale extracted from different correlators in are generally
not exactly equal, we define TFL as their geometric mean as
shown in Fig. 27. Each gray line there shows a FL scale
extracted from a different correlator, while the blue and
purple lines show their geometric mean. The gray lines do
not exactly lie on top of each other, but they are sufficiently
similar to justify the averaging described above.

APPENDIX D: DETERMINATION OF THall

Figure 2 includes data points (red dots) marked THallðVÞ,
showing how the crossover from a large FS in the Kondo
phase to a small FS in the RKKY phase evolves with
temperature. Here, we describe how THall was determined.
We closely follow the procedure used in Ref. [26]. We fit

our numerical V-dependent Hall coefficient data (see
Fig. 18) at T ¼ 10−4, 10−5, and 10−6 to the form

RHðVÞ
RH;0

≃fit aþ b
1þ ðV=VHallÞp

; ðD1Þ

with fit parameters a, b, p, and VHall; i.e., we impose the
same functional form as used in Ref. [26] (except for the
different tuning parameter, V in our case and B field in
Ref. [26]). To closely mirror the procedure used in
Ref. [26], we constrain our fit for a given, fixed T to the
crossover region from Kondo to RKKY regime by fitting
only in a V region determined by T > 0.1 · TFLðVÞ (i.e.,
we omit data points deep in the FL regions). This yields
VHallðTÞ, and inverting this function yields THallðVÞ.
Figure 28 shows our Hall effect data with the corresponding
fits.

FIG. 26. (a) χ̃½Sz�ðωÞ plotted versus ln10ðωÞ at V ¼ 0.46 and
T ¼ 0. We extract the NFL scale from the position of the
minimum marked by the orange arrow. (b) χ̃½Xxz�ðωÞ plotted
versus ln10ðωÞ at V ¼ 0.46 and T ¼ 0. The FL scale is extracted
from the position of the minimummarked by the blue arrow. Note
that, while the other minimum is associated with TNFL, it is not
used to extract this scale. (c) χ̃½Tz�ðωÞ plotted versus ln10ðωÞ at
V ¼ 0.445 and V ¼ 0.44 at T ¼ 0. While the FL scale can still be
extracted from χ̃½Tz�ðωÞ at V ¼ 0.445 because both minima in
χ̃½Tz�ðωÞ are still clearly distinguishable, it is not possible any
more for V ¼ 0.44 as the minima have merged.

FIG. 27. FL scales, extracted from different correlators (gray
lines). For more information on the energy scales, see Fig. 2 in the
main text and the corresponding discussion there.

FIG. 28. Hall coefficient data from Fig. 18 (symbols) and
corresponding fits via Eq. (D1) (black lines). To improve
visibility, the data for T ¼ 10−5 and T ¼ 10−6 are offset by 2
and 4, respectively.
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