
Multipoint Correlation Functions: Spectral Representation and Numerical Evaluation

Fabian B. Kugler ,1,2,* Seung-Sup B. Lee ,1,* and Jan von Delft 1

1Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for
Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany

2Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

(Received 22 January 2021; revised 25 May 2021; accepted 13 July 2021; published 11 October 2021)

The many-body problem is usually approached from one of two perspectives: the first originates from an
action and is based on Feynman diagrams, the second is centered around a Hamiltonian and deals with
quantum states and operators. The connection between results obtained in either way is made through
spectral (or Lehmann) representations, well known for two-point correlation functions. Here, we complete
this picture by deriving generalized spectral representations for multipoint correlation functions that apply
in all of the commonly used many-body frameworks: the imaginary-frequency Matsubara and the real-
frequency zero-temperature and Keldysh formalisms. Our approach separates spectral from time-ordering
properties and thereby elucidates the relation between the three formalisms. The spectral representations of
multipoint correlation functions consist of partial spectral functions and convolution kernels. The former
are formalism independent but system specific; the latter are system independent but formalism specific.
Using a numerical renormalization group method described in the accompanying paper, we present
numerical results for selected quantum impurity models. We focus on the four-point vertex (effective
interaction) obtained for the single-impurity Anderson model and for the dynamical mean-field theory
solution of the one-band Hubbard model. In the Matsubara formalism, we analyze the evolution of the
vertex down to very low temperatures and describe the crossover from strongly interacting particles to
weakly interacting quasiparticles. In the Keldysh formalism, we first benchmark our results at weak and
infinitely strong interaction and then reveal the rich real-frequency structure of the dynamical mean-field
theory vertex in the coexistence regime of a metallic and insulating solution.
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I. INTRODUCTION

A. Multipoint correlation functions

A major element in the ongoing challenge of the
quantum many-body problem is to extend our under-
standing, our analytical and numerical control, from the
single- to the many-particle level. One-particle correlation
functions, describing the propagation of a particle in a
potentially highly complex, interacting environment, are
clearly important. However, almost since the beginning of
interest in the many-body problem, two-particle correlation
functions have played an equally important role. They
describe the effective interaction between two particles in
the many-body environment, response functions to optical
or magnetic probes, collective modes, bound states, and

pairing instabilities, to name but a few, and are essential
ingredients in Landau’s Fermi-liquid theory [1].
For a long time, two-particle or four-point (4p) functions

could only be computed by perturbative means, later
including resummation and renormalization group schemes
as well. Recently, the advance of numerical techniques to
compute such functions fully nonperturbatively, albeit only
locally, has opened a new chapter. For various impurity
models [general ones as well as those arising in dynamical
mean-field theory (DMFT) [2] ], it was even found that 4p
functions can exhibit divergences in strongly correlated
regimes [3–13]. These divergences occur for a special class
of 4p functions, namely two-particle irreducible vertices,
and have renewed the interest in thoroughly understanding
the properties of 4p functions.
The properties of multipoint or l-point (lp) functions

depend on the theoretical framework employed.
Technically, lp functions are correlation functions of l
operators with l arguments. If the operators are taken at
different times, the Fourier-transformed function depends
on frequencies. Clearly, these times and frequencies are
real numbers, and the early works directly dealt with
these real frequencies. Later, the many-body theory was
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revolutionized by the Matsubara technique, based on a
Wick rotation from real to imaginary times [14]. This
significantly facilitates numerical approaches, and the vast
majority of numerical work on lp functions is based on the
Matsubara formalism (MF). The periodicity in imaginary
times yields functions of discrete imaginary or Matsubara
frequencies. Physical results are obtained in the end by
performing an analytic continuation, back from imaginary
to real frequencies. Yet, crucially, the numerical analytic
continuation from imaginary to real frequencies is an ill-
conditioned problem [15]; though it may work fairly well
for docile 2p functions, it is unfeasible for higher-point
objects.
Formally, real-frequency frameworks are as well estab-

lished as the MF: the zero-temperature formalism (ZF)
works with ground-state expectation values of time-ordered
operators [14]. Finite-temperature real-frequency dynam-
ics, both in and out of equilibrium, are treated in the
Keldysh formalism (KF), based on a doubled time contour
[16,17]. Because of the problematic analytic continuation
and growing interest in nonequilibrium dynamics, the
KF has gained much popularity in recent years. However,
there are hardly any numerical real-frequency results
of lp functions depending on more than one frequency.
Conceptually, it is therefore of great interest to extend the
understanding of lp functions that has been reached for
imaginary frequencies to the real(-frequency) world.

B. Our approach

In this work, we achieve a deepened understanding of lp
functions, applying naturally in any of the real- or imagi-
nary-time frameworks. The central principle of our
approach is to separate properties due to time ordering
from spectral properties of the system. The former govern
the analytic structure of lp functions; the latter are the key
objects of the numerical evaluation. While exploiting this
separation is standard practice for 2p functions, to our
knowledge it has not yet been pursued systematically for lp
functions. Here, we derive spectral representations of
general lp functions for arbitrary l, in all three frameworks
(ZF, MF, KF). We illustrate the power of our approach by
presenting numerical results for various local 4p examples.
The spectral representations are based on a density

matrix, which defines the quantum averages, and an
expansion in eigenstates of the Hamiltonian, which deter-
mines the time evolution. The spectral representations have
similar forms in all three frameworks. Indeed, the spectral
or Lehmann representation of 2p functions is arguably the
most transparent way of demonstrating the analytic relation
between Matsubara and retarded propagators [18]. Here,
we achieve a similar level of transparency: all lp functions
are expressed by a sum over formalism-independent
“partial” spectral functions, convolved with formalism-
specific kernels. The partial spectral functions (PSFs) serve
as unique and compact porters of the system-specific

information. Convolving them with the rather simple and
system-independent kernels yields correlation functions in
the desired form. Through this convolution, the correlation
functions acquire their shape and characteristic long tails.
In fact, the numerical storage of lp functions, depending on
l − 1 frequencies, can be problematic [19–24]. In this
regard, the PSFs are advantageous since they have compact
support, bounded by the largest energy scale in the system.
For a set of external time arguments of a correlation

function Gðt1;…; tlÞ, the time-ordering prescription deter-
mines the corresponding order of operators in the expect-
ation value. In our approach, we first consider all possible
operator orderings, i.e., hO1̄ðt1̄Þ � � �Ol̄ðtl̄Þi for all permu-
tations pð1;…;lÞ ¼ ð1̄;…; l̄Þ. The Fourier transform of
each of these l! expectation values yields a PSF; the
collection of all PSFs describes the spectrum of the system
(on the lp level). Second, for given external times, some
operator orderings are specified, depending on the formal-
ism. In the ZF and MF, this is always one ordering; in the
KF using the Keldysh basis, it may be a linear combination
of multiple orderings. The ordering is specified by kernel
functions which are multiplicative in the time domain. In
the frequency domain, they become convolution kernels,
mapping PSFs to contributions to Gðω1;…;ωlÞ.
The spectral representations clearly reveal the similar-

ities and differences of the various lp functions. In the most
complex setup of the KF with Keldysh basis, where each
argument has an extra Keldysh index 1 or 2, we find that
those components with a single Keldysh index equal 2 at
position η, dubbed G½η�, have the simplest structure. Indeed,
they are the (fully) retarded objects which can be obtained
from Matsubara lp functions via a suitable analytic
continuation, iωi → ωi � i0þ [25]. This does not apply
to the remaining Keldysh components. However, we find
that their convolution kernels K are linear combinations of
the retarded kernels K½η�. Thereby, our spectral representa-
tions offer a direct way of discussing the relation between
the Matsubara and all Keldysh lp functions in explicit
detail—this will be the topic of a forthcoming publica-
tion [26].
To illustrate our approach, we numerically evaluate the

spectral representation of local 4p functions for selected
quantum impurity models via the numerical renormaliza-
tion group (NRG) [27]. Since its invention by Wilson in
1975 [28], NRG has become the gold standard for solving
impurity models. It has the unique advantage of allowing
one to (i) directly compute real- and imaginary-frequency
results without the need for analytic continuation, (ii) reach
arbitrarily low temperatures with marginal increase in the
numerical costs, and (iii) access vastly different energy
scales, zooming in on the lowest excitation energies. Our
NRG scheme is based on the full density matrix NRG
[29,30] in an efficient tensor-network formulation [31–33],
with an additional, iterative structure to finely resolve
regimes of frequencies jωij ≪ jωjj, i ≠ j. The rather
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intricate prescription for how to do this for 3p and 4p
functions is explained in the accompanying paper [34].

C. Structure of this paper

Our spectral representations of lp functions and the
NRG scheme to evaluate them have numerous potential
applications, such as finite-temperature formulations of
Fermi-liquid theory and nonlocal extensions of DMFT in
the MF at low temperatures or in real-frequency KF
implementations. We elaborate on the applications in the
concluding Sec. V B.
The rest of the paper is organized as follows. In Sec. II,

we derive the spectral representations in a general setting,
for arbitrary l, a given density matrix, and any time-
independent Hamiltonian. After motivating our approach
and introducing notation for l ¼ 2, we subsequently derive
our results in the ZF, MF, and KF, the latter both in the
contour and Keldysh bases. The main results of this section
are the spectral representations, involving the PSFs
[Eq. (28)] and summarized in Eqs. (26) and (27) for the
ZF, in Eqs. (39) and (45) or (46) for the MF, and in
Eqs. (63), (64), or (67) for the KF in the Keldysh basis. In
Sec. III, we briefly describe the quantities of interest for the
numerical evaluation, i.e., local 4p correlation and vertex
functions. Our numerical results are contained in Sec. IV.
We start with a simple model for x-ray absorption in metals
treated in the ZF and analyze power laws in the 4p vertex.
Proceeding with the Anderson impurity model (AIM) in the
MF, we first benchmark our results at intermediate temper-
atures against Monte Carlo data and then extend these
results to lower temperatures to enter the Fermi-liquid
regime and deduce the quasiparticle interaction. Thereafter,
we treat the AIM in the KF, first testing our method at weak
and infinitely strong interaction, before moving to the
intermediate, strongly interacting regime. Finally, we
present results for the DMFT solution of the one-band
Hubbard model and compare the MF and KF vertex for
both the metallic and insulating solution. In Sec. V, we
summarize our results and give an outlook on applications.
Appendixes A–C are devoted to exemplary calculations in
each of the ZF, MF, and KF. Appendix D describes details
needed for amputating external legs when computing the
ZF or KF 4p vertex, and Appendix E discusses an example
of anomalous parts in both the MF and KF.

II. SPECTRAL REPRESENTATION

A. Motivation of partial spectral functions

To set the stage and introduce notation, we review the
standard derivation of spectral representations for 2p
correlators. We denote complete sets of energy eigenstates
by underlined integers, e.g., fj1ig, with eigenvalues E1. We
use calligraphic or roman symbols for operators or their
matrix elements, A1 2 ¼ h1jAj2i. Expectation values are
obtained through the density matrix ϱ, which, in thermal

equilibrium at temperature T ¼ 1=β, directly follows from
the Hamiltonian H:

hAi ¼ Tr½ϱA�; ϱ ¼ e−βH=Z; Z ¼ Tr½e−βH�: ð1Þ

For instance, we have hABi ¼ P
1 2 ρ1A1 2B2 1, with

ρ1 ¼ h1jϱj1i ¼ e−βE1=Z. The ZF assumes ρ1 ¼ δ1g at
T ¼ 0 with a nondegenerate ground state jgi [35]; the
MF and KF work at any T. Further, the KF can also be used
with a nonequilibrium density matrix. Yet, for simplicity,
we do not consider such cases explicitly.
In the ZF or MF, operators obey Hamiltonian evolution

in real time t or imaginary time τ, respectively:

AðtÞ ¼ eiHtAe−iHt; AðτÞ ¼ eHτAe−Hτ: ð2Þ

The corresponding time-ordered (T ) correlators and their
Fourier transforms in the ZF or MF are defined as

GðtÞ ¼ −ihT AðtÞBi; GðωÞ ¼
Z

∞

−∞
dteiωtGðtÞ; ð3aÞ

GðτÞ ¼ −hT AðτÞBi; GðiωÞ ¼
Z

β

0

dτeiωτGðτÞ; ð3bÞ

where, depending on context, ω denotes a continuous real
frequency or a discrete Matsubara frequency. (For brevity,
we distinguish G in the ZF and MF solely through its
arguments, t versus τ or ω versus iω.) Textbook calcu-
lations, based on judicious insertions of the identity in the
form 1 ¼ P

1 j1ih1j ¼
P

2 j2ih2j, yield the following
Lehmann representation of the Fourier-transformed ZF
correlator:

GðωÞ ¼ −i
Z

∞

0

dteiωthAðtÞBi − iζ
Z

0

−∞
dteiωthBAðtÞi

¼
X
1 2

A1 2B2 1

�
ρ1

ωþ − E2 1

− ζ
ρ2

ω− − E2 1

�
: ð4Þ

Here, we used ζ ¼ 1 (ζ ¼ −1) for bosonic (fermionic)
operators, ω� ¼ ω� i0þ for convergence of real-time
integrals, and E2 1 ¼ E2 − E1. The MF correlator is
obtained as

GðiωÞ ¼ −
Z

β

0

dτeiωτhAðτÞBi ð5aÞ

¼
X
1 2

ρ1A1 2B2 1

1 − eβðiω−E2 1Þ

iω − E2 1

ð5bÞ

¼
X
1 2

A1 2B2 1

ρ1 − ζρ2
iω − E2 1

: ð5cÞ
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In the bosonic case, where iω can equal zero, terms with
both iω ¼ 0 and E2 1 ¼ 0 (if present) can be (analytically)
dealt with by taking the limit E2 1 → 0 in Eq. (5b), yielding

ð1 − e−βE2 1Þ=E2 1 → β. It will sometimes be convenient to
make this “anomalous” case explicit, writing

GðiωÞ ¼
X
1 2

A1 2B2 1

� ρ1−ζρ2
iω−E2 1

; iω − E2 1 ≠ 0;

−βρ1; else:
ð6Þ

We can also consider 2p correlators arising in the KF,
e.g., Gþ−ðtÞ ¼ −ihAðtÞBi, or the retarded propagator
G21ðtÞ ¼ −iθðtÞh½AðtÞ;B�−ζi, where θ denotes the step
function, ½·; ·�− a commutator, and ½·; ·�þ an anticommutator.
Their Fourier transforms read

Gþ−ðωÞ ¼
X
1 2

ρ1A1 2B2 1

�
1

ωþ − E2 1

−
1

ω− − E2 1

�
; ð7aÞ

G21ðωÞ ¼
X
1 2

A1 2B2 1

ρ1 − ζρ2
ωþ − E2 1

: ð7bÞ

Evidently, the imaginary-time and the retarded correlator
are connected by the well-known analytic continuation,
G21ðωÞ ¼ Gðiω → ωþÞ [36]. They are often expressed
through the “standard” spectral function Sstd:

SstdðωÞ ¼
X
1 2

A1 2B2 1ðρ1 − ζρ2Þδðω − E2 1Þ; ð8aÞ

GðiωÞ ¼
Z

dω0 Sstdðω0Þ
iω − ω0 ; ð8bÞ

G21ðωÞ ¼
Z

dω0 Sstdðω0Þ
ωþ − ω0 : ð8cÞ

It would be convenient to have spectral representations
capable of describing GðωÞ and Gþ−ðωÞ, too. To this end,
we define the PSFs

S½A;B�ðωÞ ¼
X
1 2

ρ1A1 2B2 1δðω − E2 1Þ: ð9Þ

Clearly, we can reconstruct Sstd from S according to

SstdðωÞ ¼ S½A;B�ðωÞ − ζS½B;A�ð−ωÞ: ð10Þ

Furthermore, S can be used to express all correlators
encountered so far:

GðωÞ ¼
Z

dω0
�
S½A;B�ðω0Þ
ωþ − ω0 − ζ

S½B;A�ð−ω0Þ
ω− − ω0

�
; ð11aÞ

GðiωÞ ¼
Z

dω0
�
S½A;B�ðω0Þ
iω − ω0 − ζ

S½B;A�ð−ω0Þ
iω − ω0

�
; ð11bÞ

G21ðωÞ ¼
Z

dω0
�
S½A;B�ðω0Þ
ωþ − ω0 − ζ

S½B;A�ð−ω0Þ
ωþ − ω0

�
; ð11cÞ

Gþ−ðωÞ ¼
Z

dω0S½A;B�ðω0Þ
�

1

ωþ − ω0 −
1

ω− − ω0

�

¼ −2πiS½A;B�ðωÞ: ð11dÞ

For the bosonic case, the representations (8b) and (11b)
involve a subtlety: To correctly reproduce the anomalous
term of Eq. (6), the integral over ω0 must be performed first
and the limit E2 1 → 0 taken only thereafter. If, instead,
SstdðωÞ is simplified first by using E2 1 ¼ 0 to conclude that
ρ1 − ρ2 ¼ 0, the anomalous terms are missed. To ensure
that Eq. (6) is always correctly reproduced, including its
anomalous terms, we refine the representation (11b) by
using a kernel in which the anomalous case iω − ω0 ¼ 0 is
specified separately:

GðiωÞ ¼
X
p

ζp
Z

dω0̄
1
Kðiω1̄ − ω0̄

1
ÞS½O1̄;O2̄�ðω0̄

1
Þ; ð12aÞ

Kðiω − ω0Þ ¼
�
1=ðiω − ω0Þ; iω − ω0 ≠ 0;

−β=2; else:
ð12bÞ

The sum in Eq. (12a) is over the two permutations of two
indices, p ¼ ð1̄ 2̄Þ ∈ fð12Þ; ð21Þg, with corresponding
signs ζð12Þ ¼ 1, ζð21Þ ¼ ζ. Furthermore, O1̄, ω1̄, and ω0̄

1

are components of operator and frequency tuples defined as
ðO1;O2Þ ¼ ðA;BÞ, ðω1;ω2Þ ¼ ðω;−ωÞ and ðω0

1;ω
0
2Þ,

respectively, the latter being (dummy) integration variables.
Spelled out, the representation (12) yields

GðiωÞ ¼
X
1 2

½ρ1A1 2B2 1Kðiω − E2 1Þ

þ ζρ1B1 2A2 1Kð−iω − E2 1Þ�; ð13Þ

which matches Eq. (6) after relabeling 1 ↔ 2 in the second
term. The anomalous part, relevant only for ζ ¼ 1 and
ω ¼ 0, receives equal contributions from both terms, since
E2 1 ¼ 0 implies ρ1 ¼ ρ2. For lp functions, the treatment of
anomalous terms is more involved, as bosonic frequencies
can arise through several combinations of fermionic
frequencies. The formalism developed below will enable
us to deal with such subtleties in a systematic fashion.
In the following sections, we derive spectral representa-

tions for lp functions. We start with the ZF, where the
derivation is most compact. Subsequently, we show that the
same PSFs also arise in the MF. Finally, we extend our
analysis to the KF in the contour and Keldysh bases.
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B. Zero-temperature formalism

To obtain concise expressions for lp functions, we
introduce further compact notation. A priori, such functions
of l operators O ¼ ðO1;…;OlÞ depend on l time or
frequency arguments, t ¼ ðt1;…; tlÞ or ω ¼ ðω1;…;ωlÞ.
Permutations of such ordered tuples are denoted
Op¼ðO1̄;…;Ol̄Þ, tp¼ðt1̄;…;tl̄Þ, and ωp¼ðω1̄;…;ωl̄Þ.
Here, by definition, the permutation pð12…lÞ ¼ ð1̄ 2̄…l̄Þ
[or p ¼ ð1̄ 2̄…l̄Þ for short] acts on the index tuple ð12…lÞ
by replacing i by pðiÞ ¼ ī in slot i. Note that p moves i to
slot j ¼ p−1ðiÞ, replacing j there by pðjÞ ¼ i. If
p ¼ ð312Þ, e.g., then ðt1; t2; t3Þp ¼ ðt3; t1; t2Þ. We also
use the shorthand notations

ω · t ¼
Xl
i¼1

ωiti; dlt ¼
Yl
i¼1

dti; dlω ¼
Yl
i¼1

dωi:

Because of time-translation invariance, lp functions
actually depend on only l − 1 independent time or fre-
quency arguments. Nevertheless, as anticipated above, it
will be helpful to use all l frequencies, it being understood
that their sum equals zero. With the shorthand ωi���j ¼Pj

n¼i ωn, we can express the corresponding energy-
conservation relations as

ω1���l ¼ 0; ω1���i ¼ −ωiþ1���l: ð14Þ

We use calligraphic symbols, G,K, S, for functions of all
l arguments and roman symbols, G, K, S, for functions of
the independent l − 1 arguments. In the time domain, we
define the time-ordered ZF correlator as

GðtÞ ¼ ð−iÞl−1
�
T
Yl
i¼1

OiðtiÞ
�
: ð15Þ

It is invariant under a uniform shift of all times, e.g.,
ti → ti − tl, and thus depends on only l − 1 time
differences, ðt1 − tl;…; tl−1 − tl; 0Þ. Accordingly, in the
frequency domain,

GðωÞ ¼
Z

dlteiω·tGðtÞ ¼ 2πδðω1���lÞGðωÞ: ð16Þ

We write GðωÞ, the part remaining after factoring out
2πδðω1���lÞ, with l frequency arguments, it being under-
stood that they satisfy energy conservation, ω1���l ¼ 0.
The effect of the time-ordering procedure in the defi-

nition of GðtÞ can be expressed as a sum over permutations
involving products of step functions θ:

GðtÞ ¼
X
p

ζpKðtpÞS½Op�ðtpÞ; ð17aÞ

KðtpÞ ¼
Yl−1
i¼1

½−iθðtī − tiþ1Þ�; ð17bÞ

S½Op�ðtpÞ ¼
�Yl

i¼1

OīðtīÞ
�
: ð17cÞ

In Eq. (17a), the sum is over all permutations p of the l
indices labeling operators and times. For a given choice of
times, only one permutation yields a nonzero result, namely
the one which arranges the operators in time-ordered
fashion (larger times left of smaller times, cf. Fig. 1).
The sign ζp is þ1 (−1) if Op differs from O by an even
(odd) number of transpositions of fermionic operators. Our
Eqs. (17) conveniently separate properties due to time
ordering, contained in the kernel K, from spectral proper-
ties involving eigenenergies and matrix elements, contained
in S. This separation is well known for l ¼ 2; for larger l,
it was pointed out in 1962 by Kobe [37], but without
elaborating its consequences in great detail. The guiding
principle of this paper is to systematically exploit this
separation—on the one hand, to unravel the analytic
structure of lp correlators, arising from K, on the other
hand, to facilitate their numerical computation, involving
mainly S.
For notational simplicity, we start by considering the

identity permutation, p ¼ id, in Eq. (17); generalizing to
arbitrary p afterward will be straightforward. The multi-
plicative structure of Eq. (17a) translates into an l-fold
convolution in frequency space:

GidðωÞ ¼
Z

dlω0Kðω − ω0ÞS½O�ðω0Þ: ð18Þ

We may thus Fourier transform K and S separately. We
begin with the Fourier transform of K:

KðωÞ ¼
Z

dlteiω·t
Yl−1
i¼1

½−iθðti − tiþ1Þ�: ð19Þ

It is convenient to use t0i ¼ ti − tiþ1 for i < l and t0l ¼ tl as
independent integration variables. Then, ti ¼ t0i���l (short forP

l
j¼i t

0
j) and ω · t ¼ P

l
i¼1 ω1���it0i, such that

FIG. 1. ZF time ordering. For a given l-tuple of times
t ¼ ðt1;…; tlÞ, only that permutation p in Eq. (17) yields a
nonzero contribution, KðtpÞ ≠ 0, for which the permuted times,
tp ¼ ðt1̄;…; tl̄Þ, satisfy t1̄ > t2̄ > � � � > tl̄. In the corresponding
operator product, S½Op�ðtpÞ, larger times appear to the left of
smaller ones. Thus, the right-to-left order of operators in the
product matches the order in which their times appear on the time
axis, drawn with times increasing toward the left.
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KðωÞ ¼
Z

dt0le
iω1���lt0l

Yl−1
i¼1

�
−i

Z
dt0ie

iω1���it0iθðt0iÞ
�

ð20aÞ

¼ 2πδðω1���lÞKðωÞ; ð20bÞ

KðωÞ ¼
Yl−1
i¼1

ðωþ
1���iÞ−1: ð20cÞ

The frequencies ωþ
1���i ¼ ω1���i þ i0þ again contain infini-

tesimal imaginary parts to ensure convergence of real-time
integrals. As for GðωÞ, the arguments of KðωÞ are under-
stood to satisfy energy conservation, ω1���l ¼ 0. A similar
result, with imaginary parts sent to zero, was reached by
Kobe [37]. Importantly, however, for numerical calcula-
tions, the imaginary parts are necessarily finite and their
mutual relations must be treated carefully—this is
discussed in Sec. II D 1.
We next turn to the Fourier transform of S, which will

yield an lp PSF. Including in its definition a factor ð2πÞl
omitted in Eq. (18), we have

S½O�ðωÞ ¼
Z

dlt
ð2πÞl e

iω·t

�Yl
i¼1

OiðtiÞ
�

¼
X
1;…;l

ρ1
Yl
i¼1

½Oi
i iþ1δðωi − Eiþ1 iÞ�: ð21Þ

Here and henceforth, the index lþ 1 is identified with 1.
Since the dependence of K on frequencies enters through
the variables ω1���i, it is convenient to express S through
these, too. The conditions ωi ¼ Eiþ1 i implied by the δ

functions are equivalent to ω1���i ¼
P

i
j¼1 Ejþ1 j ¼ Ei 1, and

particularly ω1���l ¼ Elþ1 1 ¼ E1 1 ¼ 0. We thus obtain

S½O�ðωÞ ¼ δðω1���lÞS½O�ðωÞ; ð22aÞ

S½O�ðωÞ ¼
X
1;…;l

ρ1
Yl−1
i¼1

½Oi
i iþ1δðω1���i − Eiþ1 1Þ�Ol

l 1: ð22bÞ

Our Eqs. (21) and (22) are compact Lehmann representa-
tions for the PSFs, with ωi serving as placeholder for Eiþ1 i,
and ω1���i for Eiþ1 1, respectively.
We now insert Eqs. (20b) and (22a) into Eq. (18) for

GðωÞ. The corresponding GðωÞ, extracted as in Eq. (16),
has the form of an (l − 1)-fold convolution:

GidðωÞ ¼
Z

dl−1ω0Kðω − ω0ÞS½O�ðω0Þ: ð23Þ

As already mentioned, for each of G, K, and S, the l
frequency arguments are understood to sum to zero.

Next, we consider the case of an arbitrary permutation p
in Eq. (17). The Fourier transforms of functions with
permuted arguments, KðωpÞ and S½Op�ðωpÞ, readily
follow from those given above for KðωÞ and S½O�ðωÞ.
For a given p: i → ī, the integration measure and exponent
in the Fourier integral are invariant under relabeling
times and frequencies as ti → tī and ωi → ωī, i.e.,R
dlteiω·t ¼ R

dltpeiωp·tp . Hence, the above discussion
applies unchanged, except for the index relabeling i → ī
on times, frequencies, and operator superscripts.
Depending on context, it may or may not be useful to
additionally rename the dummy summation indices as
ð1̄ 2̄…l̄Þ.
For instance, the permuted version of Eq. (21) can be

written in either of the following forms:

S½Op�ðωpÞ ¼
X
1;…;l

ρ1
Yl
i¼1

½Oī
i iþ1δðωī − Eiþ1 iÞ� ð24aÞ

¼
X
1;…;l

ρ1̄
Yl
i¼1

�
Oī

ī iþ1
δðωī − Eiþ1 īÞ

�
: ð24bÞ

The first choice ensures that the density matrix carries the
same index, ρ1, irrespective of p. This is helpful for the
NRG implementation [34], used to obtain the numerical
results in Sec. IV. The second choice yields matrix elements
Oī

ī iþ1
whose subscript indices are linked to the super-

scripts. This is often convenient for obtaining analytical
results. It shows, e.g., that PSFs whose arguments are
cyclically related are proportional to each other. To be
explicit, let p ¼ ð1̄…l̄Þ and pλ ¼ ðλ̄…l̄ 1̄…λ − 1Þ be
cyclically related permutations, e.g., ð1̄ 2̄ 3̄ 4̄Þ and
ð3̄ 4̄ 1̄ 2̄Þ. According to Eq. (24b), the corresponding
PSFs, S½Op�ðωpÞ and S½Opλ

�ðωpλ
Þ, differ only in the

indices on the density matrix, which appears as ρ1̄ or ρλ̄,
respectively; they otherwise contain the same product

Q
i,

written in two different, cyclically related orders. Since
ρλ̄ ¼ ρ1̄e

−βEλ̄ 1̄ in thermal equilibrium and the δ functions
enforce Eλ̄ 1̄ ¼ ω1̄���λ−1, we obtain the cyclicity relation

S½Opλ
�ðωpλ

Þ ¼ S½Op�ðωpÞe−βω1̄���λ−1 : ð25Þ

This relation is useful for analytical arguments and, in
particular, allows one to reduce the number of PSFs in the
spectral representation from l! to ðl − 1Þ!. However, we
here refrain from doing so, since it would increase the
complexity of the kernels and modify their role in the
spectral representation by introducing Boltzmann factors.
We are now ready to present our final results for the

Fourier transform of Eqs. (17). It involves a sum over
permuted versions of Eq. (23):
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GðωÞ ¼
X
p

ζp
Z

dl−1ω0
pKðωp − ω0

pÞS½Op�ðω0
pÞ: ð26Þ

Here, ω0
p ¼ ðω0̄

1
;…;ω0̄

lÞ is a permuted version of
ω0 ¼ ðω0

1;…;ω0
lÞ, with ω0

1���l ¼ ω0̄
1���l̄ ¼ 0 understood,

and the integral is over the first l − 1 independent
components of ω0

p. Alternatively, the integration variables
can also be chosen independent of p (by using the same set
of l − 1 independent components of ω0 for all p), in which
case the measure will be written as dl−1ω0. The permuted
ZF convolution kernels [Eq. (20c)] are given by

Kðωp − ω0
pÞ ¼

Yl−1
i¼1

ðωþ
1̄���ī − ω0̄

1���īÞ−1; ð27Þ

and the permuted PSFs [Eq. (22b)] read

S½Op�ðω0
pÞ¼

X
1;…;l

ρ1
Yl−1
i¼1

½Oī
iiþ1δðω0̄

1���ī−Eiþ11Þ�Ol̄
l1: ð28Þ

Equations (26)–(28) give the spectral representation for ZF
lp correlators. Combining them, we obtain

GðωÞ ¼
X
p

ζp
X
1;…;l

ρ1
Ql

i¼1 O
ī
i iþ1Ql−1

i¼1 ðωþ
1̄���ī − Eiþ1 1Þ

: ð29Þ

For l ¼ 2, this reproduces Eq. (4); see Appendix A.
We conclude this section with a remark on connected

correlators. These are relevant in many contexts, particu-
larly for the 4p vertices in Sec. IV. The connected correlator
Gcon follows from the full correlator G by subtracting the
disconnected part Gdis; the latter is a sum over products of
lower-point correlators. Through the spectral representa-
tion, we can transfer the notion of a connected and
disconnected part from G onto the PSFs, Scon ¼
S − Sdis. By linearity, Gcon will follow by combining
Scon with the same kernels K as for the full correlators.
Let us consider explicitly the case of four fermionic

creation or annihilation operators (cf. Sec. III). Then,

Sdis½Op�ðtpÞ ¼ hO1̄ðt1̄ÞO2̄ðt2̄ÞihO3̄ðt3̄ÞO4̄ðt4̄Þi
þ ζhO1̄ðt1̄ÞO3̄ðt3̄ÞihO2̄ðt2̄ÞO4̄ðt4̄Þi
þ hO1̄ðt1̄ÞO4̄ðt4̄ÞihO2̄ðt2̄ÞO3̄ðt3̄Þi; ð30Þ

since expectation values of an odd number of operators
vanish. Each factor on the right describes a time-dependent
2p PSF, e.g., S½O1̄;O2̄�ðt1̄; t2̄ÞS½O3̄;O4̄�ðt3̄; t4̄Þ for the first
summand. The expansion of Sdis perfectly matches the
corresponding expansion of Gdis, since the kernel K in
GdisðtÞ ¼ P

p ζ
pKðtpÞSdis½Op�ðtpÞ [cf. Eqs. (17)] ensures

that each factor in Eq. (30) is already time ordered.

Evidently, Eq. (30) can be easily Fourier transformed.
The first summand, e.g., yields S½O1̄;O2̄�ðω1̄;ω2̄Þ
S½O3̄;O4̄�ðω3̄;ω4̄Þ, which contains δðω1̄ 2̄Þδðω3̄ 4̄Þ ¼
δðω1̄ 2̄Þδðω1̄ 2̄ 3̄ 4̄Þ. Upon factoring out the δ function ensur-
ing energy conservation, we have in total:

Sdis½Op�ðωpÞ
¼ S½O1̄;O2̄�ðω1̄;ω2̄ÞS½O3̄;O4̄�ðω3̄;ω4̄Þδðω1̄ 2̄Þ
þ ζS½O1̄;O3̄�ðω1̄;ω3̄ÞS½O2̄;O4̄�ðω2̄;ω4̄Þδðω1̄ 3̄Þ
þ S½O1̄;O4̄�ðω1̄;ω4̄ÞS½O2̄;O3̄�ðω2̄;ω3̄Þδðω1̄ 4̄Þ: ð31Þ

This resembles the form of GdisðωÞ [cf. Eq. (73)], which
will be needed in Sec. III when defining the 4p vertex.

C. Matsubara formalism

The derivation of spectral representations in the MF is
analogous to that in the ZF, and it utilizes the same real-
frequency PSFs from Eq. (28). All arguments regarding
time-translational invariance and energy conservation from
above still hold. Hence, we also use the same notation in
terms of G and G. Nevertheless, there are subtleties arising
in the MF. The first concerns (composite) bosonic frequen-
cies that may be zero and lead to anomalous terms as in
Eq. (6) [38,39]. The second stems from the fact that
imaginary times can be chosen positive and thus always
larger than the time set to zero. This leads to only ðl − 1Þ!
permutations of operators. Yet, the nontrivial boundary
conditions of the imaginary-time integral provide l terms,
thus making up for the total of l! terms. For us, it will be
convenient to directly work with l! summands. In fact, it
turns out that only the terms arising from the trivial lower
boundary of the imaginary-time integral contribute; all
others cancel out and need not be computed explicitly.
Without this trick, the calculations are more tedious, but
still straightforward; see Appendix B for l ¼ 3 and 4.
We start from the MF lp function,

GðτÞ ¼ ð−1Þl−1
�
T
Yl
i¼1

OiðτiÞ
�
; ð32Þ

with operators time ordered on the interval τi ∈ ð0; βÞ
(cf. Fig. 2) and periodic or antiperiodic boundary con-
ditions for G, depending on the bosonic or fermionic nature
of the corresponding operators. We wish to compute

GðiωÞ ¼
Z

β

0

dlτeiω·τGðτÞ ¼ βδω1���l;0GðiωÞ; ð33Þ

where the Kronecker δ follows from translational invari-
ance in τ. As for the ZF, we express GðτÞ as a sum over
permutations involving products of step functions θ:
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GðτÞ ¼
X
p

ζpKðτpÞS½Op�ð−iτpÞ; ð34aÞ

KðτpÞ ¼
Yl−1
i¼1

½−θðτī − τiþ1Þ�; ð34bÞ

S½Op�ð−iτpÞ ¼
�Yl

i¼1

OīðτīÞ
�

ð34cÞ

¼
Z

dlω0
pe−ω

0
p·τpS½Op�ðω0

pÞ: ð34dÞ

Here, Eq. (34c) is the analytic continuation tī → −iτī of
Eq. (17c) for S½Op�ðtpÞ. Performing this continuation in the
real-frequency Fourier representation of the latter yields
Eq. (34d), where S½Op�ðω0

pÞ is the PSF (28) from the ZF
discussion. Inserting Eqs. (34) into (33) yields

GðiωÞ ¼
X
p

ζp
Z

dlω0
pKðiωp −ω0

pÞS½Op�ðω0
pÞ ð35aÞ

¼
X
p

ζp
Z

dl−1ω0
pKðiωp−ω0

pÞS½Op�ðω0
pÞ; ð35bÞ

KðΩpÞ ¼
Z

dlτpeΩp·τpKðτpÞ; ð35cÞ

where Ωp ¼ iωp − ω0
p, and ω0̄

1���l̄ ¼ 0, set by the δ func-
tions in S, is understood implicitly from Eq. (35b) onward.
The θ functions in KðτpÞ enforce τī > τiþ1, such that

KðΩpÞ ¼
Z

β

0

dτl̄
Y1

i¼l−1

�
−
Z

β

τ
iþ1

dτī

�
eΩp·τp ; ð36Þ

where the integrals are arranged in “descending” order,R
dτl̄dτl−1…dτ1̄. Using τ0̄i ¼ τī − τiþ1 for i < l and

τ0̄l ¼ τl̄ as integration variables, with τī ¼ τ0̄
i…l̄ and

Ωp · τp ¼ Pl
i¼1Ω1̄���īτ0̄i, we have

KðΩpÞ ¼
Z

β

0

dτ0̄le
Ω1̄���l̄τ0l̄

Y1
i¼l−1

�
−
Z

β−τ0
iþ1���l̄

0

dτ0̄ie
Ω1̄���īτ0ī

�
:

ð37Þ

Since Eq. (33) for GðiωÞ contains a factor βδω1���l;0, the
integrals in Eq. (37) must yield a result of the form

KðΩpÞ ¼ βδω1̄���l̄;0KðΩpÞ þK0ðΩpÞ: ð38Þ

Inserted into Eq. (35b) for GðiωÞ, theK term reproduces the
discrete δ function in Eq. (33), yielding

GðiωÞ ¼
X
p

ζp
Z

dl−1ω0
pKðiωp − ω0

pÞS½Op�ðω0
pÞ; ð39Þ

while the K0 term must yield zero when summed over p,

X
p

ζp
Z

dl−1ω0
pK0ðiωp − ω0

pÞS½Op�ðω0
pÞ ¼ 0: ð40Þ

The K term in Eq. (38) comes from the outermost integral
over τ0̄

l
in Eq. (37), involving eΩ1̄���l̄τ0l̄ ¼ eiω1̄���l̄τ0l̄ (recall

ω0̄
1���l̄ ¼ 0). However, this integral generates the prefactor

βδω1̄���l̄;0 only for terms with no further dependence on τ0̄l.
These terms, which arise solely from the lower integration
boundaries of all subsequent integrals, give K:

KðΩpÞ ¼
Yl−1
i¼1

�
−
Z
0

dτ0̄ie
Ω1̄���īτ0ī

�
: ð41Þ

Conversely, all terms arising from one or more upper
integration boundaries, which depend on τ0̄l via τ0

iþ1���l̄,
contribute to K0. We need not compute them explicitly,
since, by Eq. (40), their contributions cancel.
We now evaluate the integrals (41) forK. We temporarily

exclude the anomalous term arising if some exponents
vanish and indicate this by putting a tilde on K̃ (and G̃):

K̃ðΩÞ ¼
Yl−1
i¼1

ðΩ1̄���īÞ−1 ¼
Yl−1
i¼1

ðiω1̄���ī − ω0̄
1���īÞ−1: ð42Þ

Inserting Eqs. (42) and (28) for S into Eq. (39), we obtain

G̃ðiωÞ ¼
X
p

ζp
X
1;…;l

ρ1
Ql

i¼1O
ī
i iþ1Ql−1

i¼1 ½iω1̄���ī − Eiþ1 1�
: ð43Þ

This compact expression is our first main result for MF lp
functions. For l ¼ 2, it yields [upon relabeling summation
indices as in Eq. (24b)]

G̃ðiωÞ ¼
X
1 2

O1
1 2O

2
2 1

�
ρ1

iω1 − E2 1

þ ζρ2
iω2 − E1 2

�
: ð44Þ

Since −ω2 ¼ ω1 ¼ ω, this reproduces Eq. (5c). The cases
l ¼ 3 and l ¼ 4 are verified by explicit computation in
Appendix B. They also agree with published results (which
use less compact notation): Eq. (A.2) of Ref. [40] and
Eq. (3.11) of Ref. [39] for l ¼ 3; Eq. (A.2) of Ref. [41],
Eq. (A1) of Ref. [42], Eq. (A.2) of Ref. [43], and Eq. (3.3)

FIG. 2. MF time ordering is similar to ZF ordering (Fig. 1),
except that the times τī are constrained to the interval ð0; βÞ.
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of Ref. [38] for l ¼ 4. [References [38,39,43] also discuss
anomalous contributions, reproduced by Eq. (45) below.]
For applications, we will be mostly interested in

fermionic systems and lp functions with l ≤ 4. These
can still contain bosonic operators, e.g., as bilinears of
fermionic operators. However, for arbitrary 2p functions,
3p functions with only one bosonic operator, and fermionic
4p functions, ω1̄���ī, with i < l, produces at most one
bosonic frequency. In this case, at most one frequency in
the denominators of Eq. (43) can vanish, say, ω1̄���j̄, for
some j < l. One can show (see Appendix B) that the
corresponding anomalous terms are fully included using
the following kernel in Eq. (39):

KðΩpÞ ¼
Yl−1
i¼1

1

Ω1̄���ī
−
β

2

Xl−1
j¼1

δΩ1̄���j̄ ;0

Yl−1
i¼1
i≠j

1

Ω1̄���ī
: ð45Þ

Here, δΩ1̄���j̄ ;0 is symbolic notation indicating that the
anomalous second term contributes only if Ω1̄���j̄ ¼ 0

(i.e., if both ω1̄���j̄ ¼ 0 and ω0̄
1���j̄ ¼ 0, the latter due to a

degeneracy, Ejþ1 ¼ E1̄, in the spectrum). In this case,

1=Ω1̄���j̄ diverges, but the product
Q

i≠j duly excludes such
factors. The regular first term needs no such exclusion,
since, if Ω1̄���j̄ → 0, then also Ωiþ1���l̄ → 0, and the 1=Ω1̄���ī
divergence is canceled by a −1=Ωiþ1���l̄ divergence stem-
ming from a cyclically related permutation. We confirm this
in Appendix B by treating nominally vanishing denomi-
nators as infinitesimal and explicitly tracking the cancella-
tion of divergent terms. This procedure yields the following
expression for the full kernel:

KðΩpÞ¼

8>><
>>:

Ql−1
i¼1 Ω−1

1̄���ī; if
Ql−1

i¼1 Ω1̄���ī≠0;

−1
2

�
βþPl−1

i¼1
i≠j

Ω−1
1̄���ī

�Ql−1
i¼1
i≠j

Ω−1
1̄���ī; if Ω1̄���j̄¼0:

ð46Þ

The kernels (45) and (46) yield equivalent results. The
former is well suited for analytical work; the latter is more
convenient for numerical computations, as it is manifestly
free from divergences. The spectral representation given by
Eqs. (39), (28), and (45) or (46) is our final result for MF lp
functions.

D. Keldysh formalism

The Keldysh formalism [16,17] is based on ordering
operators on a doubled time contour involving a forward
and a backward branch. In the contour basis, each time
argument carries an extra index specifying which branch
the corresponding operator resides on. The Keldysh basis
employs linear combinations of such contour-ordered
correlators. Before discussing these two options in turn,

we introduce a fully retarded kernel, a very useful object
through which all other KF kernels can be expressed. While
doing so, we carefully discuss the imaginary parts of
complex frequencies, needed for convergence of real-time
integrals. We present a choice of imaginary parts which is
consistent both if they are infinitesimal, as assumed in
analytical work, or finite, as needed for numerical
computations.

1. Fully retarded kernel

Operators on the forward branch of the Keldysh contour
are time ordered while those on the backward branch are
anti-time-ordered. In Eq. (17b) of the ZF, we already
encountered the time-ordered kernel. In the KF, it will
be useful to have a kernel that combines η − 1 anti-time-
ordering and l − η time-ordering factors in the form

K½η�ðtpÞ ¼
Yη−1
i¼1

½iθðtiþ1 − tīÞ�
Yl−1
i¼η

½−iθðtī − tiþ1Þ�; ð47Þ

for 1 ≤ η ≤ l. As usual, a product over an empty set, with
lower limit larger than upper limit, is defined to equal unity.
Note how the doubled time contour of the KF (cf. Fig. 4
below) is reflected in Eq. (47): the successive (from right to
left) time-ordering and anti-time-ordering factors single out
tη̄, the ηth component of tp, as largest time. The kernel
K½η�ðtpÞ is (fully) retarded with respect to tη̄; i.e., it is
nonzero only for tī < tη̄, i ≠ η.
To Fourier transform K½η�ðtpÞ, we first consider the

identity permutation, ī ¼ i, requiring no subscripts p or
overbars. (The general case will follow by suitably reinstat-
ing overbars at the end.) In the Fourier integral, we can take
the perspective that the largest time tη runs over the entire
real axis, while all other ti are constrained by ti < tη. It is
thus natural to use the integral over tη for energy con-
servation and, exploiting time-translational invariance,
consider all other time dependencies ti − tη as advanced
(i.e., contributing only for ti − tη < 0):

K½η�ðωÞ ¼
Z

dlteiω·tK½η�ðtÞ

¼
Z

dtηeiω1���ltη
Y
i≠η

�Z
0

−∞
dðti − tηÞeiωiðti−tηÞ

�

×K½η�ðt1 − tη;…; 0;…; tl − tηÞ: ð48Þ

The ti≠η integrals can be regularized, without affecting the
tη integral, by replacing the real tuple ω by a complex tuple

ω½η� with components ω½η�
i , having finite imaginary parts.

We thus shift ωi → ω½η�
i [see Fig. 3(a)], where
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ω½η�
i ¼ ωi þ iγ½η�i ; γ½η�i≠η < 0; γ½η�η ¼ −

X
i≠η

γ½η�i : ð49Þ

This assigns a negative imaginary part to each frequency

ω½η�
i≠η multiplying ti − tη, as in the 2p case, whereas ω½η�

η has
a positive imaginary part. The superscript indicates that this

choice depends on η. By construction γ½η�1���l ¼ 0 holds,

ensuring ω½η�
1���l ¼ ω1���l. Then, the tη integral yields

2πδðω1���lÞ, ensuring ω1���l ¼ 0 and thus ω½η�
1���l ¼ 0, too.

We need not distinguish individual γi≠η and hence choose

γ½η�i≠η ¼ −γ0, γ½η�η ¼ ðl − 1Þγ0. Nevertheless, we keep the
index i for a compact notation of sums like

γ½η�i���j ¼
Pj

n¼i γ
½η�
n . For numerics, γ0 > 0 should be kept

small but finite. For analytical arguments, it can be taken
infinitesimal.
Since K½η� depends only on time differences, with tη

singled out as the largest time, we take tη and t0i ¼ ti − tiþ1

for i < l as our l integration variables. Then, ti<η ¼
tη þ

Pη−1
j¼i t

0
j and ti>η ¼ tη −

P
i−1
j¼η t

0
i, and the Fourier expo-

nent is

ω½η� · t ¼ ω1���ltη þ
Xη−1
i¼1

ω½η�
1���it

0
i −

Xl−1
i¼η

ω½η�
iþ1���lt

0
i: ð50Þ

Consequently, we find K½η�ðωÞ ¼ 2πδðω1���lÞK½η�ðωÞ, with

K½η�ðωÞ ¼
Yη−1
i¼1

�
i
Z

0

−∞
dt0ie

iω½η�
1���it

0
i

�Yl−1
i¼η

�
−i

Z
∞

0

dt0ie
−iω½η�

iþ1���lt
0
i

�

¼
Yη−1
i¼1

�
1

ω½η�
1���i

�Yl−1
i¼η

�
−1

ω½η�
iþ1���l

�
¼

Yl−1
i¼1

1

ω½η�
1���i

; ð51Þ

having used ω½η�
1���l ¼ 0 in the last step.

Now, consider a general permutation p. To compute
K½η�ðωpÞ, the Fourier transform of K½η�ðtpÞ, we need
permuted versions of the complex frequencies in

Eq. (49). We define ω½η�
p ¼ ðω½η�

1̄
;…;ω½η�

l̄
Þ as the tuple

ðω½η�Þp obtained by permuting the components of ω½η�,
including their imaginary parts, according to p. This moves

ω½η�
η , the component with positive imaginary part, to slot

μ ¼ p−1ðηÞ [see Fig. 3(b)]. Hence, the components of ω½η�
p

have a positive imaginary part in the slot i ¼ μ, with the
entry ī ¼ μ̄ ¼ η, and negative imaginary parts in all other

slots: ω½η�
ī ¼ ωī þ iðl − 1Þγ0 for ī ¼ η, ω½η�

ī ¼ ωī − iγ0 for

ī ≠ η. Moreover, ω½η�
1̄���l̄ ¼ 0, and the imaginary part of ω½η�

1̄���ī
is negative for 1 ≤ i < μ and positive for μ ≤ i < l

(yielding ω½η�
1̄���ī ¼ ω∓̄

1���ī, respectively, if γ0 is infinitesimal).
By Eq. (47), K½η�ðtpÞ is nonzero only if its largest time

argument is tη̄, the ηth component of tp. To achieve
convergent Fourier integrals for K½η�ðωpÞ, we should thus
add negative imaginary parts to all frequencies except the
Fourier partner of tη̄, i.e., ωη̄, sitting in slot η of ωp. This is

achieved by using the complex tuple ω½η̄�
p . Indeed, with

superscript η̄, the positive imaginary part ends up in slot

μ ¼ p−1ðη̄Þ ¼ η [see Fig. 3(c)]. Substitutingω½η̄�
p in place of

ω½η� on the right of Eq. (51), we obtain

K½η�ðωpÞ ¼
Yl−1
i¼1

1

ω½η̄�
1̄���ī

: ð52Þ

This is our main result for general retarded kernels,
applicable for both finite or infinitesimal imaginary
parts. Among the denominators, η − 1 (l − η) of them
have a negative (positive) imaginary part, for all permu-
tations p. Indeed, for infinitesimal imaginary parts, Eq. (52)
reads

K½η�ðωpÞ ¼
Yη−1
i¼1

�
1

ω−
1̄���ī

�Yl−1
i¼η

1

ωþ
1̄���ī

: ð53Þ

However, the selection of the components of ω that receive
a positive or negative imaginary shift in Eq. (53) depends
on p. A specific component ωi may receive a positive shift
for one permutation and a negative shift for another. If
η ¼ 1, e.g., only denominators of the form ωþ

1̄���ī, with
positive imaginary parts, occur in Eq. (53). For a permu-
tation with 1̄ ¼ 1, one of them equals ωþ

1 ; with l̄ ¼ 1,
another equals ωþ

1̄���l−1 ¼ −ðω−
1 Þ. Hence, a simple sumP

p K
½η�ðωpÞ has no well-defined analytical structure with

respect to ω1, or more generally with respect to ω.
However, we will later obtain suitable combinations of
retarded kernels with different η that do, yielding a retarded
correlator.
To conclude this section, we note that the above

approach to construct K½η� can also be used to find the
ZF kernel with finite imaginary parts, as needed for
numerics. Indeed, for η ¼ 1, Eq. (47) exactly matches
the ZF time-ordered kernel of Eq. (17b), K½1� ¼ K. This
kernel has both a largest time t1̄ and a smallest time tl̄, and

(a) (b) (c)

FIG. 3. Complex frequency tuples, for l ¼ 4, η ¼ 4,
p ¼ ð3142Þ, in which case p−1 ¼ ð2413Þ, μ ¼ p−1ðηÞ ¼ 3, η̄ ¼
pðηÞ ¼ 2.
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the energy-conservation integral may be performed using
either (i) t1̄ or (ii) tl̄. Choice (i) corresponds to the above
discussion; hence, the η ¼ 1 version of Eq. (52) can be used
for KðωpÞ for an expression with finite imaginary parts
instead of Eq. (27). For choice (ii), the dependence on all
tī − tl̄, i < l, is retarded (contributing only for
tī − tl̄ > 0), as in Eq. (20a). To regularize the correspond-
ing time integrals there, we replace the frequencies ωī in

Eqs. (20) by ðω½l̄�
ī Þ�, such that those with i < l all have

positive imaginary parts. The two choices can be summa-
rized as [ðiγ0Þ denotes γ0 multiplied by the imaginary unit]

KðωpÞ ¼ðiÞ
Yl−1
i¼1

1

ω½1̄�
1̄���ī

¼
Yl−1
i¼1

1

ω1̄���ī þ ðl − iÞðiγ0Þ
; ð54aÞ

KðωpÞ ¼ðiiÞ
Yl−1
i¼1

1

ðω½l̄�
1̄���īÞ�

¼
Yl−1
i¼1

1

ω1̄���ī þ iðiγ0Þ
; ð54bÞ

since, for i < l, we have γ½1̄�
1̄���ī ¼ ðl − iÞγ0 and γ½l̄�1̄���ī ¼ −iγ0

for any permutation. Thus, both choices give positive
imaginary shifts accompanying all ω1̄���ī (i < l), consistent
with ω1̄���ī þ i0þ used in Eq. (27). They are both legitimate
and yield equivalent results for γ0 → 0. For l ¼ 2, they are
identical even at finite γ0. For l > 2 and finite γ0, they lead
to qualitatively similar results, with slight quantitatively
differences that decrease with γ0. For the curves shown in
Fig. 6, e.g., both choices yield indistinguishable results.

2. Contour basis

In the contour basis, time-dependent operators Oiðtcii Þ
are defined on the Keldysh double time contour. The
contour index ci on the time argument tcii specifies the
branch, with ci ¼ − or þ for an operator residing on
the forward or backward branch, respectively. Corres-
pondingly, a contour-ordered lp function, defined as

GcðtÞ ¼ ð−iÞl−1
�
T c

Yl
i¼1

Oiðtcii Þ
�
; ð55Þ

carries l contour indices, c ¼ c1 � � � cl, one for each oper-
ator. The contour-ordering operator T c rearranges the
operators such that those on the forward branch are all time
ordered, those on the backward branch anti-time-ordered;
the former are applied first, i.e., they all sit to the right of the
latter. It also provides a sign change for each transposition of
two fermionic operators incurred while reordering.
As for the ZF, we express GcðtÞ as

GcðtÞ ¼
X
p

ζpKcpðtpÞS½Op�ðtpÞ: ð56Þ

In this sum over permutations of l indices, each summand is
a product of a kernelKc, enforcing contour ordering, and the

PSF S of Eq. (17c), containing the time-dependent oper-
ators. For a givenchoice of times t and contour indices c, only
one permutation yields a nonzero result, namely the one
which arranges the operators in contour-ordered fashion.
Given c, let λ denote the number of its þ entries, i.e., the

number of operators on the backward branch. Contour
ordering places all λ operators on the backward branch to
the left of all l − λ operators on the forward branch. Hence,
only those components of KcpðtpÞ are nonzero for which
cp ¼ c1̄ � � � cl̄ has the form þ � � � þ − � � �−, with λ entries
of þ followed by l − λ entries of −, 0 ≤ λ ≤ l. We use the
shorthand cp ¼ ½λ;l − λ� for this structure, e.g., ½0; 3� ¼
− − − or ½2; 2� ¼ þ þ −−. Then, the successive time-
ordering and anti-time-ordering rules on the two branches
(from right to left) are implemented by the kernel

K½λ;l−λ�ðtpÞ ¼ ð−iÞl−1
Yλ−1
i¼1

½θðtiþ1 − tīÞ�
Yl−1
i¼λþ1

θðtī − tiþ1Þ;

ð57Þ

cf. Fig. 4. Again, a product over an empty set, with lower
limit larger than upper limit, equals unity. The superscript
of K, standing for cp ¼ ½λ;l − λ�, reflects the number of þ
and − entries in c and hence is the same for all nonzero
components Kcp associated with a given Kc.
For λ ¼ 0, Eq. (57) yields the time-ordered kernel K

[Eq. (17b)], which also matches the fully retarded kernel
K½1� from Eq. (47), K½0;l� ¼ K ¼ K½1�. The other extremal
case, λ ¼ l, yields a retarded kernel, too:
K½l;0� ¼ ð−1Þl−1K½l�. Yet, for intermediate 0 < λ < l,
Eq. (57) has only l − 2 factors, while Eq. (47) has
l − 1. We can nevertheless express K½λ;l−λ� through

FIG. 4. KF time ordering. The l-tuples of times t ¼ ðt1;…; tlÞ
and contour indices c ¼ ðc1;…; clÞ specify an l-tuple
ðtc11 ;…; tcll Þ, with t∓i on the forward or backward branch,
respectively. Consider such an l-tuple, with λ contour indices
equal to þ, the others −. Then, only that permutation p in
Eq. (56) yields a nonzero contribution, KcpðtpÞ ≠ 0, denoted
K½λ;l−λ�ðtpÞ, for which the permuted l-tuple ðtc1̄

1̄
;…; tcl̄

l̄
Þ has the

form ðtþ
1̄
;…; tþ

λ̄
; t−

λþ1
;…; t−l̄ Þ, with t1̄ < t2̄ < � � � < tλ̄ and

tλþ1
> tλþ2

> � � � > tl̄. In the corresponding operator product
S½Op�ðtpÞ, all (forward-branch) t− times appear to the right of all
(backward-branch) tþ times, with larger t− to the left of smaller
t−, and smaller tþ to the left of larger tþ. In other words, the right-
to-left order of operators in the product matches the order in
which their times appear on the contour.
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retarded kernels by inserting in Eq. (57) a factor of unity
in the form 1 ¼ θðtλ̄ − tλþ1Þ þ θðtλþ1 − tλ̄Þ. Including

all prefactors, this yields ð−1Þλ−1K½λ� þ ð−1ÞλK½λþ1�. In
summary,

K½0;l� ¼ K½1�; K½l;0� ¼ ð−1Þl−1K½l�; ð58aÞ

K½λ;l−λ� ¼ ð−1Þλ−1ðK½λ� −K½λþ1�Þ; 0 < λ < l: ð58bÞ

To Fourier transform K½λ;l−λ�, it suffices to consider the
identity permutation, ī ¼ i. Since the Fourier transform is
linear, we can directly infer K½λ;l−λ�ðωÞ from Eqs. (58) and
(52). For λ ∈ f0;lg, we have

K½0;l�ðωÞ ¼
Yl−1
i¼1

1

ω½1�
1���i

; K½l;0�ðωÞ ¼
Yl−1
i¼1

−1

ω½l�
1���i

: ð59aÞ

The cases 0 < λ < l mix K½λ� and K½λþ1� and thus ω½λ� and
ω½λþ1�. For all i ∉ fλ; λþ 1g, we have γ½λ�i ¼ γ½λþ1�

i ,

implying ω½λ�
i ¼ ω½λþ1�

i , so that ω½λ�
1���i ¼ ω½λþ1�

1���i for i < λ

and ω½λ�
i���l ¼ ω½λþ1�

i���l for i > λþ 1. Moreover, ω½λþ1�
1���i ¼

−ω½λþ1�
iþ1���l, by complex frequency conservation. We thus

find

K½λ;l−λ�ðωÞ ¼
Yλ−1
i¼1

�
−1

ω½λ�
1���i

�
ΔðωÞ

Yl−1
i¼λþ1

�
−1

ω½λþ1�
iþ1���l

�
;

ΔðωÞ ¼ −1

ω½λ�
λþ1…l

−
1

ω½λþ1�
1���λ

¼ 1

ω1���λ þ iγ½λ�λþ1���l
−

1

ω1���λ − iγ½λþ1�
1���λ

: ð59bÞ

If all imaginary parts are sent to zero, γ0 → 0, the first and
second terms of ΔðωÞ yield −iπδðω1���λÞ � Pð1=ω1���λÞ, and
their sum ΔðωÞ → −2πiδðω1���λÞ. One thereby obtains a
second δ function, next to the overall δðω1���lÞ ensuring
energy conservation. The second δ function is indeed to be
expected: in the Fourier integral for 0 < λ < l, time-
translation invariance can be exploited on each branch
separately. This generates two δ functions, one for the sum
of frequencies on each branch, ω1���λ and ωλþ1���l. Together,
they give δðω1���λÞδðωλþ1���lÞ ¼ δðω1���λÞδðω1���lÞ.
For a general permutation p, the permuted kernel

KcpðωpÞ is nonzero only for contour indices of the form
cp ¼ ½λ;l − λ� (cī ¼ þ if i ≤ λ, cī ¼ − if i > λ). Then,
K½λ;l−λ�ðωpÞ, obtained via Eq. (52) for K½λ�ðωpÞ, is given by
Eqs. (59), with ω½λ�

1���i replaced by ω½λ̄�
1̄���ī there. With this, we

can proceed with the contour-ordered correlation functions.
Again, the multiplicative structure of Eq. (56) for GcðtÞ
yields a convolution in frequency space:

GcðωÞ¼
X
p

ζp
Z

dlω0
pKcpðωp−ω0

pÞS½Op�ðω0
pÞ; ð60aÞ

GcðωÞ ¼
X
p

ζp
Z

dl−1ω0
pKcpðωp − ω0

pÞS½Op�ðω0
pÞ:

ð60bÞ

We extracted Gc from Gc using the δ functions in K and S.
The PSFs (28) are the same as for the ZF and MF.
As a simple example, consider the correlator Gþ−ðtÞ ¼

−ihAðtÞBi from Sec. II A: AðtÞ sits to the left of B, since
the contour indices c ¼ þ− place AðtÞ on the backward
and B on the forward branch. The sum

P
p from Eq. (60b)

involves two components ofKcp , namely,Kþ−ðω1 − ω0
1Þ ¼

−2πiδðω1 − ω0
1Þ and K−þ ¼ 0. Thus, Eq. (60b) yields

Gþ−ðωÞ ¼ −2πiS½A;B�ðωÞ, reproducing Eq. (11d).

3. Keldysh basis

Correlators in the Keldysh basis Gk carry Keldysh
indices, k ¼ k1 � � � kl, with ki ∈ f1; 2g. They are obtained
from correlators in the contour basis by applying a linear
transformation D to each contour index [17],

GkðtÞ ¼
X
c1…cl

Yl
i¼1

½Dkici �GcðtÞ; ð61aÞ

Dkc ¼ 1ffiffiffi
2

p
�
1 −1
1 1

�
kc

¼ 1ffiffiffi
2

p ð−1Þk·δc;þ ; ð61bÞ

with c ¼ − or þ giving the first or second column of D,
respectively. In Eq. (56), the dependence on c resides solely
in Kc; thus, the Keldysh rotation yields (with a conven-
tional prefactor)

GkðtÞ ¼ 2

2l=2

X
p

ζpKkpðtpÞS½Op�ðtpÞ; ð62aÞ

KkpðtpÞ ¼
2l=2

2

X
c1̄;…;cl̄

Yl
i¼1

½Dkīcī �KcpðtpÞ ð62bÞ

¼ 1

2

Xl
λ¼0

ð−1Þk1̄���λ̄K½λ;l−λ�ðtpÞ: ð62cÞ

To perform the sum over all cp in Eq. (62b), we recalled
that the kernels Kcp are nonzero only if cp has the form
cp ¼ ½λ;l − λ�, with λ ∈ ½0;l�. For these, ffiffiffi

2
p

Dkīcī equals
ð−1Þkī for i ≤ λ and 1 otherwise, yielding the factor
ð−1Þk1̄���λ̄ . We used k1̄���λ̄ ¼

P
λ
i¼1 kī, as usual defining the

sum over an empty set as zero, k1���0 ¼ 0.
Using Eq. (58), we can express the permuted KF kernel

through fully retarded kernels:
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Kkp ¼ 1

2

�
K½1� þ

Xl−1
λ¼1

ð−1Þk1̄���λ̄ ½ð−1Þλ−1K½λ�

þ ð−1ÞλK½λþ1�� þ ð−1Þk1̄���l̄ð−1Þl−1K½l�



¼
Xl
λ¼1

ð−1Þλ−1ð−1Þk1̄���λ−1 1þ ð−1Þkλ̄
2

K½λ�: ð63Þ

This result directly yields the Fourier transform
KkpðωpÞ ¼ 2πδðω1̄���l̄ÞKkpðωpÞ, with K½λ�ðωpÞ given by
Eq. (52). Thus, we know all ingredients of the Fourier
transform of Gk, written as a convolution of Kk and S:

GkðωÞ ¼ 2

2l=2

X
p

ζp
Z

dl−1ω0
pKkpðωp − ω0

pÞS½Op�ðω0
pÞ:

ð64Þ

Together, Eqs. (64), (63), and (52) give the spectral
representation for KF lp functions in the Keldysh basis,
in a form well suited for numerical computations [34].
To obtain more analytical insight, it is fruitful to further

simplify Eq. (63). The fraction in its last line vanishes
whenever kλ̄ ¼ 1. Hence, there is a cancellation pattern that
depends on the number of 2’s, say α, contained in the
composite Keldysh index kp ¼ k1̄ � � � kl̄. To elaborate on
this, we first consider the identity permutation, ī ¼ i, for
which the Keldysh indices of Kkp match those of Gk. Let ηj
denote the slot of the jth 2 in k, with ηj < ηjþ1. Then, k is
uniquely specified by the ordered list k ¼ ½η1…ηα�, e.g.,
1111 ¼ ½�, 2121 ¼ ½13�. From Eq. (63), it follows immedi-
ately that K½� ¼ K1���1 ¼ 0. Next, consider Keldysh indices
containing a solitary 2 in slot η, i.e., kη ¼ 2 and k ¼ ½η�. As
anticipated by this notation,Kk is then equal to the retarded
kernel K½η�. Indeed, Eq. (63) with k ¼ ½η� has only one
nonzero summand, having λ ¼ η, and

ð−1Þη−1ð−1Þk1���η−1K½η� ¼ K½η�; ð65Þ

since ki≠η ¼ 1 implies k1���η−1 ¼ η − 1. Finally, Keldysh
indices with 2 ≤ α ≤ l many 2’s in slots ½η1…ηα� yield a
term of the form (65) for each ηj:

K½η1…ηα� ¼
Xα
j¼1

ð−1Þηj−1ð−1Þk1���ηj−1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð−1Þj−1

K½ηj�: ð66Þ

To find the sign, we used ki≠ηj ¼ 1, kηj ¼ 2, and the fact
that the ηj’s are ordered, implying k1���ηj−1 ¼ ηj þ j − 2.
Now, consider a general permutation p. The permuted

Keldysh index kp contains the same number of 2’s as k, but
in different slots. We can analogously express it through an
ordered list as kp ¼ ½η̂1…η̂α�, where η̂j denotes the slot of

the jth 2 in kp, with η̂j < η̂jþ1. To find the η̂j’s given the
ηj’s, note that a 2 from slot ηj in k is moved by p to slot
μj ¼ p−1ðηjÞ in kp. The sequence ½μ1…μα� lists the new
slots of the 2’s; placing its elements in increasing order
yields ½η̂1…η̂α�. For example, if k ¼ 1212 ¼ ½24�, then
p ¼ ð4123Þ yields ½μ1μ2� ¼ ½31� and kp ¼ 2121 ¼ ½13�.
Combining Eqs. (66), (64), and (52), we finally obtain

G½η1…ηα�ðωÞ ¼ 2

2l=2

X
p

ζp
Z

dl−1ω0
p

× K½η̂1…η̂α�ðωp − ω0
pÞS½Op�ðω0

pÞ; ð67aÞ

K½η̂1…η̂α�ðωp − ω0
pÞ ¼

Xα
j¼1

ð−1Þj−1
Yl−1
i¼1

1

ω
½ ¯̂ηj�
1̄���ī − ω0̄

1���ī
: ð67bÞ

In Appendix C, we show how Eqs. (67) reproduce the well-
known results for 2p KF correlators. Since the set of η̂j is
obtained by ordering the set of μj ¼ p−1ðηjÞ, it follows that
each ¯̂ηj in Eq. (67b) is equal to some ηj0 (with j0 and j
related in a manner depending on p). Hence, the external
frequencies ω enter the kernel through sets of complex

frequencies ω
½ηj0 �
1̄���ī, whose imaginary parts are determined by

the external Keldysh indices k ¼ ½η1…ηα�.
For a fully retarded correlatorG½η�, where α ¼ 1, we have

η̂ ¼ μ ¼ p−1ðηÞ, hence ¯̂η ¼ η, so that the right-hand side of

Eq. (67b) depends on ω½η�
1̄���ī. In this case, the permuted

Keldysh indices kp enter only intermediately and are not
needed explicitly. Hence, G½η� can be expressed through a
single set of complex frequencies ω½η�, entering via the

product
Ql−1

i¼1 ðω½η�
1̄���ī − ω0̄

1���īÞ−1. It follows that G½η�ðωÞ is
an analytic function of the variable ωη in the upper half
complex plane. To see this, note that, for each denominator

containing ω½η�
η ¼ ωη þ iγ½η�η in the sum ω½η�

1̄���ī (i.e., for which
η ∈ f1̄;…; īg), the latter has a positive imaginary part,

γ½η�
1̄���ī > 0. Thus, for infinitesimal γ0, the corresponding
denominator has the formωη þ i0þþ real frequencies, such
that ωη can be analytically continued into the upper half
plane without encountering any singularities. Accordingly,
in the time domain,G½η�ðtÞ is fully retarded with respect to tη
(i.e., nonzero only for ti < tη, i ≠ η) [44–46].
The spectral representation (67) constitutes our main

result for KF lp functions. It is very compact, with the
number of terms increasing with α, the number Keldysh
indices equal to 2, and offers insight into the analytical
structure of Keldysh correlators, as we explain next.
For the correlatorsG½η� with a solitary Keldysh index 2 in

slot η, Eq. (67b) for the kernel K½η� involves only one
summand, similar to its analogs in the ZF and MF (without
anomalous terms), Eqs. (54a) and (42), respectively. The
ZF, MF, and KF results read
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GðωÞ ¼
X
p

ζp
Z

dl−1ω0
pS½Op�ðω0

pÞQl−1
i¼1 ½ω½1̄�

1̄���ī − ω0̄
1���ī�

; ð68aÞ

G̃ðiωÞ ¼
X
p

ζp
Z

dl−1ω0
pS½Op�ðω0

pÞQl−1
i¼1 ½iω1̄���ī − ω0̄

1���ī�
; ð68bÞ

2l=2

2
G½η�ðωÞ ¼

X
p

ζp
Z

dl−1ω0
pS½Op�ðω0

pÞQl−1
i¼1 ½ω½η�

1̄���ī − ω0̄
1���ī�

; ð68cÞ

respectively, in terms of the PSFs S from Eq. (28). There is
an important distinction between the two real-frequency
correlators of Eqs. (68a) and (68c): for the former, the
imaginary part of each component of ω½1̄� depends on the
permutation p; for the latter, the imaginary parts of ω½η� are
independent of p, being determined by the external index η
for all permutations. Hence, G½η� can be expressed through
a single set of complex frequencies ω½η� (as stated before),
while G cannot.
Comparing G½η� to the MF correlator (68b), we observe

that they exactly agree up to a replacement of frequencies:

2l=2−1G½η�ðωÞ ¼ G̃ðiωÞjiω→ω½η� : ð69Þ

This is the analytic continuation between MF lp functions
and (fully) retarded ones in the KF [25,45,46]. It general-
izes the well-known 2p relation G21=12ðωÞ ¼ G̃ðiω → ω�Þ.
By contrast, Keldysh correlators with multiple 2’s cannot

be obtained from MF ones by direct analytic continuation
because their kernels in Eq. (67b) involve two or more sets
of frequencies, ω½η1�, ω½η2�, etc., having different imaginary
parts. Therefore, they do not have any well-defined regions
of analyticity in the space of complex frequencies. One may
also realize that the summation in Eq. (67b) for α > 1
combines denominators of frequencies differing only by
their infinitesimal imaginary parts and thus leads to δ
functions. These are clearly at odds with any simple
analytic structure. Nonetheless, the spectral representations
derived above offer a convenient starting point for a
systematic analysis of relations between different
Keldysh correlators, similar to the famous fluctuation-
dissipation theorem for l ¼ 2 [cf. Eq. (C4)] [47–49].
Such an analysis exceeds the scope of this work and will
appear in a separate publication [26].

III. QUANTITIES TO COMPUTE

The next two sections are devoted to illustrating the
potential of our approach for computing lp functions with
several exemplary applications. In the present section, we
recall the definition of the 4p vertex, give the Hamiltonians
of the relevant models, and summarize various analytical
results available for them. In Sec. IV, we present numerical
results for the 4p vertex, comparing them against bench-
marks where available.

A. Definition of the 4p vertex

For the numerical evaluation of our spectral representa-
tions, we focus on local 4p functions of fermionic creation
or annihilation operators, d†σ or dσ, where σ ∈ f↑;↓g is the
electronic spin. We also need the 2p correlator, which
follows from Eqs. (15) or (32) in the ZF or MF using
O1 ¼ dσ, O2 ¼ d†σ . In this section (in contrast to previous
ones), we display only the first l − 1 time or frequency
arguments of lp functions, evoking time-translational
invariance to set the lth time argument to zero and
ωl ¼ −ω1���l−1.
In systems with spin symmetry, the 2p function, or

propagator, is diagonal in spin and simply reads

GðτÞ¼−hT dσðτÞd†σi; GðtÞ¼−ihT dσðtÞd†σi;

GðiωÞ¼
Z

β

0

dτeiωτGðτÞ; GðωÞ¼
Z

∞

−∞
dteiωtGðtÞ: ð70Þ

For the 4p function, we use O ¼ ðdσ; d†σ; dσ0 ; d†σ0 Þ, i.e.,

Gσσ0 ðτ1;τ2;τ3Þ¼ð−1Þ3hT dσðτ1Þd†σðτ2Þdσ0 ðτ3Þd†σ0 i;

Gσσ0 ðiω1;iω2;iω3Þ¼
Z

β

0

d3τei
P

3

i¼1
ωiτiGσσ0 ðτ1;τ2;τ3Þ;

ð71Þ

in the MF and analogously in the ZF [replacing ð−1Þ3 by
ð−iÞ3]. We here use the Fourier exponent i

P
i ωiτi with the

same sign for all frequencies, whereas one typically
attributes alternating signs to annihilation and creation
operators. We can directly switch to the standard conven-
tion by expressing our final results in the particle-hole
representation of frequencies [50] (cf. Fig. 5),

ω ¼ ðν;−ν − ω; ν0 þ ω;−ν0Þ; ð72Þ

involving minus signs for the frequencies ω2 and ω4, related
to creation operators. We will use these new variables in the
discussion of our results. (An exception is the model for
x-ray absorption for which different operators O are used;
see Sec. III B for details.) However, for brevity, we retain the
ωi notation throughout this section.

FIG. 5. Diagrammatic representation labeling the external legs
of a 4p function. The left-hand panel gives frequency and spin
labels; one label per line suffices as the propagator is diagonal in
spin and has only one independent frequency. The right-hand
panel additionally shows two Keldysh indices per propagator.
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The 4p correlators can be decomposed into a connected
(con) and disconnected (dis) part, G ¼ Gcon þ Gdis. The
latter corresponds to the independent propagation of two
particles and reads in the MF and ZF, respectively,

Gdis
σσ0 ðiω1;iω2;iω3Þ¼βGðiω1ÞGðiω3Þðδσ;σ0δω23;0−δω12;0Þ;
Gdis

σσ0 ðω1;ω2;ω3Þ¼2πiGðω1ÞGðω3Þ½δσ;σ0δðω23Þ−δðω12Þ�:
ð73Þ

By contrast, the connected part focuses on the mutual
interaction. Yet, one can still factor out the propagation
of each particle to and from the “scattering event”
(“external legs” in a diagrammatic language; see Fig. 5).
This yields the effective interaction, i.e., the (full) 4p vertex,

Fσσ0 ðiω1; iω2; iω3Þ ¼
Gcon

σσ0 ðiω1; iω2; iω3Þ
Gðiω1ÞGð−iω2ÞGðiω3ÞGð−iω4Þ

;

ð74Þ

where ω4 ¼ −ω123, and analogously in the ZF. Hence, once
the disconnected part is removed—which can also be done
on the level of the PSFs, see Eq. (30)—the vertex follows
from a simple division of numbers.
In the KF, each operator is placed on either the forward

or backward branch, according to its contour index
ci ∈ f�g. Thereby, an lp function acquires 2l compo-
nents. The Keldysh rotation exploits the fact that not all of
these components are independent. For l ¼ 2, the resulting
matrix structure in Keldysh indices ki ∈ f1; 2g is

GðωÞ ¼
�

0 GA

GR GK

�
ðωÞ; ð75Þ

in terms of the retarded (R), advanced (A), and Keldysh (K)
component.
The matrix structure naturally carries over to Eq. (73).

Because of G11 ¼ 0, the right-hand side vanishes if the 4p
function has only one Keldysh index equal 2; i.e., the fully
retarded components G½η� have no disconnected part. The
translation between connected correlator and vertex from
Eq. (74) now involves matrix multiplications, i.e.,

Gcon;k1k2k3k4
σσ0 ðω1;ω2;ω3Þ ¼ Gk1k01ðω1ÞGk3k03ðω3Þ

× F
k0
1
k0
2
k0
3
k0
4

σσ0 ðω1;ω2;ω3ÞGk0
2
k2ð−ω2ÞGk0

4
k4ð−ω4Þ; ð76Þ

with summation over k0i. One thus gets F
k
σσ0 from Gcon;k

σσ0 by
multiplying matrix inverses of the propagator (75). With
reference to Fig. 5, the right Keldysh index k01 of G

k1k01ðω1Þ
corresponds to a creation operator and marks the beginning
of the propagator line; the left one, k1, corresponds to an
annihilation operator and marks the end of the propagator
line. Using G1111 ¼ 0, G11 ¼ 0 [cf. Eq. (63)] in Eq. (76)

directly implies F2222 ¼ 0. One further finds that a vertex
with only one Keldysh index equal 1 in slot η, dubbed F½η�,
is directly proportional to G½η�. Hence, we call them (fully)
retarded as well. Indeed, in these cases, only retarded or
advanced propagators with ki ≠ k0i contribute to Eq. (76).
When using Eq. (76) to numerically extract F from Gcon

by dividing out the external legs, the same imaginary
frequency shifts must be used for the external-leg 2p
correlators on the right as for the 4p correlator Gcon on
the left. In Appendix D, we explain how this can be
achieved.

B. Models

We compute local 4p vertices for three impurity models.
The first describes x-ray absorption in metals, the second is
the symmetric AIM, and the third is a self-consistent AIM
for the one-band Hubbard model (HM) in DMFT.
For x-ray absorption, we consider the following

Hamiltonian, to be called Mahan impurity model (MIM)
[51] (mimicking the nomenclature customary for the AIM):

HMIM ¼
X
ϵ

ϵc†ϵcϵ þ jϵpjpp† −Uc†cpp†; ð77Þ

where c ¼ P
ϵ cϵ. The first term describes a conduction

band of spinless electrons with flat density of states
ð1=2DÞθðD − jϵjÞ and half-bandwidth D, the second a
localized core level with ϵp ≪ −D, filled in thermal
equilibrium. An x-ray absorption process, described by
c†p, transfers an electron from the core level into the
conduction band, thereby turning on a local attractive
scattering potential −U < 0 with U ≪ jϵpj, described by
the third term. We define the absorption threshold ωth as the
difference between the ground-state energies of the sub-
spaces with or without a core hole (ωth is of order jϵpj, but
slightly smaller, since the hole-bath interaction is attrac-
tive). The x-ray absorption rate at an energy ω relative
to the threshold is given by the imaginary part of the
particle-hole susceptibility, the 2p correlator χðωÞ ¼
G½p†c; c†p�ðωþ ωthÞ. The corresponding 4p correlator is
G½p†; c; c†; p�ðν; ν0;ωÞ, where, in the present context, the
definition (72) of these frequencies is replaced by

ω ¼ ðνþ ωth;−νþ ω; ν0 − ω;−ν0 − ωthÞ: ð78Þ

For the arguments equated to ω1 and ω4 ¼ −ω123, asso-
ciated with the operators p† and p switching from the no-
hole to the one-hole subspace and back, we split off �ωth,
the energy differences E2 1 and E1 4 associated with the
transitions h1jp†j2i and h4jpj1i [cf. Eq. (22b)] between
subspace ground states. Furthermore, the bosonic fre-
quency ω is chosen to have opposite sign compared to
Eq. (72), ensuring that ω12 ¼ −ω34 ¼ ωþ ωth matches the
argument of the susceptibility G½p†c; c†p�ðωþ ωthÞ.
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The AIM is described by the Hamiltonian

HAIM ¼
X
ϵσ

ϵc†ϵσcϵσ þ
X
σ

ϵdd
†
σdσ þ Ud†↑d↑d

†
↓d↓

þ
X
ϵ

ðVϵd
†
σcϵσ þ H:c:Þ: ð79Þ

It contains a band of spinful electrons, a local level with
energy ϵd and Coulomb repulsion U, and a hybridization
term, fully characterized by the hybridization function
ΔðνÞ ¼ P

ϵ πjVϵj2δðν − ϵÞ. We take ϵd ¼ −U=2 and
choose ΔðνÞ ¼ ΔθðD − jνjÞ box shaped. The local density
of states is given by the standard spectral function SstdðνÞ
associated with the 2p correlator G½dσ; d†σ�; the vertex Fσσ0

follows from the 4p correlator G½dσ; d†σ; dσ0 ; d†σ0 �.
The one-band HM is a lattice model with

HHM ¼ −t
X
hijiσ

c†iσcjσ þ U
X
i

c†i↑ci↑c
†
i↓ci↓; ð80Þ

where hiji enumerate nearest-neighbor lattice sites, t is the
hopping amplitude, and U the interaction strength. In
DMFT, the HM is mapped onto a self-consistently deter-
mined AIM [2]. The associated impurity degrees of free-

dom dð†Þσ experience the same local interaction U, while
their coupling to the rest of the lattice is encoded in the
hybridization function ΔðνÞ. In this paper, we consider the
Bethe lattice with infinite coordination number, which
yields a semicircular lattice density of states of half-
bandwidth D (∝ t), and paramagnetic, spatially uniform
phases. Then, the DMFT self-consistency condition simply
reads ΔðνÞ ¼ ðD=2Þ2πSstdðνÞ. Upon self-consistency, local
correlators of the HM can be found from the corresponding
AIM and thus analyzed in direct analogy.

C. Analytic benchmarks

The MIM was thoroughly investigated by Nozières and
collaborators in the ZF [52–54]. The particle-hole suscep-
tibility has a power-law divergence for frequencies above
the threshold, the celebrated x-ray–edge singularity
[51,55], solved analytically [54] as

ImχðωÞ ∝ ω−α; α ¼ 2δ=π − ðδ=πÞ2: ð81Þ

Here, ω is the absorption frequency above the threshold
ωth, and δ is the conduction-electron phase shift induced by
the core-hole scattering potential. It has the analytic
expression [54] δ ¼ arctanðπgÞ, with g ¼ U=ð2DÞ here.
It can also be computed with NRG through δ ¼ πΔh, where
Δh is the charge drawn in toward the scattering site by the
core hole [56,57].
In the first paper of the series [52], the (2p) susceptibility

χ was deduced from the (full) 4p vertex. The latter actually
contains a variety of power laws, as summarized by

Eq. (35) of Ref. [52]. Plus, one can extract χ, and thus
the same power law (81), from the vertex by sending
suitable frequencies to infinity. To this end, we consider the
vertex F, related to the 4p correlator G½p†; c; c†; p�, whose
bare part is F0 ¼ −U. In the particle-hole representation of
frequencies (72), χ then follows as [21,58,59] [60]

χðωÞ ¼ lim
jνj;jν0j→∞

½Fðν; ν0;ωÞ þ U�=U2: ð82Þ

The limit of fermionic frequencies must be taken such that
jνj, jν0j, and jν� ν0j become arbitrarily large [21]. In this
limit, ImF=U2 ¼ ImχðωÞ ∝ ω−α.
Analytic results are also available for the half filled AIM

in the MF in the limits of either weak or infinitely strong
interaction. In the former, one often simplifies D → ∞ and
T ¼ 0 to find the bare particle-hole susceptibility [61]

χ0ðiωÞ ¼
2Δ

πjωjðjωj þ 2ΔÞ ln
jωj þ Δ

Δ
: ð83Þ

Its particle-particle counterpart yields −χ0. Thus, combin-
ing all three two-particle channels, the vertex in second-
order perturbation theory follows as (using ↑̄ ¼ ↓, ↓̄ ¼ ↑)

Fσσ0 ¼ Uδσ;σ̄0 −U2

× ½δσ;σ0χ0ðiω12Þ þ δσ;σ̄0χ0ðiω13Þ − χ0ðiω14Þ�: ð84Þ

Here, the first term Uδσ;σ̄0 on the right is the MF bare vertex
F0;σσ0 . An expression analogous to Eq. (84) holds for the
local vertex of the weakly interacting HM. In that case,
Eq. (83) must be computed for the appropriate hybridiza-
tion function ΔðνÞ, with a nontrivial frequency dependence
resulting from the self-consistency condition.
In the opposite limit where U=Δ → ∞ in the AIM

(corresponding to U=t → ∞ in the HM) realizing the
Anderson or Hubbard atom (HA), the MF vertex is known,
too [21,43,62,63]. In compact notation, we have

F↑↓ ¼ 2uþ u3
P

iðiωiÞ2Q
iðiωiÞ

−
6u5Q
iðiωiÞ

ð85aÞ

þβu2½δω12
thþδω13

ðth−1Þþδω14
ðthþ1Þ�

Q
iðiωiþuÞQ

iðiωiÞ
;

F↑↑¼βu2ðδω14
−δω12

Þ
Q

iðiωiþuÞQ
iðiωiÞ

; ð85bÞ

with u ¼ U=2, δω ¼ δω;0, th ¼ tanh βu=2, and i ∈ f1; 2;
3; 4g. Generally, F↑↑ follows from F↑↓ by SU(2) spin and
crossing symmetry [63]: F↑↑ðiωÞ ¼ F↑↓ðiωÞ − F↑↓ðiω0Þ,
where ω0 relates to ω by exchanging either ω1 ↔ ω3

or ω2 ↔ ω4.
In the KF, the retarded vertex can be deduced from the

analytic continuation (69):2F½η�
σσ0 ðωÞ ¼ Fσσ0 ðiωÞjiω→ω½η� . For
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Eq. (84), this is easily verified using standard Keldysh
diagrammatic techniques. For Eqs. (85), it has recently been
shownexplicitly[64].Thelast twolinesofEqs.(85)consistof
anomalous terms (proportional to Kronecker δ’s) and cannot
be analytically continued to retarded components. However,
the real-frequency anomalous contributions (proportional to
Dirac δ’s) are contained in other Keldysh components, as
further discussed in Appendix E. The bare vertex Fk1k2k3k4

0;σσ0

equals 1
2
Uδσ;σ̄0 if k1234 is odd and zero otherwise. This can be

seen starting from the contour basis [65,66], where the bare
interaction requires all operators to be on the same branch
and comes with a minus sign on the backward branch.
A fourfold Keldysh rotation then generates the prefactor
½1 − ð−1Þk1���4 �=4.

IV. NUMERICAL VERTEX RESULTS

In the following, we present results obtained by
numerically computing local 4p functions with NRG.
Generally, NRG allows one to construct a complete basis
of approximate eigenstates of the Hamiltonian [67,68]
and thus directly evaluate the spectral representations (see
Refs. [29,30] for computing retarded 2p functions). In the
accompanying paper [34], we develop a new NRG
scheme to treat 3p and 4p functions. We refer interested
readers to Secs. IV–V of that paper for how PSFs are
computed with NRG as sums of discrete δ peaks, and to
Sec. VI for how these are broadened to smooth curves
and how connected correlators and the full vertex are
obtained from them. Here, we show the final results of
the 4p vertex, for the MIM in the ZF and for the AIM,
with both a boxed-shaped and a DMFT self-consistent
hybridization, in the MF and KF.

A. ZF for MIM: Power laws

The MIM is a prototypical model for the ZF; see, e.g.,
Refs. [52–54]. For this model, NRG proved very successful
in computing power-law divergences of 2p functions
[27,56,57,67,69,70], but it was never used to investigate
similar singularities in 4p functions. As explained in
Sec. III, we can extract the famous power law ω−α in
terms of the (bosonic) transfer frequency of the particle-
hole susceptibility χ directly from the 4p vertex F by
setting the fermionic frequencies ν, ν0 to very large values.
Figure 6(a) shows various cross sections of ImFðν; ν0;ωÞ,
where jνj, jν0j, and jν� ν0j are much larger than the half-
bandwidth D. All of them collapse onto the same curve.
This curve meets two consistency checks. First, as

expected from Eq. (82), it matches ImχðωÞ (red dashed
line), computed separately as a 2p correlator. The discrep-
ancy at ω≳ U is due to the broadening of discrete PSFs
(described in Ref. [34], Sec. VI. B); it can be removed by
reducing broadening, but then wiggly discretization arti-
facts appear. Second, as expected from Eq. (81), Fig. 6(a)

shows a power-law divergence for ω close to the threshold.
The exponent α ¼ 0.38 in ω−α (black dashed line, guide to
the eye) was obtained from Eq. (81) using the phase shift
δ ¼ arctanðπgÞ ¼ 0.67. We obtained the same value,
δ ¼ πΔh ¼ 0.67, when computing the Δh, the charge
drawn in to the core hole, with NRG following Ref. [56].
Next, we probe further power laws in the vertex F by

setting one fermionic frequency to a large value, νmax, and
the other one to a small value, νmin. As jωj is reduced from
jωj > νmin to jωj < νmin, F crosses over between two
power laws, given by Eqs. (36) and (40) of Ref. [52],
respectively. Both of them are very well reproduced by our
NRG results in Fig. 6(b). The analytic power laws are
shown as dashed lines. Their prefactors are 0.66 and 0.42,
respectively, in reasonable agreement with the predictions 1
and 0.5, obtained in logarithmic accuracy in Ref. [52].
These consistency checks, with matching results for

highly nontrivial 4p and 2p functions, on the one hand,
and agreement between numerical 4p results and analytic
predictions, on the other hand, provide confidence
that NRG is well suited to compute local 4p functions
in the ZF. Moreover, it successfully meets the parti-
cularly tough challenge of the regimes ω ≪ jνj ≃ jν0j and
ω ≪ jνj ≪ jν0j, namely resolving a small frequency with
exponential accuracy while also keeping track of two
larger ones.

FIG. 6. The ZF 4p vertex −F=U of the MIM, plotted as a
function of the bosonic transfer frequency ω for fixed fermionic
frequencies ν and ν0 [cf. Eq. (78)]. (a) The imaginary part of F at
ω > 0. For jνj; jν0j; jν� ν0j ≫ D, all results collapse onto a single
curve. This curve follows a power law ω−α matching the (2p)
susceptibility χ [Eq. (81)], which can be independently computed
by NRG (red dashed curve). (b) The real part of F at ω < 0. If
only one of ν and ν0 is large, F follows two distinct scaling
behaviors for νmin < −ω < νmax and −ω < νmin, given, respec-
tively, by Eqs. (36) and (40) of Ref. [52].
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B. MF for AIM: Temperature evolution

Most numerical work involving nonperturbative 4p
functions is obtained in the MF, where, thanks to the
steady progress in quantum Monte Carlo (QMC) tech-
niques, local 4p functions can nowadays be computed with
high precision (see Ref. [50] for a recent list of references).
Using the spectral representation as given by Eqs. (39),
(28), and (46), they can be computed with NRG, too. For
the next parts, we consider the half filled AIM with box-
shaped hybridization and large interactionU=Δ ¼ 5, where
U=D ¼ 1=5, focusing on the (full) 4p vertex Fσσ0

(cf. Sec. III).
We start with a moderately low temperature T ¼ 10−2D.

Figure 7 shows our MF NRG results for the two spin
components of Fσσ0 as a function of ν and ν0 at ω ¼ 0 in the
particle-hole representation (72). One can still see the
discrete nature of the Matsubara frequencies
iνð0Þ ∈ iπTð2Zþ 1Þ. Furthermore, one observes the typical
structure in the frequency dependence of the full vertex
[20,21,50,63] composed of a background value (indepen-
dent of νð0Þ), a distinct signal on the diagonal and anti-
diagonal (though weaker), and a plus-shaped feature
(νð0Þ ¼ �πT) (the latter is more pronounced at lower T).
Note that F↑↑ vanishes identically for ν ¼ ν0. This is
intuitive from the Pauli principle since, then, all quantum
numbers of both fermions involved match. It also follows
from the symmetry relation mentioned below Eq. (85),
since exchanging either ω1 ↔ ω3 or ω2 ↔ ω4 at ω ¼ 0
leaves the diagonal (ν ¼ ν0) invariant. At a temperature
T ¼ 10−2D, we can compare our results to highly accurate
QMC data [10,71,72]. We find that the results differ on the
level of 1%, which confirms the reliability of our new NRG
scheme at moderately low temperatures.
Typical QMC algorithms scale unfavorably with inverse

temperature. An important advantage of our MF NRG
scheme is hence that it extends to arbitrarily low T. For the
given parameters, the Kondo temperature is TK ≃ 5 ×
10−3D [73]. Accordingly, T ¼ 10−2D, as used above, is

not low enough to enter the strong-coupling regime, but
T ¼ 10−4D, used for Fig. 8, is. There, we find that the
features already observed in Fig. 7 become sharper and
more pronounced. Particularly interesting is the region
νð0Þ ≲ TK , describing the Fermi liquid with an impurity
screened by the Kondo cloud. Indeed, the inset in Fig. 8
shows that the vertex is strongly reduced in this regime,
thus giving way to weakly interacting quasiparticles.
To explore this concept further, renormalized perturba-

tion theory (RPT) offers a way of extracting the quasipar-
ticle interaction (local Landau parameter) directly from the
NRG low-energy spectrum [75–78]. This proceeds by
comparing the eigenenergies of states with two excited
quasiparticles to those with only one; it does not require
knowledge of frequency-dependent correlation functions.
The resulting values Ũσσ0 ¼ Ũδσ;σ̄0 should match the low-
energy limit of the effective interaction (i.e., the 4p vertex
Fσσ0 with all frequencies sent to zero), multiplied by the
quasiparticle weight Z: Ũσσ0 ¼ Z2Fσσ0 ðiω → 0Þ [76].
Figure 9 shows the vertex evaluated at the lowest

Matsubara frequencies, νð0Þ ¼ �πT, ω ¼ 0, as a function
of decreasing temperature. At very large temperatures,
T ≫ D, correlation effects are suppressed, and the vertex
reduces to the bare interaction, Fσσ0 → Uδσ;σ̄0 . As we lower
temperature much below D, there are strong renormaliza-
tion effects, and particularly F↑↓ for ν ¼ ν0 and F↑↑ for
ν ¼ −ν0 grow in magnitude. (Recall that F↑↑ vanishes
identically for ν ¼ ν0.) Now, for T on the order of the
Kondo temperature TK , this trend comes to a halt, and the
low-energy components of the vertex start to decrease
again. This is the nonperturbative crossover from strongly
interacting particles to weakly interacting quasiparticles, as
one enters the Fermi-liquid regime. Indeed, for temper-
atures sufficiently below TK, we find that the low-energy
vertex has precisely the same form as the bare vertex: it is
nonzero only for different spins, with a value independent
of the signs of the frequencies νð0Þ ¼ �πT. This value
precisely matches the RPT estimate, Fσσ0 → Ũσσ0=Z2. Vice

FIG. 7. MF 4p vertex Fσσ0 ðiωÞ=U of the AIM as a function of ν
and ν0 at ω ¼ 0 and a moderately low temperature T ¼ 10−2D.
The labels ↑↑ and ↑↓ indicate the spin indices σσ0. The left-hand
panels show NRG results FNRG

σσ0 ðiωÞ=U. The right-hand panel

shows their difference to QMC data, ðFNRG
σσ0 − FQMC

σσ0 Þ=U, which
is two orders of magnitude smaller than the original signal.

FIG. 8. Fσσ0 ðiωÞ=U computed by NRG, analogous to Fig. 7,
but at a much lower temperature, T ¼ 10−4D. The inset enlarges
the low-energy window marked by the small square. For
νð0Þ ≲ TK , the vertex is strongly suppressed, giving rise to the
Fermi-liquid regime of weakly interacting quasiparticles.
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versa, Ũσσ0 can be determined from Z2Fσσ0 ðiω → 0Þ. Both
the decrease of Fσσ0 ðiωÞ for jωij; T < TK and the small
quasiparticle weight Z ≃ 0.36 lead to a small (but finite)
quasiparticle interaction of Ũ ≃ 0.20U.
To our best knowledge, comparing RPT to the low-

energy limit of a nonperturbative vertex computation
has not been realized before. It is a stringent consistency
check for the underlying Fermi liquid and confirms
the reliability of our NRG scheme down to very low
temperatures.

C. KF for AIM: Benchmarks and strong coupling

To our best knowledge, nonperturbative results for KF 4p
functions have not been obtained in the literature before.
Hence, we begin our analysis with two benchmark cases.
The first concerns the limit of infinitely strong interaction,
Δ=U ¼ 0, i.e., the atomic limit of the AIM or simply the
HA. In this case, the many-body basis consists of only four
states, and a NRG computation reduces to a simple, exact
diagonalization. The PSFs involve only a few δ singular-
ities, which, at half filling, are placed at multiples of U=2.
Any real-frequency correlation function directly inherits
these singularities. In numerical calculations, one sets a
minimal imaginary part γ0 in the spectral representation. As
the denominators contain three factors of the type
ðωi þ iγ0 − ω0

iÞ, the poles reach a magnitude of γ−30 .
The MF vertex of the HA is well understood analytically

[9], see Eq. (85), and reveals many features shared by
general MF vertices; see Fig. 10. We now analyze the KF
vertex of the HA. To this end, we compute the spectral
representation involving 24 permutations, subtract the
disconnected part, and amputate the external legs

(cf. Sec. III). As the calculation in this limit is exact, these
steps pose no further difficulties. The result are 16 Keldysh
components, each having a real and imaginary part.
Figure 11 shows the huge variety of features that can be
observed as a function of ν and ν0 at ω ¼ 0 [in the particle-
hole representation (72)]. We display five different Keldysh
components; all others, related by permutations of their
Keldysh indices, show analogous features. Avery compact,
analytic result for the fully retarded components F½η� can be
deduced from the known Matsubara result (85) and the
analytic continuation (69). Our numerical results match
those to floating-point precision. As explained in Sec. III C,
the typical diagonal features of the vertex become δ
functions in the atomic limit. They do not appear in F½η�
but in other Keldysh components; see Fig. 11. For these
other components, too, analytic results have recently been
obtained [64], and they perfectly match our numerical ones.
Next, we turn on the coupling to the bath. As we now

have a continuous spectrum, discrete PSFs, obtained from a
finite number of terms in the sum of Eq. (28), must be
broadened. The subtraction of the disconnected part Gdis

σσ0 ,
which requires exact cancellations of large terms, is then
numerically difficult. Note that, even if the retarded
components G½η� do not have a disconnected part from
an analytical perspective, this again relies on exact can-
cellations that are easily violated numerically. To obtain the
vertex via Gcon

σσ0 most accurately, we employ a twofold
strategy [34]. First, we compute Gcon

σσ0 directly from Scon ¼
S − Sdis (as discussed at the end of Sec. II B), where Sdis is
deduced from the full S through appropriate sum rules and
subtracted prior to broadening. This eliminates the dis-
connected part to a large extent but, due to imperfect
numerical accuracy, not completely. Second, we use a
Keldysh analog of the equation-of-motion method as
presented in Ref. [79]. It is based on expressing Gcon

σσ0

through auxiliary correlators, obtained by differentiating
Gσσ0 with respect to, say, the first time argument. Clearly,
the choice of this time argument introduces a bias. While
this does not appear important in MF applications, we
found it to be highly relevant in the KF. As a consequence,

FIG. 9. The vertex evaluated at the lowest Matsuabra frequen-
cies νð0Þ ¼ �πT and ω ¼ 0, denoted by Fσσ0 ð�1;�1; 0Þ, as a
function of decreasing temperature. For T ≫ D, the vertex
reduces to the bare interaction F0;σσ0 ¼ Uδσ;σ̄0 . Upon lowering
T, it exhibits strong renormalization effects and undergoes a
crossover from increasing to decreasing magnitude for T > TK
and T < TK , respectively. For T ≪ TK, it converges to the
quasiparticle interaction Ũσσ0 ¼ Ũδσ;σ̄0 , divided by twice the
quasiparticle weight Z. The parameters Ũ ≃ 0.20U and Z ≃
0.36 were found from RPT and NRG, independent of the 4p
computation, and thus provide a strong consistency check.

FIG. 10. MF 4p vertex ðFσσ0 − F0;σσ0 Þ=U of the HA (AIM at
infinitely strong interaction, Δ=U ¼ 0), at ω ¼ 0. It is calculated
from the analytic result (85) at a temperature T=U ¼ 1=50; the
bare vertex F0;σσ0 ¼ Uδσ;σ̄0 is subtracted for clarity.
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the connected part of only those Keldysh components that
similarly single out one time argument, i.e., G½η�, could be
reliably determined. For other components, we expect a
symmetric version of the equation of motion to be
beneficial, similar to the one presented in Ref. [80] for
the MF. This is, however, left for future work.
Our second KF benchmark involves the limit of weak

interaction, U=Δ ¼ 1=2. There, one has an analytic result
from second-order perturbation theory (PT), conveniently
obtained in the wideband and zero-temperature limit, which
can be found by analytic continuation of Eq. (84). One
should keep in mind that weak interaction, and even the
noninteracting limit, is highly nontrivial for a diagonaliza-
tion-based algorithm like NRG. In Fig. 12, we compare our
NRG results of the weakly interacting AIM to PT, con-

sidering the real and imaginary parts of F½1�
σσ0 , as a function

of ν and ν0 at ω ¼ 0 for both spin components. While the
precise values of the NRG vertex depend on the broadening
prescription, we overall find very good qualitative agree-
ment between NRG and PT. There are dominant diagonal
structures that arise whenever one of the (bosonic) fre-
quency arguments in (the analytic continuation of) Eq. (84)
vanishes. According to Eq. (83), their real part describes a
peak of width ∼Δ, as reproduced in Fig. 12. Upon
subtraction of the bare vertex, the ↑↓ component has no
background contribution, since χ0ðω12 ¼ ωÞ in Eq. (84)
comes with a factor δσ;σ̄0. The ↑↑ component has a
background value of χ0ð0Þ; its diagonal vanishes upon
cancellation of χ0ðω12 ¼ ωÞ and χ0ðω14 ¼ ν − ν0Þ.
Whereas these features are easily explained from a pertur-
bative perspective on the vertex, obtaining them in a
numerical approach that starts from the spectral represen-
tation of the correlator is a stringent test for the whole
machinery.

After passing both of these benchmarks, we can con-
fidently present our results for the retarded vertex in the
strongly interacting regime. We use identical parameters as
above: U=Δ ¼ 5, U=D ¼ 1=5, and T ¼ 10−4D below the
Kondo temperature TK ≃ 5 × 10−3D. In Fig. 13(a), we

show ReF½1�
↑↓ − F½1�

0;↑↓ as a function of ν and ν0, for three
choices of ω. At large ω, the vertex mostly involves only
one diagonal. This structure can again be understood from a
diagrammatic perspective [21] related to Eq. (84): contri-
butions from both the particle-hole channel corresponding
to χ0ðω12 ¼ ωÞ and the particle-particle channel, corre-
sponding to χ0ðω13 ¼ ωþ νþ ν0Þ, are suppressed at large

FIG. 11. KF 4p vertex ðFk
σσ0 − Fk

0;σσ0 Þ=U of the HA at ω ¼ 0 and T=U ¼ 1=50 (using γ0 ¼ T). The left-hand (right-hand) panels show
σ ≠ σ0 (σ ¼ σ0), the top (bottom) rows the real (imaginary) part, except for the purely imaginary k ¼ 1122 and 1111 components.
Keldysh components not plotted look similar to those that are plotted: components where k has only one 1 are analogous to 1222 (these
vanish for σ ¼ σ0); those with only one 2 are analogous to 2111; 1122 corresponds to 2211, while other components with two 1’s and
two 2’s are similar to 2112. The 2222 vertex vanishes identically.

FIG. 12. KF 4p point vertex ðFk
σσ0 − Fk

0;σσ0 Þ=U at ω ¼ 0 and
k ¼ 1222 in the AIM at weak interaction, U=Δ ¼ 1=2. The
left-hand (right-hand) panels show the real and imaginary
parts for σ ≠ σ0 (σ ¼ σ0). The top row shows NRG data, with
U=D ¼ 1=20 and T ¼ 10−3D; the bottom row shows results of
second-order perturbation theory (PT) in the wideband and zero-
temperature limit. We find very good qualitative agreement (the
overall magnitude depends on the broadening prescription), even
though the limit of weak interaction is highly nontrivial for the
diagonalization-based NRG.
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ω, while those of the other particle-hole channel persist
independent of it, similar to χ0ðω14 ¼ ν − ν0Þ. As we

decrease ω, more features build up: ReF½1�
↑↓ develops an

increasing background value, independent of ν and ν0,
except for distinct values forming a plus shape.
Figure 13(b) shows the real and imaginary parts of

F½1�
σσ0 − F½1�

0;σσ0 , for both spin components, at ω ¼ 0. We again

enlarge the low-energy window νð0Þ ≲ TK (dashed square).
Similar to the MF results (cf. Fig. 9), the low-energy limit
of F½η� should reproduce the RPT prediction. Figure 13(c)

shows the difference F½1�
σσ0 − Ũσσ0=ð2Z2Þ (the factor of 2

comes from the Keldysh rotation). Indeed, this difference is

an order of magnitude smaller than F½1�
σσ0 − F½1�

0;σσ0 , and, for

νð0Þ → 0, it goes to zero. While the real parts of both spin
components show a rather extended regime of small values,
the imaginary parts, particularly regarding ↑↓, exhibit only
a thin line of zero values.

D. MF and KF for HM: DMFT solution

For the strongly interacting AIM, the MF vertex in Fig. 8
and the real part of the retarded KF vertex in Fig. 13 look
somewhat similar. [Recall that KF 4p functions inherit a
factor 1=2 from the Keldysh rotation; see, e.g., Eq. (69).]
This is drastically different for the results we present in the
following. There, we analyze the (half filled) one-band HM
within DMFT, which amounts to solving a self-consistently
determined AIM [2]. We takeU=D ¼ 2.6 and T=D ¼ 10−4

in the coexistence region of a metallic and insulating
solution. Figure 14 shows the standard (2p) spectral
function Sstd of the strongly interacting AIM, considered
previously [Fig. 14(a)], and the metallic and insulating
solution of the self-consistent AIM describing the HM
[Fig. 14(b)]. The self-consistent metallic solution has much
more pronounced features, where the spectral weight
between the quasiparticle peak and the Hubbard bands
almost goes to zero. The insulating solution has a gap at
ω ¼ 0 and broad Hubbard bands around the positions of
the atomic peaks, �U=2.
Figure 15 shows the local 4p vertex for the DMFT

solution of the HM, displaying the MF vertex on the left,
and a retarded Keldysh component, k ¼ 1222, on the right.
In the top row, depicting the metallic solution, the MF
vertex is reminiscent of the AIM results in Fig. 8, albeit
with significantly larger values and a more extended
plus-shaped structure. By contrast, the KF vertex reveals
entirely new features not found in theAIM results of Fig. 13.
Next to the typical structure consisting of a background
value, diagonal line, and plus-shaped structure, it exhibits
sign changes at intermediate frequencies0.1≲jνð0Þj=D≲0.5.
They are thus at similar frequencies as the aforementioned
dips in Sstd (Fig. 14) and likely related to these. In the bottom

FIG. 13. KF 4p vertex F½1�
σσ0 in the strongly interacting AIM,

U=Δ ¼ 5, U=D ¼ 1=5, T ¼ 10−4D. (a) ReðF½1�
↑↓ − F½1�

0;↑↓Þ=U for
three choices of ω > TK . Lowering ω, more features build up.

(b) All components of ðF½1�
σσ0 − F½1�

0;σσ0 Þ=U at ω ¼ 0. (c) Enlarge-
ment on the window jνj; jν0j ≲ TK [dashed squares in (b)],

showing ½F½1�
σσ0 − Ũσσ0=ð2Z2Þ�=U. The values in (c) are an order

of magnitude smaller than in (b) and vanish for νð0Þ → 0, showing
that the low-energy retarded vertex reproduces RPT.

FIG. 14. Standard (2p) spectral functions Sstd [cf. Eq. (8)] for
(a) the AIM chosen for Figs. 8 and 13 and (b) the DMFT
solutions of the HM chosen for Fig. 15. Here, SstdðωÞ is obtained
by the adaptive broadening scheme of Ref. [81].
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row, depicting the insulating solution, the MF vertex is very
similar to the HA solution (Fig. 10), with almost divergent
values. TheKF vertex also looks similar to that, but different
from the KF HA results in Fig. 11. The reason is that, for the
HA, the diagonal structure expected in F½1� has a width that
vanishes as Δ → 0 and enters as a δ function in other
Keldysh components. However, for the insulating solution
of the HM, the hybridization, though gapped, remains finite.
It thus allows for a diagonal signal in F½1�, even if it is only a
very sharp line.
The overall magnitudes of the KF results in Fig. 11 are

rather different from the MF results. On the one hand, this
may result from the fact that the real-frequency results do
have a richer structure in this case. On the other hand, the
precise values of the KF results still depend on the broad-
ening prescription, particularly for the insulating solution.
Further improving the broadening of 4p real-frequency data
is planned for follow-up work. This will enable a thorough
analysis of the DMFT real-frequency vertex and promises
valuable insight into strong-correlation effects on the two-
particle level.

V. SUMMARY AND OUTLOOK

A. Summary

The many-body problem is typically addressed by either
deriving lp correlation and vertex functions from an action
or by working with operators and states in relation to a
Hamiltonian. The connection between both approaches
through spectral or Lehmann representations is well known
for various 2p functions and for imaginary-time functions
with l ≤ 4. Here, we completed this picture in a

generalized framework, providing spectral representations
for arbitrary lp functions in three commonly used many-
body frameworks: the real-frequency ZF, imaginary-
frequency MF, and real-frequency KF.
Through the spectral representations, we elucidated how

lp correlators G in the ZF, MF, and KF are related to one
another. We expressed G as a convolution of PSFs S and
kernel functions K. The PSFs are formalism independent
and contain the dynamical information of a given system.
By contrast, the kernels are system independent and
encode the time-ordering prescriptions of the formalism
at hand. We first derived the spectral representation in the
ZF where it is most compact. We proceeded with the MF,
using analogous arguments and the same PSFs, and
discussed anomalous terms that arise when vanishing
(bosonic) Matsubara frequencies and degeneracies in
the spectrum occur together. For the KF in both the
contour and Keldysh bases, we identified a (fully) retarded
kernel K½η� through which all other KF kernels can be
expressed. Among the KF correlators, those with a solitary
Keldysh index equal to 2, G½η�, have the simplest spectral
representation. It precisely matches the spectral represen-
tation of the MF (without anomalous parts) up to a
replacement of imaginary frequencies by real frequencies
with infinitesimal imaginary parts, iω → ω½η�, making the
analytic continuation between MF and retarded KF lp
functions manifest.
We used a novel NRG method, described in the

accompanying paper [34], to evaluate the spectral repre-
sentations of 4p functions for selected quantum impurity
models. Starting with a simple model for x-ray absorption
treated in the ZF, we analyzed multiple power laws in the

FIG. 15. MF and retarded KF 4p vertices, ðFσσ0 − F0;σσ0 Þ=U and ðF½1�
σσ0 − F½1�

0;σσ0 Þ=U, respectively, at ω ¼ 0 in the DMFT solutions of
the HM (Bethe lattice, half-bandwidth D). The first (second) rows show the metallic (insulating) solutions at U=D ¼ 2.6, T=D ¼ 10−4,
using a linear (logarithmic) color scale. The KF vertex for the metallic solution exhibits distinct features at intermediate frequencies
0.1D≲ jνj; jν0j ≲ 0.5D, similar to where the standard (2p) spectral function SstdðωÞ has dips separating quasiparticle peak and Hubbard
bands (Fig. 14). The insulating solution has very sharp diagonal lines (ν ¼ ν0).
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4p vertex. Proceeding with the AIM in the MF, we
benchmarked our NRG results against Monte Carlo data
at intermediate temperatures. The NRG technique is
beneficial at very low temperatures, where we found the
vertex to exhibit strongly reduced values for Matsubara
frequencies below the Kondo temperature TK . Indeed, by
decreasing the temperature T from above half-bandwidthD
to below TK, we studied the crossover from strongly
interacting particles to weakly interacting quasiparticles
on the level of the 4p vertex F (effective interaction). At
T ≪ TK , we deduced from F the quasiparticle interaction,
which has a form identical to the bare electronic interaction,
with values predictable from RPTand the NRG low-energy
spectrum.
For the AIM in the KF, we first tested our NRG results in

the solvable limits of weak and infinitely strong interaction.
Finding qualitative agreement with perturbation theory for
weak interaction was a demanding test for the diagonal-
ization-based NRG. For infinitely strong interaction, i.e.,
the HA, we found rich features in the different Keldysh
components of the vertex. In the intermediate regime of the
strongly interacting AIM, we observed the formation of
renormalization effects in the retarded vertex F½1� with
decreasing the transfer frequency ω and showed that F½1�
reproduces RPT for temperature and frequencies below TK.
Overall, the retarded vertex showed features that might be
expected from the MF result and perturbation theory. This
was drastically different in our final results where we
analyzed the one-band Hubbard model within DMFT in the
regime of coexisting metallic and insulating solutions. For
the strongly correlated metal, the KF vertex showed distinct
features at intermediate frequencies, absent in the MF
counterpart. We speculate that these go hand in hand with
the dips separating the quasiparticle peak and the Hubbard
bands in the standard (2p) spectral function. Regarding the
insulating solution, the MF vertex is similar to the MF HA
result. The KF vertex also looks similar to that, but the
finite hybridization, albeit gapped, leads to notable devia-
tions from the KF HA.

B. Outlook

In this work, we have focused on (i) the formal properties
of spectral representations and (ii) benchmark tests of our
NRG scheme [34] to compute the 4p vertex of quantum
impurity models. This sets the stage for a variety of
intriguing applications.
Let us start with more formal aspects. In the

Introduction, we mentioned the divergences of two-particle
irreducible vertices in the MF. Mathematically, these
divergences arise through the matrix inversion of a gener-
alized susceptibility χ, a function of discrete Matsubara
frequencies, whose eigenvalues become negative and thus
cross zero at some point [10]. Expressed through real
frequencies, the former sums over matrix elements become
integrals over complex functions. At finite temperature,

there is an additional matrix structure of Keldysh indices.
The tools presented here allow one to compute χ in the ZF
or KF, and to investigate if divergences of the two-particle
irreducible vertex persist for real frequencies.
Moreover, real frequencies provide the natural language

for Fermi-liquid theory. Indeed, the original Fermi-liquid
works used the zero-temperature approach, defining the
Landau parameters in terms of the ZF (full) 4p vertex [82].
In the mean time, the T ¼ 0 Landau parameters were
expressed through Matsubara vertices, too [11,83,84]. Such
MF vertices can also be computed at T > 0. However, a
stringent extension of Fermi-liquid theory to finite temper-
ature should ideally use real-frequency Keldysh objects.
Their nonperturbative evaluation becomes accessible
through this work.
On the practical side, an important application of local 4p

functions is given by diagrammatic extensions of DMFT.
We briefly recall that DMFT describes local correlations,
assuming a purely local self-energy. Diagrammatic exten-
sions of DMFT employ diagrammatic relations to further
incorporate correlations of arbitrary wavelength [50]. For
instance, in the ladder dynamical vertex approximation
[42,85,86], dual fermion formalism [87–89], or a functional
renormalization group (FRG) flow [90] starting from
DMFT [91], a momentum-dependent self-energy and
vertex are constructed from the local (full) 4p vertex.
Many successful results along these lines have been
obtained in the MF [50]. Yet, the commonly used
Monte Carlo-based DMFT impurity solvers are not able
to reach very low temperatures. Our MF NRG results,
which extend to arbitrarily low temperature, can remedy
this limitation. Furthermore, to properly interpret the
intriguing phases of strongly correlated electron systems,
real-frequency diagrammatic extensions of DMFT would
be invaluable. The momentum dependence could be
generated by real-frequency diagrammatic techniques, such
as the rather well-developed Keldysh FRG [65,92,93]. The
necessary building blocks are real-frequency local 4p
functions, such as the KF NRG results shown here.
Another interesting topic requiring the computation of

real-frequency 4p functions is the theory of resonant
inelastic x-ray scattering (RIXS) of strongly correlated
materials [94]. We present some proof-of-principle RIXS
results in the accompanying paper [34].
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APPENDIX A: EXPLICATION OF ZF FORMULA
FOR l= 2

Here, we show how the general lp formula (26) repro-
duces the familiar 2p result (4) for GðωÞ in the ZF. For
l ¼ 2 and O ¼ ðA;BÞ, Eq. (26) reads

GðωÞ ¼
Z

dω0
1Kðω1 − ω0

1ÞS½A;B�ðω0
1Þ

þ ζ

Z
dω0

2Kðω2 − ω0
2ÞS½B;A�ðω0

2Þ: ðA1Þ

For brevity, we wroteGðωÞ ¼ GðωÞ, KðωpÞ ¼ Kðω1̄Þ, and
Sðω0

pÞ ¼ Sðω0̄
1
Þ, hiding the second frequency argument,

with ω1 ¼ −ω2 ¼ ω and ω0
2 ¼ −ω0

1 implicit. The ingre-
dients needed above are KðωiÞ ¼ 1=ωþ

i and, using
Eq. (24b),

S½A;B�ðω0
1Þ ¼

X
1 2

ρ1A1 2B2 1δðω0
1 − E2 1Þ; ðA2aÞ

S½B;A�ðω0
2Þ ¼

X
1 2

ρ2B2 1A1 2δðω0
2 − E1 2Þ: ðA2bÞ

Inserting Eqs. (A2) into Eq. (A1), we obtain Eq. (4):

GðωÞ ¼
Z

dω0
1

S½A;B�ðω0
1Þ

ωþ
1 − ω1

0 þ ζ

Z
dω0

2

S½B;A�ðω2
0Þ

ωþ
2 − ω2

0

¼
X
1 2

A1 2B2 1

�
ρ1

ωþ − E2 1

− ζ
ρ2

ω− − E2 1

�
: ðA3Þ

APPENDIX B: DIRECT MF CALCULATION

In the main text, we derived the MF formulas somewhat
indirectly, arguing that all contributions from the upper
integration boundaries in Eq. (37) cancel. For complete-
ness, we here give a direct derivation of the MF Lehmann
representations for l ¼ 2, 3, 4. We also discuss anomalous
terms arising when denominators vanish. For this purpose,
we focus on correlators for which at most one frequency
ω1̄���ī, with i < l, is bosonic, and derive the expressions
(45) and (46) for the full MF kernel KðΩpÞ given in the
main text. The reasons for this focus are stated before
Eq. (45); other cases can be treated analogously.

We begin by discussing the computation for general l.
We exploit time-translational invariance, define
GðτÞ ¼ GðτÞjτl¼0, use ω1���l ¼ 0 in GðiωÞ, and directly
compute

GðiωÞ ¼
Z

β

0

dτ1…dτl−1e
P

l−1
i¼1

iωiτiGðτÞ: ðB1Þ

The (l − 1)-fold integral involves ðl − 1Þ! different time
orderings. Hence, the sum over p in the representation (34)
for GðτÞ reduces to ðl − 1Þ! permutations, say, q ¼
ð1̄ 2̄…l − 1lÞ (last index fixed), with a new kernel
kðτqÞ ¼ ð−1Þl−1 Ql−2

i¼1 θðτī − θiþ1Þ, as τl ¼ 0 always is
the smallest time. We obtain

GðiωÞ ¼
X
q

ζq
Z

dl−1ω0
qkðiωq − ω0

qÞS½Oq�ðω0
qÞ; ðB2Þ

kðΩqÞ ¼ ð−1Þl−1
Z

β

0

dτ1̄

Z
τ1̄

0

dτ2̄…
Z

τ
l−2

0

dτl−1e
P

l−1
i¼1

Ωīτī ;

ðB3Þ

where Ωq ¼ iωq − ω0
q, with ω0

1���l ¼ 0 and thus Ω1���l ¼ 0.
We will often use the shorthand Sp ¼ S½Op�ðω0

pÞ for
permuted versions of S. The δ functions in S, as given
by Eq. (24b), ensure ω0̄

i ¼ Eiþ1 ī and ω0̄
1���ī ¼ Eiþ1 1̄; hence,

ω0 variables serve as shorthand notations for energy
differences.
In the following, we consider the cases l ¼ 2, 3, and 4 in

turn. For each, we start by computing the regular contri-
butions, signified by a tilde on k̃ and G̃, for which all
denominators arising from the τī integrals are assumed to
be nonzero. We subsequently discuss anomalous cases,
signified by a hat on k̂, for which this assumption does not
hold. For these, we recompute the corresponding integrals
more carefully. Alternatively and more elegantly, the
anomalous terms can also be found from the regular ones
by a limiting procedure, treating nominally vanishing
denominators as infinitesimal rather than zero.

1. MF, l = 2

We begin with the case l ¼ 2, involving two bosonic or
fermionic operators. Although it was already covered in
Sec. II A, we discuss it again, to set the stage for the
subsequent analogous treatments of the cases l ¼ 3, 4.
For l ¼ 2, there are only two permutations, p ¼ ð1̄ 2̄Þ,

namely (12) and (21), with ζð12Þ ¼ 1, ζð21Þ ¼ ζ, and
Sð12Þ ¼ S½O1;O2�ðω0

1;ω
0
2Þ, Sð21Þ ¼S½O2;O1�ðω0

2;ω
0
1Þ. The

kernel kðΩpÞ has arguments ðΩ1̄;Ω2̄Þ, with Ωī ¼ iωī − ω0̄
i,

and it is understood a priori that ω12 ¼ 0 and ω0
12 ¼ 0. The

sum over q in Eq. (B2) has only a single term, q ¼ ð12Þ,
with kðΩð12ÞÞ ¼ kðΩ1;Ω2Þ defined by
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kðΩð12ÞÞ ¼ −
Z

β

0

dτ1eΩ1τ1 : ðB4Þ

Regular part.—For Ω1 ≠ 0, Eq. (B4) evaluates to

k̃ðΩð12ÞÞ ¼
1 − eβΩ1

Ω1

¼ 1

Ω1

þ ζe−βω
0
1

Ω2

; ðB5Þ

where we used Ω12 ¼ 0 for the second step. Now, consider
the product kðΩð12ÞÞSð12Þ in Eq. (B2) for GðiωÞ. The

cyclicity relation (25) implies Sð21Þ ¼ e−βω
0
1Sð12Þ; hence,

the regular part of this product takes the form

k̃ðΩð12ÞÞSð12Þ ¼
Sð12Þ
Ω1

þ ζSð21Þ
Ω2

: ðB6Þ

The regular part of G can thus be expressed as

G̃ðiωÞ¼
Z

dω0
1k̃ðΩð12ÞÞSð12Þ ¼

X
p

ζp
Z

dω0̄
1

Sð1̄2̄Þ
Ω1̄

; ðB7Þ

where the sum now runs over the two permutations
p ¼ ð1̄ 2̄Þ ∈ fð12Þ; ð21Þg. This reproduces the general
result stated by Eqs. (39) and (42) from the main text.
Anomalous part.—The integral (B4) is anomalous if

Ω1 ¼ −Ω2 ¼ 0; indeed, both terms in Eq. (B5) for k̃ would
then involve vanishing denominators. This situation can
arise if ω1 ¼ −ω2 ¼ 0, possible only for bosonic frequen-
cies (ζ ¼ 1), and if simultaneously ω0

1 ¼ −ω0
2 ¼ 0 due to a

degeneracy, E2 ¼ E1, in the spectrum [cf. Eq. (28)]. In this
case, the integral in Eq. (B4) yields

k̂ð0Þ ¼ −
Z

β

0

dτ1 ¼ −β: ðB8Þ

Alternatively, this result can be directly obtained from
the regular part k̃ by taking Ω1 ¼ −Ω2 not zero but
infinitesimal. We set ω1 ¼ −ω2 ¼ 0 and −ω0

1 ¼ ω0
2 ¼ ϵ,

so that Ω1 ¼ −Ω2 ¼ ϵ, and compute k̂ as k̃ϵ→0, using
Eq. (B5):

k̂ð0Þ ¼
�
1

ϵ
þ eβϵ

−ϵ

�
ϵ→0

¼ −β: ðB9Þ

It will be convenient to split the anomalous term equally
among both terms in the sum

P
p for G. Since Sð21Þ ¼ Sð12Þ

when ω0
p ¼ 0, this can be done by symmetrizing the

anomalous contribution to kðΩð12ÞÞSð12Þ as

k̂ð0ÞSð12Þ ¼ −ðβ=2Þ½Sð12Þ þ Sð21Þ�: ðB10Þ

Equations (B10) and (B7) imply thatGðiωÞ of Eq. (B2) can
be expressed in the form (39), with a kernel defined as

KðΩqÞ ¼
�
1=Ω1̄ if Ω1̄ ≠ 0;

−β=2 if Ω1̄ ¼ 0;
ðB11Þ

consistent with the general Eq. (46) from the main text.
Since the divergences from the denominators of the

regular k̃ cancel after summing over permutations
[cf. Eq. (B9)], we may also represent the full kernel as

KðΩpÞ ¼
1

Ω1̄

− δΩ1̄;0
β

2
; ðB12Þ

corresponding to Eq. (45). Here, δΩ1̄;0 is symbolic notation
indicating that the anomalous second term is nonzero only
if Ω1̄ ¼ 0. No restriction is placed on the Ω1̄ values for the
first term, with the understanding that vanishing denom-
inators should be treated using infinitesimals.

2. MF, l = 3

Consider l ¼ 3. Without loss of generality, we choose
O3 bosonic, with O1 andO2 either both bosonic (ζ ¼ 1) or
both fermionic (ζ ¼ −1). Hence, ζp takes the values

ζð123Þ ¼ ζð132Þ ¼ ζð312Þ ¼ 1;

ζð231Þ ¼ ζð213Þ ¼ ζð321Þ ¼ ζ:

The twofold time integral in Eq. (B1) now involves two
time orderings, τ1 > τ2 and τ2 > τ1; hence, the sum

P
q in

Eq. (B2) involves two permutations q ¼ ð1̄ 2̄ 3Þ, namely,
(123) and (213). The kernel k of Eq. (B3) reads

kðΩð1̄ 2̄ 3ÞÞ ¼
Z

β

0

dτ1̄e
Ω1̄τ1̄

Z
τ1̄

0

dτ2̄e
Ω2̄τ2̄ : ðB13Þ

Regular part.—Performing the integral (B13) and
assuming all resulting denominators to be nonzero, we
obtain

k̃ðΩð1̄ 2̄ 3ÞÞ ¼
1

Ω2̄

Z
β

0

dτ1̄ðeΩ1̄ 2̄τ1̄ − eΩ1̄τ1̄Þ ðB14aÞ

¼ eβΩ1̄ 2̄ − 1

Ω2̄Ω1̄ 2̄

−
eβΩ1̄ − 1

Ω2̄Ω1̄

¼ e−βω
0
1̄ 2̄

Ω3Ω31̄

þ ζe−βω
0
1̄

Ω2̄Ω2̄3

þ 1

Ω1̄Ω1̄ 2̄

: ðB14bÞ

For the last line, we combined the β-independent
terms using ð1=Ω1̄ − 1=Ω1̄ 2̄Þ=Ω2̄ ¼ 1=ðΩ1̄Ω1̄ 2̄ÞÞ. We also
exploited Ω1̄ 2̄ 3 ¼ 0 to rewrite the denominators of the
β-dependent terms in a way that reveals the denomi-
nators of all three terms to be cyclically related by
ð31̄ 2̄Þ → ð2̄31̄Þ → ð1̄ 2̄ 3Þ. Since the cyclicity relation
(25) implies e−βω

0
1̄ 2̄Sð31̄ 2̄Þ ¼ e−βω

0
1̄Sð2̄31̄Þ ¼ Sð1̄ 2̄ 3Þ, we con-

clude that

MULTIPOINT CORRELATION FUNCTIONS: SPECTRAL … PHYS. REV. X 11, 041006 (2021)

041006-25



k̃ðΩð1̄ 2̄ 3ÞÞSð1̄ 2̄ 3Þ ¼
Sð31̄ 2̄Þ
Ω3Ω31̄

þ ζSð2̄31̄Þ
Ω2̄Ω2̄3

þ Sð1̄ 2̄ 3Þ
Ω1̄Ω1̄ 2̄

; ðB15Þ

which again has cyclically related index structures on the
right. The sum over the two choices for q ¼ ð1̄ 2̄ 3Þ in
Eq. (B2) for GðiωÞ, namely, (123) and (213), thus yields

G̃ðiωÞ ¼
X
p

ζp
Z

dω0̄
1
dω0̄

2

Sð1̄ 2̄ 3̄Þ
Ω1̄Ω1̄ 2̄

; ðB16Þ

where the sum now runs over all six permutations
p ¼ ð1̄ 2̄ 3̄Þ. This is consistent with Eqs. (39) and (42).
Anomalous part.—If ω1̄ and ω2̄ are fermionic frequen-

cies, Ω1̄ and Ω2̄ are always nonzero. However, since ω3 is
bosonic, Ω1̄ 2̄ ¼ −Ω3 can vanish, yielding anomalous con-
tributions. Indeed, the denominators in the first and third
terms of Eq. (B14b) for k̃ vanish if Ω1̄ 2̄ ¼ −Ω3 ¼ 0. This
happens if ω1̄ 2̄ ¼ −ω3 ¼ 0 and also ω0̄

1 2̄
¼ −ω0

3 ¼ 0.
Recomputing the integral (B14a) for this case, we obtain

k̂ðΩð1̄ 2̄ 3ÞÞ ¼
β

Ω2̄

−
eβΩ1̄ − 1

Ω2̄Ω1̄

¼ −
1

Ω1̄

�
β þ 1

Ω1̄

�
þ ζe−βω

0
1̄

Ω2̄Ω2̄3

: ðB17Þ

The last term matches the second term of the regular k̃ of
Eq. (B14b); the first two are anomalous contributions.
These can also be deduced directly from the first and third
terms of k̃ by treating Ω1̄ 2̄ ¼ −Ω3 there as infinitesimal. To
this end, we set ω1̄ 2̄ ¼ −ω3 ¼ 0 and −ω0̄

1 2̄
¼ ω0

3 ¼ ϵ, so

that Ω1̄ 2̄ ¼ −Ω3 ¼ ϵ, and compute k̂ as k̃jϵ→0. The first and
third terms of Eq. (B14b) then give

eβϵ

−ϵðΩ1̄ − ϵÞ þ
1

Ω1̄ϵ
→ −

1

Ω1̄

�
β þ 1

Ω1̄

�
; ðB18Þ

reproducing the anomalous terms in Eq. (B17).
Since ω0̄

1 2̄
¼ 0 implies Sð31̄ 2̄Þ ¼ Sð1̄ 2̄ 3Þ, we can express

the product k̂ðΩð1̄ 2̄ 3ÞÞSð1̄ 2̄ 3Þ as

−
1

2

�
β þ 1

Ω31̄

�
Sð31̄ 2̄Þ
Ω31̄

þ ζSð2̄31̄Þ
Ω2̄Ω2̄3

−
1

2

�
β þ 1

Ω1̄

�
Sð1̄ 2̄ 3Þ
Ω1̄

:

ðB19Þ

Here, we split the anomalous contribution equally between
the first and third terms, using Ω3 ¼ 0 to rewrite the
denominators such that their Ω’s match the nonzero Ω’s
in the first and third terms of Eq. (B14b) for k̃.
Jointly, Eqs. (B19) and (B14b) imply that GðiωÞ of

Eq. (B2) has the form (39), with a kernel defined as

KðΩpÞ ¼

8>>><
>>>:

1
Ω1̄Ω1̄ 2̄

if Ω1̄Ω1̄ 2̄ ≠ 0;

− 1
2
½β þ 1

Ω1̄
� 1
Ω1̄

if Ω1̄ 2̄ ¼ 0;

− 1
2
½β þ 1

Ω1̄ 2̄
� 1
Ω1̄ 2̄

if Ω1̄ ¼ 0;

ðB20Þ

for any of the six permutations p ¼ ð1̄ 2̄ 3̄Þ. This is
consistent with the general Eq. (46) from the main text.
Since the anomalous terms not proportional to β stem

from the numerators of the regular part k̃, they need not be
displayed separately—they are generated automatically
when treating vanishing denominators as infinitesimal
and summing over permutations. The full kernel can thus
be expressed in the following form, equivalent to
Eq. (B20), but written in the notation of Eq. (45):

KðΩpÞ ¼
1

Ω1̄Ω1̄ 2̄

−
β

2

�
δΩ1̄ 2̄;0

Ω1̄

þ δΩ1̄;0

Ω1̄ 2̄

�
: ðB21Þ

3. MF, l = 4

Finally, we consider the case l ¼ 4, with four bosonic or
four fermionic operators. Now, Eq. (B2) forGðiωÞ involves
a sum over six permutations, q ¼ ð1̄ 2̄ 3̄ 4Þ, with

kðΩð1̄ 2̄ 3̄ 4ÞÞ ¼ −
Z

β

0

dτ1̄e
Ω1̄τ1̄

Z
τ1̄

0

dτ2̄e
Ω2̄τ2̄

Z
τ2̄

0

dτ3̄e
Ω3̄τ3̄ :

ðB22Þ

Regular part.—Ignoring anomalous cases, this yields

k̃ðΩð1̄2̄ 3̄4ÞÞ¼−
Z

β

0

dτ1̄e
Ω1̄τ1̄

Z
τ1̄

0

dτ2̄
1

Ω3̄

½eΩ2̄3̄τ2̄ −eΩ2̄τ2̄ �

¼
Z

β

0

dτ1̄
1

Ω3̄

�
−eΩ1̄2̄3̄τ1̄ þeΩ1̄τ1̄

Ω2̄3̄

þeΩ1̄2̄τ1̄ −eΩ1̄τ1̄

Ω2̄

�

¼ −eβΩ1̄2̄3̄ þ1

Ω3̄Ω2̄ 3̄Ω1̄2̄ 3̄

þ eβΩ1̄2̄ −1

Ω3̄Ω2̄Ω1̄ 2̄

þeβΩ1̄ −1

Ω3̄Ω1̄

�
1

Ω2̄3̄

−
1

Ω2̄

�

¼ ζe−βω
0
1̄2̄3̄

Ω4Ω41̄Ω41̄2̄

þ e−βω
0
1̄2̄

Ω3̄Ω3̄4Ω3̄41̄

þ ζe−βω
0
1̄

Ω2̄Ω2̄3̄Ω2̄ 3̄4

þ 1

Ω1̄Ω1̄ 2̄Ω1̄2̄ 3̄

: ðB23Þ

The β-independent term was obtained using

1

Ω3̄

�
1

Ω2̄ 3̄Ω1̄ 2̄ 3̄

−
1

Ω1̄Ω2̄ 3̄|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
−1=ðΩ1̄Ω1̄ 2̄ 3̄Þ

þ 1

Ω1̄Ω2̄

−
1

Ω2̄Ω1̄ 2̄|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
1=ðΩ1̄Ω1̄ 2̄Þ

�
¼ 1

Ω1̄Ω2̄Ω1̄ 2̄ 3̄

;

while, for the β-dependent ones, we exploitedΩ1̄ 2̄ 3̄ 4 ¼ 0 to
obtain four cyclically related denominators, with the first
three obtainable from the fourth via the permutations
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ð41̄ 2̄ 3̄Þ, ð3̄41̄ 2̄Þ, and ð2̄ 3̄ 41̄Þ. Using the cyclicity relation
(25), we find that k̃ðΩð1̄ 2̄ 3̄ 4ÞÞSð1̄ 2̄ 3̄ 4Þ has the form

ζSð41̄ 2̄ 3̄Þ
Ω4Ω41̄Ω41̄ 2̄

þ Sð3̄41̄ 2̄Þ
Ω3̄Ω3̄4Ω3̄41̄

þ ζSð2̄ 3̄ 41̄Þ
Ω2̄Ω2̄ 3̄Ω2̄ 3̄ 4

þ Sð1̄ 2̄ 3̄ 4Þ
Ω1̄Ω1̄ 2̄Ω1̄ 2̄ 3̄

:

ðB24Þ

The sum over all six permutations q ¼ ð1̄ 2̄ 3̄ 4Þ yields

G̃ðiωÞ ¼
X
p

ζp
Z

dω0̄
1
dω0̄

2
dω0̄

3

Sð1̄ 2̄ 3̄ 4̄Þ
Ω1̄Ω1̄ 2̄Ω1̄ 2̄ 3̄

; ðB25Þ

where the sum now runs over all 24 permutations
p ¼ ð1̄ 2̄ 3̄ 4̄Þ. This is again consistent with Eqs. (39)
and (42).
Anomalous part.—If all four operators are fermionic, ωī

and Ωī are always nonzero, but Ωī j̄ can vanish. Indeed, in
Eq. (B23), denominators vanish (i) in the second and fourth
terms if Ω1̄ 2̄ ¼ −Ω3̄4 ¼ 0, and (ii) in the first and third
terms ifΩ2̄ 3̄ ¼ −Ω41̄ ¼ 0. We discuss these cases by taking
the vanishing frequencies to be infinitesimal; recomputing
the integral (B22) yields the same results.
For case (i), we set ω1̄ 2̄ ¼ −ω3̄4 ¼ 0 and −ω0̄

1 2̄
¼

ω0
34

¼ ϵ, so that Ω1̄ 2̄ ¼ −Ω3̄4 ¼ ϵ, and compute k̂ as

k̃jϵ→0. The second and fourth terms of Eq. (B23) then
yield

eβϵ

Ω3̄ð−ϵÞðΩ1̄ − ϵÞ þ
1

Ω1̄ϵðΩ3̄ þ ϵÞ→ −
�
βþ 1

Ω1̄

þ 1

Ω3̄

�
1

Ω1̄Ω3̄

;

while the first and third terms remain unchanged. Since
ω0̄
1 2̄

¼ 0 implies Sð3̄41̄ 2̄Þ ¼ Sð1̄ 2̄ 3̄ 4Þ, we can thus obtain

k̂ðΩð1̄ 2̄ 3̄ 4ÞÞSð1̄ 2̄ 3̄ 4Þ from k̃ðΩð1̄ 2̄ 3̄ 4ÞÞSð1̄ 2̄ 3̄ 4Þ of Eq. (B24)
by replacing the second and fourth terms of the latter by

−
1

2

�
βþ 1

Ω3̄41̄

þ 1

Ω3̄

�
Sð3̄41̄ 2̄Þ
Ω3̄41̄Ω3̄

−
1

2

�
βþ 1

Ω1̄

þ 1

Ω1̄ 2̄ 3̄

�
Sð1̄ 2̄ 3̄ 4Þ
Ω1̄Ω1̄ 2̄ 3̄

:

ðB26Þ

Here, we split the anomalous contribution equally between
these two terms, using Ω1̄ ¼ Ω3̄41̄ and Ω3̄ ¼ Ω1̄ 2̄ 3̄ to
rewrite the denominators such that their Ω’s match the
nonzero Ω’s in the second and fourth terms of Eq. (B24).
For case (ii), we similarly set Ω2̄ 3̄ ¼ −Ω41̄ ¼ ϵ. Then,

the first and third terms of k̃ in Eq. (B23) yield

ζeβϵe−βω
0
1̄

Ω4ð−ϵÞðΩ2̄− ϵÞþ
ζe−βω

0
1̄

Ω2̄ϵðΩ4þ ϵÞ→−
�
βþ 1

Ω2̄

þ 1

Ω4

�
ζe−βω

0
1̄

Ω2̄Ω4

;

while the second and fourth terms remain unchanged.
Using Ω4 ¼ Ω2̄ 3̄ 4 and Ω2 ¼ Ω41̄ 2̄, we can thus obtain

k̂ðΩð1̄ 2̄ 3̄ 4ÞÞSð1̄ 2̄ 3̄ 4Þ from k̃ðΩð1̄ 2̄ 3̄ 4ÞÞSð1̄ 2̄ 3̄ 4Þ of Eq. (B24) by
replacing the first and third terms of the latter by

−
1

2

�
βþ 1

Ω41̄ 2̄

þ 1

Ω4

�
ζSð41̄ 2̄ 3̄Þ
Ω4Ω41̄ 2̄

−
1

2

�
βþ 1

Ω2̄ 3̄4

þ 1

Ω2̄

�
ζSð2̄ 3̄41̄Þ
Ω2̄Ω2̄ 3̄4

;

ðB27Þ

with denominators matching the nonzero Ω’s in Eq. (B24).
If both (i) and (ii) hold simultaneously, the product

k̂ðΩð1̄ 2̄ 3̄ 4ÞÞSð1̄ 2̄ 3̄ 4Þ is given by the sum of the anomalous
terms in Eqs. (B26) and (B27). Note that the four parts of
these two equations are cyclically related, in that the
second part of Eq. (B26) yields the other three via the
permutations ð3̄41̄ 2̄Þ, ð41̄ 2̄ 3̄Þ, or ð2̄ 3̄ 41̄Þ (with ζð41̄ 2̄ 3̄Þ ¼
ζð2̄ 3̄ 41̄Þ ¼ ζ).
Jointly, the expressions (B24), (B26), and (B27)

obtained above for the regular k̃ðΩð1̄ 2̄ 3̄ 4ÞÞ or the anomalous
k̂ðΩð1̄ 2̄ 3̄ 4ÞÞ times Sð1̄ 2̄ 3̄ 4Þ imply a kernel of the
form

KðΩpÞ ¼
� 1

Ω1̄Ω1̄ 2̄Ω1̄ 2̄ 3̄
if Ω1̄ 2̄ ≠ 0;

− 1
2
½βþ 1

Ω1̄
þ 1

Ω1̄ 2̄ 3̄
� 1
Ω1̄Ω1̄ 2̄ 3̄

if Ω1̄ 2̄ ¼ 0;
ðB28Þ

for any of the 24 permutations p ¼ ð1̄ 2̄ 3̄ 4̄Þ, consistent
with the general Eq. (46) from the main text.
Since the anomalous terms not proportional to β follow

from expanding denominators of k̃, they need not be
displayed explicitly. The full kernel can thus be expressed
in the following form, equivalent to Eq. (B28), but written
in the notation of Eq. (45):

KðΩpÞ ¼
1

Ω1̄Ω1̄ 2̄Ω1̄ 2̄ 3̄

− δΩ1̄ 2̄;0
β

2

1

Ω1̄Ω1̄ 2̄ 3̄

: ðB29Þ

This concludes our derivation of Eqs. (45) and (46).

APPENDIX C: EXPLICATION OF KF
FORMULA FOR l= 2

Here, we show how the general lp formulas (67)
reproduce the well-known 2p correlators in the Keldysh
basis of the KF. For l ¼ 2, Eqs. (67) read

G½η1…ηα�ðωÞ ¼
X
p

ζp
Z

dω1̄
0K½η̂1…η̂α�ðω1̄−ω1̄

0ÞS½Op�ðω1̄
0Þ;

K½η�ðω1̄Þ ¼
1

ω½η�
1̄

; K½12�ðω1̄Þ ¼
1

ω½1̄�
1̄

−
1

ω½2̄�
1̄

: ðC1Þ

We hid the second frequency argument of G, K, and S, as
done in Eq. (A1), with ω1 ¼ −ω2 ¼ ω and ω0

1 ¼ −ω0
2

being understood. Summing over p ∈ fð12Þ; ð21Þg,
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inserting Eqs. (A2) for the PSFs, and recalling ω½η�
12 ¼ 0 to

replace ω½η�
2 by −ω½η�

1 , we obtain

G½η�ðωÞ ¼
X
1 2

A1 2B2 1

�
ρ1

ω½η�
1 − E2 1

þ ζρ2

ω½η�
2 − E1 2

�

¼
X
1 2

A1 2B2 1

ρ1 − ζρ2

ω½η�
1 − E2 1

; ðC2aÞ

G½12�ðωÞ ¼
X
1 2

A1 2B2 1

�
ρ1

�
1

ω½1�
1 − E2 1

−
1

ω½2�
1 − E2 1

�

þ ζρ2

�
1

ω½2�
2 − E1 2

−
1

ω½1�
2 − E1 2

��

¼
X
1 2

A1 2B2 1

�
ρ1 þ ζρ2

ω½1�
1 − E2 1

−
ρ1 þ ζρ2

ω½2�
1 − E2 1

�
: ðC2bÞ

To make contact with the expressions from Sec. II A, we
now set ω½η�

1̄¼η
¼ω1̄þ iγ0 and ω

½η�
1̄≠η ¼ ω1̄ − iγ0 [cf. Eq. (49)]

and use ω1 ¼ −ω2 ¼ ω for their real parts. Choosing γ0
infinitesimal, in which case K½12�ðωÞ ¼ −2πiδðωÞ,
we obtain the standard expressions for G21 ¼ G½1�

[cf. Eq. (11c)], G12 ¼ G½2�, and G22 ¼ G½12�:

G½1�ðωÞ
G½2�ðωÞ



¼

X
1 2

A1 2B2 1

ρ1 − ζρ2
ω� − E2 1

; ðC3aÞ

G½12�ðωÞ¼−2πi
X
12

A12B21ðρ1þζρ2Þδðω−E21Þ: ðC3bÞ

These fulfill the fluctuation-dissipation theorem (FDT),

G½12�ðωÞ ¼ ½cothðβω=2Þ�ζ½G½1�ðωÞ − G½2�ðωÞ�; ðC4Þ

since ρ2 ¼ e−βωρ1 if ω ¼ E2 1. Note that if γ0 is finite, the
latter condition does not hold, and neither does Eq. (C4).

APPENDIX D: IMAGINARY SHIFTS FOR
EXTERNAL LEGS

In this Appendix, we explain how the imaginary fre-
quency shifts needed for ZF and KF correlators should
be chosen in the external legs of a connected 4p corre-
lator when amputating these to extract the 4p vertex. As
in Sec. III, we display only the first l − 1 frequency
arguments of lp functions, with ωl ¼ −ω1���l−1. We
begin by discussing the KF case; the ZF case follows by
analogy.
In using Eq. (76) to numerically extract the KF

vertex Fðω1;ω2;ω3Þ from the connected correlator
Gconðω1;ω2;ω3Þ by dividing out the external legs, the
same imaginary frequency shifts must be used for the
external-leg 2p correlators on the right as for the 4p

correlator Gcon on the left. This may seem daunting, since
the spectral representation (64) of a 4p correlator involves a
permutation sum

P
p, and the imaginary shifts accompa-

nying the arguments ωp of the KF kernels Kkpðωp − ω0
pÞ

depend on p. However, Kkp , given by Eqs. (63) and (52),
depends on its frequency arguments ωp only via the

complex 4-tuples ω½1�
p ;…;ω½4�

p of Eq. (49), whose compo-

nents ω½η�
ī have only two possible imaginary parts,þ3iγ0 or

−iγ0. Hence, each argument ωi of Gconðω1;ω2;ω3Þ enters
as either ωi þ 3iγ0 or ωi − iγ0. Thus, we just have to ensure
that the frequency arguments of the external-leg 2p corre-
lators enter in the same manner.
For 2p correlators GðωÞ, the argument ω enters via the

complex 2-tuples ω½1� and ω½2�. We choose these as

ω½1� ¼ ðωþ aiγ0;−ω − aiγ0Þ;
ω½2� ¼ ðω − biγ0;−ωþ biγ0Þ; ðD1Þ

consistent with Eq. (49), but involving two prefactors,
a; b > 0, to be specified below. The 2p correlators on the
right of Eq. (76) occur in two ways, (1) GðωiÞ (i ¼ 1, 3)
and (2)Gð−ωiÞ (i ¼ 2, 4), with ωi one of the 4p arguments.
For case (1), we choose a ¼ 3, b ¼ 1, such that ω½1�

depends on ωi þ 3iγ0 and ω½2� on ωi − iγ0. For case (2),
we choose a ¼ 1, b ¼ 3, such that ω½1� depends on −ωi þ
iγ0 ¼ −ðωi − iγ0Þ and ω½2� on −ωi − 3iγ0 ¼ −ðωi þ 3iγ0Þ.
By Eqs. (C2), the external-leg 2p correlators for cases (1)
and (2) thus read:

G½1�ðωiÞ ¼ð1Þ A12B21

ρ1−ζρ2
ωiþ3iγ0−E21

;

G½2�ðωiÞ ¼ð1Þ A12B21

ρ1−ζρ2
ωi− iγ0−E21

;

G½12�ðωiÞ ¼ð1Þ A12B21

�
ρ1þζρ2

ωiþ3iγ0−E21

−
ρ1þζρ2

ωi− iγ0−E21

�
;

G½1�ð−ωiÞ ¼ð2Þ A12B21

ρ1−ζρ2
−ωiþ iγ0−E21

;

G½2�ð−ωiÞ ¼ð2Þ A12B21

ρ1−ζρ2
−ωi−3iγ0−E21

;

G½12�ð−ωiÞ ¼ð2Þ A12B21

�
ρ1þζρ2

−ωiþ iγ0−E21

−
ρ1þζρ2

−ωi−3iγ0−E21

�
:

ðD2Þ

Here, a summation over underlined indices is implicit.
Next, we discuss the ZF case. As pointed out at the end

of Sec. II D 1, the ZF imaginary frequency shifts can be
defined in two ways: for 4p correlators, we can replace ωp

either (i) byω½1̄�
p or (ii) by ðω½4̄�

p Þ�. For choice (i),ωī enters as
either ωī þ i3γ0 or ωī − iγ0, for choice (ii) as ωī þ iγ0 or
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ωī − 3iγ0. Choice (i) matches the situation encountered
above for the KF; choice (ii) requires an additional
interchange 3 ↔ 1 for the size of the positive or negative
shifts. Thus, the amputation of 2p correlators with first
argument ωmay again proceed via Eq. (D1). For choice (i),
we take a, b as specified above, and for choice (ii) we
modify that specification by 3 ↔ 1.

APPENDIX E: HUBBARD
ATOM AT SECOND ORDER

To understand how anomalous contributions in the MF
are translated into the KF, we consider the (half filled)
Hubbard atom at second order in U as an instructive
example. The vertex at second order follows from the bare
susceptibility χ0, cf. Eq. (84). We can also deduce the
second-order self-energy Σ from χ0. In the MF,

χ0ðiωÞ ¼ −ðG0 �G0ÞðiωÞ;
ΣðiνÞ ¼ U2ðG0 � χ0ÞðiνÞ; ðE1Þ

where ðA � BÞðiωÞ ¼ ð1=βÞPν Aðiνþ iωÞBðiνÞ. Using
G0ðiνÞ ¼ 1=ðiνÞ, we find χ0ðiωÞ ¼ 1

4
βδω;0. Indeed, this

result for χ0 is also seen by expanding the vertex (85)
to order U2, F↑↓ ¼ U þ 1

4
βU2ðδω14

− δω13
Þ and F↑↑ ¼

1
4
βU2ðδω14

− δω12
Þ, and comparing it to Eq. (84).

Computing the self-energy yields ΣðiνÞ ¼ U2=ð4iνÞ. The
second-order result for Σ turns out to be exact, as can be
checked from Σ ¼ G−1

0 − G−1 with the exact GðiνÞ ¼
1
2

P
�ðiν� U=2Þ−1.

Now, we compute χ0 in the KF. As a bosonic 2p
function, it has three nonzero Keldysh components, χR0 ,
χA0 , χ

K
0 . The formula for the retarded component is

χR0 ðωÞ ¼ −ðGR
0 �GK

0 þ GK
0 � GA

0 ÞðωÞ; ðE2Þ

where ðA � BÞðωÞ ¼ ð1=2πiÞ R dνAðνþ ωÞBðνÞ. From
GR

0 ðνÞ ¼ 1=ðνþÞ, where νþ ¼ νþ i0þ, and the fermionic
FDT [Eq. (C4)], we find GK

0 ðνÞ ∝ tanhðβν=2ÞδðνÞ ¼ 0.
Hence, χR0 ðωÞ ¼ 0.
The KF result χR0 ðωÞ ¼ 0 does not reflect the nonzero

part of χ0ðiωÞ ¼ 1
4
βδω;0. [One may attribute this to the fact

that the analytic continuation χR0 ðωÞ ¼ χ0ðiω → ωþÞ
smoothly approaches ω ¼ 0 from above the real axis,
where χ0ðiωÞ ¼ 0.] Still, the two expressions are consis-
tent in that both arise from a time-independent operator,
like O ¼ d†σdσ with ½H;O� ¼ 0 for the Hubbard atom.
On the one hand, in the MF time domain, OðτÞ ¼ O
yields χðτÞ ∝ hT OðτÞOi ∝ const; hence, χðiωÞ ∝ δω;0. On
the other hand, in the KF time domain, OðtÞ ¼ O
yields χRðtÞ ∝ h½OðtÞ;O�i ¼ 0, since the commutator
vanishes. Importantly, the information contained in
χ0ðτÞ ∝ const and χðiωÞ ∝ δω;0 is not lost; the KF encodes
it via the anticommutator of the Keldysh component,

χKðtÞ ¼ −ihfOðtÞ;Ogi ∝ const yielding χKðωÞ ∝ δðωÞ.
Indeed, the formula for the Keldysh component of χ0,

χK0 ðωÞ ¼ −ðGR
0 �GA

0 þGA
0 �GR

0 þGK
0 �GK

0 ÞðωÞ; ðE3Þ

gives χK0 ðωÞ ¼ 2πiδðωÞ. Note that these results for χ0 in
the KF are consistent with the bosonic FDT [Eq. (C4)],
rearranged as follows to avoid the singularity of
cothðβω=2Þ at ω ¼ 0: tanhðβω=2ÞχKðωÞ ¼ χRðωÞ−
χAðωÞ ¼ 0.
Finally, we remark that there are attempts in the literature

to incorporate anomalous contributions known from the
MF, as the one in χ0ðiωÞ, into retarded functions like χR0 ðωÞ
(see Ref. [39], and references therein). This is not necessary
when working within the full-fledged KF, as the informa-
tion of anomalous MF contributions is encoded in other
Keldysh components, such as χK0 ðωÞ. Indeed, the second-
order retarded self-energy,

ΣRðνÞ ¼ ðU=2Þ2ðGK
0 � χA0 þGR

0 � χK0 ÞðνÞ; ðE4Þ

yields the correct result ΣRðνÞ ¼ U2=ð4νþÞ upon using
χA0 ðωÞ ¼ ½χR0 ðωÞ�� ¼ 0 and χK0 ðωÞ ¼ 2πiδðωÞ. Any artifi-
cial modification of χR0 would give an incorrect result.
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