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Abstract

In this thesis, we utilize the multiloop pseudofermion functional
renormalization group method to investigate the Heisenberg model
with dipolar interactions on the square and triangular lattice in
the zero temperature limit. We compare our results with previous
studies conducted using the pseudofermion functional renormaliza-
tion group [1, 2] and we observe good agreement with their results.
However, our work reveals an extended region for the disordered
regime that was not captured in previous studies. In the second
part of this thesis, we establish a correspondence between the cut-
off function used in the functional renormalization group and the
impurity Hamiltonian. We conduct a benchmark study by compar-
ing our results with exact diagonalization for the antiferromagnetic
Heisenberg dimer and the density matrix renormalization group for
the antiferromagnetic Heisenberg chain. The comparison reveals
good agreement between the methods in the weak coupling regime.
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1

Introduction

Quantum spin liquids are a novel phase of matter with fascinating features
such as anyonic excitations, high degree of entanglement, topological order,
and absence of long-range order [3]. This phase can emerge in spin models
with geometric frustration, such as the antiferromagnetic Heisenberg model on
frustrated geometries. Previously, Thönniß et al. has studied this model on the
Kagome lattice using the multiloop pseudofermion functional renormalization
group [4, 5]. In this thesis, we employ the same method to investigate the
Heisenberg model on both the triangular and square lattice, considering both
short-range and long-range interactions.

The antiferromagnetic Heisenberg model on the triangular lattice has been
extensively studied using various methods involving density matrix renormal-
ization group [6–9], variational Monte Carlo [10] and pseudofermion functional
renormalization group [10]. Previous studies of the antiferromagnetic Heisen-
berg model with short-range interactions [6–10] have suggested the existence
of a magnetically disordered state that could be a quantum spin liquid. In
this thesis, first we briefly study the short-range interactions and then we
turn to a more extensive analysis of the long-range interactions. We compare
our findings with the existing literature both on the short-range [6–10] and
long-range interactions [1, 11].

Similarly, the antiferromagnetic Heisenberg model on the square lattice
is another candidate for hosting a quantum spin liquid phase. Indeed, pre-
vious studies employing density matrix renormalization group [12, 13], pro-
jected entangled pair states [14], exact diagonalization [15] and pseudofermion
functional renormalization group [16] have identified a regime that exhibits
characteristics of a quantum spin liquid. Analogous to our triangular lattice
study, we also conduct a brief investigation of this model with the short-range
interactions and compare our findings with the previous studies [12–15]. Sub-
sequently, we explore the effects of long-range interactions and compare our
results with Refs. [2, 17].

To study these models, we employ a method that combines the pseudo-
fermion functional renormalization group originally developed by Reuther and
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1. Introduction

Wölfle [16, 18, 19], with the extension of the multiloop functional renormal-
ization group developed by Kugler and von Delft [20–23] to study the AFM
Heisenberg model on the triangular and the square lattice.

The thesis is structured as follows. In Chapter 2, after giving a concise
overview of quantum spin liquids and the Heisenberg model, we explain the
multiloop pseudofermion functional renormalization group method. We start
our explanation by discussing the pseudofermion representation of the spin
operators. Then we discuss the building blocks of the multiloop functional
renormalization group following Refs. [20–24].

In Chapter 3, we discuss the numerical implementation of this method
previously accomplished by Ritter [24] and Thönniß [4].

In Chapter 4, we present our results obtained for short and long-range
interactions for the Heisenberg model on the triangular and square lattice.
Then we proceed to compare our results with the existing literature on the
long-range interactions by Keles and Zhao [1, 2, 25].

In Chapter 5, we devise a way to test the validity range of our method
by comparing it to other powerful methods, namely the exact diagonalization
and the density matrix renormalization group. Our group members Sbierski,
Schneider and Ritter developed the idea for this comparison. In this chapter,
we discuss the approximations done in previous chapters and present our
benchmark results.

Finally, we give an overview of our results and an outlook on further
research directions in Chapter 6.
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2

Theoretical Background

In this chapter, we begin by providing a brief overview of the exotic phase of
matter known as the quantum spin liquids. We then discuss the antiferromag-
netic Heisenberg model on the triangular and square lattice.

In the second part of this chapter, we offer a concise overview of the
pseudofermion functional renormalization group (pffRG) formalism. To achieve
this, we first describe the pseudofermion representation of the Heisenberg
Hamiltonian. Subsequently, we discuss some preliminary field-theoretical ob-
jects that are essential to the construction of the functional renormalization
group method. Following that, we touch upon the parquet formalism, which
serves as the foundation for the multiloop functional renormalization group.
Lastly, we present an overview of the multiloop functional renormalization
group by examining the cutoff procedure and the flow equations.

2.1 Physical Model

2.1.1 Quantum Spin Liquids
Quantum spin liquids (QSL) are an exotic phase of matter that can be found in
frustrated spin systems. These materials are hard to identify both experimen-
tally and theoretically, as they don’t have a characteristic local order parameter
and don’t break the symmetries of the Hamiltonian [3]. They may exhibit
unique properties such as topological order, anyonic excitations and also they
have a high degree of entanglement [3]. Despite these challenges, we know
about their existence and their potential applications. Kitaev demonstrated
that the topological order of these unique phases might play an important
role in quantum computation and proposed an exactly solvable model on a
torus and honeycomb lattice [3, 26, 27], which established the existence and
usefulness of QSL.

The first proposal of QSL was for the spin 1/2 antiferromagnetic Heisen-
berg model on the triangular lattice by Anderson [28]. The triangular lattice
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2. Theoretical Background

exhibits a geometric frustration, which makes finding the ground state of
Hamiltonians with antiferromagnetic interactions challenging on this lattice.
The geometric frustration is illustrated in Figure 2.1 with an example. For this
reason, Anderson proposed resonating valance bond (RVB) state as the ground
state of the AFM triangular lattice. The RVB state is composed of two spins
forming a spin-0 singlet. By taking the superposition of all configurations of
these singlets, a ground state for AFM Heisenberg Hamiltonian can be estab-
lished on the triangular lattice without breaking the translational invariance.
Although it was discovered that the ground state of the AFM Heisenberg
model on triangular lattice is not a RVB state, the idea of searching QSL in
frustrated geometries persisted [3, 4, 29].

Figure 2.1: An example of geometric frustration on the triangular lattice with
antiferromagnetic interaction is illustrated. The excited bonds represented by
red lines. As illustrated, there is no configuration in which all three neighboring
spins are anti-parallel [30].

2.1.2 Heisenberg Model
One of the simplest model for studying frustrated spins is the antiferromag-
netic Heisenberg model with nearest-neighbor (NN) and next-nearest-neighbor
(NNN) interactions:

H = J1
∑

i,j∈NN
Si · Sj + J2

∑

i,j∈NNN
Si · Sj . (2.1)

In Eq. (2.1), the first sum is over nearest-neighbors, while the second sum is
over next-nearest-neighbors. For the antiferromagnetic model, both J1 and J2
are positive.

In this thesis, our initial focus is on the study of the AFM NNN Heisenberg
model on triangular lattice using the pseudofermion functional renormalization
group (pffRG) approach at T = 0. Although this model has already been
extensively studied using other powerful numerical methods such as Density
Matrix Renomarlization group (DMRG) [8, 9], pffRG and variational Monte
Carlo (VMC) [10], which have discovered a QSL ground state, the nature of
this QSL remains a topic of debate. We present our results obtained for phase
boundaries of this model using pffRG in Chapter 4.1.1.
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2.2. Multiloop Pseudofermion Functional Renormalization Group

The AFM NNN Heisenberg model on the square lattice is also another
candidate for having a QSL as a ground state. Although the model is not frus-
trated with only NN interactions, the inclusion of NNN interactions introduces
frustration. This model has been widely studied using other methods including
DMRG [12, 13], exact diagonalization (ED) [15], pffRG [16] and more recently
with the projected entangled pair states (PEPS) [14]. While the nature of this
QSL regime is still under debate, in the recent publication by Liu et al. [14],
the authors suggest the presence of a gapless QSL and a valance bond solid
(VBS) between the two ordered phases. We utilize the results obtained from
other methods to use as a rough benchmark for our method when determining
the appropriate types of order.

In this thesis, our main focus will be on the Heisenberg model with dipolar
interactions on the triangular and square lattice. The Hamiltonian for this
model is defined as [1, 2, 11, 17]

H = 1
2
∑

ij

JijSi · Sj , (2.2)

where the sum is over all lattice sites and Jij(θ, ϕ) is the dipolar interaction
between two lattice sites. This interaction is defined as

Jij(θ, ϕ) = J0
(1 − 3(r̂ij · d̂)2)

r3
ij

. (2.3)

Here, rij represents the displacement vector between lattice sites i and j, and
d̂ denotes the unit vector for dipole alignment.

d̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). (2.4)

Adjusting the alignment of the dipoles enables variation in the interactions
between lattice sites, providing two tunable parameters, θ and ϕ. These
parameters can be used to increase the frustration of the model, giving rise to
a paramagnetic phase [1, 2, 11, 17].

Previously, the dipolar Heisenberg model was studied on the triangular
and the kagome lattice using DMRG in Ref. [11], using PEPS for the square
lattice in Ref. [17] and using pffRG for the triangular lattice in Ref. [1] and
for the square lattice Ref. [2]. In this thesis, we study the dipolar interactions
for the triangular and square lattices using pffRG and compare our findings
with those in Refs. [1, 2] in Chapter 4.

2.2 Multiloop Pseudofermion Functional
Renormalization Group

In this section we give a brief overview of the multiloop pseudofermion func-
tional renormalization group (mpffRG). We begin by discussing the pseudo-
fermion representation of the Heisenberg Hamiltonian. Next, we define several
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2. Theoretical Background

fundamental objects used in the functional renormalization group. Subse-
quently, we introduce a set of equations comprised of two particle reducible
diagrams, known as the parquet equations. Following this, we offer a brief
overview of the multiloop functional renormalization group.

2.2.1 Pseudofermion Construction
Parton construction is an important tool used in condensed matter physics
to investigate spin Hamiltonians. This approach involves replacing the spin
operator in the Hamiltonian with fermionic, bosonic or a combination of both
types of creation and annihilation operators [3].

For our purpose, we will utilize Abrikosov’s pseudofermion representation,
which amounts to re-writing the spin 1

2 operators in terms of fermionic creation
and annihilation operators [31]. This representation allows us to use the
well-established fermionic path integrals and Feynman diagrammatic methods
which are the essential tools for building functional renormalization group for
fermions [18, 19].

The spin operator S in pseudofermion representation is represented as

Sµi = 1
2
∑

αβ

f †
iασ

µ
αβfiβ. (2.5)

Above i is the lattice site index, σµ are the Pauli matrices with µ = x, y, z, and
f are the fermionic annihilation and creation operators with indices α, β =↑, ↓.
Note that in this representation, the spin algebra is still satisfied by pseud-
ofermions, i.e., [Sµi , S

ν
j ] = iδijϵµνλS

λ
i .

Now if we write the Heisenberg Hamiltonian in terms of pseudofermion
operators, we obtain:

H = 1
8
∑

µν

∑

ij

∑

αβα
′
β

′

Jµνij f
†
iασ

µ
αβfiβf

†
jα

′σ
ν
α

′
β

′fjβ′ . (2.6)

However, the pseudofermion construction introduces two new features that
one must account for; enlargement of the Hilbert space and external SU(2)
gauge redundancy [19]. We will deal with the latter in the later chapters.

For each site i, the original Hilbert space is spanned by two vectors,
{|↑⟩ , |↓⟩}. However, with pseudofermion construction, the Hilbert space is
enlarged and spanned by four vectors, {|0⟩ , |↑↓⟩ , |↑⟩ , |↓⟩}. The unoccupied
state |0⟩ and the doubly occupied state |↑↓⟩ have no correspondence in the
original system, thus, they are deemed unphysical.

To stay in the physically relevant sector of the Hilbert space, a projection

Pi =
∑

α

f †
iαfα = 1, (2.7)
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2.2. Multiloop Pseudofermion Functional Renormalization Group

can be applied at each lattice site. However, this constraint is difficult to
enforce numerically, and instead, it is replaced by a weaker constraint [16, 24],

⟨Pi⟩ =
∑

α

〈
f †
iαfiα

〉
= 1. (2.8)

In order to apply the constraint (2.8), we first need to normal order
the Heisenberg Hamiltonian using the fermionic anti-commutation relations,
{f †
iα, fjβ} = δijδαβ.

H = 1
8
∑

µνij

∑

αβα
′
β

′

Jµνij σ
µ
αβσ

ν
α

′
β

′f †
iαf

†
jα

′fiβfiβ′

+ 1
8
∑

µνij

∑

αβα
′
β

′

Jµνij σ
µ
αβσ

ν
α

′
β

′f †
iαδijδβα′fjβ′

= 1
8
∑

µνij

∑

αβα
′
β

′

Jµνij σ
µ
αβσ

ν
α

′
β

′f †
iαf

†
jα

′fiβfiβ′ + 1
8
∑

µνi

∑

αβ
′

Jµνii f
†
iαfiβ′

∑

β

σµαβσ
ν
ββ

′

︸ ︷︷ ︸
δ
µν
δ
αβ

′ +iϵµνυσ
υ

αβ
′

= 1
8
∑

µνij

∑

αβα
′
β

′

Jµνij σ
µ
αβσ

ν
α

′
β

′f †
iαf

†
jα

′fiβfiβ′ + 1
8
∑

µi

∑

α

Jµµii f
†
iαfiα. (2.9)

In the last line, we have used Jµν = Jνµ and the multiplication of symmetric
and anti-symmetric tensor is identically equal to 0, i.e., Jµνϵµνυ = 0.

The last term in Eq. (2.9) can be interpreted as a shift in the chemical
potential in the grand canonical ensemble. To fulfill the projection scheme
proposed in Eq. (2.8), the chemical potential can be tuned into particle-hole
symmetric value, µ = 0, which disfavors the unphysical states [16]. In other
words, adding or subtracting fermions from the system with particle-hole
symmetry is energetically unfavorable at T = 0.

Another way to apply this constraint is using a trick developed by Popov
and Fedetov [32]. This trick can be applied by coupling the Hamiltonian with
an imaginary valued chemical potential such as Hpf = − iπT

2 (n↑ + n↓ − 1).
At first glance, for T → 0, the Popov-Fedetov and pseudofermion projection
scheme Eq. (2.8) might appear to be identical. However, this is not the case.
The partition function of the Popov-Fedetov is always equal to the partition of
the original spin system; meanwhile, in the pseudofermion projection scheme,
they differ [18, 33].

In this thesis, we will not use the Popov-Fedetov trick; for further details
on the implementation of the Popov-Fedetov trick to pseudofermion functional
renormalization group and why both methods are not equivalent at T → 0
limit, see Ref. [33].
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2. Theoretical Background

2.2.2 Preliminary Definitions
For the construction of fRG machinery, we need to define some field theoretical
objects. For this purpose we start by defining the partition function Z as an
integral over the Grassmann fields ψ and ψ̄ as,

Z =
∫
D[ψ, ψ̄]e−S[ψ,ψ̄], (2.10)

where S[ψ, ψ̄] is the action. And the action is defined as,

S[ψ, ψ̄] = −
∑

1′
,1

ψ̄1′G−1
0 (1′; 1) ψ1 − 1

4
∑

1′
,2′;1,2

Γ0(1′, 2′; 1, 2)ψ̄1ψ̄2ψ1ψ2, (2.11)

where the sum is over all quantum numbers, including the Matsubara frequen-
cies, spin, and lattice site indices, and they should be considered as integrals
for continuous variables and sum for discrete variables [21, 24]. Because the
pseudofermion Hamiltonian has no kinetic term, the bare two-point Green’s
function is

G0(iω) = 1
iω
, (2.12)

where the chemical potential is set to µ = 0, due to the pseudofermion
constraint [4, 18, 24]. The Γ0 in Eq. (2.11) is the bare vertex, which is
anti-symmetric under the exchange of indices. Additionally, we need to define
the full two-point Green’s function as,

G(2)(1′; 1) = −〈ψ1ψ̄1
〉

= −1
Z

∫
D[ψ, ψ̄]ψ1ψ̄1e

−S[ψ,ψ̄] (2.13)

and similarly the four-point Green’s functions as,

G(4)(1′, 2′; 1, 2) =
〈
ψ1ψ2ψ̄2ψ̄1

〉
, (2.14)

or the 2n-point Green’s function as,

G(2n)(1′, 2′..n′; 1, 2..n) =
〈
ψ1ψ2...ψnψ̄n...ψ̄2ψ̄1

〉
. (2.15)

Moreover, we can re-write the two-point Green’s function the using self-energy,
Σ, with the help of the Dyson equation [21, 24, 34]

G = G0 +G0 · Σ ·G ⇐⇒ G−1 = G−1
0 − Σ, (2.16)

and the four-point correlator using the full vertex as [21, 24, 34]

G(4)(1′2′; 1, 2) = G(1′; 1)G(2′; 2) −G(1′; 2)G(2′; 1)
+
∑

3′4′34

G(1′, 3)G(2′, 4)Γ(3, 4; 3′4′)G(3′, 1)G(4′, 2). (2.17)

The minus sign in the second term of Equation (2.17) account for the anti-
commutation of two Grassmann fields. Similarly under odd permutation of
indices both G(4) and Γ pick up a minus sign.

Finally, we give one last definition. An n-particle irreducible diagram is
a diagram that cannot be reduced into two disconnected diagrams cutting n
lines. Examples of these diagrams are given in Fig. 2.2.
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2.2. Multiloop Pseudofermion Functional Renormalization Group

Figure 2.2: The first diagram is the bare vertex denoted by Γ0. The second
diagram is a 1-particle irreducible diagram and 2-particle reducible diagram.
The last diagram is a 2-particle irreducible diagram also known as the envelope
diagram.

2.2.3 Parquet Formalism
Using the definitions provided in the previous section, we can decompose
the four-point vertex defined in Eq. (2.17) into three topologically distinct
two-particle reducible channels γr and one two-particle irreducible channel, R.

Γ = R+ γa + γt + γp, (2.18)

The subscript r of γr denotes in which channel the diagram is reducible. The
indices a,t, and p stand for anti-parallel, transverse, and parallel respectively,
specifying in which channel they are reducible. Using Eq. (2.18) we can write
the two-particle irreducible in channel r as

Ir = Γ − γr = R+
∑

r ̸=r′

γ′
r. (2.19)

The Eq. (2.19) allows us to define Bether-Salpeter equations (BSEs) in alge-
braic form as

γr = Ir · Πr · Γ. (2.20)

Here, Πr is made out of a pair of propagators and connected to the vertices
in channel r [5, 20–24].

However, the Bethe-Salpeter equations need an input for R to provide a self-
consistent set of equations. In our study, we adopt the simplest approximation
called the parquet approximation, which sets irreducible vertex to bare vertex,
i.e., R = Γ0. A more complicated choice for R would increase the method’s
complexity and its numerical cost [20]. Using the parquet approximation, we
obtain a set of self-consistent Bethe-Salpeter equations that are exact up to
fourth-order perturbation theory and also include diagrams from higher orders.
The envelope diagram, illustrated in Fig. 2.2, is the first diagram excluded by
this approximation in the perturbation series.
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2. Theoretical Background

Additionally, we define the Schwinger-Dyson equation(SDE) which is the
equation of motion for the Green’s function [21].

Σ(1′; 1) = −
∑

2′2

Γ0(1′, 2′; 1, 2)G(2; 2′)

+ 1
2
∑

Γ0(1′, 2′; 3, 4)G(2; 2′)G(3; 3′)G(4; 4′)Γ(4′3′; 1, 2). (2.21)

The repeated indices are summed over in Eq.(2.21) to make the notation
compact. The derivation of SDE in fRG context can be found in Ref. [21].
With the SDE at hand, we can relate the self-energy to the vertex as well [21].

SDE combined with BSEs forms a set of equations that can be solved self-
consistently, known as the parquet equations [21, 24]. One way to solve these
self-consistent equations for a fixed point is through iteration until conver-
gence to a fixed point occurs. However, this is not always numerically feasible,
especially in the high coupling regime, for which we use the functional renor-
malization group. For implementation details of solving parquet equations in
our work, we refer the reader to [5, 24], and for theoretical details to [20, 21].

2.2.4 Multiloop Functional Renormalization Group
The functional renormalization group (fRG) is a powerful tool employed for
studying interacting fermions in condensed matter physics. As fRG is a non-
perturbative method, it is useful for investigating the highly correlated systems
where the perturbation theory breaks down. fRG conceptually builds on the
Wilsonian renormalization group, as both methods share the common strategy
of integrating out the higher energy modes of the theory [18, 21].

In summary, the Wilsonian RG procedure consists of three steps. Starting
from the partition function, the first step is the elimination of higher energy
modes of the theory. This is done by integrating out the higher energy fields.
The second step is rescaling the fields to obtain a rescaled action that has
the same form as the initial action. As a result, the action has new coupling
parameter due to the change in Hamiltonian. Finally, the third and the last
step is to analyze the flow of these parameters under iteration of steps one and
two which provides insight into the behavior of the system at different energy
scales [34, 35].

The fRG, similar to Wilsonian RG, iteratively eliminates the high-energy
modes of the theory. However, instead of starting out with the partition
function and eliminating the high-energy modes by integration, the fRG for-
malism couples the bare propagator to a scale-dependent cutoff function. This
approach allows fRG to investigate systems where the functional integral in
step one of Wilsonian RG is inaccessible [21]. In fRG, instead of the coupling
parameters, objects such as self-energy and vertex flow are considered. The
equations governing the behavior of these objects are called the flow equations.
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2.2. Multiloop Pseudofermion Functional Renormalization Group

In the following sections, we will briefly discuss the multiloop pseudo-
fermion functional renormalization group using the parquet formalism dis-
cussed in Chapter 2.2.3, and examine the flow equations for the vertex and
self-energy functions. For a general treatment of fRG, we refer the reader to
[34]. The upcoming sections summarize the previous master’s theses written
on mpffRG by Marc Ritter [24] and Julian Thönniß [4].

2.2.5 Cutoff Procedure
To carry out the fRG procedure, the bare propagator G0 is transformed into a
scale dependent function by artificially introducing a cutoff function as follows:

GΛ
0 (ω) =

{
G0(ω), Λ → 0,
0, Λ → ∞.

(2.22)

This modification leads to the bare propagator becoming a function of Λ,
G0 → GΛ

0 . It is important to recall that the Gaussian part (first term) of
the action defined in Eq. (2.11), depends on G0. As a result, the action also
evolves into a function of Λ i.e, S → SΛ, and the original theory is recovered
for Λ → 0. Conversely, when Λ → ∞, the Gaussian part of the action is
suppressed, providing a simple initial condition [34, 36].

As the most of the functions defined in Sec. 2.2.2 depend on the bare
propagator, they also become functions of Λ. For example, Γ → ΓΛ, Σ → ΣΛ

or γr → γΛ
r . However, the irreducible vertex R in the parquet approximation

does not depend on the bare propagator, and thus, it is is not a function of Λ.
In this thesis we use a multiplicative cutoff function:

GΛ
0 = ΘΛ(|ω| − Λ)G0(ω), (2.23)

where Θ(|ω| − Λ) is the regulator and defined as

Θ(|ω| − Λ) =
{

0, |ω| ≪ Λ,
1, |ω| ≫ Λ.

(2.24)

The choice of cutoff function ΘΛ(|ω| − Λ) is not unique. Any function that
satisfies the condition (2.22) can be used. Since the cutoff function is included
to the bare propagator artificially, the physics should not depend on the choice
of cutoff. At Λ → 0, the original theory should be recovered. However, this
does not hold for the conventional fRG treatment in the literature. The flow
can diverge before reaching to Λ = 0, and results might deviate from the
original theory [23]. In Chapter 5, we discuss more in detail how the cutoff
dependence can change the interpretation of the physical results.

In the first part of this thesis, where we investigate the AFM Heisenberg
model on square and triangular lattices, we employ the Gaussian cutoff function
for our calculations:

ΘΛ(ω) = 1 − e−ω2
/Λ2

. (2.25)

11



2. Theoretical Background

Another suitable choice of multiplicative cutoff is the Lorentzian cutoff,

ΘΛ(ω) = ω2

ω2 + Λ2 , (2.26)

which will be relevant in the second part of this thesis
A different strategy for implementing this artificial cutoff is through the

use of an additive cutoff
G−1,Λ

0 = G−1
0 −AΛ. (2.27)

In order to fulfill Eq (2.22), the function A is chosen such that Λ → ∞, R → ∞
and when Λ → 0, R → 0 [34, 36].

2.2.6 Flow Equations
This section is primarily based on the work of Kugler and von Delft [20, 22]
as well as the master thesis of Marc K. Ritter [24] and Julian Thönniß [4].

In fRG, analogous to the flow parameters in the Wilsonian RG that evolve
with each RG step, there are functions that evolve with the Λ scale. Our
main focus will be on the flow of the four-point vertex Γ and the flow of the
self-energy Σ. To analyze the flow of these functions with respect to the change
in Λ, we examine their derivatives. For brevity, we omit the Λ superscript in
the following equations.

∂ΛΓ = ∂ΛR+
∑

r

∂Λγr =
∑

r

γ̇r. (2.28)

Here, we have used Eq. (2.18) along with the fact that the irreducible vertex
R is just the bare vertex Γ0 within the parquet approximation. As a result, it
is independent of Λ meaning ∂ΛR = Ṙ = 0.

Next, we examine the two-particle reducible diagram in the r-channel:

γ̇r = ∂Λ(Ir · Πr · Γ) = İr · Πr · Γ + Ir · Π̇r · Γ + Ir · Πr · Γ̇
= İr · Πr · Γ + Ir · Π̇r · Γ + Ir · Πr · (İr + γ̇r). (2.29)

Here we have used Γ = Ir + γr. By gathering all terms with γ̇r on the left side,
we obtain:

(1 − Ir · Πr) · γ̇r = İr · Πr · Γ + Ir · Π̇r · Γ + Ir · Πr · İr. (2.30)

Finally, we multiply Eq. (2.30) by (1 − Ir · Πr)
−1 from left to isolate γ̇r.

γ̇r = Γ · Π̇r · Γ + İr · Πr · Γ + Γ · Πr · İr · Πr + Γ · Πr · İr. (2.31)

This derivation can be obtained by using the identities provided in Chapter
2.2.3. For a more detailed derivation, we refer the reader to Ref. [20]. So far,
the only approximation we have used is the parquet approximation and apart
from that, the Eq. (2.31) is an exact relation.

12



2.2. Multiloop Pseudofermion Functional Renormalization Group

We categorize contributions to the Eq. (2.31) by the number of fermionic
loops that connect two vertices, Π present in each term.

γ̇r =
∑

n=1
γ̇(n)
r . (2.32)

The first term in Eq. (2.31) corresponds to the first loop order, as it is the
only term with one fermionic loop [24] :

γ̇(1)
r ≡ Γ · Π̇r · Γ. (2.33)

The rest of the loop orders can be derived iteratively from each other. For the
second-loop contribution in channel r, we need to consider the derivative of
the irreducible vertex in channel r, which is related to other channels as

İr =
∑

r
′ ̸=r

γ̇r′ . (2.34)

For the second loop order, the second and last term in Eq. (2.31) will contribute,
as they are the only ones with two fermionic loops. Thus, the second loop
contribution is

γ̇(2)
r =

∑

r
′ ̸=r

γ̇
(1)
r

′ · Πr · Γ +
∑

r
′ ̸=r

Γ · Πr · γ̇(1)
r

′ . (2.35)

Similarly, this procedure can extended to the third and higher loop orders.
The formula for an arbitrary loop order ℓ that is ℓ ≥ 3, is given as [24]:

γ̇(ℓ)
r =

∑

r
′ ̸=r

(
γ̇

(ℓ−1)
r

′ · Πr · Γ + Γ · Πr · γ̇(ℓ−2)
r

′ · Πr · Γ + Γ · Πr · γ̇(ℓ−1)
r

′

)
. (2.36)

Since this iteration can be continued up to infinite order, at some stage the
sum in Eq. (2.32) needs to be truncated to maintain the numerical feasibility
of the calculations [24]. In this thesis, we will only utilize the first two loop
orders.

Moreover, each term contains a derivative of a bubble Π which is composed
of two full propagators,

Π̇r = ĠG+GĠ, (2.37)

which requires us to compute the derivative of the propagator. To compute
the derivative of the propagator, we can make use of the Dyson equation, as
given in Eq. (2.16):

Ġ = ∂Λ(G−1
0 − Σ)−1 = (G−1

0 − Σ)(−∂ΛG
−1
0 + Σ̇)(G−1

0 − Σ)
= S +GΣ̇G, (2.38)
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2. Theoretical Background

where S is the single-scale propagator defined as:

S = −G[∂ΛG
−1
0 ]G. (2.39)

In the literature inclusion of the Σ̇ term corresponds to the Katanin truncation
[37]. The importance of this improved truncation scheme is illustrated in
Ref. [16] and has become a common practice in the pffRG community [1, 2,
10, 16, 18, 19, 38].

In order to fully evaluate the vertex flow, we also need to compute Σ̇, as
Eq. (2.38) contains the derivative of the self-energy. This can be accomplished
by taking derivative of the SDE described in Eq. (2.21). Given the lengthy
nature of the self-energy flow derivation, we will not re-derive the flow equation
here. Instead, we simply state the result and refer the reader to Ref. [20] for
further details.

Σ̇ =
[− Γ · S]
︸ ︷︷ ︸

Σ̇std

+
[
γ̇

(C)
t ·G]

︸ ︷︷ ︸
Σ̇t̄

+
[− Γ · (G · Σ̇t̄ ·G)

]
︸ ︷︷ ︸

Σ̇t

. (2.40)

The first term is the standard self-energy flow used in the literature. The term
γ̇

(C)
t is the third term in Eq. (2.31) and is expressed as γ̇(C)

t = Γ · Πt · İt · Πt · Γ.
The last two objects in Eq. (2.40) are the corrections to the self energy coming
from the multiloop.

The vertex flow equations, along with the self-energy flow equation, form
a differential equation that can be solved at a given Λ value using the initial
conditions at Λi → ∞ where GΛi

0 → 0 as a result of Eq. (2.22).

Σ
∣∣
Λi

= 0, (2.41)

Γ
∣∣
Λi

= Γ0. (2.42)

However, instead of using the initial condition for Λ → ∞, we use the
solution of the parquet equations at an initial Λi value. Throughout this thesis,
we initialize the fRG flow at Λi = 2.5J by solving the parquet equations for Σ,
Γ and using the obtained results as the initial condition [5, 24]. As discussed
in Chapter 2.2.3, the parquet equations can be solved iteratively. Technical
details of solving parquet equations within our code can be found in Refs. [5,
24]. To solve the differential equation, we utilize an adaptive fifth-order Runge-
Kutta algorithm that was implemented by Marc Ritter and Julian Thönniß.
For details we refer reader to [5, 24, 39].

For most parts of this thesis, we use the one-loop approximation, which cor-
responds to truncating the sum in Eq. (2.32) at the first order. Consequently,
only diagrams with one fermionic loop contribute to the flow equations. For
the self-energy flow given in Eq. (2.40), only the first term Σ̇std contributes.
This approximation corresponds to the one-loop approximation with Katanin
truncation commonly found in the pffRG literature [1, 2, 16, 18, 38].
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3

Implementation

3.1 Symmetries of the Pseudofermion Action
The 2n-point Green’s function is defined as a time-ordered, thermal expectation
value of n Grassmann fields as

G(2n)(1′...n′; 1...n) =
〈
ψ1...ψnψ̄n...ψ̄1

〉
, (3.1)

where the correlator in path integral formalism is given as

〈
ψ1...ψ̄n

〉
= 1
Z

∫
D[ψ, ψ̄]ψ1ψ2...ψ̄n−1ψ̄ne

−S[ψ,ψ̄]. (3.2)

The Z in Eq. (3.2) is the partition function for normalization.
A linear transformation F on Grassmann fields defined as

ψ → ψ′ = Fψ, ψ̄ → ψ̄′ = ψ̄F†. (3.3)

A linear transformation, F , is a symmetry operation if the action is invariant
under that transformation.

S[ψ′, ψ̄′] = S[ψ, ψ̄]. (3.4)

The correlator (3.2) under symmetry transformation is also invariant

〈
ψ′

1ψ
′
2...ψ̄

′
n−1ψ̄

′
n

〉
= 1
Z

∫
D[ψ′, ψ̄′]ψ′

1ψ
′
2...ψ̄

′
n−1ψ̄

′
ne

−S[ψ′
,ψ̄

′]

= 1
Z

∫
D[ψ, ψ̄]ψ1ψ2...ψ̄n−1ψ̄ne

−S[ψ′
,ψ̄

′]

= 1
Z

∫
D[ψ, ψ̄]ψ1ψ2...ψ̄n−1ψ̄ne

−S[ψ,ψ̄] =
〈
ψ1ψ2...ψ̄n−1ψ̄n

〉
.

In the second step, we relabeled the Grassmann fields, and in the last step, we
used the fact that the action is invariant under symmetry operations. Hence,
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3. Implementation

the correlators are also invariant under symmetry transformations. This is
known as the Ward-Takahashi identity [40].

By analyzing the symmetries of the pseudofermion Hamiltonian, we can
determine which components of correlators can be related through symmetry
transformations. This, in turn, allows us to reduce the number of independent
variables required for solving the flow equations. Implementation of this
parametrization in our code was accomplished by Marc Ritter [24] and Julian
Thönniß [4].

In the next two sections we re-trace the study of Buessen et al. [41, 42]
on the symmetries of the pseudofermion Hamiltonian. First, we investigate
the local SU(2) gauge redundancy introduced by pseudofermion construction,
then we state the results from Refs. [41, 42] compactly in a table with all the
symmetries.

3.1.1 Local SU(2) Gauge Redundancy
The mapping of spin operators to fermionic operators introduces an external
SU(2) symmetry that is not present in the original Hamiltonian. To make the
SU(2) symmetry more visible, we re-write the spin operator as a trace over
matrices [41–43].

Sµi = 1
4tr(F †

i σ
µFi), (3.5)

with Fi containing the pseudofermion operators

Fi =
(
ψi,↑ ψ†

i,↓
ψi,↓ −ψ†

i,↑

)
. (3.6)

The local linear transformation is defined as the right matrix multiplication
and the global linear transformation is defined as the left matrix multiplication,

Fi → Figlocal, F → gglobalFi. (3.7)

For glocal transformation that satisfies

glocalg
†
local = 1, (3.8)

the spin operator, Sµ, is left invariant due to the cyclic property of the trace.
Thus, the pseudofermion Hamiltonian is invariant under local SU(2) transfor-
mations. This is not the case for gglobal, it acts as a rotation in spin space

σµ → σµ
′ = gglobalσ

µgglobal. (3.9)

As explained in Refs. [41, 42] instead of dealing with SU(2) directly, we
look at the gauge redundancy in two parts; the local U(1) symmetry and the
local-particle hole symmetry. The local U(1) symmetry allows us to parame-
terize correlators in real space,while the particle-hole symmetry allows us to
parameterize in frequency space.
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3.1. Symmetries of the Pseudofermion Action

Local U(1) gauge redundancy

First, we investigate the local U(1) symmetry of the Hamiltonian, which is a
subgroup of SU(2). The U(1) symmetry operation is defined as

ψiα → e−iϕiψiα, ψ̄i,α → eiϕiψ̄iα. (3.10)

where ϕi is a complex number.
Spin operators in pseudofermion representation come with a pair of fermionic

creation and annihilation operators. Since the phases have equal but opposite
signs the complex phases cancel each other out, leaving Sµi invariant. Thus,
the pseudofermion Hamiltonian is invariant under local U(1) transformations,
meaning, the correlators of the theory should also be invariant under U(1)
transformation. For the two-point correlator this means;

〈
ψ†
i
′
1α

′
1
ψi1α1

〉 != e
iϕi1

−iϕ
i
′
1
〈
ψ†
i
′
1α

′
1
ψi1α1

〉
. (3.11)

The condition (3.11) is satisfied when i1 = i′1. This means that the two-particle
Green’s function should be local in real space [41, 42].

G(1′; 1) = G(1′; 1)δi1,i′1 . (3.12)

Similarly, the four-point correlator is invariant under such transformation.
〈
ψ†
i
′
1α

′
1
ψ†
i
′
2α

′
2
ψi′2α

′
2
ψi1α1

〉 != e
iϕi1

+iϕi2 −iϕ
i
′
1

−iϕ
i
′
2
〈
ψ†
i
′
1α

′
1
ψi1α1

〉
, (3.13)

which is fulfilled when ϕi1 + ϕi2 − ϕi′1
− ϕi′2

= 0. This imposes a bi-local
condition on the four-point correlator [41, 42].

G(1′, 2′; 1, 2) = G(1′, 2′; 1, 2)δi1i′1δi2i′2 −G(2′, 1′; 1, 2)δi2i′1δi1i′2 . (3.14)

Local particle-hole gauge redundancy

The local particle-hole transformation acts on fermionic operators as,

ψiα → αψ†
iᾱ, ψ†

iα → αψiᾱ. (3.15)

where α = +1(−1) for the spin index α =↑ (↓) and ᾱ is the flipped spin index.
Under this transformation, the two-point correlator transforms as

〈
ψ†
i
′
1ω

′
1α

′
1
ψi1ω1α1

〉 != −α′α
〈
ψ†
i1−ω′

1ᾱ
′
1
ψi−ω1ᾱ1

〉
, (3.16)

meaning the 2-point Green’s function transforms as

G(1′; 1) = −α′αG(i1 − ωᾱ1; i′1 − ω1ᾱ
′
1). (3.17)

The local particle-hole transformation can be applied to any local pair of
creation-annihilation operators. To make it more compact we combine this
with the local U(1) symmetry to obtain [41, 42]

G(1′, 2′; 1, 2)δi′1i1δi′2i2 = −α′
1α1G(i1 − ω1ᾱ1, i2ω

′
2α

′
2; i1 − ω′

1ᾱ
′
1, i2ω2α2)

(3.18a)
= −α′

2α2G(i1ω
′
1α

′
1, i2 − ω2ᾱ2; i1ω1α1, i2 − ω′

2ᾱ2
′)

(3.18b)
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symmetry G(1′; 1) G(1′, 2′; 1, 2)δi′1i1δi′2i2
H G(−1; −1′)∗ G(−1,−2; −1′,−2′)∗

TR α1α
′
1G(−1′, 1)∗ α1α

′
1α2α

′
2G(−̄1, −̄2; 1̄, 2̄)∗

EC G(1′; 1)δω1ω
′
1

G(1′, 2′; 1, 2)δi′1i1δi′2i2δω′
1+ω′

2,ω1+ω2
U(1) G(1′; 1)δi1,i′1 G(1′, 2′; 1, 2)
PH1 −α′αG(−1̄; −1̄′) −α′

1α1G(−1̄, 2′; −1̄′, 2)
PH2 −α′αG(−1̄; −1̄′) −α′

2α2G(1′,−2̄; 1,−2̄′)

Table 3.1: Symmetries of pseudofermion Hamiltonian and constraints on cor-
relation functions according to Refs. [41, 42]

3.1.2 Physical Symmetries
Physical symmetries are the second type of symmetry in the pseudofermion
Hamiltonian. These symmetries are model specific, present in the original
Hamiltonian and are not introduced by the pseudofermion representation.

To keep this section brief, we introduce a compact notation as in Ref. [24]

1 = (i1, ω1, α1, ), (3.19)
−1 = (i1,−ω1, α1), (3.20)

1̄ = (i1, ω1, ᾱ1). (3.21)

Physical symmetries discussed in Refs. [41, 42] namely are;
Hermitian symmetry (H) is fulfilled as the Hamiltonian of our model

is Hermitian1. It acts on the fermionic operators as ψiα → ψ†
iα.

Time reversal symmetry (TR) is fulfilled by the pseudofermion Hamil-
tonian as spin operators come in pairs2, it acts on the fermionic operators as
ψiα → eiπ

α
2 ψiᾱ[41, 42].

Energy conservation(EC) is fulfilled by time translation symmetry.

3.1.3 Parameterization of Correlators
Using the symmetries derived in the previous subsection we can finally param-
eterize the 2 and 4-point correlation functions.

The 2-point correlation function can be parameterized as [41, 42]

G(1′; 1) = δi′1,i1
δω′

1,ω1
Gi1(ω)δα′

1α1
. (3.22)

The first two Dirac delta functions in Eq.(3.22) come from the combination
of H and EC symmetries. And the combination of the rest of the symmetries
suggests that the two-point correlator is diagonal in spin space [41, 42].

1Hermitian symmetry is broken for the Popov-Fedetov projection scheme as the Hamil-
tonian is no longer hermitian [33]

2Time reversal symmetry is broken for the Popov-Fedetov projection scheme due to the
chemical potential term [33]
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3.1. Symmetries of the Pseudofermion Action

Also, due to the Hermitian symmetry, the two-point correlator is purely
imaginary and anti-symmetric

G(ω) = −G(−ω). (3.23)

The symmetries of the two-point correlator also apply to the self-energy
due to the Dyson equation,

G(ω) = 1
iω − Σ(ω) . (3.24)

Thus, the self-energy also has the same form as the two-particle correlator

Σ(1′; 1) = δi′1,i1
δω′

1,ω1
Σi1(ω)δα′

1α1
, Σ(ω) = −Σ(−ω). (3.25)

The vertex function is obtained from the 4-point connected correlation function
as

G
(4)
connected(1′, 2′; 1, 2) =

∑

3′4′34

G(1′; 3′)G(2′, 4′)Γ(3′, 4′; 3, 4)G(3; 1)G(4; 2).

(3.26)
From Eq. (3.22) we know that the two-point correlators can be written

diagonally in real space, frequency-space, and spin-space. Thus, the vertex has
to fulfill the same constraints as the 4-point correlator, and we can parameterize
the Γ(1′, 2′; 1, 2) as

Γ(1′, 2′; 1, 2) =
3∑

µ,ν=0

[
Γ µν
i1i2

(ω′
1, ω

′
2;ω1, ω2)σµ

α
′
1α1

σν
α

′
2α2

δi′1i1
δi′2i2

− Γ µν
i1i2

(ω′
1, ω

′
2;ω2, ω1)σµ

α
′
1α2

σν
α

′
2α1

δi′1i2
δi′1i2

]
δω′

1+ω′
2,ω1+ω2

,

(3.27)

where σµ is the Pauli matrix with σ0 being the identity matrix.
In this thesis, we investigate the isotropic Heisenberg model with SU(2)

symmetry, where the interaction J is diagonal with respect to the µ, ν indices,

Jµνij = δµνJµij , (3.28)

and equal in all three directions

J1 = J2 = J3 = J. (3.29)

As a result of Eq. (3.28), the vertex has a diagonal structure that can be
expressed as Γµν = δµνΓµ. And with Eq. (3.29), we can decompose the
vertex object into two distinct vertex types: the spin interaction (s) vertex,
Γs = Γ1 = Γ2 = Γ3, and the density interaction (d) vertex, Γ0 = Γd [16, 18].
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Using the crossing symmetries, we can also relate the Γ to Γ as discussed
in Ref. [5]

γa;i1i2(1′, 2′; 1, 2) = γt;i1i2(2′, 1′; 1, 2), (3.30a)
γt;i1i2(1′, 2′; 1, 2) = γa;i1i2(2′, 1′; 1, 2), (3.30b)
γp;i1,i2(1′, 2′; 1, 2) = γp;i1i2(2′, 1′; 1, 2), (3.30c)

Γi1i2(1′, 2′; 1, 2) = Γi1i2(2′, 1′; 1, 2). (3.30d)

3.1.4 Lattice Symmetries
So far, we have mentioned symmetries involving frequency and spin dependency
of the vertices. In this section, we will examine the lattice symmetries inherent
to the model under consideration.

Throughout this thesis, we examine lattice structures that exhibit trans-
lational invariance, meaning any lattice site can be mapped to another by
employing translation operators, T̂j , which utilize primitive lattice vectors to
map one site to another using the translational invariance. These operators
act on the indices of the vertices as follows [18, 24]:

T̂jΓi1,i2 = Γi1−j,i2−j . (3.31)

By employing the translation operators, every i1, i2 pair can be mapped into
0, i′2 pair

Γi1,i2 → T̂i1Γi1,i2 = Γ0,i′2
. (3.32)

This enables us to store vertices with the first index fixed to i1 = 0 [18, 24].
Moreover, by introducing symmetry operators, Q̂, that map the lattice

structure onto itself using rotation and reflection operations consistent with
lattice symmetries, we can further decrease the number of independent vertices.

Γi1,i2 → Q̂Γi1,i2 = Γi′1,i′2 = Γi1,i2 . (3.33)

As a result, we can discard the set of vertices that can be related through
symmetry operations, retaining only one copy for each vertex set in memory.

Throughout the thesis, we will utilize two distinct boundary conditions.
For the long-range interactions on the triangular and square lattices, we assume
an infinite lattice, whereas in the second part, we employ periodic boundary
conditions in one direction and keep an infinite lattice in the other direction.

Long-range interactions on the triangular and the square lattice

In order to investigate long-range interactions, we employ an infinite lattice.
However, due to the finite resources of computers, it is necessary to truncate
the lattice at a certain distance. We implement this truncation by introducing
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0

i2

Figure 3.1: The triangular lattice centered around the lattice site 0 and with
Rmax = 3. The region enclosed by the dotted line highlights vertices featuring
pairings that involve the i2 index.

a cutoff distance, Rmax, and discarding every vertex with an index i2 that
satisfies |r0 − ri2 | > Rmax [18, 24]. This procedure is illustrated in Fig. 3.1.

As previously discussed, by using lattice symmetries, we can reduce the
number of vertices stored in the memory. For the Heisenberg model without the
interactions, the full symmetry of the lattice structure enables us to decrease
the number of stored vertices. However, once the dipolar interactions are
introduced the rotational symmetries are broken, making our calculations
more computationally demanding.

The dipolar interaction is defined as [1, 2]

Ji1i2 = J0
(1 − 3(r̂i1i2 · d̂)2)

r3
i1i2

, (3.34)

where ri1i2 = ri1 − ri2 represents the displacement vector between lattice
sites i1 and i2, and d represents the alignment of the dipoles, in spherical
coordinates as d̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). Eq. (3.34) breaks the lattice
symmetries as interaction is direction dependant, yet the inversion symmetry
is still preserved. This invariance can be observed by noting that the Eq. (3.34)
is invariant for ri1i2 → −ri1i2 .

Periodic boundary condition for infinite chain

In the second part of the thesis, we will study the antiferromagnetic Heisenberg
model on a one-dimensional infinite chain.

We implement the cutoff procedure described earlier for the infinite portion
of the lattice. We select a cutoff distance Rmax and discard vertices that lie
out of this chosen region.

However, we require periodic boundary conditions in the other direction to
couple these chains and position them on a cylinder. In this direction, when
we encounter a vertex Γi1i2 such that |ri1 − ri2 | > Rperiod instead of discarding
it, we relate to another vertex by leveraging the periodicity of the lattice [18].
This procedure is illustrated in Fig. 3.3.

21



3. Implementation

(a) (b)

(c) (d)

Figure 3.2: Triangular (first row) and square lattice (second row) with Rmax =
3. Sites with the same color represent vertices that are obtainable from each
other through symmetry operations. We keep one vertex of each color in
memory. The first column is for isotropic interactions when the model exhibits
full symmetry, and the second column illustrates model with only inversion
symmetry.

3.1.5 Asymptotic Classes
In this chapter, we discuss the efficient parameterization of two-particle re-
ducible channels into the so-called asymptotic classes, as introduced by Wentzell
et al. in Ref. [44]. The implementation of these classes to our method has been
carried out by Julian Thönniß and Marc Ritter in the past years, and we direct
the reader interested in the details of the implementation to Refs. [4, 5, 24].
Since this implementation represents one of the key distinctions between our
work and existing literature, it is valuable to provide a concise overview.

As discussed in Sec. 2.2.3, the parquet decomposition of a vertex separates
contributions into a totally irreducible channel and three two-particle reducible
channels

Γ = R+
∑

r

γr. (3.35)
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i1

i2

0

i3

j

Figure 3.3: Three infinite coupled chains on a cylinder with Rmax = 5 and
Rperiod = 1. Coloring is applied using lattice symmetries. Γi1i3 and Γi2i3
are two example vertices that are discarded, but Γi1i2 is related to Γ0j using
periodic boundary conditions.

Similar to a vertex, a two-particle channel, γr, also possesses four frequency
arguments. However, only three independent frequency parameters exist due
to the energy conservation, ω1 + ω2 = ω′

1 + ω′
2. Throughout this thesis, we

compare our results with existing literature [1, 2, 10, 18] where typically three
bosonic frequencies are used to parameterize the vertices. However, in our
work, we parameterize the two-particle reducible channel in terms of two
fermionic frequencies (ν,ν ′) and one bosonic frequency (Ω). Furthermore, we
separate the two-particle reducible vertex into so-called asymptotic classes, K,
which contain diagrams that are classified based on their dependence on these
two fermionic frequencies [44]

γr = KΩ
1r + KΩ,ν

2r + KΩ,ν′

2′
r

+ KΩ,ν,ν′

3r . (3.36)

The KΩ
1r class includes diagrams where each pair of external legs is con-

nected to a bare vertex. Since the frequency is conserved at each vertex, the
incoming and outgoing frequencies counterbalance each other at these bare
vertices, causing diagrams in this set to depend only on the bosonic transfer
frequency Ω.

The KΩν
2r class contains diagrams that have ν ′ frequency carrying legs that

are connected to the same bare vertex, removing the ν ′ dependency. Similarly,
the KΩν′

2′
r

class contains diagrams that have ν frequency carrying legs connected
to the same bare vertex, removing the ν dependence.

The KΩνν′

3r class consists of diagrams that have all external legs connected to
distinct bare vertices. Consequently, these diagrams retain all three frequency
dependencies.

The main idea behind this decomposition is that diagrams containing
bubbles carrying external frequencies decay faster compared to those without,
as Green’s functions are inversely proportional to their frequency dependence.
This concept is illustrated in Fig. 3.4. For the first bubble, we have

lim
ν→∞ Π(Ω, ν) = lim

ν→∞G(Ω)G(ν) → 0, (3.37)

Thus, we can separate the contribution of asymptotic classes to the two
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Ω + ν

ν′ 

ν

ν′ − Ω

Figure 3.4: The "eye" diagram in a channel given in Ref.[24]. This types of
diagrams are included in KΩν

2′
a

class. The ν dependence is canceled at the
second vertex but ν ′ dependence is still remains.

particle-reducible vertices at the high-frequency limit as

lim
ν

′→∞
γr = KΩ

1r + KΩ,ν
2r , (3.38a)

lim
ν→∞ γr = KΩ

1r + KΩ,ν′

2r , (3.38b)

lim
ν

′→∞
lim
ν→∞ γr = KΩ

1r. (3.38c)

Because we work at T = 0 the frequency domain is continuous, and we
must sample this domain by choosing an appropriate number of frequency
points. With this decomposition, we can better resolve vertices in frequency
space by choosing a different number of frequency points for each channel to
optimize our vertex resolution.

Additionally, the symmetries discussed in the previous chapter are applica-
ble to the asymptotic classes, reducing the numerical cost of our calculations.
As the implementation of these symmetries was completed by our other group
members Ritter and Thönniß, we direct readers interested in the specifics to
Refs. [4, 5, 24] for further details.

Frequency Grid

In order to resolve vertices properly an adaptive frequency grid consisting of a
linear and an algebraic part implemented by Julian Thönniß and Marc Ritter
[5, 24, 39]. Here we give a brief overview of the frequency grid, as it is one of
the key differences between our work and the pffRG literature.

The linear portion of the frequency grid covers the lower frequency regime,
ω ∈ [0, ωlinear], where the vertex functions have sharper features, while the
algebraic part of the grid covers the higher frequency regime, ω ∈ (ωlinear, ωhigh],
where the vertex has a structure with fewer characteristics [24, 39]. This
separation of the frequency grid allows us to better resolve the feature of the
vertex functions and choose a different grid for each of the asymptotic classes.
We obtain the negative region of the grid by taking reflection symmetry with
respect to the origin. Additionally, an adaptive algorithm is utilized to adjust
the spacing of the frequency grid to accommodate the sharp features of the
vertex functions that might change after each Λ step. Details of this algorithm
can be found in Refs. [24, 39].
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3.2. Spin Susceptibility

3.2 Spin Susceptibility
Up until now, we have only looked at the vertices and efficient ways to cal-
culate their flow. However, the vertex object alone is not an easy object
to interpret. Instead, we now introduce the spin susceptibility which is a
more comprehensible concept that can be directly accessed via experimental
methods.

The spin susceptibility, χ(Ω), is the main physical observable that can
be computed from solving the flow equations. While the flow parameter Λ
flows from large cutoff limit Λi to small cutoff limit Λ0, we calculate the spin
susceptibility at each Λ step.

The spin susceptibility is defined as [16]

χµυij (Ω) =
∫ β

0
dτeiτΩ 〈TτSµi (τ)Sυj (0)

〉
, (3.39)

i, j are the lattice sites and µ, υ = x, y, z. As we are working in T = 0 regime
the upper bound of the integral will be β → ∞.

Due to the SU(2) symmetry of the Heisenberg Hamiltonian and the Ward-
Takahashi identity, the correlation functions are also invariant under SU(2)
symmetry operations. This implies that the spin susceptibility must be diago-
nal in µ,ν indices.

Thus, we only need to calculate

χµµij (Ω) =
∫ β

0
dτeiτΩ

〈
TτS

µ
i (τ)Sµj (0)

〉
. (3.40)

And in pseudofermion representation, Eq. (3.40) equals to:

χµµij (Ω) =
∫ β

0
dτeiτΩ ∑

αα
′
γγ

′

1
4σ

µ

αα
′σ
µ

γγ
′

〈
Tτψ

†
iα(τ)ψiα′(τ)ψ†

jγ(0)ψjγ′(0)
〉
. (3.41)

Now applying all the possible Wick contractions and using the time transla-
tional invariance [4, 24], we obtain:

χµµij (Ω) =
∫ β

0
dτeiτΩ ∑

αα
′
γγ

′

1
4σ

µ

αα
′σ
µ

γγ
′

(
−δijδαγ′δα′

γG(τ)G(−τ) + δαα′δγγ′G(0)2

+
∫ β

0
dτ ′G(τ − τ ′)G(τ ′ − τ)G(τ ′)G(−τ ′)Γ(1′, 2′; 1, 2)

)
.

(3.42)

Here the 1 = {τ, i, α} represents all the indices and similarly 1′ = {τ, i, α′},
2 = {0, j, γ}, and 2′ = {0, j, γ′}. Now, we will investigate each term separately.
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The first term:
∑

ω1ω2

∫ β

0
dτeiτΩeiω1τe−iω2τG(ω1)G(ω2)

−δij
4

∑

αα
′

σµ
αα

′σ
µ

α
′
α

=
−δij
4β

∑

ω1

G(ω1)G(ω1 + Ω)
∑

αα
′

σµ
αα

′σ
µ

α
′
α

︸ ︷︷ ︸
2

=
−δij
2β

∑

ω1

G(ω1)G(ω1 + Ω). (3.43)

We do not need to evaluate the second term explicitly because the sum
yields tr(σµ), which is 0 for every µ.

The third term:
∫ β

0
dτeiτΩ ∑

αα
′
γγ

′

1
4σ

µ

αα
′σ
µ

γγ
′

∫ β

0
dτ ′G(τ − τ ′)G(τ ′ − τ)G(τ ′)G(−τ ′)Γ(1′, 2′; 1, 2)

=
∑

ω1ω2ω3ω4

∫ β

0
dτeiτ(Ω+ω1−ω2)

︸ ︷︷ ︸
1
β
δ(Ω+ω1−ω2)

∫ β

0
dτ ′eiτ

′(ω2+ω3−ω1−ω4)

︸ ︷︷ ︸
1
β
δ(ω2+ω3−ω1−ω4))

×G(ω1)G(ω2)G(ω3)G(ω4)
∑

αα
′
γγ

′

1
4σ

µ

αα
′σ
µ

γγ
′Γ(1′, 2′; 1, 2)

= −
∑

ω1ω3

G(ω1)G(ω1 + Ω)G(ω3)G(ω3 + Ω)
∑

αα
′
γγ

′

1
4β2σ

µ

αα
′σ
µ

γγ
′Γ(1′, 2′; 2, 1).

(3.44)
Now the multi indices have fermionic frequency terms, ω, instead of imaginary
time term, τ , i.e. 1 = {ω1 + Ω, i, α},1′ = {ω1, i, α

′}, 2 = {ω2, j, γ} and
2′ = {ω2 + Ω, j, γ′}.

Gathering all these terms, we finally obtain a computable expression from
the flow equations [4, 24].

χµµij (Ω) = −1
2β

∑

ω1

G(ω1)G(ω1 + Ω)δij

−
∑

ω1ω2

G(ω1)G(ω1 + Ω)G(ω2)G(ω2 + Ω)
∑

αα
′
γγ

′

1
4β2σ

µ

αα
′σ
µ

γγ
′Γ(1′, 2′; 2, 1),

(3.45)
where we relabeled ω3 as ω2. Now we can insert the vertex parametrization
(3.27) discussed in the previous chapter to obtain

χµµij (Ω) = −1
2β

∑

ω1

G(ω1)G(ω1+Ω)δij−
1

4β2
∑

ω1ω2

G(ω1)G(ω1+Ω)G(ω2)G(ω2+Ω)

×
3∑

λ=0

∑

αα
′
γγ

′

σµ
αα

′σ
µ

γγ
′

[
δijΓ

λ
ii (ω1, ω2 + Ω;ω2, ω1 + Ω)σλ

α
′
γ
σλ
γ

′
α

− Γ λ
ij (ω1, ω2 + Ω;ω2, ω1 + Ω)σλ

α
′
α
σλ
γ

′
γ

]
. (3.46)
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To simplify we need the following Pauli matrix identities :

∑

αα
′
γγ

′

σµ
αα

′σ
µ

γγ
′σ
λ
α

′
α
σλ
γ

′
γ

= tr(σµσλσµσλ) =
{

2, λ = 0,
4δµλ − 2, λ ̸= 0.

(3.47)

∑

αα
′
γγ

′

σµ
αα

′σ
µ

γγ
′σ
λ
α

′
γ
σλ
γ

′
α

= tr(σλσµ)2 =
{

0, λ = 0,
4δµλ, λ ̸= 0.

(3.48)

With these identities and using Γ1 = Γ2 = Γ3 we arrive at:

χµµij (Ω) = −1
2β

∑

ω1

G(ω1)G(ω1+Ω)δij−
1

4β2
∑

ω1ω2

G(ω1)G(ω1+Ω)G(ω2)G(ω2+Ω)

×
[
2δijΓ

0
ii (ω1, ω2 + Ω;ω2, ω1 + Ω) − 2δijΓ

µ
ii (ω1, ω2 + Ω;ω2, ω1 + Ω)

− 4Γ µ
ij (ω1, ω2 + Ω;ω2, ω1 + Ω)

]
. (3.49)

Eq. (3.49) is derived following the same steps as in Refs. [4, 24], but we
introduced minor corrections to the derivation.

As evident from Eq. (3.49), the spin susceptibility is constructed using
vertices and Green’s functions, indicating that it also flows with the renormal-
ization flow.

To investigate the phases of the model, we use the static susceptibility,
defined by setting Ω = 0, denoted as χij(0) [16]. To obtain the momentum-
resolved spin susceptibility we can Fourier transform Eq. (3.49) at Ω = 0 as
follows [4, 24]:

χµµij (Ω = 0,q) =
∑

ij

eiq(ri−rj)χµµij (0). (3.50)

Here, i and j represent the lattice sites, while ri and rj are the real space
vectors pointing to the respective lattice site. As discussed earlier in 3.1.4, we
assume an infinite lattice, resulting in a continuous Brillouin zone [18].

Throughout the renormalization flow, we monitor the flow of momentum-
resolved static susceptibility. As the system enters an ordered phase, a long-
range order forms. This long-range order, for an infinite system, has an infinite
correlation length that can be tracked by a divergence in the susceptibility flow.
This effect can be observed in the static susceptibility flow as a divergence
or sometimes as a cusp due to the finite size of the lattice [18, 25]. We will
discuss this in more detail with examples in the following section.

Additional valuable information that can be extracted from the momentum-
resolved static susceptibility is the type of order exhibited by the system. By
plotting the static susceptibility in momentum space, we can identify the order
of the phase by examining the peaks of q. If these peaks are localized, we
conclude that an ordered phase is present.
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Furthermore, the type of order can be inferred from the pattern in the
momentum space plot. Conversely, if the flow continues down to small Λ ≪ J
values and peaks are not localized, we conclude that the system does not exhibit
a symmetry-breaking order, thus it is a disordered state like a paramagnetic
phase or a spin liquid phase.

Additionally, by summing Eq. (3.49) over Ω, the equal-time correlator can
be evaluated [5, 24],

χµµij

∣∣∣
τ=0

= 1
β

∑

Ω
χµµij (Ω). (3.51)

This equation can be evaluated efficiently by considering contributions from
each two-particle reducible channel, γr, separately. Furthermore, each of
these contributions can be decomposed into separate sums depending on their
respective asymptotic class dependence. For more details on the evaluation of
Eq. (3.51), refer to Refs. [5, 24].
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4

Results

In this section, we discuss the results obtained from our one-loop and two-loop
pffRG calculations. First, we compare our findings with existing literature
on the antiferromagnetic Heisenberg model with next-nearest-neighbor (NNN)
interactions on the triangular lattice. Subsequently, we introduce long-range
dipolar interactions for the same model and present our one-loop and two-loop
calculation results.

In the second part of this section, we extend our analysis to the Heisenberg
model on the square lattice. As in the triangular lattice case, we initially
present our results for the AFM NNN interactions and then proceed to the long-
range dipolar interactions. We display our results for long-range interactions
by comparing them to the existing literature, and additionally, we emphasize
the findings obtained from two-loop calculations.

4.1 Triangular Lattice
First, we present our findings for the antiferromagnetic Heisenberg model
with next-nearest-neighbor interactions on the triangular lattice, comparing
our results with the work of Iqbal et al. [10]. Subsequently, we examine the
antiferromagnetic Heisenberg Model with dipolar long-range interactions on
the triangular lattice, and we compare our one-loop results with the work of
Keles and Zhao [1]. Lastly, we present our two-loop results for the same model.

4.1.1 Next-Nearest-Neighbor Interactions
The NNN AFM Heisenberg model has been studied in the literature extensively,
making it an ideal test case for us before moving on to the more complicated
model with long-range interactions. The Hamiltonian for this model is defined
as

H =
∑

i,j∈NN
Si · Sj + α

∑

i,j∈NNN
Si · Sj , (4.1)
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nΩ nµ n′
µ

Σ(Ω) 4000 - -
K1 400 - -
K2 100 80 -
K2′ 100 - 80
K3 50 40 40

Table 4.1: Frequency parameters for the NNN Heisenberg model on the trian-
gular lattice

where the first sum is over nearest neighbors (NN) and the second sum over
is next nearest neighbors (NNN) and α = J2/J1 and J1, J2 > 0. DMRG
calculations [6–9] and variational Monte Carlo calculations [10] show that for
α ≲ 0.07, there is a 120◦ Néel order, for 0.07 ≲ α ≲ 0.15 there is a QSL, and
for 0.15 ≲ α there is a stripe phase. However, the nature of the QSL phase is
still under debate.

As our main interest for this study lies in long-range interactions, we only
compare our one-loop results with the existing literature, and we don’t proceed
with higher loop order calculations. As described in Chapter 3.1.5, we select
a different number of points for the frequency grid of each asymptotic class.
These parameters can be seen in Table 4.1. Additionally, as discussed in
Chapter 3.1.4 we need to choose a cutoff radius. We select a cutoff radius of
rcut = 12 lattice sites, which encloses a total of 517 sites which is reduced to
53 sites after using lattice symmetries.

In Fig. 4.1 we present the momentum-resolved susceptibility for different
values of α. By examining the position of the peaks, we can determine the type
of phase observed. For α = 0 we see well-localized peaks at the K points of
the Brillouin zone. This suggests an ordered phase with 120◦ Néel order. For
α = 0.5 we see localized peaks at the edges of the Brillouin zone suggesting a
stripe order. Moreover, within the range 0.10 ≲ α ≲ 0.25, we observe that the
peaks are not well localized, which indicates the presence of a paramagnetic
phase. These results are consistent with the pffRG calculations performed by
Iqbal et al. [10] with a slightly narrower paramagnetic regime. However, we
find a bigger paramagnetic regime compared to the results obtained by reliable
methods, e.g DMRG [6, 8, 9], on the extent of the paramagnetic regime.

These results demonstrate that the pffRG can be used to provide a qualita-
tive understanding of the phase diagram under investigation but may fall short
in pinpointing the precise location of these phase transitions. Additionally, as
evidenced by the number of lattice sites used in the calculation, pffRG can
simulate larger systems with long-range interactions where the truncation of
the system may impact the results.
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Figure 4.1: Momentum-resolved static susceptibility, χ(Ω = 0,q), for different
values of α.

4.1.2 Long-range Interactions
In this section, we present our findings on long-range interactions for the
triangular lattice, comparing them to work by Keles and Zhao [1]. Employing
the same tools for investigating the phase diagram with Ref. [1], we discover a
similar phase diagram that features an enlarged paramagnetic region. In the
second part of this section, we present our two-loop calculations. However, we
didn’t analyze the phase diagram as detailed as we did for one-loop for two-
loop case because of the increased numerical cost. Furthermore, we refrained
from doing higher loop calculations, as the loop convergence is not guaranteed,
and the recent publication by Schneider et al. [33] suggests that higher loop
orders may not yield more reliable results than the first loop order.

The Hamiltonian for long-range interactions is defined as

H = 1
2
∑

ij

Jij Si · Sj , (4.2)

where the sum is over all lattice sites and dipolar interaction J(θ, ϕ) is defined
as, [1]

Jij(θ, ϕ) = J0
(1 − 3(r̂ij · d̂)2)

r3
ij

. (4.3)
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Here, rij represents the displacement vector between lattice sites i and j, and
d̂ denotes the unit vector for dipole alignment.

d̂ = (sin θ cosϕ, sin θ sinϕ, cos θ). (4.4)

By varying the alignment of dipoles, we observe different phases on both the
triangular and the square lattice.

In the previous section, we observed that the geometric frustration of the
triangular lattice leads to a paramagnetic phase. With long-range interactions,
the frustration becomes more severe, leading to a broader paramagnetic region
in the phase diagram.

For the dipolar interactions, we use the frequency parameters given in
Table 4.2. We chose the number of frequency points such that the vertices
in the flow are resolved properly. Unresolved vertices might lead to an early
breakdown of the flow, or missing a divergence. We select a cutoff radius of
rcut = 8 lattice sites, which encloses a total of 241 sites and 121 sites after
using lattice symmetries. Although the lattice size is smaller compared to the
previous calculations for the NNN interactions, the symmetry-reduced lattice
is still four times larger, making our calculations more costly. Additionally, we
tried to keep the lattice size as large as possible to better accommodate the
spiral phase.

One-loop Results

In Fig. 4.2, we present our findings for one-loop calculations. We scan the
phase diagram by varying the tuning parameters θ and ϕ. Each point on the
diagram represents a (θ, ϕ) pair we simulated. In total, we have simulated
82 different points. Grey points indicate the paramagnetic phase, blue points
represent the stripe phase and red points correspond to the spiral phase.

Due to the expensive nature of the calculations, we were limited in the
number of simulations we could perform. Consequently, we did not draw
phase boundaries. In Ref. [1], the authors propose a function for calculating
the smoothness of the susceptibility flow to determine the phase boundaries.
However, since we can resolve vertices in more detail, these fluctuations in

nΩ nµ n′
µ

Σ(Ω) 4000 - -
K1 400 - -
K2 110 110 -
K2′ 110 - 110
K3 45 40 40

Table 4.2: Frequency parameters for the dipolar interactions on the triangular
lattice
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Figure 4.2: Phase diagram obtained from one-loop calculations for the Heisen-
berg model with dipolar interactions on the triangular lattice. The red points
represent the spiral phase, the blue points indicate the stripe phase and the
grey points indicate the disordered phase.

the susceptibility flow are not present in our calculations, rendering their
method inapplicable. Similar to the findings in Ref. [1], we observe a wide
paramagnetic regime. Our results indicate that this paramagnetic regime is
even larger. Additionally, we identify the stripe and spiral phase regions in
agreement with Ref. [1].
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(b) χ(q) plot for St1

Figure 4.3: Plots for point St1, (θ = 50, ϕ = 5)

To illustrate our findings more clearly, we select several points on the phase
diagram. We start with the point St1 where θ = 50◦ and ϕ = 5◦, corresponding
to the M1 point in Ref. [1]. In Fig. 4.3b, we depict the momentum resolved
susceptibility at Λ/J = 0.35. The susceptibility χ(q) exhibits localized peaks
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Figure 4.4: Scaling of local maximum with rcutoff for St1 point. The blue
curve has rcutoff = 5, and as we increase the cutoff radius we observe the local
maximum scales. Extrapolating this to the thermodynamic limit, we observe
a divergence instead of a local maximum.

at the M point of the Brillouin zone, indicating a stripe order. Moreover, by
examining the flow of susceptibility at qmax, we observe a local maximum
occurring around Λ/J ∼ 0.3. In order to interpret this local maximum we
vary the rcut and perform more calculations. In Fig. 4.4, we observe that this
local maximum scales with the number of lattice sites. Consequently, in the
thermodynamic limit, this point can be extrapolated to infinity suggesting
a divergence for χ(qmax) at a critical Λc. This is also consistent with our
findings of momentum space plots exhibiting an ordered phase. Therefore, we
conclude that point St1 exhibits characteristics of a stripe phase.
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Figure 4.5: Plots for point Sp1, (θ = 70, ϕ = 16)

Next, we investigate the other ordered phase, the spiral order. We select
the point labeled Sp1 as a demonstrative example. Upon examining the sus-
ceptibility flow (see Fig. 4.5a), we observe that the susceptibility flow extends
to low Λ values without diverging. Although the flow is not smooth and has
some features around Λ/J ∼ 0.2, we don’t make any conclusive inferences from
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4.1. Triangular Lattice

the susceptibility flow. However, by analyzing the contour plot for χ(q) at
Λ/J = 0.2 in Fig. 4.5b, we find that the peaks are localized inside the Brillouin
zone and do not coincide with any of the high-symmetry points. This evidence
suggests the existence of a spiral phase.
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Figure 4.6: Plots for point Pm1, (θ = 10, ϕ = 6)
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Figure 4.7: We can see that at the lattice boundaries St1 has high correlations
at Λ/J = 0.3 but Pm1 has correlations that are limited to the short-range
scale at Λ/J = 0.1. This shows that Pm1 has no long-range order.

Having explored the ordered phases, we will now shift our focus to disor-
dered phases, starting with the point designated as Pm1 at (θ = 10, ϕ = 6).
We note that the susceptibility flow for the Pm1 point is smooth and continu-
ous for Λ → 0. Moreover, upon examining the contour plot in Fig. 4.6b we see
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that peaks are not well localized compared to the ordered phases, even at a
low Λ value Λ/J ≪ 0.1. Although the susceptibility plot in momentum space
suggests a 120◦ Néel order, it only exhibits short-range correlations, with a
lack of long-range order. In Fig. 4.7, we also present a plot of the real space
correlations for the point PM1 at Λ/J = 0.1. To demonstrate the absence of
long-range correlations, and for comparison, we also include an example of an
ordered phase, the real space correlations for point St1 at Λ/J = 0.3.
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Figure 4.8: Plots for point Pm2, (θ = 40, ϕ = 30)

Next, we choose another disordered phase labeled as Pm2 located at (θ =
40, ϕ = 30). The momentum-resolved susceptibility at Λ/J = 0.1 in Fig. 4.8b
shows peaks inside the Brillouin zone. However, it is evident that these peaks
are not well localized and smeared out. Moreover, in Fig. 4.8a we see that
the flow goes smoothly Λ → 0. These two findings suggest that we find a
paramagnetic phase at the Pm2 location in agreement with Ref. [1].
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Figure 4.9: Plots for point Pm3, (θ = 51, ϕ = 20)
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Lastly, we choose another point located between the stripe and spiral phase
boundaries, labeled as Pm3 and located at (θ = 51, ϕ = 20) (See Fig. 4.9).
The susceptibility flow has a feature around Λ/J ∼ 0.2, but yet the flow does
not diverge or break down. Furthermore, upon examining the contour plot,
we observe that the peak is not well-localized at lower lambda values. These
two findings lead us to believe that the Pm3 point is also a disordered phase.
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Two-loop Results
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Figure 4.10: Phase diagram obtained from two-loop calculations for the Heisen-
berg model with dipolar interactions on the triangular lattice. The color code
is identical to the one-loop phase diagram. The transparent points represent
the one-loop results, and the thick-colored points represent the two-loop re-
sults.

In this section, we present our two-loop calculations. We limited our
calculations to the second loop order, as the numerical cost would exceed
available resources. We sample only 15 points for the two-loop calculations to
determine if there are alterations in the phase diagram.

Previously, by including more diagrams in the flow equation, changes in the
phase boundary were observed for the AFM Heisenberg model on the kagome
lattice [4, 5]. Surprisingly, we didn’t observe any change in the long-range
interactions on the triangular lattice. We present our findings in Fig. 4.10 for
two-loop calculations, retaining the phase boundaries obtained from one-loop
calculations.

First, we focus our attention on the St1 point which we thoroughly investi-
gated in the previous section. We compare the one-loop and two-loop results
in Fig. 4.11. We observe that the local maximum in one loop calculation disap-
pears when we transition to the two-loop, but there still is a clear divergence
occurring at a finite Λ. Thus, by the inclusion of more diagrams into the
flow equations, the critical value of Λ changed. Moreover, upon examining
the contour plot, we observe that peaks are well localized at a high-symmetry
point of the Brillouin zone, suggesting the presence of a stripe order.

Next, we turn our attention to the results for a spiral-ordered point on
the phase diagram, specifically the point Sp2 located at (θ = 75, ϕ = 10). We
present our results for this point in Fig. 4.12. Similar to the St1 point, we
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Figure 4.11: Plots for point St1, (θ = 50, ϕ = 5) from two-loop calculations

observe that the local maximum disappears. However, the flow diverges at a
finite Λ value. Moreover, observing the contour plot, we note the localized
peaks inside the Brillouin zone, indicative of a spiral phase.
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Figure 4.12: Plots for point Sp2, (θ = 75, ϕ = 10) from two-loop calculations

Lastly, we investigate one of the paramagnetic points on the phase diagram.
For this analysis, we select the Pm4 point located at (θ = 15, ϕ = 10). As
illustrated in Fig. 4.13b, both the one-loop and two-loop susceptibility flows
smoothly progress down to low Λ values. With the inclusion of more diagrams
into flow equations, we see that divergence occurs at a smaller Λ values for
two-loop calculation at this point. Examining the susceptibility contour plot
in Fig. 4.13b, we notice that peaks are not localized and the maximum of the
peaks are spread out around the high symmetry points of the Brillouin zone.
This indicates the Pm4 point exhibits characteristics of a disordered phase.
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Figure 4.13: Plots for point Pm4, (θ = 15, ϕ = 10) from two-loop calculations

In conclusion, we did not observe any changes to the phase boundaries for
the two-loop calculations.
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4.2 Square Lattice
Now, we shift our focus to the Heisenberg model on the square lattice. In
the first part of this section, we briefly discuss the NNN AFM Heisenberg
model on the square lattice. Following that, we move on to the long-range
interactions, providing a more detailed analysis.

4.2.1 Next-Nearest-Neighbor Interactions

nΩ nµ n′
µ

Σ(Ω) 4000 - -
K1 400 - -
K2 110 110 -
K2′ 110 - 110
K3 45 40 40

Table 4.3: Frequency parameters for the NNN interactions on the square lattice

As previously discussed in Chapter 2.1.2, the NNN model has been the
subject of extensive research using other reliable methods such as DMRG [12,
13], ED [15] and, more recently, PEPS [14] to investigate the phase diagram of
the square lattice and the nature of the underlying QSL phase. Although all
methods [12–15] including a previous pffRG study by Reuther and Wölfle [18]
agree that between the two ordered phases, there is a magnetically disordered
phase, the nature of this regime is under discussion.

The Hamiltonian for this model is identical to the triangular lattice Hamil-
tonian as defined in Eq. (4.1). As found in the literature, for α ≲ 0.35...0.45,
the model exhibits a Néel ordered phase and for 0.6...0.65 ≲ α, it exhibits the
stripe phase. Furthermore, it has been shown that there is a non-magnetic
region between the two ordered phases [12–15, 18].

We compare our findings for the AFM NNN Heisenberg model with previ-
ous pffRG calculations [16] and the rest of the literature [12–15] to evaluate
the consistency of the phases we find for different parameters.

For our calculation in this section, we use the frequency parameters given
in Table 4.4. We choose cutoff radius as rcutoff = 8 enclosing 197 lattice sites
which is reduced to 32 lattice sites using lattice symmetries.

First, we examine the two ordered phases. For this purpose, we first look
at α = 0.35 where we anticipate a Néel order. Examining the flow illustrated
in Fig. 4.14a, we observe a small kink around Λ/J = 0.25 where the flow
already shows diverging behavior, hinting at a possible phase transition. To
substantiate this hypothesis, we inspect the contour plot depicted in Fig. 4.14
at Λ/J = 0.25 for the momentum-resolved susceptibility peaks. We observe
that the plot has well-localized peaks at the corners of the Brillouin zone at a
relatively high Λ value, confirming our expectations of finding a Néel order.
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Figure 4.14: Plots for α = 0.35

For the second ordered phase, we examine the α = 0.75 calculations, where
we expect to find a stripe order. In Fig. 4.15a, we observe a noticeable kink
in the susceptibility flow around Λ = 0.2. However, since a local maximum
does not appear, we investigate the contour plot before confidently concluding
that this is an ordered phase. In Fig. 4.15b, we observe that the maxima are
well-localized at the edges of the Brillouin zone, and there is no significant
smearing of the peaks. Taking both observations into account, we conclude
that for α = 0.75 the model exhibits stripe ordering.
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Figure 4.15: Plots for α = 0.75

For the paramagnetic region, we present the results obtained at α = 0.6.
In Fig. 4.16a, we observe that the susceptibility flow is smooth down to Λ → 0.
Moreover, examining the susceptibility plot at Λ/J = 0.05 in Fig. 4.16b, we
observe that the peaks are not localized and the maximum is smeared out
evenly along the entire Brillouin zone boundary. However, because pffRG
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Figure 4.16: Plots for α = 0.60
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Figure 4.17: Flow of maximum of the susceptibility for α = 0.40 in blue,
α = 0.55 in orange, α = 0.60 in green and α = 0.75 in red. The orange and
green curves that are classified as magnetically disordered are smooth down to
Λ → 0. Conversely, the curves representing magnetically ordered phases (blue
and red) have kinks and have diverging behavior before around Λ/J ∼ 0.3.

calculations do not break the lattice symmetries, we cannot probe into the
paramagnetic regime to check if it is a QSL or a VBS.

We observe the emergence of this paramagnetic phase around 0.50 ≲ α,
where the susceptibility flow becomes smooth down to Λ → 0. As the value of
α increases, the flow remains smooth, and the smearing of the peaks becomes
more visible along the Brillouin zone boundary. Around α ∼ 0.65, the peaks
begin to localize again, and a kink appears in the susceptibility flow, and we
observe a stripe phase forming. Thus, we estimate the paramagnetic regime
to be situated between 0.50 ≲ α ≲ 0.65 which is a narrower range compared
to the literature [12–15].

We believe further investigation is required to accurately determine the
phase boundaries and the nature of the paramagnetic regime. For a more
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detailed study of AFM Heisenberg model with NNN interactions on the square
lattice using pffRG, we refer the reader to the Ref. [18].

4.2.2 Long-range Interactions
In this section, we present our results obtained from one-loop and two-loop
pffRG calculations for the Heisenberg model with long-range interactions on
the square lattice. This model exhibits three ordered phases [2, 17].

The Heisenberg model with long-range interactions on the square lattice
has been previously investigated by Keles and Zhao using pffRG in Ref. [2], and
by Zou et.al. through the use of PEPS, Schwinger-boson mean field (SBMF)
and modified spin wave theory in Ref. [17]. In their research, Zou et al. find a
paramagnetic regime between stripe and Néel phases using PEPS and SBMF,
while with the use of spin wave theory, they locate a paramagnetic regime
at the intersection of three ordered phases [17]. However, their method of
solving the model retained only the NN and NNN couplings. In addition, the
finite lattice size limitations of the tensor network ansatz prevent an accurate
representation of the spiral phase, thus precluding the extension of the phase
diagram towards the region where the spiral phase exists. To circumvent these
constraints, Keles and Zhao employed pffRG in Ref. [2], which can be extended
to infinite lattice sizes and can accommodate long-range interactions. In their
investigation, they identified a paramagnetic regime at the juncture of the
three ordered phases. In the next section, we will compare our one-loop results
to the work of Keles and Zhao [2].

For our calculations in the next section, we use the frequency parameters
given in Table 4.4. Analogous to the triangular lattice, we select a cutoff radius
of 8 lattice sites, encompassing a total of 197 sites, which is reduced to 99 sites
after applying lattice symmetries.

nΩ nµ n′
µ

Σ(Ω) 4000 - -
K1 400 - -
K2 110 110 -
K2′ 110 - 110
K3 45 40 40

Table 4.4: Frequency parameters for the dipolar interactions on the square
lattice

One-loop Results

In this section, we explore the phase diagram by varying the orientation of
dipoles, similar to our approach with the triangular lattice. Each point on
the diagram represents a (θ, ϕ) pair we simulated. Following the same color
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Figure 4.18: Phase diagram obtained from one-loop calculations for the dipolar
Heisenberg model on the square lattice. Green points represent the Néel order
phase, blue points represent the stripe order phase, red points represent the
spiral order phase, and grey points represent the disordered phase.

scheme as with the triangular lattice, the grey points indicate the disordered
phase, the blue points represent the stripe order, the red points denote the
spiral order, and introducing green points, which now represent the Néel order.
The phase diagram resulting from 94 one-loop calculations is depicted in Fig.
4.18. Due to the limited number of calculations performed, we did not attempt
to pinpoint the exact phase boundaries.

In Ref. [2], the authors identify a paramagnetic region along the phase
boundaries of the Néel phase, expanding notably where three phase boundaries
intersect. Consistent with their result, we also identify a wider paramagnetic
regime where the three-phase boundaries meet. Overall, the paramagnetic
regime we find is slightly smaller compared to the findings in Ref. [2], but
we mostly agree with the results. However, unlike in Ref. [2], we observe a
paramagnetic regime between the spiral and stripe phases, located along the
boundary of the stripe and spiral phase.

To illustrate the different ordered phases of the model, we inspect a few
illustrative points. We start with the Néel order. As an example, we choose
the point labeled as Ne1 located at (θ = 15◦, ϕ = 20◦). Examining the
susceptibility flow in Fig. 4.19a, we observe that the flow is smooth up to
Λ/J ∼ 0.2. At around Λ/J ∼ 0.2, a kink emerges within the susceptibility flow,
indicating a potential phase transition. To substantiate this, we examine the
contour plot at Λ = 0.2, as illustrated in Fig. 4.19b. The contour plot presents
well-localized peaks at the corners of the Brillouin zone, characteristic of a Néel
order. Based on these observations, we infer that the Ne1 point corresponds
to a Néel ordered phase.
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Figure 4.19: Plots for point Ne1, (θ = 15◦, ϕ = 20◦)

Next, we inspect the second ordered phase, the stripe phase. For this
purpose, we select the point labeled as St1 situated at (θ = 60◦, ϕ = 10◦).
Initially, we observe the flow of susceptibility with respect to the flow parameter
Λ where a local maximum occurs around Λ/J ∼ 0.25. Mirroring our approach
in the triangular model, we investigate this point using different lattice sizes
and find that this local maximum scales with an increasing number of lattice
sites. The scaling of the local maximum with lattice sites is illustrated in Fig.
4.21. Hence, we conclude that at the thermodynamic limit there is a phase
transition at around Λ/J ∼ 0.25. To identify the type of order for this point,
we inspect the contour plot depicted in Fig. 4.20. We see that the peaks are
well localized at the edges of the Brillouin zone suggesting a stripe order.
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Figure 4.20: Plots for point St1, (θ = 10◦, ϕ = 6◦)

For the final ordered phase, we undertake an analysis of the point labeled
as Sp1, located at (θ = 75◦, ϕ = 40◦). Upon inspecting the flow of the suscep-
tibility, we observe a local maximum appearing around Λ/J ∼ 0.4. Varying
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Figure 4.21: Susceptibility flow of point St1 with different lattice sizes. The
blue line, orange line, and green line represent susceptibility flow with rcutoff =
4, rcutoff = 6, and rcutoff = 8. We observe a local maximum around Λ/J ∼ 0.25,
which scales with increasing lattice size.

the lattice size, we notice that the peak scales with the number of lattice sites
included in the calculation, as is evident from Fig. 4.23. Additionally, we
observe that the Λ value at which the local maximum emerges shifts towards
lower values as the number of lattice sites decreases. This is likely because the
spiral phase necessitates a larger lattice size for an accurate representation,
an aspect that has posed challenges for the other methods. By inspecting the
contour plot around Λ = 0.4, where the local maximum occurs, we observe
localized peaks at a non-high symmetry point of the Brillouin zone suggesting
a spiral order.
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Figure 4.22: Plots for point Sp1, (θ = 75◦, ϕ = 40◦)

Next, we investigate the paramagnetic points on the phase diagram. For the
initial example, we select the point labeled as PM1 located at (θ = 27◦, ϕ = 4◦),
positioned between the stripe and the Néel order. The susceptibility flow for
this point is illustrated in Fig. 4.24a. We notice that the flow remains smooth
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Figure 4.23: Susceptibility flow of point Sp1 with different lattice sizes. The
blue line, orange line, and green line represent susceptibility flow with rcutoff =
4, rcutoff = 6, and rcutoff = 8. We observe a local maximum around Λ/J ∼ 0.4
for rcutoff = 8 which shifts to lower Λ values for decreasing lattice size.

down to Λ → 0, hinting at an absence of order. We then turn our attention to
the contour plot for the momentum-resolved static susceptibility. We observe
that the peaks in the contour plot are smeared out along the boundary of
the Brillouin zone and do not exhibit clear localization. These combined
observations lead us to categorize this point as a paramagnetic phase.
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Figure 4.24: Plots for point Pm1, (θ = 27◦, ϕ = 4◦)

Next, we select a point situated around where the three ordered phases
intersect, labeled as PM2 at (θ = 37◦, ϕ = 30◦). Similar to the Pm1 point, we
observe that the susceptibility flow in Fig. 4.25a goes smoothly to Λ → 0. We
then examine the contour plot depicted in Fig. 4.25b. We note that the peaks
are not well localized and appear smeared out, extending from the edges of
the Brillouin zone towards the center. Moreover, we observe a considerable
shift in the smear of the peaks compared to the PM1 point. Based on these
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Figure 4.25: Plots for point Pm2, (θ = 37◦, ϕ = 30◦)

observations, we conclude that the PM2 point is indicative of a paramagnetic
phase.

Finally, we turn our attention to the Pm3 point located at (θ = 85◦, ϕ =
18◦) denoted by an orange rhombus, which lies between the boundary of the
spiral and stripe phase. Upon inspecting the susceptibility flow in Fig. 4.26a,
we observe that the flow is almost smooth down to Λ → 0. Further analysis
of the contour plot depicted in Fig. 4.26b at Λ/J = 0.1 reveals that the peaks
are smeared out, extending from the edges of the Brillouin zone towards the
center. Based on these observations, we classify PM3 as a paramagnet.

In Ref. [17] Zout et al., the TN ansatz couldn’t extend to this region due
to lattice size limitations, and no trace of a paramagnetic phase was found
using SBMF. Moreover, in Ref. [2] Keles and Zhao using pffRG find a narrow
region of width ϕ ∼ 2◦ where they observed smearing of peaks in the contour
plot of momentum resolved static susceptibility and an almost smooth flow
of susceptibility to the infrared cutoff. However, they did not classify it as a
paramagnet as they did not observe a significantly different behavior of the
flow around this boundary. Conversely, we find this region to have a width
around ϕ ∼ 5◦, and we observe a qualitative difference in the susceptibility
flow. To justify this claim, we take a vertical cut of the phase diagram at
θ = 85◦ starting from the stripe phase at ϕ = 14◦. We present the maximum of
the susceptibility flow of the four points that have ϕ = 14◦, ϕ = 18◦, ϕ = 20◦

and ϕ = 22◦ in Fig. 4.27. We observe that disordered points have a noticeably
suppressed susceptibility flow compared to the ordered ones. Therefore, we
conclude that there is a disordered phase with no long-range order in this
region.

Two-loop Results

In this section, we present our two-loop calculations for the dipolar interac-
tions on the square lattice. However, as the cost of higher loop calculations
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Figure 4.26: Plots for point Pm3, (θ = 85◦, ϕ = 18◦)
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Figure 4.27: The plot for the susceptibility flow along the cut taken at θ = 85◦.
The stripe (blue, ϕ = 14◦) order and the spiral (red, ϕ = 2◦) order susceptibility
flow have a diverging behavior around Λ/J ∼ 0.2 where a kink appears in the
flow. We observe a suppression for the susceptibility flow of the paramagnetic
points in green (ϕ = 20◦) and orange (ϕ = 18◦) curves.

scales linearly with the loop order, these calculations become more expensive.
As such, we have chosen to refrain from higher-loop calculations and limit
ourselves to a few exemplary points for the two-loop calculations. Our results
from these 12 calculations are presented in Fig. 4.29. We selected points near
the phase boundaries for sampling. Interestingly, the results from the one-loop
calculations largely coincide with those from the two-loop order, showing no
significant differences in the phase boundaries. We replicate the same analysis
we conducted in the previous sections for the chosen points.

Firstly, we examine a point labelled as Ne2, which is Néel ordered and
located at (θ = 23◦, ϕ = 20◦). In Fig. 4.30a the susceptibility flow of both
one-loop and two-loop susceptibility flow is depicted. We observe that for
the two-loop susceptibility, flow is almost smooth down to Λ → 0. Yet, upon
inspecting the contour plot, we notice that the localization of peaks starts
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Figure 4.28: The Pm3 point, evaluated with various lattice sizes, shows that
the kink in the susceptibility flow does not scale with an increase in lattice
size.
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Figure 4.29: Phase diagram obtained from two-loop calculations for the Heisen-
berg model with dipolar interactions on the square lattice. The color code is
identical to the one-loop phase diagram. The transparent points represent the
one-loop results, and the thick-colored points represent the two-loop results.

occurring at lower Λ values. For this point, the peaks are localized at the
corners of the Brillouin zone, which is indicative of a Néel order.

Next, we analyze a point that exhibits the stripe order. For this purpose,
we analyze the point labeled as St2 located at (θ = 75◦, ϕ = 14◦). In Fig.
4.31, the susceptibility flow obtained from two-loop calculation (depicted in
orange) appears to be mostly smooth down to Λ → 0. This contrasts with
the susceptibility flow obtained from one-loop calculation (shown in blue) that
exhibits a local maximum around Λ/J ∼ 0.2. However, upon examining the
contour plot illustrated in Fig. 4.31 at Λ = 0.05, we note that the peaks are
localized at the edges of the Brillouin zone, thus suggesting a stripe order.
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Figure 4.30: Plots for point Pm3, (θ = 23◦, ϕ = 20◦)
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Figure 4.31: Plots for point St2, (θ = 75◦, ϕ = 14◦)

The final example of an ordered phase is the spiral order. Specifically, we
analyze the point labeled Sp2, which is situated at (θ = 75◦, ϕ = 30◦). We
once again focus on the flow of the susceptibility maximum. It’s noticeable
that the flow obtained from two-loop calculation is smooth down to Λ → 0
meanwhile in contrast the flow obtained from one-loop calculation has a local
maximum around Λ/J ∼ 0.3. Upon examining the contour plot in Fig. 4.32b
at Λ/J = 0.1, it’s apparent that the peaks are localized inside the Brillouin
zone, indicative of a spiral order.

As an example of a paramagnetic phase, we choose to investigate the point
Pm4 located at (θ = 30◦, ϕ = 10◦). From Fig. 4.33a, we note that both
the one-loop and two-loop susceptibility flows are smooth to lower Λ values.
However, it’s noteworthy that the two-loop susceptibility flow appears subdued
in comparison to the one-loop susceptibility flow. Inspecting the contour plot
in Fig. 4.33b, we observe peaks that appear smeared out around the edges
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Figure 4.32: Plots for point Sp2, (θ = 75◦, ϕ = 30◦)

of the Brillouin zone at Λ = 0.05. This point is therefore classified as a
paramagnet, a finding that aligns with the one-loop calculation.
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Figure 4.33: Plots for point Pm4, (θ = 30◦, ϕ = 10◦)

4.3 Discussion
First, we consider the results obtained for the triangular lattice, considering
both the next-nearest-neighbor interactions in Sec. 4.1.1 and the long-range
interactions discussed in Sec. 4.1.2.

We employed NNN interactions on the triangular lattice to test our code
and determine if we could accurately identify the phase boundaries in line
with the pffRG literature [10]. Our findings revealed a narrower region around
0.10 ≲ α ≲ 0.25 for the disordered phase. This aligns more closely with other
methods such as DMRG [6, 8, 9] opposed to the previous pffRG calculations
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[10]. Nonetheless, we still face challenges in precisely determining the phase
boundary, as the methods employed in the literature for distinguishing phases
within pffRG are limited to inspecting the fRG flow and contour plots.

In Sec. 4.1.2, we examined the results of one and two-loop calculations
for long-range interactions on the triangular lattice. Unlike methods such
as DMRG, which excel in shorter-range interactions and lower-dimensional
systems, fRG is well-suited for simulating larger systems, making it an ideal
approach for studying long-range interactions. Moreover, by employing the
efficient vertex parametrization required for the multi-loop calculations, we can
generate a more stable susceptibility flow compared to the existing literature.

In the first part of Sec. 4.1.2, we presented the one-loop calculation results
for the triangular lattice, which are mostly in agreement with the work of Keles
and Zhao [1]. Different from their work, we find a bigger paramagnetic regime
spread through the phase boundary of spiral and stripe phase. However, as
discussed in Sec. 4.1.2, distinguishing phases near the phase boundaries can
be challenging. Thus, we abstain from drawing phase boundaries as we believe
a more comprehensive investigation is required to precisely locate the phase
transition points.

In the latter part of Sec. 4.1.2, we present our two-loop calculations for the
same model. We did not observe any changes to the phase diagram. Due to
the higher computational cost of the two-loop calculations, we had a limited
number of sample points, and we did not scan the whole phase diagram.

In Sec. 4.2.1, we compared the phases we found from one-loop calculations
for the NNN AFM Heisenberg model on the square lattice with existing liter-
ature [12–14, 18]. We found the magnetically disordered phase to be situated
between 0.50 ≲ α ≲ 0.65 which is narrower compared to the literature [12–14,
18]. Additionally, as we did not break the lattice symmetries, we were not able
to confirm the existence of a VBS ground state. Since our main focus was on
dipolar interactions, we used the NNN model as a test case.

In Sec. 4.2.2 we presented our one and two-loop calculations for the dipolar
Heisenberg model on the square lattice. Our results agree with previous pffRG
calculations conducted in Ref. [2], where a paramagnetic regime along the
phase boundary of Néel phase was identified. Contrary to Ref. [2], we found
another paramagnetic regime situated along the boundary of the stripe and
the spiral phase. We confirmed this finding by examining the scaling of the
susceptibility flow in this regime with lattice size. Nevertheless, a more detailed
investigation is required to understand the extent of this paramagnetic regime.

Moreover, we also presented our two-loop calculations for the dipolar inter-
actions. We did not observe any significant alternations to the phase bound-
aries. Due to the increased numerical cost of the two-loop calculations, we did
not further pursue a more detailed scan of the phase diagram.

Overall, our one-loop calculations mostly agree with previous pffRG cal-
culations in Ref. [1] for the triangular lattice and in Ref. [2] for the square
lattice. In the two-loop calculations, the inclusion of new diagrams to the
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flow equations resulted in a decrease in susceptibility for both geometries,
which consequently rendered the susceptibility flow more smooth. However,
we did not identify a novel phase or observe a significant shift in the phase
boundaries. Furthermore, considering that the loop convergence in multi-loop
fRG is not always guaranteed at a finite loop order, and considering that the
computational cost scales linearly with the loop order, we chose not to pursue
higher loop order computations. Additionally, given the recent publication
by Schneider et al. [33], there is still a degree of uncertainty regarding the
potential benefits and precision of higher loop order calculations.
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5

Benchmark

In Chapter 2 and in Chapter 3, we have discussed the construction and imple-
mentation of the mpffRG. Throughout these chapters, we have made use of
certain approximations, in order to make mpffRG numerically feasible. These
approximations, namely are the fulfillment of the pseudofermion constraint
covered in Chapter 2.2.1, the parquet approximation covered in Chapter 2.2.3,
the cutoff dependence of the flow equations examined in Chapter 2.2.5, the
representation of the continuous Matsubara frequencies at T = 0 with a dis-
crete spectrum discussed in Chapter 3.1.5, the finite size truncation of the
infinite lattice discussed in 3.1.4 and the truncation of the six-point vertex
that corresponds to the one-loop mpffRG that is also a common practice in
the literature. In the first section of this chapter, we will discuss the effects of
these approximations on the calculations.

In the second part of this chapter, we benchmark pffRG by comparing
it to DMRG and ED in their reliable domains. Differing from our previous
approach for the NNN AFM Heisenberg model on the triangular and square
lattice in Chapter 4, where we compared results obtained at the end of the flow,
here, we compare the flow directly with other methods. To make this possible,
we show that the cutoff function can be interpreted as a modification to the
Hamiltonian as a coupling to a fermionic bath. Then, we simulate this modified
Hamiltonian using DMRG and ED, and compare with the flow obtained from
pffRG. Given that this is ongoing research, we share our preliminary findings
at this stage.

5.1 Approximations of pffRG
In this section, we look at the approximations employed in the construction
of mpffRG and its effects on the results. First, we will look briefly at the
lattice size truncation and frequency discretization. Then we will look at the
pseudofermion constraint and to what to what degree it is not satisfied. Then
we will discuss the cutoff dependence which will be revisited again in the next
second part of this chapter.
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5.1.1 Lattice Size Truncation
In Chapter 3.1.4, we discussed how an infinite lattice could be approximated
for pffRG calculations using a finite-sized lattice. The implications of this
truncation were already explored in Chapter 4. We have discussed that the
local maximum that scales with lattice sizes can be extrapolated to infinity in
the thermodynamic limit. The scaling of these local maxima can be observed
in Fig 4.4 and Fig. 4.21.

Moreover, we observed that larger lattice sizes may be necessary to accom-
modate various phases, as observed for the spiral phase in Sec. 4.2.2. We also
observed that for the spiral phase, the critical Λ value shifted by lattice size
yet the phase we find at the end of flow remained the same. An example of
shifting of the local maximum can be seen in Fig. 4.23.

Furthermore, we have also observed that for the disordered phases where
no breakdown occurs in the flow, we noted the absence of flow scalingas can
be seen in Fig. 4.28.

Therefore, we conclude that the truncation of the lattice size does not
affect the end result obtained from the pffRG calculations but might influence
the critical Λ value for certain phases.

5.1.2 Frequency Discretization
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Figure 5.1: St1 point defined for the Heisenberg model with dipolar interactions
on the triangular lattice with various frequency parameters.

The Matsubara frequencies at T = 0 are a continuous spectrum. How-
ever, due to the discrete structure of computers, we cannot fully reproduce
the frequency grid of this continuous spectrum. Instead, we sample discrete
of this continuous spectrum and try to resolve fRG objects accurately. In
Chapter 3.1.5 we briefly discussed the sampling procedure of this adaptive
frequency grid which was implemented by Marc Ritter and Julian Thönniß.
For the details of implementation, see Refs. [5, 24, 39].

For our calculations in Chapter 4 we have confirmed that increasing the
frequency parameters from the current parameters does not affect the flow.
Fig. 5.1 displays the St1 point results obtained from one-loop calculations of
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the Heisenberg model with dipolar interactions on the triangular lattice using
various frequency parameters. The green curve corresponds to the results
obtained with the parameters used in Chapter 4, while the blue (orange) curve
corresponds to the results obtained using higher (lower) frequency parame-
ters. We observe that the behavior of the flow remains unchanged when the
frequency parameters are increased.

5.1.3 Fulfillment of the Pseudofermion Constraint

0.0 0.5 1.0 1.5 2.0
Λ/J

0.125

0.150

0.175

0.200

0.225

0.250

〈S
z i
S
z i
〉

disorder ` = 1
disorder ` = 2
order ` = 1
order ` = 2

Figure 5.2: These results were obtained from the dipolar interactions on the
triangular lattice. The disordered phase is at (θ = 15, ϕ = 10) and the ordered
phase is at (θ = 50, θ = 5). The blue (orange) line is the flow of the ordered
(disordered) phase. The ℓ represents the loop order. The pseudofermion
constraint is fulfilled when

〈
Szi S

z
i

〉
= 0.250.

In Chapter 2.2.1, we introduced the decomposition of spin operators to
the fermionic language through pseudofermion creation and annihilation op-
erators. However, this construction enlarges the Hilbert space by introducing
unphysical states namely, unoccupied and doubly occupied states. We also
discussed that this condition is fulfilled on average by setting the chemical
potential to the particle-hole symmetric value [16].

A way to verify the fulfillment of this constraint is through examining the
local equal-time spin-spin correlator [5, 24]. It is defined as follows:

χzzii |τ=0 =
〈
Szi S

z
i

〉
. (5.1)

For the unphysical sector of the Hilbert space χzzii |τ=0 = 0, while for the phys-
ical sector, χzzii |τ=0 = 1

4 . When the pffRG flow starts at Λ → ∞, the physical
and unphysical sector of the Hilbert space is equally populated, resulting in
χzzii |τ=0 = 1

8 . However, when we recover the original system at Λ → 0 we
expect the local equal-time spin-spin correlator to be populated by only the
physical sector of the Hilbert space, hence χzzii |τ=0 = 1

4 .
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Thönniß et al. highlighted the shortfall of the fulfillment of this constraint
for the AFM Heisenberg model on kagome lattice [5] and Ritter highlighted it
for the XXZ model on the pyrochlore lattice [24]. Most recently, Schneider et
al. in Ref. [33] showed that at T = 0 this constraint is not fulfilled for smaller
systems such as trimer using exact diagonalization (ED).

In Fig. 5.2, we present the local equal-time spin-spin correlator obtained
from various calculations presented in Chapter 4 for the long-range Heisenberg
model on the triangular lattice. We observe that at the start of the flow the
χzzii |τ=0 is around 0.125 just as expected. As the flow continues to Λ → 0, the
occupancy of the physical sector of the Hilbert space increases [5]. However,
regardless of the phase and the loop order, the pseudofermion constraint is far
from being fulfilled, which makes pffRG quantitatively less reliable.

5.1.4 Cutoff Dependence
In Chapter 2.2.5, we introduced a scale dependant cutoff to the bare Green’s
function. While the choice of cutoff is arbitrary, for Λ → 0, one recovers
the original physical theory. However, in practice, we observe that the flow
might diverge before reaching Λ → 0, preventing us from reaching the physical
theory [33]. As demonstrated in Ref. [23], the choice of cutoff can influence
the results of one-loop calculations for the x-ray edge singularity. Neverthe-
less, cutoff independence can be realized by achieving loop convergence in
mfRG [23].

For the calculations in Chapter 4, we have employed the Gaussian cutoff
function introduced in Eq. (2.25). To investigate the impact of cutoff depen-
dency on our results, we replicated a calculation from the previous chapter,
this time utilizing the Lorentzian cutoff introduced in Eq. (2.26). In Fig. 5.3,
we present the results obtained for the stripe-ordered phase with both cutoff
functions. The blue (orange) curve represents the Gaussian (Lorentzian) cutoff.
The flow obtained from using the Lorentzian cutoff function suddenly diverges
around Λ/J ∼ 0.35. Meanwhile, the flow obtained from the Gaussian cutoff
has a local maximum around Λ/J ∼ 0.3, which, as previously discussed, scales
with lattice size and can be extrapolated to infinity in the thermodynamic
limit. Therefore, it is evident that both cutoff functions give rise to an or-
dered phase with slightly different critical Λ, but they generate quantitatively
distinct flows. We will revisit cutoff dependence in the next section.

5.1.5 Parquet Approximation
In Chapter 2.2.3, we have discussed the parquet approximation. The SDE
and BSEs form a set of self-consistent equations, given a choice of R as
an input. The parquet approximation corresponds to the simplest choice
R = Γ0, ensuring that all diagrams up to the fourth order in perturbation
series are included in this set of equations [20, 24]. At the fourth order, the so-
called envelope diagram, which is irreducible in all three two-particle reducible

60



5.1. Approximations of pffRG

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Λ/J

0

5

10

15

20

χ
Λ

(Ω
=

0,
q
m
a
x
)

Gaussian
Lorentzian

Figure 5.3: The one-loop flow for the dipolar Heisenberg interaction on a
triangular lattice with (θ = 50, ϕ = 5), calculated using two different cutoff
functions, is represented here. The orange curve corresponds to the flow
obtained with the Lorentzian cutoff, whereas the blue curve is obtained with
the Gaussian cutoff.

channels, is missing. Since this diagram contains a double momentum integral,
it is hard to compute numerically.

For a more non-trivial choice of R in the fRG treatment, obtaining the
irreducible vertex using DMFT and using that irreducible vertex as an initial
condition for the flow equations is possible. This method known as DMF2RG
and more details can be found in Ref. [20].

The parquet approximation also allows us to generate all ladder diagrams
and their combinations through iteration without any bias towards a single
type of ladder. By incorporating these ladder diagrams, the parquet equations
exceed the fourth-order perturbation theory [20].

An important property of the parquet equations is that they fulfill the
Mermin-Wagner theorem, which states that there can be no long-range order
at a finite temperature for 2D systems with short-range interactions [45].
The conventional one-loop fRG does not obey the Mermin-Wagner theorem.
However, at ℓ → ∞ mfRG is equivalent to the parquet equations. Therefore
by achieving loop convergence in mfRG, one can fulfill the Mermin-Wagner
theorem [23].

5.1.6 Truncation of Six-point Vertex
As previously discussed in Chapter 2.2.6, the conventional pffRG used in the
literature [1, 2, 16, 18, 19, 25, 38] corresponds to the first loop order in our
scheme. This approximation omits any contributions to the flow equations
coming from the six-point vertex [20].

In a recent study by Schneider et al. [33], the one-loop pffRG, pffRG with
Popov-Fedetov trick, and parquet equations (which corresponds to the mpffRG
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with loop convergence) with Popov-Fedetov trick were compared to ED results
obtained for the AFM Heisenberg model on the dimer and trimer. It was
demonstrated that the truncation of the six-point vertex in the flow equations
is an uncontrolled approximation in the high coupling regime.

To investigate the extent of validity of this approximation, we will com-
pare the equal-time susceptibility flow obtained from pffRG to the equal-time
susceptibility flow obtained from quantitatively more reliable methods such as
DMRG and ED in one-dimensional systems in the next section.

5.2 Physical Interpretation of the Cutoff Function
In Chapter 2.2.5, we deformed the original theory by artificially introducing
a cutoff function to the bare two-particle propagator and the original theory
reinstated at the limit Λ → 0. In this section, we aim to give physical mean-
ing to the deformed theory by showing a correspondence between the cutoff
function and coupling to a fermionic bath. To do this, we first consider the
pseudofermion Hamiltonian, as given in Eq. (2.6), for the SU(2) symmetric
Heisenberg model

Hsys = 1
8
∑

αβα
′
β

′

∑

µ

∑

ij

Jijσ
µ
αβσ

µ

α
′
β

′f
†
iαfβf

†
jα

′fjβ′ . (5.2)

We will now proceed to couple the system’s fermions with those present in
the fermionic bath. The bath fermions are denoted by ciα where α represents
the spin index and i indicates the lattice site to which this bath is coupled.
We establish the dynamics of these bath fermions by defining a coupling
Hamiltonian and a bath Hamiltonian as follows:

Hhyb =
∑

iαk

[
Vkf

†
iαciαk + V ∗

k c
†
iαkfiα

]
, (5.3)

Hbath =
∑

iαk

ϵk c
†
iαkciαk. (5.4)

The full Hamiltonian of this modified theory becomes

Hmod = Hsys +Hbath +Hhyb. (5.5)

Hmod being non-interacting and quadratic in c fermions, allows us to integrate
out the bath fermions within the path integral formalism, leading to the action
of this modified theory to be,

S =
∑

1
ψ̄1

(
− iω +

∑

k

|Vk|2
iω − ϵk

︸ ︷︷ ︸
≡∆(iω)

)
ψ1 − 1

4
∑

1′
,2′;1,2

Γ0(1′, 2′; 1, 2)ψ̄1ψ̄2ψ1ψ2. (5.6)
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Here we have adopted the multi-index notation from earlier chapters and
defined the hybridization term ∆(iω). Unlike the pseudofermion action, we
note that this action has a kinetic term. And this term modifies the bare
Green’s function as follows,

G0(iω) = 1
iω − ∆(iω) . (5.7)

We observe that the new Green’s function has the same form of an additive
cutoff described in Eq. (2.27),

G−1,Λ
0 = iω − ∆Λ(iω). (5.8)

Hence, a cutoff function, as in Eq. (2.27), can be understood as a coupling to
a fermionic bath. The selection of the cutoff function dictates the Hamiltonian
of this newly deformed theory.

Since we employ multiplicative cutoffs in our approach, we can also identify
a correspondence between them and to the coupling of fermionic baths.

For the multiplicative Gaussian cutoff described in Eq. (2.25) we have the
following correspondence,

G−1,Λ
0 = iω

ΘΛ(ω)
= iω

1 − e−ω2
/Λ2 = iω + iω

eω
2
/Λ2

− 1
. (5.9)

This means that the Gaussian cutoff is equivalent to a hybridization of the
form,

∆Λ(iω) = −iω
eω

2
/Λ2

− 1
. (5.10)

Similarly, for the multiplicative Lorentzian cutoff described in Eq. (2.26) we
have,

G−1,Λ
0 = iω

ΘΛ(ω)
= iω

ω2 + Λ2

ω2 = iω + i
Λ2

ω
. (5.11)

This means that the Lorentzian cutoff is equivalent to a hybridization of the
form,

∆Λ(ω) = Λ2

ω
. (5.12)

Hence, the multiplicative Lorentzian cutoff is equivalent to a Hamiltonian
where the system couples to a fermionic bath with ϵk = 0 and the coupling
strength controlled by Λ = V .
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5. Benchmark

nΩ nµ n′
µ

Σ(Ω) 4000 - -
K1 400 - -
K2 100 100 -
K2′ 100 - 100
K3 80 80 80

Table 5.1: Frequency parameters for the AFM Heisenberg dimer

J

Λ Λ

Figure 5.4: Illustration of the dimer coupled to non-interacting fermionic
baths.

5.3 Dimer
To assess the pffRG flow’s reliability, we examine the AFM Heisenberg dimer
model. The dimer model is a simple model with only two interacting spins.
Hence, the Hamiltonian for the dimer Hamiltonian contains only two spin
operators and it can be written as

Hdimer = J S1 · S2, (5.13)

where J > 0 for. Since it is a fairly simple model, it can be solved exactly
using ED. However, as we use the Lorentzian cutoff for solving this model in
pffRG, for ED treatment we need to address a larger system that includes
coupling to fermionic baths. Nonetheless, solving this extended system is still
manageable with ED.

Now, the flow parameter Λ can be interpreted as the coupling strength
between the fermionic baths and the system fermions. In the limit Λ → 0 the
bath fermions are decoupled from the system fermions, and the original system
is recovered. On the other hand, in the high Λ limit, the systems fermions
become non-interacting, and only the coupling between the bath and system
fermions become relevant.

Before proceeding with the comparison of the two methods, it is important
to highlight an unexpected divergence of the pffRG flow around Λ/J ∼ 0.2.
This divergence of the flow is illustrated in Fig. 5.5. We suspect that at
Λ/J = 0.2 there might be a phase transition where the system fermions form
a singlet state. However, further investigation is needed to fully understand
the nature of this breakdown, as the research is still ongoing.
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5.3. Dimer
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Figure 5.5: The static susceptibility flow of the dimer using the Lorentzian
cutoff. We observe a break-down of the flow around Λ/J ∼ 0.2.
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Figure 5.6: The equal-time susceptibility flow obtained from pffRG is shown
in orange, while the flow obtained from ED is shown in blue. The absolute
difference between the two methods is depicted in purple. On the left, the
on-site equal time susceptibility is depicted, and on the right, the equal time
susceptibility of two neighboring sites is shown. It is observed that at the weak
coupling limit, the absolute difference is small but scales, as we approach to
lower Λ limit the absolute difference increases.

Next, we compare the equal-time susceptibility flow obtained from pffRG
and ED for various values of Λ. In Fig. 5.6, the zero-time susceptibility flow is
illustrated for the onsite correlation |S1 ·S1| in the first row and for neighboring
sites |S1 · S2| in the second row. In Fig. 5.6, the orange dots represent the
pffRG results, the blue line is the exact result obtained from ED, and the
purple dots are the absolute error.

We observe that at the start of the flow, in both methods, the onsite
correlation is |S1 · S1| = 0.375. This is because, at the high Λ limit, the
probability of finding a double occupancy of a site equals the probability of
finding a single occupancy of a site. On the other hand, in the high Λ limit,
the correlation of neighboring sites is |S1 · S2| = 0 as the system fermions are
decoupled. However, with decreasing Λ values, the system fermions become
more and more correlated, resulting in an increase in the absolute value of
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5. Benchmark

correlation functions. For ED, at Λ = 0, this value reaches to 0.75, which
is the exact value when two neighboring spins are aligned, and there are no
contributions from bath fermions.

Consistent with our expectations, we observe that as the flow goes to the
high coupling limit the difference between the ED and pffRG value increases
with fRG flow.

5.4 Infinite Chain

nΩ nµ n′
µ

Σ(Ω) 4000 - -
K1 400 - -
K2 100 80 -
K2′ 100 - 80
K3 40 40 40

Table 5.2: Frequency parameters for the AFM Heisenberg chain. rcutoff = 60

V

J

V V

J

V

J ......

Figure 5.7: Illustration of the infinite chain coupled to non-interacting
fermionic baths.

As for a second test for pffRG, we consider another one-dimensional model,
the Heisenberg infinite chain with AFM NN interactions. The Hamiltonian of
this model is defined as:

H = J
∑

i

Si · Si+1. (5.14)

where J is positive for AFM interactions. In our calculations, we set J = 1
for simplicity. For spin 1/2 systems, this model has a gapless energy spectrum
and has no magnetic order at T = 0 [46].

To benchmark pffRG with DMRG, we again employ the multiplicative
Lorentzian cutoff for our pffRG treatment. Therefore, in the DMRG calcula-
tions, we solve a modified Hamiltonian where each system site is coupled to a
non-interacting fermionic bath. The DMRG data for this project is generated
by our group member Andreas Gleis, using a total of 200 spin sites with open
boundary conditions. Although the system solved by DMRG is not an infinite
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Λ/J

0.0

0.5

1.0
χ

Λ ii
(Ω

=
0)

infinite chain

Figure 5.8: Static susceptibility flow of AFM Heisenberg chain obtained from
pffRG with Lorentzian cutoff.

chain, open boundary effects should be negligible for the spins in the center
of the chain.

In Fig. 5.8, we present the susceptibility flow obtained from pffRG calcula-
tions. We observe that the flow exhibits a divergence at Λ ∼ 0.27. Typically,
a divergence in the susceptibility flow indicates a phase transition. However,
such a phase transition is unexpected for the one-dimensional AFM Heisenberg
chain, which has no ordered ground state. Similarly, in the DMRG calcula-
tions, we have observed a phase transition around Λ ∼ 0.2, determined by
analyzing the scaling of equal-time correlations at different Λ values. This
suggests that the phase transition is influenced by the coupling to the fermionic
bath. Further investigation is required to understand the nature of this phase
transition.

We benchmark the two methods by comparing the equal-time susceptibility
in real space at a given Λ centered around the 100th lattice site. In Fig. 5.9,
the equal-time susceptibility obtained from pffRG (DMRG) is depicted in
blue (orange). We investigate the equal-time susceptibility at Λ = 1 in the top
row and at Λ = 0.5 in the bottom row. The plots on the left present the data
in linear scale, while the plots on the right display the data in log-log scale to
observe the scaling behavior.

We observe a good agreement between both methods for Λ = 1 and Λ = 0.5.
This indicated that pffRG is reliable in the regime around Λ ∼ 0.5. However,
as discussed above, the pffRG flow diverges around Λ ∼ 0.27, preventing us
from reaching smaller Λ values.

The ground state of the AFM Heisenberg chain with NNN interactions
differs significantly from the NN interactions. While for the NN interactions,
there is no magnetically ordered ground state, for the NNN interactions there
is a phase transition from magnetically disordered phase to a dimer state at
J2/J1 ≡ α > 0.24 [47]. In an attempt to reach lower Λ values, we try to utilize
the competition between these two phases. We present the flow obtained from
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Figure 5.9: Equal-time susceptibility comparison between pffRG and DMRG
in real space centered around 100th lattice site at Λ = 1 in the first row, and at
Λ = 0.5 in the second row. The blue (orange) points represent results obtained
from pffRG (DMRG).

pffRG for different values α in Fig. 5.10a. Although we were able to reach
lower Λ values with NNN, they are not significantly lower. As a result, we
did not produce DMRG data to assess the reliability of pffRG using NNN
interactions.

Since pffRG is mainly used for higher dimensional systems, benchmarking
the equal-time susceptibility with higher dimensional models can be useful.
We investigated coupled AFM Heisenberg chains on a cylinder using periodic
boundary conditions along one direction as described in Chapter 3.1.4. We
constructed the cylinder by coupling 3 and 4 chains along this direction as
well as infinite coupled chains which corresponds to the square lattice. The
static susceptibility flow of these coupled chains is illustrated in Fig. 5.10b. We
again observe that the static susceptibility diverges at a critical Λ. However,
we observe that this critical value increases with the number of coupled chains.
The nature of this phase transition is still under investigation. Thus, we did
not yet generate data from DMRG to compare with our pffRG results.

Lastly, we revisit the cutoff dependence discussed in Sec. 5.1.4. We test the
two different cutoff functions utilized throughout this thesis for the Heisenberg
chain with AFM NN interactions. In Fig. 5.11, we present the static suscepti-
bility flow obtained by using the Gaussian cutoff in blue and the Lorentzian
cutoff in orange. We note that the flow obtained from the Gaussian cutoff has
a smooth flow up to Λ → 0, indicating a magnetically disordered phase. On
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Figure 5.10: The static susceptibility flow obtained by pffRG with the
Lorentzian cutoff. On the right, NNN interactions for various values of α
are represented. On the left, coupled chains on a cylinder with different num-
bers of chains are represented.
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Figure 5.11: The static susceptibility flow of AFM Heisenberg chain with NN
obtained by using two different cutoffs. The orange curve represents the flow
obtained by employing the Lorentzian cutoff and the blue curve represents the
flow obtained by employing the Gaussian cutoff.

the other hand, as discussed, the flow of the static susceptibility obtained by
employing the Lorentzian cutoff diverges around Λ ∼ 0.27 indicating a phase
transition to a magnetically ordered phase. This comparison highlights the
significant impact of the choice of cutoff on the behavior of the susceptibility
flow and the interpretation of the phase found at the end of the flow.

5.5 Discussion
In the first part of this chapter, we have examined the different approxi-
mations utilized in the construction of mpffRG. We have observed that the
pseudofermion constraint is not fulfilled by checking the on-site equal-time
susceptibility [5, 24, 33]. Furthermore, our analysis has revealed that the
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choice of cutoff can significantly impact the behavior of the susceptibility flow
in the first loop order, in agreement with previous findings in Ref. [23].

In the second part of this chapter, we showed that the cutoff function
can be interpreted as a coupling to a fermionic bath. We discussed that the
multiplicative Lorentzian cutoff corresponds to an impurity-like Hamiltonian,
which can be reliably solved by ED for small systems and DMRG for large
systems in one dimension. This allowed us to compare the results obtained from
pffRG with those from well-established numerical techniques in one dimension.

In the later parts of this chapter, we conducted a benchmark study of pffRG
with ED by solving the dimer and with DMRG by solving the infinite chain.
We observed that at around Λ/J = 0.5, pffRG results agree well with both
methods. For the dimer model, we were able to reach lower Λ values, where we
observed that the absolute difference between the two methods increased as Λ
decreased. For the infinite chain, we observed an unexpected phase transition
at around Λ ∼ 0.27, which is also confirmed by DMRG calculations. The
nature of this phase transition is still being investigated. Additionally, at the
end of this chapter, we revisited the impact of the cutoff choice on the static
susceptibility flow. For the infinite AFM Heisenberg chain, we found that
the choice of cutoff function led to a drastic change in the behavior of the
susceptibility flow.

In conclusion, pffRG can be used as a reliable tool in the weak coupling
regime, even for low-dimensional systems. However, we have observed that
pffRG results deviate from reliable results in the high coupling limit. Further
investigation is required to understand more precisely the domain of reliability
of pffRG.

On the other hand, pffRG can simulate larger systems with long-range
interactions where other methods fail. Thus, we believe that pffRG can be
utilized as a valuable tool for exploring the general behavior of a system,
although it may not provide exact results in all cases.
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Summary and Outlook

In this thesis, we employed the multiloop pseudofermion functional renor-
malization group to investigate the Heisenberg model with antiferromagnetic
next-nearest-neighbor interactions and dipolar interactions on the triangular
and square lattice. Our one-loop pseudofermion functional renormalization
group results for the next-nearest-neighbor interactions on both geometries
were compared to previous studies [6–10, 12–15]. Our findings revealed a
slightly larger paramagnetic regime for the triangular lattice compared to
Refs. [6–10] and a slightly smaller paramagnetic regime for the square lattice
compared to Refs. [12–15]. Additionally, we compared our one-loop results for
the dipolar interactions with another pseudofermion functional renormalization
group study by Keles and Zhao [1, 2]. Our results are mostly in agreement
with their study. However, we identified an extended paramagnetic regime
spread throughout the phase diagram, which was absent in their work. Fur-
thermore, we extended our analysis to the second loop order calculations for
both geometries, but this did not result in significant changes to the phase
diagram.

In the second part of this thesis, we conducted a benchmark study to
assess the reliability of the pseudofermion functional renormalization group
method. We devised a correspondence between the cutoff procedure in the
functional renormalization group formalism to an impurity-like Hamiltonian.
We compared our results with the exact diagonalization by solving the anti-
ferromagnetic Heisenberg dimer and with the density matrix renormalization
group by solving the antiferromagnetic Heisenberg infinite chain. Our findings
demonstrated good agreement between the pseudofermion functional renor-
malization group and these numerical methods in the weak coupling limit.
However, we observed an increasing absolute difference between the pseudo-
fermion functional renormalization group and exact diagonalization results in
the high coupling limit for the dimer. Additionally, we discovered an unex-
pected phase transition for the antiferromagnetic infinite chain which is also
confirmed by the density matrix renormalization group. Further investigation
is needed to fully understand the nature of this phase transition.
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To better understand the domain of reliability of the pseudofermion func-
tional renormalization group, we suggest conducting more benchmark studies
and exploring different correspondences between the cutoff function and re-
liably solvable Hamiltonians. Extending this research to higher dimensions
would also be beneficial, as the pseudofermion functional renormalization group
is commonly used for two and three-dimensional systems. At this stage, we
believe that the pseudofermion functional renormalization group is a valuable
tool that can simulate large systems with long-range interactions and can be
used to understand the general behavior of a system.

Another way to generalize our work would be to implement the Popov-
Fedetov trick for finite temperatures [32, 33]. Schneider et al. [33] showed that
at finite temperatures in contrast to the zero-temperature, the pseudofermion
constraint is fulfilled. By incorporating the Popov-Fedetov trick, the pseudo-
fermion functional renormalization group can provide more quantitatively reli-
able data for systems at finite temperatures. However, implementing this trick
would require breaking some of the symmetries used in the parametrization of
Green’s functions.
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