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Many correlated metallic materials are described by Landau Fermi-liquid theory at low energies, but for
Hund metals the Fermi-liquid coherence scale TFL is found to be surprisingly small. In this Letter, we study
the simplest impurity model relevant for Hund metals, the three-channel spin-orbital Kondo model, using
the numerical renormalization group (NRG) method and compute its global phase diagram. In this
framework, TFL becomes arbitrarily small close to two new quantum critical points that we identify by
tuning the spin or spin-orbital Kondo couplings into the ferromagnetic regimes. We find quantum phase
transitions to a singular Fermi-liquid or a novel non-Fermi-liquid phase. The new non-Fermi-liquid phase
shows frustrated behavior involving alternating overscreenings in spin and orbital sectors, with universal
power laws in the spin (ω−1=5), orbital (ω1=5) and spin-orbital (ω1) dynamical susceptibilities. These power
laws, and the NRG eigenlevel spectra, can be fully understood using conformal field theory arguments,
which also clarify the nature of the non-Fermi-liquid phase.
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Introduction.—A very large number of correlated met-
allic materials are “bad metals,” namely in a broad regimes
of temperature T characterized by deviations from the
Landau Fermi-liquid (FL) T2 law [1] and their values of
resistivity exceeding the Mott-Ioffe-Regel limit [2]. One
class of bad metals are the Hund metals, i.e., 3d and 4d
multiorbital systems where correlations derive from the
Hund’s coupling JH [3–7]. They include ruthenates [8–13],
iron pnictides and chalcogenides [14–20]. The Landau FL
quasiparticles emerge only below a coherence scale TFL
which is much smaller than the natural energy scales of the
problem, set by the electronic bandwidth. Why is TFL so
small in units of the bandwidth? This “naturalness prob-
lem” is a central problem of condensed matter physics
which has attracted considerable attention in the commu-
nity. Its solution should also provide a clue as to what
reference system should be used to describe the anomalous
behavior observed in a broad energy regime above TFL,
when no other instabilities such as magnetism or super-
conductivity intervene.
Two different directions have been followed to address

this puzzle. The first invokes the proximity to quantum
critical points (QCPs) [21–23], signaling the transition to
an ordered phase, or to an unconventional one such as
fractionalized Mott insulators [24,25]. An alternative start-
ing point has been provided by the development of the
combination of ab initio electronic structure and dynamical
mean field theory (LDAþ DMFT) [26–29]. Here, the
excitations of a solid are understood in terms of atomic

multiplets embedded in an effective medium, and the
evolution of the electronic structure from atomic multiplet
excitations into quasiparticles arises naturally as temper-
ature is lowered. This approach has provided quantitative
predictions in many materials of interest [3,19,28,30–36],
where the ab initio LDAþ DMFT calculations are in
surprisingly good agreement with experiments. However,
the solution of the LDAþ DMFT equations is a complex
problem, which generically yields a nonzero FL scale.
Hence no connection with the ideas of QCPs was made.
The question of how to reduce the FL scale to exactly zero
and how to characterize the ensuing anomalous behavior
above TFL has remained open.
In this Letter, we provide an answer to this question by

computing a global phase diagram of the simplest three-
channel spin-orbital Kondo model which captures the
essential physics of Hund metals, using the exact numerical
renormalization group (NRG) method [37]. By tuning the
spin or spin-orbital Kondo couplings into the ferromagnetic
regimes, we push TFL to be exactly zero and identify QCPs.
We find quantum phase transitions to a singular-Fermi-
liquid (SFL) phase and to a novel non-Fermi-liquid (NFL)
phase showing frustrated behavior of alternating over-
screenings in spin and orbital sectors, with universal power
laws in dynamical susceptibilities. We use conformal field
theory (CFT) arguments [38–43] to identify the nature of
the NFL phase, analytically reproduce the NRG eigenlevel
spectra and explain the power laws. Our global phase
diagram provides a clear picture for understanding the
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suppression of coherence in Hund metals in terms of
proximity to QCPs.
Model and methods.—We study the three-channel spin-

orbital Kondo (3soK) model derived from a realistic
Anderson impurity model in [20,44] for the studies of
Hund metals. Hbath ¼

P
pmσ εpψ

†
pmσψpmσ describes a sym-

metric, flat-band bath with half-bandwidth D ¼ 1, where
ψ†
pmσ creates an electron with momentum p and spin σ in

orbitalm ∈ f1; 2; 3g. The bath couples to the impurity spin
S and orbital isospin T via

Hint ¼ J0S · Jsp þ K0T · Jorb þ I0S · Jsp-orb · T: ð1Þ

Here S are SU(2) generators in the S ¼ 1 representation,
normalized as TrðSαSβÞ ¼ 1

2
δαβ, and T are SU(3) gener-

ators in the 3̄, i.e., (01) representation [45] (orbital angular
momentum takes L ¼ 1 in this representation), and
TrðTaTbÞ ¼ 1

2
δab. Jsp, Jorb, and Jsp-orb are the bath spin,

orbital and spin-orbital densities at the impurity site, with
Jαsp ¼ ψ†

mσ
1
2
σασσ0ψmσ0 , Jaorb ¼ ψ†

mσ
1
2
τamm0ψm0σ, Jα;asp-orb ¼

1
4
ψ†
mσσασσ0τ

a
mm0ψm0σ0 (summation over repeated indices is

implied) and normalized ψ†
mσ ¼ ð1= ffiffiffiffi

N
p ÞPp ψ

†
pmσ , and

σα½τa� are Pauli [Gell-Mann] matrices, with normalization
TrðσασβÞ ¼ 2δαβ [TrðτaτbÞ ¼ 2δab]. J0, K0 and I0 are bare
spin, orbital and spin-orbital Kondo exchange couplings,
and we treat them as independent parameters with positive
and negative values describing antiferromagnetic (AFM)
and ferromagnetic (FM) couplings, respectively. We take
K0 ¼ 0.3 throughout.
We use the full-density-matrix NRG [46] method to

solve this model, exploiting its full Uð1Þch × SUð2Þsp ×
SUð3Þorb symmetry using QSpace [45]. Symmetry labels
Q≡ ½q; S; ðλ1λ2Þ� are used to label multiplets, where q is
the bath particle number relative to half-filling of the bath
(we choose qimp ¼ 0 because the impurity site has no
charge dynamics), S is the total spin, and ðλ1λ2Þ labels an
SU(3) representation described by a Young diagram with
λ1 þ λ2 (λ2) boxes in its first (second) row. The impurity
multiplet has Qimp ¼ ½0; 1; ð01Þ�. The bath is discretized
logarithmically and mapped to a semi-infinite “Wilson
chain” with exponentially decaying hoppings, and the
impurity coupled to chain site k ¼ 0. The chain is diagon-
alized iteratively while discarding high-energy states,
thereby enlarging the low-energy properties: the finite-size
level spacing of a chain ending at site k ≥ 0 is of order
ωk ∝ Λ−k=2. Here Λ > 1 is a discretization parameter,
chosen to be 4 in this work. The RG flow can be visualized
by combining the rescaled low-lying NRG eigenlevel
spectra, E ¼ ðE − ErefÞ=ωk vs ωk, with increasing even
or odd k. The imaginary part of the impurity dynamical
susceptibilities χimp

sp , χimp
orb and χimp

sp-orb were calculated at

temperature T ¼ 10−16. Computational details are pre-
sented in the Supplemental Material [47].

(a)

(b)

(d)

(c)

FIG. 1. (a) The calculated global phase diagram vs J0 and I0 at
fixed K0 ¼ 0.3. Four low-energy fixed points are found: Fermi-
liquid (FL, orange region); singular Fermi-liquid (SFL, blue
region) with underscreened spin and fully screened orbital
isospin; frustrated non-Fermi-liquid (NFL, pink region) with
alternating spin and orbital overscreenings; and non-Fermi-liquid
NFL� (red dot at J0 ¼ 0, I0 ¼ 0) with overscreened orbital
isospin and degenerate impurity spin 1

2
, 3
2
. Cartoons depict the

respective screening processes, where one dashed ellipse loosely
represents an even number of Wilson shells. The indicated
additional charge then is relative to half-filling, where filled
(empty) arrows represent electrons (holes) with corresponding
spin direction. The white-hatched region indicates the existence
of an intermediate-energy crossover regime SFL0 (NFL0) enclos-
ing the phase boundary between FL and SFL (NFL). The inset
shows the “funnel width,” δJ0, of the NFL phase vs 1=I0 when
I0 → 0−. (b),(c) The onset energy scales Tx for (x ¼) FL, SFL
and NFL vs (b) J0 or (c) I0, where quantum critical points are
identified. (d) Impurity contribution to entropy Simp as functions
of temperature T.

PHYSICAL REVIEW LETTERS 124, 136406 (2020)

136406-2



Fixed points.—The calculated global phase diagram as a
function of J0 and I0 is shown in Fig. 1(a). We first describe
the low-energy fixed points found in the phase diagram.
Throughout the entire regions where all three Kondo
couplings are AFM, and for part of regions where J0 or
I0 takes FM values (orange region), the system flows to a
low-energy FL fixed point. This is seen in the NRG flow
diagram and dynamical impurity susceptibilities χimp at
J0 ¼ I0 ¼ 0.01 in Figs. 2(a) and 2(d). The ground state is a
spin and orbital singlet, with impurity entropy Simp ¼ ln 1
[orange curve in Fig. 1(d)]. For small ω, all χimp follow a ω-
linear behavior, characteristic of a FL.
When J0 takes FM values and I0 FM or small AFM

values (blue region), the phase is governed by a low-energy
SFL [48,58,59] fixed point where the spin is underscreened
while the orbitals are fully screened. The transition from FL
to SFL is analyzed in Fig. 2 for I0 ¼ 0.01. Figures 2(c) and
2(f), computed for J0 ¼ −0.4, show the NRG flow and χimp

to the SFL fixed point. It has ground state ½þ1; 1
2
; ð00Þ�

and Simp approaches ln 2 at low energies [blue curve in

Fig. 1(d)], signaling a residual spin of 1
2
. χimp

sp deviates
slightly from a pure ω−1 power-law by a logarithmic
correction at high energy and can be fitted by
∼1=½ω ln2ðω=TSFLÞ� with TSFL as an onset energy scale,
consistent with the SFL results in [48]. χimp

orb shows ω-linear
behavior at low energy, indicating fully screened orbital
isospin. The coefficient of the impurity specific heat,
CimpðTÞ=T [47], shows divergent behavior [58], confirming
the singular nature of this fixed point.
When I0 takes strong FM and J0 strong AFM couplings

(pink region), we find a novel NFL fixed point, showing
very interesting frustrated behavior of alternating over-
screenings in spin and orbital sectors. Figure 3 analyzes
the transition from FL to NFL at J0 ¼ 0.3. Figures 3(c),

3(f), 4(c), and 4(f) show the NRG flow and χimp towards the
NFL fixed point. The two lowest multiplets with either
orbital singlet, ½þ1; 1

2
; ð00Þ�, or spin singlet, [0,0,(01)], are

very close in energy. The dynamical susceptibilities follow
perfect and universal power laws for the spin (ω−1=5),
orbital (ω1=5) and spin-orbital (ω1) operators. The impurity
entropy Simp evaluates to ln½ð1þ ffiffiffi

5
p Þ=2� [pink curve in

Fig. 1(d)]. This value can be obtained from Eq. (6) in [49]
for a general SUðNÞK Kondo model (K is the number of
channels) with N ¼ 3, K ¼ 2, Q ¼ 2 indicating SUð3Þ2
orbital overscreening, or with N ¼ 2, K ¼ 3, Q ¼ 1
indicating SUð2Þ3 spin overscreening. Motivated by this,
we follow the recently developed SUð2Þ × SUð3Þ CFT
approach [43] to identify the nature of this fixed point. Its
NRG eigenlevel spectra Q0 ¼ ½q0; S0; ðλ01λ02Þ� can be repro-
duced by applying either an SUð2Þ3 fusion procedure in the
spin sector or an SUð3Þ2 fusion procedure in the orbital
sector, i.e., fusing a spectrum of free fermions Q ¼
½q; S; ðλ1λ2Þ�, with an effective impurity multiplet labe-
ling either Qeff

imp ¼ ½þ1; 1
2
; ð00Þ�, or Qeff

imp ¼ ½0; 0; ð01Þ�.
Double fusion of the spectrum Q0 with the conjugate
representation of the impurity multiplet, Q̄eff

imp ¼
½−1; 1

2
; ð00Þ� or Q̄eff

imp ¼ ½0; 0; ð10Þ�, yields the quantum
numbers Q00 ¼ ½q00; S00; ðλ001λ002Þ� to characterize the CFT
boundary operators, with scaling dimensions Δ, determin-
ing the behavior of dynamical susceptibilities.
Tables S1–S2 in the Supplemental Material [47] show

the CFT results of the fixed point spectra and compare
them with the NRG spectra at J0 ¼ 0.3, I0 ¼ −0.01. Both
fusion procedures yield the same results, which reproduce
the NRG spectra very well. The scaling dimension of
the leading boundary operator in the spin, orbital and
spin-orbital sectors are found to be Δsp ¼ 2

5
, Δorb ¼ 3

5
and

Δsp-orb ¼ 1, respectively. They are also consistent
with the CFT results in [49] for either a spin SUð2Þ3
Kondo model (Δsp ¼ 2=ð2þ 3Þ, Δorb ¼ 3=ð2þ 3Þ), or
an orbital SUð3Þ2 Kondo model (Δsp ¼ 2=ð3þ 2Þ,

(a)

(d) (e) (f)

(c)(b)

FIG. 2. The phase transition from FL to SFL at I0 ¼ 0.01.
(a)–(c) NRG flow diagrams of a Wilson chain with odd length k,
with the energy of the lowest [0,1,(01)] multiplet as the reference
energy Eref. The symmetry labels of selected multiplets are shown
on top. (d)–(f) Impurity dynamical susceptibility χimpðωÞ.

(a)

(d) (e) (f)

(b) (c)

FIG. 3. Analogous to Fig. 2, but for the phase transition from
FL to NFL at J0 ¼ 0.3.
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Δorb ¼ 3=ð3þ 2Þ). The power laws of dynamical sus-
ceptibilities can then be understood by the CFT procedure
[43] χimp

sp ∼ ω2Δsp−1 ¼ ω−1=5, χimp
orb ∼ ω2Δorb−1 ¼ ω1=5 and

χimp
sp-orb ∼ ω2Δsp-orb−1 ¼ ω1, respectively.
The impurity entropy and the CFT analysis both suggest

that the spin SUð2Þ3 and orbital SUð3Þ2 Kondo models with
overscreened fixed points are actually equivalent and
complementary descriptions of this NFL fixed point. It
indicates an alternating spin SUð2Þ3 and orbital SUð3Þ2
overscreening process by successively binding one electron
or one hole, as illustrated by the cartoon picture at the
bottom right of Fig. 1(a), similar in spirit to that of Nozières
and Blandin [60]. To be specific, the strong AFM orbital
coupling binds the bare impurity Qimp ¼ ½0; 1; ð01Þ� and
one bath electron ½þ1; 1

2
; ð10Þ� into a fully screened orbital

singlet with either spin 3
2

or 1
2
: ½0; 1; ð01Þ� ⊗ ½þ1;

1
2
; ð10Þ� → ½þ1; 3

2
; ð00Þ� ⊕ ½þ1; 1

2
; ð00Þ�. In the FL phase,

the spin 3
2
multiplet has the lower energy; it can then bind

three holes to form a fully screened spin and orbital singlet
[43]: ½þ1; 3

2
; ð00Þ� ⊗ ½−3; 3

2
; ð00Þ� → ½−2; 0; ð00Þ�. By con-

trast, in the NFL regime, the spin 1
2
multiplet has the lower

energy since the spin-orbital coupling I0 is strongly FM.
Next, the AFM spin coupling attempts to screen the spin 1

2

by coupling it to one hole, to yield a spin singlet,

�
þ1;

1

2
; ð00Þ

�
⊗

�
−1;

1

2
; ð01Þ

�
→ ½0; 0; ð01Þ�; ð2aÞ

but the result is an overscreened orbital isospin. Screening
the latter by binding an electron,

½0; 0; ð01Þ� ⊗
�
þ1;

1

2
; ð10Þ

�
→

�
þ1;

1

2
; ð00Þ

�
; ð2bÞ

leads back to an overscreened spin. Overall, this results in a
neverending alternation of spin and orbital overscreening,
favored by the fact that the multiplets [0,0,(01)] and

½þ1; 1
2
; ð00Þ� are lowest in energy [see Figs. 3(c), 4(c)],

with a very small energy difference.
The special point at J0 ¼ I0 ¼ 0 corresponds to an

SUð3Þ2 NFL fixed point (NFL�) with overscreened orbitals
and a degenerate impurity spin of 1

2
, 3
2
. The inset of Fig. 1(a)

suggests that the region of NFL actually extends to this
point. There we analyze the width of the NFL “funnel,”
defined by δJ0 ¼ Jc10 − Jc20 , vs 1=I0, where Jc10 (Jc20 )
is the phase boundary between FL (SFL) and NFL. It
follows expð0.0462=I0 þ 6.57Þ, becoming zero only when
I0 → 0−.
Phase transitions.—TFL on the FL side and TSFL (TNFL,

the NFL scale) on the SFL (NFL) side go to zero as the
phase boundary is approached. We find that TFL, TSFL and
TNFL follow power laws as functions of the control
parameters J0 and I0, jJ0 − Jc0jα and jI0 − Ic0jα, to approach
exactly zero at the critical values Jc0 and Ic0, signaling the
existence of QCPs [21,22]. The exponents found are α ¼
1.8 in the FL-SFL transition, and α ¼ 1 for FL-NFL. We
show TFL=SFL as functions of J0 at I0 ¼ 0.01 in Fig. 1(b),
and TFL=NFL as functions of I0 at J0 ¼ 0.3 in Fig. 1(c).
More data are shown in Fig. S5 [47].
When approaching the QCP in the FL-SFL transition as

in Fig. 2 by decreasing J0, the spin-orbital separation
window [7,50] increases a lot, as seen in Figs. 2(b) and 2(e)
for J0 ¼ −0.3643, and a wide crossover regime, SFL0,
forms at intermediate energies. There the impurity entropy
Simp evaluates to ln½ð1þ ffiffiffi

5
p Þ=2� þ ln 3 [green curve in

Fig. 1(d)], corresponding to an orbital overscreened SUð3Þ2
fixed point, coupled to a fluctuating spin-1 moment. This is
consistent with the recent findings in the region I0 ¼ 0 and

J0 → 0þ in [61]. χimp
orb follows a universal power-law of

ω1=5, showing similarity with the NFL phase due to the

same orbital SUð3Þ2 overscreening, while χimp
sp follows an

approximate power law (with some non-power-law cor-
rections, see the Supplemental Material [47]). Across the
phase transition, the multiplet ½þ1; 1

2
; ð00Þ� is pushed down

to be the new ground state, while the original ground state
½−2; 0; ð00Þ� of the FL phase is pushed up to very high
energy.
When approaching the QCP in the FL-NFL transition as

illustrated in Fig. 3, the fine-tuning of I0 generates a large
crossover regime NFL0 at intermediate energies [Figs. 3(b)
and 3(e)], where the set of low-lying states is simply the
union of those of the FL and NFL spectra (see Table S4 in
the Supplemental Material [47]). NFL0 thus represents a
“level-crossing” scenario [47,51,52], involving two
orthogonal low-energy subspaces whose levels cross when
I0 is tuned. When sufficiently close, both subspaces
contribute to thermodynamic and dynamical properties.
Here, the FL and NFL compete in the intermediate-energy
regime, and I0 determines either FL [Figs. 3(a) and 3(d)] or
NFL [Figs. 3(c) and 3(f)] to be the low-energy fixed point.

(a)

(d) (e) (f)

(b) (c)

FIG. 4. Analogous to Fig. 2, but for the phase transition from
SFL to NFL at I0 ¼ −0.01.
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The impurity entropy SNFL0
imp evaluates to lnðeSFLimp þ eS

NFL
imp Þ ¼

lnf1þ ½ð1þ ffiffiffi
5

p Þ=2�g [red curve in Fig. 1(d)], not
ln 1þ ln½ð1þ ffiffiffi

5
p Þ=2�, because the FL and NFL subspaces

do not overlap. Hence the total effective impurity degrees
of freedom are the sum of the contributions of those two
sectors [47]. χimp of NFL0 follow the same power laws as
NFL because the NFL part dominates in this regime. For
more details on NFL0, see the Supplemental Material [47].
The transition from SFL to NFL shown in Fig. 4

confirms the picture of alternating overscreenings.
Tuning J0 to be more AFM, the state [0,0,(01)] is pushed
down to be nearly degenerate with the ground state
½þ1; 1

2
; ð00Þ� [Fig. 4(b)], signaling the start of the alternat-

ing overscreening process. χimp
sp bends downward away

from the ω−1 behavior towards an ω−1=5 dependence,
while χimp

orb bends upward away from the ω-linear behavior
towards an ω1=5 dependence. χimp

sp-orb still follows ω1.
Conclusion.—To summarize, we have presented a global

phase diagram of the 3soK model. This allows us to follow
the suppression of the coherence scale in Hund metals
down to zero energy. The new NFL phase contains the
essential ingredients needed to understand the actual
incoherent behavior seen above TFL. Recent advances in
the physics of cold atoms might actually offer a concrete
realization of the phase diagram of the model studied.
Indeed it has been recently demonstrated that it is possible
to simulate SUðNÞ impurity models with tunable exchange
interactions reaching both FM and AFM regimes [62,63].
The iron pnictides display an intriguing QCP, as for

example in BaFe2ðAs1−xPxÞ2 [18,64–66], where a diver-
gent electron mass and concomitant destruction of the FL
state was observed. This QCP has motivated several
theoretical studies [67–69]. Further progress from the
perspective of this work would require the DMFT self-
consistency condition and more realistic band structures. In
the DMFT treatment of a lattice model, the SFL and the
NFL phases are expected to turn into magnetically ordered
states, but the impurity model studied here with its power-
law singularities would describe the behavior above TFL.
The approach presented here, which takes into account

the Hund’s coupling and the multiorbital nature, is in the
same spirit as the ideas of local quantum criticality used to
describe Kondo breakdown using impurity models [70], so
it would then be also useful for unconventional quantum
phase transitions observed in other heavy-fermion materials
[71–74]. The global phase diagram of this 3soK model will
also have potential impact on the studies of real multi-
channel spin and (or) orbital Kondo systems or quantum
dots systems, for instance, generalize the studies in [75–79]
to three-channel cases.
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