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Introduction

Strongly correlated systems have fascinated physicists for many decades and still represent
a prominent topic in condensed matter physics. In these systems strong correlations
between electrons give rise to a plethora of fascinating many-body phenomena as metal-
insulator transition [29], high-temperature superconductivity (for example in cuprates
[5]), colossal magnetoresistance (for example in manganites [39]). An exemplary family
of strongly correlated materials is that of transition-metal oxides, where a transition-metal
atom is typically embedded in an octahedral structure of oxygen atoms. In such materials
the d-orbital degeneracy of the metallic atom is partially lifted so that a three-band model
can be adopted. In this context the new paradigm of “Hund metals” emerges, in which
the correlations are driven by the Hund coupling rather than the Coulomb interaction [2].
Examples of such materials are ruthenates and iron-based superconductors (iron pnictides
and chalcogenides). In particular, the relevance of spin-orbit coupling (SOC) has recently
attracted much interest. In weakly correlated materials SOC plays a central role for
topological insulators [14], in Mott insulators it influences the magnetic exchange leading
to rich spin-orbital physics [18], in heavy-fermion compounds it selects the multiplet
structure [28]. In contrast, the effects of SOC in strongly correlated metals are far less
explored and understood. Since SOC strength increases with the atomic number, its
effects become more prominent for elements of 4d and 5d series. For example, iridates
have recently drawn much interest, for the large SOC can give rise to novel phases such
as topological superconductivity [19]. The situation is more complex in 4d compounds
(e.g. ruthenates) where all the energy scales are comparable (Coulomb repulsion, Hund
interaction, SOC and hopping integral) [40, 44] and an intricate interplay is at work.
In recent years, a number of studies have tried to capture the physics arising in these
multiorbital materials, both from a real-material perspective [22] and from a model one
[16, 21, 52], showing a rich interplay between correlations and SOC and possible novel
phases [16, 21, 52].

The goal of this thesis is to analyze the subject from a model viewpoint, using single-
site Dynamical Mean-Field Theory (DMFT) [1], a well-established method to investigate
strongly correlated systems, where a lattice site is singled out and embedded in an self-
consistently determined environment, representing the interplay between the rest of the
solid and the site. The problem is thus mapped onto a quantum-impurity model which in
turn is solved employing the Numerical Renormalization Group (NRG) method [38]. We
use a state-of-the-art NRG implementation developed in our group by A. Weichselbaum
and S.-S. B. Lee, which combines efficiency in exploiting symmetries, especially important
for multi-band models [57, 23], and high-resolution power for computing spectral functions
on real frequencies. [42].

The thesis is structured as follows: Chapter 1 contains an overview of the idea and
concepts of single-site DMFT. In Chapter 2 the standard NRG procedure is introduced,
following the review by R. Bulla, T.A. Costi, and T. Pruschke [37]. Although these first
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two chapters provide quite standard presentations, they serve the purpose to provide a
brief introduction of the methods for the reader not familiar with them. In Chapter 3
the adopted three-band model is presented and the role of SOC in d-systems explained.
In Chapter 4 we present and analyze our NRG and DMFT results. Finally, an outlook
on our results and possible future research directions are discussed.
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Chapter 1

Dynamical Mean-Field Theory

The Dynamical Mean-Field Theory (DMFT) is one of the most successful non-perturbative
methods to investigate strongly correlated systems, for it retains the proper competition
between the kinetic energy and the electronic interactions. Two insights paved the way
to the development of this powerful theory. First, the finding that in infinite dimen-
sions all the contributions to the self-energy are purely local. Second, the construction
of a mean-field theory, dynamical in nature, which allows to map self-consistently the
correlated lattice problem onto a quantum-impurity model, which is solved numerically
and hence provides important properties of the original lattice problem. This procedure
opened new lines of research in the study of strongly correlated systems, with important
applications to real materials. A detailed review of DMFT is given by A. Georges, G.
Kotliar, W. Krauth and M.J. Rozenberg in [1].

1.1 Hubbard model in infinite dimensions

Following the historical development of DMFT, we present how the first key idea was
introduced through the study of the Hubbard model in infinite dimensions, that is the
scaling of the hopping term in the d → ∞ limit [32, 53]. We consider the one-band,
spin-1/2 model, i.e. the simplest model describing interacting electrons in a solid. In
this model the interaction between the electrons is assumed to be so strongly screened
that it is taken as purely local. The Hamiltonian on a cubic lattice in d dimensions is
the following (to keep the notation light we omit hats for operators and set ~ = kB = 1
throughout)

H = Hkin +Hint − µN = −
∑
〈i,j〉,σ

ti,j c
†
i,σcj,σ + U

∑
i

ni,↑ni,↓ − µ
∑
i,σ

ni,σ (1.1)

where
∑
〈i,j〉 denotes a sum over pairs of nearest neighbors, c

(†)
i,σ the annihilation (cre-

ation) operators of a conduction electron at site i with spin σ, ni,σ = c†i,σci,σ the number
operator. The parameter U is the on-site Coulomb repulsion, µ is the chemical potential
and ti,j is the hopping amplitude (overlap integral between Wannier functions, represent-
ing localized orbitals). For simplicity, in the following we consider the hopping to be
site-independent ti,j = t. The Fourier transform of Hkin gives

Hkin =
∑
k,σ

εknk,σ (1.2)
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where nk,σ is the momentum distribution operator. The number of neighbors is called
coordination number z and is z = 2d for a hypercubic lattice.
The tight-binding dispersion relation reads (lattice spacing ≡ 1 )

εk = −2t
d∑

α=1

cos kα . (1.3)

In the d → ∞ limit, in order to retain the full competition between the kinetic energy
and the electronic interaction, we need to perform a proper scaling of the Hamiltonian.
The interaction part and the chemical potential part, being purely local, are independent
of the lattice structure and hence of the number of neighbors z. Instead, the kinetic
energy per site scales with z and so diverges in the infinite limit. Therefore, we require
the width of the non-interacting density of states (DOS),

ρ0(ε) =
1

NB

∑
k

δ(ε− εk) =

∫ π

−π

dk

(2π)d
δ(ε− εk) (1.4)

to be independent of d (we replace the sum by an integral in the thermodynamic limit).
A measure of the width of the DOS is its variance,

σ2 =

∫ ∞
−∞

dε ρ0(ε) ε2 = 2t2d (1.5)

so that, in order to keep the width finite, we demand that the hopping amplitude scales
like

t =
t∗√
2d

=
t∗√
z

(1.6)

with t∗ constant. We can also derive this scaling by using the central limit theorem
[32, 24]. In fact, the DOS can be interpreted as the probability density for finding
ε = εk for a random choice of k = (k1, ..., kd). One can construct the random variables
Xα =

√
2 cos(kα), with zero mean and unit variance, which are uniformly distributed in

the interval [−π, π]. Then the distribution function of Xd = 1√
d

∑d
α=1 Xα converges in

law to a Gaussian distribution, again with zero mean and unit variance. If we consider
the density of states ρ0(ε) as the distribution function of the random variable

√
2d tXd,

we obtain the following Gaussian

ρ0(ε)
d→∞−→ 1

2t
√
πd

exp

[
−

(
ε

2t
√
d

)2 ]
. (1.7)

Unless t is scaled like (1.6) this Gaussian DOS will become arbitrarily broad and feature-
less in the d→∞ limit,

ρ∞0 (ε) =
1

t∗
√

2π
exp

[
− 1

2

(
ε

t∗

)2 ]
, t =

t∗√
2d
. (1.8)

The rescaled Hubbard Hamiltonian

H = − t∗√
z

∑
〈i,j〉,σ

c†i,σcj,σ + U
∑
i

ni,↑ni,↓ (1.9)
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has a well-defined z →∞ (or d→∞) limit and retains the proper competition between
Hkin and Hint.
The scaling can also be derived within a position-space formulation and we will see how
this leads to simplifications of many-body diagrammatic theory [53]. To show this we
consider non-interacting electrons at T = 0, then the expectation value of the kinetic
energy is given by

E0
kin = −t

∑
〈i,j〉,σ

g0
ij,σ (1.10)

where g0
ij,σ = 〈c†i,σcj,σ〉0 is the one-particle density matrix. This quantity may be inter-

preted as the amplitude for transitions between sites i and j. Therefore the square of its
absolute value is proportional to the probability for a particle hopping from site j to site
i. In the case of nearest-neighbor hopping on a lattice with coordination number z this
implies |g0

ij,σ|2 ∼ O(1
z
). For nearest neighbors on the hypercubic lattice (where z = 2d)

we then have

g0
ij,σ ∼ O

(
1√
d

)
. (1.11)

Since the sum over all nearest neighbors of a site j in (1.10) is of order O(d), the hopping
amplitude t must scale as in (1.6) to keep the kinetic energy finite in the z, d→∞ limit.
It can be shown [36, 31] that, for general i and j, one obtains

g0
ij,σ ∼ O

(
1

d
‖Ri−Rj‖

2

)
(1.12)

where Ri is the lattice vector of site i and ‖R‖ =
∑d

α=1 |Rα| is the length of R in the
“Manhattan metric”, where particles only hop horizontally and vertically, never diago-
nally.
It is important to note that, although g0

ij,σ ∼ O
(
1/
√
d
)

vanishes for d → ∞, the off-
diagonal elements of g0

ij,σ still contribute, since the particles may hop to d nearest neigh-

bors with amplitude t∗/
√

2d. In the limit of infinite dimensions the particles are hence
not localized, but still mobile.

1.2 Green function and self-energy

The central quantity in DMFT for studying the equilibrium properties of a correlated
electronic system is the one-particle retarded Green’s function

GR
αβ(t) = −iΘ(t)

〈
{cα(t)c†β(0)}

〉
(1.13a)

GR
αβ(ω) =

∫ ∞
−∞

dt

2π
eiωtGR

αβ(t) (1.13b)

with α and β being general momentum or site indices, including also spin and orbital
quantum numbers. The operator cα(t) = eiHtcαe

−iHt is time-evolved in the Heisenberg
picture. The retarded Green function can be written in its spectral representation

GR
αβ(ω) =

∫ ∞
−∞

dω′
Aαβ(ω′)

ω + i0+ − ω′
(1.14)
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where the spectral function Aαβ(ω) is given by its Lehmann representation as

Aαβ(ω) =
1

Z

∑
n,m

〈n|c†β|m〉 〈m|cα|n〉
(
e−βEm − e−βEn

)
δ(ω − (En − Em)) (1.15)

where Z is the partition function and En the eigenvalues and |n〉 the eigenstates of the
Hamiltonian H. Note that Aαα(ω) ≥ 0. From the pole structure of (1.14) it follows that

Aαβ(ω) = − 1

π
ImGR

αβ(ω) . (1.16)

We note that the argument of Green or spectral functions is never purely real, but it is
always implied ω ≡ ω + i0+.
Of particular importance is the local Green function (we omit the superscript R)

Gii,σ(ω) = Gσ(ω) =
1

NB

∑
k

Gk,σ(ω) (1.17a)

Aii,σ(ω) = Aσ(ω) = − 1

π
ImGσ(ω) (1.17b)

where lattice, spin and momentum indices are explicitly adopted and translation invari-
ance assumed. The quantity Aσ(ω) is called local density of states and it can be used to
deduce transport properties as we will see later. It also obeys the sum rule∫ ∞

−∞
dωAσ(ω) = 1 (1.18)

For non-interacting systems, the free Green function and the free density of states are
given by

G
(0)
k,σ(ω) =

1

ω + µ− εk
(1.19)

ρ0(ω) = A(0)
σ (ω) =

1

NB

∑
k

δ(ω − εk) (1.20)

For interacting systems we define the self-energy as the difference between free and in-
teracting reciprocal Green functions

Gk,σ(ω)−1 = G
(0)
k,σ(ω)−1 − Σk,σ(ω) (1.21a)

Gk,σ(ω) ≡ 〈ck,σ||c†k,σ〉ω =
1

ω + µ− εk − Σk,σ(ω)
. (1.21b)

For a translationally invariant system, the self-energy and the Green function are thus
diagonal in momentum space. Finally, we note that we are dealing with retarded Green
functions, which are causal and hence analytic in the upper half-plane, so that Im Σk,σ(ω) <
0, implying that the poles of Gk,σ(ω) lie in lower half-plane.

1.3 Local nature of self-energy

In this section we show how the scaling in the limit z →∞ leads to simplifications in the
many-body perturbation treatment. By construction the kinetic energy is finite and can
be written as

Ekin =
∑
〈i,j〉,σ

t∗√
2d
〈c†i,σcj,σ〉 = lim

t→0+

∑
〈i,j〉,σ

t∗√
2d

∫ ∞
−∞

dω

2πi
eiωtGij,σ(ω) = O(d 0) . (1.22)
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Since the sum over the nearest neighbors of a given site i gives a factor of z = 2d, we see
that Gij,σ(ω) has to scale like

Gij,σ(ω) ∼ O
(

1√
d

)
(1.23a)

Gii,σ(ω) ∼ O(d 0) . (1.23b)

More generally, when we consider models with hopping beyond nearest neighbors we have
that

Gij,σ(ω) ∼ O
(
d−

1
2
‖Ri−Rj‖

)
(1.24a)

Gii,σ(ω) ∼ O(d 0) (1.24b)

i.e. the off-diagonal Green function rapidly decays with distance.
We now consider the skeleton expansion of the self-energy

Figure 1.1: Skeleton expansion of Σ. Figure from [24].

where the double lines denote the full interacting Green propagators and the dashed
lines the local interaction vertices. Since in the Hubbard model the full interacting propa-
gator scales like (1.23a), we see that, for two vertices connected by three full propagators
in the d→∞ limit, we obtain

Figure 1.2: Example of second order diagram from the skeleton expansion of the self-energy.
The total contribution of the three full propagators is of order d−

3
2 while the sum over the

nearest neighbors yields a factor of order d. Therefore the second order diagram contributes a
factor of d−

1
2 and collapses in infinite dimensions. Figure from [53].

From figure (1.2) we see that the second order diagrams in the self-energy expansion
collapse in the d → ∞ limit and the same argument applies to higher order diagrams
which collapse even faster (they have more than three full propagators).
Therefore the self-energy Σ becomes purely local in infinite dimensions, that is site-
diagonal in real space and k-independent in momentum space

Σij,σ(ω)
d→∞−→ Σσ(ω)δij (1.25a)

Σk,σ(ω)
d→∞−→ Σσ(ω) . (1.25b)

15



This leads to tremendous simplifications in that the most important obstacle for actual
diagrammatic calculations in finite dimensions d ≥ 1, that is the integration over in-
termediate momenta, is removed in d → ∞. Yet, being the self-energy still frequency
dependent, it completely accounts for temporal quantum fluctuations, which are at the
core of the physics of strongly correlated materials. However, it freezes out spatial fluctua-
tions, so that we cannot access the non-local interactions of the lattice (there exist cluster
extentions of DMFT which take short-ranged interactions into account [33, 34, 11]). This
simplified form of the Σ also has a direct consequence on the retarded Green function,

Gk,σ(ω) =
1

ω + µ− εk − Σσ(ω)
= G

(0)
k,σ

(
ω − Σσ(ω)

)
. (1.26)

Summing over k yields the local Green function

Gσ(ω) =

∫
dk

(2π)d
1

ω + µ− εk − Σσ(ω)
(1.27)

=

∫ ∞
−∞

dε
ρ0(ε)

ω + µ− ε− Σσ(ω)
(1.28)

where in the last equation we introduce the non-interacting density of states. We note,
however, that the model is not reduced to a purely local one as the hopping between sites
is still retained via the momentum-dependent dispersion relation εk .

1.3.1 Non-interacting density of states: the Bethe lattice

In this subsection we discuss the particular DOS used in this thesis: the Bethe lattice. As
seen in Eqs. (1.27,1.28), the specific features of the lattice are taken into account via the
non-interacting DOS and the dispersion relation (also via the parameters in the model,
like Coulomb strength and number of orbitals). In model calculations it is common to
use the infinite limit of non-interacting DOS as an approximation to finite-dimensional
lattices [53]. An important lattice, often used within DMFT and also in this work, is the
infinite Caley tree, also called Bethe lattice (see Fig. 1.3).
In the limit of infinite neighbors z →∞ the Bethe DOS is semi-elliptic,

ρBethe0 (ε) =
2

πD

√
1−

(
ε

D

)2

, ε ∈ [−D,D] (1.29)

where D = 2t
√
z is the half-bandwidth of the DOS and t the rescaled hopping that scales

as ∝ 1/
√
z.

The reason why the Bethe lattice is often adopted is that it yields a closed analytic form
of the local Green function (1.28), namely

Gσ(ω) =

∫ ∞
−∞

dε
ρBethe0 (ε)

ω + µ− Σσ(ω)︸ ︷︷ ︸
≡ ξ

−ε
=

2

D2

(
ξ − i

√
D2 − ξ2

)
. (1.30)

If one adopts Bethe lattice the numerical integration of (1.28) can then be avoided.
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Figure 1.3: The Bethe lattice with z = 3, illustrated in successive shells.

1.4 Effective impurity problem

We have seen that in the infinite-dimensional limit the effects due to interactions are
purely local. Still we have to find a way to determine the self-energy and in turn the
local Green function of the lattice. The answer, which established the basic framework of
DMFT, was given by Georges and Kotliar [12]: the lattice model can be mapped onto an
effective quantum (Anderson) impurity model in a self-consistent fashion. The impurity
model inherits the same local interactions of a lattice site and is embedded in a non-
interacting electronic bath that is self-consistently determined so to best represent the
original environment of the site (Fig. 1.4). Since the local interactions are the same and
only local effects enter the self-energy we have (skipping the spin index for simplicity)

Σlatt(ω) = Σimp(ω) ≡ Σ(ω) (1.31)

where the subscripts latt and imp refer to lattice and impurity quantities, respectively.
The coupling between the impurity and the bath is described by the hybridization function
∆(ω), whose energy-dependence encodes the correlation effects of the rest of the lattice
(the site assigned to the impurity being excluded). The impurity Green function, with
the same self-energy Σ(ω) and chemical potential µ (via the mapping the local energy
level εd of the impurity is equal to minus the chemical potential, εd = −µ), reads

Gimp(ω) =
1

ω − εd − Σ(ω)−∆(ω)
(1.32)

Hence we can determine the dynamics of the lattice, i.e. the local lattice Green function,
by solving the impurity problem, i.e. determining the impurity Green function, so that
the mapping onto the impurity problem can be written as

Glatt(ω)
!

= Gimp . (1.33)

The effective impurity problem corresponding to the single-band Hubbard model is the
single impurity Anderson model (SIAM) [12], where the impurity, Himp, is coupled to the
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bath, Hbath, via the hybridization Hamiltonian Hhyb, (k ≡ k)

HSIAM = Himp +Hbath +Hhyb

Himp =
∑
σ

εd d
†
σdσ + Un↑n↓

Hbath =
∑
k,σ

εk c
†
k,σck,σ

Hhyb =
∑
k,σ

Vk
(
c†k,σdσ + d†σck,σ

)
(1.34)

where d
(†)
σ annihilates (creates) an electron with spin σ =↑, ↓ at the impurity site, c

(†)
k,σ

are the corresponding annihilation (creation) operators for the non-interacting fermionic
bath and the hybridization between the impurity and the bath is given by the hopping
amplitudes Vk.
The effect of the environment on the impurity is fully encoded in the hybridization func-
tion

∆(ω) =
∑
k

V 2
k

ω − εk
. (1.35)

Since ∆(ω) is causal, i.e. analytic in the upper complex half-plane, its real part can be
derived from the imaginary part via the Kramers-Kronig relations, so it is sufficient to
consider its imaginary part

Γ(ω) = − Im ∆(ω) = π
∑
k

V 2
k δ(ω − εk) (1.36)

which plays an analogous role of the Weiss field in the classical mean-field theory [6]. The
hybridization function Γ(ω) is frequency-dependent and hence ‘dynamical’, but it is not
known a priori. In fact it has to be determined self-consistently in order to obtain the
impurity Green function and, consequently, the local lattice Green function.

1.5 Self-consistent DMFT equations

The mapping procedure allows to get a closed set of DMFT equations that can be solved
iteratively. By using the self-consistent condition Eq. (1.33) and Eq. (1.32) we obtain

Glatt(ω)−1 + Σ(ω) = ω + µ−∆(ω) = G
(0)
imp(ω)−1 (1.37)

that leads to a simple expression for the hybridization function

Γ(ω) = − Im ∆(ω) = Im(Glatt(ω)−1 + Σ(ω)) . (1.38)

From Eq. (1.31), Σlatt(ω) = Σimp(ω) ≡ Σ(ω), we can devise an iterative procedure to
solve the DMFT equations (Fig. 1.5):

(i) start with some guess for Γin(ω)

(ii) solve the impurity problem to determine Σ(ω)

(iii) compute Glatt =
∫∞
−∞ dε

ρ0(ε)
ω+µ−ε−Σ(ω)

18



Figure 1.4: One site from the lattice on the left (representing the single-band Hubbard model)
is singled out (z → ∞ limit) and embedded into an effective bath on the right, which is self-
consistently determined. The effect of the bath on the impurity is described by the hybridization
function Γ(ω). The red box illustrates the fact that the local quantum fluctuations are taken
in full account. Figure from [48].

(iv) update the hybridization function Γout(ω) = Im(Glatt(ω)−1 + Σ(ω))

(v) repeat from step (ii) until convergence, that is until |Γin(ω) − Γout(ω)| < δ, where
the tolerance δ is often set to 10−3.

The central point now is how accurately and efficently we can solve the impurity
problem, which is still a non-trivial complex many-body problem. In this thesis, as said
before, we use the Bethe DOS which allows to avoid the numerical integration of step (iii)
and to find a direct relation between the hybridization function and the lattice spectral
function [41],

Glatt(ω) =
2

D2

(
ξ − i

√
D2 − ξ2

)
!

= Gimp =
1

ξ −∆(ω)

D2

2
(
ξ − i

√
D2 − ξ2

) = ξ −∆(ω)

ξ − i
√
D2 − ξ2

2
= ξ −∆(ω)

=⇒ ∆(ω) =

(
ξ − i

√
D2 − ξ2

)
2

=
D2

4
Glatt(ω) .

(1.39)

Therefore, since Γ(ω) = − Im ∆(ω) and A(ω) = − 1
π

ImGlatt(ω), we get

Γ(ω)

π
=
D2

4
A(ω) . (1.40)

Over the past decades many techniques to solve quantum impurity problems have
become available. Quantum Monte Carlo (QMC) methods are widely spread [15] and the
continuous time formulation (CTQMC) is particularly used for solving quantum impurity
problems [9]. Its main advantages are that it is numerically exact (in the statistical sense),
its scaling to multi-orbital models is not so disadvantageous and is easily parallelizable.
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IMPURITY 
SOLVER

Figure 1.5: Illustration of the DMFT self-consistent procedure.

Among its drawbacks is the need for analytic continuation (QMC algorithms provide
solutions on the imaginary Matsubara axis) which is numerically ill-posed and hinder the
reliability and precision of the spectra. In addition, low temperatures within QMC meth-
ods are numerically quite expensive and subject to the so-called “sign problem” which
prevents the solutions of certain multi-orbital problems due to the exponential increase
in the sampling complexity. Other two popular methods are Exact Diagonalization (ED)
[27] and DMRG [45, 8]. A number of analytical approximated methods are also available,
like the iterated perturbation theory or the noncrossing approximation (for example see
the references within [1]). In this thesis we use the Numerical Renormalization Group
(NRG) method developed by Wilson [59]. It is a well-established method for solving
quantum impurity problems. It has the advantage to compute the quantities of interest
directly on the real frequency axis and can reach arbitrarily low energies/temperatures.
Its main drawback is the poor scaling in multi-orbital models. However our group can
rely on an extremely powerful NRG code (developed by A. Weichselbaum and S.-S.B.
Lee), which is able to deal efficiently with complex systems in the context of symmetries,
both Abelian and non-Abelian [56]. By exploiting the maximum number of symmetries,
calculations for multi-orbital models become feasible too. In the next chapter we will
briefly introduce the basics and concepts of NRG.
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Chapter 2

Numerical Renormalization Group

The Numerical Renormalization Group (NRG) was developed by K.G. Wilson in the
1970’s for the solution of the Kondo problem in a non-perturbative fashion. In this
problem, a single magnetic impurity is coupled with the electronic conduction band of
a nonmagnetic metal [59]. Since then it has been improved to become a reliable and
powerful method to solve impurity problems [38]. In this chapter we will summarize the
basic procedure of NRG, following the review by R. Bulla, T.A. Costi, and T. Pruschke
[38].
The class of fermionic Hamiltonians which can be solved with NRG can be written in the
following way

H = Himp +Hbath +Hhyb (2.1)

where the impurity Hamiltonian Himp can contain any local interaction. Since the impu-
rity is described by a small number of degrees of freedom, it can be diagonalized exactly.
The non-interacting electronic bath can be described by

Hbath =
nc∑
µ=1

∑
k

εkµ c
†
kµckµ (2.2)

where µ = 1, · · · , nc labels different electronic flavors like different bath reservoirs or
different spins (e.g. for one spinful reservoir µ =↑, ↓). The operator c

(†)
kµ annihilates

(creates) an electron of type µ with energy εk,µ. The energy support of the electronic
bath is defined by the bandwidth of the given problem. For a standard NRG calculation,
all energies lie in the interval [−D,D], where D is the non-interacting half-bandwidth
and the Fermi energy is situated in the middle of the interval, εF ≡ 0, assuming the
same band structure for all electronic species. Henceforth, we stick to the usual NRG
convention which takes D = 1 as energy unit.
To illustrate how the method works we discuss the simplest case, the single impurity
Anderson model (SIAM), where a single spinful impurity level is coupled to an electronic
reservoir (Sec. 1.4)

Himp =
∑
σ

εd d
†
σdσ + Un↑n↓ (2.3)

Hbath =
∑
kσ

εk c
†
kσckσ (2.4)

Hhyb =
∑
kσ

Vk
(
c†kσdσ + d†σckσ

)
(2.5)
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with σ =↑, ↓, replacing µ. The annihilation (creation) operators for the bath are repre-

sented as usual by c
(†)
kσ . The influence of the bath onto the impurity is fully encoded in

the spectral part of the hybridization function Γ(ω) = π
∑

k V
2
k δ(ω − εk). The central

idea is that any reformulation of the Hamiltonian leaving Γ(ω) invariant will give the
same physics. Taking a constant hybridization [13] one can rewrite the Hamiltonian in a
one-dimensional energy representation

H = Himp +
∑
σ

∫ 1

−1

dε ε a†εσaεσ +
∑
σ

∫ 1

−1

dε

√
Γ(ε)

π

(
d†σaεσ + h.c.

)
(2.6)

where the continuum fermionic operators a
(†)
εσ are defined by

a(†)
εσ =

c
(†)
kσ√
ρ0(ε)

, (2.7)

ρ0(ε) being the non-interacting density of states. For the continuum operators the anti-
commutation relation {aεσ, a†ε′σ′} = δ(ε − ε′)δσ,σ′ holds, so that only the combination in
the Eq. (2.7) is dimensionless. The energy representation of the hybridization function
is

Γ(ε) = πV 2ρ0(ε) . (2.8)

Next we discretize the energy formulation of the Hamiltonian, Eq. (2.6).

2.1 Logarithmic discretization

For a numerical approach we need to discretize the energy band. To this end, Wilson
introduced a logarithmic discretization [59] via a discretization parameter Λ > 1, defining
intervals as

± [Λ−n,Λ−(n+1)) n = 0, 1, 2, . . . , (2.9)

with width dn = Λ−n(1−Λ−1). Within these intervals we now introduce a complete set of
orthonormal functions ψ±np(ε) (see [38] for details) labeled by the integer p and we Fourier

expand the operators a
(†)
εσ in this basis,

aεσ =
∑
np

(
anpσ ψ

+
np(ε) + bnpσ ψ

+
np(ε)

)
(2.10)

where a
(†)
npσ and b

(†)
npσ fulfill the canonical fermionic commutation relations.

With a constant hybridization (as in the original Wilson’s argument [59]) the transformed
hybridization part contains only the p = 0 components, i.e. the impurity couples only to
the p = 0 components of the conduction band states,

∑
σ

∫ 1

−1

dε

√
Γ(ε)

π

(
d†σaεσ + h.c.

)
=
∑
σ

(
d†
∑
n

(γ+
n an0σ + γ−n bn0σ) + h.c.

)
(2.11)

where γ±n represents a proper normalization in the corresponding interval, derived from
Γ(ε). Turning to the conduction electron term we make the approximation of dropping
the p 6= 0 states. This is motivated by the fact that these states are coupled to the
impurity only indirectly via the p = 0 states and that this coupling is small compared
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to the couplings between the impurity and the p = 0 states. One can then view the
couplings to the p 6= 0 states as small parameters, neglected in 0th order [59]. Therefore
the bath Hamiltonian is approximated by a single state per interval.
Finally, after dropping the p = 0 terms, relabelling an0σ ≡ anσ and bn0σ ≡ bnσ, we arrive
at the discretized Hamiltonian

H = Himp +
∑
nσ

(
ξ+
n a
†
nσanσ + ξ−n b

†
nσbnσ

)
+
∑
σ

(
d†σ
∑
n

(γ+
n anσ + γ−n bnσ) + h.c.

)
(2.12)

where ξ±n are the representative energies in the corresponding intervals, derived as well
from Γ(ε). However, the coarse graining yields to misrepresenting the effective hybridiza-
tion of the bath and to artificial oscillations for the calculation of physical quantities.
As it is not possible, in the actual calculations, to retrieve the continuum by taking the
limit Λ → 1 or by also taking into account the p 6= 0 states, a procedure of averaging
over various discretization grids for fixed Λ has been suggested [30]. One introduces a
parameter z, uniformly distributed in (0, 1], shifting the discretization points xn like

xz1 = 1

xzn = Λ2−n−z n = 2, 3, . . . .
(2.13)

Although the z-averaging cannot replace the continuum limit Λ → 1 by considering
infinite “z-shifts”, averaging over various grids generated in this way, removes certain
artificial oscillations.
Finally, since we consider NRG within DMFT, we note that we only need to calculate
the self-energy and use the so-called “self-energy trick” [37], which allows to compute
the self-energy via the ratio of a two-particle and a one-particle retarted Green functions,
further reducing artificial oscillations. We also note that, within DMFT, the hybridization
function can have an arbitrary shape and so the discretization scheme becomes essential
for the accuracy of the NRG calculations. In this thesis, we use an adaptive logarithmic
grid developed by R. Žitko [62], which takes the shape of the hybridization function into
account and reproduces the exact input hybridization function after z-averaging.

2.2 Wilson chain

The next step in the NRG procedure is the mapping of the discrete Hamitonian onto a
semi-infinite tight-binding chain, the so-called “Wilson chain”. In the Hamiltonian for
the Wilson chain, the impurity directly couples only to one conduction band state with
operators f

(†)
0σ , whose form can be read off from the hybridization terms of Eq. (2.12),

f0σ =
1√
ξ0

∑
n

(γ+
n anσ + γ−n bnσ) (2.14)

in which the normalization constant is given by

ξ0 =
∑
n

(
(γ+
n )2 + (γ−n )2

)
. (2.15)

We then construct a new set of mutually orthogonal operators f
(†)
nσ from f

(†)
0σ and a

(†)
nσ,b

(†)
nσ

by a standard tridiagonalization procedure (e.g. Lanczos algorithm) to obtain the desired
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chain Hamiltonian

Hchain = Himp +

√
ξ0

π

∑
σ

[
d†σf0σ + h.c.

]
+

∞∑
σ,n=0

[
εnf

†
nσfnσ + tn

(
f †nσfn+1σ + h.c

)]
, (2.16)

with the operators f
(†)
nσ corresponding to the n-th site of the conduction electron part of

the chain. The parameters of the chain are the on-site energies εn and the hopping matrix
elements tn. For a particle-hole symmetric hybridization function, Γ(ω) = Γ(−ω), the
on-site energies are zero, εn = 0, for all n.
The operators f

(†)
nσ are related to the operators a

(†)
nσ,b

(†)
nσ via an orthogonal trasformation,

whose coefficients as well as the parameters εn, tn can be derived via recursion relations
(for details see [38]). To summarize, we obtain a chain Hamiltonian where the first site
represents the impurity, which is coupled to the first site of the conduction band. All
other sites of the chain represent the bath and couple to their next neighbors via the
hoppings tn.

Figure 2.1: Illustration of NRG steps for SIAM where an impurity (filled circle) couples to
a continuous conduction band via a constant hybridization function; a) the logarithmic dis-
cretization of the band; b) the continuous spectrum is approximated by a single state in each
interval; c) the discrete Hamiltonian is mapped onto a semi-infinite tight-binding chain where
the impurity (first site) couples to the first electron site via the hybridization V; the εn are the
on-site energies and tn the hopping matrix elements. Figure from [38].
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Constant hybridization function

Originally Wilson [59] derived an analytical expressions for the parameters tn in the case
of a constant hybridization function Γ(ω) ≡ Γ = πV 2ρ0.
We then have εn = 0 for all n and the expression for the tn reads

tn =

(
(1 + Λ−1)(1− Λ−n−1)

2
√

1− Λ−2n−1
√

1− Λ−2n−3

)
Λ−

n
2

n�1−→

(
1 + Λ−1

2

)
Λ−

n
2 (2.17)

For non-constant hybridization function Γ(ω), the hoppings tn are numerically deter-
mined. However, due to the logarithmic discretization, the matrix elements fall off expo-
nentially for large n in the general case too,

tn
n�1−→ Λ−

n
2 . (2.18)

This behavior follows directly from the logarithmic coarse graining and is of major con-
ceptual importance for the whole method to work. The NRG mapping procedure for a
constant hybridization function is depicted in Fig. 2.1.

2.3 Iterative diagonalization

The form of the chain Hamiltonian (Eq. (2.16)) allows to define an iterative renormal-
ization group (RG) procedure. We can in fact view the chain Hamiltonian Eq. (2.16) as
a series of Hamiltonians HN (N = 0, 1, 2, . . . ) which approaches the original Hamiltonian
in the N →∞ limit

H = lim
N→∞

Λ−
(N−1)

2 HN (2.19)

with

HN = Λ
(N−1)

2

(
Himp +

√
ξ0

π

∑
σ

(
d†σf0σ + h.c.

)
+

N∑
σ,n=0

εnf
†
nσfnσ +

N−1∑
σ,n=0

tn
(
f †nσfn+1σ + h.c

))
(2.20)

where the factor Λ
(N−1)

2 cancels the N dependence of tN−1, the hopping matrix element
between the last two sites of HN . Such a scaling is useful for the discussion of fixed
points. In fact the iterative RG procedure presented in this section is also used to study
the renormalization group flow of the lowest energy levels, by which one can analyze the
the behavior of the impurity model at different energy scales [13].
The recursion relation between two successive Hamiltonians is

HN+1 =
√

ΛHN + ΛN/2
∑
σ

εN+1f
†
N+1σfN+1σ + ΛN/2

∑
σ

tN
(
f †NσfN+1σ + h.c

)
(2.21)

and the starting point is

H0 = Λ−
1
2

(
Himp +

∑
σ

ε0f
†
0σf0σ +

√
ξ0

π

∑
σ

(
f †0σf0σ + h.c.

)
. (2.22)

This Hamiltonian corresponds to a two-site cluster formed by the impurity and the first
conduction electron site. The recursion relation Eq. (2.21) can be interpreted as a
renormalization group transformation R,

HN+1 = R(HN) (2.23)
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In a standard RG transformation, the Hamiltonians are specified by a set of parameters
~K and the mapping R transforms the Hamiltonian H( ~K) into another Hamiltonian of

the same form H( ~K ′) with a new set of parameters ~K ′. For the HN obtained in the
NRG iterations, a representation in which the Hamiltonian can be specified by a fixed
set of parameters ~K does not exist however. Instead we characterize HN directly by the
many-particle energies EN(r),

HN |r〉N = EN(r) |r〉N r = 1, . . . , Ns (2.24)

with the eigenstates |r〉N and Ns the dimension of HN .
We can then set up an iterative procedure from site N to site N + 1 as follows:

• We assume we have already diagonalized HN as HN |r〉N = EN(r) |r〉N with eigenen-
ergies EN(r) and eigenstates |r〉N . We set the ground state energy to zero and we

rescale the energies EN(r), initially with level spacing of order 1, by Λ
1
2 .

• We add the new Wilson site with basis states |σ〉N+1 of dimension d, which acts as

a perturbation of order 1/
√

Λ. The added site therefore lifts the degenarcy of the
eigenenergies EN(r) and leads to an enlarged basis set |r, σ〉N+1 = |σ〉N+1 ⊗ |r〉N
corresponding to a growth of the Hilber space by a factor d. The new Hamiltonian
HN+1 is then diagonalized, yielding the new eigenenergies EN+1(r) and eigenstates
|r〉N+1. Finally, we set the ground state energy to zero, for convenience.

• Since the Hilbert space grows exponentially with the number of sites of the Wilson
chain, it is not feasible to keep all the eigenstates and eigenenergies during the
iterative procedure. Instead we truncate the state space, keeping only the Nk lowest
lying eigenstates so that the dimension of the Hilbert space is kept constant and the
computation time increases linearly with the length of the chain. As said, adding a
new site can be seen as a perturbation of order 1/

√
Λ. Hence, for sufficiently large Λ

(tipically Λ > 2), the truncation scheme can be motivated arguing that the influence
of high-energy states on the low-energy spectrum is small if the perturbation is
weak compared to the energy of high lying states. We note that a priori there is
no prescription for the number of states Nk one should keep. There is, however,
a quantitative criterion, the so-called discarded weight, to analyze the convergence
for a given NRG calculation, which can be determined from the same NRG run
[55].

• We stop the iterative producedure at the site Nmax, chosen such that all relevant
physics of the actual model is captured by the resolution of the NRG calculation.
At this last site all states are discarded. To summarize, the steps of the iterative
RG procedure are illustrated in Fig. 2.2.

We stop the iterative producedure at the site Nmax, determined as the required energy
resolution for the given physical problem.
Finally, we note that, in the iterative procedure, the new eigenstates |r′〉N+1 are related

to the old eigenstates |r〉N via an unitary trasformation A[N ]

|r′〉N+1 =
∑
σN r

[
A[σN ]

]
rr′
|σN〉 |r〉N . (2.25)
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Figure 2.2: Iterative NRG procedure. a) Energy spectrum EN (r) of Hamiltonian HN . b)
Rescaling of eigenenergies by Λ1/2. c) Diagonalization of the new Hamiltonian HN+1 with
eigenenergies EN+1(r). d) truncation where only the Nk lowest lying states are kept and the
ground state energy is set to zero. Figure from [38]

A[N ] stands for all the d matrices
[
A[σN ]

]
rr′

=
(
〈r|N 〈σN |

)
|r′〉N+1. This formulation of

the unitary transformation has the structure of Matrix Product States (MPS) and, in
fact, it turns out that an implementation of the whole NRG procedure in terms of MPS
is possible and quite powerful [56]. The code in our group relies on the library QSpace
[57], a tensor network library which allows to efficiently exploit both Abelian and Non-
Abelian symmetries within a unified tensor representation for quantum symmetry spaces.
Therefore, for a given model the maximum number of symmetries can be exploited which,
in turn, results in a tremendous gain in numerical efficiency.

Many-body basis and calculation of physical quantities

At each step of the NRG calculations we perform a truncation of the Hilbert space by
retaining only a certain number of states. The resulting eigenstates clearly do not span
the whole Hilbert space. It turns out however that it is possible to construct a complete
set of approximate eigenstates of the full Hamiltonian out of the discarded states [4]. From
this many-body basis we can construct the full density matrix (fdmNRG) and compute
real-frequency dynamical response functions through their spectral representations [58].
The resolution of dynamical correlation functions at finite frequencies can be further
improved via a scheme of adaptive broadening for the discrete data of the NRG run
[42]. By analyzing the sensitivity of discrete data to z-shifts we can deduce whether
some features are physical or due to numerical artifacts. In particular the resolution
enhancement is more significant for multiband calculations as we perform in this thesis.

2.3.1 Interleaved NRG

The main drawback of NRG is the poor scaling in multiband models. When we deal with
m distinct flavors we have m Wilson chains, which leads to an exponential growth of the
computational cost. In fact at each step of the NRG run we need to diagonalize a Hilbert
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space of size Ntot = Nk × dloc. Here Nk is the number of kept states which, for converged
NRG calculations, scales exponentially with the number of flavors, Nk ≡ N

(m)
k [23]. On

the other hand the dimension of the newly added site dloc also scales exponentially with
m. The final result reads

Ntot = N
(m)
k × dmf (2.26)

where df is the state space dimension of a single flavor. In pratice, this scaling imposes
severe limitations on the applicability of NRG to multiband systems.
However a different startegy which takes use of a modified discretization has been pro-
posed [3]. This “interleaved” NRG (iNRG) method introduces slightly different discretiza-
tion schemes for the conduction bands of m different electronic flavors such that we obtain
m inequivalent Wilson chains, which are interleaved to form a single generalized Wilson
chain (m times longer than the standard Wilson chain, Fig. 2.3). It is important to point
out that this inteleaved chain still has the exponential energy-scale separation property.
Instead of performing the diagonalization for the entire “shell” of m flavors, in iNRG the
diagonalization and truncation step is done separately after the addition of each electron
flavor. This leads to a reduction of the local space from dloc = dmf to d iNRGloc = df , which
in turn dramatically reduces numerical costs [23]. However we note that iNRG artificially
introduces energy-scale separation between flavors connected by symmetries in the bare
model and hence weakly breaks SU(N) channel symmetry, if present. Nevertheless, iNRG
is comparable to standard NRG for high-symmetry models and, more importantly, it is
a viable option to study low-symmetry models, inaccessible to standard NRG.

Figure 2.3: Illustration for a spinful single-band model, m = 2. (a) Standard Wilson chain
(sNRG). (b) Interleaved Wilson chain (iNRG). In sNRG, subsites for spin-up (red) and spin-
down (blue) form supersites n (dashed boxes). In iNRG the subsites are interleaved in linear
fashion and labelled by ñ . Figure from [23].
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Chapter 3

Three-band model and Spin-Orbit
coupling

A large class of materials with partially filled d-shells are characterized by strong cor-
relations, for which single-particle descriptions fail to describe, even qualitatively, their
physical properties due to the strong interactions between electrons. Among these materi-
als, the physics of early transition metal oxides (TMOs) can be captured by a three-band
model, which is adopted in this thesis. To see why we can describe these d-orbital com-
pounds (the d orbitals are actually five) with a model with just three orbitals, let’s look
at how the atomic orbital structure changes when an isolated atom is embedded in a
solid. Let us recall that the atomic d-shell for an isolated atom consists of five orbitals,
as Fig. 3.1 illustrates.

Figure 3.1: Illustration of the five d orbitals: 3z2 − r2, x2 − y2, xz, yz and xy. Note that the
former two orbitals are aligned along the coordinates axes, while the latter three are not. Figure
from [51].

These five orbitals are formed by linear combinations of the spherical harmonics Y m
l ,

with orbital angular momentum l = 2 and magnetic quantum number m = −l, . . . , l,
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namely
d3z2−r2 = Y 0

2

dx2−y2 =
1√
2

(
Y 2

2 + Y −2
2

)
dxz = − 1

i
√

2

(
Y 1

2 − Y −1
2

)
dyz = − 1

i
√

2

(
Y 1

2 + Y −1
2

)
dxy =

1

i
√

2

(
Y 2

2 − Y −2
2

)
(3.1)

In free space, a transition metal ion has full rotational symmetry SO(3) and the five
orbital are degenerate, but when placed in a crystal the degeneracy is partly lifted due
to the crystal environment [43]. Frequently, metallic ions in crystals are embedded in
a regular octahedral cage, surrounded by ligands (oxygen for TMOs). The full rotation
symmetry is then reduced to the symmetry group of the octahedron, SO(3)→ Oh, which
consists of all the rotations which take the octahedron into itself. The five-fold degeneracy
is lifted into a higher-lying two-fold degenerate eg and a lower-lying three-fold degenerate
t2g manifolds, with an energy difference ∆, called crystal field splitting, see left Fig. 3.2a.

(a) (b)

Figure 3.2: In figure (a), the cubic crystal environment lowers the symmetry of the system from
full SO(3) to octahedral symmetry Oh and splits the d-levels into a lower-lying triply degenerate
t2g and higher-lying doubly degenerate eg manifolds, with an energy difference ∆, called crystal
field splitting. In figure (b), the charge distributions of d-orbitals in an octahedral cage and the
ensuing splitting in eg and t2g states. Figures from [50].

If one approximates the oxigen’s ligands as point charges lying on the corners of the
octahedral cage, it is seen that the t2g d charge distributions point in between the oxygens
at the corners while the eg orbitals (levels) point toward them. The latter therefore are
more repelled and their energy is higher than the t2g levels, Fig. 3.2b. The labels t2g and eg
are terms from molecular symmetry theory, refering to symmetry classes to which the d-
orbitals belong in octahedral complexes. In particular, the t stands for triply degenerate,
while the e for doubly degenerate. The number 2 in t2g represents a certain symmetry
species and the subscript g indicates that the orbitals wavefunctions do not change sign
under inversion about the centre of symmetry (from the German gerade, which means
‘even’).
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For early TMOs (e.g. molybdates, cromates, ruthenates) with filling up to six electrons,
the relevant levels are the t2g orbitals. Thus a three-band model can be introduced [2].
Since the d-orbitals are well-localized and the Coulomb potential heavily screened, the
t2g physics can be described by a Hubbard-Kanamori Hamiltonian [20].

3.1 Three-band model

The Hubbard-Kanamori atomic Hamiltonian [20] for the t2g states reads (skipping hats
for operators and ~ = kB = 1 throughout)

HK = U
∑
m

nm↑nm↓ + U ′
∑
m6=m′

nm↑nm↓ + (U ′ − J)
∑

m<m′,σ

nmσnm′σ+

− J
∑
m6=m′

d†m↑dm↓d
†
m′↓dm′↑ + J

∑
m6=m′

d†m↑d
†
m↓dm′↓dm′↑ ,

(3.2)

where d†mσ creates an electron in orbital m ∈ {xz, yz, xy} with spin σ ∈ {↑, ↓} and nmσ
is the number operator.
The first three terms are density-density interactions. The first one (U) describes the
interaction between electrons with opposite spins in the same orbital, the second (U ′ < U)
describes opposite spins in different orbitals and the third (U ′−J) the interaction between
electrons with parallel spins in different orbitals. The latter coupling (U ′ − J) is the
smallest coupling, although positive, and reflects Hund’s first rule as we will see later.
The last two terms represent, respectively, the flipping of spins in two different orbitals
and the hopping of two electrons from one orbital to another. Since the wave functions of
t2g states can be chosen real-valued, the Coulomb integrals for these two terms are equal
and hence described by the same coupling J .
In order to determine the symmetries of Eq. (3.2) we consider a more general Kanamori
Hamiltonian [2] where all the couplings are independent,

HGK = U
∑
m

nm↑nm↓ + U ′
∑
m 6=m′

nm↑nm↓ + (U ′ − J)
∑

m<m′,σ

nmσnm′σ+

− JSF
∑
m 6=m′

d†m↑dm↓d
†
m′↓dm′↑ + JP

∑
m 6=m′

d†m↑d
†
m↓dm′↓dm′↑ ,

(3.3)

where JSF , JP are, respectively, the spin-flip and the pair-hopping couplings. This gen-
eralized Hamiltonian holds for an arbitrary number of orbitals
One can express Eq. (3.3) in a convenient way in terms of the total charge, the total spin
and the total orbital isospin operators

N =
∑
mσ

nmσ ,

S =
1

2

∑
mσσ′

d†mστσσ′dmσ′ ,

Lm = i
∑
m′m′′σ

εmm′m′′ d
†
m′σdm′′σ ,

(3.4)
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where τ are the Pauli matrices and εmm′m′′ the Levi-Civita symbol. Introducing these
operators, Eq. (3.3) reads

HGK =
(3U ′ − U)N(N − 1)

4
+ (U ′ − U)S2 +

(U ′ − U + J)

2
L2 +

7U − 7U ′ − 4J

4
N+

+ (U ′ − U + J + JP )
∑
m 6=m′

d†m↑d
†
m↓dm′↓dm′↑ + (J − JSP )

∑
m6=m′

d†m↑dm↓d
†
m′↓dm′↑ ,

(3.5)
where the last two terms do not commute with L, [HGK ,L] 6= 0. For the system to
be rotationally invariant, so that L is conserved, we need to impose some conditions on
the parameters. For real-valued t2g states the relation JSP = JP = J holds and we can
achieve rotational invariance if we set

U ′ = U − 2J . (3.6)

The local t2g Hamiltonian is then given by

H
t2g
local = (U − 3J)

N(N − 1)

2
− 2JS2 − J

2
L2 +

5

2
JN . (3.7)

In virtue of the following commutation relations [H
t2g
local, N ] = [H

t2g
local,S] = [H

t2g
local,L] = 0,

the Hamiltonian H
t2g
local has U(1)charge ⊗ SU(2)spin ⊗ SO(3)orbital symmetry. The first

term describes the Coulomb repulsion depending on the total charge on site. The second
term implements Hund’s first rule which maximizes the total spin S. The third term
implements Hund’s second rule which maximizes L for a given S. The last term is
proportional to N and can be absorbed in the chemical potential term. In the next
subsection Hund’s rules will be briefly reviewed.

3.1.1 Hund’s rules

In atomic physics, Hund’s rules are a set of three empirical rules used to determine the
electronic configuration of the ground-state for multielectron atoms. These rules simply
derive from the minimization of Coulomb repulsion between electrons and can be stated
as follows:

1. One should first maximize the total spin S, hence favoring the alignment of spins
in different orbitals.

2. Given S, one should maximize the total orbital angular momentum L.

3. For less than half-filled subshells, one finds the ground-state configuration by se-
lecting the multiplet with total angular momentum J = |L− S|, whereas for more
than half-filled, J = L+ S.

Within the ground-state multiplet we can find the electronic configuration that sat-
isfies the first two rules by using the bus-seat rule: fill spin-up electrons in the empty
orbitals in decreasing order of ml = l, l − 1, . . . ,−l. When all the orbitals are singly
occupied, fill in the remaining spin-down electrons to create doubly occupied orbitals,
following the same decreasing order of ml. The values of S and L depend on the number
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of electrons n in the open subshells,

n ≤ 2l + 1 : S =
n

2
, L = (l + 1)n− n(n+ 1)

2

n > 2l + 1 : S = (2l + 1)− n

2
, L = (l + 1)(n− (2l + 1))− (n− (2l + 1))(n− 2l)

2
.

(3.8)
At this point depending on the filling the third rule determines the ground-state. This

latter rule reflects the spin-orbit coupling, which is assumed to be a small perturbation
in the formulation of Hund’s rules. We will discuss it in more detail in Sec. 3.3.
Although the Hund’s rules were formulated for free ions with spherically symmetric po-
tential, they also play an important role in solid-state physics through the coupling J , as
it can be seen in the t2g Hamiltonian (3.7).

3.2 Hund metals

Many correlated materials have been described in relation to the Mott state [29]. From
this perspective, the strong-correlated metallic states arise due to the proximity of the
Mott state, which is an insulating state where the electrons are localized by the strong
Coulomb repulsion and reduced bandwidth. This state is intrinsically different from
the conventional band insulator where the highest occupied band is completely filled
and the Pauli principle blocks any charge fluctuations. In a Mott state the electrons
become localized as the interaction strength U is equal or larger than a certain critical
value Uc and double occupancies cost too much energy to be realized. In proximity of
the critical value Uc, one can restore charge fluctuations by doping the insulating Mott
phase with charge carriers and thus generate a strongly correlated metallic state, in
which the charge fluctuations are heavily reduced, yet present. On the other hand, many
multiorbital materials such as molybdates, ruthenates, iron pnictides/chalcogenides show
clear signatures of strong correlations, e.g low coherence scale and small quasiparticle
weight, despite being far from the Mott state[2]. It turns out that in this class of correlated
but itinerant systems, the correlations are driven by the Hund interaction rather than
Coulomb repulsion, leading to different physical properties from doped Mott insulators.
Such materials are called “Hund metals” [61]. The relation of the Hund coupling J and
Mott transition is double-faced: on the one hand, for a non-half-filled shell, J reduces
the effective Coulomb repulsion U , driving the system away from the Mott transition.
On the other hand, J suppresses the quasiparticle coherence scale, thus reducing the
quasiparticle weight Z and making the metallic states more correlated, Fig. 3.3.

Another remarkable property of Hund metals is the so-called spin-orbital separation
[49], which, not being present in Mott strongly-correlated materials [7], distinguishes Mott
and Hund physics. This phenomenon refers to the screenings of spin and orbital degrees
of freedom and the different energy scales at which they occur, see Fig. 3.4. In fact, in
presence of Hund coupling the orbital degrees of freedom are screened at much higher
energies than the spin degrees of freedom, while this separation is not present in the case
J = 0 [49]. This separation is enhanced with increasing Hund coupling and thus the
crossover from the incoherent metallic state to the coherent Fermi-liquid state, which is
marked by the screening of spin fluctuations, is pushed to lower energies. The incoherent
regime that opens up in between the two screenings is characterized by Non-Fermi-liquid
features such as fractional power laws for the imaginary parts of the self-energy and of
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Figure 3.3: Color intensity map showing the degree of correlation for the three-band Hubbard-
Kanamori model for t2g orbitals. The DMFT calculations have used the realistic density of
states shown on the lower left inset. The map shows the quasiparticle weight Z (color intensity)
in a diagram U/D versus the filling n. The value of J is taken as J = (0.15)U . The grey X
marks show the values of Uc in the case J = 0. The white arrows describe the evolution of
the critica values Uc once the Hund’s coupling is present. Except for half filling, J increases
the critical values for the Mott transition. Some materials are also placed on the diagram as
examples. Figure from [2].

susceptibilities on a real frequency axis [49, 54]. Moreover, the effects related to Hund
physics are more pronounced one electron away from half-filling [10], that is two and four
electrons for the three-band model. In order to analyze the effects of spin-orbit coupling
on Hund physics, the focus of this thesis is on a filling of two electrons per site.

3.3 Spin-orbit coupling

The spin-orbit coupling is a relativistic correction that one obtains from the Dirac equa-
tion by considering the terms of order O(v

2

c2
) [46, Chapter 9]. It is one of the so-called

fine-structure terms, which further split the energetic spectra of atoms. Heuristically, this
effect can be understood as the interaction of the spin of the electron with the magnetic
field generated by the motion of the nucleus around it (in the electron rest frame). From
the Lorentz force law, the magnetic field experienced by an electron is then (in CGS)

B = −v× E

c
, (3.9)

where v is the velocity of the nucleus in the co-moving electron frame and E is the electric
field of the nucleus, which is generated by the central potential Φ(r) as

E = −r

r

dΦ(r)

dr
. (3.10)
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Figure 3.4: NRG calculation illustrating spin-orbital separation by plotting the imaginary parts
of spin (solid line) and orbital (dashed line) susceptibilities on a real-frequency logarithmic scale.
The onset of the screening process for spin and orbital degrees of freedom occur at different
energy scales (marked by vertical lines). After the degrees of freedom are quenched, a Fermi-
liquid linear behavior is found, χ′′ ∝ ω. Parameters used: U = 6, J = 1, T = 10−8, nd = 2,
Γ = 1, D = 1. Figure from [49].

Then the interaction energy between the spin magnetic moment of the electron and the
magnetic field is given by (~ ≡ 1)

− µ ·B = g
e

2mc
s ·B (3.11)

where g ≈ 2 is the electron g-factor.
Using (3.9) and (3.10), the interaction energy becomes

− e

mc2
s · (v× E) =

e

m2c2r

dΦ(r)

dr
s · (p× r)

= − e

m2c2r

dΦ(r)

dr
s · l = λ l · s .

(3.12)

This result must be multiplied by a factor of 1/2, due to the Thomas precession, since
the rest frame of the electron is not inertial.
By inserting the average of the radial part 1

r
dΦ(r)
dr

, one finds that λ > 0 and λ ∝ Z4, with
Z atomic number. Hence the effects of this spin-orbit coupling (SOC) become especially
relevant in heavier atoms, while they are often neglected for light elements.
In a multielectronic atom the total SOC is given by the sum of the one-particle terms,

HSOC = λ
∑
i

li · si , (3.13)

where the index i runs over all the electrons of the open subshells.
Going back to the Hund’s rules, these are formulated assuming that the part of the
Coulomb interaction depending on L and S is much larger than the spin-orbit coupling.
In this case, L and S are still good quantum numbers and the SOC is a small perturbation
that shifts the energy levels within the (L, S) multiplet determined by the first two Hund’s
rules. This scheme is called LS coupling or Russel-Saunders coupling, and is well-realized
in light atoms.
In order to calculate the first-order energy correction of (3.13), one averages this operator
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with respect to the unperturbed states within the (L, S) multiplet to obtain the operator
HLS. From considerations of symmetry, it is clear that the mean values of si are directed
along the total spin S and li along L, so that HLS has the following form

HLS = AL · S , (3.14)

where A is a constant characterising the unsplit term, i.e. depending on L and S.
To determine the energy of the splitting of a degenerate state within the ground-state
multiplet (L, S) the eigenvalues of the operator (3.14) are to be calculated. This can be
easily done by realizing that in zero approximation the wavefunctions with definite total
angular momentum J diagonalize HLS and using the formula

L · S =
1

2
[J(J + 1)− L(L+ 1)− S(S + 1)] . (3.15)

Within the multiplet the values of L and S are the same for all the states. Therefore
the value of the SOC term depends on J and the sign of A such that the energy of the
multiplet splitting can be written as

1

2
AJ(J + 1) . (3.16)

It follows that for A > 0 the lowest component of the multiplet has J = |L − S|, since
it minimizes (3.16). In such case the multiplet is said to be normal. Whereas for A < 0
the lowest component has J = L+ S. Such multiplets are called inverted.
It has to be determined yet whether A is positive or negative. We note that λ is positive
and independent of the magnetic quantum number ml. Therefore, if the open subshell
is at most half-filled, the spins are parallel according to Hund’s first rule, i.e. si = S/n,
with n number of electrons. The SOC Hamiltonian (3.13) can then be written as

HSOC = λ
∑
i

li · si = λ
∑
i

li ·
S

n
∼ 1

n
λL · S (3.17)

from which

A =
λ

n
=

λ

2S
> 0 . (3.18)

For a shell which is more than half-filled, we can imagine to start off with the filled
shell, for which HSOC = 0, and then add holes to obtain the original electronic config-
uration. So, we can write the SOC operator as −λ

∑
i li · si where the sum is over the

holes. In this case, we have S = −
∑

i si and L = −
∑

i li and by the same argument as
before it follows A = −λ/2S < 0.

We then find that for less than half-filled shells the most favorable value of J is |L−S|,
whereas for more than half-filled shells is L + S. For a half-filled shell of orbitals with
angular momentum l, one has L = 0 and S = (2l + 1)/2, and so |L − S| = L + S = S.
This shows that Hund’s third rule originates from the SOC term. We underline that the
scheme of construction of the Hund’s rules is based on the assumption that L and S are
good quantum numbers and given by the combination of the orbital angular momenta
and the spins of the electrons, respectively. This corresponds to the case in which the
SOC is much smaller than the L and S dependent part of the Coulomb energy. If it
is not the case (e.g. heavier atoms) the LS coupling approximation can not be applied,
although the classification of the lowest states based on this scheme (using L and S)
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can still remain meaningful. If the SOC is larger than the L and S dependent part of
the Coulomb interaction, each electron is characterized by its total angular momentum
j, which are combined to give total angular momentum J , i.e. J =

∑
i ji (rather than

J = L + S as in LS coupling). This scheme for arranging the atomic levels is called jj-
coupling. Although this scheme can be used to a good approximation in heavy elements
where the SOC is comparable to the Coulomb energy, in practice it is never realized in
its pure form and various types of intermediate couplings between LS and jj are used to
describe the atomic levels of heavy atoms.

For one electron with spin s = 1/2 in an orbital with angular momentum l the total
angular momentum j takes on the values j = l ± 1/2 and the eigenenergies of the one-
particle SOC term λ l · s are

λ

2

(
j(j + 1)− l(l + 1)− 3

4

)
= λ

{
l/2 , j = l + 1

2

−(l + 1) , j = l − 1
2

. (3.19)

The corresponding eigenfunctions |j,mj, l〉 can be found by using the highest weight
construction from the one-particle states |l,ml,ms =↑, ↓〉 (s = 1/2 implied). For example,
for j = l + 1/2 the highest weight state has mj = l + 1/2 and can be constructed as
|l + 1/2, l + 1/2, l〉 = |l, l, ↑〉. To find the other states with the same j but different
mj we apply the lowering operator j− = l− + s− to the highest weight state and then
normalize. Applying repeatedly the lowering operator, all the states with j = l + 1/2
are found. The states for j = l + 1/2 can be constructed imposing orthogonality to the
previously found states. One can write all the states in a compact form [47][Chapter 10]
as follows

|j = l +
1

2
,mj, l〉 =

√
l +mj + 1/2

2l + 1
|l,mj −

1

2
, ↑〉+

√
l −mj + 1/2

2l + 1
|l,mj +

1

2
, ↓〉 ,

(3.20)
with mj = l + 1/2, . . . ,−(l + 1/2). And, for j = l − 1/2,

|l − 1

2
,mj, l〉 = −

√
l −mj + 1/2

2l + 1
|l,mj −

1

2
, ↑〉+

√
l +mj + 1/2

2l + 1
|l,mj +

1

2
, ↓〉 , (3.21)

with mj = l − 1/2, . . . ,−(l − 1/2). So far we have seen the main aspects of the SOC
physics in atoms. The question that naturally arises at this point is the following: what
happens when the atom is embedded in a crystal environment?

3.3.1 SOC in d-systems

We have seen that in a typical crystal environment of TMOs the metallic ion is at the
center of an octahedral cage where the ligands, i.e. oxygen atoms, produce a crystal field
that splits the d-orbitals in two eg and three t2g bands. Assuming a large crystal field,
for a filling less or equal to six electrons, we can describe the low-energy physics of the
system considering only the three t2g bands. However, the SOC couples the spin and the
orbital degrees of freedom and generally mixes the eg and t2g states such that, for large
enough SOC, the mixing may have non-negligible effects and the full five-band model is
more appropriate.
First, let’s write the matrix elements of the orbital angular momentum for a single electron
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with l = 2 in the basis of eg and t2g states (3.1), {dyz, dxz, dxy, d3z2−r2 , dx2−y2}, and in the
atomic p-orbitals basis {px, py, pz},

lx =


0 0 0 −

√
3i −i

0 0 i 0 0

0 −i 0 0 0√
3i 0 0 0 0

i 0 0 0 0

 , lpx =

0 0 0

0 0 −i
0 i 0

 (3.22)

ly =


0 0 −i 0 0

0 0 0
√

3i −i
i 0 0 0 0

0 −
√

3i 0 0 0

0 i 0 0 0

 , lpy =

 0 0 i

0 0 0

−i 0 0

 (3.23)

lz =


0 i 0 0 0

−i 0 0 0 0

0 0 0 0 2i

0 0 0 0 0

0 0 −2i 0 0

 , lpz =

0 −i 0

i 0 0

0 0 0

 . (3.24)

Note that all the matrix elements in the eg states are zero, meaning that the orbital
angular momentum is completely quenched. It follows that the eg states are not affected
by the SOC. By comparing the matrix elements in the t2g states with those in the p
states, the following relation holds

lt2g = −lp , (3.25)

which means that the orbital angular momentum is partially quenched in the t2g states
from l = 2 to l = 1. Then we can calculate the expectation value of l2 = l2x+l2y+l2z , l(l+1),
using l = 1 with an extra minus sign. This correspondence is called T -P equivalence [43,
Chapter 7]. When the cubic crystal splitting is large, one can neglect the off-diagonal
elements connecting the eg and t2g states and the T -P equivalence can be conveniently
used. The one-particle SOC operator Hλ can be diagonalized as follows

Hλ = λ lt2g · s = −λ lp · s = −λ
(

j2
eff − l2p − s2

)
, (3.26)

where with l = 1 and s = 1/2, we have j = 1/2 or j = 3/2, with degeneracy 2 and 4,
respectively. Thus the eigenvalues of the SOC operator are

〈Hλ〉 =

{
λ , j = 1

2

−λ
2
, j = 3

2

. (3.27)

In the j-basis the noninteracting electronic structure consists of two degenerate j = 1/2
bands and four degenerate j = 3/2 bands, lower in energy, with a spin-orbit energy
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splitting of 3
2
λ. Note that the band structure is the opposite of that one would obtain

for the atomic p-orbitals, due to the T -P equivalence. With the SOC the t2g states are
split into the j-bands, whose eigenstates in terms of t2g wavefunctions, including spin,
are given by

|j = 1/2,mj = 1/2〉 =
1√
3
|dyz↓〉+

i√
3
|dxz↓〉+

1√
3
|dxy↑〉 (3.28)

|1/2,−1/2〉 =
1√
3
|dyz↑〉 −

i√
3
|dxz↑〉 −

1√
3
|dxy↓〉 (3.29)

|3/2, 3/2〉 = − 1√
2
|dyz↑〉 −

i√
2
|dxz↑〉 (3.30)

|3/2,−3/2〉 =
1√
2
|dyz↓〉 −

i√
2
|dxz↓〉 (3.31)

|3/2, 1/2〉 = − 1√
6
|dyz↓〉 −

i√
6
|dxz↓〉+

√
2

3
|dxy↑〉 (3.32)

|3/2, 1/2〉 =
1√
6
|dyz↑〉 −

i√
6
|dxz↑〉+

√
2

3
|dxy↓〉 , (3.33)

where it is seen how the SOC mixes states of the cubic basis with different spin and
angular momenta .

In general, these eigenfunctions diagonalize the full Hamiltonian of the one-electron
states that neglects the part of the SOC operator mixing the t2g−eg subspaces. If one also
considers the mixing term as a small perturbation [50], it is found that the j = 3/2 and
eg states are mixed. To the first order the wavefunctions of j = 3/2 states are modified
as

|3/2,±3/2〉 ± i
√

3

2

λ

λ/2 + ∆
|d3z2−r2 ,∓1/2〉 (3.34)

|3/2,±1/2〉 ± i
√

3

2

λ

λ/2 + ∆
|dx2−y2 ,±1/2〉 , (3.35)

with a second-order energy shift of −3
2

λ2

λ/2+∆
. The ∆ is the crystal field splitting between

t2g and eg levels.
The eg states are modified as

|d3z2−r2 ,∓1/2〉 ± i
√

3

2

λ

λ/2 + ∆
|3/2,±3/2〉 (3.36)

|dx2−y2 ,±1/2〉 ± i
√

3

2

λ

λ/2 + ∆
|3/2,±1/2〉 , (3.37)

with a second-order energy shift of +3
2

λ2

λ/2+∆
. Therefore we need to be careful in applying

results from the three-band model to real materials. For example, typical values for 5d

systems are λ = 0.5eV and ∆ = 3eV and the mixing is
√

3
2

λ
λ/2+∆

≈ 0.19, a 20% effect.

However, assuming a crystal field large enough with respect to the SOC, we can
conveniently use the three-band model and the T -P equivalence. In the cubic t2g basis,
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the second quantized SOC Hamiltonian reads

HSOC = −λ
∑
mm′
σσ′

〈m|lp|m′〉 · 〈σ|s|σ′〉 c†mσcm′σ′ (3.38)

=
iλ

2

∑
mm′m′′
σσ′

εmm′m′′ τ
m′′

σσ′ c
†
mσcm′σ′ , (3.39)

where c†mσ creates an electron of spin σ ∈ {↑↓} in the orbital m ∈ {xy, xz, yz}, τm′′σσ′ are
the matrix elements of the Pauli matrices and the matrix elements of the components of
lp are given by 〈m|lkp|m′〉 = −iεkmm′ . Note that the HSOC is totally off-diagonal in the
cubic t2g basis. We can also split the SOC operator as HSOC = Hz

SOC +Hxy
SOC ,

Hz
SOC =

λ

2

l∑
m=−l

m (d†m↑dm↑ − d
†
m↓dm↓) (3.40)

Hxy
SOC =

λ

2

l−1∑
m=−l

√
(l −m)(l +m+ 1) (d†m+1↓dm↑ + d†m↑dm+1↓) . (3.41)

Under the particle-hole transformation, hmσ → d†mσ and h†mσ → dmσ these two compo-
nents change sign, so that a site occupied by two electrons and SOC λ is equivalent to
a site occupied by four electrons (two holes) and SOC −λ. Therefore the case with four
electrons can be taken into account by changing the sign of λ for a filling of two electrons.

The full Hamiltonian under study can be thus written as

H =
∑
i

(
Hint

)
i
+
∑
i

(
HSOC

)
i
− µ

∑
i

Ni +
∑

〈ij〉mm′σ

(tδmm′)c
†
imσcjm′σ (3.42)

where the interacting term is(
Hint

)
i

= (U − 3J)
Ni(Ni − 1)

2
− 2JS2

i −
J

2
L2
i . (3.43)

The index i runs over the lattice sites, µ is the chemical potential and the nearest-neighbor
hopping tδmm′ is taken site-independent and orbital-diagonal. The remaining operators
have the usual meaning, with an extra lattice index i.
Let’s determine the symmetries of the local part of the Hamiltonian,

Hlocal =
(
Hint

)
i
+
(
HSOC

)
i
− µNi . (3.44)

Due to the SOC term, Li and Si are not conserved, i.e. [HSOC ,Li 6= 0] and [HSOC ,Si] 6= 0.
However, the j-basis diagonalizes the HSOC and the total angular momentum J =

∑
j jj,

where jj is the one-particle total angular momentum. It thus follows that [HSOC ,Ji] = 0,
as well as [Hint,Ji] = 0. Further, Hlocal does not change the particle number. There-
fore, the local Hamiltonian Hlocal has U(1)charge ⊗ SU(2)totalJ symmetry, expressing the
conservation of the charge and the total angular momentum.

We can rewrite the interacting Hamiltonian in the j-basis [26, 52] and split it into a
pure j1/2 part, a pure j3/2 part and a part mixing them,

Hint = Hj1/2 +Hj3/2 +Hmix (3.45)
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where

Hj1/2 =
(
U − 4

3
JH
)
nj= 1

2
,mj= 1

2
nj= 1

2
,mj=− 1

2
(3.46)

Hj3/2 = (U − JH)
(
n 3

2
, 3
2
n 3

2
,− 3

2
+ n 3

2
, 1
2
n 3

2
,− 1

2

)
+
(
U − 7

3
JH
)(
n 3

2
,− 3

2
n 3

2
,− 1

2
+ n 3

2
, 3
2
n 3

2
, 1
2

)
+
(
U − 7

3
JH
)(
n 3

2
,− 3

2
n 3

2
, 1
2

+ n 3
2
, 3
2
n 3

2
,− 1

2

)
+

4

3
JH d

†
3
2
,− 3

2

d†3
2
, 3
2

d 3
2
,− 1

2
d 3

2
, 1
2

+
4

3
JH d

†
3
2
,− 1

2

d†3
2
, 1
2

d 3
2
,− 3

2
d 3

2
, 3
2
,

(3.47)

and the density-density part of Hmix is

Hmix,dd =
(
U − 5

3
JH
)(
n 1

2
,− 1

2
n 3

2
, 3
2

+ n 1
2
,− 1

2
n 3

2
,− 3

2

)
+ (U − 2JH)

(
n 1

2
, 1
2
n 3

2
, 1
2

+ n 1
2
,− 1

2
n 3

2
,− 1

2

)
+
(
U − 7

3
JH
)(
n 1

2
, 1
2
n 3

2
,− 1

2
+ n 1

2
,− 1

2
n 3

2
, 1
2

)
+
(
U − 8

3
JH
)(
n 1

2
, 1
2
n 3

2
,− 3

2
+ n 1

2
,− 1

2
n 3

2
, 3
2

)
.

(3.48)

The Hmix contains 30 more terms, besides the four density-density terms shown here. The
operator d†j,mj

creates a particle with mj in the band j. We see that Hj1/2 has the form of

a one-band Hubbard Hamiltonian with effective interaction U − 4
3
JH . If one assigns |mj|

as orbital index and the sign of mj as the spin, the Hj3/2 can be interpreted as a two-band
Kanamori Hamiltonian with different prefactors. Interestingly, there is only one coupling
for interorbital interactions, U − 7

3
JH , instead of two, U − 2JH and U − 3JH , for the

Kanamori Hamiltonian in the cubic basis, see 3.2. Note that we stick to the rotationally
invariant condition, U ′ = U − 2JH , also for crystals, although it holds exacly for atomic
systems only. The last two terms of Hj3/2 can be interpreted as pair-hopping terms with

effective strength of 4
3
JH .
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Chapter 4

Results

Let’s set the ground for the results obtained in this thesis recalling the central points
of the discussion from the previous chapters. We focus on a Hubbard-Kanamori three-
band model plus spin-orbit coupling (SOC), Sec. 3.3.1, described by the following local
Hamiltonian

Hlocal = Hint +HSOC − µN (4.1)

with

Hint [c†mσ] =
(

(U − 3JH)
N(N + 1)

2
− 2JHS2 − JH

2
L2
)

(4.2)

where c†mσ creates an electron of spin σ ∈ {↑↓} in the orbital m ∈ {xy, xz, yz}, µ is the
chemical potential, N the particle number operator, S the total spin operator and L the
total orbital angular momentum operator. The SOC term in second quantization reads

HSOC = λ
∑

mm′σσ′

〈m|lt2g |m′〉 · 〈σ|s|σ′〉 c†mσcm′σ′

=
iλ

2

∑
mm′m′′
σσ′

εmm′m′′ τ
m′′

σσ′ c
†
mσcm′σ′ ,

(4.3)

where τm
′′

σσ′ are the matrix elements of the Pauli matrices and εmm′m′′ is the Levi-Civita
symbol.
Within single-site DMFT, the full lattice Hamiltonian is mapped self-consistently onto a
three-band Anderson-Hund model (3AHM),

H = Hint +HSOC + εdN +
∑
kmσ

(
εk b
†
kmσbkmσ + Vk

(
d†mσbkmσ + h.c.

))
, (4.4)

where d†mσ creates an electron of spin σ in the orbital m with energy εd = −µ at the
impurity and b†kmσ are the corresponding creation operators for the noninteracting three-
band bath. The interacting part Hint is the same as in the local lattice Hamiltonian
(4.2). The hybridization is assumed orbital-diagonal and with the same value for all the
bands. Further, the three noninteracting baths are taken to have the same bandwidth
2D. We set the half-bandwidth D = 1 as energy unit for all the calculations. So far
we have recalled the model in the cubic t2g basis, although the noninteracting part of
the Hamiltonian is not diagonal due to the SOC term, which is fully non-diagonal in the
cubic basis. An alternative way is to work in the j-basis that diagonalizes HSOC . In
this basis the noninteracting part and the hybridization function are diagonal (the j1/2
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and j3/2 states do not mix, being separated in energy). It follows that the self-energy
is diagonal as well. In case of sizable SOC this basis has to be used since L and S are
not conserved (this corresponds to work in the jj-coupling regime). We recall that the
jj-coupling regime corresponds to the case in which the SOC is larger compared to the
part of Coulomb energy depending on L and S, which in our model is −2JHS2

i − JH
2

L2
i .

Therefore, the SOC is to be compared with the Hund coupling JH and for SOC ∼ JH
the jj-coupling regime can be approximately adopted. This basis is used all calculations,
in which we focus on the paramagnetic phase at zero temperature T = 0, and analyze
what effects the SOC has on the physics of the model.

4.1 NRG results

First, we perform NRG calculations without DMFT self-consistency. We use a flat hy-
bridization function Γ(ω) = Γ Φ(D − |ω|) for all bands, with half-bandwidth D = 1 as
energy unit, and a chemical potential µ so to obtain a filling of 〈N〉 = n = 2 at the
impurity. We exploit the U(1)ch ⊗ SU(2)J symmetry of the model, i.e. conservation of
charge and total angular momentum, to reduce the numerical overhead. In all the calcu-
lations we use a discretization parameter Λ = 4 and Nz = 2 shifts of the discretization
grid. Further, we employ an iNRG procedure (Sec. 2.3.1) for numerical efficiency, in-
terleaving the j = 1/2 and j = 3/2 bands with 2 different permutations of the iNRG
sub-channels. This interleaving scheme does not break any symmetry since the bands
are already separated in energy. In the diagonalization we keep 9000 multiplets, corre-
sponding roughly to ∼ 45000 kept states. We analyze the paramagnetic phase at zero
temperature (T = 10−10) and for all the calculations we adopt the set of parameter
U/D = 3.2, JH/D = 0.4,Γ ·D = 0.05, D = 1, relevant to Hund physics [16].

We start analyzing the impurity spectral functions of the j-bands for positive values
of λ/D, see Fig. 4.1. We first look at the Hubbard bands, emerging from incoherent
atomic-like excitations. We see that the SOC has no sizable effect for the value 10−6, for
which the j-bands are still degenerate. As we increase the SOC to 10−4, the j-bands are
already clearly resolved. The spectral weight is transferred to negative energies for the
j3/2 states and to positive energies for the j1/2 states, as the changes in the magnitudes of
lower and upper Hubbard bands show. The spectral weight transfer reflects the orbital
structure in the j-basis, with two degenerate j1/2 bands and four degenerate j3/2 bands
lower in energy. As we increase the SOC, the j3/2 states are pushed even more to negative
energies, reflecting the fact that the energy difference between the bands is larger and the
j3/2 states have a higher occupancy (at T = 0 the occupancy is nj =

∫ 0

−∞ dωA(ω)), while
the broad upper Hubbard band contains excitations to different multiplets of the half-filled
impurity. On the other hand, the j1/2 states become emptied out with increasing SOC,
as we see from the low spectral weight for negative energies, while the upper Hubbard
band corresponding to a j1/2 excitation acquire a larger spectral weight.

On the other hand, with λ/D negative, see Fig. 4.2, the j-structure is inverted with
the two j1/2 bands lower in energy compared to the four j3/2 bands. Therefore, as the SOC
increases, the j1/2 states are pushed to negative energies while the j3/2 states to positive
energies. In this scenario, for a filling of two electrons at the impurity, we approach
a filled j1/2 band with increasing SOC. In the high-energy spectrum this is seen from
the large value of the spectral functions for negative energies, while the upper Hubbard
band is rather flat with small spectral weight, corresponding to the fact that as the
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band becomes more insulating, a particle-like excitation is blocked. Correspondingly, we
observe the spectral weight of the j3/2 states transferred to positive energies.

Figure 4.1: NRG spectral functions for various values of λ/D > 0. The spectral weight transfer
reflects the j-basis structure with two degenerate j1/2 bands and four degenerate j3/2 bands,
lower in energy. As λ/D increases, the spectral weights for the j1/2 states are pushed to positive
energies (as the solid grey arrows illustrate), while the j3/2 states to negative energies (dashed
grey arrows). Parameters: n = 2, U/D = 3.2, JH/D = 0.4,Γ ·D = 0.05, T ≈ 0.

Figure 4.2: NRG spectral functions for various values of λ/D < 0. The spectral weight transfer
reflects the inverted j-basis structure with four degenerate j3/2 bands and two degenerate j1/2
bands, which are now lower in energy . As |λ|/D increases, the spectral weights for the j1/2
states are pushed to negative energies (solid grey arrows), while the j3/2 states to positive
energies (dashed grey arrows). Parameters: n = 2, U/D = 3.2, JH/D = 0.4,Γ ·D = 0.05, T ≈ 0.

In order to analyze the low-energy spectrum we plot the close-ups of the spectral
functions at the Fermi level ω = 0 for both λ/D > 0 and λ/D < 0, see Figs. 4.3. For
λ/D > 0 (upper panel (a)), the j3/2 spectral functions feature coherent quasiparticle
peaks at the Fermi level and thus metallic behavior. In the inset, we plot the spectral
functions for λ/D = 10−6 where the SOC-induced effects are not present and we observe
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the characteristic asymmetric shape of the quasiparticle peak that is a fingerprint of
Hund metals [49]. Remarkably, as the SOC increases, the quasiparticle peak becomes
narrower, signaling a suppression of the Kondo temperature TK (low coherence scale)
and the quasiparticle weight Z (measure of how correlated the system is), since TK ∼ Z.
The SOC thus increases the correlations. The j1/2 spectral functions have small spectral
weight at w = 0 with increasing SOC, reflecting the fact that the j1/2 states have an
insulating-like behavior as the energy difference between the bands becomes larger. In
the lower panel (a) we plot the spectral functions on a logarithmic frequency scale. The
narrowing of the j3/2 quasiparticle peak and the decreasing j1/2 spectral weight at the
Fermi level are clearly observed. We note that for λ/D = 10−3 and λ/D = 10−1 the
spectral weights are essentially zero.

Figure 4.3: (Upper figures) Close-ups of the spectral functions at the Fermi level ω = 0 for
(a) λ/D > 0 and (b) λ/D < 0. The dashed lines refer always to j3/2 states and the solid
lines to j1/2 states. In panel (a) we observe the narrowing of the j3/2 spectral functions (as the
grey arrows illustrate) and the small values of j1/2 spectral functions. In the inset, we see the
characteristically asymmetric shape of a Hund metal for λ/D = 10−6. In panel (b) we observe
the splitting of the initial quasiparticle coherent peak for λ/D = −10−3 (and λ/D = −10−1 in
the right inset). (Lower figures) Spectral functions on a logarithmic frequency scale. Parameters:
n = 2, U/D = 3.2, JH/D = 0.4,Γ ·D = 0.05, T ≈ 0.

For λ/D < 0 (upper panel (b)), we expect an insulating-like behavior for both bands.
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In fact, for a filling of two electrons, the occupancy of j1/2 states increases with SOC and
the band approaches full filling. At the same time, the j3/2 states become emptied out
because of the large splitting. Interestingly, we observe a peak-like structure with large
spectral weight around the Fermi level for both bands at the value λ/D = −10−4, meaning
that the j-structure is not dominant yet, whereas in the case of positive SOC (panel (a))
the spectral functions already have distinctive SOC-induced features. The SOC-induced
effects set in clearly at λ/D = −10−3 where both bands present an insulating-like behavior
and the initial coherent quasiparticle peak (seen in the left inset for λ/D = −10−6) is split
by the SOC, with the splitting being of the order of the bands energy difference ∼ λ/D. In
the right inset the splitting and insulating-like behavior is also shown for λ/D = −10−1.
Looking at the spectral functions on a logarithmic frequency scale, lower panel (b), we
observe a very wiggled behavior for λ/D = −10−3 with relatively large spectral weight
and then the splitting of order ∼ λ/D for λ/D = −10−3 and λ/D = −10−1 with nearly
zero spectral weight. In particular, for λ/D = −10−1 a Mott insulating state sets in.

We also plot the evolution of the occupancies
nj

2j+1
of the bands, see Fig. 4.4. For

positive SOC, the j3/2 states tend to the half-filling occupancy value 0.5, valid in the
strong SOC limit, whereas the j1/2 states become emptied out and the occupancy value
approaches zero. We find that, at λ/D = 0.1 the j3/2 occupancy is already around 80%
of the strong coupling value. For negative SOC, the j1/2 states tend to the fully occupied
value 1, while j3/2 states are emptied out. We find that, at λ/D = −0.1, the j1/2

occupancy is already around 70% of the strong coupling value. Hence, for the parameters
used, we observe strong SOC-induced effects already at |λ|/D = 0.1. In the spectral
functions, Figs. 4.1, 4.2, we have observed clear effects of the SOC on the Hubbard bands
at |λ|/D = 10−4 and this is also seen in the orbital polarizations (difference in occupancies
between the bands), which at |λ|/D = 10−4 are found to be more than 30% of the full
polarized values.

Figure 4.4: Evolution of the occupancies nj/(2j+ 1) of the j1/2 and j3/2 states for both signs of
the SOC. With a filling of two electrons, the strong coupling values are 1 and 0.5 for j1/2 and
j3/2 states, respectively. For |λ|/D = 10−4 the polarization between the two bands is more than
30% of the full polarized value. Parameters: n = 2, U/D = 3.2, JH/D = 0.4,Γ ·D = 0.05, T ≈ 0.

We also compute susceptibilities as retarded correlators of bosonic operators A,B on
the impurity as

χ(t) = 〈A||B〉 (t) = −iΘ(t)〈 [A(t), B] 〉 , (4.5)
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Figure 4.5: Spectral parts of susceptibilities for positive values of λ/D. In panel (a) and in the
inset we observe the characteristic spin-orbital separation of Hund metals for 10−6 and for the
case without SOC (Kondo scales indicated by dashed grey lines). In the inset of panel (b) the
results for 10−5 show that SOC-induced effects are not visible yet, although there is a small
bump in χ′′L at Tsp and a proper spin-orbital separation cannot be defined. For larger values
of λ/D the spin separation is not present anymore. Insets of (c,d) show that the bumps seen
in the susceptibilities are present also in the spectral functions. Once the spin fluctuations are
screened we observe a Fermi-liquid linear behavior for all values, χ′′ ∼ ω (solid grey lines).
Parameters: n = 2, U/D = 3.2, JH/D = 0.4,Γ ·D = 0.05, T ≈ 0.

and we focus on the spectral part χ′′ of the susceptibilities χ = χ′ − iπχ′′, given by

χ′′(ω) =
1

2π

∫
dt eiωt〈 [A(t), B] 〉 . (4.6)

In fdmNRG we compute these susceptibilities via their Lehmann representation [58], for
the total angular momentum J, the total orbital angular momentum L, the total spin S
operators on the impurity,

χJ = 〈J||J〉ω , χL = 〈L||L〉ω χS = 〈S||S〉ω . (4.7)

Hereafter we define the spin Kondo temperature T spK and the orbital Kondo temperature
T orbK as the energy scales where maxima of the spectral parts χ′′ of the susceptibilities
occur, after which the corresponding degrees of freedom begin to be screened by the bath
electrons.

Let’s look at the imaginary parts of the susceptibilities for positive SOC, see Fig.
4.5. As the spectral functions have shown, for λ/D = 10−6 (panel (a)) SOC-induced
effects are not clearly present yet and the typical spin-orbital separation of Hund metals
is found [49, 7]. We see that χ′′J essentially concides with χ′′S at energies below T orbK , since
the contribution from the orbital degrees of freedom is quenched. For the Kondo scales,
we have T orbK ≈ 10−4 and T spK ≈ 10−6. Since T spK and λ/D have approximately the same
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value, λ/D = 10−6, one may argue that the SOC should already induce some effects. In
the inset the case without SOC is shown, from which we see that the Kondo scales are
equal to the case λ/D = 10−6. Therefore, we do not observe SOC-induced effects for a
strength comparable to the spin Kondo temperature T spK . In the inset of panel (b) the
results for λ/D = 10−5 are shown, for which no clear SOC-induced effects are visible yet.
The maximum of χ′′L is still indicated although at lower energies χ′′L increases again and
its screening starts at T spK . This signals the onset of weak SOC-induced effects and a
spin-orbital separation cannot be properly defined. For λ/D = 10−4 (panel (b)) the SOC
sets in and remarkably the spin-orbital separation is not present anymore and both spin
and orbital screenings occur at the spin Kondo scale T spK ≈ 10−6. In panels (c,d), with
λ/D = 10−3, 10−1, the absence of spin-orbital separation is also observed. The bumps of
χ′′L and χ′′S at energies ≈ λ/D correspond to peaks in the spectral functions of the j1/2

states, as seen in the insets. They could be numerical artifacts due to an overbroadening
of discrete data but the origin of them is not clear yet. For all the values of SOC, once the
spin fluctuations are screened, a Fermi-liquid linear behavior is observed, χ′′ ∼ ω. Note
that, with increasing SOC, the susceptibilities have larger values and hence the process
of screening begins at lower energies as the suppression of T spK also shows. We have seen
that the SOC induces a narrowing of the coherent peak, see Fig. 4.1. The lowering of
T spK seen in the susceptibilities supports this fact and the ensuing argument that the SOC
makes the system more correlated.

Figure 4.6: Spectral parts of susceptibilities for negative values of λ/D. In panel (a) we observe
the characteristic spin-orbital separation of Hund metals for λ/D = −10−6 (Kondo scales indi-
cated by dashed grey lines). Panel (b) shows the results for λ/D = −10−4, for which the spin
separation is not present. Panels (c,d) show the results for λ/D = −10−5 and λ/D = −10−6,
where we observe an insulating-like behavior with χ′′J approaching very small values. Once the
spin fluctuations are screened we observe a Fermi-liquid linear behavior for all values, χ′′ ∼ ω
(solid grey lines). Parameters: n = 2, U/D = 3.2, JH/D = 0.4,Γ ·D = 0.05, T ≈ 0.

Let’s turn now to the case of negative SOC, see Fig. 4.6. For λ/D = −10−6, panel (a),
the results are essentially the same as in the positive-SOC case and we observe a spin-
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orbital separation. For λ/D = −10−5 the results also do not differ significantly from the
positive-SOC case so they are not shown. In panel (b), for λ/D = −10−4, the SOC sets in
and the spin-orbital separation disappears and only one Kondo scale remains, at energies
corresponding to the spin Kondo temperature T spK ≈ 10−6, as in the positive-SOC case.
In panel (c,d) we see the emergence of large peaks (likely numerical artifacts in this case)
that possibly hide the maxima defining the Kondo scales. Were it the case, we note that
T spK would be pushed to higher energies at values T spK ≈ λ/D. This screening behavior
has an atomic origin rather than involving the bath electrons. In fact for negative SOC,
the spin and the orbital degrees of freedom tend to antialign (note that we have an extra
minus sign from the T -P equivalence, Sec. 3.3.1 ), giving rise to a J = 0 state as soon as
the energies are below the SOC scale. This is why we observe the behavior T spK ≈ λ/D,
which therefore cannot be properly defined as T spK , since it does not involve a screening
process from the bath electrons. Indeed for λ/D = −10−3,−10−1 this J = 0 state is
seen in the fact that χ′′J has very small values. For λ/D = −10−1 (panel (d)) χ′′J has
a negative value between λ/D = −10−3 and λ/D = −10−4, the origin of which is not
clear. We conclude noting that, once the spin and orbital fluctuations are screened, the
susceptibilities show a linear behavior, χ′′ ∼ ω, for negative SOC too.

(a) (b)

Figure 4.7: (a) Spectral functions from Ref. [16]; (b) Our results for spectral functions with
same colours as in the Ref. [16]. Same parameters used: n = 2, U/D = 3.2, JH/D = 0.4,Γ ·D =
0.05, T ≈ 0.

As a check of our results, we compare the spectral functions with those obtained in
Ref. [16], also using NRG with the same set of parameters, see Fig. 4.7.
We first note that the sign of SOC is inverted as it can be seen from the labels on the
upper left corners. The reason is that we take the T -P minus sign into account in the
Hamiltonian, while the authors of Ref. [16] do not change the sign of the SOC term
in the Hamiltonian but consider an inverted Hund’s third rule a posteriori. Taken this
into account, the general structure of the spectral functions, in particular the transfer of
spectral weights are in very good agreement, although they have different values of spec-
tral weights since we divide each spectral function by the corresponding degeneracy (two
for j1/2 states and four for j3/2 states). Comparing the upper insets, we observe similar
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results, although the little bump in the pink curve of Ref. [16], which is a discretization
artifact, is not present in our results. If we look at the lower insets, we note that, for
the value λ = 10−4 (purple curves), the results of Ref. [16] present the splitting of the
coherent peak at ω = 0, whereas in our results the splitting is not present yet and the
spectral functions still have nonvanishing spectral weight. In our results the splitting is
observed for λ/D = 10−3, see panel (b) in Fig. 4.3.

An interesting question is to what scale the SOC should be compared in order to have
relevant SOC-induced effects. Qualitatively, it is been argued that if the moments are
screened at a higher scale than the SOC strength, the latter has nothing to act on [17].
For a Hund metal, where the onset of the orbital screening occurs at much higher energies
than the spin screening, it is clear that one should compare the SOC to the orbital Kondo
temperature T orbK . This qualitative argument has been backed by the numerical results
of Ref. [16], where the authors computed static properties, as the effective local moment
χJT versus temperature T , and the evolution of quantities with respect to λ, as the zero-
temperature total angular momentum susceptibility χJ(T = 0) and the occupancies (see
[16]). They find that the SOC-induced effects indeed set in once the SOC is comparable
to the zero-SOC value of the orbital Kond temperature T orbK . This claim is also supported
by our results. The spectral functions show clear features of the j-orbital structure as
well as the occupancies, for a value λ/D ≈ T orbK ≈ 10−4. The dynamic susceptibilities,
Figs. 4.5 and 4.6, also present SOC-induce effects, as the disappearance of spin-orbital
separation, only when the SOC is comparable or larger than the zero-SOC value of T orbK ,
while we do not observe any effect related to the spin Kondo scale T spK , see panel (a) and
its inset, Fig. 4.5. However, the scale we estimate from the imaginary parts of dynamic
susceptibilities is T orbK ≈ 10−4, whereas the estimated scale in Ref. [16] is T orbK ≈ 10−5,
due to the fact that a definition of Kondo scales based on static susceptibilities is used
(the temperature scales at which the local moments TχS,L drop below 0.07), see Fig.
4.8.

Figure 4.8: Local spin and orbital angular moments TχS,L from Ref. [16]. The temperature
scales at which the local moments TχS,L drop below 0.07 define the spin and orbital Kondo
temperatures. Parameters: n = 2, U/D = 3.2, JH/D = 0.4,Γ ·D = 0.05.

In our NRG results, we have shown clear SOC-induced effects on spectral functions,
reflecting the distinctive j-orbital structure obtained introducing the SOC. Interestingly,
we have seen how the SOC induces the disappearance of the screening spin-orbital sep-
aration, a characteristic feature of Hund metals [49, 7]. Our results give support to the
argument that the scale one should compare the SOC to is the orbital Kondo scale T orbK ,
determined at zero SOC. We also have checked the reliability of our results by comparing
our spectral functions to those of Ref. [16] and found a very good agreement.
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4.2 DMFT results

We now present the DMFT results. We adopt the Bethe lattice as noninteracting DOS,
which leads to a closed form of DMFT self-consistent equations (Sec. 1.5) and take the
half-bandwidth D of the DOS as unit of energy, D = 1. We initialize the DMFT self-
consistency procedure with a metallic input hybridization and employ NRG as impurity
solver, with the same computational details as in the previous section (Sec. 4.1). We
keep the discretization parameter Λ = 4 but we vary the number of kept multiplets
and the physical parameters. In the DMFT iterations the chemical potential is adjusted
to obtain a filling per site of two electrons, n = 2. We perform the self-consistency
procedure until convergence, i.e. |Γin(ω) − Γout(ω)|. 10−3, which typically requires 4
DMFT loops. Our initial choice of parameters was inspired by real-materials values. In
3d systems the value of the Coulomb interaction is on the order of U = 3−4 eV , the Hund
coupling JH = 0.8−0.9 eV , the half-bandwidth D = 1 eV and the SOC λ = 0.01−0.1 eV
(λ = 0.07 eV for Co) [2, 40]. In 4d systems the value of the Coulomb interaction is on
the order of U = 2 − 3 eV , the Hund coupling JH = 0.6 − 0.7 eV , the half-bandwidth
D = 1.5 eV and the SOC λ = 0.1 − 0.2 eV (λ = 0.13 eV for Ru) [2, 40, 60, 44]. In 5d
systems the value of the Coulomb interaction is on the order of U = 1− 2 eV , the Hund
coupling JH = 0.4− 0.5 eV , the half-bandwidth D = 2 eV and the SOC λ = 0.3− 0.5 eV
(λ = 0.4 eV for Ir) [40, 19, 60, 44]. We set U/D = 3, JH/D = 0.6 and we vary λ/D in
order to discuss our results in the context of 3d and 4d materials. We keep 8000 multiplets
corresponding to ∼ 40000 states.

Let’s look at the spectral functions for λ/D > 0, Fig. 4.9. Note that we follow the
same colour convention as in the NRG section for increasing value of SOC. We recall
that for positive SOC the orbital structure consists of a lower-lying j3/2 quadruplet and
a higher-lying j1/2 doublet. For the chosen parameters, the spectral functions are nearly
degenerate for λ/D = 10−4, meaning that the SOC-induce effects are not clearly present
yet. As λ/D increases, the distinctive spectral weight transfer seen in the NRG results,
Fig. 4.1, is not seen. Instead, the j3/2 spectral functions seem to be quite insensitive to
the SOC, as can also be seen on a logarithmic scale (lower panel). The j1/2 states show
asymmetric peaks near the Fermi level, which diminish and broaden with increasing SOC.
Spectral weight transfer towards positive frequencies is found, signaling a smaller j1/2

occupancy as expected from the orbital structure. The mentioned peaks are reminiscent
of those seen in the NRG calculations for the susceptibilities, Fig. 4.5. From the analysis
of the Hamiltonian eigenenergies they seem to not derive from atomic-like excitations
though and their origin is not clear. Looking at the spectral functions on a logarithmic
scale (lower panel), in contrast to NRG results, we do not observe any narrowing of the
j3/2 quasiparticle peak and the j1/2 spectral weight near ω = 0, although diminishing with
increasing SOC, do not show the very small values, as seen in NRG results, see Fig. 4.3.
Most unexpectedly the Hubbard bands are not present as we can seen in the linear-scale
plot. To check if this is due to the SOC we plot the spectral functions without SOC
(inset of panel (a)). Interestingly, a low and flat upper Hubbard band can be observed,
but no lower band. Although the SOC could play a role, it is likely that the bands get
overbroadened and suppressed during the self-consistency loop, for DMFT also enhances
numerical artifacts. We will try to find out the reason of this disappearance at the end
of the section.

Let’s now turn to the spectral functions for λ/D < 0, Fig. 4.10. Now we have a
lower-lying j1/2 doublet and a higher-lying j3/2 quadruplet. Also in this scenario the
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Figure 4.9: DMFT Spectral functions for positive SOC on a linear (upper) and logarithmic
scale (lower). Parameters used: n = 2, U/D = 3, JH/D = 0.6, D = 1, T ≈ 0.

Hubbard bands are not observed. Here the spectral weight transfer induced by the SOC
is visible, with the j3/2 spectral weight pushed to positive energies while the j1/2 spectral
weight to negative ones, signaling a higher occupancy of the j3/2 states. Further, note
how the system approaches the strong-SOC band-insulator phase, with fully occupied j1/2

states. Already for λ/D = 0.5 the j1/2 spectral weight is very small at positive energies,
signaling the suppression of charge fluctuations, while the j3/2 spectral weight is very
small at negative energies, meaning that the j3/2 states become emptied out. Looking
at spectral functions on a logarithmic scale (lower panel), one sees the diminishing of
spectral weight for both bands near the Fermi level as in NRG, see Fig. 4.3, although no
clear splitting of the quasiparticle peak occurs in the DMFT case.

In Fig. 4.11 we plot the real parts of the self-energie Re(ω). For λ/D > 0 we observe
that the SOC generally shifts upwards the curves. We find a characteristic inverted slope
at small negative ω (also found in studies without SOC [35, 25]), which is enhanced
with increasing SOC, especially for the j1/2 states. We note that the j3/2 curve (red) for
λ/D = 0.3 does not present a pronounced inverted slope and its shape is qualitatively
changed by the SOC. In the inset we compute the slope of Re(ω) for the j3/2 states, which
gives valuable information about the quasiparticle weight, Z = (1− ∂ω Re(ω)ω=0)−1, and
hence about the degree of correlation of these states (the more negative the slope, the
more correlated the states are). We find that the SOC actually makes these states less
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Figure 4.10: DMFT Spectral functions negative SOC (b) on a linear (upper) and logarithmic
scale (lower). Parameters used: n = 2, U/D = 3, JH/D = 0.6, D = 1, T ≈ 0.

correlated, in contrast to what we observe in NRG calculations, see Fig. 4.3. In this sense
the DMFT self-consistency is crucial to unveil how the SOC influences the physics of the
model. This behavior was also found in a CTQMC study with an inverse temperature
βD = 80 [52].

For negative SOC, panel (b), we see that the j3/2 curves get pushed upwards by the
SOC, whereas the j1/2 curves downwards. We find less pronounced inverted slopes for
λ/D = 10−4 and λ/D = 10−1 compared to the positive case. For λ/D = 0.3, the j3/2

curve shows a broad and even less pronounced inverted slope, while it is not present for
the j1/2 curve. In the inset we plot the slopes of Re(ω) for the j3/2 states. We find a
lesser degree of correlation due to the SOC in the negative case too.

Next, we analyze the imaginary parts of the self-energies, − Im(ω), Fig. 4.12. Since the
imaginary part of the self-energy is related to the real part by Kramers-Kronig relations,
features corresponding to the inverted slopes of the real parts can be observed in the
imaginary parts too (solid grey arrows). For both signs of SOC, the j3/2 curves (dashed)
are shifted by the SOC in a monotonic fashion, while for j1/2 states the scenario is more
complex with crossings for different values of SOC. For λ/D > 0 they occur for negative
and positive frequencies, panel (a), while only for negative frequencies in the negative
case, panel (b). The imaginary part of the self energy is related to the scattering rate
(for a Fermi liquid the scattering rate is τ−1(ω) = −Z Im Σ(ω)). In Figs. 4.12 we see
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Figure 4.11: Real parts of the self-energy Σ(ω) for λ/D > 0 (a) and λ/D < 0 (b). Insets:
slopes of Re(ω) at ω = 0 for the j3/2 states, related to the quasiparticle weight, Z = (1 −
∂ω Re(ω)|ω=0)−1. Solid grey arrows indicate inverted slopes. Parameters used: n = 2, U/D =
3, JH/D = 0.6, D = 1, T ≈ 0.

that − Im(ω) has larger values for positive frequencies than negative ones, for both signs
of SOC. It follows that particle excitations have shorter lifetimes than hole excitations.
In the insets, the j3/2 curves are plot on a log-log scale, showing Fermi-liquid behavior
Im Σ(ω) ∼ ω2.

Figure 4.12: Imaginary parts of the self-energy Σ(ω) for λ/D > 0 (a) and λ/D < 0 (b). Insets:
Fermi-liquid behavior near ω = 0 at T ≈ 0, Im(ω) ∼ ω2. Parameters used: n = 2, U/D =
3, JH/D = 0.6, D = 1, T ≈ 0.

We now turn again to the disappearance of the Hubbard bands in the DMFT results.
In order to single out the possible reason we vary the NRG parameters to see if some
important differences in the spectral functions arise, see Fig. 4.13. The physical parame-
ters used are the same, n = 2, U/D = 3, JH/D = 0.6, D = 1, T ≈ 0. In order to compare
different settings we plot the spectral functions for λ/D = ±10−1. In panel (a) we choose
Λ = 6 and we keep the same number of multiplets as before, Nk = 8000. Compared to
the case with Λ = 4, Fig. 4.9, we find similar features near ω = 0 and no Hubbard bands,
as expected for a larger Λ, yielding a coarser discretization, especially at higher energies.
This is clearly seen in the inset where the case without SOC is plot. Compared to the
Λ = 4 scenario (inset of panel (a) in Fig. 4.9), where a low and flat upper Hubbard band
is observed, we do not see any clear sign of such a band. In panel (b) we plot results for a
setting with Λ = 8 and Nk = 12000 kept multiplets. In this case we find less pronounced
features near ω = 0, slightly shifted spectral functions and still no Hubbard bands. We
conclude that the disappearance of these bands, although intrinsically dependent of the
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discretization parameter Λ, is not qualitatively due to computational details.

Figure 4.13: (a) Spectral functions with Λ = 6 and Nk = 8000 kept multiplets. (b) Spectral
functions with Λ = 8 and Nk = 12000 kept multiplets. Parameters used: n = 2, U/D =
3, JH/D = 0.6, D = 1, T ≈ 0.

Recently we have reconsidered the physical parameters used in the calculations, moti-
vated by real-materials values. In the NRG results, where Hubbard bands are clearly re-
solved, the formation of Hubbard bands is governed by the ratio (U−3JH)/(2DΓ), where
Γ = 0.05 is the height of the box-shaped hybridization function. With a half-bandwidth
D = 1, we obtain a normalization (area of the box-shaped hybridization function) of
2DΓ = 0.1, while in the DMFT case with a semi-elliptical hybridization and D = 1 the
normalization is 0.25. If we want a box-shaped hybridization matching the DMFT nor-
malization, we need to set the height of the box to Γ = π/8 ≈ 0.393. Then we estimate
that for the original NRG calculation (U/D = 3.2, JH/D = 0.4, D = 1,Γ ·D = 0.05) the
ratio (U−3JH)/(2DΓ) ≈ 20, while for the DMFT-normalized box hybridization function
(U/D = 3, JH/D = 0.6, D = 1,Γ · D = 0.393) the ratio (U − 3JH)/(2DΓ) ≈ 1.5. This
difference of one order of magnitude could explain why in the DMFT calculations the
Hubbard bands are suppressed during the self-consistency loop. To verify this hypothesis
we ran DMFT calculations with rescaled physical parameters so to have a similar ratio
(U − 3JH)/(2DΓ), namely U/D = 6.4, JH = 0.8, always with the half-bandwidth D = 1
as unit of energy. The first results for this scenario have been obtained very recently.
Therefore only partial results are available. The number of kept multiplets is Nk = 6000.
The computed spectral functions are presented in Fig. 4.14. Finally we observe well-
resolved Hubbard bands. In panel (a), we find that the j-bands are still degenerate for
λ/D = 10−4 while SOC-induced effects are present for λ/D = 10−1, with a characteristic
spectral weight transfer which reflects the orbital structure with the quadruplet j3/2 lower
in energy. For λ/D = 10−4 the j1/2 states have zero spectral weight at the Fermi level and
j3/2 states shows a narrowing of the quasiparticle peak, signaling less correlated states
as found in the NRG results 4.3. In panel (b), λ/D = −10−4 we do not observe SOC-
induced effects on the quasiparticle peak while the Hubbard bands are not completely
degenerate. For λ/D = −10−1 the quasiparticle peak disappears and no splitting of order
λ/D is seen, as in the NRG results. The system is in a Mott insulating phase.

We also plot the imaginary parts of the susceptibilities for λ/D = 10−4 and λ/D =
10−1. We observe spin-orbital separation for λ/D = 10−4, with values of Kondo scales
T spK ≈ 10−3 and T orbK ≈ 10−2. For λ/D = 10−1 the characteristic spin-orbital separation of
Hund metals [49] is not present anymore and the onset of the screenings of spin and orbital
fluctuations occur at the same energy scale, corresponding to the spin Kondo temperature
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Figure 4.14: (a) Spectral functions for positive SOC, λ/D = 10−4 and λ/D = 10−1. Inset:
spectral functions close-up at Fermi level ω = 0. (b) Spectral functions with negative SOC,
λ/D = −10−4 and λ/D = −10−1. Parameters used: n = 2, U/D = 6.4, JH/D = 0.8, D =
1, T ≈ 0.

T spK ≈ 10−3, as found for the NRG results 4.5. Not having the results without SOC for
this set of parameters we cannot verify though that the scale one should compare the
SOC to is the bare orbital Kondo temperature T orbK , without SOC. Nonetheless we have
verified that the spin-orbital separation also disappears in the DMFT results.
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Figure 4.15: (a) Imaginary parts of the susceptibilities for λ/D = 10−4. (b) Imaginary parts
of the susceptibilities for λ/D = 10−1. Dashed grey arrows indicate the Kondo scales. Once
the fluctuations are quenched a Fermi-liquid linear behavior sets in, χ′′ ∼ ω. Parameters used:
n = 2, U/D = 6.4, JH/D = 0.8, D = 1, T ≈ 0.
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Conclusions

In this thesis we examined the effect of spin-orbit coupling (SOC) on the zero-temperature
paramagnetic phase of a three-band Hubbard-Kanamori model, the complexity of which
significantly increases with the introduction of the SOC. The three degenerate bands are
split in two different flavours separated in energy. The spin and orbital symmetries are
broken, in favor of the lower symmetry of the total angular momentum. The energy
scales of electronic repulsion, Hund interaction, SOC and bandwidth are comparable and
an intricate interplay arises. We focused on a filling of two electrons and changed the sign
of the SOC to account for a filling of four electrons, since the SOC changes sign under
particle-hole transformation.

To tackle the problem we employed the powerful NRG code available at Jan von
Delft’s group as an impurity solver for single-site DMFT. We first tested the code for
the SOC-model on a quantum impurity problem without self-consystency. The results
showed that the positive SOC increases the degree of correlation of metallic states and the
negative SOC induces a Mott insulating state, adiabatically connected to a strong-SOC
band insulator. We checked our computed spectral functions against those of Ref. [16]
and found good agreement. We computed susceptibilities and found the disappearance
of the spin-orbital separation for the onset of the screenings, a typical feature of Hund
metals [49, 7]. Our results also supported the argument that the scale which determines
the onset of SOC-induced effects is the bare orbital Kondo temperature [17, 16].

In the DMFT calculations we considered a set of parameters inspired by real-material
values. We found that the positive SOC reduces the degree of correlation of metallic states
in contrast to NRG calculations. For negative SOC no Mott phase is found. Notably,
we did not observe Hubbard bands for a number of different computational settings. We
then changed the physical parameters in relation to the those used in NRG calculations in
order to find similar results. In this scenario Hubbard bands are resolved, along with other
features also seen in the impurity results, such as enhanced correlations for positive SOC
and Mott insulating phase for negative SOC. From preliminary results in this direction,
we observed the closing of the spin-orbital separation region within DMFT as well.

To conclude, the SOC induces a rich range of effects on the physics of the model,
particularly relevant for Hund metals. DMFT results show that the positive SOC en-
hances correlations for a certain set of parameters (U/D = 3, JH/D = 0.6) but it reduces
them in other regions of parameter space (U/D = 6.4, JH/D = 0.8), as also found in [52].
Interestingly, both NRG and preliminary DMFT calculations show how the SOC closes
the spin-orbital separation region, a fingerprint of Hund metals.

Let us discuss some possible future research topics in the field. Regarding our results,
a detailed analysis of spin-orbital separation in relation to the onset scale of SOC-induced
effects is certainly an interesting direction to pursue. Another fascinating topic would
be to study thoroughly the influence of the SOC on correlations to derive a U vs JH
phase diagram. Another possibility is to study the problem for different fillings and see if
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novel phases arise, as proposed in [21]. All in all, spin-orbit-coupled systems have drawn
attention only recently and many research directions are possible.
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Materials. Forschungszentrum Jülich, 2018. Chapter: The Foundations of Dynamical
Mean-Field Theory.

[25] F.B. Kugler, S.S.B. Lee, A. Weichselbaum, G. Kotliar and J. von Delft, Phys. Rev.
B 100 (2019), 115159.

[26] L. Du, L. Huang, and X. Dai, Eur. Phys. J. B 86 (2013), 94.

[27] Y. Lu and M.W. Haverkort, The European Physical Journal Special Topics 226
(2017), 2549.

[28] M. Dzero, J. Xia, V. Galitski, and P. Coleman, Annu. Rev. Condens. Matter. Phys
7 (2016), 249.

[29] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70 (1998), 1039.

[30] M. Yoshida, M. A. Whitaker, and L.N. Oliveira, Phys. Rev. B 41 (1990), 9403.

[31] W. Metzner, Z. Physik B - Condensed Matter 77 (1989), 253–266.

[32] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62 (1989), 324–327.

[33] M.H. Hettler et al., Phys. Rev. B 58 (1998), R7475.

[34] M.H. Hettler et al., Phys. Rev. B 61 (2000), 12739.

[35] J. Mravlje, M. Aichhorn, T. Miyake, K. Haule, G. Kotliar and A. Georges, Phys.
Rev. Lett. 106 (2011), 096401.

[36] P. G. J. van Dongen, F. Gebhard and D. Vollhardt, Z. Physik B - Condensed Matter
76 (1989), 199–210.

[37] R. Bulla, A. C. Hewson, and Th. Pruschke, Journal of Physics: Condensed Matter
10 (1998), 8365.

[38] R. Bulla, T.A. Costi, and T. Pruschke, Rev. Mod. Phys. 80 (2008), 395.

[39] A.P. Ramirez, Journal of Physics: Condensed Matter 9 (1997), 8171.

62



[40] S. Maekawa, T. Tohyama, S.E. Barnes, S. Ishihara, W. Koshinbae, and G. Khaliullin:
Physics of Transition Metal Oxides. Springer, Berlin, 2004.

[41] S.-S. B. Lee. Cumulative notes.

[42] S.-S. B. Lee and A. Weichselbaum, Phys. Rev. B 94 (2016), 235127.

[43] S. Sugano, Y. Tanabe, and H. Kamimura: Multiplets of transition-metal ions in
crystals. Academic Press, 1970.

[44] R. Schaffer, E.K.H. Lee, B.J. Yang and Y.B. Kim, Reports on Progress in Physics
79 (2016), 094504.
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