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Abstract

Ward identities are exact relations between correlation functions of different order. As they
play a fundamental role in gauging the quality of approximations in the context of many body
physics, this thesis is dedicated to studying the U(1) Ward identity of the Hubbard atom and
its fulfillment for various diagrammatic approaches. First, a general introduction to the topic is
given (chapter 1). In chapter 2, the choice of the Hubbard atom as model is illustrated. Next,
methods used in this thesis such as the functional field integral for fermionic coherent states,
Matsubara formalism and basic principles of diagrammatic perturbation theory are introduced in
chapter 3 and 4. These techniques are then applied to the Hubbard atom in chapter 5 to obtain
second-order perturbation theory results for Green’s function, self-energy and four-point vertex.
The second part of the text is concerned with the characterization of symmetries in the path
integral formalism. Based on these considerations, the Ward identity corresponding to the U(1)
symmetry of the Hubbard atom is derived (chapter 6) and verified (chapter 7). To analyze a
violation of the Ward identity in an exemplary manner, expressions for four-point vertex and
self-energy were calculated from the Bethe-Salpeter and Schwinger-Dyson equations (chapter 8)
and substituted into the identity in chapter 9. Finally, a systematic method of finding analytical
and numerical ansatzes for the two-particle irreducible vertex approximation is discussed in
chapter 10 and 11.

Ward Identitäten sind exakte Relationen zwischen Korrelationsfunktionen verschiedener Ordnung.
Aufgrund der fundamentalen Rolle, die Ward Identitäten bei der Überprüfung der Qualität von
Approximationen im Hinblick auf Vielteilchensysteme innehaben, ist diese Bachelorarbeit der
Untersuchung der U(1) Ward Identität und ihrer Erfüllung für diagrammatische Störungstheorie
im Kontext des Hubbard Atoms gewidmet. Zuerst wird im Kapitel 1 allgemein in das Thema
eingeleitet. Im Kapitel 2 wird die Auswahl des Hubbard Atom als exemplarisches Modell erläu-
tert. Es folgt die Vorstellung diverser in dieser Arbeit benutzen Methoden wie beispielsweise
das Funktionalintegral für fermionische kohärente Zustände, der Matsubara Formalismus und
grundlegende Prinzipien der diagrammatischen Störungstheorie (Kapitel 3 und 4). Danach wer-
den diese Techniken auf das Hubbard Atom angewendet, um Ergebnisse in zweiter Ordnunug
Störungstheorie zu erhalten (Kapitel 5).
Die zweite Hälfte dieser Arbeit beschäftigt sich zunächst mit der Charakterisierung von Symme-
trien im Pfadintegral-Formalismus. Davon ausgehend wird diejenige Ward Identität, die zur U(1)
Symmetrie des Hubbard Atoms korrespondiert, hergeleitet (Kapitel 6) und verifiziert (Kapitel 7).
Um beispielhaft eine Verletzung der Identität zu analysieren, werden Ausdrücke für Vierpunkt-
Vertex und Selbstenergie aus den Bethe-Salpeter- und Schwinger-Dyson Gleichungen abgeleitet
(Kapitel 8) und eingesetzt (Kapitel 9). Abschließend wird eine systematische Methode diskutiert,
um analytische und numerische Ansätze zur total-irreduziblen Vertex Approximation zu finden
(Kapitel 10 und 11).
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1 INTRODUCTION

1 Introduction

One of the greatest challenges in the field of theoretical solid state physics is posed by accurately
describing interacting many-body systems. Even more so, when trying to make predictions about
the behavior of a system of correlated fermions due to e.g. the Pauli exclusion principle. Surprisingly,
formulating a Hamiltonian encoding the interactions of a large number of particles in a solid is
straightforward. However, deriving exact solutions from this Hamiltonian would require almost
unlimited computational effort and therefore approximations need to be made. For one, a model can
be chosen which for example only considers specific parts of the complete many-body Hamiltonian.
To gain elementary knowledge on theoretical methods in many-body physics, the following is a study
of an analytically solvable model that still incorporates interactions: the Hubbard atom. Even for
this toy model, expressions of quantities describing particles themselves and their interactions can
get very involved. Often, the choice of a suitable model is not enough to characterize a many-body
system and one needs to think of further approximations. In that regard, an established method
is given by diagrammatic perturbation theory, which allows to depict perturbation expansions
graphically in the form of Hugenholtz diagrams. With diagrammatic perturbation theory, quantities
such as correlation functions, sometimes also referred to as Green’s functions, can be approximated
for small interaction strengths. As their name suggests, they relate particles and observables at
different points in space and time. Correlation functions are of special physical interest, as they
are closely connected to experimental quantities. To provide physically realistic predictions for
experiments, of course fundamental principles of physics such as conservation laws need to be
regarded. Unfortunately, not all diagrammatic techniques automatically ensure conservation laws.
However, there is a way to check their fulfillment by considering Ward identities. Ward identities
establish exact relations between different types of correlation functions and correspond directly
to conservation laws. By substituting approximated quantities into these identities, we can draw
conclusions about the quality of the respective method.
In this thesis, various approaches to diagrammatic perturbation theory are discussed in the context
of a case study of the Hubbard atom. Methods usually implemented numerically are performed
analytically to obtain mathematical expressions for approximated correlation functions, four-point
vertex and self-energy. For these diagrammatic methods, this work aims to analyze the fulfillment
of the U(1) Ward identity with the aim of minimizing or fully compensating violations. Therefore,
we address the Parquet formalism and the two-particle irreducible vertex approximation. Lastly, it
is investigated how a modification of the Parquet approximation for the two-particle irreducible
vertex could possibly improve the fulfillment of the U(1) Ward identity.
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2 BRIEF OVERVIEW OF THE HUBBARD MODEL AND ITS LIMITS

2 Brief Overview of the Hubbard Model and Its Limits

As this thesis aims to investigate how well Ward identities are fulfilled by a perturbative approxi-
mation, a toy model needs to be selected. A suitable choice is given by the Hubbard atom, a limit
of the Hubbard model, since it is fully analytically solvable. Thus, the first chapter of this thesis is
supposed to serve as an introduction to the Hubbard model and to its limit, the Hubbard atom.

2.1 Introduction to the Hubbard Model

First written down in 1963, the Hubbard model was originally supposed to provide a better un-
derstanding of transition metal monoxides such as NiO and FeO. In spite of classical band theory
assigning these types of materials metallic behavior, in reality they appear to be insulators, which
is explained by the Hubbard model [1]. Surprisingly, a variety of other physical phenomena can be
described by the Hubbard model as well. For example, a current area of research involving the Hub-
bard model is its applicability to the main class of high-temperature superconductors, the ceramic
cuprates [2]. Due to its strong versatility, many analytical and numerical techniques have been
applied to it. Thus, it often assumes the role of an exemplary model in theoretical solid state physics.

We will begin exploring the properties of the Hubbard model by reviewing the assumptions
it makes to characterize interacting fermions. Despite the existence of fermionic and bosonic
variants, the following text will concentrate on the fermionic version of the Hubbard model. In
terms of lattice geometry, this text will consider a square lattice in 2D. Afterwards, the Hamiltonian
will be simply stated, since a full derivation lies beyond the scope of this chapter.
The Hubbard model considers a fixed array of lattice sites, which can either be empty, filled by one
fermion with spin up or spin down or filled with two fermions with distinct spin according to the
Pauli exclusion principle. These fermions interact with each other, if they meet on the same lattice
site. Additionally, fermions are assigned a probability to tunnel to neighboring lattice sites. Lastly,
if we assume the interaction strength and energy scale of the tunneling to be the same across the
whole lattice, the above assumptions applied to a general many-body Hamiltonian correspond to

𝐻̂ = −𝑡 ∑
⟨𝑖𝑗⟩,𝜎

(𝑐†𝑖𝜎𝑐𝑗𝜎 + 𝑐†𝑗𝜎𝑐𝑖𝜎) + 𝑈 ∑
𝑖

𝑐†𝑖↑𝑐𝑖↑𝑐
†
𝑖↓𝑐𝑖↓ (2.1)

with the indices 𝑖 and 𝑗 labeling the lattice sites and the notation ⟨𝑖𝑗⟩ standing for neighboring
lattice site pairs. The index 𝜎 accounts for the spin of the fermions, that is 𝜎 ∈ {↑, ↓}. Furthermore,
𝑐† and 𝑐 represent the fermionic creation and annihilation operators.
Using the definition of the number operator 𝑛̂𝑖𝜎 = 𝑐†𝑖𝜎𝑐𝑖𝜎, the Hamiltonian is rewritten as

𝐻̂ = −𝑡 ∑
⟨𝑖𝑗⟩,𝜎

(𝑐†𝑖𝜎𝑐𝑗𝜎 + 𝑐†𝑗𝜎𝑐𝑖𝜎) + 𝑈 ∑
𝑖

𝑛̂𝑖↑𝑛̂𝑖↓ ≡ 𝐻̂0 + 𝐻̂int. (2.2)

Tunneling of fermionic particles on the lattice is described by the first term, whereas 𝑡 specifies the
probability of a particle ’hopping’ to its neighboring site. Normally, 𝑡 is assumed to be positive.
The interaction strength of electrons of distinct spin is given by the variable 𝑈. In the case of
repulsive interaction, 𝑈 is positive, whereas negative 𝑈 implies an attractive interaction. However,
this thesis will only consider positive 𝑈.
As in the next chapters we will consider symmetries of the Hubbard atom, the most important
continuous symmetries are presented in Tab. 2.1.
More detailed information to all entries of Tab. 2.1 can be found in [3]. Symmetries were used in
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2 BRIEF OVERVIEW OF THE HUBBARD MODEL AND ITS LIMITS
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Figure 2.1: Graphic representation of the Hubbard model on a two-dimensional square lattice.
An arrow upwards symbolizes an electron with spin up, an arrow downwards an electron with spin
down.

continuous symmetry symmetry group
Gauge symmetry U(1)
Spin symmetry SU(2)

Particle-hole-symmetry at half-filling SU(2)

Table 2.1: Overview of continuous symmetries of the Hubbard Hamiltonian and their corresponding
symmetry groups

the Bethe ansatz to solve the Hubbard model in one dimension [4]. Despite seeming simple, no
exact solution to the model has been discovered for dimensions higher than one.
Only specific limits of the Hubbard Hamiltonian may be solved easily. Two commonly known limits
are characterized by the relation of ’hopping’ probability to the interaction scale 𝑈

𝑡 . The limit
𝑈
𝑡 → 0 in the case of minimal interaction or very high tunneling probability is called no-interaction
or tight-binding limit. In this case, the interaction term 𝐻̂int can be neglected and the overall
Hamiltonian simplifies to

𝐻̂ = −𝑡 ∑
⟨𝑖𝑗⟩,𝜎

(𝑐†𝑖𝜎𝑐𝑗𝜎 + 𝑐†𝑗𝜎𝑐𝑖𝜎). (2.3)

A special property of this Hamiltonian is that the corresponding grand canonical operator decouples
if the annihilation and creation operators are represented in a momentum basis.
Letting 𝑈

𝑡 → ∞ corresponds to no hopping of electrons between lattice sites. From this case of
independent lattice sites, the definition of the Hubbard atom can be motivated. As the Hubbard
atom represents an important foundation of this thesis, the corresponding limit will be covered in
the following section.

2.2 The Hubbard Atom

In the formal limits of infinite interaction strength or vanishing tunneling in example 𝑈
𝑡 → ∞,

we may neglect the kinetic term in the Hamiltonian completely and simply set 𝑡 = 0. Thus, the
Hamiltonian reduces to

𝐻̂ = 𝑈 ∑
𝑖

𝑛̂𝑖↑𝑛̂𝑖↓. (2.4)

This decoupling corresponds to fully independent lattice sites, so they can be treated separately. A

3



2 BRIEF OVERVIEW OF THE HUBBARD MODEL AND ITS LIMITS

single independent lattice site is called a Hubbard atom. Its Hamiltonian reads as

𝐻̂atom ≡ 𝐻̂ = 𝑈𝑛̂↑𝑛̂↓. (2.5)

Our ’atom’ may either be empty or filled by one or two fermions represented by the four states
{|0⟩, | ↓⟩, | ↑⟩, | ↓↑⟩}, which are simultaneously eigenstates of the Hubbard atom Hamiltonian.
Now, some elementary thermodynamic quantities in the grand canonical ensemble are derived. For
this purpose, the introduction of a chemical potential 𝜇 is necessary, which controls the filling of
our lattice site. The grand canonical operator can be formulated as

𝐻̂GK = 𝐻̂ − 𝜇𝑁̂ = 𝑈𝑛̂↑𝑛̂↓ − 𝜇∑
𝜎

𝑛̂𝜎. (2.6)

After this transformation, the previously identified eigenstates are still eigenstates of the grand
canonical Hamiltonian. Applying the Hamilton operator to them, we are able to compute the
corresponding eigenvalues:

𝐻̂GK|0⟩ = 0 ⋅ |0⟩ = 0 (2.7)

𝐻̂GK| ↓⟩ = −𝜇 ⋅ | ↓⟩ (2.8)

𝐻̂GK| ↑⟩ = −𝜇 ⋅ | ↑⟩ (2.9)

𝐻̂GK| ↓↑⟩ = (𝑈 − 2𝜇) ⋅ | ↓↑⟩ (2.10)

Taking the previous transformation into consideration, the grand canonical partition function is
evaluated by the general formula1

𝑍GK = tr (𝑒−𝛽𝐻̂GK) . (2.11)

Inserting the Hubbard atom Hamiltonian results in

𝑍GK = 1 + 2𝑒𝛽𝜇 + 𝑒−𝛽(𝑈−2𝜇). (2.12)

From this, the expectation values for energy and occupation may be calculated as follows:

⟨𝑁̂⟩ =
tr (𝑁̂ ⋅ 𝑒−𝛽𝐻̂GK)

tr (𝑒−𝛽𝐻̂GK)
=

2 (𝑒𝛽𝜇 + 𝑒−𝛽(𝑈−2𝜇))
1 + 2𝑒𝛽𝜇 + 𝑒−𝛽(𝑈−2𝜇) (2.13)

⟨𝐻̂⟩ =
tr ((𝐻̂GK + 𝜇𝑁̂) ⋅ 𝑒−𝛽𝐻̂GK)

tr (𝑒−𝛽𝐻̂GK)
= 𝑈𝑒−𝛽(𝑈−2𝜇)

1 + 2𝑒𝛽𝜇 + 𝑒−𝛽(𝑈−2𝜇) (2.14)

To close this chapter, a transformation resulting in a particle-hole symmetric Hamiltonian is going
to be introduced. As mentioned in Tab. 2.1, an important continuous symmetry of the Hubbard
model is given by the particle-hole symmetry in the case of a half-filled system.
Particle-hole symmetry refers to the Hamiltonian being invariant under the exchange of electrons
and empty spaces, also called ‘holes’. This exchange switches their occupation number

𝑛̂e,𝜎 → (1 − 𝑛̂h,𝜎), (2.15)

where the indices ‘e’ and ‘h’ stand for electrons and holes. Generally, the Hamiltonian of the
Hubbard atom is not symmetric under this transformation but instead transforms as

𝑈𝑛̂↑𝑛̂↓ → 𝑈(1 − 𝑛̂↑)(1 − 𝑛̂↓) = 𝑈(1 − 𝑛̂↑ − 𝑛̂↓ + 𝑛̂↑𝑛̂↓). (2.16)

1All expressions and equations in this thesis are formulated in natural units. Therefore, 𝑘𝐵, ℏ and 𝑐 are all set
equal to one.

4



2 BRIEF OVERVIEW OF THE HUBBARD MODEL AND ITS LIMITS

However, a Hamiltonian invariant under particle-hole exchange

𝐻̂′ = 𝑈(𝑛̂↑ −
1
2
)(𝑛̂↓ −

1
2
) (2.17)

only differing from the original Hubbard atom Hamiltonian of Eq. (2.5) by an additive constant,
which doesn’t change physical properties, can be constructed. Applying the transformation defined
in Eq. (2.15)

𝑈(𝑛̂↑ −
1
2
)(𝑛̂↓ −

1
2
) → 𝑈(1 − 𝑛̂↑ −

1
2
)(1 − 𝑛̂↓ −

1
2
) = 𝑈(𝑛̂↑ −

1
2
)(𝑛̂↓ −

1
2
) , (2.18)

we can verify that 𝐻̂′ is indeed particle-hole symmetric. This marks the ending of the quick
introduction to the Hubbard model and the Hubbard atom as its limit. In the following chapter,
the focus will be on developing methods such as the coherent state path integral to analyze the
physical properties of the discussed systems even further.

5



3 COHERENT STATE PATH INTEGRAL FOR THE PARTITION FUNCTION

3 Coherent State Path Integral for the Partition Function

In this section, methods fundamental to later chapters of this thesis are going to be presented. The
objective lies in developing a coherent state path integral formulation for the partition function of a
fermionic system, whose Hamiltonian includes one-body- as well as two-body-operators. Since it is
closely related to statistical mechanics, it is more suitable for us to formulate quantum mechanics in
terms of functional integrals than in terms of canonical operators. Especially when later evaluating
correlation functions for the Hubbard atom, this connection is going to be very useful. As correlation
functions can be expressed in terms of expectation values, a functional integral representation of
the partition function is now derived. Previously, the Hubbard atom for fermions was introduced
as exemplary model with its Hamiltonian containing two-body operators. Therefore, the resulting
functional integral formulation will be restricted to these properties.

3.1 Fermionic Coherent States

Before addressing the main focus of this chapter, the coherent state path integral, some prerequisites
have to be introduced. We will start by establishing the concept of coherent states for fermionic
particles.
In the previous chapter, the Hamiltonian of the Hubbard model as well as of the Hubbard atom
were formulated in terms of annihilation and creation operators. In the following, we are going to
look for eigenstates and eigenvectors to these operators. Here, exceptionally 𝑐 and 𝑐† denote the
fermionic annihilation and creation operators to distinguish them from the Grassmann numbers
𝑐 and ̄𝑐. However, the notation will only be used for this section. In the following sections, the
operators will be written as 𝑐 and 𝑐†.
Taking the effect the creation operator 𝑐† has on Fock space states into consideration, it is obvious
that the operator cannot have right eigenstates. Applying the creation operator 𝑐†𝑖 of state 𝑖 to a
state 𝜓, increases the minimum number of particles in 𝜓 by 1. Hence, 𝜓 can’t be a right eigenstate
to 𝑐†𝑖 . However, nothing in principle forbids the annihilation operator to have right eigenstates.
But, keeping in mind the commutation relations for creation and annihilation operators for fermions

{𝑐𝑖, 𝑐𝑗} = {𝑐†𝑖 , 𝑐
†
𝑗} = 0 (3.1) {𝑐𝑖, 𝑐

†
𝑗} = 𝛿𝑖𝑗 (3.2)

the respective eigenvalues {𝑐𝑖} need to possess a quite unusual property: The anticommutativity of
the fermionic operators results in anticommuting eigenvalues

𝑐𝑖𝑐𝑗 = −𝑐𝑗𝑐𝑖. (3.3)

Thus, the eigenvalues can’t be complex numbers as usual. Instead, they are defined to be Grassmann
numbers and belong to a set of anticommuting numbers, the Grassmann algebra. A detailed
explanation on the Grassmann algebra and its characteristics can be found in [5]. In this section, we
will not focus on the underlying mathematical structure but rather concentrate on the concept of
coherent states and Grassmann computation rules, which will be useful for later chapters. First, the
commutation relation of Grassmann numbers and creation and annihilation operators is specified as

{𝑐, 𝑐} = { ̄𝑐, 𝑐†} = 0. (3.4)

6



3 COHERENT STATE PATH INTEGRAL FOR THE PARTITION FUNCTION

With the Grassmann numbers {𝑐𝑖} the eigenstates of the annihilation operator are defined:

|𝑐⟩ ≡ 𝑒−∑𝑖 𝑐𝑖 ̄𝑐𝑖 |0⟩ (3.5)

Since the creation operator is the adjoint of the annihilation operator, left eigenstates for the
creation operator are given by

⟨𝑐| = ⟨0|𝑒∑𝑖 ̄𝑐𝑖𝑐𝑖 . (3.6)

Note that in the equation above ̄𝑐𝑖 doesn’t represent complex conjugates but instead entirely
different variables. Multiplication of Eq. (3.5) and Eq. (3.6) gives the overlap of coherent states

⟨𝑐|𝑐′⟩ = 𝑒∑𝑖 ̄𝑐𝑖𝑐𝑖 . (3.7)

As the coherent states form a basis in Fock space, deriving a corresponding closure relation results
in

∫∏
𝑖
(d ̄𝑐𝑖d𝑐𝑖) 𝑒−∑𝑖 ̄𝑐𝑖𝑐𝑖 |𝑐⟩⟨𝑐| = 1ℱ, (3.8)

where 1ℱ stands for the unity operator in Fock space. The exponential factor in the integrand is
necessary due to the overcompleteness of the basis of coherent states. A full proof of this identity is
for example given in [6].
At last, some computation rules for coherent states will be covered. They will only be mentioned
and shortly explained for later reference. Again, formal derivations can be found in [6]. Due to the
anticommutativity of Grassmann numbers, squaring a Grassmann number always results in zero:

𝑐2 = 0 (3.9)

Therefore, analytic functions on the Grassmann algebra assume the form

𝑓(𝑐) = 𝑓0 + 𝑓1𝑐. (3.10)

Differentiation on Grassmann variables is defined as

𝜕
𝜕𝑐𝑖

𝑐𝑗 = 𝛿𝑖𝑗. (3.11)

However, to differentiate more complex expressions the corresponding Grassmann number has to
be commuted next to the differential operator, which eventually leads to additional minus signs.
There also exists a concept similar to integration called Grassmann integration, although it can not
be interpreted in the same way as standard integration. It is denoted in the same way as a normal
integral to emphasize the analogy with integration over the complex eigenvalues of bosonic ladder
operators. The rules of Grassmann integration are given by:

∫(d𝑐)1 = 0 (3.12) ∫(d𝑐)𝑐 = 1 (3.13)

Again, Grassmann variables need to be commuted next to the differential d𝑐 to be integrated, which
could introduce additional minus signs. As we will encounter Gaussian integrals in later parts of
this text, Gaussian Grassmann integrals are solved as

∫∏
𝑖
(d ̄𝑐𝑖d𝑐𝑖) 𝑒

−∑𝑖𝑗 ̄𝑐𝑖𝑀𝑖𝑗𝑐𝑗+∑𝑖(𝜂̄𝑖𝑐𝑖+𝜂𝑖 ̄𝑐𝑖)) = [det𝑀]−1𝑒∑𝑖𝑗 𝜂̄𝑖𝑀𝑖𝑗𝜂𝑗 , (3.14)
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3 COHERENT STATE PATH INTEGRAL FOR THE PARTITION FUNCTION

where the indices 𝑖 and 𝑗 number the Grassmann numbers 𝑐 and 𝜂. Another type of Grassmann
integral identity necessary for calculations in the text is

∫∏𝑖 (d ̄𝑐𝑖d𝑐𝑖) 𝑐𝑖1 ... 𝑐𝑖𝑛 ̄𝑐𝑗𝑛 ... ̄𝑐𝑗1𝑒
−∑𝑖𝑗 ̄𝑐𝑖𝑀𝑖𝑗𝑐𝑗

∫∏𝑖 (d ̄𝑐𝑖d𝑐𝑖) 𝑒
−∑𝑖𝑗 ̄𝑐𝑖𝑀𝑖𝑗𝑐𝑗

= ∑
P
(−1)P𝑀−1

𝑖P𝑛,𝑗𝑛 ... 𝑀
−1
𝑖P1,𝑗P1

, (3.15)

where the index P stands for all possible permutations. As in the proof of the identity products of
Grassmann variables have to be differentiated, a factor (−1)P arises. Since for Grassmann differen-
tiation the derivative has to be commuted next to the respective variable, the anticommutativity
of Grassmann numbers leads to additional minus signs. The factor (−1)P represents the parity of
the permutation P. Both integral identities are proven formally in [6]. This concludes the quick
introduction to coherent states.

3.2 Time-Representation of the Fermionic Partition Function

After reviewing basics on coherent states, we will now derive the coherent state path integral for
the partition function. The general outline of the following derivation of the fermionic partition
function can be found in [1]. However, further steps have been added for clarity. To begin, let us
revisit the definition of the grand canonical partition function and express the trace in terms of the
complete set of Fock space states {|𝑛⟩}

𝑍 = tr (𝑒−𝛽(𝐻̂−𝜇𝑁̂)) = ∑
𝑛
⟨𝑛|𝑒−𝛽(𝐻̂−𝜇𝑁̂)|𝑛⟩ (3.16)

with 𝛽 = 1
𝑇 and 𝑇 denoting the temperature. The derivation is limited to a Hamiltonian containing

only one-body and two-body operators. Therefore, the most general form of such a Hamiltonian
that conserves the particle number will be considered, which reads

𝐻̂(𝑐†, 𝑐) = ∑
𝑖𝑗

ℎ𝑖𝑗𝑐
†
𝑖 𝑐𝑗 +∑

𝑖𝑗𝑘𝑙
𝑉𝑖𝑗𝑘𝑙𝑐

†
𝑖 𝑐

†
𝑗𝑐𝑘𝑐𝑙. (3.17)

This Hamiltonian is written down in normal-order indicating that all its creation operators stand
to the left of its annihilation operators2.
Returning to the partition function, we now switch to an integral representation by taking advantage
of the closure relation for fermionic coherent states Eq. (3.8). This resolution of unity is inserted
into the expression for the partition function

𝑍 = ∫∏
𝑖
(d ̄𝑐𝑖d𝑐𝑖) 𝑒−∑𝑖 ̄𝑐𝑖𝑐𝑖 ∑

𝑛
⟨𝑛|𝑐⟩⟨𝑐|𝑒−𝛽(𝐻̂−𝜇𝑁̂)|𝑛⟩. (3.18)

To now get rid of the summation, we can again use a closure relation, this time for the basis {|𝑛⟩}:

∑
𝑛

|𝑛⟩⟨𝑛| = 1ℱ (3.19)

However, the factor ⟨𝑛|𝑐⟩ in Eq. (3.18) needs to be commuted to the right side of the expression.

2If the Hamiltonian is not normal-ordered, its operators need to be exchanged using commutation relations. For
fermions, every permutation of an annihilation and creation operators results in an additional minus sign. For
example, the Hubbard atom Hamiltonian is transformed to normal-order by 𝐻̂ = 𝑈𝑐†↑𝑐↑𝑐

†
↓𝑐↓ = −𝑈𝑐†↑𝑐

†
↓𝑐↑𝑐↓

8



3 COHERENT STATE PATH INTEGRAL FOR THE PARTITION FUNCTION

Due to the anticommutativity of Grassmann numbers, this leads to an additional minus sign

𝑍 = ∫∏
𝑖
(d ̄𝑐𝑖d𝑐𝑖)𝑒−∑𝑖 ̄𝑐𝑖𝑐𝑖 ∑

𝑛
⟨−𝑐|𝑒−𝛽(𝐻̂−𝜇𝑁̂)|𝑛⟩⟨𝑛|𝑐⟩

= ∫∏
𝑖
(d ̄𝑐𝑖d𝑐𝑖)𝑒−∑𝑖 ̄𝑐𝑖𝑐𝑖⟨−𝑐|𝑒−𝛽(𝐻̂−𝜇𝑁̂)|𝑐⟩

(3.20)

with ⟨−𝑐| ≡ ⟨0|𝑒−∑𝑖 ̄𝑐𝑖𝑐𝑖 . Comparing the expression of the time evolution operator

𝑈̂(𝑡) = 𝑒−𝑖𝐻̂𝑡, (3.21)

its structure appears to be similar to the argument of the trace in Eq. (3.20). Different are only
the prefactors in the exponent and the use of the grand canonical operator 𝐻̂GK versus the normal
Hamiltonian 𝐻̂. Thus, we can interpret the trace as a sum over diagonal elements of the time
evolution operator and 𝛽 as an interval in imaginary time

𝜏f − 𝜏i = 𝛽. (3.22)

The imaginary-time interval 𝛽 may be split up into 𝑀 shorter intervals

𝛽 = 𝑀Δ𝜏 (3.23)

of length Δ𝜏. Consequently, the exponent of the trace is approximated by

⟨−𝑐|𝑒−𝛽(𝐻̂−𝜇𝑁̂)|𝑐⟩ ≈ ⟨−𝑐|
𝑀−1
∏
𝛼=0

𝑒−Δ𝜏(𝐻̂−𝜇𝑁̂)|𝑐⟩. (3.24)

Inserting the closure relation of fermionic coherent states in between each exponential factor leads
to

𝑍 = ∫∏
𝛼

(∏
𝑖
(d ̄𝑐𝑖,𝛼d𝑐𝑖,𝛼)𝑒−∑𝑖 ̄𝑐𝑖,𝛼𝑐𝑖,𝛼)⟨𝑐𝑀|𝑒−Δ𝜏(𝐻̂−𝜇𝑁̂)|𝑐𝑀−1⟩⟨𝑐𝑀−1| ... ⟨𝑐1|𝑒−Δ𝜏(𝐻̂−𝜇𝑁̂)|𝑐0⟩

= ∫
𝑀−1
∏
𝛼=0

(∏
𝑖
(d ̄𝑐𝑖,𝛼d𝑐𝑖,𝛼)𝑒−∑𝑖 ̄𝑐𝑖,𝛼𝑐𝑖,𝛼⟨𝑐𝛼+1|𝑒−Δ𝜏(𝐻̂−𝜇𝑁̂)|𝑐𝛼⟩),

(3.25)

where the index 𝛼 numbers the resolutions of unity inserted. Furthermore, the additional minus
sign of ⟨−𝑐| was absorbed into the definition of the factor ⟨𝑐𝑀|. Since 𝐻̂ and 𝑁̂ are expressed
in a normal-ordered second-quantized representation, the coherent states are eigenstates of both
operators. Therefore, we can apply the operators to the states {𝑐𝑖}3:

𝑍 = ∫
𝑀−1
∏
𝛼=0

(∏
𝑖
(d ̄𝑐𝑖,𝛼d𝑐𝑖,𝛼)𝑒−∑𝑖 ̄𝑐𝑖,𝛼𝑐𝑖,𝛼𝑒∑𝑖 ̄𝑐𝑖,𝛼+1𝑐𝑖,𝛼−Δ𝜏(𝐻( ̄𝑐𝛼+1,𝑐𝛼)−𝜇𝑁( ̄𝑐𝛼+1,𝑐𝛼)))

= ∫
𝑀−1
∏
𝛼=0

(d( ̄𝑐𝛼, 𝑐𝛼))𝑒−Δ𝜏∑𝑀−1
𝛼=0 (Δ𝜏−1( ̄𝑐𝛼− ̄𝑐𝛼+1)𝑐𝛼+𝐻( ̄𝑐𝛼+1,𝑐𝛼)−𝜇𝑁( ̄𝑐𝛼+1,𝑐𝛼)),

(3.26)

where the short notation

3In an exemplary manner, the quartic term of the Hamiltonian 𝑉 in Eq.(3.17) is applied to the coherent states

⟨𝑐𝛼+1|𝑒
−Δ𝜏∑𝑖𝑗𝑘𝑙 𝑉𝑖𝑗𝑘𝑙𝑐

†
𝑖 𝑐

†
𝑗𝑐𝑘𝑐𝑙 |𝑐𝛼⟩ = 𝑒−Δ𝜏∑𝑖𝑗𝑘𝑙 𝑉𝑖𝑗𝑘𝑙 ̄𝑐𝑖,𝛼+1 ̄𝑐𝑗,𝛼+1𝑐𝑘,𝛼𝑐𝑙,𝛼⟨𝑐𝛼+1|𝑐𝛼⟩ = 𝑒−Δ𝜏𝑉 ( ̄𝑐𝛼+1𝑐𝛼)𝑒∑𝑖 ̄𝑐𝑖,𝛼+1𝑐𝑖,𝛼 . Here,

the overlap between coherent states was evaluated as in Eq. (3.7)
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3 COHERENT STATE PATH INTEGRAL FOR THE PARTITION FUNCTION

𝑐𝛼 ≡ {𝑐𝑖,𝛼} (3.27) d( ̄𝑐𝛼, 𝑐𝛼) ≡ ∏
𝑖
(d ̄𝑐𝑖,𝛼d𝑐𝑖,𝛼) (3.28)

has been adopted. Now, choosing the split-up time intervals infinitesimally small, that is taking the
limit Δ𝜏 → 0,𝑀 → ∞, sum and differential quotient in Eq. (3.26) can be identified with integral
and derivative as shown below:

Δ𝜏
𝑀−1
∑
𝛼=0

... → ∫
𝛽

0
d𝜏... (3.29) ̄𝑐𝛼+1 − ̄𝑐𝛼

Δ𝜏
= 𝜕𝜏 ̄𝑐𝛼 (3.30)

Also, we need to keep the antiperiodic boundary conditions

̄𝑐(0) = − ̄𝑐(𝛽) (3.31) 𝑐(0) = −𝑐(𝛽) (3.32)

in mind. Lastly, the final version of the coherent state path integral for the fermionic partition
function is given by

𝑍 = ∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐] (3.33)

with the measure

D( ̄𝑐, 𝑐) = lim
𝑀→∞

𝑀−1
∏
𝛼=0

d( ̄𝑐𝛼, 𝑐𝛼) (3.34)

and the action

𝑆[ ̄𝑐, 𝑐] = ∫
𝛽

0
d𝜏 ( ̄𝑐𝜕𝜏𝑐 + 𝐻( ̄𝑐, 𝑐) − 𝜇𝑁( ̄𝑐, 𝑐)) . (3.35)

A more explicit expression for the action 𝑆

𝑆[ ̄𝑐, 𝑐] = ∫
𝛽

0
d𝜏(∑

𝑖𝑗
̄𝑐𝑖(𝜏)[(𝜕𝜏 − 𝜇)𝛿𝑖𝑗 + ℎ𝑖𝑗]𝑐𝑗(𝜏) +∑

𝑖𝑗𝑘𝑙
𝑉𝑖𝑗𝑘𝑙 ̄𝑐𝑖(𝜏) ̄𝑐𝑗(𝜏)𝑐𝑘(𝜏)𝑐𝑙(𝜏)) (3.36)

is obtained by inserting the Hamiltonian from Eq. (3.17).

3.3 Matsubara Frequency Representation of the Fermionic Partition
Function

Perturbative calculations on the Hubbard atom in the next chapters will be performed in frequency
representation. Hence, we will transform Eq. (3.33) with the Matsubara frequencies. For fermions
they are defined as

𝜔𝑛 = (2𝑛 + 1)𝜋
𝛽

𝑛 ∈ ℤ. (3.37)

With these Matsubara frequencies, the function 𝑐(𝜏) can be expanded

𝑐(𝜏) = 1√
𝛽
∑
𝜔𝑛

𝑐𝑛𝑒−𝑖𝜔𝑛𝜏 (3.38)

with the coefficients

𝑐𝑛 = 1√
𝛽
∫

𝛽

0
d𝜏𝑐(𝜏)𝑒𝑖𝜔𝑛𝜏. (3.39)

Substituting Eq. (3.37) and Eq. (3.38) into the time representation of the partition function yields
the Matsubara frequency representation. First, the expansions will be inserted into the action 𝑆

10



3 COHERENT STATE PATH INTEGRAL FOR THE PARTITION FUNCTION

from Eq. (3.36). To simplify the calculations, one-body and two-body part of the action will be
covered separately. Expanding the Grassmann numbers in terms of their Matsubara frequency
representations in the one-body part 𝑆0, leads to

𝑆0 = ∫
𝛽

0
d𝜏(∑

𝑖𝑗
̄𝑐𝑖(𝜏) ((𝜕𝜏 − 𝜇)𝛿𝑖𝑗 + ℎ𝑖𝑗) 𝑐𝑗(𝜏))

= 1
𝛽
∫

𝛽

0
d𝜏 ∑

𝑖𝑗
(∑

𝜔𝑛1

̄𝑐𝑖𝑛1
𝑒+𝑖𝜔𝑛1𝜏)((−𝑖𝜔𝑛2

− 𝜇)𝛿𝑖𝑗 + ℎ𝑖𝑗)(∑
𝜔𝑛2

𝑐𝑗𝑛2
𝑒−𝑖𝜔𝑛2𝜏).

(3.40)

Now the terms are regrouped, such that the integral over 𝜏 can be evaluated easily:

𝑆0 = ∫
𝛽

0
d𝜏 1

𝛽
∑
𝑖𝑗,𝜔𝑛𝑖

̄𝑐𝑖𝑛1
(−𝑖𝜔𝑛2

− 𝜇)𝑐𝑖𝑛2
𝑒𝑖(𝜔𝑛1−𝜔𝑛2)𝜏 +∫

𝛽

0
d𝜏 1

𝛽
∑
𝑖𝑗,𝜔𝑛𝑖

̄𝑐𝑖𝑛1
ℎ𝑖𝑗𝑐𝑗𝑛2

𝑒𝑖(𝜔𝑛1−𝜔𝑛2)𝜏

= 𝛿𝑛1𝑛2
⎛⎜
⎝

∑
𝑖𝑗,𝜔𝑛𝑖

̄𝑐𝑖𝑛1
(−𝑖𝜔𝑛2

− 𝜇)𝑐𝑖𝑛2
⎞⎟
⎠

+ 𝛿𝑛1𝑛2
⎛⎜
⎝

∑
𝑖𝑗,𝜔𝑛𝑖

̄𝑐𝑖𝑛1
ℎ𝑖𝑗𝑐𝑗𝑛2

⎞⎟
⎠

= ∑
𝑖𝑗,𝑛

̄𝑐𝑖𝑛 ((−𝑖𝜔𝑛 − 𝜇)𝛿𝑖𝑗 + ℎ𝑖𝑗) 𝑐𝑗𝑛

(3.41)

A similar procedure will be used to derive the Matsubara frequency representation for the two-body
part of the action 𝑆int. Again, we insert the expansions:

𝑆int = ∫
𝛽

0
d𝜏 ∑

𝑖𝑗𝑘𝑙
𝑉𝑖𝑗𝑘𝑙 ̄𝑐𝑖(𝜏) ̄𝑐𝑗(𝜏)𝑐𝑘(𝜏)𝑐𝑙(𝜏)

= ∫
𝛽

0
d𝜏 1

𝛽2 ∑
𝑖𝑗𝑘𝑙

(∑
𝜔𝑛1

̄𝑐𝑖𝑛1
𝑒+𝑖𝜔𝑛1𝜏 ∑

𝜔𝑛2

̄𝑐𝑗𝑛2
𝑒+𝑖𝜔𝑛2𝜏 ∑

𝜔𝑛3

𝑐𝑘𝑛3
𝑒−𝑖𝜔𝑛3𝜏 ∑

𝜔𝑛4

𝑐𝑙𝑛4
𝑒−𝑖𝜔𝑛4𝜏).

(3.42)

This time, the regrouping of the integral will be skipped and rather the expression after imaginary-
time integration will be shown. The arising integrals are analogous to the ones for one-body action
and therefore they produce delta functions, which simplify 𝑆int to

𝑆int =
1
𝛽

∑
𝑖𝑗𝑘𝑙,𝑛𝑖

𝑉𝑖𝑗𝑘𝑙 ̄𝑐𝑖𝑛1
̄𝑐𝑗𝑛2

𝑐𝑘𝑛3
𝑐𝑙𝑛4

𝛿𝑛1+𝑛2;𝑛3+𝑛4
. (3.43)

The frequency representation of the total action then reads

𝑆[ ̄𝑐, 𝑐] = ∑
𝑖𝑗,𝑛

̄𝑐𝑖𝑛[(−𝑖𝜔𝑛 − 𝜇)𝛿𝑖𝑗 + ℎ𝑖𝑗]𝑐𝑗𝑛 + 1
𝛽

∑
𝑖𝑗𝑘𝑙,𝑛𝑖

𝑉𝑖𝑗𝑘𝑙 ̄𝑐𝑖𝑛1
̄𝑐𝑗𝑛2

𝑐𝑘𝑛3
𝑐𝑙𝑛4

𝛿𝑛1+𝑛2;𝑛3+𝑛4
. (3.44)

With Eq. (3.44), we can formulate the partition function in Matsubara frequency representation

𝑍 = ∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐] (3.45)

with the measure
D( ̄𝑐, 𝑐) = ∏

𝑛
d( ̄𝑐𝑛, 𝑐𝑛). (3.46)

Having derived the functional integral as an important formulation for the next sections, we are
finally ready to address perturbation theory. Fundamental concepts to this topic are going to be
introduced in the subsequent chapter.
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4 Many-Body Perturbation Theory

Before applying perturbation theory to the Hubbard atom, some important preliminaries on
perturbation theory are going to be covered. As a lot of problems in many-body physics are
not analytically solvable due to the high complexity arising from interactions between particles,
one has to think of suitable approximation strategies such as perturbation theory. It is based on
decomposing the Hamiltonian (or alternatively the action) of a system

𝐻̂ = 𝐻0 + 𝑉 (4.1)

into a solvable one-body part 𝐻̂0 and an interaction part 𝑉. Supposing that the physical system is
continuous in some parameter [6], which is ‘small’ compared to other quantities of the system, a
perturbative expansion in terms of orders of this parameter can be used to describe the system.
Sometimes, it is advantageous to represent contributions to such expansions graphically. This is
called a diagrammatic approach to perturbation theory. How to generate and interpret suitable
diagrams will be explained in the next section.

4.1 Matsubara Green’s Functions

Often, to obtain information about a system experimentally the response to external perturbations
is measured. Mathematically, this is described by response functions. These are closely related to
Green’s functions or correlation functions. There are many different kinds of Green’s functions, but
since we will work in the grand canonical ensemble, the Matsubara Green’s function is the best
choice for the following perturbation calculations. The Matsubara Green’s function is the thermal
average of a time-ordered product of creation and annihilation operators depending on imaginary
time. Since all perturbation expansions of the subsequent text will be based on the functional
integral formulation, the Matsubara Green’s function is defined in terms of Grassmann variables [7]

𝐺(𝑛) = −(−1)𝑛⟨𝑐𝑖1 ... ̄𝑐𝑖𝑛⟩ = −(−1)𝑛

𝑍
∫D( ̄𝑐, 𝑐)𝑐𝑖1 ... ̄𝑐𝑖𝑛𝑒

−𝑆. (4.2)

For the partition function 𝑍, the action 𝑆 and the measure, the same definitions and short notations
as in chapter 3 are used. The index 𝑖𝑛, 𝑛 ∈ ℕ numbers the particles. Here, the time-ordering of the
field variables is already implicit because of the properties of the functional integral. An example
would be the non-interacting single-particle Green’s function, also called the bare propagator

𝐺0,𝑖𝑗 = −⟨𝑐𝑖 ̄𝑐𝑗⟩0 = −
∫D( ̄𝑐, 𝑐)𝑐𝑖 ̄𝑐𝑗𝑒−𝑆0

∫D( ̄𝑐, 𝑐)𝑒−𝑆0
= − 1

𝑍0
∫D( ̄𝑐, 𝑐)𝑐𝑖 ̄𝑐𝑗𝑒−𝑆0 (4.3)

with the one-body action defined as:

𝑆0 = ∫
𝛽

0
d𝜏(∑

𝑖𝑗
̄𝑐𝑖(𝜏) ((𝜕𝜏 − 𝜇)𝛿𝑖𝑗 + ℎ𝑖𝑗) 𝑐𝑗(𝜏)) . (4.4)

Thus, the integral Eq. (4.3) is just a Gaussian integral and can be solved exactly. In general, an
integral with an integrand consisting of an exponential factor that is at most quadratic in the
field variables multiplied by a polynomial of field variables is evaluated as covered in section 2.1.
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4 MANY-BODY PERTURBATION THEORY

Applying the identity Eq. (3.15) to Eq. (4.3), leads to

𝐺0,𝑖𝑗 = −(𝑆−1
0 )𝑖𝑗 = −(∫

𝛽

0
d𝜏(𝜕𝜏 − 𝜇)𝛿𝑖𝑗 + ℎ𝑖𝑗)

−1

, (4.5)

where (𝑆0)𝑖𝑗 is short for the matrix element corresponding to the one-body action. With this, we
can write 𝑆0 in terms of the bare propagator as

𝑆0 = −∑
𝑖𝑗

̄𝑐𝑖(𝐺−1
0 )𝑖𝑗𝑐𝑗 (4.6)

To reformulate the interaction part, we define the bare vertex Γ0|𝑖𝑗;𝑘𝑙, which denotes the interaction
strength between particles. It is related to the previous form of the interaction part of the action as

𝑆int = ∫
𝛽

0
d𝜏 ∑

𝑖𝑗𝑘𝑙
𝑉𝑖𝑗𝑘𝑙 ̄𝑐𝑖(𝜏) ̄𝑐𝑗(𝜏)𝑐𝑘(𝜏)𝑐𝑙(𝜏) = −1

4
∑
𝑖𝑗𝑘𝑙

Γ0|𝑖𝑗;𝑘𝑙 ̄𝑐𝑖 ̄𝑐𝑙𝑐𝑘𝑐𝑗. (4.7)

Taking Eq. (4.6) and Eq. (4.7) into consideration, the full action 𝑆 is rewritten as

𝑆 = −∑
𝑖𝑗

̄𝑐𝑖(𝐺−1
0 )𝑖𝑗𝑐𝑗 −

1
4
∑
𝑖𝑗𝑘𝑙

Γ0|𝑖𝑘;𝑗𝑙 ̄𝑐𝑖 ̄𝑐𝑙𝑐𝑘𝑐𝑗. (4.8)

In the last expression, the interaction strength is now described by the bare vertex Γ0.
Previously, it was mentioned that resorting to graphic representations can be helpful to formally
organize the perturbation series. In condensed matter physics, the formalism of Hugenholtz diagrams
is often used for this purpose. Regarding Hugenholtz diagrams, this thesis is going to follow the
convention defined in [7]. According to this formalism the bare propagator 𝐺0 is represented by

and the full single-particle Green’s function 𝐺(2) , which is also called the full propagator,
by . Moreover, the bare vertex is represented by .

After this brief introduction to Green’s functions, let us now focus on quantities of interest, which
we will compute up to a given order in the following chapters. The first of these quantities is the
single-particle Green’s function. As stated in Eq. (4.3), it is evaluated as

𝐺𝑖𝑗 = −⟨𝑐𝑖 ̄𝑐𝑗⟩ = − 1
𝑍
∫D( ̄𝑐, 𝑐)𝑐𝑖 ̄𝑐𝑗𝑒−𝑆. (4.9)

In practice, the action is separated into the two parts Eq. (4.6) and Eq. (4.7) and one expands the
interaction part

𝐺𝑖𝑗 = − 1
𝑍0

⋅ 𝑍0
𝑍

∫D( ̄𝑐, 𝑐)𝑐𝑖 ̄𝑐𝑗𝑒−𝑆0 (
∞
∑
𝑟=0

(−1)𝑟

𝑟!
(𝑆int)𝑟). (4.10)

We have expanded by 𝑍0, as the factor 𝑍0
𝑍 cancels disconnected diagrams4. What a disconnected

diagram is will be explained later. For now, one can just say the expansion simplifies the graphical
representation of the expression. Inserting the two-body action from Eq. (4.7) to calculate the 𝑟-th

4Below, this is illustrated exemplary for the first few orders. By comparison to the disconnected diagrams of 𝐺(2),
one observes that the diagrams of 𝑍 match them. Therefore, it should be plausible that 𝑍 as a denominator cancels
disconnected diagrams. However, this is nowhere near a rigorous proof. For this purpose, one should refer to the
literature as for example [6].
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4 MANY-BODY PERTURBATION THEORY

order contribution to 𝐺𝑖𝑗, averages over products of Grassmann variables have to be evaluated with
Gaussian integrals again. This can be done conveniently by using Wick’s theorem. How this is
done, will be covered in the following paragraph.
A full derivation of Wick’s theorem lies beyond the scope of this thesis, so only its general statement
is going to be covered. A proof by induction is for example provided in [8]. To understand the
general statement of Wick’s theorem, the concept of contractions of field variables needs to be
established. A contraction of Grassmann variables is represented by [6]

𝑐𝑖𝑐𝑗 = ⟨𝑐𝑖𝑐𝑗⟩0 (4.11)

with 𝑐𝑖 ∈ {𝑐𝑖, ̄𝑐𝑖}. As we will work with functional integrals, only the definition in terms of
Grassmann numbers is needed. Contractions of Grassmann variables are evaluated as:

𝑐𝑖(𝜏) ̄𝑐𝑗(𝜏 ′) = −𝐺0;𝑖𝑗(𝜏 − 𝜏 ′) (4.12)

̄𝑐𝑖(𝜏) ̄𝑐𝑗(𝜏 ′) = 𝑐𝑖(𝜏)𝑐𝑗(𝜏 ′) = 0 (4.13)

In Eq. (4.12), 𝐺0;𝑖𝑗(𝜏 − 𝜏 ′) represents the single-particle non-interacting Green’s function. For a
Hamiltonian not depending on 𝜏, 𝐺 only depends on the imaginary-time difference (𝜏 − 𝜏 ′). All
Hamiltonians considered in this thesis are imaginary-time-independent, so we restrict ourselves to
the case 𝐺0;𝑖𝑗(𝜏, 𝜏 ′) = 𝐺0;𝑖𝑗(𝜏 − 𝜏 ′). Contractions of the type Eq. (4.13) are zero, which is due
to the definition of a contraction as an expectation value. Expectation values of two creation or
annihilation operators vanish for every Fock state. Thus, the same holds for expectation values of
Grassmann variables corresponding to these operators. Now, the main statement of Wick’s theorem
[6]

⟨𝑐𝑖1 ... 𝑐𝑖𝑛 ̄𝑐𝑗1 ... ̄𝑐𝑗𝑛⟩0 = ∑ all complete contractions (4.14)

can be addressed. A complete contraction refers to contracting all Grassmann variables {𝑐𝑖1 ...𝑐𝑖𝑛}
with { ̄𝑐𝑗1 ... ̄𝑐𝑗𝑛} and multiplying them. To evaluate the expression on the left-hand side of Eq. (4.14),
one needs to sum over all possible products of pair contractions ⟨𝑐𝑖𝑐𝑗⟩0 generated by permuting the
indices 𝑗1 to 𝑗𝑛. Applying this together with Eq. (4.2) to the evaluation of Green’s functions, the
n-th order non-interacting Green’s function is given by

𝐺(2𝑛)
0|𝛼1,...,𝛼𝑛;𝛼′

1,...,𝛼′
𝑛
(𝜏1, ..., 𝜏𝑛; 𝜏 ′1, ..., 𝜏 ′𝑛) = ∑

P
(−1)P𝛿𝛼P1𝛼

′
1
... 𝛿𝛼P𝑛𝛼′

𝑛
𝐺0|𝛼′

1
(𝜏P1

−𝜏 ′1) ... 𝐺0|𝛼′
𝑛
(𝜏P𝑛

−𝜏 ′𝑛),

(4.15)
where the index P denotes all permutations of the indices 1 to 𝑛. Again, due to the permutations
of Grassmann numbers a sign factor (−1)P is needed. If Grassmann numbers are commuted an
odd number of times, an additional minus sign arises.
This statement suggests a graphical representation. Specific rules can be determined to generate
Hugenholtz diagrams for the r-th order term of the perturbation expansion of 𝐺(𝑛) for a system
containing only two-body interactions. These rules are found in detail in [6]. For completeness,
they will be summarized briefly. For each complete contraction, one draws 𝑟 vertices with 4 legs ,
each corresponding to a field variable of the two-body interaction .

Furthermore, one represents the arguments of the Green’s function { ̄𝑐𝑖1 , ..., ̄𝑐𝑖𝑛} as 𝑛 external points
and the arguments {𝑐𝑗1 , ..., 𝑐𝑗𝑛} as 𝑛 external points .

Each contraction of two field variables corresponds to a propagator connecting either
external points or vertices corresponding to the respective field variables, which are contracted.
Examples of such diagrams are shown in Fig. 4.1.
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a) b) c)

Figure 4.1: (a) First-order contribution to the single-particle Green’s function 𝐺(1). This is
a connected diagram with 𝑛L = 1. (b) Also a first-order contribution to 𝐺(1). However, it is
disconnected with 𝑛L = 2. (c) Example for an one-particle reducible diagram. Cutting the
propagator in the middle, yields two subdiagrams.

Converting a diagram back to an analytical expression, each propagator, external point and vertex
are assigned time and particle labels, if not already denoted in the diagram. Each bare vertex
corresponds to a factor Γ0|𝑖𝑗;𝑘𝑙 and each propagator to a factor 𝐺0;𝑖𝑗. These factors are then
multiplied. Afterwards, one sums over all internal particles and integrates 𝑟 times over all 𝜏𝑖 from 0
to 𝛽.
Described above is how to generate diagrams for the Matsubara Green’s function 𝐺(𝑛)(𝜏) in
imaginary-time representation. Diagrammatic depiction of 𝐺(𝑛)(𝜔𝑛) depending on Matsubara fre-
quencies 𝜔𝑛 works in a similar way. Instead of assigning time labels, frequency labels are assigned to
each propagator. Because of frequency conservation, the sum of frequencies assigned to propagators
entering a vertex must be equal to the sum of frequencies assigned to propagators leaving the vertex.
Furthermore, to convert a diagram in frequency representation back to a mathematical expression,
instead of integrating over 𝜏 one sums over all internal frequencies.
In general, one can group diagrams into connected and disconnected ones. Connected means, that
all vertices and external points are connected to each other by propagators. Another way to classify
diagrams is by their reducibility. An 𝑛-particle reducible diagram means that 𝑛 lines would have to
be cut to split it into two disconnected diagrams. Examples are given in Fig. 4.1).

To close this introduction on Green’s functions, we will briefly talk about their generating functionals.
Originally, the expression of the Matsubara Green’s function was only stated in Eq. (4.2). However,
it turns out that this expression may be generated from a functional

𝑍[ ̄𝐽 , 𝐽] ≡ ⟨𝑒−∫𝛽
0
d𝜏 ∑𝛼[ ̄𝐽𝛼(𝜏)𝑐𝛼(𝜏)+ ̄𝑐𝛼(𝜏)𝐽𝛼(𝜏)]⟩. (4.16)

This generating function is given by adding source terms 𝐽𝛼 and ̄𝐽𝛼, which are also Grassmann
variables, to the action. More details on this and the following expressions can be found in [6].
Based on Eq. (4.16), the 𝑛-particle Green’s function is generated [6]

𝐺(2𝑛)
𝛼1,...𝛼𝑛;𝛼′

1,...𝛼′
𝑛
(𝜏1..., 𝜏𝑛; 𝜏 ′1, ..., 𝜏 ′𝑛) = (−1)−𝑛+1 𝛿2𝑛𝑍[ ̄𝐽 , 𝐽]

𝛿 ̄𝐽𝛼1
(𝜏1) ... 𝛿 ̄𝐽𝛼𝑛

(𝜏𝑛)𝛿𝐽𝛼′
𝑛
(𝜏 ′𝑛) ... 𝛿𝐽𝛼′

1
(𝜏 ′1)

∣
̄𝐽=𝐽=0
(4.17)

using functional derivatives with respect to the source fields. Note, that the generating function
𝑍[ ̄𝐽 , 𝐽] appears to be the grand canonical partition function with additional source terms ̄𝐽 , 𝐽. In
thermodynamics however, the grand potential 𝑊, which is the natural logarithm of the partition
function, has higher physical significance. Thus, it is only natural to wonder, if there is a similar
relation between Green’s functions and the grand potential with additional source terms, which
reads

𝑊[ ̄𝐽, 𝐽] ≡ ln(𝑍[ ̄𝐽 , 𝐽]). (4.18)

In fact, the grand potential with sources is the generating function for connected Green’s functions.
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4 MANY-BODY PERTURBATION THEORY

This is known in literature as the Linked Cluster theorem [6]. The 𝑛-particle connected Green’s
function is then calculated as

𝐺(2𝑛),c
𝛼1,...𝛼𝑛;𝛼′

1,...𝛼′
𝑛
(𝜏1, ..., 𝜏𝑛; 𝜏 ′1, ..., 𝜏 ′𝑛) = (−1)𝑛+1 𝛿2𝑛𝑊[ ̄𝐽, 𝐽]

𝛿 ̄𝐽𝛼1
(𝜏1) ... 𝛿 ̄𝐽𝛼𝑛

(𝜏𝑛)𝛿𝐽𝛼′
𝑛
(𝜏 ′𝑛) ... 𝛿𝐽𝛼′

1
(𝜏 ′1)

∣
̄𝐽=𝐽=0

.

(4.19)

As thermodynamic quantities are derived from the grand potential instead of from the partition
function, it is in most cases sufficient to only consider connected Green’s function, which only
consist of connected diagram contributions.
We are now able to compute 𝑛-particle Green’s functions, expand them in perturbation series and
represent them diagrammatically. Additionally, the same shall be done for the self-energy and
vertex. We will focus on this in the next section.

4.2 Self-Energy

To define the self-energy as well as its properties, we will need an additional generating function for
the one-particle irreducible vertex. It is obtained by a Legendre-transformation of the generating
function of connected Green’s functions 𝑊[ ̄𝐽, 𝐽] [6]

Γ[ ̄𝜙𝛼(𝜏), 𝜙𝛼(𝜏)] = −𝑊[ ̄𝐽 , 𝐽] −∑
𝛾

∫
𝛽

0
d𝜏 ′[ ̄𝜙𝛾(𝜏 ′)𝐽𝛾(𝜏 ′)] + ̄𝐽𝛾(𝜏 ′)𝜙𝛾(𝜏 ′)], (4.20)

where the new variables 𝜙 and ̄𝜙 are called field averages in the presence of source fields and
evaluated as 𝜙𝛼 = ⟨𝑐𝛼⟩ ̄𝐽,𝐽 and similarly ̄𝜙𝛼. The vertex function is then given by functionally
differentiating the generating function analogous to the derivation of the Green’s functions [6]:

Γ(𝑚+𝑛)
𝛼1,...𝛼𝑛;𝛼′

1,...𝛼′
𝑛
(𝜏1, ..., 𝜏𝑛; 𝜏 ′1, ..., 𝜏 ′𝑛) =

𝛿𝑚+𝑛Γ[ ̄𝜙𝛼(𝜏), 𝜙𝛼(𝜏)]
𝛿 ̄𝜙𝛼1

(𝜏1)...𝛿 ̄𝜙𝛼𝑚
(𝜏𝑚)𝛿𝜙𝛼′

𝑛
(𝜏 ′𝑛) ... 𝛿𝜙𝛼′

1
(𝜏 ′1)

∣
̄𝐽=𝐽=0

(4.21)

Here, 𝑚 is almost always equal to 𝑛 due to particle conservation at each interaction vertex.
From the two-point vertex function, the self-energy Σ is defined as the difference between the
interacting and the non-interacting vertex function Γ̃ ̄𝜙𝜙

Γ(2)
𝛼1,𝛼′

1
(𝜏1, 𝜏 ′1) ≡ Γ̃𝛼1,𝛼′

1
−Σ𝛼1,𝛼′

1
(𝜏1, 𝜏 ′1). (4.22)

Thus, the self-energy contains all information about the interactions of the system on the one
particle level. As we will later want to calculate the self-energy up to a certain order from a
perturbation series of the single-particle Green’s function, it is necessary to relate both quantities.
Therefore, the explicit expression corresponding to the two-point vertex is obtained as

Γ(2)
𝛼1,𝛼′

1
(𝜏1, 𝜏 ′1) =

𝛿2

𝛿 ̄𝜙𝛼1
𝛿𝜙𝛼′

1

(−𝑊[ ̄𝐽 , 𝐽] −∑
𝛾

∫
𝛽

0
d𝜏 ′[ ̄𝜙𝛾(𝜏 ′)𝐽𝛾(𝜏 ′)] + ̄𝐽𝛾(𝜏 ′)𝜙𝛾(𝜏 ′)]) ∣

̄𝐽=𝐽=0

(4.23)

from the generating function. In the following, time arguments are suppressed for ease of notation
and sums over repeated indices are implicit. Evaluating the derivatives with respect to 𝜙 and ̄𝜙,
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results in

Γ(2)
𝛼1,𝛼′

1
= 𝛿

𝛿 ̄𝜙𝛼1

(− 𝛿𝑊
𝛿 ̄𝐽𝛽1

𝛿 ̄𝐽𝛽1

𝛿𝜙𝛼′
1

−
𝛿 ̄𝐽𝛽1

𝛿𝜙𝛼′
1

𝜙𝛽1
− ̄𝐽𝛼′

1
)∣

̄𝐽=𝐽=0

= 𝛿
𝛿 ̄𝜙𝛼1

(− 𝛿𝑊
𝛿 ̄𝐽𝛽1

( 𝛿2Γ
𝛿 ̄𝜙𝛽1

𝛿𝜙𝛼′
1

)+( 𝛿2Γ
𝛿 ̄𝜙𝛽1

𝛿𝜙𝛼′
1

) 𝛿𝑊
𝛿 ̄𝐽𝛽1

− ̄𝐽𝛼′
1
)∣

̄𝐽=𝐽=0

= −
𝛿 ̄𝐽𝛼′

1

𝛿 ̄𝜙𝛼1

∣
̄𝐽=𝐽=0

.

(4.24)

By functionally differentiating the grand potential 𝑊 with respect to 𝜙 and 𝐽

𝛿2𝑊
𝛿𝜙𝛼1

(𝜏1)𝛿𝐽𝛼′
1
(𝜏 ′1)

= 𝛿(𝜏1 − 𝜏 ′1) (4.25)

we generate a delta-function. Applying the chain rule to 𝛿2𝑊
𝛿𝜙𝛼1(𝜏1)𝛿𝐽𝛼′

1
(𝜏′

1)
, leads to

𝛿(𝜏1 − 𝜏 ′1) =
𝛿2𝑊

𝛿 ̄𝐽𝛽1
𝛿𝐽𝛼′

1

𝛿Γ
𝛿 ̄𝜙𝛽1

𝛿𝜙𝛼1

. (4.26)

Thus, the two partial derivatives on the right-hand side of Eq. (4.26) need to be inverse to each
other. Taking the limit (𝐽, ̄𝐽) → 0, we can relate the two-point vertex and the two-point Green’s
function as

(𝐺(2)
𝛽1𝛼′

1
)−1 = Γ(2)

𝛽1𝛼′
1
. (4.27)

Hence, the single-particle connected Green’s function and the self energy are related as

(𝐺(2))−1 = (𝐺0)−1 −Σ. (4.28)

Multiplying Eq. (4.28) by the non-interacting Green’s function 𝐺0 from the left and by the
interacting Green’s function 𝐺 from the right, results in a recursive relation

𝐺(2) = 𝐺0 +𝐺0Σ𝐺(2) (4.29)

called the Dyson equation. Graphically, the self-energy Σ is represented as .
With this, the Dyson equation is depicted as shown in 4.2.

Figure 4.2: Diagrammatic representation of the Dyson equation.

In fact, the self-energy sums amputated one-particle irreducible diagrams between external points
(𝛼1𝜏1) and (𝛼′

1𝜏 ′1). Amputating a diagram means removing the contribution of its external ‘legs’,
which are propagators connected to arguments of a Green’s function. Drawing and evaluating
Hugenholtz diagrams for the self-energy is done by the same principles as for the Green’s functions.
There will be concrete examples in the next chapter, when perturbation theory is applied to the
Hubbard atom.
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4.3 Four-Point Vertex

After introducing the self-energy, now the same shall be done for the four-point vertex. Physically,
the four-point vertex encodes the full interaction between two particles. One may think, that
the information about two particle interaction strength is specified by Γ(2)

0 , the prefactor of the
two-body interaction Eq. (4.8). In fact, this is not the case, as there are additional contributions to
the interaction such as quantum fluctuations, which are not considered by Γ0. In preparation to
investigating the interaction between electrons of the Hubbard atom in the next chapter, a relation
between the four-point vertex and the four-point Green’s function 𝐺(4) will be derived. In the
following derivation, we compute 𝐺(4),c and compare it to the expression for Γ(4). We will do so
by differentiating generating functions Eq. (4.17) and Eq. (4.19). The derivatives with respect to
the source terms are evaluated using product rule and chain rule. For the derivatives to act on
Grassmann numbers, they need to be commuted next to the respective variable they act on. The
additional sign changes arising from these permutations were taken into account as well:

𝐺(4),c
𝛼1𝛼2;𝛼′

1𝛼′
2
= 𝛿4 ln(𝑍)

𝛿 ̄𝐽𝛼1
𝛿 ̄𝐽𝛼2

𝛿𝐽𝛼′
2
𝛿𝐽𝛼′

1

∣
̄𝐽=𝐽=0

= 𝛿3

𝛿 ̄𝐽𝛼1
𝛿 ̄𝐽𝛼2

𝛿𝐽𝛼′
2

( 1
𝑍

𝛿𝑍
𝛿𝐽𝛼′

1

)∣
̄𝐽=𝐽=0

= 𝛿2

𝛿 ̄𝐽𝛼1
𝛿 ̄𝐽𝛼2

(− 1
𝑍2

𝛿𝑍
𝛿𝐽𝛼′

2

𝛿𝑍
𝛿𝐽𝛼′

1

+ 1
𝑍

𝛿2𝑍
𝛿𝐽𝛼′

2
𝛿𝐽𝛼′

1

)∣
̄𝐽=𝐽=0

= ⟨𝑐𝛼2
̄𝑐𝛼′
1
⟩⟨𝑐𝛼1

̄𝑐𝛼′
2
⟩ − ⟨𝑐𝛼1

̄𝑐𝛼′
1
⟩⟨𝑐𝛼2

̄𝑐𝛼′
2
⟩ + ⟨𝑐𝛼1

𝑐𝛼2
̄𝑐𝛼′
1

̄𝑐𝛼′
2
⟩

= 𝐺(2)
𝛼2𝛼′

1
𝐺(2)

𝛼1𝛼′
2
−𝐺(2)

𝛼1𝛼′
1
𝐺(2)

𝛼2𝛼′
2
+𝐺(4)

𝛼1𝛼2;𝛼′
1𝛼′

2

(4.30)

Above, the first few partial derivatives were evaluated exemplary using the chain rule and product
rule. In the last step, the source terms were set equal to zero. With no source terms present,
fermionic correlation function of odd order vanish. Therefore, we are left with only three terms on
the left-hand side of Eq. (4.30). Now, the only thing left to do is to relate the connected Green’s
function 𝐺(4),c to the vertex Γ(4). Again, we differentiate a generating function Eq. (4.21) to obtain
the expression

Γ(4)
𝛽′
1𝛽′

2;𝛽1𝛽2
= 𝛿4Γ

𝛿 ̄𝜙𝛽′
1
𝛿 ̄𝜙𝛽′

2
𝛿𝜙𝛽2

𝛿𝜙𝛽1

∣
̄𝐽=𝐽=0

= 𝛿3

𝛿 ̄𝜙𝛽′
1
𝛿 ̄𝜙𝛽′

2
𝛿𝜙𝛽2

(− ̄𝐽𝛽1
) ∣

̄𝐽=𝐽=0

= 𝛿2

𝛿 ̄𝜙𝛽′
1
𝛿 ̄𝜙𝛽′

2

( 𝛿2𝑊
𝛿 ̄𝐽𝛽1

𝛿𝐽𝛼1

)∣
̄𝐽=𝐽=0

= (𝐺(2)
𝛼1𝛽1′

)
−1

(𝐺(2)
𝛼2𝛽2′

)
−1

𝐺(4),c
𝛼1𝛼2;𝛼′

1𝛼′
2
(𝐺(2)

𝛽1𝛼′
1
)
−1

(𝐺(2)
𝛽2𝛼′

2
)
−1

(4.31)

for the four-point vertex. To simplify expressions, which occur after the partial differentiation, some
results derived in section 4.2 were used. Setting 𝐽 = 0, correlation functions of odd order vanish.
As it is not necessary to distinguish between connected and disconnected Green’s functions on the
one-particle level, the second equality follows. What remains to be done, is solving Eq. (4.31) for
𝐺(4),c:

𝐺(4),c
𝛼1𝛼2;𝛼′

1𝛼′
2
= 𝐺(2)

𝛼1𝛽′
1
𝐺(2)

𝛼2𝛽′
2
Γ(4)
𝛽′
1𝛽′

2;𝛽1𝛽2
𝐺(2)

𝛽1𝛼′
1
𝐺(2)

𝛽2𝛼′
2

(4.32)

Inserting this into Eq. (4.30) yields the exact relation

𝐺(4)
𝛼1𝛼2;𝛼′

1𝛼′
2
= 𝐺(2)

𝛼1𝛼′
1
𝐺(2)

𝛼2𝛼′
2
−𝐺(2)

𝛼2𝛼′
1
𝐺(2)

𝛼1𝛼′
2
+𝐺(2)

𝛼1𝛽′
1
𝐺(2)

𝛼2𝛽′
2
Γ(4)
𝛽′
1𝛽′

2;𝛽1𝛽2
𝐺(2)

𝛽1𝛼′
1
𝐺(2)

𝛽2𝛼′
2

(4.33)

between the four-point vertex and the four-point Green’s function. To represent this equation
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4 MANY-BODY PERTURBATION THEORY

diagrammatically, it is common to introduce additional symbols corresponding to the vertex and
four-point Green’s function. One draws the four-point vertex as and the four-point

correlation function as .

The diagrammatic representation of Eq. (4.33) is then given by:

Figure 4.3: Diagrammatic representation of the relation between vertex and four-point correlation
function.

This concludes the explanation of basics on many-body perturbation theory. We will refer back
to many formulas and principles developed in this chapter in later calculations. Next up is using
perturbation techniques on an exemplary model, the Hubbard atom.
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5 SECOND-ORDER PERTURBATION THEORY FOR THE HUBBARD ATOM

5 Second-Order Perturbation Theory for the Hubbard
Atom

Now, the diagrammatic methods established in chapter 4 are going to be used on the Hubbard
atom introduced in section 4.1. This system is chosen specifically, as there exists an exact solution,
which can then later be compared to the expressions obtained from perturbation theory in the
context of Ward identities.
The quantities needed for this comparison are self-energy Σ and four-point vertex Γ(4) that can
be derived from one-body and two-body Green’s functions 𝐺(2) and 𝐺(4) as explained in section
4.2 and 4.3. Therefore, the perturbation series of 𝐺(2), 𝐺(4), Σ and Γ(4) will be evaluated up to
second-order in the interaction strength 𝑈

𝛽 .
5

At first, let us reformulate the Matsubara frequency representation of the action Eq. (3.44)
as

𝑆[ ̄𝑐, 𝑐] = ∑
𝑖𝑗,𝑛

̄𝑐𝑖𝑛[(−𝑖𝜔𝑛 − 𝜇)𝛿𝑖𝑗 + ℎ𝑖𝑗]𝑐𝑗𝑛 + 1
𝛽

∑
𝑖𝑗𝑘𝑙,𝑛𝑖

𝑉𝑖𝑗𝑘𝑙 ̄𝑐𝑖𝑛1
̄𝑐𝑗𝑛2

𝑐𝑘𝑛3
𝑐𝑙𝑛4

𝛿𝑛1+𝑛2;𝑛3+𝑛4

= ∑
𝜎,𝑛

̄𝑐𝜎,𝑛(−𝑖𝜔𝑛 − 𝜇)𝑐𝜎,𝑛 − 𝑈
𝛽
∑
{𝑛𝑖}

̄𝑐↑𝑛1
̄𝑐↓𝑛2

𝑐↑𝑛3
𝑐↓𝑛4

𝛿𝑛1+𝑛2;𝑛3+𝑛4

(5.1)

in terms of the properties of the Hubbard atom Hamiltonian 𝐻̂GK = 𝑈𝑛̂↑𝑛̂↓ − 𝜇(𝑛̂↑ + 𝑛̂↓). Here,
the sum over 𝜎 represents a summation over spins 𝜎 ∈ {↑, ↓}. Splitting the Hubbard atom action
up into interaction part 𝑆int and bare part 𝑆0 and expanding 𝑒−𝑆int as in Eq. (4.10) yields

𝑒−𝑆int ≈ 1 + 𝑈
𝛽
∑
{𝑛𝑖}

̄𝑐↑𝑛1
̄𝑐↓𝑛2

𝑐↑𝑛3
𝑐↓𝑛4

𝛿𝑛1+𝑛2;𝑛3+𝑛4

+ 𝑈2

2𝛽2 ∑
{𝑛𝑖}

̄𝑐↑𝑛1
̄𝑐↓𝑛2

𝑐↑𝑛3
𝑐↓𝑛4

𝛿𝑛1+𝑛2;𝑛3+𝑛4
∑
{𝑚𝑖}

̄𝑐↑𝑚1
̄𝑐↓𝑚2

𝑐↑𝑚3
𝑐↓𝑚4

𝛿𝑚1+𝑚2;𝑚3+𝑚4

(5.2)

With the expression above, let us now compute the perturbation series up to second-order of the
one-body Green’s function.

5.1 One-Body Green’s Function

The general expression corresponding to the time-representation of the one-body Green’s function
is given by Eq. (4.9). Because of its periodicity, it can be expanded as a Fourier series

𝐺(2)(𝜏) = 1
𝛽

∞
∑

𝑛=−∞
𝑒−𝑖𝜔𝑛𝜏𝐺(2)(𝜔𝑛) (5.3) 𝐺(2)(𝜔𝑛) = ∫

𝛽

0
d𝜏𝑒𝑖𝜔𝑛𝜏𝐺(2)(𝜏) (5.4)

in terms of the Matsubara frequencies as defined in Eq. (3.37) with 𝑛 ∈ ℤ. Inserting the definition
of the Green’s function in time representation and the expansions of Grassmann numbers in terms
of Matsubara frequencies Eq. (3.38) and Eq. (3.39), results in

𝐺(2)
𝜎,𝜎′(𝜔𝑛) = −⟨𝑐𝜎𝑛 ̄𝑐𝜎′𝑛⟩ (5.5)

5It may seem unusual to expand in 𝑈
𝛽 , as it is not a dimensionless quantity. This is due to the convention chosen

throughout this thesis, which entails that the dimensions of all correlation functions match accordingly. Therefore, it
makes sense to expand in 𝑈

𝛽 .
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5 SECOND-ORDER PERTURBATION THEORY FOR THE HUBBARD ATOM

with spin indices 𝜎 and 𝜎′. This is the quantity we are calculating in the following. Note, that the
Hubbard atom Hamiltonian doesn’t contain any spin-flip terms. Thus, for the two-point correlation
function 𝐺(2)

𝜎,𝜎′(𝜔𝑛) only the case 𝜎 = 𝜎′ needs to be considered, since correlation functions with
distinct spin components would vanish. Explicitly, 𝐺(2)

𝜎 (𝜔𝑛) then reads

𝐺(2)
𝜎 (𝜔𝑛) = −𝑍0

𝑍
1
𝑍0

∫𝐷( ̄𝑐, 𝑐)𝑐𝜎𝑛 ̄𝑐𝜎𝑛𝑒−𝑆0 (1 − 𝑆int +
1
2
(𝑆int)2 + 𝒪(𝑈3

𝛽3 )) . (5.6)

For the expansion of 𝑆int, one inserts Eq. (5.1) above. To begin, the zero-order contribution 𝐺0 is
evaluated as

𝐺(2)
0 (𝜔𝑛) = −𝑍0

𝑍
1
𝑍0

∫𝐷( ̄𝑐, 𝑐)𝑐𝜎𝑛 ̄𝑐𝜎𝑛𝑒
−∑𝜎̃,𝑛 ̄𝑐𝜎̃,𝑛(−𝑖𝜔𝑛−𝜇)𝑐𝜎̃,𝑛 . (5.7)

The integral is solved as
𝐺(2)

0 (𝜔𝑛) =
1

𝑖𝜔𝑛 + 𝜇
(5.8)

by applying identity Eq. (3.15). Diagrammatically, this corresponds to the bare propagator:

Figure 5.1: Zero-order contribution to the one-body Greens function for the Hubbard atom.

Next, we focus on higher-order contributions. The first-order of 𝐺(2)
𝜎 reads

𝐺(2)
1|𝜎(𝜔𝑛) = −𝑍0

𝑍
1
𝑍0

∫𝐷( ̄𝑐, 𝑐)𝑐𝜎𝑛 ̄𝑐𝜎𝑛𝑒−𝑆0
𝑈
𝛽
∑
{𝑛𝑖}

̄𝑐↑𝑛1
̄𝑐↓𝑛2

𝑐↑𝑛3
𝑐↓𝑛4

𝛿𝑛1+𝑛2;𝑛3+𝑛4

= −𝑈
𝛽
∑
{𝑛𝑖}

⟨𝑐𝜎𝑛 ̄𝑐𝜎𝑛 ̄𝑐↑𝑛1
̄𝑐↓𝑛2

𝑐↑𝑛3
𝑐↓𝑛4

⟩𝛿𝑛1+𝑛2;𝑛3+𝑛4

𝑍0
𝑍

= −𝑈
𝛽
∑
{𝑛𝑖}

⟨𝑐𝜎𝑛𝑐↑𝑛3
𝑐↓𝑛4

̄𝑐𝜎𝑛 ̄𝑐↑𝑛1
̄𝑐↓𝑛2

⟩𝛿𝑛1+𝑛2;𝑛3+𝑛4

𝑍0
𝑍

,

(5.9)

where in the last step, the product of Grassmann variables was brought into anti-normal-order. As
for this a total of four pair-permutations of Grassmann variables were conducted, there is no sign
reversal to the expression.
The thermal average is then evaluated using Wick’s theorem, which was introduced in section 4.1.
Without loss of generality, we can assume 𝜎 =↑, as the correlation function for 𝜎 =↓ would be
numerically equivalent with vertically flipped diagrams. Applying Wick’s theorem, leads to

⟨𝑐↑𝑛𝑐↑𝑛3
𝑐↓𝑛4

̄𝑐↑𝑛 ̄𝑐↑𝑛1
̄𝑐↓𝑛2

⟩ = −⟨𝑐↑𝑛 ̄𝑐↑𝑛⟩0⟨𝑐↑,𝑛3
̄𝑐↑𝑛1

⟩0⟨𝑐↓𝑛4
̄𝑐↓𝑛2

⟩0𝛿𝑛1𝑛3
𝛿𝑛2𝑛4

+ ⟨𝑐↑𝑛 ̄𝑐↑𝑛1
⟩0⟨𝑐↑,𝑛3

̄𝑐↑𝑛⟩0⟨𝑐↓𝑛4
̄𝑐↓𝑛2

⟩0𝛿𝑛𝑛1
𝛿𝑛𝑛3

𝛿𝑛2𝑛4
,

(5.10)

where the first summand represents a disconnected diagram, whereas the diagram of second
summand is connected. Because of the factor 𝑍0

𝑍 , only connected diagrams need to be considered.
This is explained in section 4.1. The Hugenholtz diagram corresponding to the connected term
according to the rules discussed in section 4.1 is given by:

Figure 5.2: First-order contribution to the one-body correlation function for the Hubbard atom.

Inserting Eq. (5.10) back into Eq. (5.9), one obtains the first-order contribution to the one-body
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5 SECOND-ORDER PERTURBATION THEORY FOR THE HUBBARD ATOM

Green’s function

𝐺(2)
1|𝜎(𝜔𝑛) = −𝑈

𝛽
𝐺2

0(𝜔𝑛)∑
𝑛2

𝐺0(𝜔𝑛2
) = − 𝑈

𝛽(𝑖𝜔𝑛 + 𝜇)2
∑
𝑛2

1
𝑖𝜔𝑛2

+ 𝜇
, (5.11)

where in the last step the bare propagator from Eq. (5.8) was inserted. What remains to be done,
is the evaluation of the sum ∑𝑛2

. Sums of this type are called Matsubara frequency sums and
are analytically evaluated with the help of a weighting function ℎ and a contour integral in the
complex plane, which is explained in more detail in appendix B. In this chapter, only the solutions
to occurring Matsubara sums are written out explicitly. Following the procedure given in appendix
B, the first-order contribution 𝐺(2)

1|𝜎(𝜔𝑛) is evaluated as

𝐺(2)
1|𝜎(𝜔𝑛) = − 𝑈

(𝑖𝜔𝑛 + 𝜇)2
𝑒𝛽𝜇

1 + 𝑒𝛽𝜇
. (5.12)

To compute the second-order contribution to 𝐺(2)
𝜎 , one proceeds in the same way illustrated above for

the first-order. There are three distinct types of connected diagrams corresponding to second-order
contributions:

a) b) c)

Figure 5.3: Second-order contributions to the one-body Green’s function for the Hubbard atom.
Again, both spins corresponding to the input arguments were chosen as ↑.

Mathematically, the first diagram Fig. 5.3a is expressed as

𝐺(2)
2,1|𝜎 = 𝑈2

𝛽2 𝐺
2
0(𝜔𝑛)∑

𝑛2

𝐺2
0(𝜔𝑛2

) ∑
𝑖𝜔𝑚1

𝐺0(𝜔𝑚1
). (5.13)

Note, that the factor 1
2 was canceled, as the term of the diagram shown in Fig. 5.3 contributes

two times to the one-body Green’s function, as exchanging the roles of the vertices leads to the
same diagram, just flipped horizontally. However, in terms of mathematical expressions this flipped
diagram is equivalent to the diagram shown in Fig. 5.3. The factor 2 due to the possibility of
exchanging the vertices arises for the following contributions to 𝐺(2)

𝜎 as well.
Evaluating both Matsubara frequency sums from Eq. (5.13), 𝐺(2)

2,1|𝜎 is given by

𝐺(2)
2,1 = − 𝑒2𝛽𝜇𝑈2𝛽

(1 + 𝑒𝛽𝜇)3(𝑖𝜔𝑛 + 𝜇)2
. (5.14)

Another diagram corresponding to 𝐺(2)
2 can be seen in Fig. 5.3b. It is transformed into

𝐺(2)
2,2|𝜎 = 𝑈2

𝛽2 𝐺
3
0(𝜔𝑛)∑

𝑛2

𝐺0(𝜔𝑛2
)∑

𝑚2

𝐺0(𝜔𝑚2
) = 𝑒2𝛽𝜇𝑈2

(1 + 𝑒𝛽𝜇)2(𝑖𝜔𝑛 + 𝜇)3
. (5.15)

Lastly, there is a third type of diagram representing a part of 𝐺(2)
𝜎 , namely Fig. 5.3c: In terms of
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equations, the third contribution reads

𝐺(2)
2,3|𝜎 = −𝑈2

𝛽2 𝐺
2
0(𝜔𝑛)∑

𝑛3

(𝐺0(𝜔𝑛3
)∑

𝑛2

𝐺0(𝜔𝑛2
)𝐺0(𝜔𝑛 + 𝜔𝑛2

− 𝜔𝑛3
)) . (5.16)

Applying residue theorem to the frequency sums, one obtains

𝐺(2)
2,3|𝜎 = − 𝑒𝛽𝜇𝑈2𝛽

(1 + 𝑒𝛽𝜇)2(𝑖𝜔𝑛 + 𝜇)3
. (5.17)

Now, all contributions to 𝐺(2)
𝜎 derived above are added. The one-particle Green’s function up to

second-order in 𝑈
𝛽 is thus expanded as

𝐺(2)
2|𝜎 = 1

𝑖𝜔𝑛 + 𝜇
− 𝑈𝑒𝛽𝜇

(𝑖𝜔𝑛 + 𝜇)2(1 + 𝑒𝛽𝜇)
+

𝑒𝛽𝜇𝑈2 (1 + 𝑒2𝛽𝜇 + 𝑒𝛽𝜇(2 − 𝛽(𝑖𝜔𝑛 + 𝜇)))
(1 + 𝑒𝛽𝜇)3(𝑖𝜔𝑛 + 𝜇)3

. (5.18)

From this expression, one can determine the self-energy up to second-order, which is the aim of the
next subsection.

5.2 Self-Energy

Revisiting the Dyson equation Eq. (4.29), the self-energy is composed of the one-particle irreducible
parts of diagrams of the one-body Green’s function. Hence, we assign self-energy contributions to
the diagrams from the previous section. The self-energy can be expanded in orders of 𝑈

𝛽 as well:

Σ = Σ1 +Σ2 + 𝒪(𝑈3

𝛽3 ) (5.19)

Therefore, the Dyson equation is expanded as

𝐺 ≈ 𝐺0 +𝐺0 (Σ1 +Σ2) (𝐺0 +𝐺0(Σ1 +Σ2)) ≈ 𝐺0 +𝐺0Σ1𝐺0 +𝐺0Σ1𝐺0Σ1𝐺0 +𝐺0Σ2𝐺0. (5.20)

Thus, the diagrams shown in Fig. 5.2, Fig. 5.3a, Fig. 5.3b and Fig. 5.3c can be related to the
self-energy. From them, the first-order contribution Σ1 and the second-order contribution Σ2 are
extracted. Diagrammatically, one has to ’cut off’ or amputate external Green’s functions:

Figure 5.4: First- and second-order contributions to the self-energy for the Hubbard atom.

For the Hubbard atom, the amputation of the Green’s function ‘legs’ is simply done by dividing
by the expressions corresponding to the respective propagators. The self-energy may therefore be
expressed as

Σ𝜎(𝜔𝑛) = − 𝑈𝑒𝛽𝜇

(1 + 𝑒𝛽𝜇)
−

𝑒𝛽𝜇𝑈2 (−1 + 𝑒𝛽𝜇(−1 + 𝛽(𝑖𝜔𝑛 + 𝜇)))
(1 + 𝑒𝛽𝜇)3(𝑖𝜔𝑛 + 𝜇)

+ 𝒪(𝑈3

𝛽3 ) . (5.21)

As the self-energy is not dependent on the spin argument 𝜎, it has the same mathematical value
for 𝜎 =↑ and 𝜎 =↓.
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𝜔
−20 0 20

Im
[Σ

(𝜔
)]

−0.02

−0.01

0.00

0.01

0.02

𝜔
−20 0 20

R
e[

Σ
(𝜔

)]

−0.2405

−0.2400

−0.2395

−0.2390

Figure 5.5: Real and imaginary part of the self-energy from second-order perturbation theory for
𝛽 = 1, 𝑈 = 0.5, 𝜇 = −0.3.

5.3 Two-body Green’s function

We proceed in the same way as for the one-body Green’s function to derive the vertex according to
Eq. (4.33). Expanding the exponential factor 𝑒−𝑆int , the starting point for the perturbative series of
𝐺(4) is given by

𝐺(4)
𝜎1𝜎2;𝜎3𝜎4(𝜔𝑛1

, 𝜔𝑛2
𝜔𝑛3

, 𝜔𝑛4
) = 𝑍0

𝑍
1
𝑍0

∫𝐷( ̄𝑐, 𝑐)𝑐𝜎1𝑛1
𝑐𝜎2𝑛2

̄𝑐𝜎3𝑛3
̄𝑐𝜎4𝑛4𝑒

−𝑆0

×(1 − 𝑆int +
1
2
(𝑆int)2 + 𝒪(𝑈3

𝛽3 ))𝛿𝑛1+𝑛2;𝑛3+𝑛4
.

(5.22)

This time, we have to distinguish different combinations of spins 𝜎1 to 𝜎4. There are two possible
cases which do not vanish:

case 1: 𝜎1 = 𝜎3; 𝜎2 = 𝜎4 ≠ 𝜎1

case 2: 𝜎1 = 𝜎2 = 𝜎3 = 𝜎4
(5.23)

5.3.1 Two-Body Green’s Function for Spin Arguments (↑↑↑↓↓↓;↑↑↑↓↓↓)

At first, case 1 from Eq. (5.23) is treated. Without loss of generality, we can assume the spin
arguments to be 𝜎1 = 𝜎3 =↑; 𝜎2 = 𝜎4 =↓. Other combinations of spins according to case 1 would
result in flipped diagrams and identical mathematical expressions. Taking only the first-order term
of Eq. (5.22) into consideration, one needs to evaluate

𝐺(4)
1|↑↓;↑↓(𝜔𝑛𝑖

) = 𝑍0
𝑍

𝑈
𝛽

∑
{𝑚𝑖}

⟨𝑐↑,𝑛1
𝑐↓,𝑛2

𝑐↑,𝑚3
𝑐↓,𝑚4

̄𝑐↑,𝑛3
̄𝑐↓,𝑛4

̄𝑐↑,𝑚1
̄𝑐↓,𝑚2

⟩0𝛿𝑛1+𝑛2;𝑛3+𝑛4
𝛿𝑚1+𝑚2;𝑚3+𝑚4

.

(5.24)
In first-order there is only one connected diagram representing 𝐺(4)

1 , which is depicted in Fig. 5.6.

Figure 5.6: First-order contribution to the two-body Green’s function(↑↓↑↓) for the Hubbard
atom.

Transforming it into a mathematical expression, reads

𝐺(4)
1|↑↓;↑↓(𝜔𝑛𝑖

) = 𝑈
𝛽
𝐺0(𝜔𝑛1

)𝐺0(𝜔𝑛2
)𝐺0(𝜔𝑛3

)𝐺0(𝜔𝑛4
). (5.25)
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5 SECOND-ORDER PERTURBATION THEORY FOR THE HUBBARD ATOM

Because of frequency conservation, the Matsubara frequenccy 𝜔𝑛4
can be expressed as 𝜔𝑛1

+𝜔𝑛2
−𝜔𝑛3

.
Next, the second-order contribution

𝐺(4)
2|↑↓;↑↓(𝜔𝑛𝑖

) = 𝑍0
𝑍

𝑈2

2𝛽2 ∑
{𝑚𝑖,𝑙𝑖}

⟨𝑐↑,𝑛1
𝑐↓,𝑛2

𝑐↑,𝑚3
𝑐↓,𝑚4

𝑐↑,𝑙3𝑐↓,𝑙4 ̄𝑐↑,𝑛3
̄𝑐↓,𝑛4

̄𝑐↑,𝑚1
̄𝑐↓,𝑚2

̄𝑐↑,𝑙1 ̄𝑐↓,𝑙2⟩0

× 𝛿𝑛1+𝑛2;𝑛3+𝑛4
𝛿𝑚1+𝑚2;𝑚3+𝑚4

𝛿𝑙1+𝑙2;𝑙3+𝑙4

(5.26)

is analyzed. We are once again only considering connected diagrams. There are twelve connected
diagrams, but only six distinct diagram types, as half of them can be generated from the others by
exchanging vertices. Below, they will be listed with their corresponding equations:

a) b) c)

d) e) f)

Figure 5.7: Second-order contributions to the two-body Green’s function (↑↓↑↓) for the Hubbard
atom.

Expression Fig. 5.7a:

𝐺(4)
2,1|↑↓;↑↓(𝜔𝑛𝑖

) = −𝑈2

𝛽2 𝐺0(𝜔𝑛1
)𝐺0(𝜔𝑛2

)𝐺0(𝜔𝑛3
)𝐺0(𝜔𝑛4

)∑
𝑙1

𝐺0(𝜔𝑙1)

= − 𝑈2𝑒𝛽𝜇

𝛽(1 + 𝑒𝛽𝜇)
1

(𝑖𝜔𝑛1
+ 𝜇)(𝑖𝜔𝑛2

+ 𝜇)(𝑖𝜔𝑛3
+ 𝜇)(𝑖𝜔𝑛1

+ 𝑖𝜔𝑛2
− 𝑖𝜔𝑛3

+ 𝜇)2

(5.27)

Expression Fig. 5.7b:

𝐺(4)
2,2|↑↓;↑↓(𝜔𝑛𝑖

) = −𝑈2

𝛽2 𝐺0(𝜔𝑛1
)𝐺0(𝜔𝑛2

)𝐺0(𝜔𝑛3
)2𝐺0(𝜔𝑛4

)∑
𝑙2

𝐺0(𝜔𝑙2)

= − 𝑈2𝑒𝛽𝜇

𝛽(1 + 𝑒𝛽𝜇)
1

(𝑖𝜔𝑛1
+ 𝜇)(𝑖𝜔𝑛2

+ 𝜇)(𝑖𝜔𝑛3
+ 𝜇)2(𝑖𝜔𝑛1

+ 𝑖𝜔𝑛2
− 𝑖𝜔𝑛3

+ 𝜇)

(5.28)

Expression Fig. 5.7c:

𝐺(4)
2,3|↑↓;↑↓(𝜔𝑛𝑖

) = 𝑈2

𝛽2 𝐺0(𝜔𝑛1
)𝐺0(𝜔𝑛2

)𝐺0(𝜔𝑛3
)𝐺0(𝜔𝑛4

)∑
𝑚3

(𝐺0(𝜔𝑚3
)𝐺0(𝜔𝑛1

+ 𝜔𝑛2
− 𝜔𝑚3

))

= 𝑈2(𝑒𝛽𝜇 − 1)
𝛽(1 + 𝑒𝛽𝜇)(2𝜇 + 𝑖𝜔𝑛1

+ 𝑖𝜔𝑛2
)

× 1
(𝑖𝜔𝑛1

+ 𝜇)(𝑖𝜔𝑛2
+ 𝜇)(𝑖𝜔𝑛3

+ 𝜇)(𝑖𝜔𝑛1
+ 𝑖𝜔𝑛2

− 𝑖𝜔𝑛3
+ 𝜇)

(5.29)
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a) b)

Figure 5.8: Second-order contributions to the two-body Green’s function(↑↑↑↑) for the Hubbard
atom

Expression Fig. 5.7d:

𝐺(4)
2,4|↑↓;↑↓(𝜔𝑛𝑖

) = −𝑈2

𝛽2 𝐺0(𝜔𝑛1
)𝐺0(𝜔𝑛2

)2𝐺0(𝜔𝑛3
)𝐺0(𝜔𝑛4

)∑
𝑙1

𝐺0(𝜔𝑙1)

= − 𝑈2𝑒𝛽𝜇

𝛽(1 + 𝑒𝛽𝜇)
1

(𝑖𝜔𝑛1
+ 𝜇)(𝑖𝜔𝑛2

+ 𝜇)2(𝑖𝜔𝑛3
+ 𝜇)(𝑖𝜔𝑛1

+ 𝑖𝜔𝑛2
− 𝑖𝜔𝑛3

+ 𝜇)

(5.30)

Expression Fig. 5.7e:

𝐺(4)
2,5|↑↓;↑↓(𝜔𝑛𝑖

) = 𝑈2

𝛽2 𝐺0(𝜔𝑛1
)𝐺0(𝜔𝑛2

)𝐺0(𝜔𝑛3
)𝐺0(𝜔𝑛4

)∑
𝑚2

(𝐺0(𝜔𝑚2
)𝐺0(𝜔𝑚2

− 𝜔𝑛2
+ 𝜔𝑛3

))

= −𝛿𝑛2𝑛3

𝑈2𝑒𝛽𝜇

(1 + 𝑒𝛽𝜇)2
1

(𝑖𝜔𝑛1
+ 𝜇)2(𝑖𝜔𝑛3

+ 𝜇)2

(5.31)

Expression Fig. 5.7f:

𝐺(4)
2,6|↑↓;↑↓(𝜔𝑛𝑖

) = −𝑈2

𝛽2 𝐺0(𝜔𝑛1
)2𝐺0(𝜔𝑛2

)𝐺0(𝜔𝑛3
)𝐺0(𝜔𝑛4

)∑
𝑚2

𝐺0(𝜔𝑚2
)

= − 𝑈2𝑒𝛽𝜇

𝛽(1 + 𝑒𝛽𝜇)
1

(𝑖𝜔𝑛1
+ 𝜇)2(𝑖𝜔𝑛2

+ 𝜇)(𝑖𝜔𝑛3
+ 𝜇)(𝑖𝜔𝑛1

+ 𝑖𝜔𝑛2
− 𝑖𝜔𝑛3

+ 𝜇)

(5.32)

Adding these terms would yield the second-order contribution to the connected two-particle Green’s
function for spin arguments as in case 1.

5.3.2 Two-Body Green’s Function for Spin Arguments (↑↑↑↑↑↑;↑↑↑↑↑↑)

After computing 𝐺(4) for the spin combination defined in the first case, we proceed accordingly for
the spin combinations in case 2 from Eq. (5.23). Without loss of generality 𝜎1 = 𝜎2 = 𝜎3 = 𝜎4 =↑
is assumed. Again, we only consider connected diagrams. If all spin components are chosen equal,
there are no contributions in first-order to 𝐺(4). In second-order, one can only draw two connected
diagram types, which are depicted in Fig. 5.8. Below are again written down the equations derived
from both diagrams.

Expression Fig. 5.8a:

𝐺(4)
2,1|↑↑;↑↑(𝜔𝑛𝑖

) = −𝑈2

𝛽2 𝐺0(𝜔𝑛1
)𝐺0(𝜔𝑛2

)𝐺0(𝜔𝑛3
)𝐺0(𝜔𝑛4

)∑
𝑚2

(𝐺0(𝜔𝑚2
)𝐺0(𝜔𝑚2

+ 𝜔𝑛1
− 𝜔𝑛3

))

= 𝛿𝑛1𝑛3

𝑈2𝑒𝛽𝜇

(1 + 𝑒𝛽𝜇)2
1

(𝑖𝜔𝑛1
+ 𝜇)2(𝑖𝜔𝑛2

+ 𝜇)2

(5.33)
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Re[Γ ↑ ↓ ; ↑ ↓ ] − U/𝛽 :

𝜔1
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𝜔1
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𝜔1 = 𝜋T
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0.000

0.005

0.010

Im[Γ ↑ ↓ ; ↑ ↓ ] :

Figure 5.9: Four-point vertex Γ↑↓;↑↓ in second-order perturbation theory for chemical potential
𝜇 = −0.8, 𝛽 = 1 and 𝑈 = 0.5. 𝜔r stands for the frequency index, for which the frequency was not
set equal to 𝜋

𝛽 and not plotted along the x-axis.

Expression Fig. 5.8b:

𝐺(4)
2,2|↑↑;↑↑(𝜔𝑛𝑖

) = 𝑈2

𝛽2 𝐺0(𝜔𝑛1
)𝐺0(𝜔𝑛2

)𝐺0(𝜔𝑛3
)𝐺0(𝜔𝑛4

)∑
𝑚2

(𝐺0(𝜔𝑚2
)𝐺0(𝜔𝑚2

+ 𝜔𝑛3
− 𝜔𝑛2

))

= −𝛿𝑛2𝑛3

𝑈2𝑒𝛽𝜇

(1 + 𝑒𝛽𝜇)2
1

(𝑖𝜔𝑛1
+ 𝜇)2(𝑖𝜔𝑛3

+ 𝜇)2

(5.34)

With above diagrams and expressions, we are finally able to calculate the four-point vertex up to
second-order in 𝑈

𝛽 . This is illustrated in the next section.

5.4 Four-point Vertex

As the four-point vertex is a quantity which will be used to check Ward identities for the Hubbard
atom later, it is the last quantity for which a perturbation expansion up to second-order will be
determined. According to Eq. (4.33), the vertex can be related to the two-body Green’s function
by amputating parts corresponding to the one-body connected Green’s function. Again, we need to
distinguish between the different cases Eq. (5.23) for the spin of the arguments of 𝐺(4).

5.4.1 Four-Point Vertex for Spin Arguments (↑↑↑↓↓↓;↑↑↑↓↓↓)

To begin, we will concentrate on case 1 (𝜎1 = 𝜎3 =↑; 𝜎2 = 𝜎4 =↓). Comparing the diagrams of
𝐺(2) in section 5.1 and of 𝐺(4) in section 5.3, following diagrams are part of the vertex in first and
second-order:
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5 SECOND-ORDER PERTURBATION THEORY FOR THE HUBBARD ATOM

Figure 5.10: Second-order contributions to the four-point vertex(↑↓↑↓) for the Hubbard atom

After amputation, we obtain a mathematical expression for the four-point vertex

Γ↑↓;↑↓(𝜔𝑛𝑖
) = 𝑈

𝛽
+ 𝑈2

𝛽
( 𝑒𝛽𝜇 − 1
(1 + 𝑒𝛽𝜇)(2𝜇 + 𝑖(𝜔𝑛1

+ 𝜔𝑛2
))
)− 𝛿𝑛2𝑛3

( 𝑈2𝑒𝛽𝜇

(1 + 𝑒𝛽𝜇)2
)+𝒪(𝑈3

𝛽3 ) . (5.35)

Again, we just divide by the one-body Green’s functions, which are ‘cut’ in order to generate
the vertex diagrams from the diagrams of 𝐺(4). The real and imaginary part of the above vertex
contribution are depicted in Fig. 5.9.

5.4.2 Four-Point Vertex for Spin Arguments (↑↑↑↑↑↑;↑↑↑↑↑↑)

Repeating this whole procedure for case 2, in which all spins of the arguments of 𝐺(4) are equal,
the vertex corresponding to this spin combination is given by:

Figure 5.11: Second-order contributions to the four-point vertex(↑↑↑↑) for the Hubbard atom

Translating these diagrams into a formula, results in

Γ↑↑;↑↑(𝜔𝑛𝑖
) = ( 𝑈2𝑒𝛽𝜇

(1 + 𝑒𝛽𝜇)2
)(𝛿𝑛1𝑛3

− 𝛿𝑛2𝑛3
) + 𝒪(𝑈3

𝛽3 ) . (5.36)

The result for Γ↑↑;↑↑ is illustrated in Fig. 5.12.
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0.03

Re[Γ ↑ ↑ ; ↑ ↑ ] :

Figure 5.12: Real part of the four-point vertex Γ↑↑;↑↑ in second-order perturbation theory for
chemical potential 𝜇 = −0.8, 𝛽 = 1 and 𝑈 = 0.5. The imaginary part of Γ↑↑;↑↑ in second-order
perturbation theory is equal to 0. 𝜔r stands for the frequency index, for which the frequency was
not set equal to 𝜋

𝛽 and not plotted along the x-axis.
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5 SECOND-ORDER PERTURBATION THEORY FOR THE HUBBARD ATOM

Now, we have acquired all preliminary results necessary for the actual topic of this thesis, the
Ward identities. At last, in the subsequent chapter symmetries are covered from a functional field
perspective. This will also serve as our starting point for the derivation of Ward identities for the
Hubbard atom.
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6 DERIVATION OF WARD IDENTITIES FOR THE HUBBARD ATOM

6 Derivation of Ward Identities for the Hubbard Atom

In this section, a general formalism to derive Ward identities from functional integrals will be
introduced. This functional ansatz is then employed to find the Ward identity corresponding to
the U(1)-symmetry of the Hubbard atom. Before covering the methods necessary for the following
derivations, let’s first address the definition of Ward identities in general. First discovered in 1950
by John Clive Ward [9], they were further developed by Takahashi [10] and are therefore sometimes
also referred to as Ward-Takahashi identities. Depending on the respective literature, there may
be slight differences between Ward identities and Ward-Takahashi identities in terms of their
exact definition and applicability range. In this thesis, we will refer to all exact relations between
correlation functions of different order as Ward identities. Ward identities originate from symmetries
of a system, which we will see later. As Ward identities are exact and always supposed to hold
due to their dependence on fundamental symmetries of the respective physical system, one can
for example use them to verify the quality of an approximation by substituting the approximated
quantities into a Ward identity and checking, if it still holds true.
However, in order to do this we need to be able to associate symmetries with their corresponding
Ward identities. Thus, the next subsection is dedicated to developing such an approach in the path
integral formalism.

6.1 Symmetry Transformations in the Functional Integral Formalism

Starting point for the derivation of a method to obtain Ward identities from symmetry transforma-
tions is the partition function with additional source terms

𝑍[ ̄𝐽 , 𝐽] = ∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐]+∫d4𝑥( ̄𝐽𝑛𝑐𝑛+ ̄𝑐𝑚𝐽𝑚). (6.1)

The definitions of the formula symbols are the same as in chapter 4.1, whereas the only change is the
additional integration of the source terms over the four-vector 𝑥 = (𝜏,x)T. Furthermore, Einstein
sum convention is used, which means one sums over repeated indices. Therefore, a summation
over 𝑛,𝑚 numbering the Grassmann numbers is implicit. Now, let us consider an infinitesimal
transformation of Grassmann variables

𝑐𝑛(𝑥) ↦ 𝑐′𝑛(𝑥) = 𝑐𝑛(𝑥) + 𝜖𝐹𝑛[𝑐𝑘, 𝑥] (6.2)

̄𝑐𝑚(𝑥) ↦ ̄𝑐′𝑚(𝑥) = ̄𝑐𝑚(𝑥) + 𝜖 ̄𝐹𝑚[ ̄𝑐𝑙, 𝑥]. (6.3)

Above, 𝜖 is a small parameter and 𝑘, 𝑙 index coherent states. Next, we express the partition function
𝑍 in terms of 𝑐′𝑛 and ̄𝑐′𝑚(𝑥). This is done by simply relabeling the Grassmann variables in Eq. (6.1)
to obtain

𝑍′[ ̄𝐽 , 𝐽] = ∫D( ̄𝑐′, 𝑐′)𝑒−𝑆[ ̄𝑐′,𝑐′]+∫d4𝑥( ̄𝐽𝑛𝑐′𝑛+ ̄𝑐′𝑚𝐽𝑚)

= ∫D( ̄𝑐, 𝑐)∣ det
𝛿 ̄𝑐′𝑚′(𝑦)
𝛿 ̄𝑐𝑚(𝑥)

∣∣det
𝛿𝑐′𝑛′(𝑦)
𝛿𝑐𝑛(𝑥)

∣

× 𝑒−𝑆[ ̄𝑐,𝑐]+∫d4𝑥( ̄𝐽𝑛𝑐𝑛+ ̄𝑐𝑚𝐽𝑚)+𝜖∫d4𝑥[ ̄𝐽𝑛𝐹𝑛+ ̄𝐹𝑚𝐽𝑚− 𝛿𝑆
𝛿 ̄𝑐𝑚

̄𝐹𝑚− 𝛿𝑆
𝛿𝑐𝑛

𝐹𝑛],

(6.4)

where in the last step, the integration measure was transformed, which generated the determinant
of the Jacobians for ̄𝑐′𝑛 and 𝑐′𝑛 as additional factors. Besides, the transformations Eq. (6.2), Eq.
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(6.3) were inserted and the action 𝑆 was expanded around ̄𝑐𝑛 and 𝑐𝑛 up to first-order in 𝜖. For
explicit representations of the transformation determinants

∣det
𝛿 ̄𝑐′𝑚′(𝑦)
𝛿 ̄𝑐𝑚(𝑥)

∣ = 𝑒tr log(1+𝜖
𝛿 ̄𝐹𝑚′
𝛿 ̄𝑐𝑚

), (6.5)

we make use of the identity log(det(𝐴)) = tr(log(𝐴)) for an arbitrary matrix A. Here, we also
calculated the functional derivative 𝛿 ̄𝑐′𝑚′(𝑦)

𝛿 ̄𝑐𝑚(𝑥) . Now, natural logarithm and exponential function are
expanded up to first-order in 𝜖 and the trace is evaluated:

∣det
𝛿 ̄𝑐′𝑚′(𝑦)
𝛿 ̄𝑐𝑚(𝑥)

∣ = 1 + (𝜖∫ d4𝑥∑
𝑚

𝛿 ̄𝐹𝑚
𝛿 ̄𝑐𝑚

)+ 𝒪(𝜖2) (6.6)

Accordingly, the transformation determinant corresponding to 𝑐′𝑛 and 𝑐𝑛 is given by

∣det
𝛿𝑐′𝑛′(𝑦)
𝛿𝑐𝑛(𝑥)

∣ = 1 + (𝜖∫ d4𝑥∑
𝑛

𝛿𝐹𝑛
𝛿𝑐𝑛

)+ 𝒪(𝜖2). (6.7)

Eq. (6.6) and Eq. (6.7) are substituted into 𝑍′ and the expression is again expanded to only
contain terms up to first-order in 𝜖:

𝑍′[ ̄𝐽 , 𝐽] = ∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐]+∫d4𝑥( ̄𝐽𝑛𝑐𝑛+ ̄𝑐𝑚𝐽𝑚)

×(1 + 𝜖∫ d4𝑥∑
𝑛,𝑚

(𝛿𝐹𝑛
𝛿𝑐𝑛

+ 𝛿 ̄𝐹𝑚
𝛿 ̄𝑐𝑚

)+ ̄𝐹𝑚𝐽𝑚 − 𝛿𝑆
𝛿 ̄𝑐𝑚

̄𝐹𝑚 + ̄𝐽𝑛𝐹𝑛 − 𝛿𝑆
𝛿𝑐𝑛

𝐹𝑛)+𝒪(𝜖2)
(6.8)

Since originally the transformation of the variables 𝑐𝑛, ̄𝑐𝑚 to 𝑐′𝑛, ̄𝑐′𝑚 was just a relabeling, the above
expression needs to be equal to Eq. (6.1). Therefore, setting 𝑍[ ̄𝐽 , 𝐽] = 𝑍′[ ̄𝐽 , 𝐽] leads to

0 = ∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐]+∫d4𝑥( ̄𝐽𝑛𝑐𝑛+ ̄𝑐𝑚𝐽𝑚)

×∫ d4𝑥(∑
𝑛,𝑚

(𝛿𝐹𝑛
𝛿𝑐𝑛

+ 𝛿 ̄𝐹𝑚
𝛿 ̄𝑐𝑚

)+ ̄𝐹𝑚𝐽𝑚 − 𝛿𝑆
𝛿 ̄𝑐𝑚

̄𝐹𝑚 + ̄𝐽𝑛𝐹𝑛 − 𝛿𝑆
𝛿𝑐𝑛

𝐹𝑛).
(6.9)

This is a highly important result and we will refer back to it later. Before proceeding with the
derivation, let us now briefly cover some terminology in the context of symmetry transformations.
Generally, a transformation is called a symmetry of a system, if it leaves its action invariant. In
quantum field theory, one can distinguish between internal and external symmetry transformations.
The former refers to transformations only affecting the fields 𝑐, ̄𝑐, whereas the latter includes a
transformation of the four-vector 𝑥 describing space-time. Additionally, symmetry transformations
which leave the measure invariant are called non-anomalous, and ones that do change the measure
are called anomalous. In this thesis, only non-anomalous internal symmetries will be covered.
Lastly, symmetries can either be global or local. The transformation corresponding to a global
symmetry does not depend on the space-time point 𝑥, whereas in the case of a local symmetry the
transformation parameters are dependent on 𝑥.
Let us now consider a local non-anomalous symmetry and simplify Eq. (6.9) according to this
assumption. As the measure is invariant under a non-anomalous transformation, the partial
derivatives which arise from transforming 𝐷( ̄𝑐′, 𝑐′) to 𝐷( ̄𝑐, 𝑐) vanish. Therefore, we are left with

0 = ∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐]+∫d4𝑥( ̄𝐽𝑛𝑐𝑛+ ̄𝑐𝑚𝐽𝑚) ∫d4𝑥( ̄𝐹𝑚𝐽𝑚 − 𝛿𝑆
𝛿 ̄𝑐𝑚

̄𝐹𝑚 + ̄𝐽𝑛𝐹𝑛 − 𝛿𝑆
𝛿𝑐𝑛

𝐹𝑛) . (6.10)
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6 DERIVATION OF WARD IDENTITIES FOR THE HUBBARD ATOM

Now, let us consider some terms in Eq. (6.10) separately. More specifically, we try to relate the
expression to the Noether current. As a quick reminder, the Noether theorem tells us that from
every symmetry of the action there arises a conserved quantity, which is called the Noether current.
In the following, we are concerned with finding a field-theoretical version of this quantity. Thus, we
reformulate the action terms in Eq. (6.10) as

∫d4𝑥( 𝛿𝑆
𝛿 ̄𝑐𝑚

̄𝐹𝑚 + 𝛿𝑆
𝛿𝑐𝑛

𝐹𝑛)𝜖(𝑥)

= ∫ d4𝑥[( 𝜕ℒ
𝜕 ̄𝑐𝑚

− 𝜕𝜇
𝜕ℒ

𝜕(𝜕𝜇 ̄𝑐𝑚)
) ̄𝐹𝑚 +( 𝜕ℒ

𝜕𝑐𝑛
− 𝜕𝜇

𝜕ℒ
𝜕(𝜕𝜇𝑐𝑛)

)𝐹𝑛]𝜃(𝑥),
(6.11)

where 𝜃 denotes the transformation parameter, which is dependent on the space-time point 𝑥 in
the case of a local symmetry transformation and the Lagrangian ℒ corresponding to the action 𝑆.
Greek indices like 𝜇 in Eq. (6.11) number the indices of four-vectors from 0 to 3. In the second
step, the Euler-Lagrange equations for fields were inserted for the variation of the action. Next, we
apply chain rule:

∫d4𝑥( 𝛿𝑆
𝛿 ̄𝑐𝑚

̄𝐹𝑚 + 𝛿𝑆
𝛿𝑐𝑛

𝐹𝑛)𝜃(𝑥) = ∫ d4𝑥[ 𝜕ℒ
𝜕 ̄𝑐𝑚

̄𝐹𝑚 + 𝜕ℒ
𝜕(𝜕𝜇 ̄𝑐𝑚)

𝜕𝜇 ̄𝐹𝑚 − 𝜕𝜇 (
𝜕ℒ

𝜕(𝜕𝜇 ̄𝑐𝑚)
̄𝐹𝑚)

+ 𝜕ℒ
𝜕𝑐𝑛

𝐹𝑛 + 𝜕ℒ
𝜕(𝜕𝜇𝑐𝑛)

𝜕𝜇𝐹𝑛 − 𝜕𝜇 (
𝜕ℒ

𝜕(𝜕𝜇𝑐𝑛)
𝐹𝑛)]𝜃(𝑥)

(6.12)

Regrouping some terms in Eq. (6.12), we can formulate them as one derivative of the Lagrangian
density with respect to the transformation parameter

𝜕ℒ
𝜕 ̄𝑐𝑚

̄𝐹𝑚 + 𝜕ℒ
𝜕(𝜕𝜇 ̄𝑐𝑚)

𝜕𝜇 ̄𝐹𝑚 + 𝜕ℒ
𝜕𝑐𝑛

𝐹𝑛 + 𝜕ℒ
𝜕(𝜕𝜇𝑐𝑛)

𝜕𝜇𝐹𝑛

=
𝜕ℒ( ̄𝑐 + 𝜖𝜃 ̄𝐹 , 𝑐 + 𝜖𝜃𝐹 , 𝜕𝜇( ̄𝑐 + 𝜖𝜃 ̄𝐹 ), 𝜕𝜇(𝑐 + 𝜖𝜃𝐹))

𝜖𝜕𝜃

= 1
𝜖
(ℒ( ̄𝑐′, 𝑐′, 𝜕𝜇 ̄𝑐′, 𝜕𝜇𝑐′) − ℒ( ̄𝑐, 𝑐, 𝜕𝜇 ̄𝑐, 𝜕𝜇𝑐)) =

1
𝜖
𝛿ℒ.

(6.13)

We define this variation of the Lagrangian density as

1
𝜖
𝛿ℒ ≡ 𝜕𝜇𝐽0. (6.14)

Substituting this back into Eq. (6.13), the partial derivatives of the action are given by

∫d4𝑥( 𝛿𝑆
𝛿 ̄𝑐𝑚

̄𝐹𝑚 + 𝛿𝑆
𝛿𝑐𝑛

𝐹𝑛)𝜃(𝑥) = ∫ d4𝑥𝜕𝜇 (𝐽0 −
𝜕ℒ

𝜕(𝜕𝜇 ̄𝑐𝑚)
̄𝐹𝑚 − 𝜕ℒ

𝜕(𝜕𝜇𝑐𝑛)
𝐹𝑛)𝜃(𝑥)

= −∫ d4𝑥𝜕𝜇𝑗𝜇𝜃(𝑥),
(6.15)

where the Noether current was defined as 𝑗𝜇 ≡ 𝜕ℒ
𝜕(𝜕𝜇 ̄𝑐𝑛)

̄𝐹𝑛 + 𝜕ℒ
𝜕(𝜕𝜇𝑐𝑛)

𝐹𝑛 − 𝐽0. Inserting this into
our original expression Eq. (6.10) and taking the fact into consideration that 𝜃(𝑥) is an arbitrary
function of 𝑥, for a local non-anomalous symmetry the identity

∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐]+∫d4𝑥( ̄𝐽𝑛𝑐𝑛+ ̄𝑐𝑚𝐽𝑚)( ̄𝐹𝑚𝐽𝑚 + ̄𝐽𝑛𝐹𝑛 + 𝜕𝜇𝑗𝜇) = 0 (6.16)

must hold. This identity is now written out explicitly for specific symmetry transformations fulfilling
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6 DERIVATION OF WARD IDENTITIES FOR THE HUBBARD ATOM

the conditions specified in the former paragraph. We demonstrate this by considering the U(1)
symmetry transformation for the Hubbard atom in the next section.

6.2 U(1) Ward Identity for the Hubbard Atom

Various symmetries of the Hubbard model are listed in Tab. 2.1. To each continuous symmetry there
is a corresponding symmetry transformation, Noether current and ultimately a corresponding Ward
identity. At first, we will focus on the U(1) symmetry, which describes the invariance of the Hubbard
atom action under the addition of a global phase to all Grassmann fields, as its transformation is
rather simple compared to the other symmetries. In particular, the U(1) transformation reads:

𝑐′𝜎 = 𝑒𝑖𝜙𝑐𝜎 (6.17) ̄𝑐′𝜎 = 𝑒−𝑖𝜙 ̄𝑐𝜎 (6.18)

with 𝜎 denoting the spin and 𝜙 ∈ [0, 2𝜋). If 𝜙 is replaced by 𝜖 << 1, the transformations 𝐹 and ̄𝐹
are given by:

𝐹𝜎 = 𝑖𝑐𝜎 (6.19) ̄𝐹𝜎 = −𝑖 ̄𝑐𝜎 (6.20)

To derive the Noether current for this case, we first need an expression for the Lagrangian, which is
related to the action by time differentiation, as there isn’t any dependence on space in the Hubbard
atom action. In time representation, the action for the Hubbard atom is defined as

𝑆[ ̄𝑐, 𝑐] = ∫
𝛽

0
d𝜏( ̄𝑐𝜕𝜏𝑐 + 𝐻( ̄𝑐, 𝑐) − 𝜇𝑁( ̄𝑐, 𝑐)). (6.21)

Inserting the expressions from chapter 1 and differentiating with respect to 𝜏, yields the Lagrangian

ℒ = ∑
𝜎

̄𝑐𝜎𝜕𝜏𝑐𝜎 − 𝑈 ̄𝑐↑ ̄𝑐↓𝑐↑𝑐↓ − 𝜇( ̄𝑐↑𝑐↑ + ̄𝑐↓𝑐↓). (6.22)

Let us now derive an expression for the Noether current for this specific Lagrangian. The value of
𝐽0 is determined by the variation of the Lagrangian under U(1) transformation. Substituting the
transformed variables ̄𝑐′𝜎, 𝑐′𝜎, the Lagrangian is invariant under a U(1) symmetry transformation:

ℒ( ̄𝑐′, 𝑐′) = 𝑒−𝑖𝜙𝑒𝑖𝜙 (∑
𝜎

̄𝑐𝜎𝜕𝜏𝑐𝜎)−𝑒−𝑖𝜙𝑒−𝑖𝜙𝑒𝑖𝜙𝑒𝑖𝜙𝑈 ̄𝑐↑ ̄𝑐↓𝑐↑𝑐↓−𝑒−𝑖𝜙𝑒𝑖𝜙𝜇( ̄𝑐↑𝑐↑+ ̄𝑐↓𝑐↓) = ℒ( ̄𝑐, 𝑐) (6.23)

and therefore
𝛿ℒ = 0 ⇒ 𝐽0 = 0. (6.24)

According to Eq. (6.15), the Noether current

𝑗𝜇 = 𝑗𝜏 = −𝑖∑
𝜎

̄𝑐𝜎𝑐𝜎 (6.25)

is obtained. Let us reconsider Eq. (6.10) for the U(1) symmetry:

∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐]+∫d4𝑥( ̄𝐽𝑛𝑐𝑛+ ̄𝑐𝑚𝐽𝑚)𝜕𝜏𝑗𝜏

= −∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐]+∫d4𝑥( ̄𝐽𝑛𝑐𝑛+ ̄𝑐𝑚𝐽𝑚)(−𝑖 ̄𝑐𝜎𝐽𝜎 + 𝑖 ̄𝐽𝜎′𝑐𝜎′)
(6.26)
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6 DERIVATION OF WARD IDENTITIES FOR THE HUBBARD ATOM

From the above expression, we can obtain relations between correlation functions by differentiating
with respect to the source terms and setting them to zero at the end. Both sides of Eq. (6.26) are
treated separately. We first differentiate the left-hand side with respect to the sources:

𝛿
𝛿 ̄𝐽1

𝛿
𝛿𝐽2

(∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐]+∫d4𝑥( ̄𝐽𝑛𝑐𝑛+ ̄𝑐𝑚𝐽𝑚)𝜕𝜏𝑗𝜏) ∣
̄𝐽=𝐽=0

= −∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐]+∫d4𝑥( ̄𝐽𝑛𝑐𝑛+ ̄𝑐𝑚𝐽𝑚)𝜕𝜏𝑗𝜏(𝑐1 ̄𝑐2)∣
̄𝐽=𝐽=0

= −𝜕𝜏⟨𝑗𝜏𝑐1 ̄𝑐2⟩
(6.27)

Differentiating the right-hand side yields

− 𝛿
𝛿 ̄𝐽1

𝛿
𝛿𝐽2

(∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐]+∫d4𝑥( ̄𝐽𝑛𝑐𝑛+ ̄𝑐𝑚𝐽𝑚)(−𝑖 ̄𝑐𝜎𝐽𝜎 + 𝑖 ̄𝐽𝜎′𝑐𝜎′)) ∣
̄𝐽=𝐽=0

= − 𝛿
𝛿 ̄𝐽1

(∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐]+∫d4𝑥( ̄𝐽𝑛𝑐𝑛+ ̄𝑐𝑚𝐽𝑚) (− ̄𝑐2(−𝑖 ̄𝑐𝜎𝐽𝜎 + 𝑖 ̄𝐽𝜎′𝑖𝑐𝜎′) + 𝑖 ̄𝑐2𝛿(𝜏 − 𝜏2))) ∣
̄𝐽=𝐽=0

= −∫D( ̄𝑐, 𝑐)𝑒−𝑆[ ̄𝑐,𝑐]+∫d4𝑥( ̄𝐽𝑛𝑐𝑛+ ̄𝑐𝑚𝐽𝑚) (𝑖 ̄𝑐2𝑐1𝛿(𝜏 − 𝜏1)

+ 𝑐1 ̄𝑐2(−𝑖 ̄𝑐𝜎𝐽𝜎 + 𝑖 ̄𝐽𝜎′𝑐𝜎′) + 𝑖𝑐1 ̄𝑐2𝛿(𝜏 − 𝜏2)) ∣
̄𝐽=𝐽=0

= 𝑖⟨𝑐1 ̄𝑐2⟩𝛿(𝜏 − 𝜏1) − 𝑖⟨𝑐1 ̄𝑐2⟩𝛿(𝜏 − 𝜏2),

(6.28)

where the relation 𝛿𝐽𝑛(𝜏𝑛)
𝛿𝐽𝑖(𝜏𝑖)

= 𝛿(𝜏𝑛 − 𝜏𝑖)𝛿𝑛,𝑖, which is a general rule in functional differentiation, was
used to generate the 𝛿 functions. Considering both sides of the equation, we obtain the relation

−𝜕𝜏⟨𝑗𝜏𝑐1(𝜏1) ̄𝑐2(𝜏2)⟩ = 𝑖𝛿(𝜏 − 𝜏1)⟨𝑐1(𝜏1) ̄𝑐2(𝜏2)⟩ − 𝑖𝛿(𝜏 − 𝜏2)⟨𝑐1(𝜏1) ̄𝑐2(𝜏2)⟩ (6.29)

between thermal averages of field variables. Finally, we insert the Noether current Eq. (6.25). The
U(1) Ward identity for the Hubbard atom in time representation is then given by

𝜕𝜏 ∑
𝜎
⟨ ̄𝑐𝜎𝑐𝜎𝑐1(𝜏1) ̄𝑐2(𝜏2)⟩ = 𝛿(𝜏 − 𝜏1)⟨𝑐1(𝜏1) ̄𝑐2(𝜏2)⟩ − 𝛿(𝜏 − 𝜏2)⟨𝑐1(𝜏1) ̄𝑐2(𝜏2)⟩. (6.30)

Next, the U(1) Ward identity is reformulated in Matsubara frequency space. To start, the left-hand
side of Eq. (6.30) is Fourier transformed with the transformation rules Eq. (3.38), Eq. (3.39) and
Eq. (5.3), Eq.(5.4):

𝜕𝜏 ∑
𝜎
⟨ ̄𝑐𝜎𝑐1(𝜏1)𝑐𝜎 ̄𝑐2(𝜏2)⟩

= −𝜕𝜏 ∑
𝜎

1
𝛽3 ∫

𝛽

0
d𝜏d𝜏1d𝜏2𝑒𝑖𝜔𝑛𝜏𝑒𝑖𝜔𝑛1𝜏1𝑒𝑖𝜔𝑛2𝜏2

× 1
𝛽2 ∑

𝜔𝑛′,𝜔𝑛″,𝜔𝑛′
1
𝜔𝑛′

2

𝑒−𝑖𝜔𝑛′𝜏𝑒−𝑖𝜔𝑛′
1
𝜏1𝑒𝑖𝜔𝑛′

2
𝜏2𝑒𝑖𝜔𝑛″𝜏⟨𝑐𝜎(𝜔𝑛′)𝑐1(𝜔𝑛′

1
) ̄𝑐𝜎(𝜔𝑛″) ̄𝑐2(𝜔𝑛2

)⟩

(6.31)

At first, the expression was brought into anti-normal-order and the transformations were inserted.
Next, the partial derivative with respect to 𝜏 and the integrals over imaginary-time components are
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evaluated as

∑
𝜎,𝑛′

(𝑖𝜔𝑛′ − 𝑖𝜔𝑛′ − 𝑖𝜔𝑛1
+ 𝑖𝜔𝑛2

+ (𝜇 − 𝜇))⟨𝑐𝜎(𝜔𝑛′)𝑐1(𝜔𝑛′
1
) ̄𝑐𝜎(𝜔𝑛′ + 𝜔𝑛1

− 𝜔𝑛2
) ̄𝑐2(−𝜔𝑛2

)⟩

= ∑
𝜎,𝑛′

(([𝐺(2)
0 (𝜔𝑛′)]−1 − (𝐺(2)

0 (𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

))−1)𝐺(4)
𝜎1;𝜎2(𝜔𝑛′ , 𝜔𝑛1

, 𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

, 𝜔𝑛2
)) .

(6.32)

To express the factors 𝑖𝜔 arising from the partial time derivative in frequency space in terms of
non-interacting Green’s functions, 0 = 𝜇 − 𝜇 was added. Let us now transform the right-hand side
of Eq. (6.30) as

𝛿(𝜏 − 𝜏1)⟨𝑐1(𝜏1) ̄𝑐2(𝜏2)⟩ − 𝛿(𝜏 − 𝜏2)⟨𝑐1(𝜏1) ̄𝑐2(𝜏2)⟩

= 1
𝛽4 ∫

𝛽

0
[d𝜏d𝜏1d𝜏2𝑒𝑖𝜔𝑛𝜏𝑒𝑖𝜔𝑛1𝜏1𝑒𝑖𝜔𝑛2𝜏2 ∑

𝑛′
1,𝑛′

2

𝑒−𝑖𝜔𝑛1𝜏1𝑒𝑖𝜔𝑛2𝜏2

× (𝛿(𝜏 − 𝜏1)⟨𝑐1(𝜔𝑛′
1
) ̄𝑐2(𝜔𝑛′

2
)⟩ − 𝛿(𝜏 − 𝜏2)⟨𝑐1(𝜔𝑛′

1
) ̄𝑐2(𝜔𝑛′

2
)⟩) ]

= 𝐺(2)(𝜔𝑛2
)𝛿12𝛿𝑛2𝑛′ −𝐺(2)(𝜔𝑛1

)𝛿12𝛿𝑛1𝑛′ .

(6.33)

After transforming to frequency space, we now want to express the U(1) Ward identity in terms of
vertex and self-energy. Thus, we reformulate the four-point correlation function in Eq. (6.32) in
terms of the four-point vertex by using relation Eq. (4.33), which in Matsubara frequency space is
given by

𝐺(4)
𝜎1;𝜎2(𝜔𝑛′ , 𝜔𝑛1

, 𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

, 𝜔𝑛2
)𝛿𝑛′+𝑛1;𝑛+𝑛′+𝑛2

= 𝐺(2)
𝜎 (𝜔𝑛′)𝐺(2)

1 (𝜔𝑛1
)𝛿12𝛿𝑛1𝑛2

−𝐺(2)
2 (𝜔𝑛2

)𝐺(2)
1 (𝜔𝑛1

)𝛿1𝜎𝛿2𝜎𝛿𝑛′𝑛2

+𝐺(2)
𝜎 (𝜔𝑛′)𝐺(2)

1 (𝜔𝑛1
)Γ𝜎1;𝜎2(𝜔𝑛′ , 𝜔𝑛1

, 𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

, 𝜔𝑛2
)𝐺(2)

𝜎 (𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

)𝐺(2)
2 (𝜔𝑛2

).
(6.34)

Substituting the above expression into Eq. (6.32), yields the U(1) Ward identity in terms of the
four-point vertex

∑
𝜎,𝑛′

([𝐺(2)
0 (𝜔𝑛′)]−1 − [𝐺(2)

0 (𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

)]−1) (𝐺(2)
𝜎 (𝜔𝑛′)𝐺(2)

1 (𝜔𝑛1
)𝛿12𝛿𝑛1𝑛2

− 𝐺(2)
2 (𝜔𝑛2

)𝐺(2)
1 (𝜔𝑛1

)𝛿1𝜎𝛿2𝜎𝛿𝑛′𝑛2

+𝐺(2)
𝜎 (𝜔𝑛′)𝐺(2)

1 (𝜔𝑛1
)Γ𝜎1;𝜎2(𝜔𝑛′ , 𝜔𝑛1

, 𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

, 𝜔𝑛2
)𝐺(2)

𝜎 (𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

)𝐺(2)
2 (𝜔𝑛2

))

= 𝐺(2)(𝜔𝑛2
)𝛿12𝛿𝑛2𝑛′ −𝐺(2)(𝜔𝑛1

)𝛿12𝛿𝑛1𝑛′ .
(6.35)

Lastly, we would also like to include the self-energy in the Ward identity. Hence, expression Eq.
(6.35) is multiplied by [𝐺(2)(𝜔𝑛1

)]−1[𝐺(2)(𝜔𝑛2
)]−1. The right-hand side of the equation then reads

[[𝐺(2)(𝜔𝑛1
)]−1𝛿12 − [𝐺(2)(𝜔𝑛2

)]−1𝛿12. (6.36)
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For the left-hand side of the expression, the multiplication results in

∑
𝜎,𝑛′

([𝐺(2)
0 (𝜔𝑛′)]−1 − [𝐺(2)

0 (𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

)]−1)(𝐺(2)
𝜎 (𝜔𝑛′) (𝐺(2)

1 (𝜔𝑛2
))

−1
𝛿12𝛿𝑛1𝑛2

−𝐺(2)
2 (𝜔𝑛′) (𝐺(2)

1 (𝜔𝑛2
))

−1
𝛿1𝜎𝛿2𝜎𝛿𝑛′𝑛2

𝛿𝑛1𝑛2

+𝐺(2)
𝜎 (𝜔𝑛′)Γ𝜎1;𝜎2(𝜔𝑛′ , 𝜔𝑛1

, 𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

, 𝜔𝑛2
)𝐺(2)

𝜎 (𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

))

= 0 − ([𝐺(2)
0 (𝜔𝑛2

)]−1 − [𝐺(2)
0 (𝜔𝑛1

)]−1) +∑
𝜎,𝑛′

([𝐺(2)
0 (𝜔𝑛′)]−1 − [𝐺(2)

0 (𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

)]−1)

× 𝐺(2)
𝜎 (𝜔𝑛′)Γ𝜎1;𝜎2(𝜔𝑛′ , 𝜔𝑛1

, 𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

, 𝜔𝑛2
)𝐺(2)

𝜎 (𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

).
(6.37)

Revisiting the definition of the self-energy from the two-point correlation function Σ = [𝐺(2)
0 ]−1 −

[𝐺(2)]−1, the whole equation is reformulated dependent on Σ as

∑
𝜎,𝑛′

([𝐺(2)
0 (𝜔𝑛′)]−1 − [𝐺(2)

0 (𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

)]−1)

× 𝐺(2)
𝜎 (𝜔𝑛′)Γ𝜎1;𝜎2(𝜔𝑛′ , 𝜔𝑛1

, 𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

, 𝜔𝑛2
)𝐺(2)

𝜎 (𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

)

= ([𝐺(2)(𝜔𝑛1
)]

−1
− [𝐺(2)

0 (𝜔𝑛1
)]

−1
) + ([𝐺(2)

0 (𝜔𝑛2
)]

−1
− [𝐺(2)(𝜔𝑛2

)]
−1
)

(6.38)

by adding the term ([𝐺(2)
0 (𝜔𝑛2

)]−1 − [𝐺(2)
0 (𝜔𝑛1

)]−1). Finally, the U(1) Ward identity in Matsubara
frequency space in terms of the four-point vertex and self-energy is

∑
𝜎,𝑛′

([𝐺(2)
0 (𝜔𝑛′)]−1 − [𝐺(2)

0 (𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

)]−1)

× 𝐺(2)
𝜎 (𝜔𝑛′)Γ𝜎1;𝜎2(𝜔𝑛′ , 𝜔𝑛1

, 𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

, 𝜔𝑛2
)𝐺(2)

𝜎 (𝜔𝑛′ + 𝜔𝑛1
− 𝜔𝑛2

)

= Σ1(𝜔𝑛2
) − Σ1(𝜔𝑛1

).

(6.39)

Deriving the above equation concludes chapter 6. In the next section, we will insert the perturbation
expansions derived in chapter 5 and compare this to the substitution of the exact expressions.
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7 Verification of the U(1) Ward Identity for the Hubbard
Atom

As Ward identities are exact relations, they are expected to hold for the exact solutions, as well as
for each order in perturbation theory respectively. Therefore, the results from chapter 5 are used to
check the Ward identity derived in 6.2. Furthermore, as mentioned in section 2.1, there exists an
exact expression for the vertex and self-energy of the Hubbard atom, which will also be substituted
into the U(1) Ward identity.

7.1 U(1) Ward Identity in Second-Order Perturbation Theory

In this section, first- and second-order of the self-energy and four-point vertex are inserted into Eq.
(6.39). Whereas in the previous chapters the convention of double indices with a letter corresponding
to the respective quantity and a number numbering the frequency arguments of these quantities
was used, in this section we resort to just numbers as frequency indices, since we are not considering
specific diagrams and thus do not need to distinguish between different vertices. Therefore, the
change from double indices to single indices provides an ease of notation. This goes along with
changing the notation of Kronecker-delta symbols from containing frequency indices to containing
the frequencies themselves, such that it is still clear, if frequencies or numbers are the arguments of
the respective Kronecker-deltas.
Expanding the Ward identity Eq. (6.39) in terms of orders of 𝑈

𝛽 , reads
6

(𝑖𝜔2 − 𝑖𝜔1)∑
𝜎,𝜔

[𝐺0(𝜔) + 𝐺1|𝜎(𝜔) + 𝐺2|𝜎(𝜔)] [Γ1|𝜎1;𝜎2 + Γ2|𝜎1;𝜎2(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2, 𝜔2)]

× [𝐺0(𝜔 + 𝜔1 − 𝜔2) + 𝐺1|𝜎(𝜔 + 𝜔1 − 𝜔2) + 𝐺2|𝜎(𝜔 + 𝜔1 − 𝜔2)]

= [Σ1|1(𝜔𝑛2
) + Σ2|1(𝜔𝑛2

)] − [Σ1|1(𝜔1) + Σ2|1(𝜔1)] + 𝒪(𝑈3

𝛽3 ) .

(7.1)

Above, the first index of each quantity denotes its order in the interaction strength. For some
orders, spin indices and frequency arguments were omitted, as the terms do not explicitly depend
on them. Now, let us analyze each order separately, starting with zero-order in 𝑈

𝛽 . It is trivially
fulfilled, as zero-order contributions do not exist for vertex and self-energy. Next, the first-order
terms are investigated, which are given by

(𝑖𝜔2 − 𝑖𝜔1)∑
𝜎,𝜔

𝐺0(𝜔)Γ1|𝜎1;𝜎2𝐺0(𝜔 + 𝜔1 − 𝜔2) = Σ1|1(𝜔𝑛2
) − Σ1|1(𝜔𝑛1

). (7.2)

Since for the Hubbard atom the first-order contribution to the self-energy is frequency-independent,
the right-hand side of Eq. (7.2) yields

Σ1|1(𝜔𝑛2
) − Σ1|1(𝜔𝑛1

) = − 𝑈𝑒𝛽𝜇

(1 + 𝑒𝛽𝜇)
+ 𝑈𝑒𝛽𝜇

(1 + 𝑒𝛽𝜇)
= 0. (7.3)

Now, the left-hand side of the equation is considered. First, the spin sum over 𝜎

(𝑖𝜔2 − 𝑖𝜔1)∑
𝜔

[𝐺0(𝜔)Γ1|↑↓;↑↓𝐺0(𝜔 + 𝜔1 − 𝜔2) + 𝐺0(𝜔)Γ1|↓↓;↓↓𝐺0(𝜔 + 𝜔1 − 𝜔2)]

= (𝑖𝜔2 − 𝑖𝜔1)∑
𝜔

[𝐺0(𝜔)Γ1|↑↓;↑↓𝐺0(𝜔 + 𝜔1 − 𝜔2)]
(7.4)

6Why an expansion in 𝑈
𝛽 makes sense, even though it is not a dimensionless quantity, was covered in chapter 5.
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is written out explicitly. Without loss of generality, spin index 1 =↓ and 2 =↓ is assumed. As we
are not considering magnetic fields, Γ|↓↓;↓↓ is equal to Γ|↑↑;↑↑ and vanishes in first-order. In the next
step, the perturbation theory results from chapter 4 are inserted and the Matsubara frequency sum
over 𝜔 is computed as

(𝑖𝜔2 − 𝑖𝜔1)∑
𝜔

[𝐺0(𝜔)Γ1|↑↓;↑↓𝐺0(𝜔 + 𝜔1 − 𝜔2)]

= (𝑖𝜔2 − 𝑖𝜔1)
𝑈
𝛽
∑
𝜔

[ 1
𝑖𝜔 + 𝜇

1
𝑖𝜔 + 𝑖𝜔1 − 𝑖𝜔2 + 𝜇

] = (𝑖𝜔2 − 𝑖𝜔1)
𝑈
𝛽
[ 𝑒𝛽𝜇

1 + 𝑒𝛽𝜇
− 𝑒𝛽𝜇

1 + 𝑒𝛽𝜇
] = 0

(7.5)

using the techniques described in appendix B. Upon summation, it was proven that the U(1)-Ward
identity is fulfilled in first-order as well.
We proceed accordingly for the second-order perturbation theory results. The Ward identity in
second-order in the interaction strength is given by

(𝑖𝜔2 − 𝑖𝜔1)∑
𝜎,𝜔

𝐺0(𝜔)Γ1|𝜎1;𝜎2𝐺1|𝜎(𝜔 + 𝜔1 − 𝜔2)

+ 𝐺0(𝜔)Γ2|𝜎1;𝜎2(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2, 𝜔2)𝐺0(𝜔 + 𝜔1 − 𝜔2) + 𝐺1|𝜎(𝜔)Γ1|𝜎1;𝜎2𝐺0(𝜔 + 𝜔1 − 𝜔2)

= Σ2|1(𝜔2) − Σ2|1(𝜔1).
(7.6)

Again, each side of the equation is considered separately. At first, the self-energy terms on the
right-hand side are subtracted as

Σ2|1(𝜔2) − Σ2|1(𝜔1) =
𝑈2𝑒𝛽𝜇(𝑖𝜔1 − 𝑖𝜔2)

(𝑒𝛽𝜇 + 1)2 (𝜇 + 𝑖𝜔1)(𝜇 + 𝑖𝜔2)
. (7.7)

Next, let us focus on the left-hand side, which consists of three distinct types of summands. The
first summand reads

(𝑖𝜔2 − 𝑖𝜔1)∑
𝜎,𝜔

𝐺0(𝜔)Γ1|𝜎1;𝜎2𝐺1|𝜎(𝜔 + 𝜔1 − 𝜔2)

= (𝑖𝜔2 − 𝑖𝜔1)∑
𝜔

𝐺0(𝜔)Γ1|↑↓;↑↓𝐺1(𝜔 + 𝜔1 − 𝜔2)

= −∑
𝜔

(𝑖𝜔2 − 𝑖𝜔1)𝑈2𝑒𝛽𝜇

𝛽 (𝑒𝛽𝜇 + 1) (𝜇 + 𝑖𝜔)(𝜇 + (𝑖𝜔1 − 𝑖𝜔2 + 𝑖𝜔))2
= 𝛽𝑈2𝑒2𝛽𝜇

(𝑒𝛽𝜇 + 1)3
.

(7.8)

Again, we assumed spin indices 1 =↓ and 2 =↓. Similarly, we evaluate the third summand of Eq.
(7.6), which equates to Eq. (7.8) with shifted frequency arguments

(𝑖𝜔2 − 𝑖𝜔1)∑
𝜎,𝜔

𝐺1|𝜎(𝜔)Γ1|𝜎1;𝜎2𝐺0(𝜔 + 𝜔1 − 𝜔2)

= (𝑖𝜔2 − 𝑖𝜔1)∑
𝜔

𝐺1(𝜔)Γ1|↑↓;↑↓𝐺0(𝜔 + 𝜔1 − 𝜔2)

= −∑
𝜔

(𝑖𝜔2 − 𝑖𝜔1)𝑈2𝑒𝛽𝜇

𝛽 (𝑒𝛽𝜇 + 1) (𝜇 + 𝑖𝜔)2(𝜇 + 𝑖(𝜔1 − 𝜔2 + 𝜔))
= − 𝛽𝑈2𝑒2𝛽𝜇

(𝑒𝛽𝜇 + 1)3
.

(7.9)

It is apparent that the terms Eq. (7.8) and Eq. (7.9) cancel each other. What remains to be done,
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is calculating the second summand from Eq. (7.6)

(𝑖𝜔2 − 𝑖𝜔1)∑
𝜎,𝜔

𝐺0(𝜔)Γ2|𝜎1;𝜎2(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2, 𝜔2)𝐺0|𝜎(𝜔 + 𝜔1 − 𝜔2)

= (𝑖𝜔2 − 𝑖𝜔1)∑
𝜔

𝐺0(𝜔)Γ2|↓↓;↓↓(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2, 𝜔2)𝐺0|𝜎(𝜔 + 𝜔1 − 𝜔2)

+ (𝑖𝜔2 − 𝑖𝜔1)∑
𝜔

𝐺0(𝜔)Γ2|↑↓;↑↓(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2, 𝜔2)𝐺0(𝜔 + 𝜔1 − 𝜔2),

(7.10)

which should then be equal to the difference between self-energies Eq. (7.7). As the Hubbard atom
Hamiltonian is SU(2) symmetric, Γ2|↓↓;↓↓ is mathematically equivalent to Γ2|↑↑;↑↑. Inserting the
result for the vertex contribution with all spins equal reads

∑
𝜔

(𝑖𝜔2 − 𝑖𝜔1)𝑈2𝑒𝛽𝜇(𝛿𝜔1−𝜔2
− 𝛿𝜔2−𝜔)

(𝑒𝛽𝜇 + 1)2 (𝜇 + 𝑖𝜔)(𝜇 + 𝑖(𝜔1 − 𝜔2 + 𝜔))

= 𝑈2𝑒𝛽𝜇(𝜔1 − 𝜔2)
(𝑒𝛽𝜇 + 1)2 (𝜔1 − 𝑖𝜇)(𝜇 + 𝑖𝜔2)

.
(7.11)

Finally, the term from Eq. (7.10) containing the vertex Γ2|↑↓;↑↓ is evaluated as

∑
𝜔

𝑈2(𝜔1 − 𝜔2) (−1 + 𝑒2𝛽𝜇 − 𝑒𝛽𝜇𝛽𝛿𝜔−𝜔2
(2𝜇 + 𝑖(𝜔 + 𝜔1)))

𝛽 (𝑒𝛽𝜇 + 1)2 (𝜇 + 𝑖𝜔)(2𝜇 + 𝑖(𝜔 + 𝜔1))(𝑖𝜇 − 𝜔 − 𝜔1 + 𝜔2)
= 0. (7.12)

Note, that the left-hand side of the Ward identity only depends on vertex components with all
spin arguments equal. In fact, this is not only the case for the second-order but for all orders in
the interaction strength and the exact quantities. The reason for this is the SU(2) symmetry of
the Hubbard atom 2.1, as this leads to another Ward identity with which the above statement
can be proven. However, this lies beyond the scope of this thesis. This statement can for example
be inferred from the form of the SU(2) Ward identity for the Anderson impurity model, which is
described by the Hubbard model Hamiltonian with an additional term representing a bath, derived
in [11].
Adding all non-zero terms from the left-hand side of the U(1) Ward identity Eq. (7.6), we obtain

(𝑖𝜔2 − 𝑖𝜔1)∑
𝜎,𝜔

𝐺0Γ1|𝜎1;𝜎2𝐺1|𝜎 +𝐺0Γ2|𝜎1;𝜎2𝐺0|𝜎 +𝐺1|𝜎Γ1|𝜎1;𝜎2𝐺0

= 𝑈2𝑒𝛽𝜇(𝜔1 − 𝜔2)
(𝑒𝛽𝜇 + 1)2 (𝜔1 − 𝑖𝜇)(𝜇 + 𝑖𝜔2)

,
(7.13)

which is indeed equal to the right-hand side of the identity Eq. (7.7). Therefore, it was proven that,
as expected, the Ward identity holds in second-order perturbation theory.

7.2 U(1) Ward Identity for Exact Vertex and Self-energy

If the U(1) Ward identity for the Hubbard atom has been derived correctly, it should be fulfilled for
the exact solutions to vertex and self-energy. The exact quantities used in the text are derived in
[12]. As the expressions for the exact vertex and self-energy are rather complex for general chemical
potential, only the case of 𝜇 = −𝑈

2 at half-filling is considered. Under this assumption, the exact
single-particle Green’s function and self-energy are given by [12]:

𝐺(2)(𝜔) = − 4𝑖𝜔
𝑈2 + 4𝜔2 (7.14) Σ(𝜔) = −𝑖𝑈(𝑈 − 2𝑖𝜔)

4𝜔
(7.15)
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Above, spin indices were omitted, as for the Hubbard atom without magnetic fields the single-particle
Green’s function and the self-energy don’t depend on the spin components. Next, the expressions
for the exact vertex components of the Hubbard atom will be stated. Even for the half-filled system,
the exact vertex component with distinct spin components [12]

Γ↑↓;↑↓(𝜔1, 𝜔2, 𝜔3, 𝜔1 + 𝜔2 − 𝜔3) = −
𝑈2 (𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
2) 𝛿𝜔2−𝜔3

32𝜔2
1𝜔2

2 (𝑒
𝛽𝑈
2 + 1)

+
𝑈2 (𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
2) 𝛿𝜔1−𝜔3

tanh (𝛽𝑈
4 )

64𝜔2
1𝜔2

2
+

𝑈2𝑒
𝛽𝑈
2 (𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
3) 𝛿𝜔1+𝜔2

32𝜔2
1𝜔2

3 (𝑒
𝛽𝑈
2 + 1)

+
−3𝑈5 − 4𝑈3 (𝜔2

1 − 𝜔3(𝜔1 + 𝜔2) + 𝜔1𝜔2 + 𝜔2
2 + 𝜔2

3) + 16𝑈𝜔1𝜔2𝜔3(𝜔1 + 𝜔2 − 𝜔3)
16𝛽𝜔1𝜔2𝜔3(𝜔1 + 𝜔2 − 𝜔3)

(7.16)

is a rather lengthy expression. The last exact quantity required for verifying the Ward identity at
half-filling is the vertex contribution with all spin components equal [12]

Γ↑↑;↑↑(𝜔1, 𝜔2, 𝜔3, 𝜔1 + 𝜔2 − 𝜔3) =
𝑈2 (𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
2) (𝛿𝜔1−𝜔3

− 𝛿𝜔2−𝜔3
)

64𝜔2
1𝜔2

2
. (7.17)

Due to frequency conservation at each vertex, the vertex components only depend on three
Matsubara frequency arguments. As indicated above, these exact quantities are substituted into the
U(1) Ward identity Eq. (6.39). Similar to before, both sides of the equation are treated separately.
First, the difference between self-energy terms on the right hand-side of the equation is calculated
as

Σ(𝜔2) − Σ(𝜔1) = −𝑈2(𝑖𝜔1 − 𝑖𝜔2)
4𝜔1𝜔2

. (7.18)

Again, evaluating the left-hand side of the expression is more complex. We start with the summand
containing the vertex contribution with equal spins

(𝑖𝜔2 − 𝑖𝜔1)∑
𝜔

𝐺(𝜔)Γ↑↑;↑↑(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2, 𝜔2)𝐺(𝜔 + 𝜔1 − 𝜔2)

=
𝑈2 (𝑈2 + 4𝜔2

1) (𝜔 + 𝜔1 − 𝜔2)(𝛿𝜔−𝜔2
− 𝛿𝜔1−𝜔2

)
4𝜔𝜔2

1 (𝑈2 + 4(𝜔 + 𝜔1 − 𝜔2)2)

= −𝑈2(𝑖𝜔1 − 𝑖𝜔2)
4𝜔1𝜔2

.

(7.19)

As the vertex with all spins equal is proportional to a sum of Kronecker-deltas, there is no need to
compute the frequency sum. Besides, the summand proportional to 𝛿𝜔1−𝜔2

equals zero due to the
prefactor (𝑖𝜔2 − 𝑖𝜔1). The result from Eq. (7.19) is equal to the left-hand side of the Ward identity
Eq. (7.18). Under these conditions, the summand of the vertex component for spins ↑↓↑↓ must
vanish, if the Ward identity is fulfilled for the half-filled system. Indeed, this is the case, as we will
calculate in the following. To start, the contribution

∑
𝜔
𝐺(𝜔)Γ↑↑;↑↑(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2, 𝜔2)𝐺(𝜔 + 𝜔1 − 𝜔2)

=
4𝜔 (3𝑈5 + 4𝑈3 (𝜔2 + 𝜔(𝜔1 − 𝜔2) + 𝜔2

1 − 𝜔1𝜔2 + 𝜔2
2) − 16𝑈𝜔𝜔1𝜔2(𝜔 + 𝜔1 − 𝜔2))

𝛽𝜔1𝜔2(4𝜔 (𝑈2 + 4𝜔2) (𝑈2 + 4(𝜔 + 𝜔1 − 𝜔2)2))

−
𝛽𝑈2𝑒

𝛽𝑈
2 𝛿𝜔+𝜔1

2𝜔 (𝑒 𝛽𝑈
2 + 1) (𝜔 + 𝜔1 − 𝜔2)

+
𝛽𝑈2 (𝑈2 + 4𝜔2

1) 𝛿𝜔−𝜔2
(𝜔 + 𝜔1 − 𝜔2)

2𝜔𝜔2
1 (𝑒

𝛽𝑈
2 + 1) (𝑈2 + 4(𝜔 + 𝜔1 − 𝜔2)2)

−
𝛽𝑈2 (𝑈2 + 4𝜔2

1) 𝛿𝜔1−𝜔2
tanh (𝛽𝑈

4 ) (𝜔 + 𝜔1 − 𝜔2)
4𝜔𝜔2

1 (𝑈2 + 4(𝜔 + 𝜔1 − 𝜔2)2)

(7.20)
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is explicitly written out in terms of the frequency arguments. Evaluated, the expression Eq. (7.20)
reads

− 𝛽𝑈2𝑒
𝛽𝑈
2

2𝜔1𝜔2 (𝑒
𝛽𝑈
2 + 1)

+ 𝛽𝑈2

2𝜔1𝜔2 (𝑒
𝛽𝑈
2 + 1)

+
𝛽𝑈2 (𝑒

𝛽𝑈
2 − 1)

2𝜔1𝜔2 (𝑒
𝛽𝑈
2 + 1)

= 0. (7.21)

Hence, the U(1) Ward identity is fulfilled for the exact vertex and self-energy, which was to be
expected. Moreover, it can be used to gauge the quality of approximations as proposed at the
beginning of chapter 6. Specifically, the text will examine approximations for the vertex and
self-energy motivated by the Parquet formalism, which is the topic of the next section.
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8 Derivation of Self-Energy and Vertex from the Parquet
Equations

In the last chapter, it was proven that, besides the exact solutions for the vertex and self-energy, the
quantities from second-order perturbation theory fulfill the U(1) Ward identity. Let us now address
other approximation methods for the four-point vertex and self-energy and examine the fulfillment
of the U(1) Ward identity. Given that the U(1) Ward identity represents particle conservation, it
can be used to gauge the accuracy of approximation methods. In the following, we will analyze
approximations obtained from the Parquet formalism, which is introduced in the next subsection.

8.1 Basics on Parquet Formalism

Regarding the calculations in chapter 5, with increasing order in the interaction strength the
complexity of perturbation theory increases as well. This is a general principle in many-body
physics, so it is not feasible to calculate diagrams up to arbitrary order to characterize the properties
of a system. The Parquet formalism provides the opportunity to only consider subsets of diagrams
and one is able to generate higher-order terms to physical quantities much more efficiently. As
the Parquet formalism plays a fundamental role throughout the rest of this thesis, elementary
knowledge on the Parquet formalism is covered in the following. This introductory section is mostly
a short summary of chapter 2.3 from [7] but without derivations of the respective equations.
In chapter 4, reducibility was presented as a way of classifying diagrams. Furthermore, the self-
energy was defined as the sum of one-particle irreducible diagrams. In the Parquet formalism,
diagrams are categorized by their two-particle reducibility. There are three distinct ways to separate
two-particle reducible diagrams by cutting two propagator lines, which correspond to three different
channels, namely the antiparallel a, the parallel p and the transverse-antiparallel t channel. How to
divide diagrams into these three groups, can be best understood graphically. Therefore, exemplary
diagrams from the four-point vertex of the Hubbard atom in second-order and the respective
classification into one of the three channels are shown in Fig. 8.1. Of course, there are also diagrams
which cannot be separated into subdiagrams by cutting two propagators that together form the
fully irreducible part 𝑅.
To connect the self-energy, a one-particle irreducible quantity, and the four-point vertex, a two-
particle reducible quantity, one needs exact relations for both. The vertex can be obtained from
the Bethe-Salpeter equations in each channel [7]:

𝛾a|12;34 = 𝐼a|15;64𝐺67𝐺85Γ72;38 (8.1)

𝛾p|12;34 = 1
2
𝐼p|12;68𝐺65𝐺87Γ57;34 (8.2)

𝛾t|12;34 = −𝐼t|52;64𝐺67𝐺85Γ17;38 (8.3)

Here, all indices are multi-indices and include spin as well as frequency. Moreover, Einstein sum
convention is used and thus summation over repeating indices is implicit. Above, 𝛾r, r ∈ {a,p, t}
represent the two-particle reducible vertices in each channel and the irreducible parts 𝐼r are
calculated as 𝐼r = 𝑅 + ∑r′≠r 𝛾r′ . Neither the Bethe-Salpeter equation nor any of the following
relations are derived in this thesis. For a more detailed discussion, one should refer to [7]. As any
diagram is either two-particle reducible in only one channel or totally two-particle irreducible, the
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four-point vertex can be written as [7]

Γ = 𝑅 + ∑
r∈{a,p,t}

𝛾r. (8.4)

This is also called the Parquet decomposition of the vertex. Regarding the one-particle reducible
self-energy, the Schwinger-Dyson equation [7]

Σ13 = −Γ0|12;34𝐺24 −
1
2
Γ0|12;68𝐺42𝐺87𝐺65Γ57;34 (8.5)

is considered. Note that both the Bethe-Salpeter equations and the Schwinger-Dyson equation
depend on the four-point vertex, one-particle Green’s function and therefore implicitly on the
self-energy, see Eq. (4.28). In the Parquet formalism, one chooses initial values for the self-energy,
the two-particle reducible vertices and the two-particle irreducible vertex 𝑅. These initial values
are inserted into the Bethe-Salpeter equation to obtain an expression for the full four-point vertex.
Next, the vertex from the Bethe-Salpeter equation is substituted into the Schwinger-Dyson equation
for an expression of the self-energy. The new vertex and self-energy are in the next iteration again
inserted into the Bethe-Salpeter and Schwinger-Dyson equation. With each iteration of this cycle,
the approximations for the four-point vertex and the self-energy improve. Normally, the process
described above is done numerically.
One finds that the results can depend strongly on the choice of the approximation for the two-particle
irreducible contribution to the four-point vertex 𝑅. Most commonly, the Parquet approximation
𝑅 = 𝑈

𝛽 ≡ Γ0 is chosen. While the Parquet approximation only takes the first-order two-particle
irreducible diagram into consideration, the next actual contribution arises in fourth-order in the
interaction strength. As a matter of fact, the Parquet approximation possesses a lot of useful
properties such as fulfilling crossing symmetry. Therefore, it is in some practical applications
reasonable to neglect higher-order diagrams.
Nevertheless, self-energy and four-point vertex from the Parquet iteration with the Parquet ap-
proximation as irreducible vertex contribution do not automatically fulfill Ward identities. This
originates from the fact that Parquet mixes different-order diagrams and therefore exact relations,
which are fulfilled for each order respectively, do not hold anymore. As Ward identities directly
correspond to conservation laws, in order to have a physically realistic approximation they should
hold for the approximated quantities. In this thesis, we search for an alternative to the Parquet
approximation, which ensures that vertex and self-energy of the Hubbard atom fulfill the U(1)
Ward identity and therefore the particle conservation law. Our approach is to perform one Parquet
iteration analytically starting from the second-order perturbation theory results for the Hubbard
atom. By inserting the approximated quantities from this iteration into the U(1) Ward identity,
the deviation is computed. This deviation is then used to improve on the two-particle irreducible
vertex 𝑅. The rest of this chapter is dedicated to obtaining approximations for the self-energy and
the four-point vertex from the Bethe-Salpeter and Schwinger-Dyson equations.

8.2 Four-Point Vertex from the Bethe-Salpeter Equations

At first, second-order self-energy and four-point vertex are substituted into the Bethe-Salpeter
equations. However, to obtain a valid four-point vertex for the Hubbard atom in the absence of
magnetic fields specific symmetry requirements need to be fulfilled. When performing multiple
numerical Parquet iterations, the Bethe-Salpeter equations preserve these symmetries. However,
when inserting second-order perturbation theory, the result depends on the order of contraction of
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a) Γ↑↓;↑↓

a p 𝑅

b) Γ↑↑;↑↑

ta

Figure 8.1: (a) Two-particle reducible diagrams in the antiparallel channel a, parallel channel p
and two-particle irreducible Parquet approximation 𝑅 for Γ↑↓;↑,↓ in second-order. For this vertex
contribution, there is no t-channel diagram in second-order (b) Two-particle reducible diagrams in
the antiparallel channel a and transverse-antiparallel channel t for Γ↑↑;↑,↑ in second-order. For this
vertex contribution there is no p-channel diagram in second-order.

the irreducible vertex in each channel with the full vertex resulting in the symmetry properties of
the four-point vertex not being fulfilled anymore. The reason for this is that some diagrams that
would be needed to preserve the symmetries are only generated one iteration later. To begin with,
the vertex is computed from the usual version of the Bethe-Salpeter equations as defined in [7].
Only afterwards, we will consider the necessary symmetrization.
Let us specify the inputs to the Bethe-Salpeter equations. In this chapter, particle-hole symmetric
expressions are used, for which the chemical potential 𝜇 is set to −𝑈

2 :

𝐺0(𝜔) =
1

−𝑈
2 + 𝑖𝜔

(8.6) Σ(𝜔) = −𝑈
2
− 𝑖𝑈2

4𝜔
(8.7)

Γ↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) =
𝑈
𝛽
+ 1

4
𝑈2(𝛿𝜔1+𝜔2

− 𝛿𝜔2−𝜔3
) (8.8)

Γ↑↑;↑↑(𝜔1, 𝜔2, 𝜔3) =
1
4
𝑈2(𝛿𝜔1−𝜔3

− 𝛿𝜔2−𝜔3
) (8.9)

As with frequency conservation the fourth frequency argument of the vertex is automatically
determined from the other three, it suffices to only specify the first three arguments. The single-
particle Green’s function in second-order is calculated from the self-energy according to Eq. (4.28).
Starting with the antiparallel channel, Eq. (8.1) is rewritten for the Hubbard atom as

𝛾a|12;34 = 𝐼a|15;74𝐺7𝐺5Γ72;35𝛿67𝛿85. (8.10)

We split the above equation into two parts considering the vertices 𝛾a|↑↓;↑↓ and 𝛾a|↑↑;↑↑ separately.
Writing out the spin sum and applying frequency conservation, 𝛾a|↑↓;↑↓ becomes

𝛾a|↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) = ∑
𝜔5

𝐼a|↑↓;↑↓(𝜔1, 𝜔5, 𝜔5+𝜔3−𝜔2)𝐺(𝜔5+𝜔3−𝜔2)𝐺(𝜔5)Γ↑↓;↑↓(𝜔5+𝜔3−𝜔2, 𝜔2, 𝜔3).

(8.11)

An overview of all diagrams necessary to build the irreducible part of Eq. (8.11) and the following
calculations is given in Fig. 8.1.

Inserting the irreducible vertex in the antiparallel channel, the vertex and Green’s function, the
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two-particle reducible vertex in the antiparallel channel is computed as

𝛾a|↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) = 𝛿𝜔2−𝜔3
⎛⎜
⎝

𝑈2 (𝛽𝑈𝑒
𝛽𝑈
2 + 𝑒𝛽𝑈 − 1)

8 (𝑒 𝛽𝑈
2 + 1)

2 + 𝑈4𝜔2
1

(𝑈2 + 4𝜔2
1)

2 −
𝑈(𝛽𝑈𝑒

𝛽𝑈
2 + 𝑒𝛽𝑈 − 1)

2𝛽 (𝑒 𝛽𝑈
2 + 1)

2
⎞⎟
⎠

+
𝑈3𝜔1 (−

𝑈𝜔2𝛿𝜔1−𝜔3
𝑈2+4𝜔2

2
− 4(𝜔1+𝜔2−𝜔3)

𝛽(𝑈2+4(𝜔1+𝜔2−𝜔3)2)
)

𝑈2 + 4𝜔2
1

− 4𝑈3𝜔2𝜔3
𝛽 (𝑈2 + 4𝜔2

2) (𝑈2 + 4𝜔2
3)

−
𝑈3 (𝑒

𝛽𝑈
2 − 1)

2𝛽 (𝑒 𝛽𝑈
2 + 1) (𝑈2 + (𝜔2 − 𝜔3)2)

.

(8.12)

As in this chapter the calculations and especially sums over Matsubara frequencies are rather
complex, Wolfram Mathematica [13] was used for lengthy computations. The notebooks containing
the calculations regarding the Bethe-Salpeter and Schwinger-Dyson equation are linked in the
bibliography [14]. Therefore, in this thesis only ansatz, input values and results to the two-particle
irreducible vertices are written out explicitly. For more information, one should refer to the
mentioned Wolfram Mathematica notebooks. Next, the vertex in the antiparallel channel for all
spin arguments equal

𝛾a|↑↑;↑↑(𝜔1, 𝜔2, 𝜔3) = 𝐼a|↑↑;↑↑(𝜔1, 𝜔5, 𝜔5 + 𝜔3 − 𝜔2)𝐺(𝜔5 + 𝜔3 − 𝜔2)𝐺(𝜔5)Γ↑↑;↑↑(𝜔5 + 𝜔3 − 𝜔2, 𝜔2, 𝜔3)

+ 𝐼a|↑↓;↓↑(𝜔1, 𝜔5, 𝜔5 + 𝜔3 − 𝜔2)𝐺(𝜔5 + 𝜔3 − 𝜔2)𝐺(𝜔5)Γ↓↑;↑↓(𝜔5 + 𝜔3 − 𝜔2, 𝜔2, 𝜔3)
(8.13)

is computed. Considering the second summand of Eq. (8.13), we have not calculated an expression
for Γ↓↑;↑↓ in chapter 5. Fortunately, the Hubbard atom is crossing-symmetric and therefore there is
a relation between Γ↓↑;↑↓ and Γ↑↓;↑↓:

Γ↓↑;↑↓(𝜔1, 𝜔2, 𝜔3) = −Γ↑↓;↑↓(𝜔1, 𝜔2, 𝜔1 + 𝜔2 − 𝜔3) (8.14)

However, concerning the two-particle reducible channels one needs to be careful. For them, the
relations

𝛾a|↑↓;↓↑(𝜔1, 𝜔2, 𝜔3) = −𝛾t|↑↓;↑↓(𝜔1, 𝜔2, 𝜔1 + 𝜔2 − 𝜔3) (8.15)

𝛾p|↑↓;↓↑(𝜔1, 𝜔2, 𝜔3) = −𝛾p|↑↓;↑↓(𝜔1, 𝜔2, 𝜔1 + 𝜔2 − 𝜔3) (8.16)

hold. With this, the second summand from Eq. (8.13) is formulated as

𝐼a|↑↓;↓↑(𝜔1, 𝜔5, 𝜔5 + 𝜔3 − 𝜔2)𝐺(𝜔5 + 𝜔3 − 𝜔2)𝐺(𝜔5)Γ↓↑;↑↓(𝜔5 + 𝜔3 − 𝜔2, 𝜔2, 𝜔3)

= −𝐼a|↑↓;↓↑(𝜔1, 𝜔5, 𝜔1 + 𝜔2 − 𝜔3)𝐺(𝜔5 + 𝜔3 − 𝜔2)𝐺(𝜔5)Γ↑↓;↑↓(𝜔5 + 𝜔3 − 𝜔2, 𝜔2, 𝜔5).
(8.17)

Inserting the quantities Eq. (8.6), Eq. (8.7), Eq. (8.8) and Eq. (8.9), the two-particle reducible
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vertex in the antiparallel channel for all spin arguments equal 𝛾a|↑↑;↑↑ is expressed as

𝛾a|↑↑;↑↑(𝜔1, 𝜔2, 𝜔3) = −
𝑈3 (𝑒

𝛽𝑈
2 − 1)

2𝛽 (𝑒 𝛽𝑈
2 + 1) (𝑈2 + (𝜔2 − 𝜔3)2)

+ 𝑈4𝛿𝜔1+𝜔2
( 𝜔1(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

1) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
+ 𝜔2𝜔3

(𝑈2 + 4𝜔2
2) (𝑈2 + 4𝜔2

3)
)

− 𝑈4𝛿𝜔1−𝜔3
( 2𝜔1(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

1) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
+ 𝜔2𝜔3

(𝑈2 + 4𝜔2
2) (𝑈2 + 4𝜔2

3)
)

+ 𝛿𝜔2−𝜔3
( 𝑈4𝜔1(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

1) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
+

𝑈3 (𝑒
𝛽𝑈
2 − 1)

2𝛽 (𝑒 𝛽𝑈
2 + 1) (𝑈2 + (𝜔2 − 𝜔3)2)

−
𝑈(𝛽𝑈𝑒

𝛽𝑈
2 + 𝑒𝛽𝑈 − 1)

2𝛽 (𝑒 𝛽𝑈
2 + 1)

2
⎞⎟
⎠

.

(8.18)

Next, the two-particle reducible vertex in the parallel channel according to Eq. (8.2) is calculated
for the Hubbard atom as

𝛾p|12;34 = 1
2
𝐼p|12;68𝐺65𝐺87Γ57;34. (8.19)

The Bethe-Salpeter equation for spin arguments ↑↓↑↓ reads

𝛾p|↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) =
1
2
𝐼p↑↓;↑↓(𝜔1, 𝜔2, 𝜔5)𝐺(𝜔5)𝐺(𝜔1 + 𝜔2 − 𝜔5)Γ↑↓;↑↓(𝜔5, 𝜔2 + 𝜔1 − 𝜔5, 𝜔3)

+ 1
2
𝐼p↑↓;↓↑(𝜔1, 𝜔2, 𝜔5)𝐺(𝜔5)𝐺(𝜔1 + 𝜔2 − 𝜔5)Γ↓↑;↑↓(𝜔5, 𝜔2 + 𝜔1 − 𝜔5, 𝜔3).

(8.20)

For the second summand of Eq. (8.20), the relations due to crossing symmetry Eq. (8.15) and Eq.
(8.16) are again applied. With this, the summand is expressed in terms of diagrams from chapter 5
as

1
2
𝐼p↑↓;↓↑(𝜔1, 𝜔2, 𝜔5)𝐺(𝜔5)𝐺(𝜔1 + 𝜔2 − 𝜔5)Γ↓↑;↑↓(𝜔5, 𝜔2 + 𝜔1 − 𝜔5, 𝜔3)

= 1
2
𝐼p↑↓;↑↓(𝜔1, 𝜔2, 𝜔1 + 𝜔2 − 𝜔5)𝐺(𝜔5)𝐺(𝜔1 + 𝜔2 − 𝜔5)Γ↑↓;↑↓(𝜔5, 𝜔2 + 𝜔1 − 𝜔5, 𝜔1 + 𝜔2 − 𝜔3).

(8.21)

Determining the irreducible parts in the parallel channel 𝐼p as shown in Fig. 8.1, we evaluate the
frequency sum over 𝜔5 and obtain the expression

𝛾p|↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) =
1
2
⎛⎜
⎝

8𝑈3𝜔1𝜔2
𝛽 (𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
2)

+
𝑈3 (𝑒𝛽𝑈 − 1)

𝛽 (𝑒 𝛽𝑈
2 + 1)

2
(𝑈2 + (𝜔1 + 𝜔2)2)

+ 8𝑈3𝜔3(𝜔1 + 𝜔2 − 𝜔3)
𝛽 (𝑈2 + 4𝜔2

3) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
+ ⎛⎜

⎝

𝑈2 (𝛽𝑈𝑒
𝛽𝑈
2 + 𝑒𝛽𝑈 − 1)

4 (𝑒 𝛽𝑈
2 + 1)

2 − 2𝑈4𝜔2
1

(𝑈2 + 4𝜔2
1)

2

+
𝑈(𝛽𝑈𝑒

𝛽𝑈
2 (𝑈2 + (𝜔1 + 𝜔2)2) + 𝑒𝛽𝑈(𝜔1 + 𝜔2)2 − (𝜔1 + 𝜔2)2)

𝛽 (𝑒 𝛽𝑈
2 + 1)

2
(𝑈2 + (𝜔1 + 𝜔2)2)

⎞⎟
⎠

𝛿𝜔1+𝜔2

−
2𝑈4𝜔1𝜔2𝛿𝜔1−𝜔3

(𝑈2 + 4𝜔2
1) (𝑈2 + 4𝜔2

2)
) .

(8.22)

In the parallel channel, 𝛾p|↑↑↑↑ only consists of one component, with an irreducible part in the
parallel channel depicted in Fig. 8.1. The corresponding mathematical term is evaluated easily, as
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the whole term is proportional to Kronecker-deltas, which can be seen from [14]:

𝛾p|↑↑;↑↑(𝜔1, 𝜔2, 𝜔3) =
1
2
𝐼p↑↓;↓↑(𝜔1, 𝜔2, 𝜔5)𝐺(𝜔5)𝐺(𝜔1 + 𝜔2 − 𝜔5)Γ↓↑;↑↓(𝜔5, 𝜔2 + 𝜔1 − 𝜔5, 𝜔3)

=
2𝑈4𝜔1𝜔2(𝛿𝜔2−𝜔3

− 𝛿𝜔1−𝜔3
)

(𝑈2 + 4𝜔2
1) (𝑈2 + 4𝜔2

2)

(8.23)

According to Eq. (8.2), the transverse-antiparallel vertex for the Hubbard atom is calculated as

𝛾t|12;34 = −𝐼t|52;64𝐺7𝐺5Γ17;38𝛿67𝛿85. (8.24)

Evaluating the spin summations, 𝛾t|↑↓;↑↓ is given by

𝛾t|↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) = −𝐼t|↑↓;↑↓(𝜔5, 𝜔2, 𝜔3 + 𝜔5 − 𝜔1)𝐺(𝜔3 + 𝜔5 − 𝜔1)𝐺(𝜔5)Γ↑↑;↑↑(𝜔1, 𝜔3 + 𝜔5 − 𝜔1, 𝜔3)

− 𝐼t|↓↓;↓↓(𝜔5, 𝜔2, 𝜔3 + 𝜔5 − 𝜔1)𝐺(𝜔3 + 𝜔5 − 𝜔1)𝐺(𝜔5)Γ↑↓;↑↓(𝜔1, 𝜔3 + 𝜔5 − 𝜔1, 𝜔3).
(8.25)

Explicitly, 𝛾t|↑↓;↑↓ reads

𝛾t|↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) = − 4𝑈3𝜔1𝜔3
𝛽 (𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
3)

− 4𝑈3𝜔2(𝜔1 + 𝜔2 − 𝜔3)
𝛽 (𝑈2 + 4𝜔2

2) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

+𝑈4𝛿𝜔1+𝜔2
(− 𝜔1𝜔3

(𝑈2 + 4𝜔2
1) (𝑈2 + 4𝜔2

3)
− 𝜔2(𝜔1 + 𝜔2 − 𝜔3)

(𝑈2 + 4𝜔2
2) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

)

+
𝑈2 (𝛽𝑈𝑒

𝛽𝑈
2 + 𝑒𝛽𝑈 − 1) 𝛿𝜔1−𝜔3

8 (𝑒 𝛽𝑈
2 + 1)

2

+𝑈4𝛿𝜔2−𝜔3
( 𝜔1𝜔3
(𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
3)

+ 𝜔2(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

2) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
) .

(8.26)

Lastly, we require the component 𝛾t|↑↑↑↑ computed from the Bethe-Salpeter equations, which is
given by

𝛾t|↑↑;↑↑(𝜔1, 𝜔2, 𝜔3) = −𝐼t|↑↓;↑↓(𝜔5, 𝜔2, 𝜔3 + 𝜔5 − 𝜔1)𝐺(𝜔3 + 𝜔5 − 𝜔1)𝐺(𝜔5)Γ↑↑;↑↑(𝜔1, 𝜔3 + 𝜔5 − 𝜔1, 𝜔3)

− 𝐼t|↓↓;↓↓(𝜔5, 𝜔2, 𝜔3 + 𝜔5 − 𝜔1)𝐺(𝜔3 + 𝜔5 − 𝜔1)𝐺(𝜔5)Γ↑↓;↑↓(𝜔1, 𝜔3 + 𝜔5 − 𝜔1, 𝜔3).
(8.27)

Again, for a full treatment of Eq. (8.27), see [14]. Here, we restrict ourselves to only stating the
result

𝛾t|↑↑;↑↑(𝜔1, 𝜔2, 𝜔3) =
𝑈3 (𝑒

𝛽𝑈
2 − 1)

2𝛽 (𝑒 𝛽𝑈
2 + 1) (𝑈2 + (𝜔1 − 𝜔3)2)

−𝑈4𝛿𝜔1+𝜔2
( 𝜔1𝜔3
(𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
3)

+ 𝜔2(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

2) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
)

+𝛿𝜔1−𝜔3
⎛⎜
⎝

𝑈(𝛽𝑈𝑒
𝛽𝑈
2 + 𝑒𝛽𝑈 − 1)

2𝛽 (𝑒 𝛽𝑈
2 + 1)

2 − 𝑈4𝜔2(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

2) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
⎞⎟
⎠

+𝑈4𝛿𝜔2−𝜔3
( 𝜔1𝜔3
(𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
3)

+ 2𝜔2(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

2) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
) .

(8.28)

Normally, 𝛾r with r ∈ {a,p, t} and 𝑅 would be summed for the full vertex. However, if this
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was done with the expressions for 𝛾r1 from this section, which will subsequently be denoted with
an additional 1 as index, the resulting vertex would not fulfill the symmetry requirements. The
additional index numbers the contributions to the full four-point vertex upon symmetrization.
Explicitly, the four-point vertex needs to fulfill the following relations:

Γ12;34(𝜔1, 𝜔2, 𝜔3) = Γ12;34(−𝜔1, −𝜔2, −𝜔3) (8.29)

Γ12;34(𝜔1, 𝜔2, 𝜔3) = Γ21;43(𝜔2, 𝜔1, 𝜔1 + 𝜔2 − 𝜔3) (8.30)

Γ12;34(𝜔1, 𝜔2, 𝜔3) = Γ34;12(𝜔3, 𝜔1 + 𝜔2 − 𝜔3, 𝜔1) (8.31)

In principle, a suitable vertex is constructed as follows: First, the Bethe-Salpeter equations are
evaluated with exchanged frequency arguments of the irreducible and full vertices. To obtain the
symmetric vertex

ΓBSE(𝜔1, 𝜔2, 𝜔3) =
1
2
(ΓBSE1(𝜔1, 𝜔2, 𝜔3) + ΓBSE2(𝜔1, 𝜔2, 𝜔3)), (8.32)

the results from both forms of Bethe-Salpeter equations need to be added. Above, ΓBSE1 stands for
the original vertex computed in this section, whereas the index BSE2 denotes the vertex contribution
necessary to account for all diagrams. ΓBSE2 would be obtained from switching the role of the
irreducible parts 𝐼 and Γ, as when inserting perturbation theory results the contraction order of
these quantities does make a difference. Luckily, computing the Bethe-Salpeter equations all over
again can be avoided by switching frequency arguments in the results from the first calculations
depending on the respective channel, to obtain ΓBSE2:

𝛾a2(𝜔1, 𝜔2, 𝜔3) = 𝛾a1(𝜔2, 𝜔1, 𝜔1 + 𝜔2 − 𝜔3) (8.33)

𝛾p2(𝜔1, 𝜔2, 𝜔3) = 𝛾p1(𝜔3, 𝜔1 + 𝜔2 − 𝜔3, 𝜔3) (8.34)

𝛾t2(𝜔1, 𝜔2, 𝜔3) = 𝛾t1(𝜔2, 𝜔1, 𝜔1 + 𝜔2 − 𝜔3) (8.35)

Applying Eq. (8.32) then leads to the final form of the four-point-vertices, which fulfill all symmetry
requirements. Fig. 8.2 illustrates the vertex contributions from the Bethe-Salpeter equations. The
expressions to their full extent are found on the next page. They are explicitly written out, as the
results are important for the next chapter.
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Γ↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) =
𝑈
8
[8
𝛽
+ 32𝑈2𝜔1𝜔2

𝛽 (𝑈2 + 4𝜔2
1) (𝑈2 + 4𝜔2

2)
− 32𝑈2𝜔1(𝜔1 + 𝜔2 − 𝜔3)

𝛽 (𝑈2 + 4𝜔2
1) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

− 32𝑈2𝜔1𝜔3
𝛽 (𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
3)

− 32𝑈2𝜔2(𝜔1 + 𝜔2 − 𝜔3)
𝛽 (𝑈2 + 4𝜔2

2) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

+
4𝑈2 (𝑒𝛽𝑈 − 1)

𝛽 (𝑒 𝛽𝑈
2 + 1)

2
(𝑈2 + (𝜔1 + 𝜔2)2)

+ 32𝑈2𝜔3(𝜔1 + 𝜔2 − 𝜔3)
𝛽 (𝑈2 + 4𝜔2

3) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

− 16𝑈2𝜔2𝜔3
𝛽 (𝑈2 + 4𝜔2

2) (𝑈2 + 4𝜔2
3)

− 16𝑈2𝜔2𝜔3
(𝑈2 + 4𝜔2

2) (𝛽𝑈2 + 4𝛽𝜔2
3)

−
4𝑈2 (𝑒

𝛽𝑈
2 − 1)

𝛽 (𝑒 𝛽𝑈
2 + 1) (𝑈2 + (𝜔2 − 𝜔3)2)

+ 𝛿𝜔1+𝜔2
⎛⎜
⎝

4(𝛽𝑈𝑒
𝛽𝑈
2 (𝑈2 + (𝜔1 + 𝜔2)2) + 𝑒𝛽𝑈(𝜔1 + 𝜔2)2 − (𝜔1 + 𝜔2)2)

𝛽 (𝑒 𝛽𝑈
2 + 1)

2
(𝑈2 + (𝜔1 + 𝜔2)2)

− 4𝑈3𝜔2
1

(𝑈2 + 4𝜔2
1)

2

− 8𝑈3𝜔1𝜔3
(𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
3)

− 8𝑈3𝜔2(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

2) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
− 4𝑈3𝜔2

3

(𝑈2 + 4𝜔2
3)

2

+
𝑈(𝛽𝑈𝑒

𝛽𝑈
2 + 𝑒𝛽𝑈 − 1)

(𝑒 𝛽𝑈
2 + 1)

2
⎞⎟
⎠

+ 𝛿𝜔1−𝜔3
(− 12𝑈3𝜔1𝜔2

(𝑈2 + 4𝜔2
1) (𝑈2 + 4𝜔2

2)

− 4𝑈3𝜔3(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

3) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
+

𝑈(𝛽𝑈𝑒
𝛽𝑈
2 + 𝑒𝛽𝑈 − 1)

(𝑒 𝛽𝑈
2 + 1)

2
⎞⎟
⎠

+ 𝛿𝜔2−𝜔3
( 4𝑈3𝜔2

1

(𝑈2 + 4𝜔2
1)

2

+
4𝑈2 (𝑒

𝛽𝑈
2 − 1)

𝛽 (𝑒 𝛽𝑈
2 + 1) (𝑈2 + (𝜔2 − 𝜔3)2)

+ 8𝑈3𝜔1𝜔3
(𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
3)

+ 4𝑈3𝜔2
2

(𝑈2 + 4𝜔2
2)

2

+
𝑈(𝛽𝑈𝑒

𝛽𝑈
2 + 𝑒𝛽𝑈 − 1)

(𝑒 𝛽𝑈
2 + 1)

2 −
4(𝛽𝑈𝑒

𝛽𝑈
2 + 𝑒𝛽𝑈 − 1)

𝛽 (𝑒 𝛽𝑈
2 + 1)

2 + 8𝑈3𝜔2(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

2) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
⎞⎟
⎠

⎤⎥
⎦

(8.36)

Γ↑↑;↑↑(𝜔1, 𝜔2, 𝜔3) =
1
2
𝑈[

𝑈2 (𝑒
𝛽𝑈
2 − 1)

𝛽 (𝑒 𝛽𝑈
2 + 1) (𝑈2 + (𝜔1 − 𝜔3)2)

−
𝑈2 (𝑒

𝛽𝑈
2 − 1)

𝛽 (𝑒 𝛽𝑈
2 + 1) (𝑈2 + (𝜔2 − 𝜔3)2)

+
2𝑈3(𝜔1 − 𝜔2)𝛿𝜔1+𝜔2

(𝑈2 − 4𝜔1𝜔2) (𝜔1 + 𝜔2 − 2𝜔3) (𝑈2 + 4𝜔3(−𝜔1 − 𝜔2 + 𝜔3))
(𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
2) (𝑈2 + 4𝜔2

3) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

+ 𝛿𝜔1−𝜔3
(− 𝑈3𝜔1𝜔2

(𝑈2 + 4𝜔2
1) (𝑈2 + 4𝜔2

2)
− 3𝑈3𝜔1(𝜔1 + 𝜔2 − 𝜔3)

(𝑈2 + 4𝜔2
1) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

− 𝑈3𝜔1𝜔3
(𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
3)

− 𝑈3𝜔2(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

2) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

− 𝑈3𝜔3(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

3) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
− 3𝑈3𝜔2𝜔3

(𝑈2 + 4𝜔2
2) (𝑈2 + 4𝜔2

3)
+ 𝛽𝑈𝑒

𝛽𝑈
2 + 𝑒𝛽𝑈 − 1

𝛽(𝑒 𝛽𝑈
2 + 1)

2
⎞⎟
⎠

+ 𝛿𝜔2−𝜔3
⎛⎜
⎝

𝑈2 (𝑒
𝛽𝑈
2 − 1)

𝛽 (𝑒 𝛽𝑈
2 + 1) (𝑈2 + (𝜔2 − 𝜔3)2)

+ 𝑈3𝜔1𝜔2
(𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
2)

− 𝛽𝑈𝑒
𝛽𝑈
2 + 𝑒𝛽𝑈 − 1

𝛽(𝑒 𝛽𝑈
2 + 1)

2

+ 𝑈3𝜔2𝜔3
(𝑈2 + 4𝜔2

2) (𝑈2 + 4𝜔2
3)

+ 𝑈3𝜔1(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

1) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
+ 3𝑈3𝜔1𝜔3

(𝑈2 + 4𝜔2
1) (𝑈2 + 4𝜔2

3)

+ 3𝑈3𝜔2(𝜔1 + 𝜔2 − 𝜔3)
(𝑈2 + 4𝜔2

2) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
+ 𝑈3𝜔3(𝜔1 + 𝜔2 − 𝜔3)

(𝑈2 + 4𝜔2
3) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

)]

(8.37)
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Figure 8.2: Contributions to the four-point vertex derived from the Bethe-Salpeter equations
for the parameter set 𝑈 = 0.5, 𝛽 = 1. The label 𝜔𝑟 stands for the frequency index, for which the
frequency was not set equal to 𝜋

𝛽 and not plotted along the x-axis (label below each plot). For both
combinations of spin arguments considered, the imaginary part is equal to zero.

As a consistency check, the expressions Eq. (8.36) and Eq. (8.37) can be expanded in terms
of orders in the interaction strength and compared to the expansion of the exact quantities Eq.
(7.16) and Eq. (7.16). Since the Bethe-Salpeter equations are exact relations and second-order
perturbation theory results were used as initial values, the expansion vertex contributions should
agree with the expansion of the exact vertices up to third-order in the interaction strength. First,
the exact solution is expanded. Expanding the vertex from the Bethe-Salpeter equations up to
third-order, leads to

Γ↑↓;↓↑(𝜔1, 𝜔2, 𝜔3) =
1
4
𝑈2(𝛿𝜔1+𝜔2

− 𝛿𝜔2−𝜔3
) + 𝑈

𝛽

−𝛽
8
𝑈3 (

2 (𝜔2
1 + 𝜔1(𝜔2 − 𝜔3) + 𝜔2

2 − 𝜔2𝜔3 + 𝜔2
3)

𝛽2𝜔1𝜔2𝜔3(𝜔1 + 𝜔2 − 𝜔3)
−

𝛿𝜔1+𝜔2

2
−

𝛿𝜔1−𝜔3

2
−

𝛿𝜔2−𝜔3

2
) + 𝒪(𝑈4),

(8.38)

Γ↑↑;↑↑(𝜔1, 𝜔2, 𝜔3) =
1
4
𝑈2(𝛿𝜔1−𝜔3

− 𝛿𝜔2−𝜔3
) + 𝒪(𝑈4). (8.39)

Indeed, the expansion coefficients up to third-order are the same as for the exact solution. Therefore,
the Bethe-Salpeter equations were applied correctly and the result for the four-point vertex can be
used to determine the violation of the U(1) Ward identity in the next chapter.
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8.3 Self-Energy from the Schwinger-Dyson Equation

For evaluating the U(1) Ward identity, an expression for the self-energy is needed. In numerical
implementations, the self-energy is calculated from the vertex obtained after a Parquet iteration.
However, the Matsubara summations appearing turned out to be prohibitively complex. Therefore,
we do it differently: Again, second-order perturbation theory results are selected as initial value of
the four-point vertex for the Schwinger-Dyson equation.
To begin, the Schwinger-Dyson equation Eq. (8.5) is rewritten for the Hubbard atom as

Σ1 = −Γ0|12;12𝐺2 −
1
2
Γ0|12;57𝐺2𝐺7𝐺5Γ57;12. (8.40)

Taking into consideration that for the vertex with all spin arguments equal the first-order contribution
in the interaction strength vanishes and that frequency conservation holds, Eq. (8.40) is written
out explicitly as

Σ(𝜔) = −∑
𝜔2

(Γ0𝐺(𝜔2)) −
1
2

∑
𝜔2,𝜔5

(Γ0𝐺(𝜔2)𝐺(𝜔 + 𝜔2 − 𝜔5)𝐺(𝜔5)Γ↑↓;↑↓(𝜔5, 𝜔 + 𝜔2 − 𝜔5, 𝜔)

+ Γ0𝐺(𝜔2)𝐺(𝜔 + 𝜔2 − 𝜔5)𝐺(𝜔5)Γ↓↑;↑↓(𝜔5, 𝜔 + 𝜔2 − 𝜔5, 𝜔)) .
(8.41)

To express the second summand in terms of vertex contributions from chapter 5, relations due to
crossing-symmetry Eq. (8.14) are applied:

Γ0𝐺(𝜔2)𝐺(𝜔 + 𝜔2 − 𝜔5)𝐺(𝜔5)Γ↓↑;↑↓(𝜔5, 𝜔 + 𝜔2 − 𝜔5, 𝜔)

=Γ0𝐺(𝜔2)𝐺(𝜔 + 𝜔2 − 𝜔5)𝐺(𝜔5)Γ↑↓;↑↓(𝜔5, 𝜔 + 𝜔2 − 𝜔5, 𝜔2)
(8.42)

Inserting Eq. (8.42) into Eq. (8.41), an expression for the self-energy can be calculated. Next, the
frequency summation was evaluated.

ΣSDE(𝜔) =
1
2
𝑈
⎛⎜⎜⎜
⎝

−1 −
2𝑖𝑈𝜔(𝑈2 (26𝑒

𝛽𝑈
2 + 𝑒𝛽𝑈 + 1) + 4𝜔2 (𝑒

𝛽𝑈
2 + 1)

2
)

(𝑒 𝛽𝑈
2 + 1)

2
(𝑈2 + 4𝜔2) (9𝑈2 + 4𝜔2)

⎞⎟⎟⎟
⎠

(8.43)

The corresponding explicit calculations can be found in the respective Wolfram Mathematica
notebook linked in the bibliography [14]. Graphically, the real and imaginary part of the self-energy
from the Schwinger-Dyson equation are depicted in Fig. 8.3.
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Figure 8.3: Real and imaginary part of the self-energy from the Schwinger-Dyson equation at
𝛽 = 1, 𝑈 = 0.5. The real part consists only of the Hartree-term, which is constant and equal to
−𝑈

2 .
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Similar to section 8.2, the self-energy obtained from the Schwinger-Dyson equation up to third-order
in the interaction strength

ΣSDE(𝜔) = −𝑈
2
− 𝑖𝑈2

4𝜔
+ 𝒪 (𝑈4) (8.44)

should now agree with the exact self-energy Eq. (7.15). Comparing this to the expansion of Eq.
(7.15), note that as expected they are in fact equal.
Summarizing, we have now found approximations to four-point vertex and self-energy, following
the basic principles of Parquet formalism with some adjustments to generate expressions which
may still be handled analytically. The violation of the U(1) Ward identity for these new quantities
is investigated in the subsequent chapter.
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9 Fulfillment of the Ward Identity after BSE and SDE

In the following, the quantities from the Bethe-Salpeter equations and Schwinger-Dyson equation
are substituted into the U(1) Ward identity. Originally, it was planned to analyze the violation of
this equation with the primary goal to improve the Parquet approximation and cancel the violation.
An additional term, which was added to the approximation of the two-particle irreducible vertex,
was to be figured out through an educated guess from the mathematical form of the violation. This
term then should have ensured the fulfillment of the identity.
However, doing this posed a prohibitive challenge due to the complexity of the calculation. It
caused especially great difficulty to evaluate the Matsubara frequency summation necessary for
evaluating the left-hand side of the U(1) Ward identity Eq. (6.38). The primary reason for this was
the extraordinary number of function poles, which the Green’s function derived from the self-energy
Eq. (8.43) introduced to the left-hand side of the Ward identity. Hence, the respective contributions
possessed many residues (see appendix B) and the evaluated expression was way too long to possibly
find a suitable alternative to the Parquet approximation Γ0 or even draw any conclusions from.
Therefore, we resorted to an alternative approach, which is the subject of chapters 10 and 11.
Regarding the vertex and self-energy from the previous section, the corresponding violation is
computed numerically. Explicitly, the Ward identity reads

(𝑖𝜔2 − 𝑖𝜔1)∑
𝜎,𝜔

𝐺(𝜔)𝐺(𝜔 + 𝜔1 − 𝜔2)ΓBSE(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2) = ΣSDE(𝜔2) − ΣSDE(𝜔1). (9.1)

Above, 𝐺 refers to the single-particle Green’s function, which is given by 𝐺 = 1
[𝐺0]−1−ΣSDE

. For ease
of notation, spin indices were omitted. The general form of the Ward identity with all indices is
given by Eq. (6.39).
For obtaining a numerical value for the violation, the summation

∑
𝜎,𝑛

𝐺( 2𝜋𝑛+𝜋
𝛽 )Γ ( 2𝜋𝑛+𝜋

𝛽 , 𝜔1, 2𝜋𝑛+𝜋
𝛽 + 𝜔1 − 𝜔2)𝐺( 2𝜋𝑛+𝜋

𝛽 + 𝜔1 − 𝜔2) (9.2)

has to be performed. Here, 𝑛 denotes the index of the summation frequency 𝜔. From 𝑛, the
corresponding 𝜔 can be evaluated according to Eq. (3.37). Due to the structure of the Green’s
functions (see Fig. 9.1), a large range for the summation index has to be used in approximating
9.2 to ensure convergence. More specifically, the bare vertex multiplied by the product of Green’s
functions is alternating and not symmetric to 𝑛 = 0 and thus poses difficulties upon summation.
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)G
(𝜔

+
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1
−

𝜔
2)
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0.003

𝜔1 = 17𝜋,𝜔2 = − 11𝜋

𝜔1 = 17𝜋,𝜔2 = − 3𝜋

Figure 9.1: Product of Green’s func-
tions from the U(1) Ward identity for
the self-energy from the Parquet equa-
tions for 𝑈 = 0.5, 𝛽 = 1.

To aid convergence, one can add and subtract terms from Eq. (3.37) and evaluate the summation
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of simpler ‘problematic’ terms analytically. For example, Eq. (3.37) could be transformed as

∑
𝜎,𝜔

(𝐺(𝜔)𝐺(𝜔 + 𝜔1 − 𝜔2) [Γ(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2) − 𝑈]

+𝑈[𝐺(𝜔)𝐺(𝜔 + 𝜔1 − 𝜔2) − 𝐺0(𝜔)𝐺0(𝜔 + 𝜔1 − 𝜔2)] + 𝑈𝐺0(𝜔)𝐺0(𝜔 + 𝜔1 − 𝜔2)).
(9.3)

Above, the only term causing convergence problems is given by the last summand 𝑈𝐺0(𝜔)𝐺0(𝜔 +
𝜔1 −𝜔2), which due to the simple structure of the bare propagator can be summed analytically via
the usual Residue theorem ansatz.
In principle, to simplify the evaluation of Eq. (3.37), the summation frequency can be shifted such
that the sum would be (almost) symmetrical to the extremal values of the Green’s functions. This
type of shift does not change the value of the infinite summation. However, one needs to ensure that
the shifted summation frequency still possesses the properties of a fermionic Matsubara frequency.
In summary, without changing the original expression Eq. (3.37) the only option to guarantee
accurate numerical results is to choose a large range for the summation index. This motivates
the switch from Wolfram Mathematica to the programming language Julia [15] for the upcoming
numerical calculations, as in practice it reduces computation time drastically. Moreover, with
the package MatsubaraFunctions.jl [16] Matsubara functions and frequency summations can be
implemented very conveniently. Results from evaluating the violation Eq. (9.1) are depicted in Fig.
9.2, Fig. 9.3 and Fig. 9.4 for different temperatures. The Julia implementation is linked in the
bibliography [14].
For all parameter choices, the violations are roughly an order of magnitude smaller than the actual
values of left-hand side and right-hand side of the Ward identity. For 𝜔1 = 𝜔2, the Ward identity is
trivially fulfilled due to the self-energy difference on the right-hand side evaluating to zero and the
proportionality of the left-hand side to the factor (𝑖𝜔2 − 𝑖𝜔1). This results in the diagonal from the
top-right to the bottom-left in the density plots of the Ward identity difference. Both the self-energy
and the summation over the vertex contribution Γ↑↑;↑↑ display a ‘cross-like’ structure, whereas the
vertex contribution Γ↑↓;↑↓ accounts for the diagonal structure in the Ward identity difference and
assumes large values for large frequency differences. Therefore, for large differences |𝜔2 − 𝜔1| the
violation increases, which is rather unexpected. Regarding different interaction strengths, this
increase especially influences the violation for small 𝑈

𝑇 . This suggests convergence problems caused
by the summation of the product Γ0𝐺(𝜔)𝐺(𝜔 + 𝜔1 −𝜔2) included in Γ↑↓;↑↓ as cause of the increase,
as for low temperatures first-order terms in 𝑈 are dominant. Some approaches to dealing with these
issues were discussed above but not implemented at the time of writing.
All in all, the Ward identity does not hold for the quantities ΣSDE and ΓBSE, whereas the absolute
value of the violation increases with the interaction strength. While for small 𝑈 the violation
of the Ward identity seems to be due to the asymptotics of the last summand, for larger 𝑈 a
cross-like structure appears in the violation. The first issue should be fixable with some effort,
whereas the second one is non-trivial. In the following, we try to develop a systematic method
to ensure fulfillment the U(1) Ward identity by improving on the two-particle irreducible vertex
approximation.
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Figure 9.2: From left to right: Imaginary part of the right-hand side of the U(1) Ward identity
(self-energy difference), imaginary part of the left-hand side of the U(1) Ward identity and violation
of the U(1) Ward identity for 𝑈 = 0.1, 𝛽 = 1.
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Figure 9.3: From left to right: Imaginary part of the right-hand side of the U(1) Ward identity
(self-energy difference), imaginary part of the left-hand side of the U(1) Ward identity and violation
of the U(1) Ward identity for 𝑈 = 0.5, 𝛽 = 1.
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Figure 9.4: From left to right: Imaginary part of the right-hand side of the U(1) Ward identity
(self-energy difference), imaginary part of the left-hand side of the U(1) Ward identity and violation
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10 Analytical Approximation for the Irreducible Four-Point
Vertex

Finding an ansatz to approximate the two-particle irreducible vertex, which ensures that the U(1)
Ward identity holds, is now done analytically for a simple case. In general, this section should serve
as a proof of concept. It is meant to give some ideas on possible approaches to mathematically
finding rest terms ansatzes. In later sections, the procedure is repeated similarly for a more complex
case.
However, we first restrict ourselves to compensating the violation of the Ward identity in second-
order perturbation theory in the particle-hole symmetric regime. Inserting second-order quantities
separately, the Ward identity is fulfilled (see chapter 7.1) but it is not when zero-, first- and
second-order diagrams are substituted at the same time and the Green’s function is computed from
the second-order self-energy according to the Dyson equation, analogous to the evaluation of the
Green’s function in the last chapter. The quantities considered are then given by the four-point
vertex contributions Eq. (8.8) and Eq. (8.9), the self-energy Eq. (8.7) and the single-particle
Green’s function:

𝐺 = 1
[𝐺0]−1 −Σ2

= − 4𝑖𝜔
𝑈2 + 4𝜔2 (10.1)

Now, when calculating the Ward identity violation, violations in orders higher than second-order

Σ(𝜔2) − Σ(𝜔1) − (𝑖𝜔2 − 𝑖𝜔1)∑
𝜔

𝐺(𝜔)𝐺(𝜔 + 𝜔1 − 𝜔2)Γ↑↑;↑↑(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2, 𝜔2)

+Γ↑↓;↑↓(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2, 𝜔2)

=1
4
𝑈2(𝑖𝜔2 − 𝑖𝜔1)(

2 tanh (𝛽𝑈
4 )

𝑈2 + (𝜔1 − 𝜔2)2
− 16𝜔1𝜔2

(𝑈2 + 4𝜔2
1) (𝑈2 + 4𝜔2

2)
+ 1

𝜔1𝜔2
)

≡(𝑖𝜔2 − 𝑖𝜔1)𝜖(𝜔1, 𝜔2)

(10.2)

arise. Our objective is now, to add something to the vertex to cancel the violation 𝜖(𝜔1, 𝜔2).
Therefore, let us at first discuss the mathematical form of rest terms for the four-point vertex: Due
to symmetry requirements, the four-point vertex needs to fulfill Eq. (8.29), Eq. (8.30) and Eq.
(8.31). Hence, our ansatz for 𝑅 also needs to possess these properties. This imposes the condition

𝑅↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) = 𝑓(𝜔1, 𝜔2, 𝜔3) + 𝑓(𝜔2, 𝜔1, 𝜔1 + 𝜔2 − 𝜔3) + 𝑓(𝜔1 + 𝜔2 − 𝜔3, 𝜔3, 𝜔2)

+ 𝑓(𝜔3, 𝜔1 + 𝜔2 − 𝜔3, 𝜔1)
(10.3)

on 𝑅. Here, 𝑓 is an arbitrary function of Matsubara frequencies 𝜔1, 𝜔2 and 𝜔3. In general, the rest
term 𝑅↑↑;↑↑ is given by

𝑅↑↑;↑↑(𝜔1, 𝜔2, 𝜔3) = 𝑅↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) + 𝑅↑↓;↓↑(𝜔1, 𝜔2, 𝜔3). (10.4)

Hence, from crossing symmetry the relation

𝑅↑↑;↑↑(𝜔1, 𝜔2, 𝜔3) = 𝑅↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) − 𝑅↑↓;↑↓(𝜔2, 𝜔1, 𝜔3) (10.5)

between the rest term 𝑅↑↓;↑↓ and 𝑅↑↑;↑↑ arises, which is defined as the rest term corresponding to
the vertex contribution Γ↑↑;↑↑. Additionally, time-reversal symmetry needs to be regarded, as it is
not automatically ensured by choosing a rest term of the form Eq. (10.1). It is trivially fulfilled, if
𝑅 depends only on even products of its frequency arguments. Taking Eq. (10.3) and Eq. (10.5)
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into consideration, instead of looking for a suitable 𝑅 we search for a function 𝑓 to construct the
two-particle irreducible vertex approximation from.
Let us now revisit the explicit expression of the violation Eq. (10.2). Note, that the violation is
made up of three distinct summands. They are now considered separately to find rest terms and
corresponding functions 𝑓, which cancel them.
Of course, there are many different options to cancel each summand of 𝜖(𝜔1, 𝜔2). Nevertheless,
even for a violation consisting of only three rather compact summands it proves itself to be difficult
to find an ansatz for new expressions which sum up to the violation when evaluating the infinite
Matsubara sum. Though definitely possible, a much faster way is given by choosing a function
𝑓 and therefore a rest term fully proportional to Kronecker-delta symbols. Especially, choosing
an 𝑓 containing either the factor 𝛿𝜔1−𝜔2

, which vanishes in the Ward identity due to the prefactor
𝑖(𝜔2 − 𝜔1), or containing 𝛿𝜔±𝜔1

, 𝛿𝜔±𝜔2
, which cancel out the Matsubara frequency summation over

𝜔. Another advantage of choosing rest terms proportional to Kronecker-delta functions is them
being very convenient in further calculations and especially frequency summations including the
modified four-point vertices.
For the first summand, a suitable 𝑓 is given by

𝑓1(𝜔1, 𝜔2, 𝜔3) =
𝑈2 (𝑈2 + 4𝜔2

2) (𝑈2 + 4𝜔2
3) 𝛿𝜔1−𝜔3

tanh (𝛽𝑈
4 )

128𝜔2𝜔3 (𝑈2 + (𝜔1 − 𝜔2)2)
. (10.6)

It can be verified that this function indeed cancels the first summand of the violation 𝜖 by
constructing the rest terms according to Eq. (10.3) and Eq. (10.5). As the full expressions of the
rest terms are again rather elaborate, the end results to the rest terms counteracting the full 𝜖 are
found at the end of this paragraph. The verification that with the modified four-point vertex the
U(1) Ward identity holds was performed with Wolfram Mathematica [13] and is illustrated in a
notebook linked in the bibliography [14].
The function 𝑓2 corresponding to the rest term canceling the second summmand of 𝜖(𝜔1, 𝜔2) is
given by

𝑓2(𝜔1, 𝜔2, 𝜔3) =
1
32

𝑈2𝛿𝜔2−𝜔3
. (10.7)

At last, the function to construct a rest term corresponding to the third summand is determined:

𝑓3(𝜔1, 𝜔2, 𝜔3) =
𝑈2 (𝑈2 + 4𝜔2

2) (𝑈2 + 4𝜔2
3) 𝛿𝜔1−𝜔3

256𝜔1𝜔2
2𝜔3

(10.8)

Next, the rest terms are constructed from the functions introduced above. If they were added to
the four-point vertex contributions, the U(1) Ward identity would hold for these quantities by
construction. The subsequent page is dedicated to showing the full ansatz for the irreducible terms.
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𝑅↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) =
1
256

𝑈2 (𝛿𝜔1−𝜔3
(
2(𝑈2 + 4𝜔2

1) tanh (
𝛽𝑈
4 ) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

𝜔1 (𝑈2 + (𝜔1 − 𝜔2)2) (𝜔1 + 𝜔2 − 𝜔3)

+
2 (𝑈2 + 4𝜔2

1) tanh (
𝛽𝑈
4 ) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

𝜔1(𝜔1 + 𝜔2 − 𝜔3) (𝑈2 + (𝜔1 + 𝜔2 − 2𝜔3)2)
+

2 (𝑈2 + 4𝜔2
2) (𝑈2 + 4𝜔2

3) tanh (
𝛽𝑈
4 )

𝜔2𝜔3 (𝑈2 + (𝜔1 − 𝜔2)2)

−
2 (𝑈2 + 4𝜔2

2) (𝑈2 + 4𝜔2
3) tanh (

𝛽𝑈
4 )

𝜔2𝜔3 (𝑈2 + (𝜔1 + 𝜔2 − 2𝜔3)2)
+

(𝑈2 + 4𝜔2
1) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
𝜔2
1𝜔2(𝜔1 + 𝜔2 − 𝜔3)

+
(𝑈2 + 4𝜔2

1) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
𝜔1𝜔3(𝜔1 + 𝜔2 − 𝜔3)2

+
(𝑈2 + 4𝜔2

2) (𝑈2 + 4𝜔2
3)

𝜔1𝜔2
2𝜔3

+
(𝑈2 + 4𝜔2

2) (𝑈2 + 4𝜔2
3)

𝜔2𝜔2
3(𝜔1 + 𝜔2 − 𝜔3)

) + 32𝛿𝜔2−𝜔3
)

(10.9)

𝑅↑↑;↑↑(𝜔1, 𝜔2, 𝜔3) =
1
256

𝑈2 (𝛿𝜔2−𝜔3
(−

2 (𝑈2 + 4𝜔2
1) (𝑈2 + 4𝜔2

3) tanh (
𝛽𝑈
4 )

𝜔1𝜔3 (𝑈2 + (𝜔1 − 𝜔2)2)

−
2 (𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
3) tanh (

𝛽𝑈
4 )

𝜔1𝜔3 (𝑈2 + (𝜔1 + 𝜔2 − 2𝜔3)2)
−

2 (𝑈2 + 4𝜔2
2) tanh (

𝛽𝑈
4 ) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

𝜔2 (𝑈2 + (𝜔1 − 𝜔2)2) (𝜔1 + 𝜔2 − 𝜔3)

−
2 (𝑈2 + 4𝜔2

2) tanh (
𝛽𝑈
4 ) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

𝜔2(𝜔1 + 𝜔2 − 𝜔3) (𝑈2 + (𝜔1 + 𝜔2 − 2𝜔3)2)
−

(𝑈2 + 4𝜔2
1) (𝑈2 + 4𝜔2

3)
𝜔2
1𝜔2𝜔3

−
(𝑈2 + 4𝜔2

1) (𝑈2 + 4𝜔2
3)

𝜔1𝜔2
3(𝜔1 + 𝜔2 − 𝜔3)

−
(𝑈2 + 4𝜔2

2) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
𝜔1𝜔2

2(𝜔1 + 𝜔2 − 𝜔3)

−
(𝑈2 + 4𝜔2

2) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
𝜔2𝜔3(𝜔1 + 𝜔2 − 𝜔3)2

+ 32)

+ 𝛿𝜔1−𝜔3
(
2(𝑈2 + 4𝜔2

1) tanh (
𝛽𝑈
4 ) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)

𝜔1 (𝑈2 + (𝜔1 − 𝜔2)2) (𝜔1 + 𝜔2 − 𝜔3)

+
2 (𝑈2 + 4𝜔2

1) tanh (
𝛽𝑈
4 ) (𝑈2 + 4(𝜔1 + 𝜔2𝜔3)2)

𝜔1(𝜔1 + 𝜔2 − 𝜔3) (𝑈2 + (𝜔1 + 𝜔2 − 2𝜔3)2)
+

2 (𝑈2 + 4𝜔2
2) (𝑈2 + 4𝜔2

3) tanh (
𝛽𝑈
4 )

𝜔2𝜔3 (𝑈2 + (𝜔1 − 𝜔2)2)

+
2 (𝑈2 + 4𝜔2

2) (𝑈2 + 4𝜔2
3) tanh (

𝛽𝑈
4 )

𝜔2𝜔3 (𝑈2 + (𝜔1 + 𝜔2 − 2𝜔3)2)
+

(𝑈2 + 4𝜔2
1) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
𝜔2
1𝜔2(𝜔1 + 𝜔2 − 𝜔3)

+
(𝑈2 + 4𝜔2

1) (𝑈2 + 4(𝜔1 + 𝜔2 − 𝜔3)2)
𝜔1𝜔3(𝜔1 + 𝜔2 − 𝜔3)2

+
(𝑈2 + 4𝜔2

2) (𝑈2 + 4𝜔2
3)

𝜔1𝜔2
2𝜔3

+
(𝑈2 + 4𝜔2

2) (𝑈2 + 4𝜔2
3)

𝜔2𝜔2
3(𝜔1 + 𝜔2 − 𝜔3)

− 32))

(10.10)
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Let us now compare the modified vertex in second-order with the new approximations Eq. (10.9)
and Eq. (10.10) added to the exact four-point vertex contributions introduced in section 7.2.
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Figure 10.1: Comparison of the modified four-point vertex contribution Γmod|↑↑;↑↑, which is given
by the four-point vertex Γ↑↑;↑↑ in second-order in the interaction strength with rest term Eq. (10.8)
added to it to the exact vertex contribution Γexact|↑↑;↑↑. The comparison considers the particle-hole
symmetric regime for the parameters 𝛽 = 1, 𝑈 = 0.5. The axis labeling is explained in the caption
of Fig. 8.2.
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Figure 10.2: Comparison of the modified four-point vertex contribution Γmod|↑↓;↑↓, which is given
by the four-point vertex Γ↑↓;↑↓ in second-order in the interaction strength with rest term Eq. (10.8)
added to it to the exact vertex contribution Γexact|↑↓;↑↓. The comparison considers the particle-hole
symmetric regime for the parameters 𝛽 = 1, 𝑈 = 0.5. The axis labeling is explained in the caption
of Fig. 8.2.

It is apparent that the exact vertex and the modified vertices structure-wise look very similar for
all spin arguments equal. This stems from them both being mostly proportional to Kronecker-delta
coefficients in the particle-hole symmetric regime. Nevertheless, the absolute value of the modified
vertex contribution Γmod|↑↑;↑↑ is about a factor 2 larger in comparison to the exact solution for the
parameters specified in the caption of Fig. 10.1. Regarding the vertex contribution Γmod|↑↓;↑↓, the
modified and the exact vertex contributions are in the same order of magnitude for the parameters
chosen, as can be seen in Fig. (10.2). Again, extremal values of the vertex contributions are found
on the diagonals due to proportionality to Kronecker-delta symbols.

Although this has shown that taking an educated guess on the form of 𝑅 to fulfill the Ward

60
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Figure 10.3: Comparison of the violations of the U(1) Ward identity for vertex and self-energy
in second and third-order and derived from Schwinger-Dyson and Bethe-Salpeter equations for
𝑈 = 0.5, 𝛽 = 1.

identity is in principle possible, the rest terms derived in this chapter are not beneficial to our main
objective: Cancellation of the violation for vertex and self-energy from BSE and SDE. To see why,
the violation 𝜖(𝜔1, 𝜔2) compensated in this section is expanded as

𝜖(𝜔1, 𝜔2) =
𝛽𝑈3

8(𝜔1− 𝜔2)2
+ 𝒪(𝑈4) (10.11)

in orders of the interaction strength.

Corrections from the rest terms Eq. (10.9) and Eq. (10.10) start in third-order. Since the vertex and
self-energy from BSE and SDE are exact quantities up to third-order, adding rest terms constructed
from the functions 𝑓1 to 𝑓3 from this chapter would overcompensate violations in third-order. Espe-
cially for small 𝑈, the coefficient of 𝜖(𝜔1, 𝜔2) proportional to 𝑈3 dominates higher-order corrections
and accounts for an even larger violation of the Ward identity for ΓBSE and ΣSDE. As perturbation
theory itself is only valid for small interactions 𝑈

𝛽 per definition, it is not to be expected that a
modification of ΓBSE with the same rest terms as above would change anything for the better. A
comparison of the violations in second-order and the violation from last chapter is depicted in Fig.
10.3.

As a rest term for the violation of the Ward identity including ΓBSE and ΣSDE needs to ac-
count for violations in fourth-order and upwards, finding a rest term based on third-order might
be able to cancel the violation from chapter 9 at least in parts. Therefore, the exact vertex and
self-energy Eq. (7.15), Eq. (7.16) and Eq. (7.17) are expanded up to third-order in the interaction
strength:

Σ(𝜔) = −𝑈
2
− 𝑖𝑈2

4𝜔
(10.12) Γ↑↑;↑↑(𝜔1, 𝜔2, 𝜔3) =

1
4
𝑈2(𝛿𝜔1−𝜔3

− 𝛿𝜔2−𝜔3
) (10.13)
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Γ↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) =
1
𝛽
(𝑈 + 1

4
𝑈2(𝛽𝛿𝜔1+𝜔2

− 𝛽𝛿𝜔2−𝜔3
) + 𝑈3 ( 1

16
𝛽2𝛿𝜔1+𝜔2 +

1
16

𝛽2𝛿𝜔1−𝜔3

+ 1
16

𝛽2𝛿𝜔2−𝜔3
+ −𝜔2

1 + 𝜔3(𝜔1 + 𝜔2) − 𝜔1𝜔2 − 𝜔2
2 − 𝜔2

3
4𝜔1𝜔2𝜔3(𝜔1 + 𝜔2 − 𝜔3)

))
(10.14)

Again, the Green’s function is obtained according to the Dyson equation. Evaluating the Ward
identity as in Eq. (10.2) for the third-order quantities yields the violation

𝜖′(𝜔1, 𝜔2) ≡
𝑈2

8𝜔1𝜔2
( 16𝜔2

1𝜔2
2(𝛽𝑈 − 2)

(𝑈2 + 4𝜔2
1) (𝑈2 + 4𝜔2

2)
−

tanh (𝛽𝑈
4 ) (𝑈2 + 4(𝜔1 − 𝜔2)2)
𝑈2 + (𝜔1 − 𝜔2)2

+ 2) . (10.15)

Expanding 𝜖′(𝜔1, 𝜔2) indeed shows that its lowest-order term in the interaction strength arises in
fourth-order. Before computing rest terms which sum up to 𝜖′(𝜔1, 𝜔2), let us compare the violations
of the Ward identity from this and last chapter depicted in Fig. 10.3.
The comparison Fig. 10.3 makes it obvious that cancelling the violation in the Ward identity
for the vertex and self-energy from BSE and SDE is not possible by making assumptions about
the two-particle irreducible vertex based on standard diagrammatic perturbation theory. The
third-order violation is also not able to compensate the violation from chapter 9. One observes a
‘cross-shaped’ pattern in the third-order as well as the numerical violation. However, the latter is
dominated by diagonal features coming from the suboptimal numerical treatment of the asymptotics
of the bare contribution.
In summary, the results from this chapter tell us that for determining rest terms compensating
the numerical violation from chapter 9, the ansatzes cannot be based on perturbation theory but
ideally should come from the numerical violation directly. Moreover, we were able to get a feeling
on how rest terms for the four-point vertex can be determined in a fast and easy way. In the next
chapter, this is applied to the numerical violation.
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11 Numerical Approximation for the Irreducible Four-Point
Vertex

Having obtained some experience on finding rest terms in the previous section, we will repeat the
procedure to obtain a numerical addition to the four-point vertex ΓBSE, with which the version of
the U(1) Ward identity from chapter 9 holds.
As before, there are two main difficulties in finding additional terms which cancel the violation.
For one, approximations for the two-particle irreducible vertex need to fulfill the symmetries of
the four-point vertex. This is automatically ensured by choosing a specific form of ansatz for the
rest term. One possible form is given by Eq. (10.3). Therefore, the goal is again to find a suitable
function 𝑓 from which we can construct the rest terms according to Eq. (10.3) and Eq. (10.5).
Furthermore, the Matsubara frequency summation poses difficulties in determining rest terms.
Whereas for the analytic case (chapter 10) it was possible to make assumptions on 𝑅 based on the
mathematical structure of the violation, we cannot do this for numerical values. In principle, the
equation

∑
𝜔,𝜎

𝐺(𝜔)𝐺(𝜔 + 𝜔1 − 𝜔2)𝑅(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2) =
ΔWI(𝜔1, 𝜔2)
(𝑖𝜔2 − 𝑖𝜔1)

(11.1)

needs to be solved for 𝑅. Here, ΔWI denotes the violation of the Ward identity and the summation
index 𝜎 indicates a summation over spin arguments. Note, that when |𝜔1 − 𝜔2| = 0 one seemingly
would have to divide by zero to determine 𝑅. However, as the Ward identity is trivially fulfilled for
|𝜔1 − 𝜔2| = 0, 𝑅 is just set to zero on this diagonal in the frequency plane.
There are different options to deal with the summation on the left-hand side of Eq. (11.1).
However, in any case assumptions about the form of 𝑅 or equivalently the form of 𝑓, from which
𝑅 is constructed, need to be made. A frequency proportionality such as 𝑓 ∝ 1

𝜔1𝜔2𝜔3
could be

considered, which contains prefactors ensuring the sums converge. Alternatively, we could avoid
the frequency summation completely by postulating 𝑓 being fully proportional to Kronecker-delta
symbols. Due to the prefactor (𝑖𝜔2 − 𝑖𝜔1) in Eq. (11.1) for the Hubbard atom, or more general
([𝐺0(𝜔)]−1 − [𝐺0(𝜔 + 𝜔1 −𝜔2)]−1), terms proportional to 𝛿𝜔1−𝜔2

generally vanish in the U(1) Ward
identity, whereas terms proportional to 𝛿𝜔±𝜔1

, 𝛿𝜔±𝜔2
cancel the Matsubara frequency summation.

To find 𝑓, the latter method of postulating proportionality to Kronecker-deltas is chosen because of
its simplicity and generality, as it is applicable to any form of numerical violation. If 𝑓 is demanded
to be proportional to only one Kronecker-delta symbol, there are two options

𝑓1(𝜔1, 𝜔2, 𝜔3) = 𝛿𝜔1−𝜔3
𝑓1(𝜔1, 𝜔2, 𝜔3) (11.2)

𝑓2(𝜔1, 𝜔2, 𝜔3) = 𝛿𝜔2−𝜔3
𝑓2(𝜔1, 𝜔2, 𝜔3) (11.3)

which cancel out the summation upon construction of a rest term 𝑅. Although a combination of 𝑓1
and 𝑓2 is also thinkable, we will restrict ourselves to either choosing the proportionality of option
𝑓1 or 𝑓2. If the four-point vertex is constructed from 𝑓1 according to Eq. (10.3) and Eq. (10.5), the
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left-hand side of Eq. (11.1) simplifies to

∑
𝜔,𝜎

𝐺(𝜔)𝐺(𝜔 + 𝜔1 − 𝜔2)𝑅(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2)

= ∑
𝜔

𝐺(𝜔)𝐺(𝜔 + 𝜔1 − 𝜔2) (𝑅↑↓;↑↓(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2) + 𝑅↑↑;↑↑(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2))

= ∑
𝜔

𝐺(𝜔)𝐺(𝜔 + 𝜔1 − 𝜔2) [2𝛿𝜔1−𝜔2
(𝑓1(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2) + 𝑓1(𝜔1, 𝜔, 𝜔2)

+ 𝑓1(𝜔 + 𝜔1 − 𝜔2, 𝜔2, 𝜔) + 𝑓1(𝜔2, 𝜔 + 𝜔1 − 𝜔2, 𝜔1)) − 𝛿𝜔−𝜔2
(𝑓1(𝜔1, 𝜔, 𝜔 + 𝜔1 − 𝜔2)

+ 𝑓1(𝜔, 𝜔1, 𝜔2) + 𝑓1(𝜔 + 𝜔1 − 𝜔2, 𝜔2, 𝜔1) + 𝑓1(𝜔2, 𝜔 + 𝜔1 − 𝜔2, 𝜔))]

= −2𝐺(𝜔1)𝐺(𝜔2) (𝑓1(𝜔1, 𝜔2, 𝜔1) + 𝑓1(𝜔2, 𝜔1, 𝜔2)) = −4𝐺(𝜔1)𝐺(𝜔2)𝑓1(𝜔1, 𝜔2, 𝜔1).

(11.4)

The same procedure is repeated for the rest term constructed from 𝑓2:

∑
𝜔,𝜎

𝐺(𝜔)𝐺(𝜔 + 𝜔1 − 𝜔2)𝑅(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2)

= ∑
𝜔

𝐺(𝜔)𝐺(𝜔 + 𝜔1 − 𝜔2) [2𝛿𝜔−𝜔2
(𝑓1(𝜔, 𝜔1, 𝜔 + 𝜔1 − 𝜔2) + 𝑓1(𝜔1, 𝜔, 𝜔2)

+ 𝑓1(𝜔 + 𝜔1 − 𝜔2, 𝜔2, 𝜔) + 𝑓1(𝜔2, 𝜔 + 𝜔1 − 𝜔2, 𝜔1)) − 𝛿𝜔1−𝜔2
(𝑓1(𝜔1, 𝜔, 𝜔 + 𝜔1 − 𝜔2)

+ 𝑓1(𝜔, 𝜔1, 𝜔2) + 𝑓1(𝜔 + 𝜔1 − 𝜔2, 𝜔2, 𝜔1) + 𝑓1(𝜔2, 𝜔 + 𝜔1 − 𝜔2, 𝜔))]

= 4𝐺(𝜔1)𝐺(𝜔2) (𝑓2(𝜔2, 𝜔1, 𝜔1) + 𝑓2(𝜔1, 𝜔2, 𝜔2)) = 8𝐺(𝜔1)𝐺(𝜔2)𝑓2(𝜔2, 𝜔1, 𝜔1)

(11.5)

Regarding their respective structure, the expressions Eq. (11.4) and Eq. (11.5) for 𝑓1 and 𝑓2 only
differ in prefactors and sign. From the derivations of the functions above, depending on the option
1 or 2 either only the vertex correction 𝑅↑↑;↑↑ (option 𝑓1) or both 𝑅↑↑;↑↑ and 𝑅↑↓;↑↓ (option 𝑓2)
contribute to the compensation of the violation.
In both Eq. (11.4) and Eq. (11.5), the last equality is based on 𝑓 being a crossing-symmetric
function, which we can assume, if we define 𝑓 in a specific way. Suppose, we are looking for a
function 𝑓1 for which the condition 𝑓1(𝜔1, 𝜔2, 𝜔1) = 𝑓1(𝜔2, 𝜔1, 𝜔2) holds. Therefore, we define 𝑓1
to be of the form

𝑓1(𝜔1, 𝜔2, 𝜔3) ≡ (𝑓 ′
1(𝜔1, 𝜔2, 𝜔1) + 𝑓 ′

1(𝜔2, 𝜔1, 𝜔2)) 𝛿𝜔1−𝜔3
(11.6)

with 𝑓1(𝜔1, 𝜔2, 𝜔3) = 𝑓 ′
1(𝜔1, 𝜔2, 𝜔1) + 𝑓 ′

1(𝜔2, 𝜔1, 𝜔2). Per construction, this fulfills the requirements
we demanded. Similarly, one can construct 𝑓2 such that 𝑓2(𝜔2, 𝜔1, 𝜔1) = 𝑓2(𝜔1, 𝜔2, 𝜔2) holds. Still,
in the following we write 𝑓 instead of explicitly inserting for example Eq. (11.6). Even so, the above
definitions of the functions 𝑓1 and 𝑓2 make our previous transformations valid.
To obtain an expression for 𝑓1(𝜔1, 𝜔2, 𝜔1) and 𝑓2(𝜔2, 𝜔1, 𝜔1), we solve Eq. (11.1) for 𝑓 by substituting
the numerical values for the violation from Parquet. The resulting functions 𝑓𝑖 are depicted in
Fig. 11.1. One can clearly recognize the increase to higher frequencies as with the violation of the
Ward identity Fig. 9.2. On the other hand, the increase in violation around the corners of the
‘cross-shaped’ feature is not observable and both functions 𝑓1 and 𝑓2 assume very small values for
either 𝜔1 or 𝜔2 having a frequency index close to zero. However, the structure of the functions 𝑓1
and 𝑓2 should not be compared directly to the structure of the violation, as in the Ward identity
the four-point vertices constructed from 𝑓1 and 𝑓2 are multiplied by Green’s functions, which take
on extremal values for small frequencies (see chapter 9).

64



11 NUMERICAL APPROXIMATION FOR THE IRREDUCIBLE FOUR-POINT VERTEX

𝜔1

−20 −10 0 10

𝜔
2

−20

−10

0

10

a)

−0.02

−0.01

0.00

0.01

0.02

𝜔1

−20 −10 0 10

𝜔
2

−20

−10

0

10

b)

−0.010

−0.005

0.000

0.005

0.010

Figure 11.1: Functions which can be used to construct the rest term for the four point vertex form.
a) Density plot of 𝑓1(𝜔1, 𝜔2, 𝜔1) b) Density plot of 𝑓2(𝜔2, 𝜔1, 𝜔1). For these plots, the parameters
𝑈 = 0.5, 𝛽 = 1 were chosen.

If a rest term 𝑅 is now constructed from one of the functions introduced above, the U(1) Ward
identity is fulfilled. As the rest terms should serve as correction to the four-point vertex, it is not
enough to only know the rest term’s frequency dependence on two arguments 𝜔1 and 𝜔2. The
general expressions 𝑅(𝜔1, 𝜔2, 𝜔3) and 𝑓(𝜔1, 𝜔2, 𝜔3) are needed, whereas 𝑓 denotes either 𝑓1 or 𝑓2.
Fortunately, 𝑅(𝜔1, 𝜔2, 𝜔3) can be inferred from 𝑓1(𝜔1, 𝜔2, 𝜔1) or 𝑓2(𝜔2, 𝜔1, 𝜔1) using symmetry
considerations and the proportionality to Kronecker-delta symbols. To construct in example a rest
term from 𝑓1(𝜔1, 𝜔2, 𝜔1) for the U(1) Ward identity according to Eq. (10.3), the terms

𝑓1(𝜔2, 𝜔1, 𝜔1 + 𝜔2 − 𝜔3) = 𝑓1(𝜔2, 𝜔1, 𝜔1 + 𝜔2 − 𝜔3)𝛿𝜔1−𝜔3
= 𝑓1(𝜔2, 𝜔1, 𝜔2)𝛿𝜔1−𝜔3

𝑓1(𝜔3, 𝜔1 + 𝜔2 − 𝜔3, 𝜔1) = 𝑓1(𝜔3, 𝜔1 + 𝜔2 − 𝜔3, 𝜔1)𝛿𝜔1−𝜔3
= 𝑓1(𝜔1, 𝜔2, 𝜔1)𝛿𝜔1−𝜔3

𝑓1(𝜔1 + 𝜔2 − 𝜔3, 𝜔3, 𝜔2) = 𝑓1(𝜔1 + 𝜔2 − 𝜔3, 𝜔3, 𝜔2)𝛿𝜔1−𝜔3
= 𝑓1(𝜔2, 𝜔1, 𝜔2)𝛿𝜔1−𝜔3

(11.7)

are needed. With 𝑓1 defined as in Eq. (11.6), the general form of the rest terms for the four-point
vertex reads

𝑅↑↓;↑↓(𝜔1, 𝜔2, 𝜔3) = 4𝑓1(𝜔1, 𝜔2, 𝜔1)𝛿𝜔1−𝜔3
(11.8)

𝑅↑↑;↑↑(𝜔1, 𝜔2, 𝜔3) = 4𝑓1(𝜔1, 𝜔2, 𝜔1)𝛿𝜔1−𝜔3
− 4𝑓1(𝜔2, 𝜔1, 𝜔2)𝛿𝜔2−𝜔3

. (11.9)

Accordingly, a rest term corresponding to 𝑓2 could be obtained.
Therefore, we guessed a general rest term, which ensures the fulfillment of the U(1) Ward identity
of the Hubbard atom. However, this method of guessing functions to construct rest terms from
can be generalized to other models as well. Why obtaining alternatives for the irreducible vertex
approximation such as described above might be helpful to improve on the qualities of approximations
from Parquet formalism, is reviewed in the conclusion (chapter 12).
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12 CONCLUSION AND OUTLOOK

12 Conclusion and Outlook

To summarize, this thesis has derived and investigated the U(1) Ward identity for the Hubbard atom
in the context of perturbation theory and the Parquet formalism. For this purpose, diagrammatic
approximations were calculated, stretching the limits of analytic calculations in the context of
perturbative expansions. Regarding this specific aspect of the text, it is concluded that higher-order
perturbation theory computations in the general case are only feasible numerically. In the second
part of this thesis, these perturbation theory results were used to develop a systematic method to
analytically and numerically guess irreducible four-point vertex approximations, which ensure the
fulfillment of the U(1) Ward identity.
In principle, this method of finding ansatzes of rest terms could be applied after each Parquet
iteration. If convergence of the Parquet equations could be achieved, this would yield a high-quality
approximation of the four-point vertex, which fulfills the U(1) Ward identity and thus particle
conservation. As the approach is not restricted to the Hubbard atom, it could be tested for other
models as well. Setting up the code to try including the rest terms in actual numerical parquet
iterations is beyond the scope of this thesis but definitely worth a try.
Another possible continuation of the results from this thesis would be a refinement of the rest-term
ansatzes. Currently, they are restricted to rest terms proportional to Kronecker-deltas, whereas in
practice the part of the two-particle irreducible vertex not proportional to Kronecker-delta symbols
is of even greater interest. Possibly, one could look for a systematic method to make educated
guesses on these types of rest terms either analytically or numerically as well. On the other hand, as
from each continuous symmetry arises a corresponding Ward identity, one could also try to find rest
terms approximations based on the fulfillment of multiple of these identities. As the Hubbard atom
possesses a total-irreducible four-point vertex contribution not proportional to Kronecker-delta
symbols [12] as well as an additional SU(2) symmetry, it again would fit the criteria of an exemplary
model to explore the ideas in this paragraph further. Not least due to its simplicity but also due to
its exact solvability, the Hubbard atom has proven itself to be the perfect choice of model when
testing out new methods or to learn basics on diagrammatic perturbation theory.
All in all, the fulfillment of Ward identities in the context of diagrammatic approximation methods
as the Parquet formalism is of high significance to obtain physically realistic results. As many
diagrammatic methods are not designed to automatically ensure Ward identities to hold, funda-
mental conservation principles are often violated for approximated quantities, which makes further
investigation necessary.
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APPENDIX A

A Introduction to Functional Derivation

This section serves as short review of the calculus of functionals, which are necessary for the calcula-
tions in this thesis. The following text will mainly be a short summary of [17] and the first chapter
of [18]. A lot of statements are not proven and one should refer to the literature for this exact purpose.

One can think of a functional as a function of functions and their variables. Geometrically
speaking, a functional of one variable is a function of curves and a functional of several variables can
even take surfaces as input. Whereas calculus of functionals has many applications in physics, we
mostly need concepts to derive generating functionals with respect to field variables in order to derive
correlation functions and other related quantities. As our generating functionals are dependent on
many field variables, we will focus on functionals of several variables. For simplification, we only
consider functionals of two variables containing up to first order derivatives

𝐽[𝑧] = ∫∫
𝑅
d𝑥d𝑦𝐹(𝑥, 𝑦, 𝑧(𝑥, 𝑦), 𝜕𝑧(𝑥, 𝑦)

𝜕𝑥
, 𝜕𝑧(𝑥, 𝑦)

𝜕𝑦
) (A.1)

but the concepts can be easily generalized. Here, 𝑧(𝑥, 𝑦) is an arbitrary function which is a variable
of the functional 𝐽[𝑧]. 𝑅 is some region where 𝐹 is well-defined. Probably, even if there was no
formal introduction to functionals yet, every physics student has come across the term variation or
calculus of variations for example in theoretical mechanics. A variation can be interpreted as a
differential of a functional. It can be obtained by incrementing the functional 𝐽[𝑧] by a nearby7

function ℎ(𝑥, 𝑦) and subtracting the original functional, which has not been incremented:

Δ𝐽 = 𝐽[𝑧 + ℎ] − 𝐽[𝑧] = ∫∫
𝑅
d𝑥d𝑦𝐹 (𝑥, 𝑦, 𝑧 + ℎ, 𝜕(𝑧+ℎ)

𝜕𝑥 , 𝜕(𝑧+ℎ)
𝜕𝑦 ) − 𝐹(𝑥, 𝑦, 𝑧, 𝜕𝑧

𝜕𝑥 ,
𝜕𝑧
𝜕𝑦) (A.2)

Expanding the integrand up to first order yields the variation of 𝐽:

𝛿𝐽 ≡ ∫∫
𝑅
d𝑥d𝑦𝜕𝐹

𝜕𝑧
ℎ + 𝜕𝐹

𝜕(𝜕𝑥𝑧)
𝜕ℎ
𝜕𝑥

+ 𝜕𝐹
𝜕(𝜕𝑦𝑧)

𝜕ℎ
𝜕𝑦

(A.3)

Additionally, one can prove that the variation of a functional is unique [18]. Similar to determining
extrema of functions, at stationary points of a functional its variation is zero. Determining stationary
points of functionals is a concept often needed in physics for example in the Hamiltonian principle
where one considers the variation of the action.
If there exists an analog to differentials in functional calculus, it is only natural that there is also
an analog to the derivatives of functions, which is called the functional derivative. At first, let’s
consider the fraction

𝐽[𝑧 + ℎ] − 𝐽[𝑧]
Δ𝜎

. (A.4)

Again, ℎ is a function nearby to z. This time however, we impose an additional constraint on ℎ:
it is only nonzero in a neighborhood of point (𝑥0, 𝑦0) The denominator Δ𝜎 stands for the ”area”
or ”volume” between 𝑧 and ℎ. Now, let Δ𝜎 and simultaneously the region where ℎ is nonzero go
to zero. If Eq. (A.4) converges to a limit under these conditions, this limit is the variational or
functional derivative at point (𝑥0, 𝑦0) and is denoted by 𝛿𝐽

𝛿𝑧 ∣𝑥=𝑥0
. In fact, the same rules which are

usually defined for normal differentiation such as sum rule, product rule, chain rule etc. also hold
7What nearby means, is determined by the space the variables are defined on and the respective norm. Functions

are defined as components in function space. For example, one can choose the space of all functions with continuous
derivatives 𝒟1, for which the norm is given by the maximum absolute value of a function. However, one normally
chooses the space based on the concrete form of the respective functional one wants to describe. More on function
spaces and suitable choices for functionals can be found in [18].
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for functional differentiation [18]. Therefore, even if the functional derivative is technically different,
in the case of this thesis we can often treat it almost in the same way as derivatives of functions.
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B Evaluation of Matsubara Sums

While working in Matsubara frequency formalism, one often encounters infinite summations of the
form

𝑆 =
∞
∑

𝑛=−∞
𝑓(𝑖𝜔𝑛) (B.1)

with 𝑓 being a rational function of the Matsubara frequency 𝜔𝑛 = (2𝑛+1)𝜋
𝛽 . In this section, it will be

explained how fermionic Matsubara sums can be evaluated in a convenient way following the outline
given in chapter 4 of [1]. As in appendix A, the mathematical reasoning behind the calculations
will not be discussed rigorously.
The basic idea behind simplifying the computation of terms as Eq. (B.1) is replacing summation by
the evaluation of an integral by using Cauchy’s residue theorem. It implies that on a connected open
subset 𝑈 of ℂ the integration of a holomorphic function over a closed path is equal to the residues
at the poles of the function enclosed by the path. To apply this theorem to our case, note that
every polynomial 𝑔(𝑧), 𝑧 ∈ 𝑈 is holomorphic. According to the composition rules for holomorphic
functions, the quotient of two holomorphic functions is holomorphic as well and therefore the
rational function 𝑓 from Eq. (B.1) is holomorphic. Next, we choose a holomorphic weighting
function, which has poles located exactly at the values 𝑖𝜔𝑛. Functions, which fulfill this property
are for example given by:

ℎ1(𝑧) =
𝛽

1 + 𝑒−𝛽𝑧 (B.2) ℎ2(𝑧) =
−𝛽

1 + 𝑒𝛽𝑧
(B.3)

We verify the defining property for a suitable weighting function by inserting 𝑧 = 𝑖𝜔𝑛:

𝑒𝛽
𝑖(2𝑛+1)𝜋

𝛽 = 𝑒−𝛽 𝑖(2𝑛+1)𝜋
𝛽 = −1 (B.4)

Hence, at 𝑧 = 𝑖𝜔𝑛 the denominator is 0 and the weighting function has poles for all 𝑛 ∈ ℕ. The
selection of a specific weighting function only plays a role if the Matsubara sum to be evaluated
does not converge. For example, ℎ1 controls the divergence in the left half of the complex plane,
whereas ℎ2 is used to control convergence in the right half. However, if the frequency sum converges,
the final result should not depend on the choice of the weighting function. After choosing between
for example ℎ1 and ℎ2, we can express the sum as a contour integral in the complex plane according
to residue theorem as ∞

∑
𝑛=−∞

𝑓(𝑖𝜔𝑛) = − 1
2𝜋𝑖

∮𝑓(𝑧)ℎ(𝑧)d𝑧. (B.5)

The minus sign in front of the integral arises, as for fermions the Matsubara frequencies are encircled
counter-clockwise. The transformation to a contour integral is represented graphically in Fig. B.1.

Cauchy’s residue theorem also states that deforming the integration contour doesn’t change the
value of the integral, if the same poles are enclosed by the deformed integration path. Thus, we
deform the contour in Fig. B.1a such that the value of the integral in Eq. (B.5) can be determined
easily. The choice of the contour is dependent on the specific Matsubara summation to be evaluated.
In the case of no branch cuts, which is the case for most Matsubara summations in this thesis, a
suitable choice is given by Fig. (B.1)b). In the following, this choice is discussed exemplary. The
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Figure B.1: Schematic overview of how residue theorem can be used to determine the value of
Matsubara frequency sums, similar to Figure 4.2 from chapter 4 of [1]. a) location of the function
poles 𝑖𝜔𝑛 on the imaginary axis. b) instead of just integrating along the imaginary axis, the contour
is closed such that residue theorem can be applied.

integration path in Fig. B.1b is separated:

− 1
2𝜋𝑖

∮𝑓(𝑧)ℎ(𝑧)d𝑧 = 1
2𝜋𝑖

(∫
𝛾1

𝑓(𝑧)ℎ(𝑧)d𝑧 +∫
𝛾2

𝑓(𝑧)ℎ(𝑧)d𝑧 −∫
𝛾3

𝑓(𝑧)ℎ(𝑧)d𝑧 −∫
𝛾4

𝑓(𝑧)ℎ(𝑧)d𝑧)

(B.6)
𝛾3 and 𝛾4 are half-circles with their radius 𝑅 going to infinity in order to encircle all Matsubara
frequencies on the imaginary axis. In the limit 𝑅 → ∞, their contribution to the integral Eq.
(B.6) vanishes. This can be seen by inserting the parametrization of a circle into the integral and
evaluating the limit, for example for 𝛾3

lim
𝑅→∞

∫
𝛾3

d𝜙𝑅𝑓(𝑅𝑒𝑖𝜙) −𝛽
1 + 𝑒𝑅𝑒𝑖𝜙 = ∫

𝛾3

d𝜙 lim
𝑅→∞

(𝑅𝑓(𝑅𝑒𝑖𝜙) −𝛽
1 + 𝑒𝑅𝑒𝑖𝜙 ) = 0. (B.7)

Above, limit and integral are exchanged under the assumption that the integral converges, which
will not be proven here. The last equality follows from the domination of the exponential function
in the limit 𝑅 → ∞ over any rational function of the radius. Applying this reasoning to the integral
over the other half-circle, its contribution vanishes as well and therefore

− 1
2𝜋𝑖

∮𝑓(𝑧)ℎ(𝑧)d𝑧 = 1
2𝜋𝑖

∫
𝛾1

𝑓(𝑧)ℎ(𝑧)d𝑧 +∫
𝛾2

𝑓(𝑧)ℎ(𝑧)d𝑧. (B.8)

Using residue theorem and relating the contour integral back to the original frequency summation,
one obtains ∞

∑
𝑛=−∞

𝑓(𝑖𝜔𝑛) = − ∑
poles 𝑧0

Res (𝑓(𝑧)ℎ(𝑧), 𝑧0) . (B.9)

As the function 𝑓(𝑧)ℎ(𝑧) has a finite number of poles 𝑧0, we successfully have reduced an infinite
frequency summation to a summation over a finite number of residues, which are computed as

Res (𝑓(𝑧)ℎ(𝑧), 𝑧0) =
1

(𝑚 − 1)!
lim
𝑧→𝑧0

d𝑚−1

d𝑧𝑚−1 ((𝑧 − 𝑧0)𝑚𝑓(𝑧)ℎ(𝑧)) (B.10)

with 𝑚 being the order of the function pole 𝑧0.
This concludes the explanations on evaluation of simple types of Matsubara sums. Cases of more
complex frequency sums leading to branch cuts need to be considered individually.
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