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Abstract

Rare earth pyrochlores are promising candidate materials to host quantum spin
liquid ground states. The XXZ-Heisenberg model has been proposed as a min-
imal model to describe these states. Previous studies have found two magnetic
and multiple spin liquid phases in the phase diagram. We study the XXZ-
Heisenberg model on the pyrochlore lattice using the projective symmetry group
and Schwinger boson mean field theory. We solve the mean field equations for
12 symmetric ansätze and characterize some of them by calculating their local
spin structure factors and neutron scattering amplitudes. Close to the Heisen-
berg point we find excellent agreement with prior work for observables of one
ansatz.
Additionally, we classify all possible weakly symmetric ansätze on the py-
rochlore lattice setting the basis for future studies of chiral spin liquids.
We complement the spin liquid study by Holstein-Primakoff linear spin wave
calculations for the magnetic phases of the model.
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Chapter 1

Introduction

Spin liquids are phases of spin systems that do not exhibit any long range order
down to zero temperature. Therefore, they can not be classified by Landau’s the-
ory of spontaneous symmetry breaking. Instead, they exhibit topological order [2]
with long range entanglement and non local excitations. These excitations carry
fractional quantum numbers and can have anyonic exchange statistics. Kitaev pro-
posed that such states could be used for stable quantum computing [3]. Anderson
suggested that the behavior of cuprate superconductors is closely related to a par-
ent spin liquid state [4]. Even if a spin system is only proximate to a spin liquid
phase, its behaviour can be greatly influenced by the properties of the spin liquid
[5]. There are a number of theoretical models that are known to host spin liquids
including the Kitaev toric code [3] or honeycomb [6] models. Realization of these
models is challenging since they have been constructed artificially with a focus on
analytic solvability. Rare earth pyrochlores are spin liquid candidates that are found
in nature. There have been multiple experiments finding no long range order down
to low temperatures in the mK range which is a strong indication of spin liquids
[5]. These pyrochlores have the structure R2M2O7, with trivalent rare-earth ion R
and non-magnetic tetravalent transition metal ion M sitting on intertwined lattices
of corner sharing tetrahedra (see Fig. 2.1). For a subclass of those the crystal field
splitting of the rare earth angular momentum manifold leads to an effective low
energy behavior of Kramer doublets, that can be described by an effective spin 1/2
model [5]. The small effective spin value of S = 1/2 and high geometric frustration
enhance correlations and might prevent long range order.
In this work we consider a simplified version of the general effective spin 1/2 model:
The nearest neighbor local XXZ-Heisenberg model which has been regarded as a
minimal quantum spin liquid model [7, 8]. The classical phase diagram harbors a
rich variety of ground states including the all-in-all-out order, easy-plane antifer-
romagnetic order and spin ice [5]. However, the quantum phase diagram has not
been solved yet. The most heavily studied phase of the model is probably the quan-
tum spin ice which is expected for antiferromagnetic Ising interactions with small
transverse interaction. It is a U(1) quantum spin liquid which is related to quantum
electromagnetism [9]. That is, it can host emergent electric and magnetic monopole
excitations that can interact via a gapless U(1) gauge boson. Recent studies also
found a nematic spin liquid for strong antiferromagnetic transverse coupling that
breaks the U(1) spin rotation symmetry of the Hamiltonian as well as C3 symmetry
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1. Introduction

of the pyrochlore lattice [7, 8]. The fate of the ground state at the Heisenberg point,
however, is still unclear. A lot of possible ground states have been suggested includ-
ing dimer-ordered [10–14] and spin liquid states [15–17]. We are especially curious
about the suggested monopole flux state, a chiral spin liquid that breaks time rever-
sal as well as inversion symmetry [15]. Using Schwinger Boson Mean Field Theory
we construct different gapped symmetric as well as weakly symmetric Z2 spin liquids
as possible ground state candidates. To achieve this we use a previous classification
of all possible symmetric spin liquids [18] and classify all possible weakly symmetric
spin liquids using projective symmetry group as described by Messio et al. [19].
We calculate and compare the zero temperature ground state energies and calculate
equal time spin-structure factors. Even though the gapped Z2 liquids cannot de-
scribe the gapless excitations of the U(1) quantum spin ice, we hope to be able to
describe the spinon excitations correctly.

The outline of the thesis is as follows: In Chapt. 2 we present the origin of
the general pseudospin S = 1

2 model and various phases that have previously been
identified in the XXZ-Heisenberg model. In Chapt. 3 we describe the pyrochlore
lattice and its symmetries. In Chapt. 4 we introduce Schwinger boson mean field
theory and establish how the projective symmetry group can be used to systemati-
cally classify symmetric and weakly symmetric mean field ansätze. In Chapt. 5 we
describe diagonalization of the resulting spin liquid Hamiltonians and describe how
to calculate their corresponding spin structure factors. Magnetic phases are treated
in Chapt. 6 via Holstein-Primakoff spin wave theory. The results for ground state
energies and spin structure factors are presented in Chapt. 7. Finally, we summarize
our results in Chapt. 8 and give an outlook for future work.
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Chapter 2

The XXZ-Heisenberg Model and
its Phases

Rare earth pyrochlores of the type R2M2O7 have their non-magnetic atoms M and
rare earth atoms R sitting on two intertwined pyrochlore lattices each consisting of
corner sharing tetrahedra where one tetrahedron of the type M lattice sits in the
gap of the type R lattice (see Fig. 2.1).
In the materials of interest the single-ion physics dominates over the two-ion in-
teractions. The ground state can thus be found by first finding the free-ion ground
state according to Hund’s rules which gives a degenerate manifold with fixed angular
momentum J . The electric field imposed by the crystal ions lifts most of this 2J + 1
fold degeneracy. For the materials that we are interested in the resulting low energy
states are well separated from the higher energy states and form a doublet |±〉:

Ŝz =
|+〉 〈+| − |−〉 〈−|

2
, Ŝ± = |±〉 〈∓| . (2.1)

For a more detailed description see [5]. The degeneracy of the doublet is either
ensured by the Kramers theorem or by the crystal symmetry. In general, there

Figure 2.1: Crystal structure of R2M2O7 pyrochlores. Rare earth atoms R are
depicted in white and the non magnetic ions M are shown in black. The oxygen
atoms are not shown. Adapted with permission from Ritter [20].
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2. The XXZ-Heisenberg Model and its Phases

are three cases: The effective S = 1
2 Kramers doublet, dipolar-octopolar Kramers

doublet or non-Kramers doublet. They differ in the transformation properties of
the components Sz, S±. In this work we will focus on the effective S = 1

2 Kramers
doublet. When the crystal field energy scale is well separated from the interaction
energy scale one can approximate the interactions in first order perturbation theory
by constructing an effective nearest neighbor spin Hamiltonian H:

H =
∑
<i,j>

∑
µ,ν

Ŝµi J
µν
ij Ŝ

ν
j + const. (2.2)

Going beyond first order perturbation theory introduces next and further nearest
neighbor couplings. The tensor Jµνij is heavily constrained by symmetry and in the
most general case leads to the following spin Hamiltonian:

H =
∑
<i,j>

[JzzŜ
z
i Ŝ

z
j − J±(Ŝ+

i Ŝ
−
j + Ŝ−i Ŝ

+
j ) + J±±(γijŜ

+
i Ŝ

+
j + γ∗ijŜ

−
i Ŝ
−
j )

+ Jz±(ζij [Ŝ
z
i Ŝ

+
j + Ŝ+

i Ŝ
z
j ] + ζ∗ij [Ŝ

z
i Ŝ
−
j + Ŝ−i Ŝ

z
j ])]. (2.3)

The pseudospin operators are defined in a local basis that we introduce in Chapt. 3
and γ and ζ are bond-dependent phase factors. (For more details see [21, 22].) It is
interesting to note that the sign of Jz± is arbitrary which leads to a duality in the
global spin basis. This relates the Heisenberg points in global and local spin bases
for example [23].

2.1 Phases of the XXZ-Heisenberg Model

In this thesis we will consider the simplified model of Eq. (2.3) where Jz± = J±± = 0:
The so called XXZ-Heisenberg model. It can be written as

H =
∑
<i,j>

JzzŜ
z
i Ŝ

z
j + J⊥(Ŝxi Ŝ

x
j + Ŝyi Ŝ

y
j ) (2.4)

with J⊥ = −1
2J±. To later compare our analytical results to the numerical results

of Benton et al. [7] we choose the parametrization:

Jzz = J cos (θ) J⊥ = J sin (θ) (2.5)

with θ = arctan ( J⊥Jzz ) and set the energy scale to J = 1. The classical phase diagram
has three phases:

All-In-All-Out Order (AIAO)

AIAO is a magnetically ordered state that has all spins point into one half and out
of the other half of the tetrahedra in the lattice (see Fig. 2.2(a)).

Easy-Plane Antiferromagnet (AF⊥)

AF⊥ is a magnetically ordered state that has all spins point along the same axis
in the local Sx − Sy plane. In the global basis the spins have antiparallel compo-
nents on neighboring sites (hence the name). It is sometimes referred to as XY
antiferromagnet (see Fig. 2.2(b)).
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2.1. Phases of the XXZ-Heisenberg Model

Classical Spin Ice (SI)

The total spin pointing in or out of every tetrahedron vanishes for SI. This is achieved
by two spins pointing in and two spins pointing out of every tetrahedron (see Fig.
2.2(c)). This is known as ice rule due to its similarity to the hydrogen configuration
in water ice [9]. The classical ground state manifold is exponentially degenerate
which leads to a residual entropy at zero temperature. For low temperature the
prime experimental signature is a 6-spoke wheel structure in the neutron scattering
structure factor with sharp pinch point singularities which are caused by the ice rules
[24]. Excitations that break these ice rules act as emergent magnetic monopoles [25].

(a) (b) (c)

Figure 2.2: Spin configuration on one tetrahedron for the classical phases: (a) AIAO,
(b) AF, (c) SI.

While the classical phase diagram is available even for the general model in Eq.
(2.3) the quantum phase diagram of the XXZ-Heisenberg model is not. Quantum
Monte-Carlo simulations can only access cases with θ ∈ [−π

2 , 0] due to the sign
problem [7]. Therefore, few attempts at mapping out the phase diagram of the
quantum XXZ-Heisenberg model have been made. Methods employed in prior work
include gauge mean field theory [26], augmented fermionic parton mean field theory
[27] and a recent effort with multiloop pseudofermion functional renormalization
group [20]. A study by Benton et al. [7] combined variational calculations, exact
diagonalization as well as numerical linked-cluster and series expansions and found
the phase diagram shown in Fig. 2.3. Apart from the AIAO and AF⊥ phase they
found three distinct spin liquid phases:

Quantum Spin Ice (QSI0)

QSI0 is a gappless U(1) quantum spin liquid closely related to the classical spin ice.
Due to its quantum nature, fulfilling the ice rule is not the only way of letting the
total spin pointing in or out of every tetrahedron vanish. This can also be achieved
by vanishing expectation value of every spin 〈Ŝ〉 = 0. This effect causes the six
spoke wheel structure as well as the pinch points to disappear. However, with rising
temperature the structure is restored by thermal excitations of magnetic photons
[24]. QSI0 can be described by an effective U(1) gauge theory on the dual lattice that
is created by replacing each tetrahedron by a vertex and each vertex by a bond. The
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2. The XXZ-Heisenberg Model and its Phases

Jz = J cos θ

Jx = J sin θ

SU
(2

)

QSIπ

QSN⊥

AIAO

AF⊥

QSI0

θ

Figure 2.3: Schematic phase diagram of the XXZ-Heisenberg model. Adapted from
Benton et al. [7].

resulting field theory is a lattice equivalent to compact quantum electrodynamics [9,
28].

π-Flux Quantum Spin Ice (QSIπ)

QSIπ is similar to the QSI0 phase but with flux of value π attached to the hexagonal
plaquettes. It can experimentally be distinguished from QSI0 by the higher spectral
periodicity of its excitations [29]. Perturbation theory predicts a transition from
QSI0 to QSIπ at θ = 0 [28–30].

Nematic Spin Liquid (QSN⊥)

QSN⊥ is similar to QSIπ but with antiferromagnetic correlations along a local axis
in the Sx−Sy plane instead of along the Sz axis. It breaks the C3 symmetry of the
pyrochlore lattice as well as the U(1) spin rotation symmetry of the Hamiltonian
and therefore, by Goldstone’s theorem, has to support a gappless Goldstone mode
[8]. An appropriate trial wavefunction is |QSN⊥〉 = Rz(φ)Ry(

π
2 ) |QSIπ〉 where Rz

and Ry rotate all spins about their local z and y axes, respectively [7].

Benton et al. [7] showed that the QSIπ phase is unstable to nematicity at the Heisen-
berg point. However, it is not clear if QSIπ has a phase transition to another ground
state for J⊥ < Jz. Such alternative ground states include chiral spin liquids and
dimer ordered states.

Monopole Flux State

The monopole flux state is a chiral quantum spin liquid state that breaks inversion
and time reversal symmetry. Spins on the corner of elementary triangle plaquettes

have non-vanishing spin triple product
〈
Ŝi · (Ŝj × Ŝk)

〉
6= 0 . The flux going in (or

out) of every tetrahedron is 2π which is equivalent to putting a monopole of strength
2π at the center of every tetrahedron [15]. An alternative chiral spin liquid that has
monopoles at the center of every tetrahedron but breaks time reversal and screw
symmetry has been proposed by Kim and Han [17].
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2.1. Phases of the XXZ-Heisenberg Model

Dimer Ordered

Dimer ordered states consist of resonating nearest neighbor singlets. They are usu-
ally obtained from so called quantum dimer models that emerge as effective models
for the spin model [10, 12–14, 31].
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Chapter 3

The Pyrochlore Lattice and its
Symmetries

3.1 Pyrochlore Lattice

(a) (b) (c)

Figure 3.1: (a): A unit cell of the Pyrochlore lattice. Nearest neigbour sites are
connected by bonds. Blue bonds are within a unit cell and red bonds are between
neighbouring unit cells. The vectors a1, a2, a3 are the fcc lattice vectors. (b): The
enlarged pyrochlore unit cell is the unit cell for π-flux states. (c): The vectors on
top of the sites are the basis vectors for the local spin basis defined in Eq. (3.4).

The Pyrochlore lattice is given by 4 face-centered cubic (fcc) sublattices: µ =
0, 1, 2, 3. When connecting the nearest neigbour bonds the lattice consists of cor-
ner sharing tetrahedra (see Fig. 3.1). Following Liu et al. [18], we work with the
standard fcc lattice vectors:

a0 = (0, 0, 0), a1 =
1

2
(0, 1, 1), (3.1)

a2 =
1

2
(1, 0, 1), a3 =

1

2
(1, 1, 0),

where we have added a zeroth basis vector to aid later notation. For easier use of
symmetries we introduce the sublattice coordinates:

9



3. The Pyrochlore Lattice and its Symmetries

rµ = (r1, r2, r3)µ = r1a1 + r2a2 + r3a3 +
1

2
aµ (3.2)

=
1

2
(r2 + r3, r1 + r2, r1 + r3) +

1

2
aµ.

In this notation each set of four sites {rµ : µ = 0, 1, 2, 3} spans a tetrahedron (Blue
tetrahedra in Fig. 3.1). We will use the coordinates of sublattice 0 to label the unit
cells. Nearest neighbor bonds between unit cells (0, 0, 0), (0, 0,−1), (0,−1, 0), (−1, 0, 0)
form a tetrahedron as well (red tetrahedra in Fig. 3.1). We will refer to the blue
tetrahedra as main and the red as inverse tetrahedra.

Following [22] we define local spin coordinates:

Sµ = (Sx, Sy, Sz)µ = Sxsxµ + Sysyµ + Szszµ. (3.3)

with sublattice dependent unit vectors

szµ =
1√
3

(1, 1, 1)− 4√
3
aµ, syµ = szµ × sxµ, (3.4)

sx0 =
1√
6

(−2, 1, 1), sx1 =
1√
6

(−2,−1,−1),

sx2 =
1√
6

(2, 1,−1), sx3 =
1√
6

(2,−1, 1).

Note, that this basis has the property that a 2π
3 rotation around any local Sz axis of

a tetrahedron in global coordinates corresponds to switching sublattices accordingly
and rotating the local spins 2π

3 around the new local z spin axis. This is equivalent
to rotating the local spin basis (−2π

3 ) around the new local z spin axis.

3.2 Brillouin Zone

For the standard unit cell (Fig. 3.1a) the lattice vectors are given by Eq. (3.2), the
reciprocal lattice basis vectors are defined by

b1 = 2π(−1, 1, 1), b2 = 2π(1,−1, 1), b3 = 2π(1, 1,−1) (3.5)

and the Brillouin zone is the standard fcc Brillouin zone with volume VolB.Z. = 32π3.
For the enlarged unit cell the lattice vectors are given by a1, 2a2, 2a3 and the recip-
rocal lattice vectors are given by b1,

b2
2 ,

b3
2 . Therefore, the Brillouin zone is a non

standard base-centered orthorombic (orcc) Brillouin zone with volume VolB.Z. = 8π3.
It can be defined by the following system of inequalities:

|kx| ≤ π, |ky + kz| ≤ 2π, |kx + kz − ky| ≤
3

2
π, |kx − kz + ky| ≤

3

2
π. (3.6)

A plot of the Brillouin zones including their high symmetry path can be seen in Fig.
3.2. Tab. 3.1 list the high symmetry points of the orcc Brillouin zone.
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3.3. Space Group Symmetries

(a)
(b)

Figure 3.2: (a): Brillouin zone of the single unit cell including the high symmetry
path. (b): Brillouin zone of the enlarged pyrochlore unit cell including the high
symmetry path. The orcc Brillouin zone fits four times into the fcc Brillouin zone

Table 3.1: Table of high symmetry points of the Brillouin zone of pyrochlore lattice
with enlarged unit cell.

(kx, ky, kz) (kx, ky, kz)

Γ π(0, 0, 0) T π(1, 1, 1)

A π(0, 14 ,
7
4) X π(0, -34 ,

3
4)

A1 π(0, 34 ,
5
4) X1 π(1, -14 ,

1
4)

R π(12 ,
1
2 ,

3
2) Y π(1, 0, 0)

S π(12 ,
-1
2 ,

1
2) Z π(0, 1, 1)

3.3 Space Group Symmetries

The space group of the pyrochlore lattice is Fd3̄m (No.227). It is generated by
the translations T1, T2, T3 along the lattice vectors, a sixfold rotoreflection C6

around the Sz0 axis and a screw operation S [18]. In addition to theses lattice
symmetries we want to consider time-reversal symmetry T which commutes with all
space like symmetries and satisfies T 2 = −1. The space group generators transform
the different coordinates as follows:

Tirµ = (r1 + δi,1, r2 + δi,2, r3 + δi,3)µ, (3.7a)

C6rµ = (−r3 − δµ,3,−r1 − δµ,1,−r2 − δµ,2)π123(µ) , (3.7b)

Srµ = (−r1 − δµ,1,−r2 − δµ,2, r1 + r2 + r3 + 1− δµ,0)µ+δµ,3−δµ,0 , (3.7c)

Irµ = (−r1,−r2,−r3)µ, (3.7d)

T rµ = rµ, (3.7e)

11



3. The Pyrochlore Lattice and its Symmetries

where π123(µ) is the cyclic permutation of 1, 2, 3 and leaves µ = 0 invariant. µ is
always seen modulo 4. Due to the local spin basis the spin transforms like:

TiSµ = (Sx, Sy, Sz)µ, (3.8a)

C6Sµ = (−S
x

2
−
√

3Sy

2
,

√
3Sx

2
− Sy

2
, Sz)π123(µ), (3.8b)

SSµ = (
Sx

2
−
√

3Sy

2
,−
√

3Sx

2
− Sy

2
,−Sz)µ+δµ,3−δµ,0 , (3.8c)

ISµ = Sµ, (3.8d)

T Sµ = (−Sx,−Sy,−Sz)µ. (3.8e)

When using the Schwinger boson spin representation Ŝmi = 1
2 b̂
†
iσ
mb̂i, the bosonic

operators transform like O(Ŝmi ) = 1
2 b̂
†
O(i)UOσ

mU †O b̂O(i) under action of a space group

element O and like T (Ŝmi ) = 1
2 b̂
†
iKUT σmU

†
T Kb̂i under time reversal symmetry. K =

K−1 denotes complex conjugation to everything standing right to it. The SU(2)
matrices UO associated with the symmetry operations are:

UT = iσ2, UC6
= UC3 = e−

i
2

2π
3
(0,0,1)~σ, UTi = σ0, (3.9)

US,µ = (−1)1−δµ,1e−
i
2

2π
2
(−
√
3

2
, 1
2
,0)~σ.

~σ = (σ1, σ2, σ3) is the Pauli vector . The matrix for the screw operation depends on
which sublattice it acts on. Spins on sublattice 1 are rotated the other way around
than spins on sublattice 2. Spins on sublattices 0 and 3 are rotated and then pro-
jected onto the local spin basis of the other sublattice. This results in an effective π

rotation about the (−
√
3

2 , 12 , 0) axis. The sign of the effective rotation can be chosen
freely and different signs correspond to different gauges. Here we choose the signs
of rotation to be equal on sublattice 0, 2, 3.

The symmetry group generators fulfill the following algebraic relations

TiTi+1T
−1
i T−1i+1 = 1, (3.10a)

C6
6

= 1, (3.10b)

S2T−13 = 1, (3.10c)

C6TiC6
−1
Ti+1 = 1, (3.10d)

STiS
−1T−13 Ti = 1, i ∈ {1, 2}, (3.10e)

ST3S
−1T−13 = 1, (3.10f)

(C6S)4 = 1, (3.10g)

(C6
3
S)2 = 1, (3.10h)

T 2 = −1, (3.10i)

T OT −1O−1 = 1. (3.10j)

where i ∈ {1, 2, 3} and i + 3 = i. Eq. (3.10e) is valid for i ∈ {1, 2} only. O is a
placeholder for an arbitrary space group generator: O ∈ {T1, T2, T3, C6, S}.
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Chapter 4

Schwinger Boson Mean Field
Theory and Projective Symmetry

Group

In this Chapter we introduce the formalism of how to construct and classify possible
spin liquid states starting from a nearest neighbor spin Hamiltonian.

4.1 From Spin Hamiltonian to Mean Field Ansatz

We want to treat some general nearest neighbor spin Hamiltonian like

H =
∑
<i,j>

ŜiJijŜi (4.1)

in Schwinger boson mean field theory (SBMFT) where Jij is a coupling tensor and
the sum runs over nearest neighbour bonds on a lattice. We will use the Schwinger
boson representation of the spin operators:

Ŝγi =
1

2
b̂†iσ

γ b̂i (4.2)

where b̂ =

(
b̂i,↑
b̂i,↓

)
are bosonic annihilation operators satisfying

[
bi,α, b

†
j,β

]
= δijδα,β

and σm are the Pauli matrices. This representation is only faithful if we constrain
the boson density per site to 2S:

n̂i = b̂†i b̂i = 2S. (4.3)

This limits the new Hilbert space to two states per site and ensures that the well
known spin relation ŜiŜi = n̂i

2 ( n̂i2 + 1) = S(S + 1) is fulfilled. This can be done by
adding a site dependent Lagrange multiplier

∑
i λi(n̂i− 2S)[32] to the Hamiltonian.

At this point it is possible to parametrize the Hamiltonian in terms of the hopping
singlet B̂ij and hopping triplet t̂hij as well as pairing singlet Âij and pairing triplet

13



4. Schwinger Boson Mean Field Theory and Projective Symmetry Group

t̂p,xij operators (γ ∈ {x, y, z})

B̂ij =
1

2
b̂†i b̂j , Âij =

1

2
b̂i(iσ

2)b̂j , (4.4)

t̂h,γij =
i

2
b̂†iσ

γ b̂j , t̂p,γij = − i
2
b̂i(σ

γ · iσ2)b̂j .

This results in

H =
∑
<i,j>

: ĥ†ijJ
h
ijĥij : +p̂†ijJ

p
ijp̂ij + Cij +

∑
i

λi(n̂i − 2S) (4.5)

where ĥ†ij = (B̂†ij , t̂
h,x†
ij , t̂h,y†ij , t̂h,z†ij ) and p̂†ij = (Â†ij , t̂

p,x†
ij , t̂p,y†ij , t̂p,z†ij ). Jhij and Jpij are

the hopping and pairing coupling matrices that depend on Jij . : : denotes normal
ordering. Note, that the parametrization in Eq. (4.5) is not unique since for i 6= j :

: B̂†ijB̂ij : +Â†ijÂij =: t̂h,γ†ij t̂h,γij : +t̂p,γ†ij t̂p,γij =
1

4
n̂in̂j = S2. (4.6)

In the last equality we explicitly use the boson density constraint (Eq. (4.3)). At
least in the case where Jhij and Jpij are diagonal it is therefore possible to parametrize
the Hamiltonian only using either hopping or pairing operators. The resulting
Hamiltonian in Eq. (4.5) is quartic in bosonic operators. To treat it we make two
standard approximations: Firstly, we only consider a site independent Lagrange
multiplier λi = λ. This results in the boson density constraint (Eq. (4.3)) being
fulfilled only on average. Secondly, we employ the standard mean field approxima-
tion and ignore quadratic fluctuations around the mean value of the operators which
means neglecting the last term in Eqs. (4.7).

: ĥ†ijJ
h
ijĥij : = ĥ†ijJ

h
ijhij + h†ijJ

h
ijĥij − h†ijJ

h
ijhij + (ĥij − hij)

†Jhij(ĥij − hij),

p̂†ijJ
p
ijp̂ij = p̂†ijJ

p
ijpij + p†ijJ

p
ijp̂ij − p†ijJ

p
ijpij + (p̂ij − pij)

†Jpij(p̂ij − pij) (4.7a)

where

h†ij =
〈
ĥ†ij

〉
= (B∗ij , t

h,x∗
ij , th,y∗ij , th,z∗ij ) (4.8a)

p†ij =
〈
p̂†ij

〉
= (A∗ij , t

p,x∗
ij , tp,y∗ij , tp,z∗ij ). (4.8b)

Note, that there are cases in the literature where the hopping fields are not mean field
decoupled in normal ordered form, as we have done here, but where a constant of

−S2 Tr
(
Jhi,j

)
is added to the Hamiltonian [33]. Following the original SBMFT paper

by Arovas and Auerbach [34] we do not apply this here. Adding such a constant
leads to a wrong result for the ferromagnetic zero temperature ground state energy.
This leaves us with a Hamiltonian that is quadratic in ladder operators:

H =
∑
<i,j>

b̂†iu
h
ij b̂j + b̂†iu

p
ij b̂
†
j + h.c. + f(hij ,pij) + λ

∑
i

(b̂†i b̂i − 2S). (4.9)

Here, h.c. labels the hermitian conjugate terms and f is given by

f(hij ,pij) = −h†ijJ
h
ijhij − p†ijJ

p
ijpij + Cij (4.10)
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4.2. Projective Symmetry Group: Symmetric Ansatz

while uhij and upij are complex 2× 2 matrices defined by

uhij =
1

2

3∑
m=0

i1−δm,0(h†ijJ
h
ij)

mσm := ahijσ
0 + i(bhijσ

1 + chijσ
2 + dhijσ

3)

:= (ahij , b
h
ij , c

h
ij , d

h
ij)

h, (4.11a)

upij =
1

2

3∑
m=0

i1−δm,0(Jpijpij)
mσm(iσ2) := apijiσ

2 + i(bpijσ
1 + cpijσ

2 + dpijσ
3)(iσ2)

:= (apij , b
p
ij , c

p
ij , d

p
ij)

p. (4.11b)

This notation, that we have adapted from Liu et al. [18], is particularly helpful
since ahij and apij transform as scalars while (bhij , c

h
ij , d

h
ij) and (bhij , c

h
ij , d

h
ij) transform

as SO(3) vectors. The parameters ahij to dhij are functions of the mean fields hij
and the coupling matrix Jh, while the parameters apij to dpij are functions of the
mean fields pij and the coupling matrix Jp. When exchanging i ↔ j the matrices
transform like uhji = (uhij)

† and upji = (upij)
T and the parameters transform like

(ahji, b
h
ji, c

h
ji, d

h
ji) = (ah∗ij ,−bh∗ij ,−ch∗ij ,−dh∗ij ) and (apji, b

p
ji, c

p
ji, d

p
ji) = (−apij , b

p
ij , c

p
ij , d

p
ij).

The set of matrices uhij and upij or rather the set of expectation values hij and pij
are known as the mean field ansatz. Once an ansatz is chosen, the Hamiltonian from
Eq. (4.9) can be diagonalized by a Bogoliubov transform and a ground state can be
constructed. The values of hij and pij have to be solved self consistently:

hij =
〈
ĥij

〉
, pij = 〈p̂ij〉 , 2S =

1

N

∑
i

〈n̂i〉 . (4.12)

This is equivalent to finding the saddle point of the ground state energy E0:

∂E0

∂hmij
= 0,

∂E0

∂pmij
= 0,

∂E0

∂λ
= 0. (4.13)

This will be further discussed in Chapt. 5.3
First, we have to choose a meaningful mean field ansatz. We are interested in finding
spin liquid states that break either neither lattice symmetries nor time reversal
symmetry (symmetric spin liquids) or break time reversal symmetry as well as lattice
symmetries modulo time reversal (weakly symmetric spin liquids). Our mean field
ansatz should reflect these properties.
A formal way to classify all possible mean field ansätze that satisfy a given set
of symmetries is the projective symmetry group (PSG) treatment. It was first
introduced by Wen for Abrikosov’s Fermions and is summarised in his book [2,
Chapter 9]. It was later generalised for symmetric Schwinger Bosons spin liquids by
Wang and Vishwanath [32]. A generalization to weakly symmetric Schwinger Boson
spin liquids was given by Messio et al. [19].

4.2 Projective Symmetry Group: Symmetric Ansatz

We want to construct a mean field ansatz that respects all lattice symmetries χ
of the pyrochlore lattice as well as time reversal symmetry T . The naive way of
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4. Schwinger Boson Mean Field Theory and Projective Symmetry Group

doing this would be to fix matrices uhij and upij on one bond and construct all other
matrices by action of symmetry operators O

uhO(ij) = UOu
h
ijU
†
O, (4.14a)

upO(ij) = UOu
h
ijU

T
O. (4.14b)

While this is in fact a valid ansatz, it is by far not the only one. The reason for this
is that the spin representation (4.2) has a U(1) gauge redundancy. It is symmetric
under multiplication of the ladder operators with a phase:

G : b̂j −→ b̂je
iφ[j]. (4.15)

This means every symmetry operation (including time reversal) is in generally ac-
companied by a gauge transformation GO. Let us define the gauge enriched opera-
tors as

Õ = GOO : b̂j −→ eiφO[O(j)]U †O b̂O(j). (4.16)

The mean field ansatz in Eq. (4.9) transforms like

uhO(ij) = UOu
h
ijU
†
Oe
−i(φO[O(i)]−φO[O(j)]), (4.17a)

upO(ij) = UOu
h
ijU

T
Oe
−i(φO[O(j)]+φO[O(i)]). (4.17b)

The PSG is defined as the set of operators Õ that leaves a mean field ansatz in-
variant. There is a subgroup of the PSG of pure gauge transformations called the
invariant gauge group (IGG). These formally accompany the symmetry operator
1. For a general ansatz on a frustrated lattice, Eqs. (4.17) indicate that the IGG
can only be Z2 when including both nonzero uhij and upij . For only nonzero uhij the
IGG can be U(1) [32]. We are interested in ansätze with hopping as well as pairing
terms. Therefore, we only consider the case IGG = Z2. Note, that on a bipartite
lattice it is possible to define phases with different signs on neighboring sublattices
and the IGG can therefore be U(1) for nonzero upij .
To find all gauge inequivalent mean field ansätze we first have to find all distinct
PSGs that are compatible with the symmetry group. In other words, we have to
find all gauge inequivalent sets of symmetry enriched operators Õ. The algebraic
relations between the symmetry operators (e.g. Eq. (3.10)) greatly constrain the
possible PSGs. Therefore, the set of all PSG equivalent classes is called algebraic
PSG [35]. We can find the algebraic PSG by promoting the symmetry operators (in-
cluding the identity operators) to symmetry enriched operators. Algebraic relations
like O1O2 · · · On = 1 transform to:

Õ1Õ2 · · · Õn = GO1O1GO2O2 · · ·GOnOn ∈ Z2 (4.18)

These new symmetry enriched algebraic relations can then be solved for the gauge
transformations GO. It is helpful to rewrite Eq. (4.18) as

GO1(O1GO2O−11 )(O1O2GO3O−12 O
−1
1 ) · · · ∈ Z2 (4.19)

and use

OiGOjO
−1
i : b̂i −→ e

iφOj [O
−1
i (i)]

b̂i. (4.20)
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4.2. Projective Symmetry Group: Symmetric Ansatz

This way Eq. (4.18) can be written as a phase equation:

φO1 [i] + φO2 [O−11 (i)] + φO3 [O−12 (O−11 (i))] + . . . = nπ, (4.21)

where n ∈ {0, 1}.
To find the algebraic PSG for a symmetry group χ we have to list all algebraic
relations and solve all emerging phase equations for the phases φO. Under a general
gauge transformation all phases transform like

φOi [i] −→ φOi [i] + φ[i]− φ[O−1i i]. (4.22)

Therefore, two seemingly distinct PSGs might actually be gauge equivalent. It is
thus helpful to fix the gauge when solving the phase equations to ensure finding only
gauge inequivalent PSGs. The algebraic Z2 PSG for pyrochlores point symmetry
group Fd3̄m was solved by Liu et al. [18]. They found 16 different PSG equivalent
classes defined by the phases:

φT1 [rµ] = 0, (4.23a)

φT2 [rµ] = n3πr1, (4.23b)

φT3 [rµ] = n3π(r1 + r2), (4.23c)

φT [rµ] = 0, (4.23d)

φC6
[rµ] = δµ,1,2,3(nST1 − n3)π − r1δµ,{2,3}n3π
− r2nC6T1

π − r3δµ,2n3π − n3π(r1r2 + r1r3), (4.23e)

φS [rµ] = ((−)µ,1,2,3
(nST1 − n3)

2
+ δµ,2nC6S

)π

+ r1π(n3δµ,1,2 − nST1) + r2π(n3δµ,2 − nST1)

+ r3πn3δµ,1,2 −
n3π

2
(r1 + r2)(r1 + r2 + 1), (4.23f)

where n3, nST1 , nC6S
, nC6

are all Z2 parameters that are either 0 or 1. We label the
ansätze with n3π − (nC6S

nST1nC6
). When n3 = 1 translation is non trivial and the

unit cell is enlarged (see Fig. 3.1b). This results in spinons picking up an Aharonov-
Bohm phase of π when moving around a hexagonal plaquette and the corresponding
spin liquid states are thus dubbed π-flux states. The parameters nST1 nC6S

, nC6
can

also be identified with Aharonov-Bohm phase of nST1π, nC6S
π, nC6

π respectively
around different paths. For a detailed description see [18].

The next step is to construct all possible mean field ansätze that are compatible
with Eq. (4.23): After choosing one of the PSG equivalence classes from the alge-
braic PSG we fix the matrices uhij = (ah, bh, ch, dh)h and upij = (ap, bp, cp, dp)p for the
bond i = 00, j = 01. Since we want the mean field ansatz to respect time reversal
symmetry and the ansatz transforms as T (ah, bh, ch, dh)h −→ (ah∗, bh∗, ch∗, dh∗)h and
equivalently for pairing terms, all parameters ah (ap) to dh (dp) have to be real. We
can then use Eqs. (4.17) to map the hopping and pairing matrices onto all other
bonds. A list of space group elements O to do this can be found in [18, Appendix A].
All space group elements, that map the bond onto itself, constrain which parameters
of uhij and upij can be non zero depending on the chosen ansatz. An analysis of this
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4. Schwinger Boson Mean Field Theory and Projective Symmetry Group

has been done by Liu et al. [18] in the global spin basis. We are, however, interested
in the local basis. We transform their solution to the local spin basis by

(ahl , b
h
l , c

h
l , d

h
l )h = U0(a

h
g , b

h
g , c

h
g , d

h
g )hU †1 . (4.24)

Where the subscripts l and g are for “local” and “global” respectively. The matrices
Uµ are the SU(2) matrices corresponding to the transformation from global to local
spin basis on sublattice µ. They are specified in Appendix A.
Using Eq. (4.24) gives us

al = −bg, (4.25a)

bl =
1√
6

(−2ag + cg − dg), (4.25b)

cl =
1√
2

(cg + dg), (4.25c)

dl =
1√
3

(ag + cg − dg). (4.25d)

Based on Eq. (4.25) we can translate their solution into Tab. 4.1. It lists all
independent non zero parameters for nearest neighbor as well as possible next nearest
neighbor and on-site parameters. The fixed parameters are defined as follows:
On-site bond: i = 00, j = 00

uh0000
= (αh, βh, γh, δh)h, (4.26)

up0000
= (αp, βp, γp, δp)p. (4.27)

Nearest neighbor (NN) bond: i = 00, j = a1

uh0001
= (ah, bh, ch, dh)h, (4.28)

up0001
= (ap, bp, cp, dp)p. (4.29)

Next-nearest neighbour (NNN) bond: i = 01, j = 00 − a2

uh0102−a2
= (Ah, Bh, Ch, Dh)h, (4.30)

up0102−a2
= (Ap, Bp, Cp, Dp)p. (4.31)

4.3 Weakly Symmetric Ansätze

Weakly symmetric spin liquids break time reversal symmetry and some lattice
symmetries modulo a global spin flip (action of time reversal symmetry). In the
classical limit S −→ ∞ they correspond to non-coplanar spin states (such that
〈Ŝi(Ŝj × Ŝk)〉 6= 0). To construct a weakly symmetric ansatz, we start by defin-
ing a parity εO for each symmetry operator O ∈ χ. εO = 1 when an ansatz respects
the symmetry and εO = −1 when O maps the system to its time reversed state. Let
us define the subset χe of all symmetry operators that necessarily have even parity
εO = 1 and the set of operators with undetermined parity as χo = (χ − χe). χe

contains at least all squares of symmetry operators T 2
1 , T

2
2 , T

2
3 , S

2, C6
2

= C−13 since
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4.3. Weakly Symmetric Ansätze

n3π − (nC6S
nST1nC6

) On-Site NN NNN Constraints

0-(000) αh bh, dh Ah, Bh, Dh, Bp Bh = Ch√
3
, Bp = −

√
3Cp

0-(001) αh bh, dh, ap Ah, Bh, Dh, Bp Bh = Ch√
3
, Bp = −

√
3Cp

0-(010) αh, δp bh, dh, ap Ah, Bh, Dh, Ap, Bp, Dp Bh = Ch√
3
, Bp = Cp√

3

0-(011) αh bh, dh Ah, Bh, Dh, Ap, Bp, Dp Bh = Ch√
3
, Bp = Cp√

3

0-(100) αh ah, cp Ah, Bh, Dh, Bp Bh = Ch√
3
, Bp = −

√
3Cp

0-(101) αh ah, bp, dp Ah, Bh, Dh, Bp Bh = Ch√
3
, Bp = −

√
3Cp

0-(110) αh, δp ah, bp, dp Ah, Bh, Dh, Ap, Bp, Dp Bh = Ch√
3
, Bp = Cp√

3

0-(111) αh ah, cp Ah, Bh, Dh, Ap, Bp, Dp Bh = Ch√
3
, Bp = Cp√

3

π-(000) αh, δp bh, dh, ap Bh, Bp Bh = −
√

3Ch, Bp = −
√

3Cp

π-(001) αh bh, dh Bh, Bp Bh = −
√

3Ch, Bp = −
√

3Cp

π-(010) αh bh, dh Bh, Ap, Bp, Dp Bh = −
√

3Ch, Bp = Cp√
3

π-(011) αh bh, dh, ap Bh, Ap, Bp, Dp Bh = −
√

3Ch, Bp = Cp√
3

π-(100) αh, δp ah, bp, dp Bh, Bp Bh = −
√

3Ch, Bp = −
√

3Cp

π-(101) αh ah, cp Bh, Bp Bh = −
√

3Ch, Bp = −
√

3Cp

π-(110) αh ah, cp Bh, Ap, Bp, Dp Bh = −
√

3Ch, Bp = Cp√
3

π-(111) αh ah, bp, dp Bh, Ap, Bp, Dp Bh = −
√

3Ch, Bp = Cp√
3

Table 4.1: All independent non-zero on-site, nearest neighbor and next-nearest
neighbor parameters for the different PSG equivalence classes in the local spin ba-
sis. Bonds are fixed on 00 −→ 00,00 −→ 01,01 −→ 02 − a2. All other parameters are
constrained to be zero. The table can be translated from [18, Tab. 2] by using Eq.
(4.25).

their parities are εO = (±1)2 = 1. Since S2 = T3 modulo a 2π spin rotation, we will
drop S2 from the set of generators.
Now we can translate the algebraic relations (Eq. (3.10)) into equations for the
parity to find more generators of χe. The nontrivial equations are:

εS2εT3 = 1, (4.32a)

εC3εTi = εTi+1εC3 . (4.32b)

Eq. (4.32a) shows that T3 has even parity. Therefore, Eq. (4.32b) implies that this is
also true for T1 and T2. The parities of C6 and S stay undetermined. This concludes
the treatment by Messio et al. [19]. We are, however, still missing one generator
of χe. In general, once generators of even and undetermined parity are found by
inspecting the algebraic group relations of the full symmetry group, we also have to
consider operators of the form O−1o OeOo where Oo ∈ χo and Oe ∈ χe. With this
approach we can construct the symmetry operator C ′3 := ISC3IS = S−1C3S which
has εC′3 = ε2Sε

2
IεC3 = 1. C ′3 is a 2π

3 rotation about the local Sz axis of sublattice
3 on the inverse tetrahedron. Since C ′3 cannot be written with combinations of
{T1, T2, T3, C3} we have to add it to the set of generators. IC3I = C3 gives no new
generator and therefore χe is generated by {T1, T2, T3, C3, C

′
3} while C6, S ∈ χo. The
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4. Schwinger Boson Mean Field Theory and Projective Symmetry Group

algebraic relations of χe are

TiTi+1T
−1
i T−1i+1 = 1, (4.33a)

C3
3 = 1, (4.33b)

C ′33 = 1, (4.33c)

(C3C
′
3)

2 = 1, (4.33d)

C3TiC
−1
3 T−1i+1 = 1, (4.33e)

C ′3T1(C
′
3)
−1T1T

−1
2 = 1, (4.33f)

C ′3T2(C
′
3)
−1T1 = 1, (4.33g)

C ′3T3(C
′
3)
−1T1T

−1
3 = 1, (4.33h)

where i = i + 3. The chiral algebraic PSG is then defined as the algebraic PSG of
χe. We solve the chiral algebraic PSG in Appendix B.

φT1 [rµ] = 0, (4.34a)

φT2 [rµ] = n3πr1, (4.34b)

φT3 [rµ] = n3π(r1 + r2), (4.34c)

φC3 [rµ] =
2πk

3
δµ0 + n3π(r1r2 + r1r3), (4.34d)

φC′3 [rµ] = −2πk

3
δµ3 + (

2πk

3
+ nC3C′3

+ nC′3T2)(−δµ0 + δµ2)π (4.34e)

+ r1πnC′3T2 + r3π
r3 − 1

2
n3 + n3πr1r2

+ r2π(
r2 − 1

2
n3 + nC′3T2), (4.34f)

where k ∈ {−1, 0, 1}, n3, nC3C′3
, nC′3T2 ∈ {0, 1} and one gauge choice left to set one

field to be real. n3 once again determines the size of the unit cell.
The next step is to find all compatible ansätze. Since elements of χe cannot map
between main and inverse tetrahedra but from one bond on a main tetrahedron to
every other bond on any main tetrahedron we have two independent bonds: One on a
main and one on an inverse tetrahedron. We choose the bonds 01 (00 −→ 01) and I01
(00 −→ 01 − a1). We label the mean field parameters (at1, b

t
1, c

t
1, d

t
1) on bond 01 and

(at2, b
t
2, c

t
2, d

t
2) on bond I01. With Eqs. (4.17) the mean field parameters of all other

bonds can be calculated. The weakly symmetric ansätze can break T , I and S while
satisfying T I and T S. Therefore, the mean field parameters are complex numbers

in general: ahi =
∣∣ahi ∣∣eiφahi , . . . , api = |api |e

−iφ
ah
i . The different sign convention of the

phases comes from the fact that ah depends on B∗ while ap depends on A . We
fix the mean field moduli on both bonds (

∣∣at1∣∣ =
∣∣at2∣∣, ∣∣bt1∣∣ =

∣∣bt2∣∣ . . .) and find all
possible ansätze that respect the PSG of χe by mapping the bonds 01 and I01 onto
themselves with S−1C3SC3 (note, that this also flips the bond). For the 01 bond
this results in

(ah1 , b
h
1 , c

h
1 , d

h
1) = (−ah∗1 , bh∗1 , ch∗1 , dh∗1 )e

−iπ( 4k
3
+nC3C

′
3
+nC′3T2

)
, (4.35)

(ap1, b
p
1, c

p
1, d

p
1) = (ap1,−b

p
1,−c

p
1,−d

p
1)e

iπ(nC3C
′
3
+nC′3T2

)
. (4.36)
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4.3. Weakly Symmetric Ansätze

For the I01 bond this results in

(ah, bh, ch, dh) = (−ah∗, bh∗, ch∗, dh∗)e−iπ(
4πk
3

+nC3C
′
3
)
, (4.37)

(ap, bp, cp, dp) = (ap,−bp,−cp,−dp)eiπnC3C
′
3 . (4.38)

For nC′3T2 = 1 the pairing fields can be non zero on one tetrahedron and have to
be zero on the other tetrahedron. Such ansätze break I and S as well as T I and
T S and thus correspond to ansätze that we do not want to consider. Therefore,
we set nC′3T2 = 0 for the rest of the present work. This also means that ap cannot
appear in an ansatz together with bp, cp, dp. Apart from this restriction all other
combinations of hopping and pairing fields are allowed depending on the phases of
ah, bh, ch, dh which will be determined by flux transformations. To find out which
phases φai , φbi . . . are allowed, we have to consider the transformation of expectation
values of gauge invariant products of field variables [19]. For example: B̂ijB̂jkB̂ki or

ÂijB̂jkÂ
†
ki. These are analogous to the Wilson loop operators in gauge theory. The

loop operators are directly related to products of spins and therefore have a straight
forward physical interpretation. For example the triple product of the spins at sites
i,j,k can be written using two of these loops:

Ŝi(Ŝj × Ŝk) = −2i : (B̂ijB̂jkB̂ki − B̂†ijB̂
†
jkB̂

†
ki) : . (4.39)

In SBMFT the expectation values of loop operators can be written as products of

the mean fields :
〈
B̂ijB̂jkB̂ki

〉
≈ BijBijBki. Using Eq. (4.39) we can directly see

that ansätze that respect time reversal symmetry (have real parameters) can not
correspond to non-coplanar states.
The complex argument of the loops, called fluxes, boil down to a sum of complex
arguments of the mean field parameters, e.g:

Arg
(〈
B̂ijB̂jkB̂ki

〉)
= Arg(Bij) + Arg(Bjk) + Arg(Bki). (4.40)

Under the action of an operator Oo ∈ χo, Eq. (4.40) transforms like

OoArg
(〈
B̂ijB̂jkB̂ki

〉)
= εOo(Arg(BOo(ij)) + Arg(BOo(jk)) + Arg(BOo(ki)))

= Arg(Bij) + Arg(Bjk) + Arg(Bki). (4.41)

The flux is invariant under Oo if εOo = 1 and the flux changes its sign if εOo = −1.
We can write down equations like Eq. (4.41) for all independent fluxes on the lattice
and then solve for the phases Arg(Bij) = φBij depending on the parities of all
elements in χ0. This is done in Appendix C. The solutions are presented in Tab.
4.2.

Table of Weakly Symmetry Ansätze

We list Z2 spin liquid ansätze with at least one pairing field and at least one singlet
field in Tab. 4.2. Ansätze that only allow for hopping fields can also be derived by
the phase equations. They are, however, behaving as U(1) spin liquids at nearest
neighbor level and are thus subject to the Higgs mechanism.
The following lists of solutions assume that all listed fields have non zero absolute
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4. Schwinger Boson Mean Field Theory and Projective Symmetry Group

values. The absolute values as well as all phases labeled by φi = Any are determined
by the mean field equations. One of the phases φi = Any can be fixed to φi = 0 by the
remaining gauge freedom. If one wants to construct an ansatz with less mean field
parameters (i.e. setting the modulus of one field to zero), all phases of that field type
have to be set to ”Any” in the table. For example we have φtp,x2

= φtp,z1
+φtp,z2

−φtp,x1

but want to construct an ansatz with |tp,z|ij = 0: The phase relation becomes
φtp,x2

= Any and φtp,x2
has to be determined by the saddle point equations or can be

set to zero by the remaining gauge freedom. The ansätze are related to the symmetric
ones of Liu et al. [18] in multiple ways. Firstly, the ansätze with εI = εS = 1 include
all symmetric ones by construction. Secondly, it can occur that a symmetry breaking
field acquires an absolute value of zero through the saddle point equations. This
can reduce a weakly symmetric ansatz to a symmetric one. For example, if for any
ansatz n3π − (0, p1,−1, εI , 0) in Tab. 4.2 the saddle point equations give |B| = 0,
the ansätze are equivalent to the symmetric ones n3π − (0, p1, 1, 1, 0).
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4.3. Weakly Symmetric Ansätze

Table 4.2: Table of all weakly symmetric mean field ansätze with at least one pairing
field and at least one singlet field on the pyrochlore lattice. There is still one gauge
freedom left to either fix φ1 or φ2 for one field. The allowed fields are fixed on
bonds 00 −→ 01 and 00 −→ 01 − a1. All other fields are constrained to be 0. The
remaining free parameters can be determined by the saddle point equations. The
new Z2 parameter p1 ∈ {0, 1} attaches an extra p1π flux to bow tie loops. Note,
that εI = εC6

(see Appendix C).

n3π − (nC3C′3
, p1, εIεS , εI , k)

Supported Fields
Complex Phases of Mean Fields φ

n3π − (0, p1, 1, εI , 0) φ
th,γ1

= 0 For (εI , εS) = (1, 1)

A φ
th,γ2

= φ
th,γ1

+ n3π φA1 = Any

th,γ φA2 = φA1 + p1π

γ ∈ {x, z} For (εI , εS) = (−1,−1)
φA1 = Any
φA2 = Any

n3π − (0, p1,−1, εI , 0) φB1 = π
2 φA1 = Any

A φB2 = εIφB1 + n3π φA2 = φA1 + p1π
B
th,γ φ

th,γ1
= 0

γ =∈ {x, z} φ
th,γ2

= φ
th,γ1

+ n3π

n3π − (1, p1, 1, εI , 0) Nr.1 φB1 = 0 For (εI , εS) = (1, 1)
B φB2 = εIφB1 + n3π φtp,γ1

= Any

th,y φtp,γ2
= φtp,γ1

+ p1π

tp,γ φ
th,y1

= π
2 For (εI , εS) = (−1,−1)

γ ∈ {x, z} φ
th,y2

= εIφth,y1
+ n3π φtp,γ1

= Any

φtp,z2
= Any

φtp,x2
= φtp,z1

+ φtp,z2
− φtp,x1

n3π − (1, p1, 1, εI , 0) Nr.2 φB1 = 0 For (εI , εS) = (1, 1)
B φB4 = φB1 + n3π φtp,y1

= Any

th,y φtp,y2
= φtp,y1

+ p1π

tp,y φ
th,y1

= π
2 For (εI , εS) = (−1,−1)

φ
th,y4

= εIφth,y1
+ n3π φtp,y1

= Any

φtp,y2
= Any

n3π − (1, p1,−1, εI , 0) φB1 = 0 φtp,z1
= Any

B φB2 = φB1 + n3π φtp,x1
= φtp,z1

tp,γ φtp,y1
= φtp,z1

+ π
2

th,η φ
th,η1

= π
2 φtp,z2

= φtp,z1
+ p1π

γ ∈ {x, y, z} φ
th,η2

= εIφth,η1
+ n3π φtp,x2

= φtp,x1
+ p1π

η ∈ {x, z} φtp,y2
= εIφtp,y1

+ p1π

n3π − (0, p1,−1, 1, k) φA1 = Any
A φA2 = φA1 + p1π
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Chapter 5

Schwinger Boson Treatment of
the XXZ-Heisenberg Hamiltonian

5.1 Mean Field Decoupling

To treat the XXZ-Heisenberg Hamiltonian (2.4) in SBMFT we start by rewriting it
in the following way:

H =
∑
<ij>

J⊥(Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j ) + JzzŜ

z
i Ŝ

z
j

=
∑
<ij>

J⊥ŜiŜj + ∆JŜzi Ŝ
z
j =

∑
<ij>

JzzŜiŜj −∆J(Ŝxi Ŝ
x
j + Ŝyi Ŝ

y
j ) (5.1)

with ∆J = Jzz − J⊥. We can bring the Hamiltonian into the form of Eq. (4.5) by
using the identities

ŜiŜj =: B̂†ijB̂ij : −Â†ijÂij (5.2a)

= 2 : B̂†ijB̂ij : −S2 (5.2b)

= S2 − 2Â†ijÂij , (5.2c)

Ŝγi Ŝ
γ
j =: B̂†ijB̂ij : −t̂p,γ†ij t̂p,γij (5.2d)

=: t̂h,γ†ij t̂h,γij : −Â†ijÂij . (5.2e)

Since the different PSG classes only allow a limited amount of different mean field
parameters, we will eliminate some parameters by using Eq. (4.6). This results in
different Jh, Jp that, together with the choice of the PSG, completely define the
mean field Hamiltonian. We choose meaningful ansätze as well as a suitable mean
field decouplings in a way that preserves the SU(2) spin rotation symmetry at the
Heisenberg point.
We motivate our choice of ansätze by previous studies of the model. For −0.05 <
θ < π

4 Benton et al. [7] found QSI states and for π
4 < θ < 1.927 the QSN⊥

state. The QSI breaks no lattice symmetries and has U(1) spin rotation symmetry
with dominating antiferromagnetic correlations in Sz direction. The only symmetric
mean field ansätze that have these features are: 0-(101), 0-(110), π-(100), π-(111)
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5. Schwinger Boson Treatment of the XXZ-Heisenberg Hamiltonian

with mean field decoupling:

Jh = diag((J⊥ + Jzz), 0, 0, 0), (5.3a)

Jp = diag(0, 0, 0, J⊥ − Jzz), (5.3b)

Cij = −J⊥S2, (5.3c)

resulting in

ah =
Jzz + J⊥

2
B, uh00,01

= (ah, 0, 0, 0)h, (5.4a)

dp =
J⊥ − Jzz

2
tp,z, up00,01

= (0, 0, 0, dp)p. (5.4b)

However, they do not allow for antiferromagnetic correlations in the Sx − Sy plane
which should play a vital role for θ > 0. The nematic spin liquid found by Benton et
al. [7] has antiferromagnetic correlations in the Sx − Sy plane and breaks the U(1)
spin rotation symmetry as well as the C3 lattice symmetry. We will focus on the
breaking of the U(1) spin rotation symmetry and consider the symmetric ansätze
0-(100), 0-(101), 0-(110), 0-(111), π-(100), π-(101), π-(110), π-(111) with nematic
mean field decoupling:

Jh = diag(J⊥, 0, 0, 0), (5.5a)

Jp = diag(0, Jzz − J⊥, Jzz − J⊥, 0), (5.5b)

Cij = JzzS2. (5.5c)

These break the U(1) spin rotation symmetry but leave the C3 lattice symmetry
intact. Note, that breaking of the U(1) spin rotation symmetry has to be done
manually by setting corresponding mean field parameters (bp or cp depending on
the ansatz) to 0. To discriminate between ansätze 0-(101), 0-(110), π-(100), π-
(111) with U(1) symmetric and U(1) breaking decoupling we refer to the latter as
0-(101)-Nem, 0-(110)-Nem, π-(100)-Nem, π-(111)-Nem. The mean field parameters
are given by

ah =
J⊥
2
B, uh00,01

= (ah, 0, 0, 0)h, (5.6a)

bp =
Jzz − J⊥

2
tp,x, up00,01

= (0, bp, 0, 0)p, (5.6b)

for 0-(101)-Nem, 0-(110)-Nem, π-(100)-Nem, π-(111)-Nem and by

ah =
J⊥
2
B, uh00,01

= (ah, 0, 0, 0)h, (5.7a)

cp =
Jzz − J⊥

2
tp,x, up00,01

= (0, 0, cp, 0)p, (5.7b)

for 0-(100), 0-(111), π-(101), π-(110). Since the ansätze 0-(101)-Nem, 0-(110)-Nem,
π-(100)-Nem, π-(111)-Nem, 0-(100), 0-(111), π-(101), π-(110) only allow for singlet
hopping terms and no singlet pairing terms, they are unable to correctly describe
the antiferromagnetic correlations at the Heisenberg point.
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5.1. Mean Field Decoupling

Therefore, we will also consider ansätze 0-(001) , 0-(010) , π-(000) , π-(011) with
mean field decoupling:

Jh = diag(0, 0, 0, Jzz − J⊥), (5.8a)

Jp = diag(−(J⊥ + Jzz), 0, 0, 0), (5.8b)

Cij = J⊥S2, (5.8c)

resulting in

dh =
J⊥ − Jzz

2
th,z, uh00,01

= (0, 0, 0, dh)h, (5.9a)

ap =− Jzz + J⊥
2

A, up00,01
= (ap, 0, 0, 0)p. (5.9b)

These ansätze can capture the antiferromagnetic correlations near the Heisenberg
point. It also includes ferromagnetic perturbations away from the Heisenberg point.
Kim et al. [17] and Burnell et al. [15] proposed multiple chiral spin liquid states
for the Heisenberg point. They proposed a state that breaks I and T but preserve
the T I called monopole flux state, as well as a state that breaks S as well as T but
preserve T S. Their characteristic feature is that each triangular flux has a value of
±π

2 . Both of these states can be described by the weakly symmetric ansätze of type
n3π − (0, p1,−1, εI , 0) (see Tab. 4.2) with εI = −1 corresponding to the monopole
flux state and εI = 1 corresponding to the screw symmetry breaking state. Each
case has four distinct weakly symmetric ansätze. Two with standard and two with
enlarged unit cell parametrized with (n3,p1). The remaining gauge freedom can be
used to fix φA1 = 0. Due to the analysis in Appendix C all symmetry allowed triplet
fields can be included that might get a non zero expectation value away from the
Heisenberg point. While we do not treat these ansätze in this work, we propose to
study them with decoupling

Jh = diag(
Jzz + J⊥

2
,
−Jzz + J⊥

2
,
−Jzz + J⊥

2
,
Jzz − J⊥

2
), (5.10a)

Jp = diag(−J⊥, 0, 0, 0), (5.10b)

Cij = 0, (5.10c)

resulting in

ahi =
Jzz + J⊥

4
B∗i , bhi =

−Jzz + J⊥
4

(th,xi )∗, (5.11a)

dhi =
Jzz − J⊥

4
(th,zi )∗, api = −J⊥

2
Ai, (5.11b)

uh00,01
= (ah1 , b

h
1 , 0, d

h
1)h, uhI(00),I(01)

= (ah2 , b
h
2 , 0, d

h
2)h, (5.11c)

up00,01
= (0, 0, 0, dp1)

p, upI(00),I(01)
= (ap2, 0, 0, 0)p, (5.11d)

where th,y has to be manually set to 0. Bi = |B|e−iφBi , Bi = |B|e−iφBi , Bi = |B|e−iφBi ,
Bi = |B|e−iφBi . The complex phases of the mean fields are found in Tab. 4.2.
The problem of the symmetric ansätze and their mean field decouplings in the XXZ
Model is that the PSG is very restrictive on the allowed mean field parameters.
For example for 0 < θ < π

4 prior work expects a U(1) symmetric spin liquid with
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5. Schwinger Boson Treatment of the XXZ-Heisenberg Hamiltonian

antiferromagnetic correlations in Sx−Sy plane as well as in the Sz direction [20]. One
expects stronger antiferromagnetic correlation in Sz than in the Sx − Sy direction.
Such a state could either be constructed with mean field parameters A as well as th,x

and th,y on every bond or with as tp,x, tp,y and tp,z allowed on every bond. There is
no symmetric ansatz that fulfills these properties. However, the weakly symmetric
ansätze n3π − (1, p1,−1, εI , 0) allow for tp,x, tp,y and tp,z. They do however break
T as well as either T I or T S. Nevertheless, they would be interesting ansätze
to consider for 0 < θ < π

2 as they could correctly describe the antiferromagnetic
correlations and they have the potential to be unstable to nematicity at θ = π

4 with
out breaking any spin symmetry a priori. We propose to use the decoupling

Jh = diag(Jzz + 2J⊥, 0, 0, 0), (5.12a)

Jp = diag(0,
−J⊥

2
,
−J⊥

2
,
−Jzz

2
), (5.12b)

Cij = 0, (5.12c)

resulting in

ahi =
Jzz + 2J⊥

2
B∗i , bpi = −J⊥

2
tp,xi , (5.13a)

cpi = −J⊥
2
tp,yi , dpi = −Jzz

2
tp,zi , (5.13b)

uh00,01
= (ah1 , 0, 0, 0)h, uhI(00),I(01)

= (ah2 , 0, 0, 0)h, (5.13c)

up00,01
= (0, bp1, c

p
1, d

p
1)
p, upI(00),I(01)

= (0, bp2, c
p
2, d

p
2)
p. (5.13d)

5.2 Diagonalization of the Hamiltonian

By applying the Fourier transform

brµ =

√
NSL

N

∑
k

bk,µe
−ikrµ , (5.14)

the resulting Hamiltonian (Eq. (4.9)) can be brought into the form

H =
1

2

∑
k

ψ̂†kH(k)ψ̂k + 3Nf(Jh, Jp)−Nλ(2S + 1). (5.15)

N is the number of atoms on the lattice and H(k) has the form

H(k) =

(
Hh(k) + λ1d Hp(k)
Hp(k)† Hh(−k)T + λ1d

)
. (5.16)

For n3 = 0 (n3 = 1) ψ̂k is the 16 (64) component Nambu spinor and d = 8 (d = 32).
A derivation of Eq. (5.16) is given in Appendix D. The explicit form of Hh and Hp

is given in Appendix E.
The Hamiltonian (5.15) can be diagonalized by a Bogoliubov transformation [36].
We therefore introduce matrices V (k) such that:

ψ̂k = V (k)Γ̂k, (5.17)

V (k)†τ3V (k) = τ3, (5.18)

V (k)†H(k)V (k) = Ω(k). (5.19)
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Here, Γ̂k = (γ̂k,1, . . . , γ̂k,d, γ̂
†
−k,1, . . . γ̂

†
−k,d) is the Bogoliubov spinor, τ3 = σ3 ⊗ 1d

and Ω(k) is a diagonal matrix where the first d entries are ωi(k) (i ∈ {1, d}) and the
last d entries are ωi(−k). ωi(k) are also the first d eigenvalues of the matrix τ3H(k)
[36]. Eq. (5.18) ensures that the new bosonic operators γ̂k,i fulfill the commutation

relations
[
γ̂k,i, γ̂k′,j

]
= 0 and

[
γ̂k,i, γ̂

†
k′,j

]
= δi,jδk,k′ . Thus, we can write Eq. (5.15)

as

H(k) =
∑
k

d∑
i

ωi(k)γ̂†k,iγ̂k,i +
1

2

∑
k

d∑
i

ωi(k) + 3Nf(Jh, Jp)−Nλ(2S + 1). (5.20)

By substituting the sum
∑

k −→
2N

VolB.Z.·d
∫
B.Z. dk

3 in the thermodynamic limit, the
ground state energy per site is given by

E0

N
=

1

VolB.Z.d

∫
B.Z.

dk3
d∑
i

ωi(k) + 3f(Jh, Jp)− λ(2S + 1). (5.21)

The excitations that are created by γ̂†k,i are called spinons and carry fractional spin

of 1
2 . As a final step, we find the correct values of the mean field by solving the self

consistency (4.12) or equivalently the saddle point equations (4.13). Once the mean
field values are determined self consistently the mean field energy reduces to

E0

N
= 3h†ijJ

h
ijhij + 3p†ijJ

p
ijpij + 3Cij (5.22)

We compare ground state energies and mean field moduli in Chapt. 7. Some analytic
results for ωi(k) can be found in Appendix F.

5.3 Satisfying the Self-Consistency Equations

To satisfy the self-consistency equations (4.12) we apply three different approaches.
For the symmetric ansätze we find the saddle point of the free energy. For ansätze
0-(101) and π-(111) one can show that B = −2S

6 by inspecting the analytic form
of the the spinon dispersion (see Appendix F). For ansätze 0-(001) and π-(011)
the same inspection results in tp,z = 0. The rest of the parameters are found
by numerical methods. Finding the saddle point of the free energy numerically is
challenging for the physical spin value of S = 1

2 . The parameters of the saddle point
are close to the critical parameters where the spinon gap closes and the Bogoliubov
transformation fails. Gradient descent algorithms are prone to overshoot and jump
into this numerically badly behaved regime where eigenvalues of τ3H(k) are often
complex. We therefore calculate the critical values λcrit for which the excitation gap
closes as function of the mean field parameters. We can then constrain our search
for saddle point solutions to the parameter space with λ > λcrit. λcrit is formally
defined as

min
l,k

ωl(k, λcrit, u
h, up) = 0. (5.23)

For the symmetric 0-flux ansätze Liu et al. [18] give values for λcrit. For the π-flux

ansätze we use the fact that ωl(k, λ, u
h, up) = λωl(k, 1,

uh

λ ,
up

λ ). This reduces the
dimension of the parameter space by 1. We also notice that the minimum of the
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5. Schwinger Boson Treatment of the XXZ-Heisenberg Hamiltonian

eigenvalues of H(k) and τ3H(k) are 0 for the same mean field parameters. Working
with eigenvalues of the Hermitian matrix H(k) is numerically better behaved since
they stay real when crossing 0. It is therefore straightforward to find the contour
in mean field parameter space, where the minimum eigenvalue of H(k) equals to 0.
We then finally calculate λcrit as a function of uh and up. Alternatively, one can try
to analytically solve det(H(k)) = 0 for λ.

5.4 Spin Structure Factor

To compare the mean field states to experiment and other numerical studies of the
XXZ-Heisenberg model we will calculate the local and global static spin structure
factors. The local static spin structure factors give information about spin-spin
correlations of the state while the global static spin structure factor can be measured
in neutron scattering experiments. The local spin structure factor is given by the
tensor

Sα,β(q) =
1

3N

∑
l,j

eiq(ri−rj)
〈
Ŝαl · Ŝ

β
j

〉
, (5.24)

with Sαl in the local spin basis. The global spin structure factor is given by

S̃α,β(q) =
1

3N

∑
l,j

eiq(ri−rj)
〈

(RT
l Ŝl)

α · (RT
j Ŝj)

β
〉
, (5.25)

where RT
l is the rotation matrix that rotates the spin at site l into the global basis

(see Appendix A). Neutron scattering experiments do not directly measure the global
spin structure factor but instead measure the scattering amplitude [8]:

Stot(q) = (δα,β −
qαqβ

q2
)S̃α,β(q). (5.26)

Following Fennell et al. [37] we calculate the neutron scattering amplitude along
the [h, h, l] plane and split the total global structure factor Stot(q) into a spin flip
(SF) channel

SSF(q) =
(P× q)α(P× q)β

q2
S̃α,β(q) (5.27)

and a no spin flip (NSF) channel

SNSF(q) = PαPβS̃α,β(q), (5.28)

where P = 1√
2
(1,−1, 0) is the polarization vector of the neutrons. In the [h,h,l]

plane they fulfill Stot(q) = SSF(q) +SNSF(q). Experimentally splitting up measure-
ments into the polarization channels is advantageous since the pinch points that
are characteristic for the spin ice phase are only visible in the SF channel. When
measuring Stot(q) the contributions from the NSF channel smear out the features
[37].
We can obtain both local and global structure factors with the Bogoliubov transfor-
mation matrices V (k):

V (k) =

(
V11(k) V12(k)
V21(k) V22(k)

)
, Σα = 1NSL ⊗ σ

α, (5.29)
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5.4. Spin Structure Factor

Sα,β(q) =
1

3N

∑
k

Tr

(
V †12(k)ΣαV11(k− q)[V †21(k− q)(Σβ)TV22(k)

+ V †11(k− q)ΣβV12(k)]

)
. (5.30)

The global structure factor S̃α,β(q) can be calculated by using Eq. (5.30) and
replacing Σγ −→ UΣγU † with

U = 1NSL/4 ⊗


U1

U2

U3

U4

 . (5.31)

Ui are the SU(2) matrices that rotate from the global to the local basis (see Appendix
A).
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Chapter 6

Magnetic Phases

As described in Chapt. 2, Benton et al. found AIAO as well as AF⊥ magnetic order
in the phase diagram of the XXZ-Heisenberg model [7]. We want to incorporate these
phases into our study by calculating the first order quantum correction to their
ground state in Holstein-Primakoff spin wave theory [38]. We make the common
ansatz

Ŝzi = (S − â†i âi), (6.1a)

Ŝ+
i =

√
2S

√
1−

â†i âi
2S

âi, (6.1b)

Ŝ−i =
√

2Sâ†i

√
1−

â†i âi
2S

, (6.1c)

where we choose the z-direction to be parallel to the magnetization axis. For AIAO
this is the local z-axis while for the easy-plane antiferromagnet it is somewhere in
the local x-y-plane. To ensure that |〈Sz〉| ≤ S we have to restrict the basis of
the Hilbert space to {|0〉 , . . . , |2S〉} for every site. For S = 1

2 this can be done by

adding the term U
∑

i â
†
i â
†
i âiâi together with the limit lim

U→∞
. This is also known as

the hardcore boson constraint. Since the square roots of the bosonic operators are
hard to deal with, one usually Taylor expands Eqs. (6.1b) and (6.1c) for small n̂i

2S .
Vogl et al. [39] recently showed that, assuming the hardcore constraint is fulfilled,
the approximation for S = 1

2

Ŝzi = (S − â†i âi), (6.2a)

Ŝ+
i =

√
2S(1 + (

√
1− 1

2S
− 1)â†i âi)âi, (6.2b)

Ŝ−i =
√

2Sâ†i (1 + (

√
1− 1

2S
− 1)â†i âi), (6.2c)

is actually exact.

33



6. Magnetic Phases

6.1 All-In-All-Out (AIAO)

After expressing the Hamiltonian (5.1) with Eqs. (6.2) and choosing the magneti-
zation axis to be parallel to the local z-axis we get

HAIAO =
∑
<i,j>

JzzS2 − 2SJzz(â†i âi + âiâ
†
i ) + J⊥S(â†j âi + âiâ

†
j) (6.3)

+ Jzzn̂in̂j + U
∑
i

â†i â
†
i âiâi + u.p.t,

where we have labelled all unphysical terms that evaluate to 0 on the physical
Hilbert space as u.p.t . To calculate the first quantum correction we will neglect the
interaction term and the hardcore boson constraint. This is a valid approximation
if 〈n̂i〉 � 1. We apply the Fourier transform

ârµ =

√
4

N

∑
k

âk,µe
−ikrµ , â†rµ =

√
4

N

∑
k

â†k,µe
ikrµ (6.4)

and bring the Hamiltonian into the form

HAIAO(k) = 3NJzzS(S + 1) +
1

2

∑
k

Â†k

(
Hh
AIAO(k) 0

0 Hh
AIAO(k)

)
Âk, (6.5)

where Â†k = (â†k,1, . . . , â
†
k,4, â−k,1, . . . , â−k,4) is an eight component Nambu spinor

and

(Hh
AIAO(k))µ,ν = 2SJ⊥ cos

(
1

2
(aµ − aν)k

)
(1− δµ,ν)− 6SJzzδµν . (6.6)

By applying a Bogoliubov transform Âk = V (k)Γ̂k, the Hamiltonian can be diago-
nalized and we get

HAIAO(k) = 3NJzzS(S + 1) +
∑
k

∑
i

ωi(k)γ̂†i γ̂i +
1

2

∑
k

∑
i

ωi(k), (6.7)

where

ω1,2 =− 6JzzS − 2J⊥S, (6.8a)

ω± =− 6JzzS + 2J⊥S
(

1±√
1 + cos

(
k1
2

)
cos

(
k2
2

)
+ cos

(
k2
2

)
cos

(
k3
2

)
+ cos

(
k1
2

)
cos

(
k3
2

))
.

(6.8b)

Therefore, the quantum corrected ground state energy is

E0

N
= 3NJzzS(S + 1) +

1

8VolB.Z

∫
B.Z.

dk3
∑
i

ωi(k) = 3JzzS2, (6.9)

which is the classical ground state energy. The ground state satisfies 〈n̂i〉 = 0 ∀i. It
is therefore valid to neglect the interaction term and hardcore constraint.
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Classical-AF⟂

Quantum-AF⟂

-
π

4
-
π

2
-
3π

4
-tan-1

1

3

θ

-1.0

-0.8

-0.6

-0.4

-0.2

Ground State Energy

Figure 6.1: Ground state energy of the classical and quantum-AF⊥ phase. The
behaviour of the quantum-AF⊥ phase is not reliable for θ & −0.35 due to the
divergence of the boson density which we have assumed to be small.

6.2 Easy-Plane Antiferromagnet (AF⊥)

For the AF⊥ phase we choose our magnetization axis to be parallel to the local
x-axis. Using Eqs. (6.2) we get:

HAF⊥ =
∑
<i,j>

J⊥S(S + 1)− J⊥S(â†i âi + âiâ
†
i ) +

J⊥ + Jzz
2

S(â†j âi + âiâ
†
j)

+
Jzz − J⊥

2
S(a†i â

†
j + âiâj) + J⊥ninj + U

∑
i

â†i â
†
i âiâi + u.p.t, (6.10)

where once again u.p.t labels terms that do not contribute in the physical Hilbert
space. To calculate the quantum correction we will once again neglect the interaction
term and hardcore constraint. Using the Fourier transform (6.4) we get:

HAF⊥ = 3NJ⊥S(S + 1) +
1

2

∑
k

Â†k

(
Hh

AF⊥
(k) Hp

AF⊥
(k)

Hp
AF⊥

(k) Hh
AF⊥

(k)

)
Âk, (6.11)

with the 8 component spinor Âk and

(Hh
AF⊥

(k))µ,ν = (Jzz + J⊥)S cos

(
1

2
(aµ − aν)k

)
(1− δµ,ν)− 6JzzSδµν , (6.12)

(Hp
AF⊥

(k))µ,ν = (Jzz − J⊥)S cos

(
1

2
(aµ − aν)k

)
(1− δµ,ν). (6.13)

After Bogoliubov transformation of the Hamiltonian we have

HAF⊥(k) = 3NJ⊥S(S + 1) +
∑
k

4∑
i

ω(k)γ̂†i γ̂i +
1

2

∑
k

4∑
i

ω(k). (6.14)
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Since Hh
AF⊥

and Hp
AF⊥

commute, the magnon dispersion has the form ωi(k) =√
λ2h,i − λ2p,i, where λh,i and λp,i are the ith eigenvalues of Hh

AF⊥
and Hp

AF⊥
, respec-

tively:

ω1,2(k) = S
√

(6J⊥ + (J⊥ + Jzz))
2 − (J⊥ − Jzz)2, (6.15a)

ω±(k) = S
√

(6J⊥ − (J⊥ + Jzz)f±(k))2 − ((J⊥ − Jzz)f±(k))2, (6.15b)

f±(k) = 1±√
1 + cos

(
k1
2

)
cos

(
k2
2

)
+ cos

(
k2
2

)
cos

(
k3
2

)
+ cos

(
k1
2

)
cos

(
k3
2

)
.

(6.15c)

The ground state energy is therefore

E0

N
= 3J⊥S(S + 1) +

1

8VolBZ

∫
BZ

dk3
∑
i

ωi(k). (6.16)

To verify our assumptions we calculate the boson density averaged over all sublat-
tices n̄:

n̄ =
1

N

〈∑
i

â†i âi

〉
= −1

2
+

1

2N

〈∑
k

A†kAk

〉

= −1

2
+

1

2N

〈∑
k

Γ†kV (k)†V (k)Γk

〉
. (6.17)

Since Hh
AF⊥

and Hp
AF⊥

commute, the Bogoliubov transformation matrix can be
written as

V (k) =

(
U cosh(D) U sinh(D)
U sinh(D) U cosh(D)

)
, (6.18)

where U is a unitary matrix that diagonalizes both Hh
AF⊥

and Hp
AF⊥

(U is given in
Appendix G) and D is a diagonal matrix satisfying:

sinh(2Dii)λh,i + cosh(2Dii)λp,i = 0, (6.19a)

cosh(2Dii)λh,i + sinh(2Dii)λp,i = ωi, (6.19b)

which is equivalent to

cosh(2Dii) =
ωiλh,i

λ2h,i − λ2p,i
=
λh,i
ωi

, (6.20a)

sinh(2Dii) = −λp,i
ωi

. (6.20b)

Plugging V (k) into Eq. (6.17) finally results in:

n̄ =− 1

2
+

1

2N

∑
k

∑
i

〈
2γ̂†i,kγ̂i,k cosh(2Dii)

〉
+ cosh(2Dii)

+
〈

sinh(2Dii)(γ̂
†
i,kγ̂
†
i,−k + γ̂i,kγ̂i,−k)

〉
=

1

8VolBZ

∑
i

∫
BZ

(λh,i
ωi
− 1
)
. (6.21)
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6.2. Easy-Plane Antiferromagnet (AF⊥)

Comparing with the exact expression for ωi(k), we see that the mean boson density
is 0 for Jzz − J⊥ = 0 and grows monotonically with |Jzz − J⊥|. It diverges at
Jzz = −3J⊥. This is exactly the coupling at which the gap closes (ω1,2(k) = 0) and
the mode gets completely populated. Here, our assumption n̂i � 1 breaks down. To
get meaningful results for Jzz > −3J⊥ one would need to incorporate interactions
and the hardcore boson constraint. Qualitatively, this divergence is an indication
for a phase transition. A plot of the ground state energy and mean boson densities
can be found in Fig. 6.1 and Fig. 6.2, respectively. The sublattice specific mean
boson density is calculated in Appendix G.
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Figure 6.2: The boson density averaged over all lattice sites. For Jzz = −3J⊥ the
boson density diverges and our assumptions fail.
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Chapter 7

Results

In this chapter we present the numerical results for the symmetric ansätze with
mean field decouplings specified in Chapt. 5. First, we give solutions for the mean
field values and plot the resulting mean field energies of the underlying ansätze.
To better characterize some of them we choose 5 ansätze and plot their local spin
structure factor and neutron scattering amplitude.

7.1 Mean Field Values

Table 7.1: Mean field values for the ansätze 0-(001), 0-(010), π-(000), π-(011) for
θ ∈ {−45◦, 135◦}.

Ansatz A th,z 2λ/(J⊥ + Jzz)

0-(001) -0.393125 0 1.38799
0-(010) -0.390149 0 1.35930
π-(000) -0.393365 0 1.39103
π-(011) -0.389534 0 1.34659

Values for the mean field parameters are obtained by finding the saddle point of
the mean field ground state energy as explained in Chapt. 5.3 for S = 1

2 and for
θ ∈ {−45◦, 135◦}
The resulting values for ansätze 0-(001), 0-(010), π-(000), π-(011) can be found in
Tab. 7.1. For all four ansätze the only field that obtains a non-zero value are is A
which remains constant for all θ. This results in an effective SU(2) symmetry of the
mean field states. This feature is found to be independent of the decoupling. While
the values for the fields A and th,z stay the same regradless of the decoupling, the
mean field energy does differ between decoupling (5.2a) and (5.2c). Evidently, it is
not reliable to compare mean field energies between different decouplings.
The resulting values for ansätze 0-(101) and π-(111) can be found in Tab. 7.2. The
value for B is found analytically to be B = −1

6 . We use this as a benchmark for our
numerical methods. At θ ≈ 23◦, the spinon gap closes for 0-(101) and at θ ≈ −16◦

the spinon gap closes for π-(111). The values for ansatz π-(100) can be found in
Fig. 7.1a. Its spinon gap closes at θ ≈ −37◦. 0-(110) has no self-consistent solution
to the mean field equations for S = 1

2 .
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Table 7.2: Mean field values for the ansätze 0-(101) and π-(111).

Ansatz B tp,z (λ−2B(J⊥+Jzz))
J⊥−Jzz

0-(101) −1
6 -0.424972 -0.851955

π-(111) −1
6 -0.428073 -0.866502

The parameters for ansätze 0-(100), π-(101), π-(110), 0-(110)-Nem, π-(100)-Nem,
π-(111)-Nem can be found in Fig. 7.1. For the nematic decoupling the ansätze with
equal n3, nC6S

, nC6
and different nST1 are connected. Their mean values of th,x and

th,y are the same, while the values of B have a different sign. This also results in
degenerate mean field energies between these ansätze. All of these ansätze only have
self consistent solutions for θ > 45◦. At θ = 45◦, the spinon gap closes. 0-(111) and
0-(101)-Nem do not have solutions for S = 1

2 .
The ground state energies of all ansätze as well as the magnetic phases can be seen
in Fig. 7.2. Since the mean field energies are sensitive to the choice of decoupling,
we compare energies only between states of the same decoupling. For the U(1)
symmetric decoupling with A fields (Eq. (5.8)), π-(000) has the lowest energy for
all θ ∈ {−45◦, 135◦}. For the U(1) symmetric decoupling with B fields (Eq. (5.3)),
π-(111) has the lowest energy for θ ∈ {−45◦, 23◦}. From θ . −15◦ π-(100) has the
lowest energy until it crosses π-(111) again at θ ≈ −18◦. π-(111) then gaps out at
θ ≈ −15◦. For θ ∈ {−15◦, 9◦} the ansatz 0-(101) has the lowest energy and from
θ ∈ {9◦, 45◦} the ansatz π-(100) has the lowest energy.
For the nematic decoupling (Eq. (5.5)) 0-(100) and 0-(110)-Nem both have the
lowest energy from 45◦ . θ < 135◦.
For θ & −20◦ the ground state energy results for AF⊥ are not reliable due to the
divergence of the boson density which is assumed to be small.

Table 7.3: The mean field values at four different coupling strengths. Note that all
pairing fields have magnitudes around 0.4.

Ansatz θ Mean Field Values

0-(100) 90◦ B = 0.081 tp,y = −0.400 λ = 0.648
0-(110) 90◦ B = −0.081 tp,x = −0.400 λ = 0.648
π-(100) 20◦ B = 0.070 tp,z = −0.383 λ = 0.349
0-(101) 5◦ B = −1

6 tp,z = −0.425 λ = 0.594
π-(000) 45◦ A = −0.393 th,z = 0 λ = 0.983
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B

tp,z

λ

- π

8
- π

16

π

16

π

8

3π

16
π

4

θ

-0.5

0.5

1.0

π-(100): Mean Fields

(a)

B

tp,y

λ

5π

16

3π

8

7π

16
π

2

9π

16

θ

-0.4

-0.2

0.2

0.4

0.6

0.8

π-(101): Mean Fields

(b)

B

tp,y

λ

5π

16

3π

8

7π

16
π

2

9π

16

θ

-0.4

-0.2

0.2

0.4

0.6

0.8

π-(110): Mean Fields

(c)

B

tp,y

λ

5π

16

3π

8

7π

16
π

2

9π

16

θ

-0.4

-0.2

0.2

0.4

0.6

0.8

0-(100): Mean Fields

(d)

Figure 7.1: Mean field values for ansätze: (a) π-(100) (b) π-(101); π-(111)-Nem has
the same values for tp,x as π-(101) has for tp,y and a different sign for B, (c) π-(110);
π-(100)-Nem has the same values for tp,x as π-(110) has for tp,y and a different sign
for B, (d) 0-(100); 0-(110)-Nem has the same values for tp,x as 0-(100) has for tp,y

and a different sign for B.
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Figure 7.2: Ground state energies of the symmetric ansätze and the magnetic phases.
0-(110)-Nem, π-(100)-Nem, π-(111)-Nem have the same energy as 0-(100), π-(110),
π-(101), respectively. SBMFT Energies are given by Eq. (5.22). Different line
styles indicate different mean field decouplings.
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7.2. Structure Factors and Neutron Scattering Amplitudes

7.2 Structure Factors and Neutron Scattering Amplitudes

To better characterize the mean field states, we calculate the local spin structure
factor (Eq. (5.24)) as well as the neutron scattering amplitude (Eq. (5.26)). We
choose 5 states at 4 different coupling angles. The specified points can be found
in Tab. 7.3. Further structure factors and neutron scattering amplitudes can be
found in Appendix H. To make results comparable with Ritter [20], we marked the
extended Brillouin zone in every plot of the local spin structure factor. It is eight
times as large as the Brillouin zone defined in Chapt. 3.

π-(000)

For π-(000), the saddle point equations set the th,z = 0 and therefore increase the
symmetry of the state to SU(2). Its local spin structure factor is shown in Fig. 7.3. It
only has one independent component Sxx = Syy = Szz. All off-diagonal components
vanish. The structure factor shows broad pinch points at q = (2π, 2π, 2π) and
q = (0, 0, 4π). The broad nature of the pinch points is due to quantum fluctuations
violating the so called ice rules [40]. The local structure factor is similar to results
of prior work for the Heisenberg point (θ = 45◦)[11, 16, 40–43].

Figure 7.3: Local spin structure factor of the π-(000) plotted in the [qx,y, qx,y, qz]
plane for θ = −5◦. The qualitative features do not depend on θ. The saddle point
equations increased the symmetry to SU(2) by setting th,z = 0. Therefore, all
diagonal elements of the structure factor are equal and all off-diagonal elements
vanish. The black dashed line shows the boundary of the extended Brillouin zone.

The neutron scattering amplitude can be found in Fig. 7.4. The NSF channel is
dominated by broad vertical features which are 4π-periodic. The SF channel has a
characteristic double bow tie structure where the general features are separated by
the lines qz = ±qx,z. It has broad features in [0,0,qz] direction and features similar
to the local spin structure factor in the [qx,z, qx,z,0] direction. In the sum of both
channels the features of the SF channel can still be seen but are smeared out. The
neutron scattering amplitude is very similar to those of the pseudo Heisenberg anti-
ferromagnet which has been found to be a candidate ground state for the Heisenberg
point [8] as well as the result of a recent pseudofermion functional renormalization
group study for θ = 20◦ [20].
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(a) (b)

(c)

Figure 7.4: Neutron scattering amplitude of the π-(000) ansatz plotted in the
[qx,y, qx,y, qz] plane: (a) SF channel, (b) NSF channel (c) Sum of both channels.

0-(101)

The structure factor of 0-(101) is shown in Fig. 7.5. The only two independent
components are Sxx = Syy and Szz all off-diagonal components vanish. There are
ferromagnetic correlations in the Sx−Sy direction and antiferromagnetic correlations
in the Sz direction. The magnetic correlations in Sx − Sy direction have the same
structure as the correlations of AF⊥ but the features are not as sharp [20]. Its
neutron scattering amplitude can be seen in Fig. 7.6. It is also dominated by the
sharp features. The SF channel has the same peak structure as the total spin flip
channel of AF⊥ and the NSF channel of both are similar as well [20]. This is an
indication that 0-(101) might be a quantum disordered version of AF⊥. This agrees
with the results of Liu et al. [18] that find AF⊥ order to be generically present when
the spinon gap of 0-(101) closes and the spinons condense.
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(a) (b)

Figure 7.5: Local spin structure factor of the 0-(101) with U(1) symmetric decou-
pling plotted in the [qx,y, qx,y, qz] plane for θ = 5◦: (a) Sxx = Syy, (b) Szz. All
off-diagonal components vanish. The black dashed line shows the boundary of the
extended Brillouin zone.

(a) (b)

(c)

Figure 7.6: Neutron scattering amplitude of the 0-(101) ansatz plotted in the
[qx,y, qx,y, qz] plane: (a) SF channel, (b) NSF channel (c) Sum of both channels.
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π-(100)

The local spin structure factor of π-(100)is shown in Fig. 7.7. The only two in-
dependent components are Sxx = Syy and Szz all off-diagonal components vanish.
There are ferromagnetic correlations in the Sx − Sy direction and antiferromag-
netic correlation in the Sz direction. The structure factor has broad pinch points
at q = (2π, 2π, 2π) but is missing them at q = (0, 0, 4π). The features are much
broader than those of the local spin structure factor of ansatz 0-(101). This might
be due to the smaller value of B.
Its neutron scattering amplitude can be seen in Fig. 7.8. It is similar to that of
ansatz 0-(101) but with much broader features. This makes the double bow tie
structure in the SF and total channel more apparent. It is interesting to note, that
the local structure factor does look similar to the one of QSI0 [20]. The only ap-
parent difference being the absence of the q = (0, 0, 4π) pinch points. However, the
neutron scattering amplitude of π-(100) and QSI0 have no similar features [20].

(a) (b)

Figure 7.7: Local spin structure factor of the 0-(101) with U(1) symmetric decou-
pling plotted in the [qx,y, qx,y, qz] plane for θ = 20◦. (a) Sxx = Syy, (b) Szz. All
off-diagonal components vanish. The black dashed line shows the boundary of the
extended Brillouin zone.
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(a) (b)

(c)

Figure 7.8: Neutron scattering amplitude of the π-(100) ansatz plotted in the
[qx,y, qx,y, qz] plane: (a) SF channel, (b) NSF channel (c) Sum of both channels.

0-(100)

The local spin structure factor of 0-(100) is shown in Fig. 7.9. All three diagonal
components are different and the off-diagonal element Sxy does not vanish. This
is because the state, while breaking the U(1) spin rotation symmetry, still satisfies
the C3 lattice symmetry. This can be understood in the classical limit: Sxi S

y
j =

(S2 − Szi Szj )
√
3
2 6= 0. The structure factor has pinch points in the Sxy component

at q = (0, 0, 0) and q = (2π, 2π, 2π). This is also the only component with negative
correlations. The features are very broad in the Sxx and Syy component.
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(a) (b)

(c) (d)

Figure 7.9: Local spin structure factor of the 0-(100) with U(1) symmetry breaking
decoupling plotted in the [qx,y, qx,y, qz] plane for θ = 90◦. (a) Sxx, (b) Syy, (c) Szz,
(d) Sxy. The black dashed line shows the boundary of the extended Brillouin zone.
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(a) (b)

(c)

Figure 7.10: Neutron scattering amplitude of the 0-(100) ansatz plotted in the
[qx,y, qx,y, qz] plane: (a) SF channel, (b) NSF channel (c) Sum of both channels.
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0-(110)-Nem

The local spin structure factor of 0-(110)-Nem is shown in Fig. 7.11. In the same
way as for 0-(100), all three diagonal components are different and the off-diagonal
element Sxy does not vanish. This is because the state, while breaking the U(1) spin
rotation symmetry, still satisfies the C3 lattice symmetry. The local structure factor
has broad pinch points in the Sxy component, where it also has negative correlations.
The features are very broad in the Sxx and Syy component. Its local spin structure
factor is related to the one of 0-(100) by a 90◦ spin rotation around the Sz axis.
Sxx and Syy are exchanged while Szz remains the same. The Sxy component has a
different sign because the spin rotation maps Sx −→ Sy and Sy −→ −Sx.
All channels of the neutron scattering amplitude in Fig. 7.12 are dominated by a
hexagonal structure. The NSF channel has peaks where the NSF channel of 0-(100)
has troughs. This is not true for the SF channel.

(a) (b)

(c) (d)

Figure 7.11: Local spin structure factor of the 0-(110)-Nem with U(1) symmetry
breaking decoupling plotted in the [qx,y, qx,y, qz] plane for θ = 90◦. (a) Sxx, (b)
Syy, (c) Szz, (d) Sxy. The black dashed line shows the boundary of the extended
Brillouin zone.
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(a) (b)

(c)

Figure 7.12: Neutron scattering amplitude of the 0-(100) ansatz plotted in the
[qx,y, qx,y, qz] plane: (a) SF channel, (b) NSF channel (c) Sum of both channels.

7.3 Discussion

When comparing the solutions to the mean field equations, it is crucial to emphasize
that the results are heavily dependent on the mean field decoupling. We especially
want to highlight the difference of the solutions for 0-(101) and 0-(101)-Nem. Here,
the coupling angles θ for which the mean field equations have solutions are com-
pletely different. They depend solely on the mean field decoupling and not on the
chosen mean field ansatz. This strong dependence on the mean field decoupling
makes a rigorous analysis challenging. Especially, since there is a priori no best
mean field decoupling to choose. It is even possible to continuously interpolate be-
tween different mean field decouplings. In special cases this leads to a continuous
change of the mean field ground state energy depending on the decoupling. This
issue rules out the mean field energy as a ground state indicator. Therefore, a
meaningful ground state indicator has to be found. In our analysis we resort to the
comparison of observables with ground states determined by other methods.
As a rule of thumb, close to the antiferromagnetic Heisenberg point a mean field
decoupling with A fields describes the antiferromagnetic correlations well. Close
to the ferromagnetic Heisenberg point a mean field decoupling with B fields should
be chosen. For general XXZ coupling angles, triplet fields can capture the SU(2)
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symmetry breaking. This is reflected in our results for 0-(101) and π-(000). From
a ferromagnetic perspective the mean field decoupling for 0-(101) is able to capture
the ferromagnetic correlations in B. The antiferromagnetic correlations in Sz direc-
tion that break SU(2) symmetry are described by tp,z for θ ∈ {−90◦, 0◦}. This is
expected to break down for θ > 0◦. The comparison of global observables shows
similarity to AF⊥ but no similarity to QSI0.
On the other hand, the mean field decoupling for π-(000) is able to describe the
antiferromagnetic correlations at the Heisenberg point in the A field. This is seen
in the excellent agreement of the structure factor and neutron scattering amplitude
to published results at the Heisenberg point. In the present decoupling, the th,z

field is capable of capturing SU(2) breaking correlations. However, the mean field
equations set th,z = 0. Therefore, the resulting state is SU(2) symmetric. A priori,
we do not expect an SU(2) symmetric state to describe the ground state far away
from the Heisenberg point well. However, a study for θ = 20◦ shows only minor
SU(2) breaking. This indicates stability for the SU(2) symmetric π-(000) ansatz
well into the XXZ coupling regime. We expect this similarity to break down no later
than at θ = 0◦, as ferromagnetic correlations should be present in the Sx−Sy plane
for negative coupling angles. These cannot be described with A and th,z.
A symmetric ansatz that is able to describe all correlations correctly from θ ∈
{−90◦, 90◦} is not available due to the heavy restriction on allowed mean fields by the
PSG (see Tab. 4.1). However, the weakly symmetric ansätze n3π − (1, p1,−1, εI , 0)
can have B as well as tp,x, tp,y, tp,z fields on every bond (see Tab. 4.2). Investigating
its behavior in a future study could be insightful.
For the U(1) symmetry breaking ansätze 0-(100) and 0-(110)-Nem we find degen-
erate mean field energies. Their local spin structure factors are related by a 90◦

spin rotation around the Sz axis. However, the difference of their neutron scatter-
ing amplitudes is non-trivial. Due to the mean field decoupling with B and tp,x or
tp,y fields we expect the ansätze do be able to correctly describe correlations for
θ ∈ {90◦, 135◦}. To the best of our knowledge states with these symmetries have
not yet been reported in the XXZ-Model. Contrary to the U(1) symmetry breaking
nematic spin liquid described by Benton et al. [7], they do not break C3 symmetry.
However, to decide which of the U(1) symmetry breaking states better describe the
ground more further investigations are needed.
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Chapter 8

Conclusion

We studied the XXZ-Heisenberg Model on the pyrochlore lattice using SBMFT with
12 symmetric ansätze and 4 different mean field decouplings. We solved the mean
field equations self consistently. We calculated mean field energies, the local struc-
ture factors and neutron scattering amplitudes for five selected states. For 0-(101) we
found partial agreement with neutron scattering of the AF⊥ phase. Structure factor
and neutron scattering amplitudes of the π-(000) ansatz show excellent agreement
with previous work for the Heisenberg point as well as with one study for θ = 20◦.
A closer analysis of this ansatz and other π-flux ansätze like presented by Liu et al.
for the 0-flux states [7] appears to be promising. However, we propose to compare
the neutron scattering amplitudes of different π-flux states instead of the trace of
the static spin susceptibility. We found the off-diagonal terms of the global spin sus-
ceptibility to strongly influence the neutron scattering amplitude. Including them
avoids misleadingly similar results for different ansätze. Furthermore, the investi-
gation of spinon condensation patterns that appear when the spinon gap closes can
show connections of spin liquid ansätze to magnetic orders. This connection between
quantum spin liquid and classical ground state can serve as a criterion to select or
rule out an ansatz as a quantum ground state candidate.
Additionally, we supplemented the results of SBMFT by calculating the first order
corrections to the ground states in Holstein-Primakoff spin wave theory. Our results
show that the quantum AIAO ground state energy is the classical AIAO energy. The
quantum AF⊥ ground state energy is lower than its classical counterpart. However,
linear spin wave theory breaks down for θ & 20◦ due to divergence of the magnon
density.
Using PSG we classified all weakly symmetric mean field ansätze on the lattice. To
the best of our knowledge this is the first time this has been done for a 3D lattice.
We went beyond the formalism of Messio et al. [19] by including triplet fields into
our weakly symmetric PSG analysis. We identified the 8 weakly symmetric ansätze
n3π − (0, p1,−1, εI , 0) as corresponding to chiral spin liquids that have been pro-
posed as ground state candidates in fermionic mean field theory by Kim et al. [17]
and Burnell et al. [15]. In future studies it would be highly interesting to solve the
mean field equations and calculate spin structure factors as well as neutron scat-
tering amplitudes for those ansätze. Since we included triplet terms in our PSG
analysis for the weakly symmetric ansätze, the stability of such states to perturba-
tions by SU(2) breaking interactions can be investigated. Furthermore, the weakly

53



8. Conclusion

symmetric ansätze n3π − (1, p1,−1, εI , 0) allow a mean field decoupling that has
potential to correctly capture the antiferromagnetic correlations for θ ∈ {0◦, 90◦}
and could capture instability to nematicity at θ = 45◦. Due to the higher amount of
independent mean field parameters a more computational approach to solving the
mean field equations is needed.
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Appendix A

From Global to Local Spin Basis

The sublattice SO(3) rotation matrices to change from global to local spin basis on
sublattice µ are given by [8]

R0 =
1√
6

−2 0
√

2

1 −
√

3
√

2

1
√

3
√

2

 , R1 =
1√
6

−2 0
√

2

−1
√

3 −
√

2

−1 −
√

3 −
√

2

 ,

R2 =
1√
6

 2 0 −
√

2

1 −
√

3
√

2

−1 −
√

3 −
√

2

 , R3 =
1√
6

 2 0 −
√

2

−1
√

3 −
√

2

1
√

3
√

2

 .

(A.1)

The corresponding SU(2) matrices Uµ are

U0 =

 1√
3−
√
3
ei

2π11
48

1√
3+
√
3
ei

2π5
48

1√
3+
√
3
ei

2π19
48

1√
3−
√
3
e−i

2π11
48

 , U1 =

 1√
3+
√
3
e−i

2π7
48

1√
3−
√
3
e−i

2π
48

1√
3−
√
3
e−i

2π23
48

1√
3+
√
3
ei

2π7
48

 ,

U2 =

 1√
3+
√
3
ei

2π5
48

1√
3−
√
3
e−i

2π13
48

1√
3−
√
3
e−i

2π11
48

1√
3+
√
3
e−i

2π5
48

 , U3 =

 1√
3−
√
3
e−i

2π
48

1√
3+
√
3
ei

2π17
48

1√
3+
√
3
ei

2π7
48

1√
3−
√
3
ei

2π
48

 .

(A.2)

The u matrices introduced in Chpt. 4 transform like

(uhµν)l = Uµ(uhµν)gU
†
µ, (A.3)

(upµν)l = Uµ(upµν)gUµ. (A.4)
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Appendix B

Solution of the Chiral Algebraic
PSG

The symmetry enriched algebraic relations of χe are

(GTiTi)(GTi+1Ti+1)(GTiTi)
−1(GTi+1Ti+1)

−1 ∈ Z2, (B.1a)

(GC3C3)
3 ∈ Z2, (B.1b)

(GC′3C
′
3)

3 ∈ Z2, (B.1c)

(GC3C3)(GC′3C
′
3)(GC3C3)(GC′3C

′
3) ∈ Z2 (B.1d)

(GC3C3)(GTiTi)(GC3C3)
−1(GTi+1Ti+1)

−1 ∈ Z2, (B.1e)

(GC′3C
′
3)(GT1T1)(GC′3C

′
3)
−1(GT2T2)

−1(GT1T1) ∈ Z2, (B.1f)

(GC′3C
′
3)(GT2T2)(GC′3C

′
3)
−1(GT1T1) ∈ Z2, (B.1g)

(GC′3C
′
3)(GT3T3)(GC′3C

′
3)
−1(GT3T3)

−1(GT1T1) ∈ Z2. (B.1h)

These can be rewritten into the following phase equations

φTi [rµ] + φTi+1 [T−1i (rµ)]− φTi [T
−1
i+1(rµ)]− φTi+1 [rµ] = πni, (B.2a)

φC3 [rµ] + φC′3 [(C3)
−1(rµ)] + φC3 [(C3C

′
3)
−1(rµ)]

+φC′3 [C ′3(rµ)] = πnC3,C′3
, (B.2b)

φC3 [rµ] + φC3 [C−13 (rµ)] + φC3 [C−23 (rµ)] = πnC3 , (B.2c)

φC′3 [rµ] + φC′3 [(C ′3)
−1(rµ)] + φC′3 [(C ′3)

−2(rµ)] = πnC′3 , (B.2d)

φC3 [rµ] + φTi [C
−1
3 (rµ)]− φC3 [T−1i+1(rµ)]− φTi+1 [rµ] = πnC3Ti , (B.2e)

φC′3 [rµ] + φT1 [(C ′3)
−1(rµ)]− φC′3 [T−11 T2(rµ)]

−φT2 [T−11 (rµ)] + φT1 [T1(rµ)] = πnC′3T1 , (B.2f)

φC′3 [rµ] + φT2 [(C ′3)
−1(rµ)]− φC′3 [T−11 (rµ)]

+φT1 [T1(rµ)] = πnC′3T2 , (B.2g)

φC′3 [rµ] + φT3 [(C ′3)
−1(rµ)]− φC′3 [T−11 T3(rµ)]

−φT3 [T−11 (rµ)] + φT1 [T1(rµ)] = πnC′3T3 . (B.2h)

where nX ∈ {0, 1}
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B. Solution of the Chiral Algebraic PSG

Gauge Freedom

In the process of solving the phase equations we will fix the gauge.
Since we have 4 fcc sublattices we have freedom to choose 16 independent gauges.
Four for every direction r1, r2, r3 and a constant one for every sublattice µ = 0, 1, 2, 3:

G1 : φ1[rµ] = nG1,µπr1, (B.3a)

G2 : φ2[rµ] = nG2,µπr2, (B.3b)

G3 : φ3[rµ] = nG3,µπr3, (B.3c)

G4 : φ4[rµ] = φµ. (B.3d)

A general gauge transformations changes the phases given by the PSG phase equa-
tions like:

φX [rµ] −→ φG[rµ] + φX [rµ]− φG[X−1(rµ)]. (B.4)

Due to the IGG = Z2, we are also free to add a site independent Z2 phase to
any of the five phases φO[rµ][32] corresponding to the five generators of χe. That
makes 16 gauge and 5 IGG choices in total. With the first 12 gauge choices (Eq.
(B.3a)-(B.3c)) we can fix the phases associated with the translation operators to
φT1 [(r1, r2, r3)µ] = φT2 [(0, r2, r3)µ] = φT3 [(0, 0, r3)µ] = 0. Note, that this can only be
satisfied for open boundary conditions [32, Appendix A]

Phase for Translation

Using our choice φT1 [(r1, r2, r3)µ] = φT2 [(0, r2, r3)µ] = φT3 [(0, 0, r3)µ] = 0 Eq. (B.2a)
becomes:

φT2 [(r1 − 1, r2, r3)µ]− φT2 [rµ] = n1π, (B.5)

φT2 [rµ]− φT2 [(r1, r2, r3 − 1)µ] + φT3 [(r1, r2 − 1, r3)µ]− φT3 [rµ] = n2π, (B.6)

φT3 [rµ]− φT3 [(r1 − 1, r2, r3)µ] = n3π. (B.7)

Therefore:

φT2 [rµ] = −n1πr1 + fT2(r2, r3), (B.8)

φT3 [rµ] = n3πr1 + fT3(r2, r3). (B.9)

with unknown functions fT2(r2, r3) and fT3(r2, r3). We can find a constraint by
plugging in equations (B.8) and (B.9) into (B.6):

fT2(r2, r3)− fT2(r2 − 1, r3) + fT3(r2 − 1, r3)− fT3(r2, r3) = n2π. (B.10)

To solve this, we can choose fT2(r2, r3) = 0 and fT3(r2, r3) = −n2πr2 and arrive at

φT1 [rµ] = 0, (B.11)

φT2 [rµ] = −n1πr1, (B.12)

φT3 [rµ] = n3πr1 − n2πr2. (B.13)
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Phase for C3 Rotation

Writing out Eq. (B.2e) we get:

φC3 [rµ]− φC3 [(r1, r2 − 1, r3)µ] + φT1 [(r2, r3, r1)π321(µ)]− φT2 [(r1, r2, r3)µ]

= φC3 [rµ]− φC3 [(r1, r2 − 1, r3)µ]− n1πr1
= nC3T1π, (B.14a)

φC3 [rµ]− φC3 [(r1, r2, r3 − 1)µ] + φT2 [(r2, r3, r1)π321(µ)] + φT3 [(r1, r2, r3)µ]

= φC3 [rµ]− φC3 [(r1, r2, r3 − 1)µ] + n3πr1 − n2πr2 − n1πr2
= nC3T2π, (B.14b)

φC3 [rµ]− φC3 [(r1 − 1, r2, r3)µ] + φT3 [(r2, r3, r1)π321(µ)] + φT1 [(r1, r2, r3)µ]

= φC3 [rµ]− φC3 [(r1 − 1, r2, r3)µ] + n3πr2 − n2πr3
= nC3T3π. (B.14c)

Therefore

φC3 [rµ] = fC3(r1, r3)− r2(nC3T1π + n1πr1), (B.15a)

φC3 [rµ] = fC3(r1, r2)− r3(nC3T2π + n3πr1 − n2πr2 − n1πr2), (B.15b)

φC3 [rµ] = fC3(r2, r3)− r1(nC3T3π + n3πr2 − n2πr3). (B.15c)

Since the function fC3(r1, r3) in (B.15a) can not include any terms that feature r2 it
can not include terms like r1n3πr2 that have to appear in φC3 [rµ] due to (B.15c). To
fulfill equations (B.15a)-(B.15c) we have to infer a relationship between n1, n2, n3.
With n1 = n2 = n3 we get the following solution:

φC3 [rµ] = φC3 [0µ]− (r1nC3T3 + r2nC3T1 + r3nC3T2)π − n3π(r1r2 + r1r3). (B.16)

Plugging Eq. (B.16) into (B.2c) gives:

φC3 [rµ] + φT1 [(r2, r3, r1)π321(µ)] + φT1 [(r3, r1, r2)π123(µ)]

=φC3 [0µ] + φC3 [0π123(µ)] + φC3 [0π321(µ)] +
∑
i,j

rinC3Tjπ

=nC3π, (B.17)

which constrains
∑

j nC3Tj = 0. π123(µ) permutes µ in the cycle (123).
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B. Solution of the Chiral Algebraic PSG

Phase for C ′3 Rotation

Writing out Eq. (B.2e) we get:

φC′3 [rµ]− φC′3 [(r1 − 1, r2 + 1, r3)µ] + φT1 [(r2,−r1 − r2 − r3 − 1, r3)π021(µ)]

− φT2 [(r1 − 1, r2, r3)µ] + φT1 [(r1 + 1, r2, r3)µ]

= φC′3 [rµ]− φC′3 [(r1 − 1, r2 + 1, r3)µ] + n3π(r1 + 1)

= nC′3T1π, (B.18a)

φC′3 [rµ]− φC′3 [(r1 + 1, r2, r3)µ] + φT2 [(r2,−r1 − r2 − r3 − 1, r3)π021(µ)] (B.18b)

+ φT1 [(r1 + 1, r2, r3)µ]

= φC′3 [rµ]− φC′3 [(r1 − 1, r2, r3)µ] + n3πr2

= nC′3T2π, (B.18c)

φC′3 [rµ]− φC′3 [(r1 − 1, r2, r3 + 1)µ] + φT3 [(r2,−r1 − r2 − r3 − 1, r3)π021(µ)]

− φT3 [(r1 − 1, r2, r3)µ] + φT1 [(r1 + 1, r2, r3)µ]

= φC′3 [rµ]− φC′3 [(r1 − 1, r2, r3 + 1)µ] + n3π(r2 + r3)

= nC′3T3π. (B.18d)

From Eq. (B.18c) we can infer that

φC′3 [rµ] = fC′3(r2, r3) + n3πr1r2 + nC′3T2πr1, (B.19)

where fC′3(r2, r3) is some function of r2 and r3. Using this and Eq. (B.18d) we get

φC′3 [rµ] = fC′3(r2) + n3πr1r2 + nC′3T2πr1 + r3π(
r3 − 1

2
n3 + nC′3T2 + nC′3T3). (B.20)

Plugging this into Eq. (B.18a) finally gives

φC′3 [rµ] = φC′3 [0µ] + r1πnC′3T2 + r3π(
r3 − 1

2
n3 + nC′3T2 + nC′3T3) + n3πr1r2

+ r2π(
r2 − 1

2
n3 + nC′3T2 + nC′3T1). (B.21)

Inserting Eq. (B.29f) into Eq. (B.2d) gives

φC′3 [rµ] + φC′3 [(r2,−r1 − r2 − r3 − 1, r3)π021(µ)]

+ φC′3 [(−r1 − r2 − r3 − 1, r1, r3)π120(µ)]

= φC′3 [0µ] + φC′3 [0π021(µ)] + φC′3 [0π120(µ)]

+ (nC′3T1 + n3)π + r3π(nC′3T1 + nC′3T2 + nC′3T3)

= nC′3π, (B.22)

which gives two constraints

nC′3T1 + nC′3T2 + nC′3T3 = 0, (B.23)

φC′3 [0µ] + φC′3 [0π021(µ)] + φC′3 [0π120(µ)] = (nC′3T1 + n3 + nC′3). (B.24)
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The last phase equation (B.2b) is then

φC3 [rµ] + φC′3 [(r2, r3, r1)π132(µ)] + φC3 [(r3,−r1 − r2 − r3 − 1, r1)π(20)(13)(µ)]

+ φC′3 [(−r1 − r2 − r3 − 1, r1, r3)π120(µ)]

= φC3 [0µ] + φC′3 [0π132(µ)] + φC3 [0π(20)(13)(µ)] + φC′3 [0π120(µ)] + (nC′3T2 + nC3T1)π

= nC3C′3
π, (B.25)

π(20)(13)(µ) permutes µ in the cycles (20) and (13).
Since equations (B.1b), (B.1c),(B.1e) and (??) have operators that appear an odd
number of times, we can use our 5 IGG choices of T1, T2, T3, C3, C

′
3 to set nC′3T1 =

nC3T2 = nC3T3 = nC3 = 0 and nC′3 = n3. Using
∑

j nC3Tj = 0 this also implies
nC3T1 = 0.
As a last step we find φC3 [0µ] and φC′3 [0µ]. We have the four constant sublattice
gauge choices left (Eq. (B.3d)). By fixing the IGG choices Eqs. (B.17) and (B.24)
are reduced to

3φC3 [00] = 0, (B.26a)

φC3 [01] + φC3 [02] + φC3 [03] = 0, (B.26b)

3φC′3 [03] = 0, (B.26c)

φC′3 [01] + φC′3 [02] + φC′3 [00] = 0. (B.26d)

The form of equations (B.26) is invariant under gauge transformations. That is
why we can fix the constant gauge on sublattices 1,2,3 to set φC3 [02] = φC3 [03] = 0
as well as φC′3 [01] = 0. Eqs. (B.26) and (B.24) then also imply φC3 [01] = 0 and
φC′3 [02] = −φC′3 [00]. Eq. (B.25) then reduces to

φC3 [00]− φC′3 [02] = (nC′3T2 + nC3C′3
)π, (B.27)

φC′3 [02] + φC′3 [03] = (nC′3T2 + nC3C′3
)π. (B.28)

Therefore, φC3 [00] = −φC′3 [03] = 2πk
3 where k ∈ {−1, 0, 1} and φC′3 [02] = φC3 [00] +

(nC′3T2 + nC3C′3
)π.

The final solution is then:

φT1 [rµ] = 0, (B.29a)

φT2 [rµ] = n3πr1, (B.29b)

φT3 [rµ] = n3π(r1 + r2), (B.29c)

φC3 [rµ] =
2πk

3
δµ0 + n3π(r1r2 + r1r3), (B.29d)

φC′3 [rµ] = −2πk

3
δµ3 + (

2πk

3
+ nC3C′3

+ nC′3T2)(−δµ0 + δµ2)π (B.29e)

+ r1πnC′3T2 + r3π
r3 − 1

2
n3 + n3πr1r2

+ r2π(
r2 − 1

2
n3 + nC′3T2). (B.29f)

There is one gauge choice left to set one field to be real and n3, nC3C′3
, nC′3T2 ∈ {0, 1}.
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Appendix C

Classification of Chiral Ansätze

We will use the short notation B0µ0µ = Bµν for bonds on the main tetrahedron and
BI(0µ)I(0µ) = BIµν for bonds on the inverse tetrahedron.
As described by Messio et al. [19] we can classify all possible ansätze by looking at
the transformation of the minimal set of linearly independent fluxes under elements
in χo. All elements of χo can be written as compositions of S, C6 and elements of χe.
The elements of χe leave the fluxes invariant so we only have to consider the action
of S and C6 on the fluxes. For convenience we use the fact that C6 can be written
as a composition of I ∈ χo and C3 ∈ χe and ultimately consider the action of S and
I on the fluxes. Since C6 = IC3 it follows that εI = εC6

. Fluxes are independent if
they can not be mapped onto each other by symmetry operations in χe and can not
be created by adding other independent fluxes. The number of independent fluxes
depends on the number of present mean field parameters as well.
To find out how many independent fluxes there are we start with how many inde-
pendent loops of even and odd length there are in the pyrochlore lattice independent
of possible bond variables.

1. Triangle (Loop Size = 3): There are 8 triangles in the pyrochlore unit cell.
There are two sets of three triangles that can be mapped onto each other by
C3 which leaves us with 2 triangle loops on the inverse and main tetrahedron.
These can be mapped onto each other by C ′3 rotation and translation. In total
we therefore have two independent triangle loops.

2. Rhombus (Loop size = 4): There are 6 rhombi in the pyrochlore unit cell.
Three on each tetrahedron. All rhombi on a tetrahedron can be mapped onto
each other by C3 which leaves us with two independent rhombi.

3. Bow tie (Loop size = 6): There are 12 bow ties and 24 ”bent” bow ties in the
unit cells (0,0,0), and the three main tetrahedra of the cells (0,0,-1), (0,-1,0),
(-1,0,0): 9 per two adjacent tetrahedra. By C3 mapping we can reduce the
number to 12. 3 in the tetrahedra of (0,0,0) and 9 in the tetrahedra of e.g.
(0,0,0) and (-1,0,0).
We can further reduce the number by realizing that if we add a rhombus to a
bow tie we get a bent bow tie. This reduces the number of loops to 12

6 = 2.
These can finally be mapped onto each other by C ′3 rotations which leaves one
independent bow tie flux.
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C. Classification of Chiral Ansätze

4. Hexagon (Loop size = 6) Four unit cells always enclose a hexagon. This can
be seen in Fig. 3.1b. There are 4 different hexagons that can not be mapped
onto each other by translations. By C3 symmetry we can reduce this to 2 and
by C ′3 symmetry to one independent hexagon.

5. Bigger loops (Loop size > 6): All loops with size larger than 6 can be cre-
ated by adding loops of smaller size and therefore do not add to the linearly
independent loops.

The triangle and rhombus loops on the main tetrahedron can be mapped to the same
loops on the inverse tetrahedron by I. From the algebraic relations we can see that
SI = S2IS. So screw and inversion symmetries commute modulo S2 ∈ χe which
leaves fluxes invariant. Therefore, transformation of triangle and rhombus fluxes on
the main and inverse tetrahedra give the same constraints. We will therefore only
consider them on the inverse tetrahedron.
Transformation of hexagonal loops give the same constraints as the bow ties. We
will therefore not consider the hexagonal fluxes here explicitly. Figs. C.1 show how
all independent Loops transform under screw and inversion symmetry. When we
now specify fluxes by adding bond operators we can transform theses loop diagrams
into equations. Fluxes can in principle consist of one, two or many different types
of bond operators. E.g. Arg(B12B23B31), Arg(A12Bh,z23 A∗31) , Arg(B12th,x23 t

h,z
31 ). We

only have to consider fluxes with one or two fields. Loops with three or more fields
can be constructed from these.
Before we can start turning the diagrams into equations we have to define our bond
fields. Since there are two independent bonds we will have two independent phases
for each field.
We fix these as B01 = Be−iφB1 , A01 = Ae−iφA1 , A01 = Ae−iφA1 (on the main
tetrahedron) and BI01 = Be−iφB2 , AI01 = Ae−iφA2 , AI01 = Ae−iφA2 (on the inverse

tetrahedron) and equivalently for th,zij and tp,zij .
Transformation of x and y triplet operators is not as trivial because symmetry
operations change the direction. For example:

C3(C3(t̂
x
01)) = C3(−

1

2
t̂x02 +

√
3

2
t̂y02) = −1

2
t̂x0,3 −

√
3

2
t̂y03, (C.1a)

C3(C3(t̂
y
01)) = C3(−

√
3

2
t̂x02 −

1

2
t̂y02) =

√
3

2
t̂x03 −

1

2
t̂y03. (C.1b)

We will define new operators with easier transformation properties:

t̂h,x
′

03 := C3(t̂
h,x′

0,2 ) := C3(C3(t̂
h,x′

0,1 )) := C3(C3(t̂
h,x
0,1 )), (C.2a)

th,x
′

1,2 := C3(t̂
h,x′

3,1 ) := C3(C3(t̂
h,x′

2,3 )) := C3(C3(t̂
h,x
2,3 )) (C.2b)

and equivalently for the bonds on the inverse tetrahedron, the pairing triplet opera-

tors and the y-triplet fields. The operators t̂h,x
′

ij and t̂h,y
′

ij are linearly independent on

every bond. We fix their expectation values as tp,x
′

01 = tp,xe
−iφ

t
p,x
1 , tp,x

′

I01 = tp,xe
−iφ

t
p,x
2 ,

tp,y
′

01 = tp,xe
−iφ

t
p,x
1 , tp,y

′

I01 = tp,xe
−iφ

t
p,x
2 and equivalently for the hopping tripplet fields.

The operators transform as

B̂ji = B̂†ij , t̂h,γji = −(t̂h,γij )†, Âji = −Âij , t̂p,γji = t̂p,γij . (C.3)
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Table C.1: The signs that fields pick up when beeing transformed under screw
rotation. Note that singlet (s) and y’ - triplet fields pick up the same signs.

Bonds s x’ y’ z

I01 −→ 31 − + − +
I02 −→ 32 + − + −
I03 −→ 30 + − + −
I12 −→ 12 − + − +
I23 −→ 20 + − + −
I31 −→ 01 − + − +

To keep calculations short we will use the superscript γ ∈ {x′, y′, z} to label the
triplet operators. Also note that the triplet x’ and z operators pick up an extra π
phase when acted upon by the screw operation compared to the singlet and triplet y
operators. This is not due to a gauge transformation added to the screw operation
but solely due to the spin rotation (see Tab. C.1).
In the following subsections we consider all possible one and two operator fluxes
and translate their transformation behavior into constraints for the phases φOi .
The solutions to the equations can be found in Tab. 4.2.

Fluxes with Bij Fields

Hopping operators can be written in gauge invariant loops of odd size. For Bij fields,
the only independent loops we have to consider are the triangles.
Fig. C.1(a) gives the following equations:

Arg(BI01BI12BI20) = εIArg(B01B12B20), (C.4a)

Arg(BI01BI12BI20) = εSArg(B31B12B23). (C.4b)

If we use the transformation property Bji = B∗ij (see Eq. (C.3)) we can translate
equations (C.4) into equations for the phases

φB2 +
4kπ

3
+ n3π = εI(φB1 +

4kπ

3
), (C.5a)

φB2 +
4kπ

3
+ n3π = 3εSφB1 . (C.5b)

Fluxes with Aij Fields

Pairing operators can only be written in gauge invariant loops of even length, where
A and A∗ alternate. Therefore, we have to consider the rhombus and bow tie loops
of Fig. C.1(b,c).

Arg(AI01A∗I12AI23A∗I30) =εIArg(A01A∗12A23A∗30), (C.6a)

Arg(AI01A∗I12AI23A∗I30) =εSArg(A31A∗12A20A∗03), (C.6b)

Arg(AI01A∗I12AI20A∗01A12A∗20) =εIArg(A01A∗12A20A∗I01AI12A∗I20), (C.6c)

Arg(AI01A∗I12AI20A∗01A12A∗20) =εSArg(A31A∗12A23A∗I31AI12A∗I23). (C.6d)
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(a)

(b)

(c)

Figure C.1: Transformations of the (a) triangle, (b) rhombus and (c) bow tie loops
under inversion (I) and screw (S) symmetry. T0 labels the tetrahedra of the (0,0,0)
unit cell, T3 labels the tetrahedra of the (0,0,1) unit cell and so on.

The rhombus fluxes give constraints for the PSG parameter k:

4kπ

3
= εI

4kπ

3
, (C.7a)

4kπ

3
= εS

2kπ

3
. (C.7b)

Therefore, there are only solutions for k 6= 0 if εI = −εS = 1.
The bow tie loops give constraints for the phases

(φA1 − φA2) = εI(φA2 − φA1), (C.8a)

(φA1 − φA2) = εS(φA2 − φA1). (C.8b)
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Fluxes with th,γij Fields

As for the Bij fields we only have to consider triangle fluxes:

Arg(th,γI01t
h,γ
I12t

h,γ
I20) = εIArg(th,γ01 t

h,γ
12 t

h,γ
20 ), (C.9a)

Arg(th,γI01t
h,γ
I12t

h,γ
I20) = εSArg(th,γ31 t

h,γ
12 t

h,γ
23 ) + π(1− δγ,y′). (C.9b)

The terms π(1 − δγ,y′) come from the spin rotation part of the screw symmetry.

Using th,γji = −th,γ∗ij we get the phase equations

φ
th,γ2

+
4kπ

3
+ n3π = εI(φth,γ1

+
4kπ

3
), (C.10a)

φ
th,γ2

+
4kπ

3
+ n3π = 3εSφth,γ1

+ δγ,y′π. (C.10b)

Fluxes with tp,γi,j Fields

Since tp are pairing fields, we have to consider the even rhombi and bow tie loops.

Arg(tp,γI01t
p,γ∗
I12 t

p,γ
I23t

p,γ∗
I30 ) =εIArg(tp,γ01 t

p,γ∗
12 tp,γ23 t

p,γ∗
30 ), (C.11a)

Arg(tp,γI01t
p,γ∗
I12 t

p,γ
I23t

p,γ∗
I30 ) =εSArg(tp,γ31 t

p,γ∗
12 tp,γ20 t

p,γ∗
03 ), (C.11b)

Arg(tp,γI01t
p,γ∗
I12 t

p,γ
I20t

p,γ∗
01 tp,γ12 t

p,γ∗
20 ) =εIArg(tp,γI01t

p,γ∗
I12 t

p,γ
I20t

p,γ∗
01 tp,γ12 t

p,γ∗
20 ), (C.11c)

Arg(tp,γI01t
p,γ∗
I12 t

p,γ
I20t

p,γ∗
01 tp,γ12 t

p,γ∗
20 ) =εSArg(tp,γI31t

p,γ∗
I12 t

p,γ
I23t

p,γ∗
31 tp,γ12 t

p,γ∗
23 ). (C.11d)

The rhombus fluxes give the same constraints (k 6= 0 only if (εI , εS) = (1,−1)) as
Eq. (C.7). The bow tie fluxes give:

(φtp,γ1
− φtp,γ2

) = εI(φtp,γ2
− φtp,γ1

), (C.12a)

(φtp,γ1
− φtp,γ2

) = εS(φtp,γ2
− φtp,γ1

). (C.12b)

Fluxes with Aij and Bij Fields

We only have to consider triangle loops with one Bij field. All bow ties with two or
four as well as rhombi with two Bij fields can be constructed from those together
with triangles with three Bij field.
There are 2 independent choices to place one Bij field on the triangle loops:

Arg(BI01A∗I12AI20) = εIArg(B01A∗12A20), (C.13a)

Arg(BI01A∗I12AI20) = εSArg(B31A∗12A23). (C.13b)

These give the constraints:

φB2 + (1 + n3)π = εIφB1 + π, (C.14a)

φB2 + (1 + n3)π = εS(φB1 +
2kπ

3
). (C.14b)

Using Eq. (C.5) and (C.7) we can reduce this to:

k = 0, (C.15a)

εIεS = −1, (C.15b)

2φB1 = π, (C.15c)

φB2 = εIφB1 + πn3. (C.15d)
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Fluxes with Aij and th,γi,j Fields

We only have to consider the triangle loops with one th,γi,j field:

Arg(th,γI01A
∗
I12AI20) = εIArg(th,γ01 A

∗
12A20), (C.16a)

Arg(th,γI01A
∗
I12AI20) = εSArg(th,γ31 A

∗
12A23) + π(1− δγ,y′), (C.16b)

They give constraints

φ
th,γ2

+ (1 + n3)π = εIφth,γ1
+ π, (C.17a)

φ
th,γ2

+ (1 + n3)π = εS(φ
th,γ1

+
2kπ

3
) + π(1− δγ,y′). (C.17b)

Using Eq. (C.10) we can rewrite this to

k = 0, (C.18a)

δγ,y′ = 0, (C.18b)

2φ
th,γ1

= 0, (C.18c)

φ
th,γ2

= εIφth,γ1
+ n3π. (C.18d)

Eq. (C.18b) says that there are no valid weakly symmetric ansätze with both Aij
and th,y

′

ij fields.

Fluxes with Aij and tp,γi,j Fields

As established in the main text Aij and tp,γi,j Fields can not appear simultaneously
in an ansatz. Therefore, we do not have to consider loops with both of these fields.

Fluxes with Bij and tp,γi,j Fields

Here we have to consider similar triangle loops as for Aij and Bij fields

Arg(BI01th,p∗I12 t
h,p
I20) = εIArg(B01th,p∗12 th,p20 ), (C.19a)

Arg(BI01th,p∗I12 t
h,p
I20) = εSArg(B31th,p∗12 th,p23 ). (C.19b)

These lead to the constraints:

φB2 + n3π = εIφB1 , (C.20a)

φB2 + n3π = εS(φB1 +
2kπ

3
). (C.20b)

With Eq. (C.5) these can be reduced to:

k = 0, (C.21a)

2φB1 = 0, (C.21b)

φB1 = εIφB2 + n3π. (C.21c)
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Fluxes with Bij and thγi,j Fields

There are 2 independent triangle loops with only Bij and th,zij fields

Arg(th,γI01BI12BI20) = εIArg(th,γ01 B12B20), (C.22a)

Arg(th,γI01BI12BI20) = εSArg(th,γ31 B12B23) + π(1− δγ,y′), (C.22b)

that give the constraints:

φ
th,γ2

+
4kπ

3
+ n3π = εI(φth,γ1

+
4kπ

3
), (C.23)

φ
th,γ2

+
4kπ

3
+ n3π = εS(φ

th,γ1
+ 2φB1) + π(1− δγ,y′). (C.24)

Which can be reduced with Eq. (C.5) and (C.10) to

(1− εIεS)(φ
th,γ1
− φB1) = π(1− δγ,y′), (C.25a)

φ
th,γ2

+ n3π = εIφth,γ1
. (C.25b)

For εIεS = −1 Eq.(C.25a) only has a solution for γ ∈ {x′, z}. For εIεS = 1 it can
only be solved for γ = y′

Fluxes with tp,γ and th,γ
′

Fields

We have to consider the triangle loops

Arg(tp,γ∗I12 t
p,γ
I20t

h,γ′

I01 ) = εIArg(tp,γ∗12 tp,γ20 t
h,γ′

01 ), (C.26a)

Arg(tp,γ∗I12 t
p,γ
I20t

h,γ′

I01 ) = εSArg(tp,γ∗12 tp,γ23 t
h,γ′

31 ) + π(1− δγ′,y′). (C.26b)

which give constraints:

φ
th,γ
′

2

+ n3π = εIφth,γ
′

1

, (C.27a)

φ
th,γ
′

2

+ n3π = εS(φ
th,γ
′

1

+
2kπ

3
) + π(1− δγ′,y′). (C.27b)

which can be reduced with Eq. (C.10) to

k = 0, (C.28a)

2φ
th,γ
′

1

= π, (C.28b)

φ
th,γ
′

1

= εIφth,γ
′

4

+ n3π. (C.28c)

Fluxes with tp,γ and tp,γ
′

Fields

We have to consider the independent rhombus fluxes

Arg(tp,γI01(t
p,γ′

I12 )∗tp,γI23(t
p,γ
I30)

∗) = εIArg(tp,γ01 (tp,γ
′

12 )∗tp,γ23 (tp,γ30 )∗), (C.29)

Arg(tp,γI01(t
p,γ′

I12 )∗tp,γI23(t
p,γ
I30)

∗) = εSArg(tp,γ31 (tp,γ
′

12 )∗tp,γ20 (tp,γ03 )∗) + π(δγ,y′ + δγ′,y′),
(C.30)
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which give

φtp,γ2
− φ

tp,γ
′

2

+
4kπ

3
= εI(φtp,γ1

− φ
tp,γ
′

1

+
4kπ

3
), (C.31)

φtp,γ2
− φ

tp,γ
′

2

+
4kπ

3
= εS(φtp,γ1

− φ
tp,γ
′

1

+
2kπ

3
) + π(δγ,y′ + δγ′,y′). (C.32)

This can be rewritten as

φtp,γ2
− φ

tp,γ
′

2

= εI(φtp,γ1
− φ

tp,γ
′

1

), (C.33a)

(1− εIεS)(φtp,γ1
− φ

tp,γ
′

1

) = π(δγ,y′ + δγ′,y′). (C.33b)

When εIεS = 1 there are no solutions for γ 6= γ′ = y′.

Fluxes with th,γ and th,γ
′

Fields

There are two independent triangle fluxes with only th,γ and th,γ
′
fields where γ 6= γ′:

Arg(th,γ
′

I01 t
h,γ
I12t

h,γ
I20) = εIArg(th,γ

′

01 th,γ12 t
h,γ
20 ), (C.34)

Arg(th,γ
′

I01 t
h,γ
I12t

h,γ
I20) = εSArg(th,γ

′

31 th,γ12 t
h,γ
23 ) + π(1− δγ′,y′), (C.35)

which give the constraints

φ
th,γ
′

2

+
4kπ

3
+ n3π = εI(φth,γ

′
1

+
4kπ

3
), (C.36a)

φ
th,γ
′

2

+
4kπ

3
+ n3π = εS(φ

th,γ
′

1

+ 2φ
th,γ1

) + πδγ′,y′ . (C.36b)

Using Eq. (C.10) we can rewrite this to

(1− εIεS)(φ
th,γ1
− φ

th,γ
′

1

) = π(δγ,y′ + δγ′,y′), (C.37a)

Solutions of phase equations

We organize the solutions in table 4.2 in the main text.
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Appendix D

Fourier Transformation of the
Hamiltonian

Our goal is to derive Eq. (5.16) starting from Eq. (4.9). We will use the Fourier
transform

brµ =

√
NSL

N

∑
k

bk,µe
−ikrµ , bk,µ =

√
NSL

N

∑
rµ

brµe
ikrµ , (D.1)

where N is the total number of atoms in the lattice and NSL is the number of
sublattices in the unit cell and k is summed over the first Brillouin zone. It appears
in the normalization since

∑
k = N

NSL
. NSL = 4 for 0-flux states and NSL = 16

for π-flux states. We treat the case n3 = 0 here. The case n3 = 1 can be derived
similarly.
The on-site hopping term:

∑
rµ

b†rµbrµ =
∑
r0

∑
µ

∑
k′

∑
k

b†k,µbk′,µe
i(k−k′)r0 =

∑
µ

∑
k

b†k,µbk,µ

=
1

2

∑
µ

∑
k

(b†k,µbk,µ + b†−k,µb−k,µ)

=
1

2

∑
µ

∑
k

(b†k,µbk,µ + b−k,µb
†
−k,µ)−N. (D.2)
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D. Fourier Transformation of the Hamiltonian

Nearest neighbour hopping term:∑
rµrν

b†rµu
h
rµrνbrν + h.c.

=
∑
r0

∑
µ<ν

b†r0+0µ
uhr0+0µ,r0+0νbr0+0ν + b†r0+I(0µ)u

h
r0+I(0µ),r0+I(0ν)

br0+I(0ν)

+h.c.

=
∑
k

∑
µ<ν

(
uh0µ,0νe

i
2
(aµ−aν)k + uhI(0µ),I(0ν)e

− i
2
(aµ−aν)k

)
b†k,µbk,ν + h.c.

=
1

2

∑
k

∑
µ<ν

(
uh0µ,0νe

i
2
(aµ−aν)k + uhI(0µ),I(0ν)e

− i
2
(aµ−aν)k

)
b†k,µbk,ν

+h.c. + (k −→ −k)

:=
1

2

∑
k

∑
µ,ν

b†k,µ(Hh(k))µ,νbk,ν + b−k,µ(Hh(−k))Tµ,νb
†
−k,ν . (D.3)

The nearest neighbour pairing term:∑
rµrν

b†rµu
p
rµrν b

†
rν + h.c.

=
∑
r0

∑
µ<ν

b†r0+0µ
upr0+0µ,r0+0ν

b†r0+0ν
+ b†r0+I(0µ)u

p
r0+I(0µ),r0+I(0ν)

b†r0+I(0ν)

+h.c.

=
∑
k

∑
µ<ν

1

2
b†k,µ

(
up0µ,0νe

i
2
(aµ−aν)k + upI(0µ),I(0ν)e

− i
2
(aµ−aν)k

)
b†−k,ν

+
∑
k

∑
µ<ν

1

2
b†−k,µ

(
up0µ,0νe

− i
2
(aµ−aν)k + upI(0µ),I(0ν)e

i
2
(aµ−aν)k

)
b†k,ν

+h.c.

=
∑
k

∑
µ<ν

1

2
b†k,µ

(
up0µ,0νe

i
2
(aµ−aν)k + upI(0µ),I(0ν)e

− i
2
(aµ−aν)k

)
b†−k,ν

+
∑
k

∑
µ<ν

1

2
b†k,ν

(
(up0µ,0ν )T e−

i
2
(aµ−aν)k + (upI(0µ),I(0ν))

T e
i
2
(aµ−aν)k

)
b†−k,µ

+h.c.

:=
1

2

∑
k

b†k,µ(Hp(k))µ,νb
†
−k,ν + bk,µ(Hp(k))†µ,νb−k,ν . (D.4)

After defining the spinor ψ†k = (b̂†k,0, b̂
†
k,1, b̂

†
k,2, b̂

†
k,3, b̂−k,0, b̂−k,1, b̂−k,2, b̂−k,3)

T we ar-
rive at Eq. (5.16).
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Appendix E

Explicit Hamiltonians

We give the explicit form of the submatrices of Eq. (5.16) for the 0 and π-flux case.
To keep things short we introduce the notation t ∈ {h, p} :

uµν = utµνe
i
2
(aµ−aν)k = ut0µ0νe

i
2
(aµ−aν)k uIµν = utIµνe

− i
2
(aµ−aν)k = utI(0µ)I(0ν)e

− i
2
(aµ−aν)k

(E.1)

The submatrices fulfil Hh(k) = (Hh(k))† and Ht(k) = (Ht(−k))T so we only need
to give the upper triangular part to fully determines the whole matrices. For the
0-flux case Ht(k) are 8× 8 matrices given by

Ht(k) =


0 u01 + uI01 u02 + uI02 u03 + uI03

0 u12 + uI23 u13 + uI23
0 u23 + uI23

0

 .

For the π-flux case the Ht(k) are 32× 32 matrices:

Ht(k) =


Ht

11(k) Ht
12(k) Ht

13(k) Ht
14(k)

Ht
21(k) Ht

22(k) Ht
23(k) Ht

24(k)
Ht

31(k) Ht
32(k) Ht

33(k) Ht
34(k)

Ht
41(k) Ht

42(k) Ht
43(k) Ht

44(k)

 . (E.2)

The unit cell consists out of four tetrahedra q ∈ {1, 2, 3, 4} and the submatrices
Ht
q1,q2 include all bonds between tetrahedron q1 and q2. They are given by:

Ht
ii(k) =


0 u01 + uI01e

in3π(δi,2+δi,3) u02 u03
0 u12 u13

0 u23
0

 ,
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E. Explicit Hamiltonians

Ht
12(k) =


0 0 uI02 0
0 0 uI12 0
uI20 uI21e

in3π 0 0
0 0 0 0

 , Ht
13(k) =


0 0 0 uI03
0 0 0 uI13
0 0 0 0
uI30 uI31e

in3π 0 0

 ,

Ht
14(k) =


0 0 0 0
0 0 0 0
0 0 0 uI23
0 0 uI32e

in3π 0

 , Ht
23(k) =


0 0 0 0
0 0 0 0
0 0 0 uI23
0 0 uI32e

in3π 0

 ,

Ht
24(k) =


0 0 0 uI03
0 0 0 uI13e

in3π

0 0 0 0
uI30 uI31 0 0

 , Ht
34(k) =


0 0 uI02e

in3π 0
0 0 uI12 0

uI20e
in3π uI21e

in3π 0 0
0 0 0 0

 .

(E.3)

For the fully symmetric PSG the u matrices are given by

ut01 = (at, bt, ct, dt), (E.4a)

ut02 = (at,−1

2
(bt +

√
3ct),

1

2
(
√

3bt − ct), dt), (E.4b)

ut03 = (at,−1

2
(bt −

√
3ct),−1

2
(
√

3bt + ct), dt), (E.4c)

ut12 = (−at,−1

2
(bt +

√
3ct),−1

2
(
√

3bt − ct), dt)einC6
δt,pπei(n3+nST1 )δt,hπ, (E.4d)

ut13 = (−at, 1

2
(bt +

√
3ct),−1

2
(
√

3bt − ct),−dt)ei(n3+nST1 )π (E.4e)

ut23 = (−at, bt,−ct, dt)einC6
δt,pπei(n3+nST1 )δt,hπ, (E.4f)

utI01 = ut01e
i(n3+nC6

δt,p+nST1 )π, (E.4g)

utI02 = ut02e
i(n3+nC6

δt,p+nST1 )π, (E.4h)

utI03 = ut03e
i(n3+nC6

δt,p+nST1 )π, (E.4i)

utI12 = ut12e
inC6

δt,pπ, (E.4j)

utI13 = ut13e
inC6

δt,pπ, (E.4k)

utI23 = ut23e
inC6

δt,pπ. (E.4l)
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For the weakly symmetric PSG:

ut01 = (at1, b
t
1, c

t
1, d

t
1)
t (E.5)

ut02 = (at1,−
1

2
(bt1 +

√
3ct1),

1

2
(
√

3bt1 − ct1), dt1)te−i
2k
3
π, (E.6)

ut03 = (at2,−
1

2
(bt2 −

√
3ct2),−

1

2
(
√

3bt2 + ct2), d
t
2)
te−i

4k
3
π, (E.7)

ut12 = (at1,−
1

2
(bt1 −

√
3ct1),−

1

2
(
√

3bt1 + ct1), d
t
1)
te−i

2k
3
πe
inC3C

′
3
π
, (E.8)
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Appendix F

Analytic Results for Energy Bands

The spinon dispersions ωi(k) are eigenvalues of the matrix τ3H(k). For symmet-
ric ansätze with U(1) symmetric parametrization there are nice analytical formulas
available. For all 0-flux PSGs with nST1 = 1 we have shifted ~k −→ ~k − π(1, 1, 1)
and for all π-flux PSGs we shifted ~k −→ ~k − π

2 (1, 1, 1) This makes the spinon dis-
persion symmetric around the Brillouin zone origin. Such a shift can be seen as a
gauge transformation and does not change any physical quantities [18]. For better
readability we introduce the functions

f1(k) = cos

(
k1
2

)
cos

(
k2
2

)
+ cos

(
k2
2

)
cos

(
k3
2

)
+ cos

(
k1
2

)
cos

(
k3
2

)
(F.1)

f2(k) = cos

(
k1
2

)
+ cos

(
k2
2

)
+ cos

(
k3
2

)
(F.2)

and we denote degeneracy µ as a superscript ωµ(k)

• PSG 0-(101)

ω4(k) = λ+ 2ah (F.3a)

ω2(k) =

∣∣∣∣2ah√(1 + f1(k))±
√

(2ah − λ)2 − (2dp)2(3− f1(k))

∣∣∣∣ (F.3b)

• PSG 0-(110)

ω4(k) =
√

(λ− 2ah)2 − (2dp)2 (F.4a)

ω2(k) =

√(
λ+ 2ah(1 +

√
f1(k) + 1)

)2
− (2dp)2

(
1 +

√
f1(k) + 1

)2
(F.4b)

• PSG 0-(010)

ω2(k) =

√(
λ±2 2dh

√
f±1(k)

)2
− (2ap)2f±1(k) (F.5a)

f±1(k) =
1

2

(
3 + f1(k)±1

√
(3 + f1(k))2 − 4f2(k)2

)
(F.5b)
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• PSG 0-(001)

ω2(k) =
√
λ2 − (2ap)2(3− f±1(k))±2 d

h
√
f±1(k) (F.6a)

f±1(k) =
1

2

(
3 + f1(k)±1

√
(3 + f1(k))2 − 4f2(k)2

)
(F.6b)

• PSG π-(111)

ω16(k) = λ+ 2ah (F.7a)

ω8(k) =

∣∣∣∣√(2ah − λ)2 − (2dp)2(3±1 f(k))±2 2ah
√

1∓1 f(k)

∣∣∣∣ (F.7b)

f(k) =
1

2

√
3− f1(2k) (F.7c)

• PSG π-(100)

ω16(k) =
√

(λ− 2ah)2 − (2dp)2 (F.9)

ω8(k) =
√

(λ+ 2ahf±1,±2(k))2 − (2dp)2f±1,±2(k)2 (F.9a)

f±1,±2(k) = 1±1

√
1±2

1

2

√
3− f1(2k) (F.9b)

• PSG π-(011)

ω8(k) =

∣∣∣∣∣
√
λ− (2ap)2

1

2
(3− ri)± 2dh

√
1

2
(3 + ri)

∣∣∣∣∣ (F.10a)

ri := ith Root of : (F.10b)

6− 15f1(2k) + 4f2(2k)2 − 2(1 + f1(2k))x+ (f1(2k)− 9)x2 + x4

• PSG π-(000)

ω8(k) =

√√√√(λ± 2dh

√
1

2
(3 + ri)

)2

− (2ap)2
1

2
(3 + ri) (F.11a)

ri := ith Root of : (F.11b)

6− 15f1(2k) + 4f2(2k)2 − 2(1 + f1(2k))x+ (f1(2k)− 9)x2 + x4

For all π-flux states we observe the higher spectral periodicity described in [29]
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Appendix G

Sublattice Boson Density in the
AF⊥ Phase

n0 n1

n2 n3

-
π

4
-
π

2
-
3π

4
-tan-1

1

3
0

θ

0.05

0.10

0.15

0.20
Mean Boson Density n

Figure G.1: Mean boson density for each sublattice i ∈ {0, 1, 2, 3}. The graphs of
n2 and n3 lie on top of each other.

Altering the derivation in section 6.2 a bit we can not only calculate the mean boson
density over all lattice sites but also the mean boson density per sublattice (see figure
G.1). The formula is given by

n̄i =
1

2VolBZ

∫
BZ

((U cosh(2D)U †)ii − 1) (G.1)
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where U = (u1, u2, u+, u−) is defined by the unit vectors ui

u1(4k) =
1

N (k)
(f1(k) sin((kx − kz)), f2(k) sin(ky − kz), (G.2a)

− f1(k) sin(kx + ky)− f2(k) sin(kx − kz),
f2(k) sin(kx − ky) + f1(k) sin(kx + kz))

T

u2(4k) =
1

N (k)
(f1(k) sin(kx − kz),−f2(k) sin(ky − kz), (G.2b)

− f1(k) sin(kx + ky) + f2(k) sin(kx − kz),
− f2(k) sin(kx − ky) + f1(k) sin(kx + kz))

T

u±(2k) =
1

N (k)
(
1

2
(sin(kx + ky) + sin(kx + kz) + sin(ky + kz)), (G.2c)

cos((ky − kz)/2) sin(kz)± f3(k) sin((ky + kz)/2),

cos((kx − kz)/2) sin(ky)± f3(k) sin((kx + kz)/2),

cos((kx − ky)/2) sin(kx)± f3(k) sin((kx + ky))/2)T

with normalization factor N (k) and functions

f1(k) =

√
sin(kx − ky)2 + sin(kx − kz)2 + sin(ky − kz)2 (G.3a)

f2(k) =

√
sin(kx + ky)

2 + sin(kx + kz)
2 + sin(ky − kz)2 (G.3b)

f3(k) =
√

1 + cos(kx) cos(ky) + cos(kx) cos(kz) + cos(ky) cos(kz) (G.3c)
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Appendix H

Supplementary Observables

(a)
(b)

(c) (d)

Figure H.1: (a) Local spin structure factor, (b) neutron scattering amplitude in NSF
channel, (c) NSA in SF channel, (d) total neutron scattering amplitude of 0-(001)
plotted in the [qx,y, qx,y, qz] plane for θ = 45◦. The black dashed line shows the
boundary of the extended Brillouin zone.
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H. Supplementary Observables

(a) (b)

(c) (d)

Figure H.2: (a) Local spin structure factor, (b) neutron scattering amplitude in NSF
channel, (c) NSA in SF channel, (d) total neutron scattering amplitude of 0-(010)
plotted in the [qx,y, qx,y, qz] plane for θ = 45◦. The black dashed line shows the
boundary of the extended Brillouin zone.
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(a) (b)

(c) (d)

Figure H.3: (a) Local spin structure factor, (b) neutron scattering amplitude in NSF
channel, (c) NSA in SF channel, (d) total neutron scattering amplitude of π-(011)
plotted in the [qx,y, qx,y, qz] plane for θ = 45◦. The black dashed line shows the
boundary of the extended Brillouin zone.
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