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Abstract

A major challenge for studies of strongly interacting systems is the computation of dy-
namical correlators as a function of real frequencies (as opposed to imaginary frequencies,
requiring analytical continuation). One strategy for achieving this goal is the multiloop
functional Renormalization Group (mfRG) [1, 2], formulated within the real-frequency
Keldysh formalism. mfRG is a generalization of standard 1-loop fRG, a popular RG scheme
which has been applied to a wide range of interacting condensed matter systems. mfRG
overcomes numerous technical limitations of 1-loop fRG, but has so far been employed only
in the imaginary-frequency Matsubara formalism [3, 4].

In this work we perform the first real-frequency mfRG calculations of the full real-
frequency dependence of the four-point vertex of the single-impurity Anderson model
(SIAM). This model has trivial position or momentum dependence, allowing us to develop
the methodology necessary for a detailed treatment of the frequency dependence of the self-
energy and four-point vertex. The main technical challenge was to write a Keldysh-mfRG
code capable of accurately and efficiently track the evolution of this frequency dependence
during the RG flow.

We make use of the frequency parametrization and diagrammatic decomposition of the
vertex of Ref. [5] to be able to reduce the four-point vertex to its independent components.
We present results for the conventional fRG using only the K1 class of diagrams, for the
static-feedback approximation as used in Ref. [6] and for flows with the K2 class of diagrams
up to 2-loop order. As these are only preliminary results, we do not include the K3 class.

We implement a hybridization flow for the SIAM. For it, we are able to stably reach
interaction strengths of U/∆ = 5.6 (U/Γ = 2.8) for all kinds of flows. Results agree well
with those provided by NRG, our benchmark method. We see an improvement in the
fulfillment of Ward identities and the solution of the equations of the parquet formalism.

Our method allows us to flexibly perform both equilibrium and non-equilibrium calcu-
lations at essentially no extra expense. We hence present results for variable bias voltages.
We also explore the behavior of the model at different temperatures. Our work extends
that of Ref. [7], which had studied the SIAM with standard 1-loop fRG in the Keldysh
formalism. We elucidate the effect of and necessity for including higher loop orders. Our
work sets the stage for future Keldysh-mfRG studies of richer models, involving nontrivial
behavior as functions of both frequency and momentum.
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Chapter 1

Introduction

Strongly correlated systems in condensed matter physics are of very high interest due to
the diverse behaviors they show. Electron-electron interactions give rise to a zoo of dif-
ferent systems with a plethora of characteristics as are magnetically frustrated systems,
topological phases, spin liquids, superconducting systems and many-body localized states.
Of particular interest in the field is the calculation of dynamical quantities, like the ex-
citation spectrum or the dynamical susceptibility of a given system, as functions of real
frequencies.

A popular tool for tackling interacting systems is the functional renormalization group
[8, 9, 10]. This is a widely used renormalization scheme with some technical advantages over
less mathematically formal methods as e.g. the Wilsonian method [11, 12]. The violation
of regulator independence and of conservation laws are however some major setbacks of
this method. The newly developed multiloop functional renormalization group [1, 2],
overcomes these two issues, which makes it an attractive tool to study and the main focus
of the present work.

Many of the modern techniques are based on the Matsubara formalism, a very powerful
tool to describe systems in thermodynamic equilibrium. However, the usage of this formal-
ism poses a very fundamental problem with the analytic continuation of the imaginary-time
functions to real-time dynamical quantities, as this is an ill-defined numerical problem.
This means it cannot be used to treat systems outside of the very special case of ther-
modynamic equilibrium. In contrast, the Keldysh formalism [13, 14] is formulated on a
real-time contour, which offers a way to overcome this problem of analytical continuation,
while simultaneously providing a framework for equilibrium and non-equilibrium calcula-
tions alike.

In this work, we seek to study the applicability of the multiloop functional renormaliza-
tion group within the Keldysh formalism. For this purpose, we choose to study Anderson’s
single-impurity model [15], which has been thoroughly studied before [12, 16, 17, 18].
This allows us to have a perfect testing ground for our method, as there are tools readily
available for benchmarking.

We begin this work with a review and recap of the relevant theoretical tools needed to
fulfill our goal. This includes a thorough revision of the functional renormalization group
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as well as an introduction to the Keldysh formalism. We also show how the conventional
fRG can be expanded into a more consistent version of it, the mutliloop functional renor-
malization group (mfRG), following Refs. [1] and [19]. We then continue to explain how
these two methods can be merged together into a coherent Keldysh mfRG framework, that
we use to study the SIAM.

After the theoretical tools have been presented, we dedicate a major part of this work to
the study of the internal structure of the vertex function. We present a thorough analysis
of the internal symmetries this object possesses, as well as the interplay these have on
the different decompositions that can be readily done with the vertex. These include a
decomposition into interaction channels [1, 2, 5, 7, 20] as well as an asymptotic treatment
of the real frequency dependence, based mainly on Ref. [5].

To actually test the capabilities of the mfRG, we implement a C++ code to carry out
the numerical computations. We give details and caveats on the implementation of our
code in Chapter 4. We also present a summarized “recipe” for it in Appendix B. We also
present consistency checks that can be implemented either as unit or inclusion tests during
the implementation or safety checks to be checked at runtime.

We finalize this work with the presentation and subsequent analysis of the results our
code is currently able to produce. We pay special attention to the fulfillment of parquet
equations and adherence to conditions imposed by fundamental physical constraints like
causality and the fluctuation-dissipation theorem, and agreement of our results with the
theory. We present results for equilibrium and non-equilibrium calculations.



Chapter 2

Theoretical background

In the present Chapter, we present the two main theoretical tools for the present work, the
multiloop functional renormalization group and the Keldysh formalism, and then a way
in which one can combine them for the computational study of non-equilibrium systems.
We first give a brief introduction to the physical system studied in this thesis, the single-
impurity Anderson model, which has the advantage of being made up of simple components,
yet it shows rich physics. It has been thoroughly studied and is well understood and
is therefore a perfect tool for benchmarking the development of a new, potentially very
successful and widely-applicable method.

2.1 The single-impurity Anderson model

The study of the transport properties of physical systems has been of interest for quite a
long time. Of late, particular attention has gone into mesoscopic systems, which show no-
toriously diverse physics for the relatively simple components they are made of. A typical
set-up for these systems consist of a confined region of nano-scale which is generally coupled
to several macroscopic conducting leads as in quantum dots, quantum wires or quantum
point contacts. Due to the smallness of the confined region, a quantum-mechanical de-
scription of the system is needed. Furthermore, the transport characteristics of these kinds
of systems are heavily affected by interactions, be it of Coulomb type between electrons,
electron-phonon scattering or spin-orbit coupling. We focus on the first one, specializing
it directly to the case of two metallic reservoirs and a single-electron level, called dot, in
the confined region. This is the single-impurity Anderson model [15].

The Hailtonian describing this system is [6]

H = H
(0)
dot + Vdot +

∑
r=L,R

H(r)
res +

∑
r=L,R

H(r)
coup (2.1)
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with

H
(0)
dot =

∑
σ

(
eVg − σB −

U

2

)
d†σdσ

Vdot = Ud†↑d↑d
†
↓d↓

H(r)
res =

∑
σ

∫
dkrεkra

†
krσ
akrσ

H(r)
coup =

∑
σ

∫
dkr

(
tkrd

†
σakrσ + h.c.

)
(2.2)

In these equations σ = ±1
2

denotes the spin of the single-particle states of the impurity,

d
(†)
σ annihilate (create) a particle in the impurity site, a

(†)
kr,σ

create (annihilate) states in the
reservoirs, labeled by r = L, R for “left” and “right”. The on-site energy is denoted by U .

Figure 2.1: Sketch of the model with single-particle energy in the vertical direction. Taken
from [6].

The single-particle energies of the dot,

εσ = eVg − σB − U/2 (2.3)

which depend on the bias voltage Vg between the two leads and the magnetic fieldB through
the dot, have been shifted by −(U/2) so that the particle-hole symmetric case is reached
when eVg = µ, with µ being the chemical potential. In this thesis we are only interested in
conductive transport and thus assume that the temperature of both reservoirs is the same
TR = TL = T . We also set B = 0 throughout. Since we only study the transport properties
through the dot, we also gross over the band structure and the interaction details of the
reservoirs and make use of the wide band limit. We further take both lead-couplings t

(r)
kr

to be independent of kr. Thus, the hybridizations,

Γ(r) = 2π
|t(r)|2
vr

, r = L, R , (2.4)
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do not depend on spin. We also assume symmetric coupling ΓL = ΓR, which simplifies
calculations. Finally, the total hybridization is defined as

Γ = ΓL + ΓR (2.5)

in accordance with [6].
This concludes the brief introduction of the model we will be looking at. Now, we

present the first of our main theoretical tools to tackle it: the multiloop functional renor-
malization group.

2.2 The multiloop functional renormalization group

The analytic description of interacting systems has been a long sought-after goal in theoret-
ical physics. Not only restricted to the field of condensed matter physics but also including
the areas of high-energy physics, statistical physics and even cosmology, renormalization
is currently the best tool we have for trying to better understand these kinds of systems.
More than a theory, the renormalization group has become a meta-theory, a set of concepts
and methods that can be used to understand phenomena through all of physics. In the
context of solid state theory, the functional renormalization group (fRG) is a very popular
tool, which builds up on Wilson’s idea and mathematically formalizes its implementation.
However, the applicability of this scheme is not restricted to only this area. The present
section of this work is dedicated to presenting the basics of the fRG, discussing some of its
shortcomings and giving a quick introduction to the newly developed multiloop version of
it [1, 2, 19]. We assume the reader has a good understanding of field theoretical as well as
of functional methods.

2.2.1 The functional renormalization group

As noted above, the functional renormalization group is based upon the Wilsonian idea
of renormalization, which is, in essence, a controlled, step-wise elimination of the faster
modes of a system. The way in which this is rigorously achieved is through the inclusion
of a functional dependency on an arbitrary energy scale Λ, so that the interacting theory
is effectively free at Λ→∞ and the full theory is recovered at Λ→ 0. Then one uses the
functional representation of generating functionals to obtain exact differential equations in
Λ, which then one can hope to solve. The initial condition at Λ → ∞ is the analytically
known set of bare quantities describing the system. Then, the flow according to the ODEs
in Λ yields the full characterization of the interacting system.

The functional dependency on Λ is achieved through the inclusion of a regulator in the
bare propagator, G0, of the free theory,

G0 → GΛ
0 . (2.6)

The regulator must be included so that GΛ
0 vanishes as Λ → ∞ and is fully restored as

Λ → 0. The idea is that modes of scale smaller than Λ are frozen, not yet integrated
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out. The choice of regulator in Eq. (2.6) is completely arbitrary, as long as the boundary
conditions

GΛ
0 ∼

{
G0 for Λ→ 0 ,

0 for Λ→∞ ,
(2.7)

are fulfilled. The easiest way to implement this would be with a multiplicative step-
function θ(|ω| − Λ), but this is not the only possibility. Due to analytic considerations it
may sometimes be better to opt for a different regulator with nicer analytical properties
and which does not generate discontinuities. The best approach depends strongly on the
physical system at hand.

Once G0 is replaced by GΛ
0 , every object in the theory automatically inherits a Λ-

dependency. To see this, let us study a general interacting system, whose action S[ψ̄, ψ] =
S0[ψ̄, ψ] + S1[ψ̄, ψ] is composed of a free (S0) and an interacting part (S1). With the
inclusion of the regulator, the action becomes

S0 → SΛ
0 = −1

2

∫
α

∫
α′
ψα

[(
GΛ

0

)−1
]
αα′

ψα , (2.8)

where we use the super-index and super-field notation introduced in [11]. Thus α is a
multi-index, encoding type of field, energy, momentum, spin and whatever other label or
quantum number is necessary and

∫
α

stands for an integration over the continuous variables
and a sum over the discrete indices.

Equation (2.6) has no effect on S1, since G0 never appears in those terms of the action.
Hence, for any expectation value calculation of the form

〈Ô〉0 =

∫
D[ψ̄, ψ]e−S0[ψ̄,ψ]Ô∫
D[ψ̄, ψ]e−S0[ψ̄,ψ]

→ 〈ÔΛ〉0 =

∫
D[ψ̄, ψ]e−S

Λ
0 [ψ̄,ψ]Ô∫

D[ψ̄, ψ]e−S
Λ
0 [ψ̄,ψ]

, (2.9)

i.e. the expectation values of operators become Λ-dependent, and this dependency comes
exclusively from the inclusion of the regulator. Now, the kinds of objects we are interested
in are one- and two-particle irreducible n-particle vertices (1PI and 2PI, respectively),
which can be obtained through functional derivatives of the action. These objects then
inherit this Λ-dependency only through the inclusion of the regulator. This implies that the
vertices, to all orders, become Λ dependent. The derivation of these equations is textbook
material, see Chapter 7 of reference [11].

The most important result of this derivation for our purposes is the flow equations of
the n-particle vertices Γ(n), whose exact form is however irrelevant for us. What interests
us is that these are an infinite hierarchy of coupled integro-differential equations, which
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can be schematically represented as

Γ̇(2) = f2

(
Γ(4)
)

(2.10a)

Γ̇(4) = f4

(
Γ(4),Γ(6)

)
(2.10b)

Γ̇(6) = f6

(
Γ(4),Γ(6),Γ(8)

)
(2.10c)

...

Γ̇(n) = fn
(
Γ(4), . . . ,Γ(n),Γ(n+2)

)
(2.10d)

Here, Γ(n) := ∂Λ[Γ(n)]Λ. Eq. (2.10) is particular for a fermionic system with a two-body
interaction with fermionic statistics exclusively. These kinds of models automatically have
zero interaction vertices for an odd number of particles, since these kinds of interactions
would violate conservation rules. The hierarchy presented in Eq. (2.10) constitutes an
intractably complicated set of equations for the fi’s. Furthermore the exact form the fi’s
take depends on what regulator is chosen.

Flow equations for a two-fermion interaction

For fermions with spin, the interaction part of the action is SU(2)-spin invariant. Thus, it
must take the form [11]

S1[ψ̄, ψ] =
1

(2!)2

∫
K′σ′1

∫
K′2σ

′
2

∫
K1σ1

∫
K2σ2

δK′1+K′2,K1+K2

× Γ(4) (K ′1σ
′
1, K

′
2σ
′
2;K1σ1, K2σ2) ψ̄K′1σ′1ψ̄K′2σ′2ψK1σ1ψK2σ2 ,

(2.11)

where (Kσ) has replaced α as a multi-index, now particularly standing for energy, momen-

tum and spin to be able to write momentum conservation explicitly, and Γ
(4)
0 is antisym-

metric with respect to the exchange of its first two and its second two labels.

The flow equations for the vertices are presented next. The first one we consider is the
two-point vertex Γ(2)(Kσ,Kσ) ≡ Σ(Kσ). Starting from now, we will refer to the two-point
vertex as the self-energy. Its RG-flow equation is

∂ΛΣΛ(Kσ) = −
∫
K′σ′

SΛ (K ′σ′)
[
Γ(4)
]Λ

(Kσ,K ′σ;K ′σ′, Kσ) (2.12)

where SΛ = ∂ΛG
Λ
∣∣
ΣΛ=const

is the single-scale propagator.
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The respective equation for the four-point vertex Γ(6) is

∂Λ

[
Γ(4)
]Λ

(K ′1σ
′
1, K

′
2σ
′
2;K1σ1, K2σ2) =

∫
K

∑
σ

ĠΛ(Kσ)
[
Γ(6)
]Λ

(K ′1σ
′
1, K

′
2σ
′
2, Kσ;Kσ,K1σ1, K2σ2)

+

∫
K

∑
σσ′

ĠΛ(Kσ)GΛ (K2 +K1 −Kσ′)

×
[
Γ(4)
]Λ

(K ′1σ
′
1, K

′
2σ
′
2;K2 +K1 −Kσ′, Kσ)

[
Γ(4)
]Λ

(Kσ,K2 +K1 −Kσ′;K1σ1, K2σ2)

−
∫
K

∑
σσ′

[
ĠΛ(Kσ)GΛ (K +K2 −K ′1σ′) +G′(Kσ)Ġ′ (K +K2 −K ′1σ′)

]
×
[
Γ(4)
]Λ

(K ′1σ
′
1, K +K2 −K ′1σ′;Kσ,K2σ2)

[
Γ(4)
]Λ

(K ′2σ
′
2, Kσ;K +K2 −K ′1σ′, K1σ1)

+

∫
K

∑
σσ′

[
ĠΛ(Kσ)GΛ (K +K1 −K ′1σ′) +G′(Kσ)Ġ′ (K +K1 −K ′1σ′)

]
×
[
Γ(4)
]Λ

(K ′1σ
′
1, K +K1 −K ′1σ′;Kσ,K1σ1)

[
Γ(4)
]Λ

(K ′2σ
′
2, Kσ,K +K1 −K ′1σ′, K2σ2)

(2.13)

Figure 2.2: Graphical representation of Eq. (2.13). In Eq. (2.13) we already assume a fully
fermionic theory, thus setting ζ = −1.

In Eq. (2.13) ĠΛ = ∂ΛG
Λ = SΛ+GΛ·Σ̇Λ·GΛ, where the second term is commonly named

the Katanin extension [1, 21]. This equation is much more complicated than Eq. (2.12).
This trend would continue with increasing n, with more and more combinations of lower
order vertices contributing to the overall result.

The Γ(6) term in Eq. (2.13) can be neglected as long as Λ & Λ6, where Λ6 is the scale at
which the contributions of the Γ(6) vertex become important. A common approximation
to solve Eq. (2.13) is then to set Γ(6) = 0, which implies that Λ6 = 0. This translates to
saying that at no scale is Γ(6) ever important. Since Λ6 > Λn for all n ≥ 6, this assumption
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implies that all higher order vertices are also set to zero, which effectively truncates the
infinite hierarchy and yields a two-equation system for the self-energy and the four-point
vertex. In this case one must only solve these two coupled equations, which is still a task
easier said than done.

Now we take a closer look at Eqs. (2.12) and (2.13). First, notice that the propaga-
tor that appears in both equations is GΛ and not GΛ

0 . This means that, indirectly, the
derivatives of both quantities depend on both the self-energy and the four-point vertex
itself, i.e. both equations depend on both quantities. Also, by just looking at the momenta
combinations of Eq. (2.13) and the way these can be represented graphically (see Fig. 2.2),
it is clear that the vertex can be decomposed and studied in interaction channels, based
on the reducibility of the diagrams and the natural frequency-momenta combinations that
appear. These aspects will be discussed in more depth later on, since these also affect the
way in which the vertex is computed numerically. Hence, we continue with a discussion of
the shortcomings of the fRG, particularly in the case of the truncated hierarchy we present
here.

Shortcomings of the fRG

In the derivation of Eqs. (2.12) and (2.13) two major assumptions come into play. The first
one is that the interactions are fairly weak. The use of Eq. (2.9) in a numerical calculation
implies the utilization of a series in the coupling constant or, effectively, on the interaction
strength U . As usual with a diagrammatic method resulting in a series expansion in
the interaction strength, the convergence of said series depends on the weakness of the
characteristic interaction strength U compared to the other energy scales of the system.
This is a subtle point to keep in mind, because it implies that no matter how much effort
one puts into a numeric fRG-calculation, the method will remain perturbative, even if the
fRG is not, in itself, perturbative. Notably, fRG is much better than regular perturbation
theory, since in the flow it implicitly generates and adds diagrams to infinite order in U .

The second aspect to take into account is the assumption Γ(6) → 0. Though the
assumption may seem very reasonable for weak interactions, one must be careful with the
ramifications it has. Therefore, we recall the infinite hierarchy presented schematically in
Eq. (2.10). Here, all fi are exact derivatives, meaning that, together with a set of initial
conditions for the values of the n-particle vertices at Λ → ∞, a simultaneous integration
yields the exact solution. The truncation of the hierarchy that arises by setting Γ(6) = 0
throughout the flow breaks the full-derivative structure of f4. This means that the flow
of the vertex with the truncated f̃4 6= f4 deviates from the exact solution [22]. This leads
to the breaking down of fundamental, one-particle conservation laws and the violation
of Ward identities. Noticeably, although f4 is affected by this assumption directly, the
functional form of f2 remains unaltered. Thus, since the flow according to f̃4 yields a
truncated version of the four-point vertex, f2 must be corrected to compensate for the
non-exact objects used as arguments. Notice that f4 depends explicitly only on Γ(4) and
Γ(6). Hence, a silver lining appears: if somehow the contributions of Γ(6) could be mimicked,
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the truncated system of equations (i.e. only f2 and f4) could more closely resemble the
exact problem.

Another point in which the fRG fails is in regulator independence. As noted above,
there is complete freedom in choosing the regulator, as long as it fulfills the required
boundary conditions at Λ→∞ and Λ→ 0 and cuts off the right modes in its flow towards
0. Since the form the fi’s take in Eq. (2.10) depend on the choice of regulator, the resulting
flow is different for every choice. However, since there need not be physical information
in the regulator (it is a mathematical aid to formally integrate out modes in a controlled
manner), the predictions delivered by the flow should not depend on its choice. The fact
that in this scheme they do is a major limitation of the fRG.

Because of these shortcomings of the functional renormalization group is that the mul-
tiloop functional renormalization group (mfRG) was developed. It deals with and improves
on the problems mentioned here. To begin our discussion of the mfRG, we first turn our
attention to the parquet formalism, since the mfRG is based on it.

2.2.2 The parquet formalism

A fundamental part of the multiloop fRG (mfRG) is that it is formulated on the parquet
formalism, which is a series of equations to break up the four-point vertex and exploit the
natural decomposition that is depicted in Fig. 2.2. Here we follow the conventions of [1]:

• Labels regarding quantum numbers, momentum or energy dependencies are summa-
rized in multi-indices, noted as sub-indices.

• The super-index Λ indicates a scale-dependent quantity. The index may be omitted
when there is no risk of confusion.

• A derivative with respect to Λ is denoted by a dot: ẊΛ := ∂ΛX
Λ.

• The two-point vertex is denoted by ΣΛ and is referred to as the self-energy.

• The four-point vertex is denoted by ΓΛ and is referred to as the vertex.

• The bare four-point vertex is denoted by Γ0, is antisymmetric in its first and last two
arguments, and has trivial momentum and frequency dependence.

• The strength of the interaction is given by U .
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• Propagators G and bubbles Π (introduced and defined below) carry primed indices
in the incoming legs and unprimed in the outgoing ones.

• Vertices (e.g. Γ and Σ) carry unprimed indices in the incoming legs and primed
indices in the outgoing ones.

As noted in [1], the parquet formalism yields a decomposition of the vertex into an-
tiparallel (a), parallel (p) and transverse (t) reducible diagrams. This turns out to be
exclusive, with no diagram possibly being in two different categories, yet not exhaustive,
with there also existing completely irreducible contributions. The term reducibility here
makes reference to the specific case of two-particle reducibility of a diagram: a 2-PR dia-
gram is one that becomes disconnected after snipping two propagator lines. The names of
the decomposition channels come from the way the propagator lines that need to be cut to
render the diagram disconnected lie with respect to one another, as illustrated in Fig. 2.4.
Thus, the equation for the full vertex Γ can be written as

Γ = R +
∑

r∈{a,p,t}

γr , (2.14)

where R stands for the completely irreducible part of the vertex (see Fig. 2.3) and γr
for the 2-PR part of the vertex in channel r. Some other common nomenclatures for the
channels a, p and t include, respectively, x, p, d, standing for exchange, pairing and direct,
common in high energy physics contexts, and ph, pp and p̄h for (longitudinal) particle-hole,
particle-particle, and transverse particle-hole, mostly used within the condensed matter
community. The physical reason behind this decomposition is the fact that each one of
these processes describes a different kind of scattering process (more notorious in the ph,
pp, p̄h nomenclature). This channel analysis yields a way for analyzing leading scattering
processes in a model, as one channel may present a singularity where the other ones do not,
signaling an instability driven solely by interactions through the corresponding channel.

Figure 2.3: Diagrammatic representation of the irreducible vertex. Notice that R − Γ0 =
O(U4).

Now, since a diagram can only be reducible in one channel, all diagrams irreducible
in a particular channel r can be bunched together into an irreducible vertex Ir in that
particular channel:

Ir = R +
∑
r′ 6=r

γr′ . (2.15)

This definition allows for an important way to calculate γr, namely

γr = Ir ◦ Π ◦ Γ (2.16)
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or, written out explicitly,

[γa]x1′ ,x2′ |x1,x2
=

∑
y1′ ,y1,y2′ ,y2

[Ia]x1′ ,y2′ |y1,x2

(
Gy1|y1′

Gy2|y2′

)︸ ︷︷ ︸
[Πa]y1y2|y1′y2′

Γy1′ ,x2′ |x1,y2 (2.17a)

[γp]x1′ ,x2′ ,|x1,x2
=

∑
y1′ ,y1,y2′ ,y2

[Ip]x1,x2|y1,y2

(
1

2
Gy1|y1′

Gy2|y2′

)
︸ ︷︷ ︸

[Πp]y1y2|y1′y2′

Γy1′ ,y2′ |x1,x2 and (2.17b)

[γt]x1′ ,x2′ |x1,x2
=

∑
y1′ ,y1,y2′ ,y2

[It]y1′ ,x2′ |y1,x2

(
−Gy2|y1′

Gy1|y2′

)︸ ︷︷ ︸
[Πt]y1y2|y1′y2′

Γx1′ ,y2′ |x1,y2 (2.17c)

These are known as the Bethe–Salpeter equations. These relate the irreducible vertices
to the reducible ones in a self-consistent way. Eq. (2.17) sees also the definition of a
propagator-like object, which we call a bubble (Πr in channel r). More than being a pair
of propagators, it is the way these connect to the vertices which make them useful.

Figure 2.4: Bethe–Salpeter equations in the three two-particle channels. Taken directly
from [1].

Abstracting the structure of Eqs. (2.16) and (2.17) allows us to define the bubble
functions Br as follows [1]

Br (Γ,Γ′) = Γ ◦ Πr ◦ Γ′ = Γ ◦ (G ◦G) ◦ Γ′ (2.18)

and, written out explicitly for every channel,

Ba (Γ,Γ′)x1′ ,x2′ |x1,x2
=

∑
y1′ ,y1,y2′ ,y2

Γx1′ ,y2′ |y1,x2

(
Gy1|y1′

Gy2|y2′

)︸ ︷︷ ︸
[Πa]y1y2|y1′y2′

Γ′y1′ ,x2′ |x1,y2
, (2.19a)

Bp (Γ,Γ′)x1′ ,x2′ |x1,x2
=

∑
y1′ ,y1,y2′ ,y2

Γx1′ ,x2′ |y1,y2

(
1

2
Gy1|y1′

Gy2|y2′

)
︸ ︷︷ ︸

[Πp]y1y2|y1′y2′

Γ′y1′ ,y2′ |x1,x2
and (2.19b)

Bt (Γ,Γ′)x1′ ,x2′ |x1,x2
=

∑
y1′ ,y1,y2′ ,y2

Γy1′ ,x2′ |y1,x2

(
−Gy2|y1′

Gy1|y2′

)︸ ︷︷ ︸
[Πt]y1y2|y1′y2′

Γ′x1′ ,y2′ |x1,y2
. (2.19c)
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Notice the difference between the indices of Πt with respect to those of Πa and Πp.
Thus, Eq. (2.16) can be written as

γr = Br (Ir,Γ) . (2.20)

A fact we will not prove here is that γr = Br (Ir,Γ) = Br (Γ, Ir).
The calculation of the Bethe–Salpeter equations requires dressed propagators. Thus,

the self-energy must also be determined, which can be self-consistently done according to
the Schwinger–Dyson equation

Σ = L (Γ0, G) + L [Bp (Γ0,Γ) , G]

= L (Γ0, G) +
1

2
L [Ba (Γ0,Γ) , G] ,

(2.21)

where we have made use of the loop function

L(Γ, G)x′,x = −
∑
y′,y

Γx′,y′|x,yGy|y′ (2.22)

and both formulations in Eq. (2.21) are completely equivalent.

Figure 2.5: Schwinger–Dyson equation for the self-energy. Notice how one can think
equivalently of the lines joinig the bare and the full vertices on the right as loop over an a
or a p bubble.

This completes the set of, in total, 10 objects that the parquet formalism works with:
the full vertex Γ, the completely irreducible part of it R, the three irreducible parts Ir, the
three reducible parts γr, the self-energy Σ and the propagator G. As such, this system of
equations only requires the input of the totally irreducible part of the vertex. Hence, we
here introduce the first approximation we need within the parquet formalism.

The parquet approximation The parquet approximation (PA) corresponds to setting
the irreducible part R = Γ0, incurring in an error O(U4). This approach is hence intrin-
sically perturbative and can be expected to break down for large values of the interaction
strength.

Including multi-indices, Eq. (2.14) becomes

Γx1′ ,x2′ |x1,x2 = [Γ0]x1′ ,x2′ |x1,x2
+ [γa]x1′ ,x2′ |x1,x2

+ [γp]x1′ ,x2′ |x1,x2
+ [γt]x1′ ,x2′ |x1,x2

(2.23)

where we include a set of multi-indices for the bare vertex since it may have spin and
other kinds of structure. This approximation allows us to, effectively, need no physical
input other than the bare vertex to solve the equations of the parquet formalism. The
irreducible part of the vertex cannot be determined within the parquet formalism alone.
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The flow equations of the mfRG

We now return to the main idea of the fRG, namely the derivation of differential equations
for the self-energy and the vertex in the infrared cutoff Λ, and combine it with the equations
of the parquet formalism under the PA. Having analytic expressions for both the vertex
and the self-energy, we begin by differentiating the former and including a diagrammatic
classification in the number of loops present in a diagram (loops here is to be understood in
the sense of nested integrals and not simply in the presence of two propagator lines joining
two vertices).

∂ΛΓ =
∑
r

∂Λγr, ∂Λγr =
∑
`≥1

γ̇(`)
r , γ̇

(`)
r̄ =

∑
r′ 6=r

γ̇
(`)
r′ (2.24)

Here, γ̇
(`)
r contains differentiated diagrams reducible in channel r, with ` nested loops.

Notice that the nested loops can be constructed iteratively by the inclusion of lower loop-
order diagrams into ones of higher order, in a channel-mixing fashion.

The multiloop recursive relations are [1]

γ̇(1)
r = Ḃr(Γ,Γ) , (2.25a)

γ̇(2)
r = Br

(
γ̇

(1)
r̄ ,Γ

)
+Br

(
Γ, γ̇

(1)
r̄

)
, (2.25b)

γ̇(`+2)
r = Br

(
γ̇

(`+1)
r̄ ,Γ

)
+ γ̇

(`+2)
r,C +Br

(
Γ, γ̇

(`+1)
r̄

)
, (2.25c)

γ̇
(`+2)
r,C = Br

[
Γ, Br

(
γ̇

(`)
r̄ ,Γ

)]
= Br

[
Br

(
Γ, γ̇

(`)
r̄

)
,Γ
]
. (2.25d)

Here, Ḃr (Γ,Γ′) = ∂ΛBr (Γ,Γ′) ≡ [Γ ◦ ∂Λ(G ◦G) ◦ Γ′] corresponds to the derivative of the
bubble function, defined in Eq. (2.19), taking the vertices as Λ-independent. To fully
characterize them, we need to study the derivatives of GΛ with respect to Λ. The single-
scale propagator fulfills

SΛ ≡ ∂ΛG
Λ
|Σ=const =

(
1 +GΛ · ΣΛ

)
·
(
∂ΛG

Λ
0

)
·
(
ΣΛ ·GA + 1

)
. (2.26)

Thus,
∂ΛG

Λ = SΛ +GΛ ·
(
∂ΛΣΛ

)
·GΛ (2.27)

includes the corrections originating from vertex diagrams containing differentiated self-
energy contributions [21]. Ġ can be inserted into Eq. (2.25a) to get a flow which includes
these corrections. Another possibility is calculating Eq. (2.25a) with ∂Λ

(
GΛGΛ

)
≈ SΛGΛ+

GΛSΛ, which is computationally cheaper.
We point out that the conventional fRG scheme in the parquet formalism corresponds

to the truncation of the recursive relations presented above at first order, i.e. Eqs. (2.25b)
through (2.25d) are simply not present. This absence prevents contributions of different
channels from mixing and, thus, yields results which show a bias towards ladder diagrams.
The mfRG improves on this by the recursive inclusion of nested loop integrals from different
channels, thus yielding a complete computation of the diagrams, which in one-loop fRG
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are computed only partially. This removes the bias which fRG has towards certain kinds
of processes. The multiloop terms effectively simulate contributions of the higher-order
vertex Γ(6), which help improve on restoring the full derivative structure of the right hand
side of the flow equation of the vertex. Thus, the mfRG solves the issue conventional,
one-loop fRG has with one-particle conservation laws and also solves the issue of regulator
dependence.

Figure 2.6: Multiloop flow equations for the vertex. (a) The standard, truncated, one-loop
flow, where double dashed lines stand for ∂ΛG

Λ. (b) The two-loop extension of (a). Notice
the channel mixing already occurring at this stage. Thus, 2-loop fRG already includes
diagrams that are partially computed in a standard fRG-flow. (c) Higher-loop corrections
starting from ` + 2 = 3, which include the extra contributions (the central part) where
vertices from the complementary channels are connected by two bubbles. Taken directly
from [1].

The fact that the flow of Γ is improved also means that the flow of the self-energy is
improved, though there are also some caveats to pay attention to. The flow equation for
the self-energy, Eq. (2.12), rewritten making use of the functions defined above, is

Σ̇Λ = L̇(Γ, G) = L(Γ, S) , (2.28)

i.e. making a closed loop over a vertex with a single-scale propagator.
If the vertex inserted into Eq. (2.28) was the exact, full vertex, with no truncations,

the relation would be exact. However, if a vertex Γ̃ obtained from a truncated vertex flow
is inserted into Eq. (2.28), it generates diagrams that are only partially differentiated and
L(Γ̃, S) does not yet form a full derivative. Thus, some multiloop corrections must be
added to the self-energy flow to complete the derivative. These come from each one of the
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channels, where the t channel must be handled in a slightly different way due to the way
the propagator lines connect in the self-energy calculation. We therefore define first

γ̇t,C =
∑
l≥1

(
γ̇

(l)
a,C + γ̇

(l)
p,C

)
(2.29)

and divide the flow equation of ΣΛ in three parts, namely the standard flow (Eq. (2.28),
now labeled Σstd), the t̄ corrections Σ̇t̄ and the corrections in the t channel, Σ̇t. The last
two are defined as follows

Σ̇t̄ = L (γ̇t̄,C , G) (2.30)

Σ̇t = L
(

Γ, G · Σ̇t̄ ·G
)

(2.31)

and, thus,
ΣΛ = Σ̇Λ

std + Σ̇t̄ + Σ̇t

= L(Γ, S) + L (γ̇t̄,C , G) + L
(

Γ, G · Σ̇t̄ ·G
) (2.32)

Notice that these corrections, as they include central loop terms, appear only in loop-
order ` ≥ 3.

Figure 2.7: Diagrammatic representation of the self-energy flow including the multiloop
correction terms. Taken from [1].

Much of the power of the mfRG scheme relies on the fact that the complexity of the
objects used throughout is not larger than that of the usual fRG objects. This implies that
the computational effort needed to compute an mfRG-flow increases only linearly with the
number of loops included. Compared to how the vertex’s complexity increases (something
we will discuss in depth in the following Chapter), a linear increase in computational cost
for loops is extremely good and promising for the predictive power and implementation
potential of the method. However, the mfRG does require a full parametrization of the
frequency dependence, whereas regular fRG implementations often use only rather simple
parametrizations. This concludes our discussion of the functional renormalization group
for the purposes of this work. Now we turn out attention to the second major theoretical
tool to be used in this thesis: the Keldysh formalism. Formulated on a real-time contour
instead of on an imaginary time axis, the formalism allows us to work with systems outside
of thermodynamic equilibrium by paying a price in increased complexity.
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2.3 Non-equilibrium field theory

Quantum field theoretical methods have long been proved to be some of the most versatile
in all of physics. Based on the idea of particles being described by excitations in fields,
methods of QFT have become powerful tools for describing interacting systems. In the
context of condensed matter physics, condensed matter field theory is one of the most
widely used tools for theorists. For most of this method’s history thermodynamic equilib-
rium had to be assumed, since the ground state was taken to remain essentially unchanged
or expectation values where calculated with respect to an ensemble of states in thermal
equilibrium. However, the Keldysh formalism has allowed physicists to work around the
assumption of equilibrium and describe much more general systems by formulating a field
theory on a real time contour. We assume the reader has sufficient knowledge of zero-
temperature and of equilibrium field theory and hence we move on to motivate the use of
the Keldysh formalism in this context.

2.3.1 The Keldysh formalism

The Keldysh formalism presents a way to think about the problem of calculating expec-
tation values in a many-body theory without requiring thermodynamic equilibrium or a
Wick rotation. It is a real-time tool to handle, with field-theoretical methods, much more
general systems than those that the Matsubara formalism can describe. This part of the
text is based off A. Kamenev’s book Field Theory of Non-Equilibrium Systems [14].

To start, consider a time-dependent Hamiltonian Ĥ(t) of an interacting quantum many-
body system. We assume that in the distant past t = −∞ the particles are non-interacting,
and the interaction is adiabatically turned on. Also, through external fields or boundary
conditions, the system can be driven out of equilibrium. The density matrix, with arbitrary
initial condition ρ̂(−∞), evolves according to the von Neumann equation

∂tρ̂ = −i[Ĥ(t), ρ̂(t)] . (2.33)

Together with a unitary time evolution operator Ût,t′ = T exp
(
−i
∫ t
t′
Ĥ (t′′) dt′′

)
, where

the T stands for time-ordered, one can calculate the expectation value of any operator Ô
like (recall Eq. (2.9))

〈Ô〉(t) ≡ Tr{Ôρ̂(t)}
Tr{ρ̂(t)} =

1

Tr{ρ̂(t)} Tr
{
Û−∞,tÔÛt,−∞ρ̂(−∞)

}
=

1

Tr{ρ̂(−∞)} Tr
{
Û−∞,+∞Û+∞,tÔÛt,−∞ρ̂(−∞)

} (2.34)

Equation (2.34) includes the Û−∞,+∞Û+∞,t, which means that, instead of simply evolv-
ing the system from t = −∞ until t and then returning it to t = −∞, the system is evolved
first until time t =∞ only to be brought back to t = −∞. We also make use of the trivial
Ût,+∞Û+∞,t = 1̂.
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Figure 2.8: Time contour. Notice the evolution past time t to t → ∞ to then return to
the starting time t = −∞. Taken from [14].

What is done in zero-temperature field theory, where the last time evolution is left
out, is to assume that the ground state of the free theory evolves adiabatically and, hence,
changes at most up to a phase during the whole evolution process from the time where the
theory was free (t → −∞) to the time where it becomes free again (t → ∞). The point
to be made is that, since the inclusion of the interactions is done adiabatically, no extra
change than the inclusion of a phase can be performed on the ground state of the theory
and, hence,

Û+∞,−∞|0〉 !
= e−iL|0〉 (2.35)

where |0〉 is the ground state of the free theory. Thus, the expectation value of an operator
for a zero-temperature field theory can be calculated as [14]

〈GS|Ô(t)|GS〉 =
〈

0
∣∣∣Û−∞,tÔÛt,−∞∣∣∣ 0〉 = e−iL

〈
0
∣∣∣eiLÛ−∞,tÔÛt,−∞∣∣∣ 0〉

= e−iL
〈

0
∣∣∣Û+∞,−∞Û−∞,tÔÛt,−∞

∣∣∣ 0〉 =

〈
0
∣∣∣Û+∞,tÔÛt,−∞

∣∣∣ 0〉〈
0
∣∣∣Û+∞,−∞

∣∣∣ 0〉
(2.36)

where |GS〉 stands for the ground state of the interacting theory.

In other words, one is saved the need to close the contour by the fact that one can
assume that the ground state emerges unchanged from the evolution. The argument also
stands if one replaces |0〉 by an average over a thermal ensemble of states, since this remains
closed under the time evolution. Thus, finite-temperature field theory is also limited to
boundary conditions which preserve thermodynamic equilibrium.

Time evolution outside of equilibrium may transport |0〉 to a state |0′〉 such that
|| 〈0, 0′〉 || 6= 1. However, a practical advantage that working with the closed time contour
has over the zero temperature or the equilibrium formalisms is that time evolution along the

contour ÛC = Û−∞,+∞Û+∞,−∞ yields a unit partition function Z ≡ Tr
{
Ûcρ̂(−∞)

}
/Tr{ρ̂(−∞)} =

1.

Now, since the time contour can be traversed forwards as well as backwards in time,
the Hamiltonian Ĥ(t) should be modified to include a source term Ĥ±V (t) ≡ Ĥ(t)±OV (t)
where the plus stands for the forward part of the contour and vice versa. Through the
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inclusion of V , ÛC 6= 1 and hence

Z[V ] ≡
Tr
{
ÛC[V ]ρ̂(−∞)

}
Tr{ρ̂(−∞)} (2.37)

is the non-trivial generating functional for observables, since their expectation value can
be calculated as 〈Ô(t)〉 = (i/2)δZ[V ]/δV (t)|V=0.

Propagators in the Keldysh formalism

How one comes from here to a field theoretical, path integral description is, in essence, the
standard time-slicing procedure used in the derivation of the usual path integral formulation
of field theories. However, time is now a two-way contour and one-particle operators must
include a time index, signaling in which branch of the contour they should be inserted. In
field theory language, this translates to there existing the Grassmann fields ψ± and ψ̄±

for fermionic fields or complex-valued fields φ± and φ̄± for bosonic fields, with the +-fields
being inserted on the forward part of the contour and the −-fields on the other. Since
we are interested in purely electronic systems, we will specialize the present discussion to
Grassmann fields.

As with any field theoretical method, one is interested in calculating expectations values
of the form

f (t′1, . . . , t
′
n, t1, . . . , tn) =

〈
ψ (t1) . . . ψ (tn) ψ̄ (t′1) . . . , ψ̄ (t′n)

〉
(2.38)

Including the ±-indices of the time contour yields 22n possible combinations for each
n-particle operator. In the case of the simplest one-particle operator in a single level,
non-interacting fermion system in thermal equilibrium1, one then obtains four different
possibilities, namely〈

ψ+(t)ψ̄− (t′)
〉
≡ iG< (t, t′) = −nF exp {−iε0 (t− t′)} (2.39a)〈

ψ−(t)ψ̄+ (t′)
〉
≡ iG> (t, t′) = (1− nF) exp {−iε0 (t− t′)} (2.39b)〈

ψ+(t)ψ̄+ (t′)
〉
≡ iGT (t, t′) = θ (t− t′) iG> (t, t′) + θ (t′ − t) iG< (t, t′) (2.39c)〈

ψ−(t)ψ̄− (t′)
〉
≡ iGT̃ (t, t′) = θ (t′ − t) iG> (t, t′) + θ (t− t′) iG< (t, t′) (2.39d)

These four combinations of are called, in order, lesser, greater, time-ordered and anti-
time-ordered propagator because of the kind of correlations they describe. In these equa-
tions, nF ≡ ρ (ε0) / (1 + ρ (ε0)) stands for the Fermi occupation number, ρ (ε0) = e(ε0−µ)/T ,
ε0 is the energy of the level and µ is the chemical potential with respect to which ε0 is
given.

Inspection of Eq. (2.39) yields that not all four combinations can be independent. As
a matter of fact,

GT (t, t′) +GT̃ (t, t′)−G> (t, t′)−G< (t, t′) = 0 . (2.40)

1The assumption of thermal equilibrium is needed to be able to assign a temperature to the system
and use the Fermi distribution.
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This suggests that a linear transformation in “Keldysh space” may benefit from this
relation, and this is exactly what the famed Keldysh rotation achieves. Now, at this stage
one has two possibilities when handling fermions: one can follow the not-too-widespread
Larkin–Ovchinnikov convention of transforming the bar fields differently than the non-
bared ones or transform them according to the transformation rules for bosons (remember
that ψ̄ and ψ are independent fields, but φ̄ and φ are not). The benefits of the Larkin–
Ovchinnikov transformation are that the matrix structure of the Green’s functions as well
as their inverses and that of the self-energy is equal in every case, whereas in the bosonic
case the order of the components is shifted in every case. However, since the convention of
transforming bar and regular fields in the same way is more widespread and it also applies
for bosons with no extra complication, we opt for the latter.

This means we define new fields

ψ1(t) =
1√
2

(
ψ+(t)− ψ−(t)

)
, ψ2(t) =

1√
2

(
ψ+(t) + ψ−(t)

)
ψ̄1(t) =

1√
2

(
ψ̄+(t)− ψ̄−(t)

)
, ψ̄2(t) =

1√
2

(
ψ̄+(t) + ψ̄−(t)

)
.

(2.41)

In the particular case of bosons, the indices 2 and 1 are changed with the letters c and q
respectively, which stand for classical and quantum, respectively. These names only apply
in the bosonic case, since there is no such thing as a classical fermion.

Now, the power of this transformation can be seen when arranging the components in
a propagator matrix,

〈ψ̄α(t)ψβ (t′)〉 ≡ iGα|β (t, t′) = i

(
0 G1|2 (t, t′)

G2|1 (t, t′) G2|2 (t, t′)

)
≡ i

(
0 GA (t, t′)

GR (t, t′) GK (t, t′)

)
.

(2.42)
The fact that G1|1 = 0 is a consequence of Eq. (2.40), which is interpreted as a causality

condition [14]. The superscripts R, A, and K stand for retarded, advanced and Keldysh
components of the Green’s function. These three Green functions are the fundamental
objects of the Keldysh technique. The retarded and advanced components get their name
from their causality structure, whereas the Keldysh component does not have a clear
interpretation in these terms. Notably,[

GR
]†

= GA
[
GK
]†

= −GK (2.43)

where we understand the propagators as matrices in the time domain. This means that
the Keldysh component of the propagator must be purely imaginary.

Both retarded and advanced matrices have non-zero main diagonals, meaning that
G(R/A)(t, t) 6= 0 but

GR(t, t) +GA(t, t) = 0 (2.44)

is satisfied for all t. This consideration is completely general and paramount to keep in
mind.
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For time-translation invariant systems, one may use the frequency representation of
the Green’s functions. For completeness, we state the energy-representation version of the
previous equation, which reads∫

dν

2π

(
GR(ν) +GA(ν)

)
= 0 . (2.45)

Fourier transforming the analytic expressions of Gα|β, one obtains

GR (t, t′) = −iθ (t− t′) e−iε0(t−t′) FT→ (ε− ε0 + i0)−1 (2.46a)

GA (t, t′) = iθ (t′ − t) e−iε0(t−t′) FT→ (ε− ε0 − i0)−1 (2.46b)

GK (t, t′) = −i (1− 2nF) e−iε0(t−t′) FT→ −2πi (1− 2nF) δ (ε− ε0) (2.46c)

Equation (2.46c) can be rewritten as

GK(ν) = tanh

(
ν − µ

2T

)[
GR(ν)−GA(ν)

]
(2.47)

This result is known as the fluctuation-dissipation theorem (FDT), which is a generic
feature of systems in thermal equilibrium. Thus, it provides a check for the correctness of
numerical calculations.

Until this point in this section we have considered a non-interacting system and, hence,
G0 has been equal to G the whole time and no need for distinction has been necessary.
However, since we are interested in interacting systems, we start differentiating a free
propagator (either G0 or g) from a full, dressed one denoted by G, and we specialize this
discussion to our case of study, Anderson’s single-impurity model.

Keldysh bare propagators in the single-impurity Anderson model For the case
of a model in which the single level is hybridized, as is the single-impurity Anderson
model, the frequency representation of the dot propagator is modified to include the total
hybridization Γ of the level, which comes from the interaction with the left and right
reservoirs [7]

gR(ν) =
1

ν − ε+ iΓ/2
(2.48a)

gA(ν) =
[
gR
]∗

(2.48b)

gK(ν) = [1− 2neff(ν)]
[
gR(ν)− gA(ν)

]
(2.48c)

where ΓL and ΓR are set to the same constant and Γ = ΓL+ΓR (as in Sec. 2.1), the effective

distribution of the dot is neff (ν) = ΓLnL(ν)+ΓRnR(ν)
ΓL+ΓR

, and the ones from the reservoirs are
defined as

nr(ν) =
1

e(ν−µr)/T + 1
, r = L,R (2.49)
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for respective chemical potentials µr for each reservoir. We measure the energy with
respect to the mean chemical potential, which means we set µL + µR = 0 and, although
the temperature of the reservoirs are taken to be the same, their relative bias voltage is
set by eVg = µL − µR.

It is also common to write the retarded propagators of the SIAM expressed with ∆ = Γ
2

[16]

gR(ν) =
1

ν − ε+ i∆
. (2.50)

Seemingly trivial as this point, the inclusion of ∆ will later be of great importance when
considering the mfRG solution of the model.

The self-energy and the dressed propagators in the Keldysh formalism

For interacting systems the propagators of the fields must be modified due to how the
interactions change the way the excitations of the field behave. This is accounted for by
the inclusion of the self-energy. As a one-particle object, the self-energy has two Keldysh
indices. A very non-trivial fact is that it also inherits the causality structure of G−1

0 , which
is different from that of G0

2. The causality condition G1|1 = 0 implies Σ2|2 = 0. This
yields

Σα|β =

(
Σ1|1 Σ1|2

Σ2|1 Σ2|2

)
=

(
ΣK ΣR

ΣA 0

)
. (2.51)

Indeed, similar equations as for the propagators are also fulfilled for the self-energy,
namely [

ΣR
]†

= ΣA
[
ΣK
]†

= −ΣK . (2.52)

This again provides us with a check condition, namely that the real part of Keldysh
component of the self-energy must always be zero. These properties make Eq. (2.43) apply
also for dressed propagators.

To get the equations that determine the dressed propagators, one must solve the matrix
equation (

G−1
0 − Σ

)
◦G = 1 , (2.53)

which comes from establishing a Dyson series for the dressed propagator of the inter-
acting theory. This equation implies that all the information of the dressed propagators
is contained in the self-energy and vice versa. Furthermore, the retarded and advanced
components of the self-energy are conventionally related to their respective propagators,
i.e.

GR/A(ν) =
(
ν − ε− ΣR/A(ν)± i0+

)−1
. (2.54)

The same cannot be about the Keldysh component of the dressed propagator. For it,
one finds that

GK(ν) = GR(ν)
(
ΣK(ν)

)
GA(ν) . (2.55)

2G−1
0 is the inverse matrix of G0, and not the matrix of the inverses.
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However, in thermal equilibrium, a version of the FDT applies for the Keldysh component
and

GK(ν) = tanh

(
ν − µ

2T

)[
GR(ν)−GA(ν)

]
, (2.56)

which, in turn, yields

ΣK(ν) = tanh

(
ν − µ

2T

)[
ΣR(ν)− ΣA(ν)

]
. (2.57)

Dressed propagators in the single-impurity Anderson model For the particular
case of the single-impurity Anderson model, the regulator i0+ is naturally replaced by one
half of the level’s hybridization. Hence, one has

GR/A(ν) =

(
ν − ε− ΣR/A(ν)± iΓ

2

)−1

=
(
ν − ε− ΣR/A(ν)± i∆

)−1
. (2.58)

For the Keldysh propagator the inclusion of an extra term modifying ΣK is also neces-
sary, yielding

GK(ν) = GR(ν)
(
ΣK(ν)− iΓ

)
GA(ν) = GR(ν)

(
ΣK(ν)− 2i∆

)
GA(ν) . (2.59)

Vertices in the Keldysh formalism

In the present work, motivated by the fRG-truncation of the infinite hierarchy of irreducible
vertices, we only focus on how these two are treated in the Keldysh formalism. Clearly, a
consistent treatment can be given to more complex objects within this formalism, but this
is outside of the scope and need of this work.

The vertices are, in essence, objects of the form[
G(4)

]α1′α2′ |α1α2 ∼
〈
ψ̄α1ψ̄α2ψα1′ψα2′

〉
(2.60)

whose exact derivation is done by diagrammatic methods and is left to the books. The
appearance of a Keldysh index αi ∈ {1, 2} for every one of the four field operators raises
the number of Keldysh components to a total of 16. In this case and, in general for all
vertices,

G1...|...1 ⇒ Γ2...|...2 = 0 , (2.61)

a generalization of Eq. (2.40).
Much of the complexity of the Keldysh formalism in this thesis has to do with dealing

with Γ(4) ≡ Γ. No general simplification other than that given by Eq. (2.61) can be said in
general about any component of the vertex. Furthermore, the components themselves do
not possess a clear analytical structure that can be identified with concepts like retarded
or advanced, though progress is rapidly being done in our group in understanding the
causality structure of these components. The analytic examination of this object is a topic
of current research.
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Numbering of the components To be able to refer to the components of the vertex
Γα1′α2′ |α1α2 in a more concrete way, we convert the indices α1′α2′ | α1α2 to numbers in the
set N := {0, 1, . . . , 15} according to the following scheme

Γ11|11 ←→ Γ0 Γ21|11 ←→ Γ8

Γ11|12 ←→ Γ1 Γ21|12 ←→ Γ9

Γ11|21 ←→ Γ2 Γ21|21 ←→ Γ10

Γ11|22 ←→ Γ3 Γ21|22 ←→ Γ11

Γ12|11 ←→ Γ4 Γ22|11 ←→ Γ12

Γ12|12 ←→ Γ5 Γ22|12 ←→ Γ13

Γ12|21 ←→ Γ6 Γ22|21 ←→ Γ14

Γ12|22 ←→ Γ7 Γ22|22 ←→ Γ15 = 0

(2.62)

This allows us to refer to the components in the matrix as, e.g. “the 7th component”, where
now it is unambiguously clear that the element referred to is Γ12|22.

The correspondence is implemented by the formula

iN = 23 (α1′ − 1) + 22 (α2′ − 1) + 21 (α1 − 1) + 20 (α2 − 1)

= 8 (α1′ − 1) + 4 (α2′ − 1) + 2 (α1 − 1) + (α2 − 1) .
(2.63)

There is also an inverse function for this, which involves using both the floor and the
mod functions:

α2 =

⌊
(iN mod 2)

1

⌋
+ 1 = (iN mod 2) + 1

α1 =

⌊
(iN mod 4)

2

⌋
+ 1

α2′ =

⌊
(iN mod 8)

4

⌋
+ 1

α1′ =

⌊
(iN mod 16)

8

⌋
+ 1

(2.64)

Keldysh structure of the bare vertex in the single-impurity Anderson model

As we did above with the free propagators we do now for the bare vertex of the single-
impurity Anderson model, and specify the discussion to this model. The important fact
to point out here is that this object has non-trivial Keldysh as well as spin structure. This
structure is as follows [7]:

[Γ0]
α1′α2′ |α1α2

σ′1σ2′ |σ1σ2
=

{
1
2

[Γ0]σ1′σ2′ |σ1σ2
, if α1′ + α2′ + α1 + α2 is odd,

0 , else,
(2.65)

with

[Γ0]σ1′σ2′ |σ1σ2 =


U , if σ1′ = σ1 = σ̄2′ = σ̄2 ,

−U , if σ1′ = σ̄1 = σ̄2′ = σ2 , and

0 , else.
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Compared to [7] we introduce a global minus sign in Γ0. This is motivated from the
Matsubara formalism where it is convenient to have e−S = e···+Γ0.... The fact that the sum
of all the Keldysh indices must be odd is a consequence of the interaction being local in
time. It is important to keep this fact in mind, since it will have a crucial impact in the
decomposition analysis of the vertex, which we will present in Chapter 3.

This concludes the discussion of the Keldysh formalism to the extent needed in this
work. In the next section we briefly discuss how one can join both the scheme of the mfRG
and that of the Keldysh formalism. This will, in most cases, be a straightforward task
thanks to our adopted multi-index notation, with a notable exception coming from the
bubbles, whose Keldysh structure is worth exploiting as much as possible.

2.4 The Keldysh mfRG formalism

The unification of physical schemes and calculation methods is a common task in theoretical
physics. Whenever a useful and widely applicable formalism allows for application with
another, a generalized joint methodology may be fruitful. In this case, we want to perform
this union of the functional renormalization group with the Keldysh formalism, motivated
by the fact that the mfRG solves some of the issues of the fRG and working in the Keldysh
formalism allows one to overcome problems of the Matsubara formalism. Most important is
the fact that both ideas are compatible with one another: the fRG needs only a functional
representation of the partition function and the inclusion of an arbitrary cut-off scale Λ,
and the Keldysh formalism needs only a well-defined action to calculate expectation values
on the time contour. The objects of this joint formalism will include both a Λ-dependency
as well as Keldysh indices αi ∈ {1, 2}.

From Section 2.2 we already have the flow equations we need, namely Eq. (2.24) together
with Eq. (2.25) and Eq. (2.32). Notice that the definitions of the functions B and L
with sums over multi-indices allows us to expand the definition automatically to include
a summation over Keldysh indices. This means that, with no extra theoretical effort, we
have obtained the Keldysh mfRG equations! Now we study the structure of these equations
and where some simplifications may be made.

2.4.1 Keldysh structure of the bubbles

In our discussion of the Keldysh formalism we showed the Keldysh structure of the prop-
agator, the self-energy and the vertex. The Keldysh structure of bubbles Πr is inherited
from the propagators, which fulfill G1|1 = 0. Thus, if one expresses Πr as a 4 × 4 matrix,
many of the entries will automatically be zero. We therefore adopt the following convention

Π (ν1, ν2)α1α2|α1′α2′ = Gα1|α1′ (ν1)Gα2|α2′ (ν2) . (2.66)
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With this convention, written in matrix notation,

Π (ν1, ν2)α1α2|α1′α2′ =


Π0 (ν1, ν2) Π1 (ν1, ν2) Π2 (ν1, ν2) Π3 (ν1, ν2)
Π4 (ν1, ν2) Π5 (ν1, ν2) Π6 (ν1, ν2) Π7 (ν1, ν2)

Π8 (ν1, ν2) Π9 (ν1, ν2)
∏10 (ν1, ν2) Π11 (ν1, ν2)

Π12 (ν1, ν2) Π13 (ν1, ν2) Π14 (ν1, ν2) Π15 (ν1, ν2)

 (2.67)

=


0 0 0 GA (ν1)GA (ν2)
0 0 GA (ν1)GR (ν2) GA (ν1)GK (ν2)
0 GR (ν1)GA (ν2) 0 GK (ν1)GA (ν2)

GR (ν1)GR (ν2) GR (ν1)GK (ν2) GK (ν1)GR (ν2) GK (ν1)GK (ν2)

 .

(2.68)

This structure is also inherited by Π̇r, replacing GG by ∂Λ(GG).
Notice that the causality condition automatically implies that seven out of the 16 total

possibilities are zero. Hence, in an equation of the sort

γr ∼ Γ ◦ Πr ◦ Γ , (2.69)

every combination of Keldysh indices of the left hand side implies a sum over only a total of
9 terms as opposed to 16. Also, it’s important to point out that this simplification applies
to all channels. Now, the only issue is that a channel-dependent way of determining the
Keldysh indices of Eq. (2.69) is needed. In other words, if one writes the Keldysh indices
of Eq. (2.69),

γi0r ∼
∑
i2∈BK

Γi
r
1(i0,i2) ◦ Πi2

r ◦ Γi
r
3(i0,i2) , (2.70)

then determining the functions i1(i0, i2) and i3(i0, i2) is needed.
In the last equation, BK := {3, 6, 7, 9, 11, 12, 13, 14, 15} is the set of Keldysh indices

for which the bubbles are non-zero. Writing down the exact form of these functions is
a straight-forward task, which requires the conversion of i0 and i2 into indices in the
{11|11, . . . , 22|22} set and then seeing which labels are connected with which in every
channel. Thus, following our propagator-vertex primed-unprimed index convention for
i0 = α1′α2′ | α1α2 and i2 = α3α4 | α3′α4′ , the functions are as follows:

ia1 (α1′α2′|α1α2, α3α4|α3′α4′) = α1′α4′ |α3α2

ia3 (α1′α2′|α1α2, α3α4|α3′α4′) = α3′α2′ |α1α4

ip1 (α1′α2′|α1α2, α3α4|α3′α4′) = α1′α2′ |α3α4

ip3 (α1′α2′|α1α2, α3α4|α3′α4′) = α3′α4′ |α1α2

it1 (α1′α2′ |α1α2, α3α4|α3′α4′) = α4′α2′|α3α2

it3 (α1′α2′ |α1α2, α3α4|α3′α4′) = α1′α3′|α1α4 .

(2.71)

These can easily be read off of Fig. 2.9d, which is presented with the other diagrammatic
representations in Subsection 2.4.2. This result also concludes the derivation of the Keldysh
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mfRG since now we exactly know how to calculate the vertex and the self-energy in this
framework. However, the difficulty of this task is understated in the harmless appearance of
the equations. We will dedicate the coming chapter to developing a deeper understanding
of the vertex function, how to best parametrize it and decompose it. However, we first
present the diagrammatic tools we use for this purpose.

2.4.2 Diagrammatic representation

Since the appearance of Feynman diagrams in 1948, field theoretical methods have relied on
diagrammatic methods to graphically represent both physical processes and complicated
mathematical equations in an accessible manner. We do the same for the objects in this
work and, thus, develop a diagrammatic representation, with some useful conventions, for
this purpose. Thus, we specialize the multi-indices we have been using until now to our
case, in which we have Λ-dependent quantities with Keldysh indices, spin and frequency
dependency, making this discussion for zero-dimensional systems with time-translation
invariance. Thus, for an n-particle quantity Xβ labeled by a multi-index β, the following
replacement works:

Xβ →
[
XΛ
]α1...αn|α1′ ...αn′

σ1...σn|σ′1...σn′
(ν1, . . . νn | ν1′ , . . . , νn′) or (2.72)

Xβ →
[
XΛ
]α1′ ...αn′ |α1...αn

σ′1...σn′ |σ1...σn
(ν1′ , . . . νn′ | ν1, . . . , νn) , (2.73)

depending on whether X is a propagator- or a vertex-like quantity, respectively. We note
that the inclusion of momenta do not change the notation and would just add arguments
in parenthesis.

Following the order presented in Sec. 2.3, we begin with the propagators. Due to energy
conservation, it’s clear that the propagators must be diagonal in frequency space. They
must also be diagonal in spin space, since spin is also a conserved quantity.

G = G1|1′ = Gα1|α1′
σ (ν) . (2.74)

The self-energy is also trivially diagonal in frequency and spin space,

Σ = Σ1′|1 = Σα1′ |α1
σ (ν) . (2.75)

As two-particle objects, the vertex has two incoming and two outgoing legs and, hence,
four entries in each parameter. Since energy must be conserved, only three of the four
frequencies are independent. Also spin must be conserved. Now, for the arrows’ directions
of the vertex we follow the convention of [1, 2, 19].

The general form of the vertex is

Γ = Γ1′2′|12 = Γ
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν1′ , ν2′ , ν1, ν2) . (2.76)

The bubbles then appear as the connectors of the legs of two vertices. These are
semi-diagonal in spin and frequency, since each propagator is,

Π = Π34|3′4′ = Πα3α4|α3′α4′
σ1,σ2

(ν1, ν2) (2.77)
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(a) Graphical representation of the propagator. (b) Graphical representation of the self-energy.

(c) Graphical representation of the vertex. No-
tice the chosen convention for the position of
the incoming and outgoing legs, as well as in-
dices.

(d) Diagrammatic representation of the equa-
tion Γ ◦ Π ◦ Γ, depicting how the propagator
lines of each bubble are respectively connected
to the vertices depending on the channel.

Since the model we are considering is SU(2)-spin invariant, the spin indices will be
omitted in all objects but the vertices.

This concludes the present Chapter. All theoretical tools have been presented and all
diagrammatic methods and conventions have been explained. However, the main task of
the present work remains, which consists of analyzing and decomposing the vertex into
manageable parts. This task is what the coming Chapter is about.



Chapter 3

Parametrization of the vertex

In Chapter 2 we presented the multiloop functional renormalization group and the Keldysh
formalism. We then combined these into a joint framework which, in principle, allows for
a method to calculate dynamical quantities of non-equilibrium systems. But so much
flexibility and wide-applicability does not come easy. The analytical solution of even the
truncated system of equations for the self-energy and the vertex is out of question. Hence,
the only way to tackle the problem is numerically. However, if this is done without ana-
lyzing and simplifying the problem, the task is unfeasible. Thus we dedicate this Chapter
to the study of the most challenging part of the task: the calculation of the vertex. Hence,
we dissect it into more manageable parts to be able to compute it as efficiently as possible.
First, we will look at a channel decomposition, based on the two-particle reducibility of
certain diagrams. Then we turn to a diagrammatic decomposition of the vertex, based on
the number of arguments the vertex function effectively depends on, to then go further and
explore the implications of certain symmetries that the bare vertex has, due to its Keldysh
structure, on these diagrammatic classes. These dependencies will however be subject to
some assumptions, which will be explained later on.

3.1 Channel-dependent frequency parametrization

To fully get the most of the channel decomposition, one has to define a corresponding
frequency parametrization, which exploits the natural dependency of each channel on a
specific argument combination (recall Eq. (2.13)). Each one of the three interaction chan-
nels is describing a two-fermion interaction so the exchange frequency will be bosonic
(distinguished from the fermionic ones by using ω instead of ν). Also, since each inter-
action must separately conserve momentum, only a total of three frequencies is needed.
Thus one has

Γ (ν1′ , ν2′ , ν1, ν2) =R (ν1′ , ν2′ , ν1) +∑
r∈{a,p,t}

γr (ωr (ν1′ , ν2′ , ν1) , νr (ν1′ , ν2′ , ν1) , ν ′r (ν1′ , ν2′ , ν1)) . (3.1)
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Figure 3.1: Frequency parametrization for each channel. Notice the conventions refer to the
full vertex Γ, which can be parametrized in every channel r or expressed as function of the
usual parameters. This latter form is denoted by Γf , where the f stands for “fermionic”.

The frequencies in Fig. 3.1 lead then to the following conversion rules between the
channels, where the conventional vertex depicted in Fig. 2.9c is referred to as the ’fermionic’
vertex, Γf , and the vertex, parametrized in the r channel is denoted by Γr:

a channel From and to the fermionic channel:

ν1′ = νa − 1
2
ωa

ν2′ = ν ′a + 1
2
ωa

ν1 = ν ′a − 1
2
ωa

 =⇒


ωa = ν2 − ν1′ = ν2′ − ν1

νa = 1
2

(ν1′ + ν2) = 1
2

(2ν1′ + ν2′ − ν1)

ν ′a = 1
2

(ν2′ + ν1)

(3.2)

And from any other channel to the a channel:

ωa = ωa ωa = −νp − ν ′p ωa = νt − ν ′t
νa = νa νa = 1

2

(
ωp + νp − ν ′p

)
νa = 1

2
(ωt + νt + ν ′t)

ν ′a = ν ′a ν ′a = 1
2

(
ωp − νp + ν ′p

)
ν ′a = 1

2
(−ωt + νt + ν ′t)

(3.3)

p channel From and to the fermionic channel:

ν1′ = 1
2
ωp + νp

ν2′ = 1
2
ωp − νp

ν1 = 1
2
ωp + ν ′p

 =⇒


ωp = ν1 + ν2 = ν1′ + ν2′

νp = 1
2

(ν1′ − ν2′)

ν ′p = 1
2

(ν1 − ν2) = 1
2

(2ν1 − ν1′ − ν2′)

(3.4)

And from any other channel to the p channel:

ωp = νa + ν ′a ωp = ωp ωp = νt + ν ′t
νp = 1

2
(−ωa + νa − ν ′a) νp = νp νp = 1

2
(ωt − νt + ν ′t)

ν ′p = 1
2

(−ωa − νa + ν ′a) ν ′p = ν ′p ν ′p = 1
2

(−ωt − νt + ν ′t)
(3.5)

t channel From and to the fermionic channel:

ν1′ = ν ′t + 1
2
ωt

ν2′ = νt − 1
2
ωt

ν1 = ν ′t − 1
2
ωt

 =⇒


ωt = ν1′ − ν1 = ν2 − ν2′

νt = 1
2

(ν2′ + ν2) = 1
2

(2ν2′ + ν1′ − ν1)

ν ′t = 1
2

(ν1′ + ν1)

(3.6)
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And from any other channel to the t channel:

ωt = νa − ν ′a ωt = νp − ν ′p ωt = ωt
νt = 1

2
(ωa + νa + ν ′a) νt = 1

2

(
ωp − νp − ν ′p

)
νt = νt

ν ′t = 1
2

(−ωa + νa + ν ′a) ν ′t = 1
2

(
ωp + νp + ν ′p

)
ν ′t = ν ′t

(3.7)

3.2 Diagrammatic decomposition

The next decomposition strategy we follow is based on [5]. The basic idea is classifying
the diagrams according to the number of input frequencies they effectively depend on.
To motivate this discussion, we consider first the following fact: if all three frequency
arguments are taken to infinity the contributions of any diagram must vanish (except that
of the bare vertex, which will be hence excluded of the discussion). However, there are
some diagrams which do not depend on all but only on a subset of the frequencies. This
means that these will not vanish if the complementary subset of frequencies is taken to
infinity. Hence, we first define for every channel r ∈ {a, p, t} the class of diagrams which
only depend on the bosonic exchange frequency, namely

(Kr1)
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ωr) := lim

|νr|→∞
lim
|ν′r|→∞

(γr)
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ωr, νr, ν

′
r) . (3.8)

Figure 3.2: Schematic representation of the diagrammatic class Ka1. The diagrammatic
definition for the other channels follows the same pattern, namely Kr1 = Γ0 ◦Πr ◦ Γ0 + Γ0◦
Πr ◦ Γ ◦ Πr ◦ Γ0.

This class of diagrams corresponds to the ones in which the incoming and outgoing legs
associated with νr and, in turn, with ν ′r are connected to the same bare vertex. In this
diagrammatic sense, which can be appreciated in Fig. 3.2, both νa and ν ′a directly flow in
and out of the diagram and, hence, the result cannot depend explicitly on either of them.
Similar diagrams can be defined for the p and t channels.

In Eq. (3.8) the order the order in which the limits are taken does not matter. This
leads us to the definition of the following two diagrammatic classes, K2 and K2′ ,

(Kr2)
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ωr, νr) := lim

|ν′r|→∞
(γr)

α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ωr, νr, ν

′
r)− (Kr1)

α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ωr) , (3.9a)

(Kr2′)
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ωr, ν

′
r) := lim

|νr|→∞
(γr)

α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ωr, νr, ν

′
r)− (Kr1)

α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ωr) . (3.9b)
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The fact that the order in which the limits in Eq. (3.8) are taken is irrelevant yields
then the consistency condition

lim
|νr|→∞

(Kr2)
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ωr, νr)

!
= lim
|ν′|→∞

(Kr2′)
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ωr, ν

′
r)

!
= 0 . (3.10)

Diagrammatically, the K2(′) classes look as in Fig. 3.3 and have the characteristic to
have either the first or the second fermionic frequency flow right out of the diagram while
the other one does not directly flow in and out, i.e. the pair of legs that depend on ν

(′)
r are

connected to two different bare vertices. These two classes correspond to contributions to
the vertex in order O (U3) and all include at least one nested loop.

Figure 3.3: Diagrammatic representation of the Ka2(′) classes, where the legs which depend
on νa and ν ′a respectively are connected to different bare vertices and, thus, the whole
diagram depends on the fermionic frequency. Channels p and t follow the same convention.

The remaining class is defined through the subtraction of the K1- and K2(′) classes from
the full vertex and, hence, it retains a full frequency dependence. It contains only diagrams
of O (U4) with at least two nested loops and, diagrammatically, is defined as the collection
of diagrams in which each leg is connected to a different bare vertex, see Fig. 3.4

(Kr3)
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ωr, νr, ν

′
r) :=

[
(γr (ωr, νr, ν

′
r))

α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
− (Kr1) (ωr)

α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
−

− (Kr2)
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ωr, νr)− (Kr2′)

α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ωr, ν

′
r)
] (3.11)

Figure 3.4: Diagrammatic representation of the Ka3 class, where each leg is connected to a
different bare vertex and, hence, the diagram depends on all frequencies. Channels p and
t follow the same convention.

All three1 classes respect the channel decomposition of the parquet formalism of Sec.
2.2.1. This implies that there are, in total, 12 vertex functions to be determined, Kri

1We are clustering K2 and K2′ into one kind of diagrammatic class.
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with i ∈ {1, 2, 2′, 3} and r ∈ {a, p, t}. The above-mentioned fact also implies that this
diagrammatic decomposition only applies to 2 -PR diagrams and hence does not help to
improve on the PA. With all this taken into account, the full vertex fulfills

Γ(ν1′ , ν2′ , ν1, ν2) = R +
∑

r∈{a,p,t}

[Kr1(ωr) +Kr2(ωr, νr) +Kr2′(ωr, ν ′r) +Kr3(ωr, νr, ν
′
r)] (3.12)

whereR = Γ0 in the PA and the bosonic and both fermionic frequencies, ωr (ν1′ , ν2′ , ν1) , νr (ν1′ , ν2′ , ν1) , ν ′r (ν1′ , ν2′ , ν1) ,
depend on the fermionic input frequencies following the channel conversion rules of the pre-
vious section.

Physical interpretation

A priori one could think that this diagrammatic decomposition of the vertex is performed
purely for numerical gain. However, it is much more than that, since the Ki’s have a
physical interpretation [5].

First of all, each K1-object is a one-particle bosonic object, which turns out to be the
susceptibility in the corresponding channel [20],

Kr1(ω) = −U2χr(ω) . (3.13)

More notable is the fact that the charge and spin susceptibilities are also expressible in
terms of K1 objects. Following [23],

χch/sp = χ↑↑ ± χ↑↓ , (3.14)

χσσ′ ' −δσσ′Πt + Πt ◦ Γ ◦ Πt =̂ − 1

U2
Kt1 . (3.15)

where the last equality is best understood in the light of the graphical depiction of this
equation (Fig. 3.5).

Hence,

U2χch/sp = Kt↑↑ ∓Kt1↑↓ . (3.16)

Now, we state as a fact that, in the Keldysh formalism2,

Kt1↑↑ = Kt1↑↓ −Ka1↑↓ . (3.17)

Thus,

χsp = − 1

U2
Ka1↑↓ χch =

1

U2

(
2Kt1↑↓ −Ka1↑↓

)
, (3.18)

and the spin and charge susceptibilities are directly related to the K1-objects in channels
a and t.

2This applies only to an SU(2)-spin symmetric system and is a relation that can be derived with tools
shown later.
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Figure 3.5: Susceptibility in the t channel. Notice this follows directly from the definition
of Kt1.

In turn, the K2 and K2′ encode information on the coupling of the fermionic degrees of
freedom with the bosonic ones. Returning to a setting with full generality (i.e. space-time
four vectors), there is a relation for the generalized density in Fourier space

nq =

∫∑
dk
∑
σ

c†σ(k)c(k + q) (3.19)

relating it to the K1 and K2 classes:

U ×
〈
T
{
nqcσ(k + q)c†σ(k)

}〉
c

= Gσ(k)Gσ(k + q)
∑
σ′

(
[Ka1]σσ′|σσ′ (q) + [Ka2]σσ′|σσ′ (q, k)

)
.

(3.20)
Here 〈. . .〉c considers only connected diagrams. For theories which have electron-boson

vertices, Eq. (3.20) identifies the expectation value of an operator directly related to this
coupling with the sum of the K1 and K2 classes.

3.3 Keldysh structure of the Ki’s
In the previous section we explained the decomposition of the vertex into diagrammatic
classes and how that remains compatible with the channel decomposition, summarized in
Eq. (3.12). A key observation is that the Keldysh and spin structure of the full vertex
carries over to the individual components.

Spin structure of the vertex Up until now, we have tried to be as general as possible
regarding indices and input frequencies. However, to delve deeper into the decomposition,
we now study the possible spin interactions that are possible, in order to manage the a
priori 16 different combinations for σ1′σ2′|σ1σ2.

The fact that spin must be conserved at the bare-vertex level implies overall spin
conservation,

σ1′ + σ2′ = σ1 + σ2 . (3.21)
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This is satisfied by only three Z2-equivalent variants: σσ|σσ, σσ̄|σσ̄ and σσ̄|σ̄σ, where
σ̄ =↓ if σ =↑ and vice versa. SU(2)-spin-symmetry further implies that [20]

Γσσ|σσ = Γσσ̄|σσ̄ + Γσσ̄|σ̄σ . (3.22)

Thus, a system which respects SU(2)-spin-symmetry needs only the calculation of two
different spin components for its full characterization, for which we define specific symbols:

V α1′α2′ |α1α2 := Γ
α1′α2′ |α1α2

σσ̄|σσ̄ , (3.23)

(V r
i )α1′α2′ |α1α2 := (Kri )

α1′α2′ |α1α2

σσ̄|σσ̄ , (3.24)

V̂ α1′α2′ |α1α2 := Γ
α1′α2′ |α1α2

σσ̄|σ̄σ , (3.25)

(V̂ r
i )α1′α2′ |α1α2 := (Kri )

α1′α2′ |α1α2

σσ̄|σ̄σ . (3.26)

For non-SU(2)-symmetric systems this discussion would not be as easy and a more
detailed analysis would be required. However, since we focus on a system respecting said
symmetry, we consider this discussion sufficient for the present work.

The important takeaway is that through physical constraints and symmetries, the
amount of components of the vertex that need to be determined can be reduced. The
reduction in the case of the spin is from 16 to, effectively, 2.

3.3.1 Exchange symmetries and complex conjugation

To really begin our discussion of the Keldysh structure of the Ki’s, we first define some
transformations on the full vertex.

TSΓ
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν1′ , ν2′ , ν1, ν2) := Γ

α1′α2′ |α1α2

σ̄1′ σ̄2′ |σ̄1σ̄2
(ν1′ , ν2′ , ν1, ν2) (3.27a)

T1Γ
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν1′ , ν2′ , ν1, ν2) := Γ

α1′α2′ |α2α1

σ1′σ2′ |σ2σ1
(ν1′ , ν2′ , ν1, ν2) (3.27b)

T2Γ
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν1′ , ν2′ , ν1, ν2) := Γ

α2′α1′ |α1α2

σ2′σ1′ |σ1σ2
(ν1′ , ν2′ , ν1, ν2) (3.27c)

T3Γ
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν1′ , ν2′ , ν1, ν2) := Γ

α2′α1′ |α2α1

σ2′σ1′ |σ2σ1
(ν1′ , ν2′ , ν1, ν2) (3.27d)

TCΓ
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν1′ , ν2′ , ν1, ν2) := Γ

α1α2|α1′α2′
σ1σ2|σ1′σ2′

(ν1′ , ν2′ , ν1, ν2) (3.27e)

In words, TS amounts to a spin flip, inverting all spins of the incoming and outgoing
legs, the Ti ’s for i ∈ {1, 2, 3} exchange the Keldysh and spin indices of either the incoming
(T1) , outgoing (T2) or incoming and outgoing (T3) legs and TC exchanges the indices of
the incoming with the ones of the outgoing legs. It is important to point out that these
operations defined here do not have any effect on the input frequencies, just on the Keldysh
and spin indices, and that these transformations form a group, S. We study its structure
in Appendix A.
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The key observation we make is that some of these transformations (or combinations
thereof ) actually correspond to symmetries of the vertex itself, once one endows them with
a physical interpretation3.

We notice that the T1 transformation is equivalent to the topologically trivial opera-
tion of exchanging both of the incoming legs of the diagram (as shown schematically in
Fig. 3.6a, second equality.). This operation yields a vertex object with an added minus
sign for the anti-commutative properties of fermions and switched frequency arguments
for the incoming legs, which yields an actual, physical, symmetry relation between two
combinations of Keldysh indices,

T1Γ
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν1′ , ν2′ , ν1, ν2)

Eq. (3.27b)
= Γ

α1′α2′ |α2α1

σ1′σ2′ |σ2σ1
(ν1′ , ν2′ , ν1, ν2)

!
= −Γ

α1′α2′ |α1α2

σ′
1′σ2′ |σ1σ2

(ν1′ , ν2′ , ν2, ν1) .
(3.28)

If the exchange is done with the outgoing legs (see Fig. 3.6b ), one obtains the following
relation

T2Γ
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν1′ , ν2′ , ν1, ν2)

Eq. (3.27c)
= Γ

α2′α1′ |α1α2

σ2′σ1′ |σ1σ2
(ν1′ , ν2′ , ν1, ν2)

!
= −Γ

α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν2′ , ν1′ , ν1, ν2) .

(3.29)

Since T3 is the composition of T1 and T2, it should come to no surprise that one obtains

T3Γ
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν1′ , ν2′ , ν1, ν2)

Eq. (3.27d)
= Γ

α2′α1′ |α2α1

σ2′σ1′ |σ2σ1
(ν1′ , ν2′ , ν1, ν2)

!
= Γ

α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν2′ , ν1′ , ν2, ν1) .

(3.30)

For the interpretation of TC , we rely on the derivation presented in Chap. 3 of [6] or
Chap. 3 of [24]. There, the study of the complex conjugation of the vertex function is
presented at second-quantized operator level, arriving at(

Γ
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν1′ , ν2′ , ν1, ν2)

)∗
= (−1)1+α1′+α2′+α1+α2Γ

α1α2|α1′α2′
σ1σ2|σ1′σ2′

(ν1, ν2, ν1′ , ν2′) . (3.31)

Thus one can relate the action of TC , defined in Eq. (3.27e) to the action of complex
conjugation (hence the C as subscript) as

TCΓ
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν1′ , ν2′ , ν1, ν2)

Eq. (3.27e)
= Γ

α1α2|α1′α2′
σ1σ2|σ1′σ2′

(ν1′ , ν2′ , ν1, ν2)

!
= (−1)1+α1′+α2′+α1+α2

[
Γ
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
(ν1, ν2, ν1′ , ν2′)

]∗
.

(3.32)

As depicted in Fig. 3.6c, diagrammatic interpretation of TC is possible as a simultaneous
flipping of the directions of all arrows, combined with a reflection on an axis cutting

3We point out that this discussion is kept at the level of a diagrammatic interpretation intentionally. A
more rigorous analysis making use of the explicit definition of the vertex in field theoretical language, i.e.
with equations like T1

〈
ψ̄ (t′1) ψ̄ (t′2)ψ (t1)ψ (t2)

〉
= −

〈
ψ̄ (t′1) ψ̄ (t′2)ψ (t2)ψ (t1)

〉
is definitely possible. How-

ever, the diagrammatic techniques deliver more physical insight and remain correct throughout, making
more complex and cumbersome methods unnecessary.
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(a) (b)

(c)

Figure 3.6: Schematic representation of the transformations. Swapping the Keldysh and
spin indices of the incoming or outgoing legs and exchanging the incoming or outgoing
frequencies are equivalent, up to a minus sign. Time inversion amounts to complex conju-
gation and the inclusion of a prefactor determined solely by the Keldysh components.

vertically through the diagram. This is usually interpreted as a sort of time reversal
symmetry in the diagrammatic sense, though one must be wary of this interpretation in
the framework of the Keldysh formalism.

3.3.2 Diagrammatic classes under exchange symmetries and com-
plex conjugation

When considering the diagrammatic classes and the channel decomposition, both decom-
positions are compatible, not only with one another but also with the underlying Keldysh
and spin structure of the vertex. One could also hope that something like this would hap-
pen with the diagrammatic classes and the symmetries defined above, i.e. that equations
like

Tj (Kri (ν1′ , ν2′ , ν1, ν2))
α1′α2′ |α1α2

σ1′σ2′ |σ1σ2
= (Kri )

αTj(1′)αTj(2′)|αTj(1)αTj(2)

σTj(1′)σTj(2′)|σTj(1)σTj(2)
(ν1′ , ν2′ , ν1, ν2) (3.33)

would hold.
This is however not the case. Thus, we need to delve deeper into the action of the Tj’s

to derive useful relations within components of the vertex. To do so, we will focus solely
on the two spin components of interest, V and V̂ .

We begin this journey with the action of the whole group on the Kai ’s and, to do so
in a systematic manner, we will go through the generators of S (see Appendix A), T1, T2

and TC , keeping the discussion as general as possible, as to be able to derive results that
apply to all channels or all diagrammatic classes as we go along. First, T1 on Ka3. As can
be seen in Fig. 3.7a , the swapping of the incoming legs also changes the channel. This is
inconvenient, since it means that the diagrammatic classes are not completely compatible
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with the physical symmetries of the full vertex. Yet it is also hardly surprising, since the
a and t channels are much related to one another [1, 2].

In the case for Ka2, there are further surprising relations. Note that the defining dia-
grammatic feature of the K2 class is that the bare vertex, to the one two outer legs connect
to, is on the right side of the diagram (lower part, for t ). Thus, when swapping incoming
legs from diagrams in the Ka2, one lands not in the Kt2 class, but in the Kt2′ class, since the
bare vertex ends up in the upper part of the diagram (see Figs. 3.7b and 3.7c).

(a) (b) (c)

Figure 3.7: Schematic representation of the channel-mixing effect of the T1 transformation.
The Keldysh and spin indices, as well as the input frequencies, transform according to
Eq. (3.27b) where special attention has to be paid to the change in frequency parametriza-
tion, which is channel dependent.(a) Effect of T1 on a Ka3 diagram. (b) T1 maps Ka2 to Kt2′ .
(c) T1 maps Ka2′ to Kt2.

Of noticeable importance is the fact that action of T1 on any Kri , not only in the a
channel, changes the spin-sector i.e. T1(V ) → V̂ and T1(V̂ ) → V, see Fig. 3.8. Phrased
mathematically, this is reflected in the fact that

T1(V r
i )α1′α2′ |α1α2 = T1 (Kri )

α1′α2′ |α1α2

σσ̄|σσ̄ =
(
KT1(r)
T1(i)

)α1′α2′ |α2α1

σσ̄|σ̄σ
= (V̂

T1(r)
i )α1′α2′ |α2α1 and (3.34)

T1(V̂ r
i )α1′α2′ |α1α2 = T1 (Kri )

α1′α2′ |α1α2

σσ̄|σ̄σ =
(
KT1(r)
T1(i)

)α1′α2′ |α2α1

σσ̄|σσ̄
= (V

T1(r)
i )α1′α2′ |α2α1 . (3.35)

Figure 3.8: Schematic representation of the spin-sector-mixing property of the T1 transfor-
mation. We keep track of the channel-changing properties as well through the inclusion of
r̃ = T1(r), where we abuse the notation of the symmetry to represent the channel to which
a diagram of channel r is mapped to.
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Regarding T2, the situation is similar, with the problem that

T2(V r
i )α1′α2′ |α1α2 = T2 (Kri )

α1′α2′ |α1α2

σσ̄|σσ̄ =
(
KT2(r)
T2(i)

)α2′α1′ |α1α2

σ̄σ|σσ̄
6= (V̂

T2(r)
i )α2′α1′ |α1α2 and (3.36)

T2(V̂ r
i )α1′α2′ |α1α2 = T2 (Kri )

α1′α2′ |α1α2

σσ̄|σ̄σ =
(
KT2(r)
T2(i)

)α2′α1′ |α1α2

σ̄σ|σ̄σ
6= (V

T2(r)
i )α2′α1′ |α1α2 . (3.37)

Thus, associated to a T2 operation must come a TS operation, so that one safely lands
in the V - or the V̂ -spin sector. Hence, the actual symmetry transformation that needs to
be applied is TST2,

TST2 (Kri )
α1′α2′ |α1α2

σσ̄|σσ̄ = TS

(
KT2(r)
T2(i)

)α2′α1′ |α1α2

σ̄σ|σσ̄
=
(
KT2(r)
T2(i)

)α2′α1′ |α1α2

σσ̄|σ̄σ
and (3.38)

TST2 (Kri )
α′1α2′ |α1α2

σσ̄|σ̄σ = TS

(
KT2(r)
T2(i)

)α2′α1′ |α1α2

σ̄σ|σ̄σ
=
(
KT2(r)
T2(i)

)α2′α1′ |α1α2

σσ̄|σσ̄
. (3.39)

Thus, both T1 and TST2 swap spin sectors. Also easy to see is the case that the
composition, namely TST3, does not change the spin sector.

Moreover, for the cases of Ka1 and Ka3, one could expect that TST3 maps within the
same channel as well, i.e. that TST3V

a
1,3 → V a

1,3 and the same with V̂ , which will turn out
to be the case. However, we will prove this in due time, when analyzing the orbits of the
transformations on the t channel.

To culminate with the generators of S we follow with the action of TC acting on Kai
As has been mentioned before, TC as transformation corresponds to flipping the direction
of the propagators and, simultaneously, reflecting the diagram with respect to a vertical
line. Thus, if the diagram has a “bare-vertex asymmetry” in the horizontal direction, TC
will change its character. In the a channel, both the K1 and the K3 classes are symmetric
in this sense and, thus, TC

(
Ka1,3

)
= Ka1,3. This is, however, not the case for the Ka2 class,

which gets mapped to Ka2′ and vice versa, thanks to this asymmetry. Simply said, TC flips
the side at which the bare vertex is and, thus, turns Ka2 in Ka2′ .

Further problematic is the interplay that TC has with the spin parts. As can be seen
in Fig. 3.9a generally TC maps V to V , but it does not do that for V̂ . Instead, one needs
to include TS in that case, for it to actually map into V̂ . This not only carries for the a
channel, but is also the case for the other channels.

Now, we have already looked at the generators of S and characterized their action on
the diagrams of the a channel, we are ready to tackle the same challenge regarding the t
channel. Given the many similarities between the channels and the fact that already T1

and TST2 map from a to t, one should expect a similar behavior of the t channel. And,
indeed, that is what we observe. As depicted previously on Fig. 3.7a and now also on
3.9b, T1 and TST2 have the same channel-mapping qualities in the t channel than in the a
channel. Thus, one can see that, indeed, TST3

(
Ka,ti

)
→ Ka,ti , i.e. that TST3 does not mix

the channels.
A very subtle but key difference between the a and the t channels comes from the action

of TC . As mentioned before, TC acts, diagrammatically, by flipping around the arrows and
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(a)

(b)

Figure 3.9: (a) Schematic representation of the action of TC on V a
a and V̂ a

2 . (b) Schematic
representation of the action of T2 on a Kt2 diagram.

mirroring the diagram with respect to a vertical line. This implies for the Kti class of
diagrams, that there is no mapping from Kt2 and Kt2′ , but rather that

TCKt2 → Kt2 and

TCKt2′ → Kt2′ .
(3.40)

taking into account which spin sector one starts from. This is consequence of the commu-
tation rule T1TC = TCT2 of these transformations (see App. A).

Lastly, we investigate the action of the transformations on the diagrams of the p channel.
Though harder to sketch in the chosen convention (see Fig. 3.10a), T1, and TST2 do not have
a surprising action on Kpi . This, again, is hardly surprising, since the channel decomposition
is exhaustive and the transformations cannot affect the way internal lines lay with respect
to one-another i.e. parallel lines remain parallel under the action of any Ti or TC . Moreover,
TC acts “expectedly” mapping within the bare-vertex-symmetric kinds of diagrams (Kp1
and Kp3) and switching between the K2 and the K2′ classes. Illustration of this action is
found in Fig. 3.10c.

3.3.3 Independent Keldysh components of the vertex

The core idea for this section is that the interplay between the Keldysh structure of the
bare vertex and the diagrammatic classes may simplify the structure of the vertex and,
indeed, it does. Recall that the diagrammatic classes are defined by zero (K3) , one (K2(′))
or two (K1) pairs of legs connecting to the same bare vertex. Now we recall the Keldysh
structure of the bare vertex, introduced in Eq. (2.65). There it was noted that the only
requirement for the indices is for the parity of their sum to be odd in order for the bare



3.3 Keldysh structure of the Ki’s 41

(a) (b)

(c)

Figure 3.10: Schematic representation of the action of the generators of S on the Kp2 class
of diagrams.(a) The trivial effect on the structure of T1 on K2′ . (b) The action of TST2

preserves the spin structure of the diagram. (c) TC maps Kp2 into Kp2′ and vice versa.

vertex to be non-zero. Hence, any change to the indices of the external legs that does
not change the parity of the sum is, automatically, a symmetry. Hence, motivated by the
respective topological structure of each channel, we define the following six operations on
a set of external Keldysh indices of a diagram:

PaL (α1′α2′ | α1α2) = ᾱ1′α2′ | α1ᾱ2 PaR (α1′α2′ | α1α2) = α1′ᾱ2′ | ᾱ1α2 (3.41)

PpL (α1′α2′ | α1α2) = ᾱ1′ᾱ2′ | α1α2 PpR (α1′α2′ | α1α2) = α1′α2′ | ᾱ1ᾱ2 (3.42)

P tL (α1′α2′ | α1α2) = α1′ᾱ2′ | α1ᾱ2 P tR (α1′α2′ | α1α2) = ᾱ1′α2′ | ᾱ1α2 . (3.43)

In these equations, ᾱi = 2 if αi = 1 and vice versa, similar as with σ̄ and σ. Since
any diagram in the t channel does not posses “left” and “right” bare vertices, its “upper”
and “lower” vertices are then identified with “left” and “right”, respectively, exploiting the
a ↔ t exchange symmetry. This allows for notational simplicity, allowing the grouping
P iL/R.

Clearly, not all classes respect both PL/R acting on them, but it depends on the sides
which have two legs connected to the same bare vertex. We can automatically see that K1

respects both, K2 and K2′ respect only PR and PL respectively and K3 evidently does not
respect these.
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These facts imply the following general equations for the vertices:

(Ka1)α1′α2′ |α1α2 = (Ka1)ᾱ1′α2′ |α1ᾱ2 = (Ka1)α1′ ᾱ2′ |ᾱ1α2 = (Ka1)ᾱ1′ ᾱ2′ |ᾱ1ᾱ2 (3.44a)

(Kp1)α1′α2′ |α1α2 = (Kp1)ᾱ1′ ᾱ2′ |α1α2 = (Kp1)α1′α2′ |ᾱ1ᾱ2 = (Kp1)ᾱ1′ ᾱ2′ |ᾱ1ᾱ2 (3.44b)(
Kt1
)α1′α2′ |α1α2 =

(
Kt1
)α1′ ᾱ2′ |α1ᾱ2 =

(
Kt1
)ᾱ1′α2′ |ᾱ1α2 =

(
Kt1
)ᾱ1′ ᾱ2′ |ᾱ1ᾱ2 (3.44c)

(Ka2)α1′α2′ |α1α2 = (Ka2)α1′ ᾱ2′ |ᾱ1α2 (3.44d)

(Kp2)α1′α2′ |α1α2 = (Kp2)α1′α2′ |ᾱ1ᾱ2 (3.44e)

(Kt2)α1′α2′ |α1α2 = (Kt2)ᾱ1′α2′ |ᾱ1α2 (3.44f)

(Ka2′)α1′α2′ |α1α2 = (Ka2′)ᾱ1′α2′ |α1ᾱ2 (3.44g)

(Kp2′)α1′α2′ |α1α2 = (Kp2′)ᾱ1′ ᾱ2′ |α1α2 (3.44h)

(Kt2′)α1′α2′ |α1α2 = (Kt2′)α1′ ᾱ2′ |α1ᾱ2 (3.44i)

Now, this completely exhausts the symmetries, physical or otherwise, that the vertex
has in general, though some more exist for more particular cases (particle-hole symmetry
and KMS equilibrium conditions, to name two). This means that we are now in the position
to combine the action of the Ti and TC transformations and symmetries with those of P iL/R
This yields the color-coded Tables 3.1 to 3.5, derived in close collaboration with Elias
Walter, of dependent and independent components, with the respective transformations
relating them shown whenever needed.

Once one has found which symmetries are respected by the diagrammatic classes and
how they behave under their action the derivation and check of this table is, in itself,
a straightforward albeit somewhat tedious process. These tables are the main result of
this Chapter, since these basically summarize what is needed to be computed in order
to have the full information of the Keldysh vertex function. Furthermore, together with
the definitions of the symmetries and transformation, they give a thorough guide of the
internal Keldysh structure of the full vertex. In the next Chapter, we will then show how
we built and implemented a code able to calculate the full vertex and give some technical
insights learned in the process, but we first discuss the benefits of doing the tedious work
presented here.

Flow equation of the independent Keldysh components As not all Keldysh com-
ponents are independent, not all of them have to be computed and the convention we
settled for is listed in Tables 3.1-3.5. We decided to take this convention in order to give
all channels a treatment on equal footing and deal with only one spin component in each.
Hence, we now derive the actual flow equations of the relevant components to be calculated.

We consider the spin indices of Eq. (4.6) in the case of it contributing to Vr (the spin
components trivially inherit the channel decomposition of the full vertex). Generically,

[γ̇r]
i0
σσ̄|σσ̄ ≡ V̇ i0

r =
∑
σ1,σ2

Γσσ2|σ1σ̄ ◦
[
Π̇r

]
σ2,σ1

◦ Γσ1,σ̄|σσ2 (3.45)
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Since the full vertex conserves momentum and the propagators are diagonal in spin,
the actual way in which the legs are connected and restrict the sum over spins of Eq. (3.45)
to either one (in the a and p channels ) or two (in the t channel ) summands.

For a or p, the flow equation for the independent Keldysh components of the vertex is

V̇ i0
a/p =

∑
i2∈BK

V ir1(i0,i2) ◦ Π̇i2
a/p ◦ V ir3(i0,i2) , (3.46)

whereas the flow equation for the t channel does include both components

V̇ i0
t =

∑
i2∈BK

(V + V̂ )i
r
1(i0,i2) ◦ Π̇i2

t ◦ V ir3(i0,i2) + V ir1(i0,i2) ◦ Π̇i2
t ◦ (V + V̂ )i

r
3(i0,i2) . (3.47)

The frequency dependency, as well as which classes contribute in each case are deter-
mined above. We note that the form the equation for V̇p looks is thanks to the assumption

of cross symmetry. If we do not make this assumption V̂ enters the equation in an analogous
manner and each term is then multiplied by a factor of one half. The two last equations
are the ones that are actually being calculated in the code. The non-differentiated versions
of these see only the removal of the dot on top of Πr.

σσ|σσ σσ̄|σσ̄ σσ̄|σ̄σ
K1 (V+V̂ )a1 (V+V̂ )p1 (V+V̂ )t1 V a

1 V p
1 V t

1 V̂ a
1 V̂ p

1 V̂ t
1

1111 0 0 0 0 0 0 0 0 0 0

1112 1 Ba
1 Bp

1 Bt
1 B̄a

1 B̄p
1 B̄t

1 TST2B̄
t
1 T1B̄

p
1 TST2B̄

a
1

1121 2 T3B
a
1 Bp

1 T3B
t
1 TST3B̄

a
1 B̄p

1 TST3B̄
t
1 T1B̄

t
1 T1B̄

p
1 T1B̄

a
1

1122 3 Ca
1 0 Ct

1 C̄a
1 0 C̄t

1 T1C̄
t
1 0 T1C̄

a
1

1211 4 T3B
a
1 TCB

p
1 Bt

1 TST3B̄
a
1 TCB̄

p
1 B̄t

1 T1B̄
t
1 T1TCB̄

p
1 TST2B̄

a
1

1212 5 Ca
1 Dp

1 0 C̄a
1 D̄p

1 0 T1C̄
t
1 T1D̄

p
1 0

1221 6 0 Dp
1 Ct

1 0 D̄p
1 C̄t

1 0 T1D̄
p
1 T1C̄

a
1

1222 7 Ba
1 TCB

p
1 T3B

t
1 B̄a

1 TCB̄
p
1 TST3B̄

t
1 TST2B̄

t
1T1TCB̄

p
1 T1B̄

a
1

2111 8 Ba
1 TCB

p
1 T3B

t
1 B̄a

1 TCB̄
p
1 TST3B̄

t
1 TST2B̄

t
1T1TCB̄

p
1 T1B̄

a
1

2112 9 0 Dp
1 Ct

1 0 D̄p
1 C̄t

1 0 T1D̄
p
1 T1C̄

a
1

212110 Ca
1 Dp

1 0 C̄a
1 D̄p

1 0 T1C̄
t
1 T1D̄

p
1 0

212211 T3B
a
1 TCB

p
1 Bt

1 TST3B̄
a
1 TCB̄

p
1 B̄t

1 T1B̄
t
1 T1TCB̄

p
1 TST2B̄

a
1

221112 Ca
1 0 Ct

1 C̄a
1 0 C̄t

1 T1C̄
t
1 0 T1C̄

a
1

221213 T3B
a
1 Bp

1 T3B
t
1 TST3B̄

a
1 B̄p

1 TST3B̄
t
1 T1B̄

t
1 T1B̄

p
1 T1B̄

a
1

222114 Ba
1 Bp

1 Bt
1 B̄a

1 B̄p
1 B̄t

1 TST2B̄
t
1 T1B̄

p
1 TST2B̄

a
1

222215 0 0 0 0 0 0 0 0 0

Table 3.1: Keldysh structure of the K1 class.
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σσ|σσ
(V + V̂ )2(′) (V + V̂ )a2 (V + V̂ )a2′ (V + V̂ )p2 (V + V̂ )p2′ (V + V̂ )t2 (V + V̂ )t2′

1111 0 Aa2 T3A
a
2 Ap2 TCA

p
2 T2A

a
2 T1A

a
2

1112 1 Ba
2 T3C

a
2 Bp

2 TCC
p
2 T2B

a
2 T1C

a
2

1121 2 Ca
2 T3B

a
2 Bp

2 TCT3C
p
2 T2C

a
2 T1B

a
2

1122 3 Da
2 T3D

a
2 Ap2 0 T2D

a
2 T1D

a
2

1211 4 Ca
2 TCB

a
2 Cp

2 TCB
p
2 TCT2B

a
2 T1C

a
2

1212 5 Da
2 TCD

a
2 Dp

2 TCD
p
2 0 T1A

a
2

1221 6 Aa2 0 Dp
2 TCT3D

p
2 TCT2D

a
2 T1D

a
2

1222 7 Ba
2 T3F

a
2 Cp

2 TCF
p
2 T2F

a
2 T1B

a
2

2111 8 TCT3B
a
2 T3C

a
2 T3C

p
2 TCB

p
2 T2C

a
2 TCT1B

a
2

2112 9 0 T3A
a
2 T3D

p
2 TCD

p
2 T2D

a
2 TCT1D

a
2

2121 10 TCT3D
a
2 T3D

a
2 T3D

p
2 TCT3D

p
2 T2A

a
2 0

2122 11 F a
2 T3B

a
2 T3C

p
2 TCF

p
2 T2B

a
2 T1F

a
2

2211 12 TCT3D
a
2 TCD

a
2 0 TCA

p
2 TCT2D

a
2 TCT1D

a
2

2212 13 F a
2 TCB

a
2 F p

2 TCC
p
2 T2F

a
2 TCT1B

a
2

2221 14 TCT3B
a
2 T3F

a
2 F p

2 TCT3C
p
2 TCT2B

a
2 T1F

a
2

2222 15 0 0 0 0 0 0

Table 3.2: Keldysh structure of the all-spins-equal component of the K2(′) classes.
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σσ̄|σσ̄
V2(′) V a

2 V a
2′ V p

2 V p
2′ V t

2 V t
2′

1111 0 Āa2 TST3Ā
a
2 Āp2 TCĀ

p
2 Āt2 TST3Ā

t
2

1112 1 B̄a
2 TST3C̄

a
2 B̄p

2 TCC̄
p
2 B̄t

2 TST3C̄
t
2

1121 2 C̄a
2 TST3B̄

a
2 B̄p

2 TSTCT3C̄
p
2 C̄t

2 TST3B̄
t
2

1122 3 D̄a
2 TST3D̄

a
2 Āp2 0 D̄t

2 TST3D̄
t
2

1211 4 C̄a
2 TCB̄

a
2 C̄p

2 TCB̄
p
2 TCB̄

t
2 TST3C̄

t
2

1212 5 D̄a
2 TCD̄

a
2 D̄p

2 TCD̄
p
2 0 TST3Ā

t
2

1221 6 Āa2 0 D̄p
2 TSTCT3D̄

p
2 TCD̄

t
2 TST3D̄

t
2

1222 7 B̄a
2 TST3F̄

a
2 C̄p

2 TCF̄
p
2 F̄ t

2 TST3B̄
t
2

2111 8 TSTCT3B̄
a
2 TST3C̄

a
2 TST3C̄

p
2 TCB̄

p
2 C̄t

2 TSTCT3B̄
t
2

2112 9 0 TST3Ā
a
2 TST3D̄

p
2 TCD̄

p
2 D̄t

2 TSTCT3D̄
t
2

2121 10 TSTCT3D̄
a
2 TST3D̄

a
2 TST3D̄

p
2 TSTCT3D̄

p
2 Āt2 0

2122 11 F̄ a
2 TST3B̄

a
2 TST3C̄

p
2 TCF̄

p
2 B̄t

2 TST3F̄
t
2

2211 12 TSTCT3D̄
a
2 TCD̄

a
2 0 TCĀ

p
2 TCD̄

t
2 TSTCT3D̄

t
2

2212 13 F̄ a
2 TCB̄

a
2 F̄ p

2 TCC̄
p
2 F̄ t

2 TSTCT3B̄
t
2

2221 14 TSTCT3B̄
a
2 TST3F̄

a
2 F̄ p

2 TSTCT3C̄
p
2 TCB̄

t
2 TST3F̄

t
2

2222 15 0 0 0 0 0 0

Table 3.3: Keldysh structure of the V spin component of the K2′ classes.
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σσ̄|σ̄σ
V̂2(′) V̂ a

2 V̂ a
2′ V̂ p

2 V̂ p
2′ V̂ t

2 V̂ t
2′

1111 0 TST2Ā
t
2 T1Ā

t
2 T1Ā

p
2 TSTCT1Ā

p
2 TST2Ā

a
2 T1Ā

a
2

1112 1 TST2B̄
t
2 T1C̄

t
2 T1B̄

p
2 TSTCT1C̄

p
2 TST2B̄

a
2 T1C̄

a
2

1121 2 TST2C̄
t
2 T1B̄

t
2 T1B̄

p
2 T1TCC̄

p
2 TST2C̄

a
2 T1B̄

a
2

1122 3 TST2D̄
t
2 T1D̄

t
2 T1Ā

p
2 0 TST2D̄

a
2 T1D̄

a
2

1211 4 TST2C̄
t
2 T1TCB̄

t
2 T1C̄

p
2 T1TCB̄

p
2 T1TCB̄

a
2 T1C̄

a
2

1212 5 TST2D̄
t
2 T1TCD̄

t
2 T1D̄

p
2 TSTCT1D̄

p
2 0 T1Ā

a
2

1221 6 TST2Ā
t
2 0 T1D̄

p
2 T1TCD̄

p
2 T1TCD̄

a
2 T1D̄

a
2

1222 7 TST2B̄
t
2 T1F̄

t
2 T1C̄

p
2 TSTCT1F̄

p
2 TST2F̄

a
2 T1B̄

a
2

2111 8 TSTCT1B̄
t
2 T1C̄

t
2 TST2C̄

p
2 T1TCB̄

p
2 TST2C̄

a
2 TSTCT1B̄

a
2

2112 9 0 T1Ā
t
2 TST2D̄

p
2 TSTCT1D̄

p
2 TST2D̄

a
2 TSTCT1D̄

a
2

2121 10 TSTCT1D̄
t
2 T1D̄

t
2 TST2D̄

p
2 T1TCD̄

p
2 TST2Ā

a
2 0

2122 11 TST2F̄
t
2 T1B̄

t
2 TST2C̄

p
2 TSTCT1F̄

p
2 TST2B̄

a
2 T1F̄

a
2

2211 12 TSTCT1D̄
t
2 T1TCD̄

t
2 0 TSTCT1Ā

p
2 T1TCD̄

a
2 TSTCT1D̄

a
2

2212 13 TST2F̄
t
2 T1TCB̄

t
2 T1F̄

p
2 TSTCT1C̄

p
2 TST2F̄

a
2 TSTCT1B̄

a
2

2221 14 TSTCT1B̄
t
2 T1F̄

t
2 T1F̄

p
2 T1TCC̄

p
2 T1TCB̄

a
2 T1F̄

a
2

2222 15 0 0 0 0 0 0

Table 3.4: Keldysh structure of the V̂ spin component of the K2(′) classes.
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σσ|σσ σσ̄|σσ̄ σσ̄|σ̄σ
K3 (V +V̂ )a3 (V +V̂ )p3 (V +V̂ )t3 V a

3 V p
3 V t

3 V̂ a
3 V̂ p

3 V̂ p
3

1111 0 Aa3 Ap3 T2A
a
3 Āa3 Āp3 Āt3 T1Ā

t
3 T1Ā

p
3 T1Ā

a
3

1112 1 Ba
3 Bp

3 T2B
a
3 B̄a

3 B̄p
3 B̄t

3 TST2B̄
t
3 TST2B̄

p
3 TST2B̄

a
3

1121 2 T3B
a
3 T3B

p
3 T1B

a
3 TST3B̄

a
3 TST3B̄

p
3 TST3B̄

t
3 T1B̄

t
3 T1B̄

p
3 T1B̄

a
3

1122 3 Ca
3 Cp

3 T2C
a
3 C̄a

3 C̄p
3 C̄t

3 T1C̄
t
3 T1C̄

p
3 T1C̄

a
3

1211 4 TCB
a
3 TCB

p
3 T1TCB

a
3 TCB̄

a
3 TCB̄

p
3 TCB̄

t
3 T1TCB̄

t
3 T1TCB̄

p
3 T1TCB̄

a
3

1212 5 Da
3 Dp

3 Dt
3 D̄a

3 D̄p
3 D̄t

3 T1Ē
t
3 T1Ē

p
3 T1Ē

a
3

1221 6 T1D
t
3 T1D

p
3 T1D

a
3 Ēa

3 Ēp
3 Ēt

3 T1D̄
t
3 T1D̄

p
3 T1D̄

a
3

1222 7 F a
3 F p

3 T1F
a
3 F̄ a

3 F̄ p
3 F̄ t

3 T1F̄
t
3 T1F̄

p
3 T1F̄

a
3

2111 8 TCT3B
a
3 TCT3B

p
3 TCT1B

a
3 TSTCT3B̄

a
3 TSTCT3B̄

p
3 TSTCT3B̄

t
3 TSTCT2B̄

t
3TSTCT2B̄

p
3 TSTCT2B̄

a
3

2112 9 T2D
t
3 T2D

p
3 T2D

a
3 TST3Ē

a
3 TST3Ē

p
3 TST3Ē

t
3 TST2D̄

t
3 TST2D̄

p
3 TST2D̄

a
3

212110 T3D
a
3 T3D

p
3 T3D

t
3 TST3D̄

a
3 TST3D̄

p
3 TST3D̄

t
3 TST2Ē

t
3 TST2Ē

p
3 TST2Ē

a
3

212211 T3F
a
3 T3F

p
3 T2F

a
3 TST3F̄

a
3 TST3F̄

p
3 TST3F̄

t
3 TST2F̄

t
3 TST2F̄

p
3 TST2F̄

a
3

221112 TCC
a
3 TCC

p
3 T1TCC

a
3 TCC̄

a
3 TCC̄

p
3 TCC̄

t
3 T1TCC̄

t
3 T1TCC̄

p
3 T1TCC̄

a
3

221213 TCF
a
3 TCF

p
3 T2TCF

a
3 TCF̄

a
3 TCF̄

p
3 TCF̄

t
3 TSTCT2F̄

t
3 TSTCT2F̄

p
3 TSTCT2F̄

a
3

222114 TCT3F
a
3 TCT3F

p
3 TCT2F

a
3 TSTCT3F̄

a
3 TSTCT3F̄

p
3 TSTCT3F̄

t
3 T1TCF̄

t
3 T1TCF̄

p
3 T1TCF̄

a
3

222215 0 0 0 0 0 0 0 0 0

Table 3.5: Keldysh structure of the K3 class.

3.4 Numerical gain

The numerical complexity of the vertex is very high, as was stated at the beginning of the
chapter. This is partly due to the fact that it scales multiplicatively with the number of
frequency grid points one chooses for every frequency type, be it bosonic or fermionic, but
factors as spin components and Keldysh structure also play an important role. Suppose
we sample the bosonic frequencies ωr from a frequency grid with Nbos points, the fermionic
ones νr and ν ′r from one with Nfer points and have number of integration points capped
by Nint, then the naive complexity of the full vertex scales as O (15 · 3 ·Nbos ·N2

fer ·Nint)
since the value of the vertex function, with 15 Keldysh and 3 spin components, must be
determined for every point in the three-dimensional frequency box and one integration
must be performed at every one of these points.

Reducing the number of spin components from three to two then means a mean speed-
up of 2/3; reducing the number of Keldysh components form 15 to the maximally 6 of the
K3 class means an additional speed-up of 2/5, so an overall factor of 4/15 is yielded by
these two reductions.
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Limiting the amount of frequencies an object depends on yields then a much lower
complexity, with the K2(′) classes scaling like O (Nbos ·Nfer ) and the K1 class only like
O (Nbos ). Thus, a natural hierarchy of numerical complexity is established, with compu-
tation times comparing as

τK1

τK3

∼ 1

O (N2
fer )

(3.48)

τK2

τK3

∼ 1

O (Nfer )
, (3.49)

meaning that the calculations of the K1 class are much faster than those for the K2 class.
Now, since the K3 ∼ O (U4) and K2(′) ∼ O (U3) , if U is sufficiently small, one can neglect
the contributions of one or both of these classes, yielding a speedup in the calculation
of several orders of magnitudes (as measured in seconds). This is a not a very general
simplification, since we do not necessarily want to limit ourselves to the U � 1 case.
Nonetheless, this decomposition is also useful for its physical interpretation.

The realizations above then give us a clue on how to speed-up the calculations of the
K2′ and the K3 classes: have class-dependent frequency grids with different number of
points, i.e. N

(2)
fer ∼ N

(2)
bos � N

(1)
bos := Nbos. This trick does not change the scaling of the

complexity of K2(′) or K3, but does reduce the required computational time greatly. The
challenge then shifts to laying these fewer frequencies in such a way, that the main features
of the respective classes are nonetheless captured.

In contrast to the vertex, the self-energy has a complexity O (2 ·Nfer) , so it is similar
to a K1 object, since Nbos ∼ Nfer . This means that there is no need to parametrize
it in an efficient way and our particular focus with the vertex is justified. This remark
concludes our discussion of the parametrization of the vertex. In the next chapter, we
turn our attention to how one may approach the implementation of a code to make these
calculations.



Chapter 4

Implementation

In this Chapter we will discuss a C++ code capable of numerically determining both the
self-energy and the vertex with full frequency dependence for the single-impurity model, the
challenges it poses, data flows that allow for a more efficient calculation and considerations
relevant for generalizing it to more general, higher dimensional models. We assume some
familiarity with C++ or, at least, an object-oriented programming language as well as with
the parallelization tools OpenMP as well as MPI, though most of the Chapter can be
understood on the basis of the physical equations being programmed.

4.1 Structure

To explain the structure of the code, we opt for a bottom-up approach, i.e. we begin with
the simplest classes and structures in the code and work our way up to the most complex
ones, trying to give the clearest overview possible of the dependencies of these objects on
one another. We also give a step-by-step guide for the implementation and a visualization
of the code structure in App. B. Though the central aspect of this work revolves around
mfRG flows, we give the overview of the code structure for both flowing and non-flowing
calculations, since the latter have some important caveats and are fundamental in the
development of such a code, both for benchmarking and result-producing purposes. For
this discussion we will differentiate between physical concepts and computational instances
by writing the latter in typewriter font. Hence a self-energy models the physical self-
energy Σ.

4.1.1 Global parameters

Any calculation must start with the definition of the global parameters describing both
the physical system and the numerical aspects of the simulation. The global parameters
hence fall into five main categories: physical parameters, frequency grid parameters, flow
grid parameters, Keldysh and spin structure parameters and technical parameters.
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Physical parameters These make reference to the values which enter the single-impurity
Anderson model, i.e. in our case, the numerical value of the level broadening Γ, the inter-
action strength U, the temperature of the system T, the chemical potential µ (which we
always set to zero), the onsite energy of the local level ε and the bias voltage V across
the impurity. The equilibrium case corresponds with V = 0. Calculations outside of equi-
librium mean a voltage offset is present. We choose this offset to be symmetrically split
between both leads, i.e. we adjust the chemical potentials of the leads to ±V/2.

For our units we make the conventional choices kB = e = ~ = 1. Further, to set
an energy scale, we choose U = 1. The reason behind this is that, with this choice, a
hybridization flow in U/(Γ + Λ) = U/Γeff yields results, in one run, for all interaction
strengths between U/([Γeff ]ini) ≈ 0 and U/Γ = Γ−1. This implies a massive reduction in
computation times, but it relies heavily on the fact that every point in a fRG-hybridization
flow corresponds to a physical system at the respective interaction strength. We actually go
one step further and exploit the way Yamada writes the propagators [16] (recall Eq. 2.50),
and implement the flow Λ → 0 actually as ∆ → Γ, and think of the effective interaction
strength as U/∆. This is advantageous for comparing our results with ones produced with
methods like NRG, where the energy units are set through the bandwidth ∆. Hence, and
thanks to our conventions regarding the definition of Γ [7], ∆NRG = 1/2 and, hence, a
simple conversion rule can be derived

UNRG

∆NRG

=
UfRG

∆fRG

UNRG

1/2
=

1

∆fRG

⇒ UNRG =
1

2∆fRG

(4.1)

where we have UfRG = 1 by our convention, ∆NRG = 1/2 and ∆fRG = Γ+Λ
2

, as defined in
Chap. 2. Equation (4.1) implies that for every UNRG, there exists a corresponding Λ along
the fRG-flow so that the physical system described by both methods is the same. Due
to the huge gain that it implies being able to probe interaction strengths from zero up to
U/Γ in one run, we adopt this convention at the expense of having a separate one from
the conventional one used for NRG. Notice that similar unit-conversion calculations must
be made for every relevant energy scale in the system (T/U or V/U in our case).

Frequency grid parameters The end points Ω− and Ω+ of the sampling intervals
[−Ω−,Ω+], and the number of points to have per grid and per kind of grid: N

(1)
bos, N

(2)
bos, N

(3)
bos

for the bosonic grids and similarly N
(1)
fer , N

(2)
fer , N

(3)
fer for the fermionic ones. For simplicity,

we usually choose Ω− = Ω+ in order to have symmetric frequency grids and N
(i)
bos = N

(i)
fer ,

as to have equal bosonic and fermionic frequency grids, though the possibility for different
values here is supported. Our implementation requires Ω± > 0, since we want to always
include a neighborhood of points around zero.
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A naive approach to sampling the points in the interval [−Ω−,Ω+] would be a linear
distribution of the points between the limits. However, experience showed this to be
extremely inefficient since the features of both the self-energy and the vertex are centered
around ν = 0 and ω = 0. Hence, a higher density of sample point is needed around the
origin and fewer must be taken the further ν or ω is from zero.

To this end we rely on a similar trick to the one used to map an open interval to R.
Our proceeding is taking a function f , defined as

f(ω) =
Ωscaleω|ω|√

1− ω2
(4.2)

to map only the limits ±Ω± with the inverse function of f to X± := f−1(±Ω±) ∈ (−1, 1),

then choosing N
(i)
bos/fer points evenly distributed between these two and then mapping them

under f−1 back to the original interval. Notice this strategy guarantees that, if Ω+ = Ω−

and the number of sampling points is odd, 0 will be contained in the final grid.
The form of f ensures that the density of points around 0 and until |ω| . Ωscale increases

quadratically as |ω| → 0. Note that Ωscale must be carefully selected, for a too high density
of points around zero implies a too narrow resolution for the tails at large absolute values
of the frequencies.

Flow grid parameters Apart from the frequency grid, we also have a fixed Λ-grid for
the integration of the ODE. This integration is done with a regular 4th-order Runge–Kutta
algorithm. However, to cover many orders of magnitude in energy, start at a high-enough
energy scale and be able to resolve with the required precision at the end of the flow, we
implement a logarithmic grid for this purpose.

The mapping strategy is similar as that of the frequency grids, namely define Λini and
Λfin, map these to the open interval [0, 1) with the inverse of a carefully chosen function g,
lay a linear grid of nODE points between these two and then map all of these back to the
original interval with g. For our work, we always have Λfin = 0, since that scale represents
the full solution of the model at interaction strength U/Γ (since the units are set by U = 1,
the only other energy remaining at Λ = 0 is Γ).

The function we use for this mapping is

g(Λ) = log10

(
1 +

Λ

Λscale

)
, (4.3)

where Λscale must also be picked to carefully as to yield many-but-no-more-than-needed
points in the vicinity of Λ→ 0, where the calculations take the longest.

Keldysh and spin parameters This set of parameters fixes the number of Keldysh
components for the computation and includes the lists of the corresponding indices that are
independent, based on the tables presented last chapter. Also, here are included the fixed
combinations of indices that yield an odd sum of Keldysh indices for the efficient handling
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of the bare vertex. The indices for non-zero entries of the bubbles are also included here
(named BK in Chap. 2). Since the aim of the code is to be generalizable to more complex
and, maybe, not SU(2)-spin-symmetric systems, we also include a spin index, which is the
number of required pair of spin components needed. For the SIAM, this is set to 1 since we
have V and V̂ . This structure allows us to implement the Ti transformations of Chapter 3
more efficiently than if we did not store the spin components in pairs.

Technical parameters The technical parameters concern technical details of the com-
putation. Most of them are preprocessor macros that allow for some simplified run, or for
the turning on and off of diagrammatic classes and setting the number of loops. These ones
also include tolerance of the integrator, a component of the code which will be discussed
later, and the one for the interpolating functions, since experience showed that this could
be a bug-prone component of the code when running it on different architectures.

The other technical parameters of importance are the ones defining the flow, i.e. the reg-
ulator to be used. Until now, the only one that has been implemented is the hybridization
flow, i.e. Γ

2
→ Γ+Λ

2
in the denominator of GΛ, which was discussed in Chapter 21. Since the

mfRG should be regulator independent, implementation of various regulator possibilities
to test this hypothesis is still needed, yet it is already supported.

4.1.2 The self-energy class and the loop function

The self-energy class is defined by one vector of length 2 · N (1)
fer , which is a placeholder

for the retarded self-energy in the first half and the Keldysh component in the second half,
and a complex value, which is the Hartree shift of ΣR, noted ΣH , and is independent of ν
and Λ.

Calculating ΣH is not as straightforward as a naive calculation would suggest and for
the details thereof we refer the reader to either [6] or [7]. Taking causality into account, the
result is then proportional to the integral over the lesser Green’s function G<, which can
be analytically carried out in the particle-hole-symmetric case. Then, ΣH = U/2. Note
that there is no Hartree contribution to ΣK .

Every self-energy has a value setting and two value reading functions, one discrete
and one continuous. The continuous, value-reading one receives a real frequency ν as input
and, depending on whether ν ∈ [−Ω−,Ω+] or not, it interpolates linearly between the saved
values, returned by the discrete value-reading function, or it returns ΣH in the retarded
case or 0 for the Keldysh component. The value setting function stores the results of the
loop function in the right component of the vector of the self-energy.

The loop function calculates the L function of Eq. (2.22). In order to do so, the
function requires a fullvert (an object to be described later), a propagator (discussed
next) and a boolean, specifying which spin components appear in the calculation. Due to
the vertex’s internal symmetries and the mappings these do to the frequencies, the limits of

1Notice that this replacement looks trivial if one writes it in terms of ∆, namely ∆→ ∆Λ.
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the integral of the implementation of the loop function depend on the frequency at which
the result is being calculated, and looks as follows

Σ(ν) = L(Γ, G) = − 1

2πi

Ω++|ν|∫
−Ω−−|ν|

dν ′Γ(ν, ν ′, ν) ◦G(ν ′) , (4.4)

where we have omitted the Keldysh indices for simplicity. These turn out to be good-enough
numerical approximations of the analytic limits, which are ±∞, since in our implemen-
tation the vertex is only stored on the frequency grids and is assumed to have decayed
enough to be negligible outside of these. These limits however imply that large values of
ν see integration intervals [−2Ω−, 2Ω+].

The last parameter which L receives is notably not present in Eq. (2.22) and its inclusion
is based on the need of having non-flowing calculations. The spin components of the vertex
that enter the calculation are different depending on the calculation: the static case only
needs V , whereas both V and Γσσ|σσ = V + V̂ enter in the flowing scenario to yield a total

vertex contribution of 2V + V̂ .

4.1.3 The propagator class

A propagator object is defined with a Λ scale, two self-energies and a char encoding the
type. The two self-energies are required for generality, since a differentiated propagator
will include dependencies on ΣΛ as well as on Σ̇Λ.

The different types of propagator the class supports are: (a) the regular propagator
GΛ; (b) the single-scale propagator SΛ; and (c) the Katanin extension ĠΛ = S +G · Σ̇ ·G
For each one of these, the constructor of the Propagator only initializes with a non-zero
value the required self-energies. For G and S the differentiated Self-energy Σ̇ remains
uninitialized but it is required for initialization of G.

The class also provides the objects with an evaluating function, which returns the
value of the retarded or Keldysh component at a frequency ν. This function computes the
values according to Eqs. (2.54) or (2.55) or the respective formulas for S or Ġ. Hence it is
imperative to initialize the propagators with the corresponding Λ scale at which they are
to be calculated. Since in the mfRG formalism we include regulators in the propagators,
the implementation of the evaluation functions depends on the regulator choice.

Taking advantage of the fact that the self-energy’s interpolating function handles all
the cases of frequencies, the interpolating function of the propagator then simply returns

GR(ν) = GR
(
ν; ΣR(ν)

)
or

GK(ν) = GK
(
ν; ΣR(ν),ΣK(ν)

)
.

(4.5)

4.1.4 The bubble class and the bubble function

A bubble object is, as well as Πr is, an aide in the calculations. It is comprised of two
references to two propagators and a boolean, to handle both differentiated and regular
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bubbles. In the first case, the propagators must be of the right type to yield either
GS+SG or GĠ+ ĠG. The objective of storing only the references to the objects and not
the objects themselves is to optimize both creation and evaluation time, as the information
must not be reallocated in this case.

As the loop function was the code implementation of L, the same is true for the bubble
function and Br. As such, the bubble function takes two fullverts, two propagators to
create the bubble, a char signaling the channel of the bubble and a bool marking whether
the bubble is differentiated or not.

The bubble function then defines the prefactors that accompany each term in the bubble
sum. Both the a and p channels have a prefactor of 1, whereas the t channel includes a
−1, product of the exchange symmetry with the a channel. Here, we’re explicitly assuming
that the contributions of the p channel are cross-symmetric and hence, due to the addition
over spins, we automatically include twice the usual 1/2. Should cross-symmetry not be
respected, the code is made as to allow a simple change to the inclusion of the right
contributions.

Afterwards comes the parallel calculation of the actual contributions to the vertices,
i.e. equations with a RHS of the form

γ̇i0r (ωr, νr, ν
′
r) =

∑
i2∈BK

∫
dν ′′r
2πi

Γi
r
1(i0,i2) (ωr, νr, ν

′′
r ) Π̇i2

r (νr1 , ν
r
2) Γi

r
3(i0,i2) (ωr, ν

′′
r , ν

′
r) (4.6)

or the non-flowing version without the derivatives, and i1 and i3 are the functions defined
in Eq. (2.71).

Now we look at how the diagrammatic decomposition of Eq. (4.6) looks like, i.e. given
that γ̇r =

∑
iKri , what the diagrammatic classes are that contribute to each of these

derivatives. Notice that not all classes can contribute to all derivatives, since, for instance,
diagrams in the K3 class, by definition, do not fulfill the requirement of having, say, two
lines connected to the same vertex on one side. Thus, no terms with K3 can appear in cal-
culations pertaining to the K1 class. We hence classify what classes fulfill the requirements
to contribute to the flow of which others. Our results of this analysis are summarized in
Table 4.1.

L R

SV Γ0,Kr1,Kr2′ Γ0,Kr1,Kr2
DV Kr2,Kr3, γr̄ Kr2′ ,Kr3, γr̄

Table 4.1: Categorization of diagrammatic classes.

Here, SV and DV stand for “same vertex” and “different vertices”, alluding to whether
or not both lines to the left (L) or the right (R) of the vertex connect to the same or to
different vertices. The inclusion of γr̄ =

∑
r′ 6=r γr′ is due to the multiloop feed-back of

diagrams of channels r′ to calculate higher order contributions to channel r. Through this,
one then gets Table 4.2 for the contributions to K̇ri .
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(a)

(b)

Figure 4.1: Visualization of the diagrammatic classes that enter into the flow equations of
the others, both in the a channel. (a) Combinations that have two lines connected to the
left bare vertex and, hence, correspond to the entry in the first column and first row of
Table 4.1. (b) Diagrams that have two legs on the right side connected to different bare
vertices. The Kt3 aids to visualize the contributions of γā.

L R

K̇r1 Γ0,Kr1,Kr2′ Γ0,Kr1,Kr2
K̇r2 Kr2,Kr3, γr̄ Γ0,Kr1,Kr2
K̇r2′ Γ0,Kr1,Kr2 Kr2′ ,Kr3, γr̄
K̇r3 Kr2,Kr3, γr̄ Kr2′ ,Kr3, γr̄

Table 4.2: Contributions of diagrammatic classes to the flow equation of others.

Notice that flowing calculations do not need to ever make calculations of non-differentiated
K1-objects, since non-differentiated objects only appear in the multiloop corrections and
nested loop integrals appear exclusively in diagrams including K2(′),K3 and γr̄ contribu-
tions.

4.1.5 The vertex class and its subclasses

After having performed the calculations of the bubbles, i.e. the contributions that define
the values of the independent components of the vertex, the task of storing them is in
order. This takes place in the very large placeholder which is the vertex class. In essence,
the purpose of this class is to most efficiently store and make accessible for read-out the
information stored in it.

In order to do so, the vertex class stores a vector of fullvert objects, which are full
vertices with two spin components, related to one another. The advantage of this structure
is that it allows for a quick generalization of the code (for when, for example, SU(2)-spin
symmetry is broken), where the vertices may have more than one pair of interdependent
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spin components. Hence, in our implementation and for the SIAM, the computational
object that actually has the information of the (physical) vertex is a fullvert, which is
in turn a collection of smaller, vertex-type objects: an irreducible vertex, an avert, a
pvert and a tvert.

Clearly, the rverts (with r ∈ {a, p, t}) represent the γr, whereas the irreducible

vertex is the fully irreducible part R. Since we are working in the parquet approximation,
the irreducible vertex is, basically, just a 16-entry vector per spin component with values
U/2 or −U/2 according to Eq. (2.65).

The rverts have much more structure. Aside from each one of them having a K1,
a K2 and a K3 vector for the independent components (remember the K2′ class has no
independent components of its own), each one also contains lists that codify the informa-
tion reported in Tables 3.1-3.5. These objects have value-setting and both discrete and
continuous value-reading functions. An important aspect of this function is that it delivers
0 if any one of the input frequencies is outside of the saved interval.

When evaluating any rvert at a combination of frequencies (ωr, νr, ν
′
r) (i.e. already

conveniently parametrized for an rvert), the process is split for each one of the classes.
The evaluating function of any class will first determine, for a given spin and Keldysh index
input, which independent component the combination refers to and, based on which list (of
the stored ones in each rvert) these indices are in, the transformations that must be carried
out on the set (ωr, νr, ν

′
r) are performed. These transformations are the ones we explained

in Chap. 3 and in App. A. Once this has happened and it has been determined whether it
is necessary to complex conjugate the result or swap the channel in which it is necessary
to read out, the required numerical value is calculated by an interpolating function (linear,
i-dimensional for Ki) and returned. Since these functions are called, typically, hundreds of
thousands of times in a run, an efficient implementation is paramount.

Naturally, the rvert classes allow for a readout of the value for frequencies which are
not in the r channel parametrization. This is handled so that the transformations cited
between Eq. (3.2) and Eq. (3.7) are used whenever needed. This is specially useful for
handling expressions like γr′ (ωr, νr, ν

′
r) efficiently, which is of extreme importance since

these kinds of terms and cross-channel contributions appear in the flow equations of the
vertex.

4.1.6 The State class

A State is, as it name should suggest, a physical state of the system, which encompasses
an energy scale Λ, a self-energy and a vertex. If one has a full State at a given Λ,
this then contains the whole information of the system at that scale. States themselves
do not have much functionality, as they work only as placeholders of the whole physical
information, but play the role of being an information-carrier class.
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4.2 Technical details

In this section we will discuss some of the most technical details of the code implementation,
mostly having to do with locations in which the code can be parallelized and how it is
implemented.

4.2.1 Parallelization

Parallel computing is a very useful and important tool in high-performance computing
nowadays. The results presented in this thesis could not have been accomplished without
parallelization. We assume the reader has some basic knowledge on parallelization schemes
and tools and thus neither MPI or OpenMP need an introduction.

In the whole code, there are mainly two locations in which the code runs in parallel:
the loop and the bubble functions. Both have in common that the same information must
be used for several, procedurally-equal, disjoint processes i.e. none of the processes depend
on any result of the others.

Given the relative simplicity of calculating the values of the self-energy (which scales

like O(N
(1)
fer )), we only make use of OpenMP at this stage to avoid the overhead associated

to the MPI information-gathering operation MPI Allgather.

The part of the code doing the calculation of the bubbles is parallelized using both
MPI and OpenMP. The MPI parallelization is done only over the two independent Keldysh
indices of the LHS for the K1 class, whereas for the K2 and K3 classes it is implemented
so as to run over the five or six Keldysh indices and also over the bosonic frequencies.
The remaining points are taken over by OpenMP. Thus, one master index is defined and
run over all possible combinations and the calculation goes over one long vector per MPI-
thread, which at the end must be sorted into the right order. The master index must
be converted to a combination of Keldysh and frequency indices. This is done with a
generalization of counting-basis-change calculation, in which the base is different for every
unit, i.e. units are counted up to a different number than the tens are and so on (somewhat
similar to the imperial system of units).

This conversion is programmed in the following form, in order to avoid the computa-
tionally expensive modulo calculation. Let B = {b1, b2, . . . , bn} be a set of positive integers,
where each bi is the basis of the i-th unit. Also, let I ∈ {1, 2, . . . , b1 · b2 · . . . · bn} be a mas-
ter index. Clearly, if the 1-st units (from left to right) are counted in base b1, the 2-nd in
base b2 and so on, I takes values in all the possible combinations of numbers defined by
the counting bases B. Define then a multi index i = (i1, i2, . . . , in), so that 1 ≤ ij ≤ bj for
each j ∈ {1, . . . , n}. Thus,

i1 =

⌊
I

b2 · . . . · bn

⌋
, (4.7)

since an increment of one in b1-units needs b2 · . . . · bn unitary increments. For i2 the
calculation is similar, but one needs to remove all the already achieved b2 units, counted
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by i1. Hence, one obtains

i2 =

⌊
I

b3 · . . . · bn

⌋
− i1b2 . (4.8)

A straightforward calculation then yields the generalization

ik =

⌊
I

bk+1 · . . . · bn

⌋
−

k−1∑
j=1

(
ij

k−1∏
l=j+1

bl

)
(4.9)

This implementation is needed in order to avoid the modulo operation and, also, have
a vectorized operation, which can be parallelized.

4.2.2 HDF5 data format

In order to store the data, we use the hierarchical data format HDF5. Its benefits are
speed in saving newly calculated results as well as in reading out saved data. The “multi-
dimensional” system allows for several layers of data, stored hierarchically, making use
of the natural structure that the State uses. We store the information in the form of a
self-energy and a vertex, which is then further separated by channel and by diagrammatic
class for every scale Λ at which one decides to export the data. This decomposition makes
possible the study of pairing-channel instabilities and gives a tool, together with the phys-
ical interpretation of the diagrammatic classes, to analyze these instabilities, should they
arise. The appearance of a divergence (or a numerical signal for it) in a particular channel
would mark some interactions as being more important than others in the description of
the physical behavior of the system. A specific class diverging would give information on
the origin of the instabilities, since these posses also a physical interpretation. Therefore
the access to this sorted information is of remarkable importance for the study of more
general models. Regarding implementation, we used the same structure as [25], which is a
standard way of achieving maximum flexibility with the handling of the data.

4.2.3 Integrator

One of the most important and recurrently used parts of the code is the integrator. As
with most numerical integrations, the problem of achieving a high accuracy with the least
amount of sample points was a major issue of the work. Through trial-and-error we ended
up settling for a slightly modified version of a standard adaptive integrator which applies
the 13-point Kronrod extension to the standard 4-point Gauss–Lobatto quadrature on
every subinterval whenever needed, according to what is presented in [26].

The recipe for this integrator is straightforward: for a given interval, evaluate the
function at thirteen points, weigh the results according to the fixed weights of the Kronrod
quadrature and compare the result to applying the same quadrature to five subintervals of
equal length. If the absolute value of the difference of the results is within the tolerance
bounds, the result is accepted and returned. Otherwise, the routine is started in each one
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of the five subintervals, until convergence or until the point separation becomes smaller
than the tolerance.

A very positive aspect of this integrator is its speed in comparison to others that we
tested. Due to the fact that we work with complex-valued functions, regular library-
integrators (like GSL) require that the integrand be split into real and imaginary part, so
as to have real-valued functions. However, since we use the absolute value of the difference
of the results, we just integrate once and directly obtain the result, even when this is
complex.

4.3 Data analysis

In this section we cover the checks and analyses that we perform once an mfRG flow
has been run. These checks are divided into three main categories: direct, derived and
fulfillment checks.

Direct checks verify physical conditions that the quantities computed directly must
fulfill (which are not already imposed by the implementation). Important examples are
the conditions ReΣK(ν) = 0 implied by the fluctuation-dissipation theorem (FDT) and
ImΣR(ν) < 0 required by causality. The susceptibilities must also fulfill the bosonic version
of the FDT [14]. More generally, the real part of the Keldysh component of any two-
particle correlator must vanish. Checking these conditions turns out to be an efficient tool
for debugging the code.

Derived checks make up the second category of tests. They are performed on quantities
derived from those computed by the code. Examples are checks on normalization of the
spectral function A(ν) or on its value at zero frequency, which is known analytically.
Since A(ν) is the local density of states at a frequency ν and each point of an mfRG-flow
represents a solution to the model at the given energy scale, the integral of the spectral
function must remain constant, regardless of the conditions imposed on the system. Also,
for calculations in equilibrium, the Friedel summation rule implies that the value of A(0)
is fixed and, thus, it should not change during the flow [27]. Now, note that A(ν) =
− 1
π
ImGR(ν), thus A(0) = 1

π∆
effectively checks that ΣR(0) = ΣH , i.e. that the mean field

solution is not renormalized along the flow. Since the addition of a bias voltage would
cause transport through the impurity, one would expect A|V 6=0(0) < A|V=0(0).

The third type of check establish how well the equations that we are actually trying to
solve are fulfilled. We take ΓfRG and ΣfRG from our results and use them to calculate

ΓΛ
BS = Γ0 +

[
γΛ
r

]
BS

(4.10)

with [
γΛ
r

]
BS

= Br

(
ΓΛ

fRG,
[
IΛ
r

]
fRG

)
(4.11)

and

ΣΛ
SD = L(Γ0, G) + L

(
Bp

(
Γ0,Γ

Λ
fRG

)
, G
)
. (4.12)
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Note that everything on the right-hand-side of Eqs. (4.11) and (4.12) is extracted from
the results obtained through a mfRG-flow. Thus, a qualitative and quantitative comparison
between the thus obtained “parquet” objects ΓBS and ΣSD allows us to draw conclusions
on how well our code solves the equations of the parquet formalism.

To this end, we define at this stage norms for the objects being considered. For this
purpose, two natural choices exist since numerical functions have a certain duality to them.
If one thinks of Γ = Γ0 +

∑
r∈{a,p,t}

∑
i∈1,2,3

Kri and ΣR/K as vectors storing some values, then a

linear-algebra-motivated vector norm || · ||p is sensible. However, thinking of this functions
as integrable functions would motivate some kind of Lp-norm based on integrability, which
is guaranteed as long as the system does not undergo a phase transition [28]. We point out
that, though both norms are equivalent for arguments of convergence of sequences (as this is
a topological property), they are not equivalent for quantitatively analyzing the data, with
the finite-dimensional vector-space norm giving more importance to features concentrated
around zero, since in our implementation most of the N

(i)
bos/fer are below Ωscale.

Given that our interest is to benchmark our method and subject it to strong tests, we
opt for the vector-norm, since for frequencies around and close to ν = 0 and ω = 0 is where
correctly calculating the behavior of both self-energy and vertex is the hardest. Hence, we
opt for the following definition of a p-norm for self-energy and vertex, thinking of them as
vectors

||Σ||p =

( ∑
iK=R,K

∑
νi

|ΣiK (νi)|p
)1/p

(4.13a)

||K1||p =

 ∑
iK=Kindep

1

∑
r∈{a,p,t}

∑
ωi

|[Kr1(ωi)]
iK |p
1/p

(4.13b)

||K2||p =

 ∑
iK=Kindep

2

∑
r∈{a,p,t}

∑
ωi,νj

|[Kr2(ωi, νj)]
iK |p
1/p

(4.13c)

||K3||p =

 ∑
iK=Kindep

3

∑
r∈{a,p,t}

∑
ωi,νj ,ν′k

|[Kr3(ωi, νj, ν
′
k)]

iK |p
1/p

, (4.13d)

where Kindep
i is the set of indices of the independent components of the vertex, and the

frequencies νi, ωi, νj and ν ′k are sampled from the corresponding frequency grids. Notice we
include automatically the whole information of all channels and all independent Keldysh
components in the vertices, in order to have a single number per diagrammatic class. The
parameter p is completely free in our implementation. We also include support for the
limit p → ∞, which represents the maximum norm. Throughout this work we use the
choice p = 2 for the Euclidean norm and thus omit the subscript.

This concludes our discussion of the implementation of the code and we now turn to
the presentation of the results obtained.
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Results

In this chapter we present and analyze the results our code is able to produce. We divide
the Chapter into five parts: (i) a discussion on the specifications used for the productions
of results; (ii) the presentation of calculations in equilibrium; (iii) an analysis of these
according to the criteria presented in Sec. 4.3; (iv) an analysis of how the error of our
computations scale; and (v) a brief overview of the results we obtain for non-equilibrium
calculations and for different temperatures. Since the code is still in development and the
project is ongoing, we only present results which include up to the K2 class and that go
up to two loops. However this incomplete flow already allows us to get a glimpse at the
capabilities of the mfRG. We also compare our results with previous advances done in the
field of fRG, reported in [6], which we briefly introduce here.

Static-feedback fRG Conventional fRG, as was mentioned in Chap. 2, has some bias
towards ladder-type diagrams, since these are the ones which are calculated fully along
a fRG flow, whereas diagrams that include channel-mixing are computed only partially.
Hence, a way to improve on the conventional fRG without fully extending the formalism is
then to statically simulate the contributions of the complementary channels r′ in calcula-
tions for channel r. This is, in essence, what the static-feedback approximation, as used in
[6], does. Since the approximation does not improve on the frequency parametrization of
the vertex, it can only be meaningfully implemented in our case for calculations including
the K1 class only1. For details on the derivation see Chap. 6 of [6].

The important result for us is that, to statically include the contributions of the com-
plementary channels, an extra constant term must be added to the value of the vertex. For
channels a and t, Ka/t1 (ω = 0) must be added. The p channel behaves slightly differently,
with the static contributions being Kp1(ω = 2µ). Hence, a fRG calculation in the static-
feedback approximation would see the following replacements on the right hind side of the

1Calculations that include either up to K2 or to K3 automatically include fully frequency-dependent
channel mixing diagrams and, hence, automatically improve on the static-feedback approximation.
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flow equations:

Ka1(ωa)→ Ka1(ωa) +Kp1(2µ) +Kt1(0) ,

Kp1(ωp)→ Ka1(0) +Kp1(ωp) +Kt1(0) ,

Kt1(ωt)→ Ka1(0) +Kp1(2µ) +Kt1(ωt) .

(5.1)

Having introduced this approximation, we are now ready to present our obtained results.

5.1 Specifications of the calculations

Whenever one develops a new tool of study, its effectiveness at predicting results in known
regimes must be tested. Hence, we first present our results for cases in which the solu-
tion of the SIAM is known. This means we contrast our obtained results with those that
the numerical renormalization group (NRG) [12, 29] provides. The NRG has, since its
introduction by Wilson in 1975, been a standard tool for solving quantum impurity sys-
tems, since it is specially tailored for this purpose. Hence, we regard it as our benchmark
standard.

5.1.1 Values for the constants

In order to have a standardized testing ground for our method, we defined fixed values
for all of the parameters named at the beginning of Chapter 4. We provide Table 5.1 for
reference of the chosen values.

5.1.2 Initialization

The initialization of the flow is a very important specification for the analysis of the results,
since it yields the starting point of the calculations. In theory, one would wish to start
the flow at Λ→∞ or, equivalently, at U/∆ = 0. At this point, initializing the fullvert

to have only the irred vector different from zero containing the physical information of
Γ0 and the self-energy to the Hartree term ΣH would be ideal. Since we are however
limited by floating-point arithmetic, we must start the flow at finite Λini, which means we
need to make pre-start computations to initialize the self-energy and the vertex from. This
we do using second-order perturbation theory. Hence, both the vertex and the self-energy
are non-trivial at the beginning, with the exact values following:

Kr1 = Br(Γ0,Γ0) , (5.2a)

Kr2 = 0 , (5.2b)

Σ = ΣH + L(Ba(Γ0,Γ0), G)

≡ ΣH +
1

2
L(Bp(Γ0,Γ0), G) .

(5.2c)
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Parameter Value

Physical parameters T 0.01

µ 0

U 1

Γ 1
3

V 0

Freq. grid Ω := Ω+ = Ω− 300

Ωscale 25

N
(1)
fer = N

(1)
bos 301

N
(2)
fer = N

(2)
bos 201

ODE flow. grid Λini 1000

Λfin 0

Λscale
1

200

nODE 50

Technical parameters interpolate tol 10−9

integrator tol 10−6

Table 5.1: Table of values of parameters used for result production runs. Setting U = 1
means that energy, temperature and frequency are measured in units of U .

Here the retarded component of ΣH is U/2 and its Keldysh component vanishes. Note
that the constraint of spin conservation implies that Bt(Γ0,Γ0) = 0, which yields a null Kt1
at the beginning of the flow.

The assumption behind this truncation at second order is that, given that U/∆ ≈ 1/500
at this stage, the incursion in an error of order O ((U/∆)3) is acceptable. This is further
supported by the fact that we have Ω � Λini (cf. Table 5.1), which means that, at
initialization, both the vertex and the self-energy will not have completely decayed to
a negligible value, in comparison to their maximal ones, inside the sampling intervals.
However, since at Λini the absolute values of these functions is small (remember we would
start from these being exactly zero), we tolerate the starting error for this work. Extending
the sampling intervals implies having to increase the number of sampling points to still
be able to resolve the sharp features, which develop near to ν = 0 and ω = 0 as the flow
progresses. This means a much higher numerical cost, which we seek to avoid. Another
possibility to avoid this caveat is to reduce Λini to match the scale of Ω. However, this turns
out to yield a higher error at the beginning than our current version. A solution to this
trade-off problem can be to implement an adaptive frequency grid, which scales the limits of
the sampling intervals according to Λ along the flow. Another option is the implementation
of initialization conditions more consistent with the parquet equations. This could be
achieved by increasing the order of the perturbation theory calculated or iterating the
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initial condition until self-consistency is achieved. This second option is specially powerful,
since if ensures that the solutions generated by the code fulfill the parquet equations along
the flow for as long as the interaction strengths remain low enough for the multiloop fRG
not to break down.

5.2 Equilibrium results

In this section we present the main results of this work. These comprise the independent
components of the vertex with a physical interpretation as well as the self-energy. As
two-particle bosonic objects, the susceptibilities and, equivalently, the two independent Kr1
components of the vertex also turn out to have exact analytical properties that allow us
to call them retarded2 and Keldysh. The retarded component of the vertex, at K1 level,
corresponds to K11|21

1 for all channels and the Keldysh one to K11|22
1 for the a and t channels

and K12|12
1 for the p channel.

5.2.1 Susceptibilities

We begin by presenting the results of the spin susceptibility, which is, according to what
was discussed in Chapter 3, directly related to the values of K1/U

2.

Figure 5.1 shows that, as expected for small interaction strengths, U/∆ . 1, the
conventional Keldysh fRG scheme, i.e. only including the K1 classes performs pretty well,
as do also the flows including the K2 classes. The static-feedback approximation, which
starts to deviate already at low interaction strengths, will be analyzed later. That the
results with and without the K2 class are similar in this regime is hardly surprising, since
diagrams in the K2 class are of order ∼ O ((U/∆)3). We expect these contributions to
act as small corrections, mostly around ω = 0, where the solutions indeed separate. At
intermediate interaction strengths 1 . U/∆ . 4, these results allow us to confidently assert
that the conventional fRG breaks down. Panel (b) of Fig. 5.1 clearly shows that the results
of the K1 run strongly deviate from those of NRG. However, it is promising to see that:
(a) the inclusion of the K2 class, i.e. using a more complex frequency parametrization and
including channel mixing, improves drastically the behavior of the susceptibility; and (b)
the inclusion of higher loop corrections further improve on the approximation.

The inclusion of the K2 class, first at one-loop level, amounts to including diagrams
which are left out in the conventional fRG. An example of these are eye-diagrams of Ref. [5].
These are the kinds of diagrams that make up the building blocks of the diagrams that are
partially computed in this scheme, as are the simple loops in the case of the conventional
fRG. The extension of this truncation to include 2-loop diagrams calculates these diagrams
fully. In terms of what was said in Chapter 2, this amounts to partially simulating the

2Since we decided our convention for saving independent components in order of appearance on Table
3.1, we actually save advanced objects but through a simple complex conjugation we obtain the results for
the retarded objects we present here.
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Figure 5.1: χsp at three values of the effective interaction strength. A FDT requires that
ReχKsp = 0. We omit plots for it, since it remains below 10−12 for all interaction strengths
and all kinds of flows.

contributions of the Γ(6) vertex. Of all the results presented here, only the ones for 2-loop
calculations do this and, hence, really start to represent the capabilities of the mfRG.

Leaving out the K3 class means that we are still not fully computing all diagrams
that are generated along the fRG flow. This then leads us to incur in an error of or-
der O ((U/∆)4), which scales similarly as the error of the parquet approximation (recall
Sec. 2.2). This is then what implies the breakdown of all approximations for high inter-
action strengths U/∆ & 4. Important to point out is that with the current version of the
code, instabilities arising from the breakdown of the physical approximation cause the code
to idle and not converge anymore. This happens for U/∆ ≈ 5.9 for K2 2-loop; shortly after
the results of that run become non-physical.

Notably, the static-feedback approximation consistently underestimates the value of χsp,
be it the retarded or the Keldysh component. Moreover it slightly violates the fluctuation
dissipation theorem (FDT), with Re[χKsp]sf ∼ 10−10 in the worst case, several orders or
magnitude larger than numerical zero3 and the other results, yet still negligibly small.
This may lie in the kind of processes that the static-feedback approximation takes most
heavily into account, since it tries to account for a whole RPA-ladder for each channel and
add this contribution to the others.

3Floating point decimal expansion, the format of numbers used by computers [30], allows, with the
double precision format of C++ , to confidently say that anything below 10−16 is equivalent to zero.
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Figure 5.2: χKch at three three values of the effective interaction strength. A FDT requires
that ReχKch = 0. We omit plots for it, since it remains below 10−12 for all interaction
strengths and all kinds of flows.

Turning now over to the charge susceptibility (Fig. 5.2) we see a similar behavior as with
the spin susceptibility, which is quite encouraging. As well as before, the requirement of the
FDT (ReχKch = 0) is broken most strongly by the calculations with the static approximation,
but remain negligibly small. Curiously, the static-feedback approximation has in this case
the tendency to overshoot on the value of χch. Together with the previous results, this
indicates that the static inclusion of the complementary channels actually increases the bias
of fRG towards some specific kinds of processes. It also indicates that the approximation
fails strongly at resolving the vertex correctly. However, as will be seen later, it still
produces good results for Σ and A, so it retains a certain relevance. Notably, no comment
is made in [6] about the quality of the approximation in regard to the accuracy of the
vertex.

As noted in Chap. 3 and in [23], the charge susceptibility can be computed as 2Kt1−Ka1.
We observe that in the particle-hole symmetric case, χch = Kp1. This component of the
vertex always corresponds to the pairing susceptibility χpair [20] but, in the case we consider,
these two susceptibilities turn out to be exactly equal. This we observe for runs of all
configurations. A plausibility argument for this behavior in our case comes from the
last appendix of Ref. [4]. The authors provide there a proof for the equivalence of the
charge- and pairing susceptibilities for the 2-D Hubbard model for the case of half-filling,
i.e. particle-hole symmetric, evaluated at specific momentum values. Since the SIAM has
no momentum dependence, we expect the same kind of argument to apply for our case,
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specially since we observe the equivalence for equilibrium and non-equilibrium calculations
alike.

This match between the K1 components of the vertex yields an interesting and quite
useful relation between them: in the particle-hole symmetric case, one of the K1’s is re-
dundant. Hence, if performing calculations in a particle-hole symmetric setting, one can
save computation time exploiting this symmetry. Further, if the cross-symmetry of the p
channel is also respected, the more expensive computation of the t vertex can be avoided
(recall that the equation for V̇ t included evaluations of both V and V̂ , whereas V̇ a/p only
depend on V ). This could then effectively cut the computation time of the K1 class in half.
However, one must also consider, according to what was said in Sec. 3.4, that the compu-
tation times of K1 are negligible in comparison to those of any of the Kr2. Although not yet
tested, we hypothesize that a similar relation holds for the more complex diagrammatic
classes. However, should this be the case, it will probably mix Keldysh components, since
the causal structure of the components does not correspond to simply retarded/advanced
or Keldysh.

5.2.2 Self-energy

Now we turn to the other directly calculated quantity, the self energy. By having only
one propagator in its flow equation and integration intervals of up to double the length of
the sampling intervals, there are several contentious points for the self-energy that must
be taken into account. First, since we take the vertex to be zero outside of the sampling
intervals, contributions of high-energy modes are not completely accounted for, leading
to unphysical behavior of the self-energy at the beginning of the flow. Thus, we observe
that ImΣR(ν ≈ 0) > 0 at the beginning of the flow, which breaks causality. However,
this error diminishes during the first steps of flow because, quite rapidly, the features of
both the self-energy and the vertex are completely contained in the sampling interval, as
Λ < Ω+. Thus, though in Fig. 5.3, very much at the beginning of the flow, we observe that
causality is broken in every case, further down in the flow this is corrected. We actually
see this already be solved at scale of U/∆ . 2. We note that this issue, as well as that
of a proper initialization, could be solved by the implementation of an adaptive frequency
grid, currently under implementation. Another possibility is to analytically account for the
relevant high-energy asymptotic contributions to the integrals of the vertex. We actually
explored this possibility but these turn out to trigger strong instabilities at more interesting
interaction strength regimes.

A noteworthy detail is how well the K2 2-loop results behave at intermediate/large
interaction strengths (U/∆ ≈ 4) for small frequencies. This frequency range is notoriously
hard to calculate correctly, yet these results agree perfectly with NRG. However, for in-
termediate values of the frequencies, K2 1-loop seems to fit better to the actual results,
indicating that there is room for improvement in the calculation of the mfRG loop cor-
rections. This is also exemplified in the appearance of unphysical features in the results
from the K2 2-loop flow. The bottom row of Fig. 5.3 shows that the self-energy develops
causality-breaking features, namely ImΣR 6< 0 and ImΣK(ν & 0) 6< 0. These unphysical
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Figure 5.3: Σ at three values of the effective interaction strength. Notice the violation of
causality for high values of U/∆ as ImΣR > 0. ReΣK < 10−12 throughout and is, hence,
omitted from the plots.

behaviors quickly translate into large discontinuities of the functions, leading to the inte-
grator failing to converge and the calculations to fully break down. These features may
be caused by insufficient accuracy in resolving the high-frequency asymptotic behavior of
the vertex. Note that, in the Keldysh formalism, it is much harder to determine how the
components of the vertex decay than in the Matsubara case, where all components of the
vertex follow a simple inverse power law.

An equally remarkable fact is that, although the static-feedback approximation fails to
improve on conventional fRG for the calculation of the vertex function, it does so on its cal-
culation of both components of Σ. This is striking, given that it fails to determine correctly
all components of the vertex (disagreement with both susceptibilities presented previously
imply this thanks to their relationships with the K1 components of the vertex). It even
fares better than the K2 1-loop calculation for small frequencies and intermediate/large in-
teraction strengths. This may, however, be more a coincidence than an actual achievement
of the method since one would rather lean towards discarding a solely K1-based approach
at these interaction strengths.

5.2.3 Spectral function

Having presented and discussed the results we obtain for the directly calculated quantities,
we now turn to the derived one: the spectral function. This is a very important quantity,
since it describes the excitation spectrum, i.e. the local density of states of the system. As
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mentioned in Sec. 4.3, Friedel’s sum rule fixes A(ν = 0) = 1
π∆

and the integral of A over
all frequencies must be conserved throughout the entire flow. Hence, we define a way to
measure the latter condition as

N (U/∆) :=

∫
dνAU/∆(ν) . (5.3)

Hence, the closer the normalization N is to 1, the better the condition on normalization
of the spectral function is fulfilled.

0.0

0.5

1.0

A
(ν

)π
∆

U/∆ =2.0
K1

K1 – sf

K2 1-loop

K2 2-loop

NRG

−0.4 0.0 0.4
0.9

1.0

1.1

0.0

0.5

1.0

A
(ν

)π
∆

U/∆ =4.0
K1

K1 – sf

K2 1-loop

K2 2-loop

NRG

−0.4 0.0 0.4
0.9

1.0

1.1

−4 −2 0 2 4
ν/∆

0.0

0.5

1.0

A
(ν

)π
∆

U/∆ =5.0
K1

K1 – sf

K2 1-loop

K2 2-loop

NRG

−0.4 0.0 0.4
0.9

1.0

1.1

Figure 5.4: A at three values of the effective interaction strength. Notice the slight hint of
the NRG results to show Hubbard bands, notably missing in all of our results, probably
due to the absence of the K3 class.

As before with the self-energy and the susceptibilities, we see in Fig. 5.4 an increase in
performance of the mfRG solutions as one includes more and more components into the
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calculation. Notable is that all four methods give very good results for low to intermediate
values of U/∆, even when the self-energy already shows stronger deviations in this regime.
This is, however, due to the decreasing impact that the values of the self-energy have on the
spectral function as |ν| increases. To see this, consider the full expression for the spectral
function

A(ν) = − 1

π
ImGR(ν)

=
1

π

∆− ImΣR[
(ν − (ReΣR − ΣH))2 + (∆− ImΣR)2]

=
1

π∆

(
1− ImΣR

∆

)
[(

1− ImΣR

∆

)2

+
(
ν
∆

)2
(

1− Re(ΣR−ΣH)
ν

)2
] .

(5.4)

As both components of the self-energy decay to either ΣH or to 0 as |ν| increases, we see
that the terms including ΣR fade away as |ν| → ∞.

Shown in Fig. 5.4 for this low/intermediate regime is only U/∆ ≥ 2 but Friedel’s sum
rule is fulfilled for all values below this. Notice that the initial unphysicalities of ImΣR > 0
around ν = 0 are the ones that can affect this, and their effect here is negligibly small. This
is due to the fact that the absolute value of ImΣR(0) at the beginning of the flow is small

in comparison to the initial value of ∆ini = Γ+Λini

2
= 1/3+1000

2
≈ 500 � 10−4 and, hence,

ImΣR

∆
≈ 0. Hence, both terms

(
1− ImΣR/∆

)
in Eq. (5.4) basically reduce to a 1, while

the value of ReΣR(0), although equal to ΣH , is irrelevant thanks to the prefactor (ν/∆)2.
Notice this consideration is rendered mute with increased resolution in the calculations.

The fact that the K2 2-loop run develops a non-small positive ImΣR for high U/∆ is
then translated at this level to the breaking of the Friedel’s sum rule andAK2 2-loop(0) > 1

π∆
.
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Figure 5.5: Evolution of the normalization of the spectral function along the flow.
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Now we analyze the evolution of N throughout the flow. For this purpose we present
Fig. (5.5). Here we see a striking behavior. The first ∼ 20 points are below the dotted
horizontal line of N = 0.99, with U/∆ = 0.2 being the first point at which N is within 1%
of its theoretical value. This may be worrying at first glance since, for the first points of the
flow, the spectral function is far from being properly normalized. Again, the reason here
is the discrepancy between the scales set by Λini and Ω, equivalent to a lack of resolution
at the beginning of the flow. Until the features of the self-energy are not fully contained
inside of the sampling interval, the spectral function is only partially resolved and, hence,
many physical states are not counted into the integral. This can also be understood in
terms of the dimensionless variable ν/∆. At the beginning of the flow, its possible interval
is shortened to [−Ω−/∆ini,Ω

+/∆ini] ∼ [−3/5, 3/5]. Clearly, including only frequencies
fulfilling |ν/∆| . 3/5 is far from sufficing in resolving the spectral function. Hence, only
for U/∆ & 0.2 does the dimensionless frequency interval become big enough, so that one
can safely neglect the contribution of the tails of A to the integral. Once again, this
issue could be resolved by the implementation of an adaptive frequency grid. With it, th
sampling interval stays wide enough at arbitrarily high Λini while retaining the ability to,
later in the flow, fully resolve the sharp features around the origin. Work in this direction
is currently in progress.

Though this problem is recurring, we point out that it is due to the necessary trade-off
that a static frequency grid implies. No static frequency grid, subject to limited computing
resources, can possibly resolve both extremely smeared objects at arbitrarily high Λini while
simultaneously offering a high-enough sampling-point density around ν = 0 and ω = 0 for
the sharp features of both the vertex and the self-energy at the later stages of the flow, as
Λ → 0. Thus, we opted for giving the latter a much more prominent role, which allows
us to reach intermediate/high interaction strengths of U/∆ ≈ 5 for K2 2-loop calculations
stably and reliably. Optimizing for perfect agreement at the beginning of the flow leads to
a too-low density of sampling points, which reduces reliability of the results and requires
higher N

(i)
bos/fer values, drastically increasing computing times. Thus, since the slight errors

at the beginning of the flow are resolved before the intermediate regime of interactions
strengths 1 . U/∆ . 4 is reached, and these do not majorly affect any physical quantity
being calculated, we stand by our compromise, knowing also that the way to improve on
it is the implementation of adaptive frequency grids.

Notably, we do not observe the appearance of Hubbard bands or of a hint thereof for
A at any interaction strength U/∆ shown here. However, this may be due to the omission
of the K3 class, since the development of said bands is expected at U/∆ > 1, where the
contributions due to these kinds of diagrams gain importance. We actually do observe the
formation of shallow and broad peaks for U/∆ > 5, which is a regime in which we expect
all of our results to not be valid anymore. This points to the fact that the exclusion of
the K3 class from the calculations rather delays the formation of these structures, which
are anyway only slightly noticeable in the NRG results in the shown interaction strength
regime.
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5.2.4 Parquet equations

Having looked at the spectral function, we now investigate to what extent our (m)fRG
solutions solve the equations of the parquet formalism (recall Chap. 2). To do so, we make
use of the norm defined in Sec. 4.3 and we look at how the norms of both the (m)fRG results
as well as that of the quantities calculated according to Eqs. (4.11) and (4.12) evolve during
the flow, at how the norm of the difference scales and at how the relative error behaves.
For this analysis we omit results obtained using the static-feedback approximation, since
the aim of this scheme is not to better solve the parquet equations.
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Figure 5.6: Error analysis of the self-energy. Evolution of (a) the norms of; (b) the difference
between and; (c) the relative error between the fRG and Schwinger–Dyson self-energies
along the flow.

We begin by analyzing the behavior of the self-energy. Notice in Fig. 5.6 how at the
beginning of the flow the long-range features of the self-energy that are not fully contained
in the sampling intervals cause both the absolute and, hence, also the relative error to grow
quickly. This increase is however halted at roughly U/∆ = 0.01, after which the increase
in norm does not outpace the growth of the absolute error. Thanks to the latter growing
slowly for 0.01 . U/∆ . 0.3, the relative error even decreases in this regime, which reflects
the fact that, for low interaction strengths, we expect both conventional fRG and mfRG
to perform rather well and solve the self-consistent equations of the parquet formalism
correctly. For the intermediate and strong interaction-strength regimes we see that the
relative error increases roughly equally for all flows. Notice that the K2 2-loop flow better
solves the Schwinger–Dyson equation than the 1-loop truncation at every step of the flow
in this regime. That K1 fares comparatively better here in comparison to both K2 flows is
not relevant, since, as Fig. 5.3 shows, a sole-K1 flow deviates too strongly from the NRG
solution to be seriously considered. However, it is interesting to see that the inaccurate
flow still retains consistency with respect to the parquet equations.

Following with the K1 part of the vertex in Fig. 5.7, we see, based on the first points of
the flow, that results obtained with second-order perturbation theory fare well in solving
the parquet equations, a claim we base on the low absolute and relative errors that are seen
at the beginning of the flow. Then, until roughly U/∆ = 0.2, all three solutions behave
similarly. At this point in the flow, both errors for the K2 flows shoot up and K1’s remains
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Figure 5.7: Error analysis of the K1 class. Evolution of (a) the norm of; (b) the difference
between, and (c) the relative error between the fRG and the K1 contributions to the vertex,
calculated using the Bethe–Salpeter equations.

low, again signaling that, although inaccurate when comparing the solution with NRG,
a conventional fRG flow remains surprisingly consistent in solving the parquet equations,
though, according to what was mentioned above, this is no reason to regard this flow as
correct or complete. For the case of the K2 flows, we see an inverted behavior as with the
self-energy, with K2 1-loop yielding a more parquet consistent K1BS than what K2 2-loop
gives at every step of the flow. This is a rather surprising behavior, mostly due to the fact
that the results of the K2 2-loop flow are closer to NRG than the K2 1-loop in this regime
of interaction strengths. Further, as we discuss below, the 2-loop results show a better
parquet-consistency than the 1-loop results for the K2 class. It may be that the way in
which the multi-loop corrections affect the values of the K2 class cause the resulting K1BS

to differ stronger from the calculated K1fRG, but a more thorough analysis should be done
on this point to explain this discrepancy.
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Figure 5.8: Error analysis of the K2 class. Evolution of (a) the norm of; (b) the difference
between, and (c) the relative error between the fRG and the K2 contributions to the vertex,
calculated using the Bethe–Salpeter equations.

Lastly we come to the K2 part of the vertex. In Fig. 5.8a we see the effects of the
SOPT initialization we use: the K2fRG component of the vertex is completely zero. This is
highly inconsistent with the Bethe–Salpeter equations, which is evidenced in the fact that
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||K2BS|| � ||K2fRG|| ∼ 0 at the beginning of the flow. This is also to be expected, since, at
any Λ < ∞, the vertex will have developed non-zero features in all diagrammatic classes.
This naturally implies that the relative error will be quite large for this initial values.
Because of this we norm the relative error for K2 with respect to ||K2BS|| as opposed to the
fRG norm we used for the other two objects. Notice that, as the flow progresses and the
corresponding features are developed, the fRG solution catches up with the Bethe–Salpeter
result for the K2 vertex. This indicates the fact that during these early stages of the flow
the most important contributions come from the K1 class, in accordance with expectations,
since U/∆ � 1. However, as ||K2fRG|| becomes comparable to ||K1fRG|| and, hence, the
contributions of the K2 class gain importance, we see that the absolute and relative errors
of the K2 results plunge down. Here, we point out to the fact that, in relative terms, K2

2-loop strongly outperforms the one loop variant of the flow, showing proof of the fact that
the multiloop corrections yield quantitatively better results than conventional fRG does.

5.2.5 Error scaling

A last point we analyze of these equilibrium solutions is the scaling of the error with U/∆.
To do this, we look at how three telltale quantities evolve during the flow and compare to
reference NRG values. These are the value at the origin of χR

sp/ch(ω = 0) and Z, a standard

quantity in contexts of renormalization [11, 31], defined as

Z :=
(
1− ∂νΣR|ν=0

)−1
. (5.5)

These are natural choices of simple quantities that allow us to easily see how the error
with respect to NRG behaves along the flow. As for the parquet checks before this, we
omit the static-feedback approximation.

To this end, we present Fig. 5.9. Here we adhere to the convention that χch/sp(ω =
0) > 0, so we actually flip the sign of χsp with respect to the results shown previously.
As one could expect from of previous discussion, K2 2-loop fares in all cases much better
than the other two kinds of flows. Also, that both K2 flows are closer to NRG throughout
the flow than the K1 results is in accordance to what we previously observe. What is
most interesting about these plots (especially noticeable in the left graph of Fig. 5.9) is
the evolution of the separation of the lines. The K1 flow not only deviates first but also
the strongest from the benchmark, which indicates the expected early breakdown of the
approximation. The flows which include K2 performs much better, with the difference
remaining minor for both flows for most of the flow until U/∆ = 5.

Due to the fact that a K2 2-loop flow generates and fully computes all diagrams to order
O ((U/∆)3), we expect the error of the results associated to its flow to scale likeO ((U/∆)4).
A similar statement can be said about the flow of K1, with the powers replaced by 2 and 3,
respectively. The case for K2 1-loop is not as straightforward, since it includes diagrams in
O ((U/∆)3), but these are computed only partially, leading to an error scaling also of order
O ((U/∆)3). However, this is not exactly the case here, where we obtain the susceptibilities
by dividing the relevant K1 component by U2. Hence, we actually have errors scaling like
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Figure 5.9: Evolution of the error of χRch/sp(ω = 0) and of Z along the flow.

O ((U/∆)1) and O ((U/∆)2). Thus, to improve on this, we leave to the future of the project
an implementation of an explicit calculation of the susceptibilities, which yields them with
a better error scaling. In other words, the implementation of a module that explicitly
calculates the susceptibilities and differentiates them from the “flowing susceptibilities” we
are currently working with, is a logical step forward for this project. Further, this way
of calculating susceptibilities can provide a consistency check for a more advanced mfRG
code since, once loop conversion is reached, the results of the flowing and the explicitly
calculated susceptibilities should be equal.

An interesting check on the fulfillment of Ward identities can be done by comparing

χe :=
1

2
(χsp + χch) (5.6)

with Z−1. According to [16], a Ward identity implies that

χe(0) = Z−1 . (5.7)

Hence, having all three quantities available, we show in Fig. 5.10 how these two quanti-
ties, calculated for each one of our flows, compare. Notably, and in accordance with what
was said in Chap. 2 regarding the implications of truncation of the infinite hierarchy of
Eq. (2.10), conventional fRG results violate the Ward identity much stronger than our mul-
tiloop results. This is very encouraging to see, since the mfRG should aid in the restoring
of, at least, one-particle conservation laws.

Notice that in the left plot of Fig. 5.10 all (m)fRG-flows start the flow breaking the
Ward identity, at U/∆ � 1, and all do so similarly as bad. This has again to do with
the discrepancy between Λini and Ω, which affects disproportionately the calculation of
χch/sp(ω = 0) in comparison to the effect this has on the derivative of ΣR at ν = 0. Hence,
Z−1 behaves much better for the (m)fRG results than χe.

On the right side of Fig. 5.10 we also include a plot for

χo :=
1

2
(χsp − χch) , (5.8)

which is involved in another implied equality due to another Ward identity [16]. This one
involves χo(0) and Γ(0, 0, 0)/∆, though which Keldysh components enter in this identity
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is unclear. Further work can be done in this direction, but it remains outside ot the scope
of the present one. We now pass on to describe our results outside of equilibrium.
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Figure 5.10: Evolution of χe/o and Z−1. The closer χe is to Z−1 the better Ward identities
are fulfilled. The value of χo is related to Γ(0, 0, 0)/∆ by another Ward identity.

5.3 Non-equilibrium

Following the thorough discussion of our results for equilibrium calculations, we now
present what we obtain for different bias voltages. Though the static-feedback approx-
imation can also be used in this setting, we do not consider it here. The specifications for
the runs are equal to those used for equilibrium calculations, with the obvious difference
that V/U is now set to different values. Since there are no previous results in this area
regarding the susceptibilities to compare ours to, we leave them out of our discussion and
thus begin with the self-energy. We show results only for K2 2-loop flows since, according
to the discussion preceding this section, these give the best results.

Figure 5.11 shows how the self-energy is affected by the inclusion of a bias voltage. The
retarded component shows a merger of peaks through smearing caused by V/U and the
Keldysh component gets washed off for large voltages, yet remains relatively unchanged
in the low/intermediate regime for all interaction strengths. Both real and imaginary
components of ΣR show a strong reduction of the main features for U/∆ = 1 and V/U ≥ 1
and a full wash-off by U/∆ = 3.0 and the same regime of voltages. For small value of V/U ,
the changes to any component of Σ are barely noticeable, except at small frequencies,
where they still remain small, regardless of interaction strength U/∆.

The FDT condition ReΣK !
= 0 is more strongly violated for larger bias voltages. How-

ever, these contributions remain negligible, at absolute values of order 10−11 and, hence,
deserve no further comment.

Note that, regardless of interaction strength, results for V/U ≥ 1 show self-energy
components with washed-off features, in strong contrast to what we see for V/U < 0.1,
where the objects barely change with respect to their equilibrium counterparts. This points
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Figure 5.11: Variable voltage results for Σ. Note the strong smearing effect that V 6= 0
has on the features of the self-energy. Legend gives V/U .

to a low/high V/U behavior of the system. Particularly the fact that ImΣK(ν = 0) change
so drastically, from a value close to zero for V/U < 0.1 to a relatively large value for
V/U > 1 indicates that the behavior of the system changes and that transport through the
dot becomes the driving force behind the behavior of the system. Hence we recognize in
our results a low V/U -regime, in which transport through the dot is unimportant or does
not effectively drive the system to a state outside of equilibrium, i.e. an interaction-driven
regime, where U/∆ dictates the behavior, and a high V/U -regime, in which transport
through the impurity due to the bias voltage and the onset of decoherent processes are the
driving factors..

This is also reflected in Fig. 5.12, for which we see that the spectral function reflects
small changes for small values of V/U and a dramatic broadening of the central peak for
V/U > 1, evidencing the effect of decoherent processes due to a large voltage. As in the
equilibrium case, in the non-equilibrium calculations we do not see the formation of clear
Hubbard bands, probably again because of the omission of the K3 class. One also expects
the central resonance to split into two well-defined, symmetrically-placed peaks at large
values of V/U . We also do not observe this behavior, which we suspect is due to the same
factor as before.

Before passing onto the conclusion of this work we point out that we also performed
calculations at different temperatures to see how these compare with the standard we
defined at T = 0.01. We note that our calculations for variable temperature do not
constitute results outside of thermodynamic equilibrium, since we set V = 0 and we take
both leads to be at the same temperature. However, we present them here, after results
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Figure 5.12: Variable voltage results for tA at different values of U/∆. Legend gives V/U .

of variable V have been presented, to verify that temperature increase also has a similar
smearing effect as the voltage, due to the increased number of decoherent processes it
causes. As can be seen in Fig. 5.13, increasing the temperature simply washes-off and
broadens the features seen in the plots above but show no behavior of particular interest.
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A more interesting goal would be to enhance the code to probe Kondo physics at much
lower temperatures. However, due to the discreteness associated to the frequency grid,
if the density of points around ν = 0 or ω = 0 is not drastically increased, a fictitious
temperature of the order of the difference

δω = ω(Nbos/fer−1)/2+1 − ω(Nbos/fer−1)/2︸ ︷︷ ︸
=0

(5.9)

is artificially introduced. Therefore, a high-enough density of points, in accordance to TK ,
which decreases exponentially in U , is needed to probe this physics. The problem is then
that we would need to be able to reliably and efficiently reach higher values of U/∆ as we
currently do, so that TK becomes significantly smaller than all other energy scales. Note
that these are very technical aspects that make it extremely hard numerically probing the
Kondo scale with an mfRG code. This goal remains well outside of our current reach, but
could become a feasible goal once other technical hurdles are overcome.



80 5. Results

(a)

−4 −2 0 2 4
ν/∆

0.0

0.5

1.0

A
(ν

)π
∆

K2 2-loop
U/∆ = 3.0

0.01

0.10

1.00

0.01–NRG

0.15–NRG

1.50–NRG
−0.4 0.0 0.4

0.9

1.0

1.1

Figure 5.13: Variable temperature results for the spectral function at U/∆ = 3.0 and the
self-energy at U/∆ = 3.0 and U/∆ = 5.0. Legend gives T/U .



Chapter 6

Conclusion & Outlook

In this thesis we developed a code to perform calculations of a quantum impurity in the
Keldysh formalism using the newly developed multiloop functional renormalization group.
To this purpose, we thoroughly studied the internal structure of the vertex, its decomposi-
tion into interaction channels and diagrammatic classes and, most crucially, the interplay
these structures have with its internal Keldysh structure. Furthermore, we tested and
benchmarked this code against NRG, analyzed how well it solves the equations of the par-
quet formalism and looked at how violation of Ward identities is improved on. Lastly, we
presented variable bias voltage results including a vertex function with complete frequency
parametrization which had, to our knowledge, not yet been done.

Although the results we showed do not include the K3 class and are therefore pre-
liminary, we can confidently say that the mfRG does prove to be a major improvement
on the fRG. We observed that calculations performed using both the complete frequency
parametrization of the vertex as well as the multiloop corrections to the flow equation of
the vertex fare consistently better than both the conventional fRG as well as the common
simplification of static-feedback approximation [6]. The latter we showed to have very
large problems when calculating the vertex itself, regardless of the regime of interaction
strengths, but remains as interesting and useful tool due to the low computation times it
offers in comparison to more complex approaches.

We observe our results for K2 2-loop flows to behave according to expectations, improv-
ing both on the fulfillment of Ward identities as well as on the solution of the self-consistent
parquet equations. It also increases the range of interaction strengths at which the mfRG
can reliably be applied, in comparison to conventional fRG. We also see that our results
outside of thermodynamic equilibrium conform with expectations. Though not definitive,
this achievement gives us confidence in the range of applicability of a Keldysh mfRG code.

Notably, though we see our method already deliver an improvement in comparison to
the conventional methods, we remark that these are only partial results of a much larger
project. As noted several times in the last chapter, several improvements at technical and
physical level must still be done for the project to be complete. The first on the technical
side is the implementation of an adaptive frequency grid. With it we should be able to
include all relevant features inside of the sampling intervals at every step of the flow and,
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hence, avoid unphysical behaviors due to lack of resolution of the high-frequency regime.
Furthermore, a grid of this kind allows for a reduction of the number of needed sampling
points, which is a major concern for the success of this project, since the computation
times of the K3 class scale dramatically faster than those we saw for the results presented
here.

A more physical improvement, which could be done still at the level of numerical com-
plexity of the K2 class, is the support for a higher number of loops than two. Currently, our
code does not support calculations of the type required by the central term in the multiloop
corrections of the flow equations (recall Eq. (2.25)), since some intermediate vertex-objects
needed for the typical computation strategy of center terms through either left or right
differentiated ones poses additional difficulties. The reason is that these auxiliary objects
turn out not to fully respect the symmetries discussed in Chapter 3. Implementation of
a class of vertex-type that does not explicitly need these transformations is planned, but
not yet underway.

Another physical improvement which will be tackled in the future is the initialization
condition. Though good enough for our benchmarking goals, initializing the flow from
a second-order perturbation theory calculation has some deficiencies. Doing this leads to
large discrepancies in the K2 class of the flowing results with respect to those yielded by the
parquet equations. A similar phenomenon would also be observed for the K3 class. Hence,
implementation of an initialization code that guarantees a parquet-consistent starting point
would be a good step forward.

An interesting point of inquiry that arises from our results is if there are still some
simplifications and symmetries to be made use of, at least in the particle-hole symmetric
case. We see the number diagrammatic classes reduce by one in theK1 level, which has huge
impacts on the computation times of this class. Whether a similar identity holds for the
more complex classes, at least in this special case of particle-hole symmetric systems, is a
matter that deserves attention, both from the numerical as from the analytical perspective.

Through inclusion of the multiloop corrections, the mfRG promises to restore both
one-particle conservation laws as well as regulator independence. Further work on this
project could be to compare how different regulators behave along the flow and to test for
fulfillment of conservation laws and of Ward identities as more loops are calculated. A hint
of checks of the latter kind was given in Sec. 5.2.5, but certainly a lot more can be done
and investigated in this direction.

More ambitious projects that can follow and build on this one include the application
of these kinds of treatments to more complex, extended systems. This could encompass
Luttinger liquids, thanks to their interesting behavior in perturbative regimes yet relative
simplicity thanks to translation invariance, quantum point contacts, thought of as 1D-
chains of interacting impurities, and studies of many-body localization, where interactions
and disorder freeze out the dynamics and the system never thermalizes.

Beyond these systems, there are multiple fields of study in which a Keldysh mfRG
framework can be a powerful tool of study. These include, particularly, two fields. The
first one is that of pseudofermion-fRG, a field in which some advances have been made in
the Matsubara formalism [32]. Here, a Keldysh mfRG code can provide the possibility of
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calculation dynamical quantities directly, which is not possible in the Matsubara formalism.
The second is the combination of mfRG with the well-known dynamical mean-field theory
(DMFT), expanding the already existing DMF2RG to include the multiloop corrections.
This union would improve heavily on the restrictive PA approximation. This mixed frame-
work can provide an initialization of the irreducible part of the vertex calculated within
DMFT, instead of truncating it to equal the bare vertex. These various possibilities make
of the mfRG a potentially very powerful tool of study, which is a statement backed by the
results we show in here. This work should be regarded as a first step into the development
of a tool capable of treating those more physically rich systems.
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Appendix A

Group structure of the vertex’s
internal symmetries

In Chapter 3 we introduce transformations T1, T2, T3, TC and TS as operations that can be
performed simultaneously to the Keldysh and spin indices. As such, this set of operations
can be thought of as a group of symmetries S, where we understand these symmetries as an
equivalence between the vertex evaluated at different combinations of Keldysh and spin in-
dices and at different frequencies. Here we study the internal structure of S, independently
of the dependencies between vertex components it causes.

To fulfill the axioms of a group, we introduce the trivial transformation T0, which is
our identity element. Through Eqs. 3.27a-3.27e, we see that each one of these has order 2,
which means T 2

k = T0, ∀k ∈ {1, 2, 3, C, S} and every one of these is its own inverse.

In terms of actions on the Keldysh and/or spin indices of the vertex, it is clear that
at least fours different possibilities exist, namely exchange of incoming (T1) and outgoing
(T2) indices among themselves, exchange of incoming and outgoing with one another (TC)
and only flipping on kind of index (TS, with spin). Notice this is exhaustive due to σi and
αi taking values in fields of characteristic two.

We now look at the existing sub-groups. Almost trivially, due to the order of each
generator being two,

gk := 〈T0, Tk〉 = {T0, Tk} < S , ∀k ∈ {1, 2, C, S} , (A.1)

i.e. each generator together with the identity generates its own subgroup, which we call gk.
Notice that gk ∩ gk′ = {T0} ,∀k 6= k′.

Motivated by the action T1/2 have on incoming/outgoing legs, we now consider

K := 〈T0, T1, T2〉 = {T0, T1, T2, T3 = T1 ◦ T2 = T2 ◦ T1} . (A.2)
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Since the action of T1 and T2 is on non-overlapping indices, it is clear that these commute
and, hence |K| = 4. Further,

T3 ◦ T3 = (T1 ◦ T2) ◦ (T1 ◦ T2)

= T1 ◦ T2 ◦ T2︸ ︷︷ ︸
T0

T1

= T1 ◦ T1 = T0

(A.3)

proves that T3 also has order 2. Thus K is isomorphic to the Klein group K4 [33]. This is
reasonable, since K4 = {(), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} as permutations and this is
exactly what the operations T0, T1, T2 and T3 do on the Keldysh and spin indices of the
vertex.

We now analyze the inclusion of TC . To this end, we consider the abstract action of
the Ti’s as permutations on a set of cardinality 4. Expressing Eqs. 3.27b-3.27e like this,
we obtain

T1(1234) = (1243) (A.4a)

T2(1234) = (2134) (A.4b)

T3(1234) = (2143) (A.4c)

TC(1234) = (3412) . (A.4d)

Thus, we see that

T1 ◦ TC(1234) = T1(3412) = (3421) (A.5a)

TC ◦ T2(1234) = TC(2134) = (3421) , (A.5b)

and

T2 ◦ TC(1234) = T2(3412) = (4312) (A.6a)

TC ◦ T1(1234) = TC(1243) = (4312) . (A.6b)

Thus, TC ◦T1 = T2 ◦TC and TC ◦T2 = T1 ◦TC . These relations imply that the inclusion
of TC makes the group non-abelian i.e. TC does not commute with T1 or T2. However it
does commute with T3, since

T3 ◦ TC = T1 ◦ T2 ◦ TC = T1 ◦ TC ◦ T1 = TC ◦ T2 ◦ T1 = TC ◦ T3 . (A.7)

Hence we obtain the symmetry group of a spinless vertex

H = 〈T0, T1, TC〉 = {T0, T1, T2, T3, T1 ◦ TC , T2 ◦ TC , T3 ◦ TC} . (A.8)

Equations A.5 and A.6 imply then, that one can always permute TC to be the first or the
last operation performed, which is useful when implementing the relations of Tables 3.1 to
3.5 in a code. This further leads to rendering T2 unnecessary as generator, since

TC ◦ T1 ◦ TC = T2 ◦ TC ◦ TC = T2 . (A.9)
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As such, |H| = 8 and is non-abelian and has exactly three generators. Hence, it is
isomorphic to the Dihedral group of order 8 D8 [33].

The inclusion of TS is trivial, since is affects the spin indices of the vertex in a completely
different way than the others transformations do. Hence, the full group is

S = 〈T0, T1, TC , TS〉 = H × {TS} . (A.10)

TS clearly commutes with all elements and, hence, is the only non-trivial element in
the center of the group. |S| = 16 and is, as is H, non-abelian. Due to the multiplicative
structure of S with gS ' Z2 [33],

S ' D8 × Z2 ' G11
16 . (A.11)

Since we are interested in an efficient implementation of the symmetries of the vertex,
we restrict the number of symmetry operations to be performed by two, i.e. we allow
combinations of the generators of S up to length two. Hence, expressions of the form
T1 ◦TC ◦T1 ≡ T2 can only be included if one considers T2 as a generator. Hence, we regard
it as such in the discussion of Chap. 3.

Figure A.1: Simplified graph of the subgroup structure of S. Notice this is not exhaustive
and illustrates only the dependencies and inclusions relevant for our work.



88 A. Group structure of the vertex’s internal symmetries



Appendix B

Recipe for an object-oriented
Keldysh mfRG code

The present Appendix aims to be a guide to building up, testing and maintaining a code
like ours from scratch. Based on our experience, gained over the year and a half that Elias
Walter and myself have been working on the code, we present a step-by-step suggestion on
how to approach the task of setting up a Keldysh mfRG code.

According to the problems and hurdles we had to overcome, we firmly believe that
modularity, testability and simplicity are the cornerstones of a good code. For a very good
introduction into these and also other extremely helpful concepts, we refer the reader to
[34]. Modularity helps the code to be separated into coherent, cohesive units, that are
conceptually linked and, roughly, at the same level of abstraction. We strongly suggest
keeping these distinct layers separated from one another e.g. the State class is in its own
file, which imports code from separated files for the self-energy and for the fullvert.
Testability can be understood as the ability to test any function implemented, as well as
its interplay with functions that will be using the outputs of it. We learned the hard way
that, at the complexity level of a Keldysh mfRG code, one that cannot be properly and
simply tested, function by function and module by module, is not useful. As stated in [34],
implementation tests should be implemented before the function it is supposed to verify is
written. Furthermore, there should be tests for each function and each module and all of
them should be quick to run. Lastly, simplicity is needed to keep a reasonable overview
of the code. In our experience, a long code is a breeding ground for bugs. Keeping the
functions as short as possible and reducing the number of modules as much as the physics
allows helps debugging processes, since there are less lines of code in which there can be a
mistake. A golden rule any coder should abide by is “never copy and paste code”. However
simple, these three principles can make the process of setting up such a code an easier task.
For other helpful yet more general principles, we seriously encourage the reader to take a
look at [34]. At a certain point in code complexity, which lies below the one a Keldysh
mfRG code has, strongly adhering to principles of software engineering becomes a necessity
rather than a choice.
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Having said this, we now discuss our proposed implementation order. It should be
evident that not all modules can be implemented at the same time and that there are
better orders than others to do this.

1. Basic data structures module. For instance, C++ does not provide a fast-and-easy
way to handle vectors of complex numbers or to operate them.

2. Simple data-output module. As stated in Chap. 4, we use HDF5 to write out our
results based on the structure of the State class, the most complex class we have in
terms of dependencies. Hence, having a way to quickly output data produced by the
code, in the format that will be used for the whole project, turns out to be extremely
helpful.

3. Integrator. The integrator is one of the most important parts of out code and,
with certainty, of any implementation of a Keldysh mfRG. Crucially, it must be
adaptive, since a static integrator has been proven, time and again, to be too slow
and inefficient to accurately, reliably and correctly resolve sharp features of strongly
peaked integrands. In our experience, no results can be trusted until there is full
confidence in the stability of the integrator. It should not be tailored for a specific
kind of integrand but should be as flexible as possible. Implementing this module
early makes sense for testing purposes.

4. Interpolation and general functionality functions. 1-, 2- and 3-dimensional interpola-
tors for given grids of points, as well as functions that generate these sampling grids in
a standard manner should be implemented next. General functionality functions in-
clude also ones of the sort of nF (ν) = (exp((ν−µ)/T )+1)−1 ≡ 1

2
(1−tanh((ν−µ)/2T ).

Notice that with functions like this there are issues of numerical stability of the im-
plementation that need to be taken into account [30].

5. Basic, independent modules. As was discussed in Chap. 4 and is shown in Fig. B.1,
there are some classes that do not depend on any other module or structure other
than the basic ones and, hence, should be implemented next. These include the
self-energy as well as the rverts and the irreducible vertices. In our case, the
implementation of the rverts proved to be one of the most difficult tasks.

6. More complex classes. With the simplest classes implemented, the classes that di-
rectly depend on these can then be implemented. These include the propagator and
bubble as well as the fullvert classes in our implementation.

7. Wrapper classes and actual data-output module. Implementation of the most com-
plex class, the State, should, of course, happen at the end. Once this is taken care
of, the whole skeleton of the code stands and then the main functions should be
implemented.

8. loop and bubble functions. The implementation of these functions should be as short
as possible, taking advantage of both OpenMP and MPI parallelization whenever
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reasonable and possible. Although only relevant at this stage, parallelization plays
an important role in the whole code, since the basic structures should be compatible
with both schemes, if one wants to take advantage of both.

9. ODE-integrator. Once a State can be computed, then the integration of the ODE
is in order. In our experience, at least a conventional 4th-order Runge–Kutta is
necessary. An adaptive ODE-integrator helps optimize the overall performance of
the code but its, however, not a must in a first implementation. The same comment
applies to frequency grids. However, as this is ultimately the required kind of tools,
the implementation should be aimed to support an upgrade with the least amount
of effort. Notably, a modular approach yields naturally a structure compatible with
this.

10. Checks. Here we do not mean implementation or unit tests, which should be imple-
mented alongside the modules, but physical checks for the results produced. These
can include tests for fulfillment of the parquet equations or of Ward identities. It is
much more efficient to program these in a low-level language, as C++ , as have them
in a higher-level language as, e.g. Python.

To better illustrate the dependencies described here, we present Fig. B.1.

Integrator

Interpolator

General
funtionality

self-energy

irreducible

rverts

propagator

bubble (class)

fullvert

State

HDF5-Databubble(fct)loop ODE-Int

OpenMP MPI Checks

Initialization

Figure B.1: Visualization of the structure of our implementation. We omit the basic data
structure module, since it is embedded into the implementation of all other modules, and
the basic.
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