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Abstract:
Experimentally, the Hamiltonian of a fermionic two-band model can be realized by a cold
gas of fermionic Yb173 atoms trapped in state-dependent optical lattices. For experimental
parameters provided by the Quantum Optics Group at LMU lead by Simon Fölling, we
perform DMFT calculations with NRG as impurity solver. We find that the repulsive
interaction between the two different atomic states leads to phases in which lattice sites
are occupied exclusively by one of the atomic species.

Motivated by the proposal of the existence of a neutral Fermi surface in the mixed-valence
compound SmB6, we study the extended periodic Anderson model (PAM) in the mixed-
valence regime with DMFT and its cluster extension DCA, using NRG as impurity solver.
We find a band insulator renormalized by interactions, which we tune between a metallic
and insulating state. DCA calculations do not show signs of nonlocal correlations in the
mixed-valence regime. Moreover, no evidence for the formation of a neutral Fermi surface
is found. Furthermore, we calculate the temperature-dependent optical conductivity and
resistivity, which show agreement with experimental data on SmB6.
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1 Introduction 1

1 Introduction

Strongly correlated materials, in which electron-electron interactions are comparable to kinetic energy,
show fascinating properties, e.g. high-Tc superconductivity or anomalies in thermodynamic quantities.
A theoretical description is challenging, since the single-particle picture tends to fail, in the presence of
strong interactions, and a many-body treatment is necessary. Many-body systems are in general not
exactly solvable with a classical computer as the dimension of the Hilbert space grows exponentially
with the number of constituents. Nevertheless, non-perturbative methods have been developed, which
can tackle the many-body problem and provide controlled approximation schemes. In this thesis,
we use the well-established Dynamical mean-field theory (DMFT) [1] and its cluster extension, the
Dynamical cluster approximation (DCA) [2], to study two different many-body systems. In DMFT a
quantum lattice model is mapped self-consistently on a quantum impurity model, which can be solved
accurately. In our case, the numerical renormalization group (NRG) [3], a powerful real-frequency
impurity solver, is used. The state of the art NRG code available in the group of Prof. Jan von Delft
was developed by Andreas Weichselbaum and Seung-Sup Lee.

In the beginning, a short introduction to the core ideas of DMFT, DCA, and NRG is given. Sub-
sequently, we present the analysis of two different many-body systems.

First of all, we study a system of Cold atoms trapped in optical lattices. Cold atoms offer a promising
platform to study many-body quantum effects experimentally [4] and can be designed to mimic the
Hamiltonian of a quantum lattice model. Recent experimental progress makes it possible to realize
the Hamiltonian of a fermionic two-band model. Nelson Darkwah Oppong from the Quantum Optics
group at LMU provided us with the Hamiltonian and parameters corresponding to their experimental
setup. We perform DMFT calculations for different experimental parameter sets to possibly guide
experimentalists to favorable parameter choices.

In the second part of this thesis, we study the periodic Anderson model (PAM) and possible ex-
tensions in the context of the mixed-valence compound Samarium-Hexaboride (SmB6). SmB6 shows
controversial experimental signatures. On the one hand, an increasing resistivity with decreasing tem-
perature indicates insulating behavior. On the other hand, experiments reveal quantum oscillations
comparable to metallic LaB6. Chowdhury et. al, propose a mechanism for the formation of a neutral
Fermi surface in the framework of the extended PAM to resolve the puzzling experimental situation [5].
We study the extended PAM with DMFT and DCA to look for signatures of the proposed mechanism
and the general relevance of the extended PAM for experimental measurements on SmB6.
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2 Dynamical mean-field theory (DMFT)

Dynamical mean-field theory (DMFT), originally derived by W. Metzner and D. Vollhardt in 1989
[6], has proven to be a valuable tool to investigate strongly interacting quantum lattice models in a
non-perturbative fashion. While being exact in the limit of infinite dimensions, DMFT can be used
as an approximation scheme in general dimensions. In infinite dimensions, the self-energy becomes
purely local, which lays the foundation for a self-consistent mapping between a quantum lattice model
and local theory, i.e. a quantum impurity model.

The Hubbard model in infinite dimensions is considered to derive the local nature of the self-energy
from a diagrammatic perspective. Furthermore, the origin of the self-consistency equation and an
iteration scheme to solve are presented.

2.1 Definitions and Notation

Before starting with the derivation of the DMFT equations, basic notation and definition of Green’s
function and self-energy are given. Moreover, the concept of the Luttinger-Ward functional is intro-
duced, which is useful to show the consistency of the DMFT approximation. For more details, see
standard textbooks e.g. [7].

Hubbard model
For demonstration purposes, the historical choice, the Hubbard model, is used. Later we will see that
the DMFT equations easily translate to other lattice models. The Hamiltonian of the Hubbard model
is given by:

H =
∑
<i,j>

tij(c†i,σcj,σ + h.c.) + U
∑
i

ni,↑ni,↓

=
∑
k,σ

εkc
†
k,σck,σ + U

∑
k1,k2,q

c†k1+q,σc
†
k2+q,σ̄ck2,σ̄ck1,σ. (2.1)

The fermionic operators ck,σ,c†k,σ fulfill anti-commutation relations, {ck,σ, c†k′,σ′} = δk,k′δσ,σ′ . Electrons
are itinerant, described by the nearest-neighbour hopping tij or the dispersion εk, and interact via the
on-site interaction U .

Green’s function and self-energy
For finite temperatures, the Green’s function is usually formulated in imaginary time because of its
anti-periodicity (periodicity) in β = 1

kBT
for fermions (bosons). The time and frequency representa-

tions read:

Gij(τ) =− 〈T ci,σ(τ)c†j,σ(0)〉, (2.2)

Gij(iωn) =
∫ β

0
dτ Gij(τ)e−iωnτ . (2.3)

Here ωn = (2n+ 1)πβ with n ∈ Z is the fermionic Matsubara frequency. The real-frequency retarded
Green’s function GRij(ω + i0+) is obtained by analytic continuation, i.e. by the replacement iωn →
ω+i0+. In the following, we will denote it by Gij(ω), in which the retarded nature and the infinitesimal
imaginary part i0+ are implied if not specifically mentioned. The DMFT calculations, done in this
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thesis, only involve real-frequency objects, however for the derivation of the DMFT equations we stick
to the analytically more convenient imaginary frequency representation of the Green’s function.
For a translationally invariant system the Green’s function can be expressed as:

G(k,iωn) = 1
iωn + µ− εk − Σ(k,iωn) = 1

G0(k,iωn)− Σ(k,iωn) . (2.4)

Here G0(k,iωn) is the non-interacting Green’s function and Σ(k,iωn) the self-energy, which includes
all interaction effects. In Fig. 2.1 the self-energy skeleton expansion is sketched, i.e. a diagrammatic
expansion of the self-energy using only the full interacting propagator.

Fig. 2.1: Skeleton expansion of the self-energy. Red lines denote full propagators, blue dots bare
vertices.

Luttinger-Ward functional
An exact calculation of Σ(k,iωn) is intractable. Within DMFT the self-energy is a central object,
which has to be approximated. For the justification of the approximation, it is convenient to use the
formalism of the Luttinger-Ward functional ΦU [G]. A closed-form of the functional does not exist,
though it can be diagrammatically represented by the sum over all vacuum skeleton diagrams. The

Fig. 2.2: Skeleton expansion of the Luttinger-Ward functional. Red lines denote full propagators, blue
dots bare vertices.

self-energy can be derived from the Luttinger-Ward functional by taking the functional derivative in
respect to the Green’s function,

Σ(k,iωn) = δΦU [G(k,iωn)]
δG(k,iωn) . (2.5)

Intuitively this can be seen by comparing the diagrammatic expansion of the self-energy with the
diagrams involved in the LW-functional, as the functional derivative in respect to the Green’s function
stands for cutting one propagator line in the vacuum diagrams. The LW-functional is of importance
since any approximation scheme involving a self-energy which can be derived from the LW-functional
is thermodynamically consistent ([8],[9]).
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2.2 The limit of infinite dimensions

The goal is to show that the self-energy becomes purely local in the limit of infinite dimension. As
a starting point, the effect of the limit d → ∞ on the Hubbard model, given by Hamiltonian in Eq.
(2.1), is considered.[6]

Hubbard model in infinite dimensions
To perform the limit d→∞, the hopping amplitude tij must be rescaled to prevent diverging kinetic
energy. The interaction term remains unaffected. The kinetic energy is finite as long as the non-
interacting density of states (DOS)

D(ε) =
∫
~k
d~k δ(ε− ε~k) (2.6)

is independent of d. By rescaling tij = t√
2d

and using the central limit theorem it can be shown that

D(ε) is a gaussian (see [1], p.113-115)

D(ε) = 1√
2πt2

e−ε
2/2t2 , (2.7)

which is indeed independent of d. The scaling of the hopping amplitude has an important impact on
diagrammatic expressions because it directly affects the scaling behavior of the Green’s function.

Scaling of the Green’s function
The Green’s function inherits its scaling behavior in d from the rescaled hopping tij ∝ d−1/2. From
the definition of the Green’s function in eq. (2.2) the following scaling can be derived:

Gij(τ) =− 〈T ci,σ(τ)c†j,σ(0)〉 ∝ O(d−||i−j||/2), (2.8)

since the Green’s function Gij propagates between the sites i and j, involves at least a factor of
d−||i−j||/2 from the rescaled hopping amplitudes. Here Rij = ||i− j|| =

∑
b |Ri,b−Rj,b| is the Manhat-

tan distance between the lattice vectors ~Ri/j =
∑
bRi/j,b ·~ab, i.e. the metric Rij measures the distance

only in discrete steps along the lattice directions given by the bravais lattice basis {~ab}. Consequently,
also Gij(iωn) ∝ d−Rij/2 holds.

Implications on the self-energy
To reveal the effect of the limit d→∞ on the self-energy, a second-order diagram shown in Fig. 2.3 is
used for illustration, which involves the connection of two internal vertices i and j. Fixing site i, the
number of neighbours at distance Rij scales as dRij for large d. Altogether the connection of the two
vertices involves a factor dRij · d−Pij/2Rij , in which Pij is the number of paths by which the vertices
are connected. For the second order diagram we have Pij = 3, and therefore the diagram is of order
O(d−Rij/2), which goes to zero in the limit of d→∞ for i 6= j.
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Fig. 2.3: Visualization of the limit d→∞. Diagrams connecting two vertices i and j with more than
two propagators collapse to local diagrams in the limit d → ∞, i.e. only contributions with
i = j remain non-zero.

In general, all diagrams in which vertices are connected by more than two lines, i.e. Pij > 2, vanish
in the limit d → ∞, except for the case i = j. This holds for all diagrams involved in a skeleton
expansion of self-energy. As a result, the self-energy becomes purely local:

lim
d→∞

Σij(iωn) =Σ(iωn)δi,j , (2.9)

lim
d→∞

Σ(k,iωn) =Σ(iωn). (2.10)

Moreover, as mentioned previously, the self-energy should be derivable from the Luttinger-Ward(LW)
functional Φ[Gij ]. Analogue to the scaling of the self-energy diagrams in the limit of infinite di-
mensions, only local diagrams involved in the expansion of the LW functional remain non-zero, s.t.
limd→∞Φ[Gij ] =

∑
i φ[Gii]. Taking the functional derivative of the LW functional in respect to the

Green’s function yields the self-energy:

lim
d→∞

Σij(iωn) = δ
∑
l φ[Gll(iωn)]
δGij(iωn) = Σ(iωn)δi,j . (2.11)

Since the LW functional and the self-energy are local, they should be derivable from a local theory.

Relation to impurity model
The Hubbard model involving only local interactions can be described by a single-site action

S = −
∫ β

0
dτdτ ′ c†σ(τ)G−1

0 (τ − τ ′)cσ(τ ′) +
∫ β

0
dτ Unc,↑nc,↓. (2.12)

An action of the same form can be derived from a quantum impurity model, such as the single Anderson
impurity model (SIAM). More details on the model are discussed in section 4.1. Its Hamiltonian reads

H =Himp +Hbath +Hhyb (2.13)

Himp =(Ec − µ)
∑
σ

c†σcσ + Unc,↑nc,↓ (2.14)

Hbath =
∑
k,σ

εka
†
k,σak,σ (2.15)

Hhyb =
∑
k,σ

Vk,σ(c†σak,σ + h.c). (2.16)
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The SIAM has a local interacting site coupled to a non-interacting bath, fully described by the hy-
bridization function

∆(iωn) =
∑
k

V 2
k

iωn − εk
. (2.17)

Integrating out the bath yields an action of the same form as the one given in Eq. (2.12), with

G−1
0 (iωn) = iωn + µ−∆(iωn). (2.18)

Therefore in infinite dimension, the problem of solving a quantum lattice model reduces to solving a
quantum impurity model, which is still a many-body problem and a difficult task itself. The remaining
challenge is to find the hybridization function ∆(iωn), which is done self-consistently as described in
the following section. The relation between lattice and impurity model can also be seen in a similar
way classical mean-field theory (MFT) is done. For example in the classical MFT for the Ising model,
a lattice model is mapped onto a single-site model with an effective mean-field that fulfills a self-
consistency constraint. In the case of the Ising model, the self-consistency condition can be derived
from the requirement that the lattice and the single-site model yield the same local magnetization.
Similarly, for quantum lattice models like the Hubbard model, the lattice problem is mapped onto
an impurity model which involves an interacting impurity site coupled to a bath. In this case, the
hybridization function ∆(iωn), which characterizes the bath, represents the mean-field. In contrast to
classical MFT, the mean-field is now a dynamic quantity, which coined the name dynamical mean-field
theory (DMFT). In the limit of infinite dimensions, the mapping between lattice and impurity models
is exact. For finite dimensions, it can be used to define an approximation scheme to solve the more
complicated lattice model.

2.3 Self-consistency and iteration scheme

In this section, we switch to using the real-frequency notation as it is used in the numerical calcu-
lations involved in this thesis. Previously, the Hubbard model in infinite dimensions was related to
an impurity model, the SIAM, with an effective hybridization ∆(ω). The remaining problem is to
determine the dynamic mean-field ∆(ω) which fulfills a self-consistency equation.

Self consistency equation
The effective impurity model should reproduce the local dynamics of the lattice model. Therefore local
quantities calculated from the lattice and impurity model should be identical. In DMFT the central
object is the local Green’s function. The self-consistency condition, therefore, requires the local lattice
Green’s function to be equal to the impurity Green’s function:

Glatt(ω) != Gimp(ω). (2.19)

The local lattice Green’s function can be calculated via momentum integration

Glatt(ω) =
∫
dk

1
G0(k,ω)− Σlatt(k,ω) . (2.20)
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Furthermore, the impurity Green’s function is given by

Gimp(ω) = 1
ω + µ−∆(ω)− Σimp(ω) . (2.21)

Setting Σlatt(k,ω) = Σimp(ω), leads to a self consistency equation for ∆(ω):∫
dk

1
G0(k,ω)− Σimp(ω) = 1

ω + µ−∆(ω)− Σimp(ω) , (2.22)

which can be solved iteratively. In the limit of infinite dimension, the momentum dependent lattice
self-energy is local Σlatt(k,ω) = Σlatt(ω), i.e. it can be generated from an impurity model and the
self-consistency equation gives an exact solution. In general, the momentum dependence of Σlatt(k,ω)
cannot be neglected. However, the solution of the self-consistency equation can be seen as a viable
approximation for the lattice problem. In the following an iterations scheme to derive the solution of
the self-consistency equation is described, which is visualized in Fig. 2.4.

Iteration scheme

1. Initiate the hybridization function ∆(ω), e.g. a constant box shaped hybridization.

2. Given ∆(ω), solve the corresponding impurity model with a impurity solver, in our case NRG.
This yields the impurity self-energy Σ(ω).

3. Approximate Σlatt(k,ω) ≈ Σ(ω) and calculate the local lattice Green’s function via numeric
integration or analytically if possible.

4. Extract the new hybridization function from the self consistency equation

∆new(ω) = ω + µ− Σ(ω)−G−1
latt(ω), (2.23)

and use it as new input hybridization for the impurity model.

5. Repeat steps 2.) - 4.) until convergence is reached, i.e. until the input hybridization in step 2.)
and the output hybridization in step 4.) match up to a desired accuracy.
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Fig. 2.4: Visualization of the DMFT self-consistency iteration.
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3 Cluster extensions

A drawback of standard DMFT is the neglect of momentum dependence of the lattice self-energy.
However, there exist extensions, which reintroduce nonlocal correlations. The basic idea is to enlarge
the single interacting site of the self-consistent impurity model to a small cluster of interacting sites.
Consequently, nonlocal correlations within the cluster can be captured and momentum dependence is
introduced into the self-energy. Here the two most established approaches, cellular DMFT (CDMFT)
and the dynamical cluster approximation (DCA) are discussed. In this thesis only DCA will be
used, however, it is instructive to first introduce CDMFT as it has a lot of similarities with DCA.
Firstly, the more intuitive CDMFT is introduced, in which clusterization is performed in real space.
Subsequently, a connection to DCA is drawn, which is formulated in momentum space. In this section a
rather practical introduction to DMFT cluster extensions is given, focusing on how the self-consistency
equation is constructed. The basic concepts presented are inspired by the reviews ([2],[10]), which are
recommended for more details and a rigorous derivation. In our calculations, only two-site clusters
will be used. Therefore we follow the example of the Hubbard model on a square lattice with clusters
containing two sites.

Before going into detail, basic notation for labeling sites and momenta in the clusterized lattice is
introduced, see Fig. 3.1. In real space, the lattice is tiled into a superlattice of cells containing Nc sites.
The cell position within the superlattice is labeled by x̃, the position within a cell by X. Similarly,
the corresponding momentum space to the cluster site X is labeled by K, while the momenta k̃ labels
the superlattice momentum space.

Fig. 3.1: Clusterization of a square lattice into clusters containing Nc = 2 sites. The left side shows
the tiling of the lattice into a superlattice of two-site clusters in real space. x̃ denotes the
position within the superlattice, X the position within the cluster. The right side illustrates
the clusterization in momentum space. The first Brillouin zone (1.BZ) is split up into two
patches. Each patch corresponds to the momentum space of the cluster site X and is labeled
by K. k̃ label the wave vectors of the superlattice.
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3.1 Cellular DMFT (CDMFT)

CDMFT is constructed from a real-space perspective. The lattice is tiled into a superlattice of cells
containing Nc sites, as illustrated in Fig. 3.1. Whereas translation invariance is retained in the
superlattice, it is violated within a cell. Therefore in CDMFT, Green’s function and self-energy are
formulated as Nc×Nc matrices in the cluster space (denoted by bold symbols) and can be labeled by
the superlattice momenta k̃:

G(k̃,ω) =[G−1
0 (k̃,ω)−Σ(k̃,ω)]−1, (3.1)

G0(k̃,ω) =[(ω + µ)1− t(k̃)]−1. (3.2)

(3.3)

Here the hopping matrix t(k̃) can be represented by the intracluster Fourier transformation,

t(k̃)Xi,Xj = 1
Nc

∑
K

exp
(
i(k̃ +K)(Xi −Xj)

)
t(k̃ +K), (3.4)

with t(k̃ +K) = εk being the dispersion of the lattice. For the example of the two-site cluster,
X1 = 0, X2 = ex,Ki,x = 2π

Lc
ni = πni with integer ni = 0, 1, yield

t(k̃) =

 0 eik̃xεk̃

e−ik̃xεk̃ 0

 . (3.5)

Here one can clearly see that the factor eik̃(Xi−Xj) leads to a violation of translation invariance.
Altogether the local lattice Green’s function in cluster space is given by

Glatt(ω) =
∫
dk̃ [G0(k̃,ω)−Σ(k̃,ω)]−1. (3.6)

As in standard DMFT, the self-energy Σ(k̃,ω) is intractable to calculate exactly. It has to be ap-
proximated by a self-energy, calculated from a self-consistent impurity model. The self-energy of the
impurity model is independent of k̃, preserving correlations within the cluster and neglecting cor-
relations between different clusters, i.e. Σ(k̃,ω) ≈ Σ(ω). For a two-site cluster, the corresponding
impurity model is the two impurity Anderson model (2IAM). Its Hamiltonian reads

H =Hcl +Hbath +Hhyb (3.7)

Hcl =− t
∑
σ

(c†1,σc2,σ + h.c.) + U
∑
α

nα,↑nα,↓ − µ
∑
α,σ

nα,σ (3.8)

Hbath =
∑
α,λ,σ

εα,λa
†
α,λ,σaα,λ,σ (3.9)

Hhyb =
∑

α,β,λ,σ

(Vα,β,λc†α,σaβ,λ,σ + h.c), (3.10)
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with the cluster indices α,β = 1, 2. The bath parameters are characterized through the hybridization
function

∆α,β(ω) =
∑
γ,λ

Vα,γ,λV̄β,γ,λ
ω − εγ,λ

. (3.11)

Solving the impurity model yields the self-energy Σ(ω) and the cluster Green’s function

Gcl(ω) = [(ω + µ)1− t · σx −∆(ω)−Σ(ω)]−1. (3.12)

Identical to standard DMFT the self consistency condition, relating the impurity model to the lattice
model, requires the local Green’s function of both models to be equal

Glatt(ω) != Gcl(ω). (3.13)

The iteration scheme to find the self-consistent hybridization function is analogous to the one defined
in section 2.3, except that now all objects are Nc × Nc matrices. The new hybridization function in
each iteration loop is extracted from the self consistency equation via

∆(ω) = (ω + µ)1− t · σx −Σ(ω)−G−1
latt(ω). (3.14)

After a self-consistent solution is found, the obtained self-energy is not diagonal in k-space. To resolve
this issue, the self-energy has to be reperiodized ([11],[12],[13]). The reperiodization scheme has to
preserve causality, i.e. Im[Σ(k,ω)] < 0. However, there exist different schemes, which introduce some
arbitrariness.

3.2 Dynamical cluster approximation (DCA)

Previously we showed the violation of translation invariance in CDMFT manifests in the hopping
matrix t(k̃) through the factor eik̃(Xi−Xj) in the intra-cluster Fourier transformation, see Eq. (3.4).
In DCA translation invariance is restored by simply dropping this factor. Consequently, the hopping
matrix simplifies to

t(k̃) =

 0 εk̃

εk̃ 0

 , (3.15)

for the example of a two-site cluster. In general, this enables us to diagonalize the lattice Green’s
function by Fourier transforming to K-space:

G(k̃,K,ω) =
∑
i,j

exp
(
−i(k̃ +K)(Xi −Xj)

)
GXi,Xj (k̃,ω). (3.16)

In contrast to CDMFT, the lattice Green’s function is now diagonal in the cluster momentum K by
construction. Omitting the factor eik̃(Xi−Xj) in the intracluster Fourier transformation can be seen as
having a cluster with periodic boundary conditions in real space. Consequently, the case of a two-site
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cluster is special, because each cluster site “sees” its neighbor twice. Thus nonlocal correlations are
expected to be enhanced in DCA compared to CDMFT for Nc = 2.

The local lattice Green’s function for each Ki is defined as

Glatt(Ki,ω) =
∫
Pi

dk

VPi

[G0(k,ω)− Σ(k,Ki,ω)]−1, (3.17)

with i = 1 . . . Nc. Here Pi denotes a momentum patch in the first Brillouin zone (BZ), which corre-
sponds to the cluster momentum Ki. Thus in DCA the first BZ is split into Nc patches. The right
side of Fig. 3.1 visualizes, a possible momentum space patching for Nc = 2. However, this introduces
some arbitrariness since the shape of the patches can be chosen freely as long as its extent takes up
1/Nc of the full BZ.

As in CDMFT, the self-energy has to be approximated by a self-consistent cluster impurity model.
In DCA, the Hamiltonian of the impurity model is formulated in momentum space representation:

H =Hcl +Hbath +Hhyb (3.18)

Hcl =
∑
i,σ

(εKi − µ)c†Ki,σ
cKi,σ + U

∑
i,j,l

c†Ki+Ql,σ
c†Kj+Ql,σ̄

cKj ,σ̄cKi,σ (3.19)

Hbath =
∑
i,λ,σ

εi,λ,σa
†
i,λ,σai,λ,σ (3.20)

Hhyb =
∑
i,λ

Vi,λ(c†Ki,σ
ai,λ,σ + h.c.) (3.21)

εKi = 1
V(Pi)

∑
k

χPi(k)εk. (3.22)

Here χ is the indicator function, i.e. χPi(k) = 1 if k ∈ Pi and χPi(k) = 0 if k /∈ Pi. Moreover, the
hybridization function is now diagonal in the cluster momentum

∆(Ki,ω) =
∑
i,λ

Vi,λV̄i,λ
ω − εi,λ

. (3.23)

Solving the cluster impurity model yields the self-energy Σ(Ki,ω) and the cluster Green’s function

Gcl(Ki,ω) = [ω + µ− εKi −∆(Ki,ω)− Σ(Ki,ω)]−1. (3.24)

Altogether, one obtains a self-consistency equation for each of the Nc cluster momenta Ki

Glatt(Ki,ω) != Gcl(Ki,ω). (3.25)

It can be solved following the iteration scheme described in section 2.3. The hybridization function is
extracted from the self-consistency equation via

∆(Ki,ω) = ω + µ− εKi − Σ(Ki,ω)−G−1
latt(Ki,ω). (3.26)

In contrast to CDMFT, the self-energy is already diagonal in momentum space by the construction of
DCA. Though, it is discontinuous between the different momentum patches of the cluster momenta
Ki. This issue can be cured by interpolating the self-energy between different patches. Nevertheless,
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the choice of interpolation scheme is not unique and arbitrary to some extent. However, for momentum
independent quantities no interpolation is necessary and the self-energy, obtained from DCA, can be
used without post-processing.
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4 Numerical renormalization group (NRG)

Originally developed by K. Wilson to solve the Kondo problem [14] NRG has become a powerful
impurity model solver, which forms the backbone for our DMFT calculations. Within NRG real-
frequency objects, such as the self-energy, can be calculated directly without the need for ill-posed
numeric analytic continuation. Moreover, arbitrarily low temperatures can be resolved. One drawback
of NRG is that it is only applicable to systems with a few orbitals, due to the exponential scaling
of the computational complexity. The NRG routines used in this thesis, have been developed by
Andreas Weichselbaum and Seung-Sup Lee. This section follows the review [3] to describe the main
ideas behind NRG, using the example of the single impurity Anderson model (SIAM). Furthermore,
useful extensions to the basic NRG scheme are briefly mentioned.

4.1 Impurity models

Impurity models involve a small number of interacting degrees of freedom coupled to a non-interacting
bath. For the sake of simplicity, this section follows the SIAM to explain the basic structure of a
quantum impurity model. The SIAM Hamiltonian consists of three constituents, impurity, bath, and
hybridization.

H =Himp +Hbath +Hhyb (4.1)

Himp =(Ef − µ)
∑
σ

f †σfσ + Unf,↑nf,↓ (4.2)

Hbath =
∑
k,σ

εkd
†
k,σdk,σ (4.3)

Hhyb =
∑
k,σ

Vk,σ(f †σdk,σ + h.c) (4.4)

Here operators dk,σ and fσ fufill fermionic anit-commutation relations: {fσ,f †σ′} = δσ,σ′ , {dk,σ,d†k′σ′} =
δk,k′δσ,σ′ . The interacting impurity site couples via the hybridization term to a non-interacting bath
with dispersion εk. It turns out that the parameters of the bath are fully determined by the hybridiza-
tion function:

∆(ω) =
∑
k

V 2
k

ω − εk
. (4.5)

The treatment of the SIAM with NRG involves discretization of the Hamiltonian. For this reason, it
is helpful to introduce an energy-representation with dispersion g(ε) and hybridization h(ε).

H = Himp +
∑
σ

∫ 1

−1
dε g(ε)a†ε,σaε,σ +

∑
σ

∫ 1

−1
dε h(ε)(f †σaε,σ + h.c.) (4.6)

Here it is assumed that the support of ∆(ω) lies within the interval [−D,D], in which D is the half
bandwidth. Without loss of generality, we set D = 1 as the scale of energy in the following sections.

4.2 Logarithmic discretization and discretized Hamiltonian

One of the core ingredients of NRG is logarithmic discretization. The band is split up into a set of
intervals In,± = [±Λ−(n+1), ±Λ−n] of width dn = Λ−n(1 − Λ−1), with the discretization parameter
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Λ > 1. In each of the intervals an orthonormal and complete set of functions can be introduced:

Ψ±np(ε) =


1√
dn

exp(±ωnpε) for± ε ∈ In,±,

0 otherwise.
(4.7)

Here, with p ∈ Z, the description is still exact. In NRG usually only the p = 0 contribution will be
kept. Motivation for this approximation is that the p 6= 0 states couple only indirectly via the p = 0
state to the impurity. Moreover the coupling between p 6= 0 and p = 0 has a prefactor (1−Λ−1). In the
limit Λ→ 1, the exact solution is recovered. After dropping the p 6= 0 contributions the Hamiltonian
(4.6) can be written in its approximate discretized form:

H = Himp +
∑
σ

∑
n

ξ+
n a
†
n,σan,σ + ξ−n b

†
n,σbn,σ + 1√

π

∑
σ

∑
n

(γ+
n f
†
σan,σ + γ−n f

†
σbn,σ + h.c.). (4.8)

The hopping amplitudes γ±n and on-site energies ξ±n are fully determined by the hybridization function
through

(γ±n )2 =
∫
In,±

dε∆(ε), (4.9)

ξ±n =
∫
In,±

dε∆(ε)ε∫
In,±

dε∆(ε) . (4.10)

In the Hamiltonian (4.8) the impurity site couples to each of the bath sites. This star-like geometry
can be mapped onto a semi-infinite chain using the Lanczos method:

H = Himp +
∑
σ

√
ξo
π

(f †σc0,σ + h.c.) +
∑
σ

∞∑
n=0

[εnc†n,σcn,σ + tn(c†n,σcn+1,σ + h.c.)]. (4.11)

The operators cn,σ are linear combinations of an,σ, bn,σ and form an orthonormal set. In the resulting
Hamiltonian the impurity only couples to the first bath site. In general, the on-site energies εn and
hopping amplitudes tn are determined through a recursion relation. For the special case of constant
hybridization ∆(ω) = ∆0 with support in [−1, 1], Wilson derived a analytic formula for the hopping
amplitudes [14]:

tn = (1 + Λ−1)(1− Λ−n−1)
2
√

1− Λ−2n−1
√

1− Λ−2n−3
Λn/2 n�1−→ 1

2(1 + Λ−1)Λ−n/2. (4.12)

For large n the hopping amplitudes tn fall off exponentially. In DMFT the hybridization function can
take arbitrary form, however, the exponential scaling of the hopping amplitudes is always fulfilled for
large n. This originates from the logarithmic discretization chosen at the beginning and will be of
importance for the NRG scheme to work. For more details on the discretization of the Hamiltonian
and the mapping onto the semi-infinite chain see Ref. [3], section B, C.

4.3 Iterative Diagonalization

Starting from the Hamiltonian (4.11) the NRG scheme can be defined. Ultimately, the goal is to
calculate the energy eigenstates of the chain Hamiltonian. Since exact diagonalization is computa-
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tionally only possible for short chain lengths, an iterative diagonalization scheme is used. The basic
idea is to start at the impurity site, diagonalize the Hamiltonian, extend the Hamiltonian by adding
one bath site and diagonalize again. Repeating this procedure, the so-called Wilson chain is formed.
By iteratively adding more bath sites to the chain the Hilbert space grows exponentially and thus it
has to be truncated at some point to make diagonalization feasible. This is achieved by only keeping
the lowest energy eigenstates up to some threshold after each iteration. The truncation is meaningful
since each added bath site perturbs the Hamiltonian only weekly due to the energy scale separation
introduced by the exponentially decaying hopping amplitudes (see Eq. (4.12)). Therefore the low
energy spectrum at later iterations is not affected by the high energy spectrum at previous iterations.
Furthermore, it is advantageous to rescale the Hamiltonian at each iteration step N by Λ(N−1)/2.
Consequently the finite chain Hamiltonian at iteration N reads

HN = Λ(N−1)/2[Himp + ξ0
π

∑
σ

(f †σc0,σ + h.c.) +
∑
σ

N∑
n=0

εnc
†
n,σcn,σ +

∑
σ

N−1∑
n=0

tn(c†n,σcn+1,σ + h.c.)].

(4.13)

The factor Λ(N−1)/2 is useful since it cancels the N -dependence of the hopping amplitude tN−1 which
will be important for fixed points of the energy spectrum. The semi-infinite chain Hamiltonian is
recovered in the limit H = limN→∞ Λ−(N−1)/2HN . Moreover, HN+1 can be related to its predecessor
HN by

HN+1 =
√

ΛHN + ΛN/2
∑
σ

εN+1c
†
N+1,σcN+1,σ + λN/2

∑
σ

tN (c†N,σcN+1,σ + h.c). (4.14)

Each Hamiltonian HN is characterized by its eigenstates and eigenvalues |r〉N , EN (r). Combining the
iterative diagonalization procedure described in the beginning with the smart formulation of the series
of Hamiltonians HN , the NRG scheme is defined as:

1. Assuming the energy-eigenstates |r〉N and the corresponding eigenvalues EN (r) of the Hamilto-
nian HN are known, i.e. HN |r〉N = EN (r) |r〉N . The Hilbert space of the subsequent Hamil-
tonian HN+1 is spanned by {|r〉 ⊗ |s〉}, in which the states |s〉 form the Hilbert space of the
added bath-site. Note, this operation enlarges the Hilbert space by a factor of the dimension of
bath-sites Hilbert space.

2. Diagonalize the constructed HamiltonianHN+1, yielding new eigenstates and eigenvalues |r′〉N+1 ,

EN+1(r′). However, with an increasing dimension of the Hilbert space diagonalization becomes
infeasible quickly. Therefore the Hilbert space has to be truncated by introducing a cutoff Nk,
s.t. the lowest Nk states are kept, while the rest is discarded. As mentioned before, this trun-
cation is meaningful due to the exponentially decaying hopping amplitudes. Each added chain
site can be viewed as a perturbation of order Λ−1/2 to the Hamiltonian HN . Therefore the high
energy eigenstates of HN have negligible impact on the low energy behavior of HN+1.

3. Repeat step 1.) & 2.) until the desired energy resolution is reached.

The transformation HN+1 = T (HN ), can be seen as a RG transformation. It takes the Hamiltonian
HN , rescales it by

√
Λ and extends it by an additional bath site. Moreover, in every iteration, the

energy spectrum is truncated and high energy states are discarded, which is similar to successively
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integrating out high energy degrees of freedom in common RG schemes. Reiterating T lets the system
flow to a fixed point, which is manifest in the flow of the energy spectrum through the NRG iterations.
More specifically T 2, i.e. even and odd iterations show fixed-point behavior. The flow of the energy
spectrum and its fixed points throughout the iterations can be useful for analyzing the numeric results,
as we will see later. Note that the runtime of the described iterative scheme scales linearly in the chain
length. Therefore it is possible to reach arbitrary low energy resolution, which is a powerful aspect of
NRG.

4.4 Useful extensions

There are many important extensions to the basic NRG scheme. In the following, some of them are
mentioned briefly.

Exploiting symmetries:
To reduce computational cost it is useful to exploit all symmetries of the model of interest. A sym-
metry of a system is described by its symmetry group. The symmetry is obeyed if the Hamiltonian
commutes with the generators of the symmetry group. In return, this means that the eigenstates of
the Hamiltonian can be labeled by the eigenvalues of the Casimir operators of the symmetry groups.
For example in the SIAM, if one focuses on states with U(1) charge and SU(2) spin rotation symmetry,
states can be labeled by charge Q and spin S, i.e. the Hamiltonian is diagonal in each sector described
by [Q,S]. This is of great benefit because the full Hamiltonian takes a block diagonal form, which
makes diagonalization more efficient by simply diagonalizing each block. In the QSpace library [15],
developed by A. Weichselbaum, NRG is formulated in the framework of matrix product states (MPS)
in which discrete, abelian, and non-abelian symmetries can be exploited.

Full density matrix NRG (fDMNRG):
Dynamical quantities such as spectral functions, represented through the Lehmann representation,
require a sum over a complete many-body basis. The approximate low energy eigenstates obtained
by NRG do not span the full Hilbert space. F. Anders and A. Schiller had the insight to use the
discarded states at each NRG iteration to construct a complete many-body basis [16]. Utilizing the
complete many-body basis a scheme to calculate spectral functions of impurity models can be formu-
lated, without introducing further approximations [17].

Interleaved NRG (iNRG):
Multi-band models consisting of orbitals with n flavors of dimension d, increase the size of the Hilbert
space by a factor of d · n, at each NRG iteration. Thus diagonalization becomes infeasible quickly.
The idea of iNRG is to add the flavors of the full orbital successively to the Wilson chain and truncate
the Hilbert space at each step, reducing the growth factor to d and increasing the chain length by
n. Though an artificial energy scale separation between the flavors is introduced and if present,
symmetries between flavors are broken. Nevertheless, if used appropriately iNRG performs similarly
as standard NRG at lower computational cost ([18],[19]).
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5 Cold atoms, a DMFT analysis

Cold atoms trapped in optical lattices offer an interesting platform to study many-body quantum
systems [4]. Recent experiments propose to use Alkaline-earth atoms such as Ytterbium to model two
orbital fermionic systems. The lowest-lying states in the electronic configuration of fermionic 173Yb
are a singlet 1S0 and a triplet 3P0. In the following, the singlet will be referred to as the ground state
“g” and the triplet as an excited state “e”. Experimentally each state can be controlled in a state-
dependent optical lattice. For more details on the experimental realization see [20]. Altogether this
makes Ytterbium-based cold atom experiments a suitable candidate as an “analog quantum simulator”
for two-orbital models such as the Kondo lattice, where hybridization between localized and itinerant
electrons is crucial.

The Quantum optics group at LMU lead by Simon Fölling has experimentally realized a Kondo
lattice-like system. It is designed to model the following Hamiltonian.

H = Hhop
g +Hhop

e +H int
gg +H int

ee +H int
ge (5.1)

Hhop
g = −tg

∑
<i,j>,σ

(g†i,σgj,σ + h.c.) (5.2)

Hhop
e = −te

∑
<i,j>,σ

(e†i,σej,σ + h.c.) (5.3)

H int
gg = Ugg

2
∑
i

ng,i(ng,i − 1) (5.4)

H int
ee = Uee

2
∑
i

ne,i(ne,i − 1) (5.5)

H int
ge = V

∑
i

ne,ing,i + J
∑
i,σ′,σ

g†i,σe
†
i,σ′gj,σ′ej,σ

= (V − J

2 )
∑
i

ne,ing,i − 2J
∑
i

~Sg,i · ~Se,i (5.6)

Each atom species, represented by the fermionic operators gσ,i, eσ,i, has a finite hopping amplitude
tg/e and an on-site repulsion given by Ugg/ee. Moreover, the two different atomic states interact via
an antiferromagnetic coupling J (J < 0, following the experimental convention) and a density-density
repulsion proportional to (V − J/2). Experimentally accessible parameter sets are given in Tab. 5.1.
They are labeled by the state-dependent optical lattice depth sg/e, measured in recoil energy Er for
ground-state atoms. Note that the tight-binding limit is not valid for lattice depths sg/Er < 3 and
the next-nearest neighbor hopping amplitude for ground-state atoms is not negligible anymore, but it
still might be helpful to explore favorable parameter sets. The parameter sets and information about
their experimental relevance are provided by Nelson Darkwah Oppong.
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sg/Er se/Er Us/tg Ut/tg V/tg J/tg Uee/tg Ugg/tg te/tg D/tg tg/(hxHz)

1 3.3 2.75 1.7 2.22 -0.53 1.06 -0.02 0.54 4 502.78

2 6.6 5.25 3.24 4.24 -1 2.21 -0.03 0.29 4 385.09

3 9.9 8.87 5.47 7.17 -1.7 3.77 -0.05 0.17 4 293.75

4 13.2 14.01 8.64 11.33 -2.68 5.89 -0.07 0.11 4 224.19

5 16.5 21.14 13.04 17.09 -4.05 8.77 -0.11 0.07 4 171.75

6 19.8 30.87 19.05 24.96 -5.91 12.65 -0.16 0.05 4 132.32

Tab. 5.1: Experimental accessible parameter sets.

By adjusting the state-dependent optical lattice depth sg/e, the singlet and triplet interaction Us

and Ut can be tuned, which define the interaction parameters in the Hamiltonian:

J = Ut − Us
2 , V = Ut + Us

2 . (5.7)

In the following analysis, the on-site interaction Ugg will be omitted, since it is negligibly small
compared to all other interaction parameters.

We are interested in studying the model described by the Hamiltonian (5.1) in the framework of
DMFT, to investigate the different experimental parameter sets and possible guide experimentalists
to interesting parameter regimes. Our analysis is separated into two parts. First, we take a more in-
depth look at the parameter set sg/Er = 3 and demonstrate the influence of the repulsive interaction
V between g and e states and how it affects the existence of different phases. Afterward, the different
experimental parameter sets are compared.

5.1 Method

Within DMFT the lattice model described by the Hamiltonian (5.1) is solved through a self-consistent
mapping onto an impurity model. Its Hamiltonian reads

H =Himp +Hbath (5.8)

Himp =Uee
2 ne(ne − 1)− µe

∑
σ

e†σeσ − µg
∑
σ

g†σgσ + (V − J

2 )neng − 2J ~Sg · ~Se (5.9)

Hbath =
∑
λ=e,g

∑
λ,k,σ

Eλ,kb
†
λ,k,σbλ,k,σ +

∑
k,σ

Ve,k(b†e,k,σek,σ + h.c.) +
∑
k,σ

Vg,k(b†g,k,σgk,σ + h.c.). (5.10)

Here the operators gσ, eσ, correspond to the two different types of fermionic atoms and fulfill fermionic
anti-commutation relations. Furthermore, the bath parameters Eλ,k, Ve/g,k are fully determined by
the hybridization function

∆e/g =
∑
k

V 2
e/g,k

ω − Ee/g,k
. (5.11)
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The impurity model is solved by interleaved NRG, which does not show meaningful deviations to results
obtained from standard NRG, but reduces the computational cost. We focus only on the paramagnetic
phases, as a constraint, in which the rotational spin symmetry (i.e SU(2) spin symmetry) is not broken.
This enables us to exploit U(1)charge⊗SU(2)spin symmetry in the NRG calculations, further reducing
the computational cost. As discretization parameter Λ = 4 is used and Nk = 3000 multiplets are kept
each NRG iteration. Moreover, nz = 2 z-shifts are performed. Using smaller Λ or higher Nk does not
improve the results significantly.

The self-consistent mapping between the lattice and impurity model is done as described in section
2.3. The semi-elliptic density of states of the infinite dimensional Bethe lattice is used for the lattice
model:

ρg/e(ε) = 1
π

√√√√1−
(

ε

tg/e

)2

. (5.12)

It is a common convenient choice because it leads to an analytic self-consistency equation

Glatt(ω) = 1
2t2g/e

(
ξ −

√
ξ2 − 4t2g/e

)
, (5.13)

ξ =ω + µg/e − Σg/e(ω), (5.14)

which makes it possible to avoid numerical integration. Note, it is possible to use the DOS of e.g. a
cubic lattice with suitable integration routines, but it does not affect the results qualitatively. For the
following, calculations we will set tg ≡ 1 as a unit of energy.

5.2 Influence of repulsive interaction V

Crucial for the stability of the DMFT solution is the magnitude of the interaction parameter V since
it leads to a large repulsion between the two bands. For the following analysis the parameter set with
sg/Er = 3 in Tab. 5.1 is used. All parameters, except for V, are kept as they are given. For increasing
V we scan over the chemical potentials µe, µg, to adjust the filling ng, ne of the corresponding bands.
The averaged fillings are calculated from the converged DMFT solution by integrating the spectral
functions. Two different temperatures T/tg = 10−8 and T/tg = 0.1 are considered.

T = 0 phase diagram:
First, the phase diagram for T/tg = 10−8 will be calculated. The chemical potential of the g-
band is fixed to µg = Uee/2 = 1.885, we vary µe ∈ [0,6], V ∈ [−0.85 − 7.15], with step sizes of
∆µe = 0.25, ∆V = 0.5. Our strategy of scanning the chemical potential is motivated by the local
energy level structure, which will be discussed later. Different strategies to scan over the chemical
potentials µe, µg do not lead to superior results. For each pair V, µe the average fillings 〈ng〉, 〈ne〉 are
calculated. Fig. 5.1 shows the results of the calculations. There exist mainly four different regimes:
(ng, ne) = (2, 0); (ng, ne) = (0, 1); (ng, ne) = (0, 2) and (ng, ne) ' (1, 1). The latter is the only
interesting regime, since both bands have simultaneous non-zero occupation. This interesting regime
is represented by the turquoise region in Fig. 5.1 and its boundaries. For small V the transitions
(ng, ne) = (2, 0) → (ng, ne) ' (1, 1) and (ng, ne) ' (1, 1) → (ng, ne) = (0, 2) can be observed
by increasing µe. However, with increasing V the turquoise region narrows and at approximately
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V ≈ 4 it breaks down completely and a direct transition (ng, ne) = (2, 0) → (ng, ne) = (0, 2) or
(ng, ne) = (2, 0)→ (ng, ne) = (0, 1) occurs when µe is increased. It is not possible to fine-tune µe to
reach intermediate fillings It always appears a jump in the occupation. This discontinuity is smeared
out at higher temperatures and the transition becomes continuous, see Fig. 5.3.

Fig. 5.1: Dependence of the average occupancies 〈ng〉, 〈ne〉 on interaction strength V and chemical
potential µe for temperature T/tg = 10−8. The data points where fractional fillings of 〈ne〉
occur in the transition regions are unfortunately all unstable DMFT solutions and therefore
not representative.

It turns out, that the general structure of the phase diagram and the influence of the repulsive in-
teraction V , can be understood from the local energy levels, which will be discussed later in section 5.3.

Fig. 5.2: Dependence of average occupancies 〈ng〉, 〈ne〉 on interaction strength V and chemical poten-
tial µg for temperature T/tg = 0.1.

T/tg = 0.1, phase diagram:
The phase diagram for a temperature of T/tg = 0.1 is calculated the same way as for T/tg = 10−8,
µg = Uee/2 is fixed and µe is varied. To resolve the transition region more precisely, we focus on the
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region µe ∈ [3, 4.5], V ∈ [2.65, 7.15] with step sizes ∆µe = 0.1, V = 0.5. The results are presented in
Fig. 5.2. Contrary to the T = 10−8 phase diagram in Fig. 5.1, the transition between the different
regimes is now continuous and fractional fillings can be observed in the transition region. Fig. 5.3
illustrates the filling transition for the different temperatures T = 0.1, 10−8. For T = 10−8 the
transition exhibits a sharp jump and there exists a region where the DMFT solution is not stable. In
contrast, for T/tg = 0.1 the transition becomes smooth and fractional fillings can be observed.

Fig. 5.3: Temperature dependence of filling transition for V = 7.15 for T/tg = 0.1, 10−8. The shaded
region indicates a region of instablity of the DMFT solution for T/tg = 10−8.

Moreover, results for the spin-spin correlation 〈Sg · Se〉 and charge-charge correlation 〈ng · ne〉 of g
and e atoms are presented in Fig. 5.4.

Fig. 5.4: Dependence of spin-spin correlation 〈Sg ·Se〉 and charge-charge correlation 〈ng ·ne〉 on inter-
action strength V and chemical potential µe for temperature T/tg = 0.1

We only find a non-zero spin-spin and charge-charge correlation up to V ≈ 4. The spin-spin
correlation being negative reveals singlet formation in the regime (ng, ne) ' (1, 1). For larger values
of V there exists a regime of (ng, ne) ' (1, 1) in the transition region between (ng, ne) = (0, 2)
and (ng, ne) = (2, 0). However, spins and charge of the different atomic states remain uncorrelated,
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indicating the existence of a mixture of states where either ng or ne is zero. Later more details on
this phase are discussed by looking at the local spectral functions. But first we will review the local
energy level structure which turns out to be insightful for the phase diagram and the local spectral
functions.

5.3 Local energy levels

In the phase diagrams, presented in the previous section, the following regimes appear: (ng, ne) =
(2, 0); (ng, ne) = (0, 1); (ng, ne) = (0, 2); (ng, ne) = (1, 1). These can be understood from looking
at the local energy levels. In Tab. 5.2 the ground state energies Eg in dependence of the occupation
numbers ng, ne and the total spin S are displayed.

ng ne S Eg

1. 2 0 0 −2µg

2. 0 1 1
2 −µe

3. 0 2 0 −2µe + Uee

4. 1 1 0 −µg − µe + J + V

5. 1 1 1 −µg − µe − J + V

Tab. 5.2: Ground state energies Eg of local energy levels for different occupation numbers ng, ne and
total spin S.

To understand under which circumstances simultaneous occupation is energetically favorable, we
compare the ground-state energies. This will give constraints for µe, µg to reach the desired regime.
We only consider the case where (ng, ne) = (1, 1) forms a singlet (i.e. S = 0), which gives rise to an
energy gain of 3/2J originating from the spin-spin interaction −2J ~Se · ~Sg. Ground state energies are
indexed by the rows in Tab. 5.2.
1.)Eg,4 < Eg,1:

−µe − µg + V + J < −2µg ⇐⇒ V + J < µe − µg (5.15)

2.)Eg,4 < Eg,2:

−µe − µg + V + J < −µe ⇐⇒ V + J < µg (5.16)

3.)Eg,4 < Eg,3:

−µe − µg + V + J < −2µe + Uee ⇐⇒ µe − µg < +Uee − J − V (5.17)

Altogether the interesting state (ng, ne) = (1, 1), where both orbitals are filled, is restricted in the
following way:
If V > µg − J it is never energetically favourable against (ng, ne) = (0, 1).
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If V < µg − J it is favorable in the regime constrained by the inequalities 1.) and 3.):

V + J < µe − µg < Uee − J − V. (5.18)

Consequently, the critical Vc where the upper and lower bound of the inequality match, which is
independent of the chemical potentials, is given by:

Vc + J =Uee − J − Vc, (5.19)

Vc =Uee/2− J = 3.585. (5.20)

If V exceeds this critical value there is no stable regime where both orbitals are filled (from a local
energy level perspective). Concluding, to possibly further increase Vc one would have to increase Uee
or J . Moreover, µg ≥ J + Vc = Uee/2 should be satisfied. Even though we only consider the local
energy levels here, this analysis shows agreement with the DMFT results presented in Fig. 5.1 and
Fig. 5.2. It is visible that the turquoise region narrows in agreement with Eq. (5.18).

5.4 Experimental parameter sets

Now we turn our attention to the different experimental parameter sets, given in Tab. 5.1. We start
with comparing the phase diagram of the different parameter sets for T = 0.1. Afterward, local
spectral functions are analyzed for one particular parameter sets, justified by the fact that the overall
behavior is qualitatively the same throughout all different parameter sets.

T = 0.1/tg, phase diagram:
For each set, the goal is to reach the regime where both bands have a simultaneous non-zero occupation.
For this purpose we calculate ne, ng on a suitable grid of µe, µg. From the local energy level perspective
we know it is beneficial to satisfy µg ≥ Uee/2. Moreover, the experimentally realizable combinations
of V, J, Uee, are in the regime V > Vc = Uee/2 − J . Therefore only observable transition is between
the regimes (ng, ne) = (0, 2) and (ng, ne) = (2, 0), which indicates µe = µg + Uee/2 at the transition
interface. Altogether, this motivates a (µg, µe)-grid around (µg, µe) = (Uee/2, Uee). Therefore a grid
of µg ∈ [Uee/2− 0.4, Uee/2 + 0.4] and µe ∈ [Uee − 0.4, Uee + 0.4] with a step size of ∆µg = ∆µe = 0.1
is used for the following calculations. All calculations are performed at T = 0.1/tg. In Fig. 5.5 the
results for the average occupations 〈ng〉, 〈ne〉 are displayed. For a better overview where both bands
could be partially filled, we also plot the product 〈ng〉 · 〈ne〉. There it is visible that the (µg, µe)-
grid is well chosen. The region of possible simultaneous occupation of both bands follows the line
µe = µg + Uee/2. For (µg, µe) ≥ (Uee/2, Uee) the product 〈ng〉 · 〈ne〉 is the largest. Increasing the size
of the (µg, µe)-grid in the direction with (µg, µe) ≥ (Uee/2, Uee), does not lead to an enhancement of
〈ng〉 · 〈ne〉. The overall behavior is pretty similar throughout the six different parameter sets. Only
the results for sg/Er = 1 displayed in Fig. 5.5 shows a slightly smaller 〈ng〉 · 〈ne〉 in the crossover
region.
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Fig. 5.5: Average densities 〈ng〉, 〈ne〉 and its product〈ng〉 · 〈ne〉 plotted against the chemical potentials
µg, µe for temperature T = 0.1/tg. Each row labled by sg/Er corresponds to one of the
experimental parameter sets given in Tab. 5.1.
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To get further insights into the configuration of the atoms, we look at the local spectral functions,
which provide information about possible excitations and the configuration of the atoms.

Local spectral functions:
Having found regions where both bands have a non-zero average occupation, we study the physics of
this configuration by looking at the local lattice spectral function. It turns out that the qualitative
structure of the spectral functions is the same for the six different parameter sets. Therefore we
choose the parameter set with V = 7.17, Uee = 3.77, J = −1.7 to explain the basic structure of the
spectral functions. Out of the phase diagram shown in Fig. 5.5 with sg/Er = 3, the data point
(µg, µe) = (Uee/2, Uee) is chosen. The excitations in the spectral function are compared to the local
energy levels, to check if there appear any interesting many-body effects. However, it turns out the
excitation spectrum matches the local energy level structure, where the ground state is a mixture of
the states (ng, ne) = (0, 1), (ng, ne) = (0, 2), (ng, ne) = (2, 0). In Tab. 5.3 all possible transitions from
these states are listed. In Fig. 5.6 the spectral functions along with the atomic transition energies are
displayed.

Transition ∆E

(ng, ne, S) = (0, 1, 1/2)→ (1, 1, 0) −µg + V + J

(ng, ne, S) = (0, 1, 1/2)→ (1, 1, 1) −µg + V − J

(ng, ne, S) = (0, 2, 0)→ (1, 2, 1/2) −µg + 2V − J

(ng, ne, S) = (2, 0, 0)→ (1, 0, 1/2) +µg

(ng, ne, S) = (2, 0, 0)→ (2, 1, 1/2) −µe + 2V − J

(ng, ne, S) = (0, 1, 1/2)→ (0, 0, 0) +µe

(ng, ne, S) = (0, 1, 1/2)→ (0, 2, 0) −µe + Uee

Tab. 5.3: Energy cost ∆E for all possible local energy level transitions, assuming the ground state
consists of a mixture of the states (ng, ne) = (0, 1), (ng, ne) = (0, 2) and (ng, ne) = (2, 0).

A surprising feature of the spectral functions is that the e-band is metallic and the g-band is
insulating. Since, te/tg = 0.17, one would expect the g-band to be metallic because of the larger
hopping amplitude. However, the large interaction strength V gives rise to a mixture of the states
(ng, ne) = (0, 1), (ng, ne) = (0, 2), (ng, ne) = (2, 0). While in the g-band the atoms are in a doubly
occupied ground state, the e atoms double occupation is suppressed by the on-site repulsion U . The
chemical potential µe = Uee leads to a mixture of single and double occupation of the e-band and
allows gapless excitations, which gives rise to the metallic state. Concluding, from a DMFT point of
view it seems like the interaction strength V is simply too large compared to J and therefore suppresses
any kind of state which is dominated by spin-spin-interaction and could potentially show many-body
effects. However, this is not an easy problem to solve experimentally, since V and J can so far not be
tuned independently.
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Fig. 5.6: Local spectral functions of g and e atoms for (µg, µe) = (Uee/2, Uee) and sg/Er = 3, i.e.
interaction parameters V = 7.17, Uee = 3.77, J = −1.7. The spectral functions are compared
against the local energy level excitation energies, marked by the vertical lines. See Tab. 5.3
for more information on possible excitations.
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6 Extended periodic Anderson model in the context of
Samarium-Hexaboride

In mixed-valence (MV) compounds, ions exhibit valence fluctuations between different valence con-
figurations. One such example is Samarium-Hexaboride (SmB6). The electronic configuration of
Samarium (Sm) is [Xe]4f65d0s2. In rare-earth hexaborides the rare-earth ions are known to form a
simple Cs-Cl type structure with B6 forming an octahedron. Molecular cluster calculations [21] show
that the configuration of the B6 octahedra requires 20 electrons. Therefore divalent rare-earth hex-
aborides, such as EuB6, are assumed to be semiconductors, whereas trivalent compounds like LaB6,
are expected to be metallic. SmB6 however falls in neither of these categories. X-ray absorption
measurements [22] show that the valence of Sm fluctuates between divalent Sm2+ and trivalent Sm3+

with an average valence of 2.6 at room temperature, which decreases to 2.5 at lower tempera-
tures. Samarium-Hexaboride has been intensively studied experimentally since the 1970s and various
anomalies in thermodynamic quantities, such as resistivity [23] and optical conductivity ([24],[25]),
have been discovered. For instance, measurements of the DC electrical resistivity show an increasing
resistivity with decreasing temperature, which saturates in a plateau at very low temperatures. Such
observations have been used to argue that SmB6 is an insulator at low temperatures with a bandgap
originating from hybridization effects between d and f electrons ([26],[27]). Recent experiments show
that SmB6 exhibits quantum oscillations (QO), which seems to contradict the insulating behavior since
QO are usually associated with a Fermi surface. It has been proposed [28] that SmB6 is a topological
insulator hosting topologically protected metallic surface states, which has been supported by many
experiments, e.g. ([29],[29],[29]). Metallic surface states are used to explain the measured QO and
thermodynamic anomalies, like the resistivity plateau. However, new experimental measurements of
QO ([30], [31]), show similar angular dependence as measurements performed on metallic LaB6. The
quantum oscillations are termed anomalous, as they deviate from the standard QO theory derived by
Lifshitz and Kosevich [32], which is based on Fermi liquid theory. Moreover, they are found to be
independent of the surface properties. For more details and an overview of experimental surface and
bulk properties of SmB6, we refer the reader to the review [33].

Altogether, this indicates that the quantum oscillations originate from the bulk, which motivates us
to focus on the bulk properties of SmB6. Nevertheless, this leaves us in a controversial situation. On
the one hand, thermodynamic quantities such as the electric resistivity show insulating behavior. On
the other hand, the measurement of quantum oscillations, point to the existence of a Fermi surface.
However, it has been shown that even band insulators with small gaps at the order of the cyclotron
frequency can exhibit anomalous quantum oscillations ([34], [35]), without hosting a Fermi surface.
A different development suggests that the formation of a neutral Fermi surface [5], proposed by D.
Chowdhury, I. Sodeman, and T. Senthil, can resolve the controversial experimental situation. They
present a mechanism for the formation of “composite excitons”, which form the neutral Fermi surface.
This has been the main motivation for our work and hence we quickly summarize the core ideas in
the following.

Experiments on the electronic structure [36] reveal that the degenerate 4f5, J = 5/2 multiplet of
Sm3+ splits into a low lying quartet (Γ8) and a doublet (Γ7). The ground state of the Sm ions is
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therefore assumed to be fluctuating between:

4f5(Γ8) + 5d1 ←→ 4f6. (6.1)

As a minimal model, the quartet is replaced by a doublet, which makes it possible to model the
electronic structure of SmB6 by a two-band model, in which the occupation of the f and d electrons
fluctuates between (nf , nd) = (1,1) ↔ (2,0). The hybridization between f and d electrons and the
Coulomb interaction between the more localized f electrons are taken into account by the periodic
Anderson model (PAM). For the recipe of the “composite exciton” Chowdhury et. al extend the
standard PAM by an additional Coulomb interaction between the f and d electrons and a finite f
electron hopping. The Hamiltonian reads

H = Hd +Hf +Hdf (6.2)

Hd = −µ
∑
i

d†i,σdi,σ − td
∑

<i,j>,σ

(d†i,σdj,σ + h.c.) (6.3)

Hf = (Ef − µ)
∑
i

f †i,σfi,σ − tf
∑

<i,j>,σ

(f †i,σfj,σ + h.c.) + U

2
∑
i

nf,i(nf,i − 1) (6.4)

Hdf = V
∑
i,σ

(f †i,σdi,σ + h.c.) + Udf
∑
i

nf,ind,i. (6.5)

They perform a particle hole transformation on the f electrons fi,σ = f̃i,σ′εσ,σ′ , here εσ,σ′ is the fully
anti-symmetric tensor. Moreover, a slave-boson representation f̃i,σ = biχi,σ, which factorizes the f-hole
into a positive charged "holon" b and a neutral "spinon" χi,σ, is used. They key idea for the formation
of the composite exciton is that the repulsive interaction Udf between the d and f electrons acts as
an attractive interaction between d electrons and f-holes, which leads to a bonding of the d electrons
and the holon. Thus, the composite exciton is described by ψk,σ = bkdk,σ and hybridizes with the
leftover spinon. Altogether the composite exciton is electrically neutral by construction and can form
a neutral Fermi surface. Consequently, the composite exciton has a insulating response to DC electric
fields, but can exhibit quantum oscillations.

Our goal is to investigate whether such a formation of a neutral Fermi surface indeed occurs by
performing DMFT and DCA calculations for the model described by the Hamiltonian given in Eq.
(6.2). We will focus on the mixed-valence (MV) regime, which is given by 〈nf 〉 ≈ 1.5, 〈nd〉 ≈ 0.5
and mimics the electronic configuration of SmB6. Only paramagnetic phases are considered, in which
the rotational spin symmetry (i.e SU(2) spin symmetry) is not broken. This enables us to exploit
U(1)charge ⊗ SU(2)spin symmetry in the NRG calculations.

Due to the high computational cost of multi-band models, we are restricted to solving impurity
models with a maximum of two bands. Hence we can not include finite Udf and tf in two-patch DCA
calculations at the same time, since this would result in a four-band model. Therefore the analysis is
split into two main parts. Firstly, we study the full Hamiltonian in the framework of standard DMFT.
Secondly, we perform DCA calculations for the special cases Udf 6= 0, tf = 0 and Udf = 0, tf 6= 0.
However, in our two-patch DCA calculations, it turns out that no nonlocal correlations are present in
the mixed-valence regime.
Model parameters:

In the following analysis we choose U = 10, V = 0.4, ensuring U > Udf ,V . Furthermore, the d-hopping
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is set to td = 1/6, such that Dd = 1 is used as the unit of energy. Different values of U, V have been
tested, however, readjusting of µ,Ef leads to qualitatively similar results. Thus, we will stick to the
above-stated parameter choice if not specifically mentioned.

6.1 Non-interacting band structure

Since SmB6 has a cubic lattice structure, a cubic dispersion is chosen:

εk,d = −2td
∑

i=x,y,z
cos(ki), εk,f = tf

td
εk,d. (6.6)

The non-interacting Hamiltonian can be diagonalized, giving rise to two bands with dispersions

Ek,± = (ε̃k,d + ε̃k,f )
2 ±

√
(ε̃k,d − ε̃k,f )

2 + V 2, (6.7)

in which ε̃k,d = −µ+ εk,d and ε̃k,f = Ef − µ+ εk,f . We set td = 1/6, such that the half bandwidth is
Dd = 1. Crucial parameters influencing the band structure are the half bandwidth of the f electrons
Df and the hybridization strength V between d and f electrons. In Fig. 6.1 the dispersions given in
Eq. (6.7) is compared for different values of V and Df .

Fig. 6.1: Non-interacting band structure of the PAM with finite f electron dispersion. The upper band
corresponds to Ek,+, the lower band to Ek,−, given in Eq. (6.7). The left (right) panel
illustrates the V (Df ) - dependence of the band structure.

On the left panel the the V -dependence is displayed for Df = 0. The dispersive d-band hybridizes
with the flat f-band, which leads to an avoided crossing and the formation of a band-gap with increasing
V . Consequently, if the chemical potential lies within the gap, the system is insulating. The right
panel illustrates the Df -dependence for fixed V = 0.4. By increasing Df , the upper band lowers at the
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Γ-point, while the lower band rises at the Π-point. Therefore the band gap narrows with increasing
Df and vanishes entirely around Df ≈ 0.2− 0.3.

6.2 DMFT

6.2.1 Method

In DMFT, the lattice Hamiltonian in Eq. (6.2) is mapped self-consistently onto a impurity model.
The impurity model includes a local site, containing interacting d and f electrons, which are coupled
to two non-interacting baths. Its Hamiltonian is given by:

H =Himp +Hbath +Hhyb (6.8)

Himp =(Ef − µ)
∑
σ

f †σfσ + U

2 nf (nf − 1)− µ
∑
σ

d†σdσ

+ Udfnfnd +
∑
σ

V (f †σdσ + h.c) (6.9)

Hbath =
∑
α,k,σ

Eα,kb
†
α,k,σbα,k,σ (6.10)

Hhyb =
∑
k,σ

V α,β
k (c†β,σbα,σ,k + h.c.). (6.11)

Here α, β = d,f and cd,σ ≡ dσ, cf,σ ≡ fσ. The hybridization function

∆α,β(ω) =
∑
γ,k

V α,γ
k V̄ β,γ

k

ω − Eγ,k
(6.12)

is a matrix, which can not be diagonalized independently of ω because d and f electrons are not
equivalent. Therefore, the DMFT self-consistency equations take matrix form. Solving the impurity
model yields the self-energy matrix Σ(ω). The impurity and lattice Green’s functions are given by:

Gimp(ω) =[G−1
0 (ω)−∆(ω)−Σ(ω)]−1, (6.13)

Glatt(k, ω) =[G−1
0 (k,ω)−Σ(k,ω)]−1, (6.14)

in which the non-interacting Green’s functions read

G0(k,ω) =

ω + µ− εk,d −V

−V ω + µ− Ef − εk,f


−1

, G0(ω) =

ω + µ −V

−V ω + µ− Ef


−1

. (6.15)

It is convenient to define

Md(ω,k) =[ω + µ− εk,f − Σd]−1, (6.16)

Mf (ω,k) =[ω + µ− Ef − εk,f − Σf ]−1. (6.17)
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Here the components of the self energy matrix

Σ(k,ω) =

 Σd(k,ω) Σdf (k,ω)

Σfd(k,ω) Σf (k,ω)

 (6.18)

are used. Consequently, the momentum dependent lattice Greens function can be expressed as:

Glatt(k,ω) =

 M−1
d −V − Σdf

−V − Σfd M−1
f


−1

= 1
M−1
d M−1

f − (V + Σdf )(V + Σfd)
·

 M−1
f V + Σdf

V + Σfd M−1
d



=

 [M−1
d − (V + Σdf )(V + Σfd)Mf ]−1 [M−1

d M−1
f (V + Σdf )−1 − (V + Σfd)]−1

[M−1
d M−1

f (V + Σfd)−1 − (V + Σdf )]−1 [M−1
f − (V + Σdf )(V + Σfd)Md]−1

 .
(6.19)

The k, ω dependence of Md/f (k,ω) ≡Md/f and Σ(k,ω) ≡ Σ is not displayed explicitly for a less bulky
expression. To obtain the local lattice Green’s function, Glatt(k,ω) is numerically integrated. The
k-integration can be reduced to a one-dimensional energy integration with the DOS ρ(ε) of the cubic
lattice:

Glatt(ω) =
∫
dε ρ(ε)Glatt(ε,ω). (6.20)

Integrations are performed using the Tetrahedron method ([37][38][39]), which is implemented by
Andreas Gleis. From the self-consistency equation Glatt(ω) != Gimp(ω), the new hybridization function
each DMFT iteration is extracted via:

∆(ω) = G−1
0 (ω)−Σ(ω)−G−1

latt(ω). (6.21)

We start our analysis by looking at the special cases in which either tf = 0 or Udf = 0. For this
purpose, simplifications can be made to reduce the computational cost.

Case Udf = 0:
Because the d electrons are non-interacting, they can be integrated out. Consequently, the SIAM
can be used as a self-consistent impurity model, and the DMFT equation is solely formulated for the
f-band. The f-component of lattice and impurity Green’s function simplifies to:

Gf,latt(k,ω) =ω + µ− Ef − εk,f − Σf (k,ω)− V 2(ω + µ− εk,d)−1, (6.22)

Gf,imp(ω) =[ω + µ− Ef −∆f (ω)− Σf (ω)]−1. (6.23)

Case tf = 0:
If f electrons are not itinerant, only d electrons hybridize. As a result, the impurity model becomes
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a single-band model. Furthermore, d- and f- components of lattice and impurity Green’s function
reduce to:

Gf,latt(k,ω) = [ω + µ− Ef − Σf − (V + Σdf )(V + Σfd)(ω − µ− εk − Σd)−1]−1, (6.24)

Gd,latt(k,ω) = [ω + µ− εk − Σd − (V + Σdf )(V + Σfd)(ω + µ− Ef − Σf )−1]−1, (6.25)

Gf,imp = [ω + µ− Ef − Σf − (V + Σdf )(V + Σfd)(ω + µ− Σd −∆d)−1]−1, (6.26)

Gd,imp = [ω + µ− Σd −∆d − (V + Σdf )(V + Σfd)(ω + µ− Ef − Σf )−1]−1. (6.27)

The self-consistency is only performed for the d-component, yielding the hybridization

∆d(ω) = ω + µ− Σd − (V + Σdf )(V + Σfd)(ω + µ− Ef − Σf )−1 −G−1
d,loc(ω). (6.28)

Numerical parameters:
For our NRG calculations we use Λ = 4 as discretization parameter. Single-band claculations (i.e. for
tf = 0) are performed keeping Nk = 5000 multiplets each NRG iteration. In two-band clalculations
Nk = 4000 multiplets are kept.

Fig. 6.2: Spectral functions Af (ω) and Ad(ω) for Df ∈ [0, 0.5]. Interaction parameters, chemical
potentials and temperature are fixed to U = 10, V = 0.4, Ef = 10.2, µ = −0.4, T = 10−8.
Moreover, the legend shows the d- and f-band occupation for each different Df .
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6.2.2 Mixed-valence regime, Udf = 0

First of all, we take a look at the edge case Udf = 0 and inspect the influence of the f-bandwidth Df .
We adjust the occupations to the mixed-valence regime (nd, nf ) ≈ (0.5, 1.5) by setting µ = −0.4,
Ef = −10.2. In the following, spectral functions of d and f electrons, obtained from the converged
DMFT solution, are analyzed. In Fig. 6.2, Af (ω) and Ad(ω) are plotted for different values of Df . At
Df = 0 the spectral functions are gapped at ω = 0. Increasing Df lifts the spectral gap, in accordance
with the non-interacting bandstructure, discussed in Sec. 6.1. Note, Af (ω) has a side peak around
ω ≈ Ef − µ, which we choose not to show.

Fig. 6.3: Interacting spectral functions for U = 10, V = 0.4, Df = 0.2, T = 10−8, compared to
non-interacting spectral functions with renormalized parameters, obtained by RPT.

To further investigate the effect of the interaction U , a renormalized perturbation theory (RPT)
([40],[41]) analysis is performed. RPT aims to model the low energy physics of impurity models such
as the Anderson impurity model. In RPT the low energy physics is described by a weakly interacting
quasi-particle Hamiltonian with renormalized parameters. From the finite size spectrum of the Fermi
liquid fixed point of the NRG flow, one can calculate the renormalized parameters. In RPT the
self-energy at T = 0 is written as:

Σ(ω) = Σ(0) + ωΣ′(0) + Σrem(ω). (6.29)

Resulting, the f-Green’s function, given in Eq. (6.23), reads:

Gf,imp(ω)−1 = z−1[ω + z(µ− Ef − Σ(0))− z∆(ω)− zΣrem(ω)]. (6.30)

Neglecting Σrem(ω) yields the non-interacting Green’s function with renormalized parameters, in which
z−1 = 1−Σ′(0) is the quasi particle weight. The f-level is renormalized to µ− Ẽf = z(µ−Ef −Σ(0)).
In the same spirit, we can also rewrite the renormalized lattice Greens function of the f electrons:

G−1
f,latt(k,ω) = z−1[ω + µ− Ẽf − zεk,f − zV 2(ω + µ− εk,d)−1]. (6.31)
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The renormalization of ∆(ω) corresponds to a renormalization of V and the f-dispersion εk,f .
Df = 0.2 is used to demonstrate the results of the RPT analysis. We find the quasi-particle weight

z = 0.654 and µ − Ẽf = 0.08369. In Fig. 6.3 the interacting spectral functions are compared to the
non-interacting spectral functions with renormalized parameters.

In the low energy region around ω = 0, the renormalized non-interacting solution follows the
interacting solution precisely. Consequently, the Fermi liquid description of RPT is valid in the given
parameter regime and the interaction U only renormalizes V,Df and Ef .

6.2.3 Influence of the interaction Udf

The full Hamiltonian (6.2) is now considered using single-site DMFT and the effect of the interaction
Udf is analyzed. We fix Df = 0.2 and tune the interaction Udf ∈ [0,1]. The chemical potential µ and
f-lelvel Ef are adjusted with Udf , such that µ− Udf = −0.4 and −µ+ Ef = −9.8. Consequently, the
occupation numbers remain in the MV-regime (nd, nf ) ≈ (0.5, 1.5). Fig. 6.4 shows the Udf -dependence
of the spectral functions Af (ω) and Ad(ω).

Fig. 6.4: Spectral functions Af (ω) and Ad(ω) for Udf ∈ [0, 1]. The remaining parameters are fixed to
U = 10, V = 0.4, Df = 0.2, T = 10−8. In addition, the legend shows the occupantions and
that the chemical potential is shifted with Udf . Note, we also tune Ef , s.t. −µ+ Ef = −9.8
is constant.
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The finite spectral weight around ω = 0 for Udf = 0 vanishes with increasing Udf and a spectral gap
forms at positive ω in the f- and d-spectral function. Furthermore, the side peak position at positive
ω shifts to the right. To analyze the shift in the peak position we decompose the anihilation operator
of the d electrons dσ into projections onto different charge quantum number sectors of f electrons.
Analogously, we decompose fσ into different d electron charge sectors. The decomposition is given by

dσ =dσPnf =0 + dσPnf =1 + dσPnf =2, (6.32)

fσ =fσPnd=0 + fσPnd=1 + fσPnd=2, (6.33)

in which Pnd/f =q indicates the projection on the states with occupation nd/f = q, and q = 0,1,2. Using
the decomposed operators, the spectral functions for d and f electrons is split into the different charge
sectors, i.e. Ad,nf =q(ω) and Af,nd=q(ω). The results for the decomposed spectral functions are shown
in Fig. 6.5 (left) for Udf = 1 along with the side peak position of the decomposed spectral functions
for Udf ∈ [0, 1] (right).

Fig. 6.5: Decomposition of spectral functions Ad(ω), Af (ω) into different charge quantum number sec-
tors Ad,nf =q(ω), Af,nd=q(ω) (q = 0,1,2). On the left the decomposition of the spectral func-
tions is shown. Ad,nf =0(ω) and Af,nd=2(ω) are negligible small and therefore not presented.
On the right side the Udf -dependence of the side peak position of Ad,nf =1(ω), Ad,nf =2(ω) and
Af,nd=2(ω) are displayed, in which colors correspond to the spectral functions.

Hole excitations of Ad(ω) lie mainly in the sector of nf = 1, while particle excitations consist out
of two peaks for the sectors nf = 1,2. Note, the sector nf = 0 is negligible small and therefore not
displayed. On the right side of Fig. 6.5 the Udf -dependence of the peak position is displayed. The
particle excitation peak for the nf = 1 sector does not shift with Udf because µ is shifted by Udf ,
i.e. −µ + Udf remains constant. On the contrary, the peak in the nf = 2 sector shifts linear in Udf
because of the repulsive interaction 2Udf originating from the two present f electrons. On the other
hand, Af (ω) shows particle excitations mainly in the sector nd = 1, which shift linearly with Udf ,
because −µ + Ef is kept constant. Altogether the decomposition indicates configurations, in which
the impurity site is either occupied by a d and f electron or doubly occupied by only f electrons.
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Moreover, the interaction Udf shifts excitations in Ad,nf =2(ω) and Af,nd=1(ω) similar to a chemical
potential.

Further insights into the gap formation can be obtained from the momentum dependent spectral
function Ad+f (k,ω), which is displayed in Fig. 6.6. In the case Udf = 0, Ad+f (k,ω) shows two bands,
as expected, since the interaction U only renormalizes the non-interacting bandstructure, as discussed
in Sec. 6.2.2. The lower band at the Π-point overlaps with the upper band at the Γ-point. Increasing
Udf shifts the upper band upwards, while the lower band position is unaffected. Resulting, a spectral
gap is formed. Moreover, the upper band broadens with increasing Udf . The broadening originates
from the imaginary part of the self-energy, which increases with increasing Udf , see Fig. 6.7. Because
the spectral weight around the X- and Π-point originiate from Ad(k,ω) and the spectral weight at the
Γ-point has contributions from Af (k,ω) and Ad(k,ω), the broadening width varies.

Fig. 6.6: Momentum dependent spectral function Ad+f (k,ω) for different values of Udf . The remaining
parameters are fixed to U = 10, V = 0.4, Df = 0.2, T = 10−8.

Fig. 6.7, shows the imaginary part of the self-energies Σf (ω) and Σd(ω) corresponding to the
spectral functions shown in Fig. 6.4. In general, the self-energies show only features at the position of
the sidebands of the corresponding spectral functions and decay to zero for low energies. The f-band
self-energy shows a peak at negative ω ≈ −Ef corresponding to the single f electron bound state. A
smaller peak at positive ω ≈ 1 is visible, related to the double occupied f-state, which increases with



6 Extended periodic Anderson model in the context of Samarium-Hexaboride 38

increasing Udf . Im[Σd(ω)] is relatively small compared to Im[Σf (ω)] and shows some numerical error
at Udf = 0, as it should be zero in this case. However, the magnitude of the error is small compared
to Im[Σd(ω)] and should not affect the overall results. The height of the right side peak increases
with increasing Udf , in accordance with the broadening of Ad+f (k,ω) in Fig. 6.6. Note, Σdf (ω), shows
similar behavior as Σf (ω) and Σd(ω) and is therefore not presented.

Fig. 6.7: Imaginary parts of d- and f-band self-energies and their Udf -dependence. The remaining
parameters are fixed to U = 10, V = 0.4, Df = 0.2, T = 10−8.

6.2.4 Metal-insulator transition and dynamical susceptibilities

In the following we consider a small deviation from the case with Udf = 1 and tune the metallic
state to a insulating state, in which the spectral gap is centered around ω = 0. By keeping µ = 0.6
and µ − Ef = −9.8 constant and decreasing Udf , the gap position shifts towards ω = 0. For Udf ≈
0.945−0.955, the transition between metallic and insulating state can be observed. In Fig. 6.8 spectral
functions in the transition region are displayed. The spectral gap at Udf = 0.955 shifts to ω = 0 for
Udf = 0.945.
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Fig. 6.8: Spectral functions for Udf = 0.945 − 0.955 in log-log scale. Chemical potentials are fixed to
µ = 0.6, Ef = 9.2 and the remaining parameters are set to U = 10, V = 0.4, Df = 0.2, T =
10−8. The legend shows the fillings corresponding to the different values of Udf .

To check if the different occurring states show signs for the formation of composite neutral fermions
dynamical susceptibilities are calculated. Dynamical susceptibilities χ′′A,B(ω) are defined via:

〈A||B〉t =− θ(t)〈[A(t), B†]〉, (6.34)

〈A||B〉ω =
∫
dω 〈A||B〉te−iωt, (6.35)

χ′′A,B(ω) =− 1
π
Im(〈A||B〉ω). (6.36)

In Fig. 6.9 charge- and spin-susceptibilities are shown, corresponding to the spectral functions plotted
in Fig.6.8. The overall structure is similar throughout the different susceptibilities, featuring a broad
peak around ω ≈ 10−1, followed by a rapid decay as the gap in the spectral function opens. Between
ω ≈ 10−4 − 10−2, a cross-over to a linear decay is visible. For smaller values of Udf , the slope of the
cross-over is larger and the susceptibilities decay faster, following the shift of the spectral gap towards
ω = 0 for decreasing Udf . The linear decay from ω ≈ 10−4 on, indicates Fermi liquid behavior.
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Fig. 6.9: Dynamical charge- and spin- susceptibilities χ′′nf ,nf
(ω), χ′′nd,nd

(ω), χ′′sf ,sf
(ω), χ′′sd,sd

(ω) for
Udf = 0.945 − 0.955 in log-log scale. Chemical potentials are fixed to µ = 0.6, Ef = 9.2
and the remaining parameters are set to U = 10, V = 0.4, Df = 0.2, T = 10−8.

Moreover, we calculate correlation functions between d- and f-charge and spin,χ′′nd,nf
(ω), χ′′sd,sf

(ω).
Motivated by the composite exciton operator ψk,σ = bkdk,σ, we further calculate χ

′′[Q,S]
d†,f

(ω), in which
the operators are restricted to the quantum number sectors [Q,S] = [0,0]; [0,2], whereat Q denotes the
total charge and S the total spin quantum number. A comparison of the above mentioned suscep-
tibilities is presented in Fig. 6.10 along with d- and f-spectral function for Udf = 0.95. The general
structure of χ

′′[Q,S]
d†,f

(ω) is similar to the charge- and spin-susceptibilities discussed earlier in Fig. 6.9.
The direct comparison with Af (ω), Ad(ω) shows again that the suppression of the susceptibilities is as-
sociated with the opening of the spectral gap and the cross-over region to a linear decay spans over the
region of the gap. Furthermore, χ′′sd,sf

(ω) shows anti-correlation between d- and f-spins, whereat the
anti-correlation of d- and f-charge changes sign when the spectral gap opens, illustrated by χ′′nd,nf

(ω).
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Fig. 6.10: Dynamical susceptibilities χ
′′[Q,S]
d†,f

(ω), χ′′nd,nf
, χ′′sd,sf

and spectral functions Ad(ω), Af (ω) for
Udf = 0.95. Chemical potentials are fixed to µ = 0.6, Ef = 9.2 and the remaining parameters
are set to U = 10, V = 0.4, Df = 0.2, T = 10−8.

Altogether, the various calculated susceptibilities inherit their overall behavior from the formation
of the spectral gap and show no further signatures of a bound state between d electron and f-holon.
If a bonding between d electrons and f-holons were present, the general structure of χ′′nf ,nf

(ω) would
deviate from χ′′sf ,sf

(ω), as the charge degree of freedom would decouple and bond with the d electron.
Furthermore, our previously discussed results for the Udf -dependence of the spectral functions, do

not show signs for a composite exciton either. The decomposition of the spectral functions and the
momentum-dependent spectral function indicates that the upper band of the renormalized bandstruc-
ture at Udf = 0 is simply shifted by the repulsive interaction Udf . Moreover, the self-energy does
not show any special features, which could indicate a bound state between d electron and f-hole. We
conclude that our DMFT calculations support a rather simple picture of a non-interacting bandstruc-
ture renormalized by the interactions U and Udf . Possible electronic configurations are hybridized d
and f electrons or sites doubly occupied by f electrons without d electrons, resulting in an average
occupation of (nd, nf ) ≈ (0.5, 1.5). On the lattice level, both of these configurations can coexist and
possibly form an alternating pattern.
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6.2.5 Transport properties

In the following, we calculate the optical conductivity σ(ω) and DC resistivity ρxx based on our DMFT
results. We consider four different values of Udf , corresponding to the different phases in the metal-
insulator transition. Furthermore, we make a comparison to experimental measurements on SmB6.
Formulas for the optical conductivity and resistivity are adapted from ([42], [43]) and given by

σα,β(ω) = 2πe2
∫
dω′

∫
dεΦxx,α,β(ε)

[
f(ω′,T )− f(ω′ + ω,T )

w

]
Aα,β(ε,ω′)Aα,β(ε,ω′ + ω), (6.37)

Φxx,α,β(ε) =
∫

dk

(2π)3 (∂kxεk,α)(∂kxεk,β) δ(ε− εk,α), (6.38)

σ(ω) =σd,d(ω) + σf,f (ω) + σd,f (ω), (6.39)

σxx = lim
ω→0

σ(ω), ρxx = 1/σxx, (6.40)

in which α,β = d, f . Temperature dependence is introduced through the Fermi function f(ω,T ) =
1/(1+eω/T ) and the self-energy, whose imaginary part is shown for Udf = 0.945 in Fig. 6.11. The height
of −Im[Σd/f (ω)] at the Fermi level decreases with decreasing temperature until it saturates around
T ≈ 0.0046. Note, Σdf (ω) shows similar temperature dependence and is therefore not displayed here.

Fig. 6.11: Temperature dependence of Im[Σd(ω)], Im[Σd(ω)] for T = 10−5 − 10−1 and Udf = 0.945.

In Fig. 6.12 results of the temperature dependent resistivity are compared to experimental data.
In experiments, the resistivity exhibits an increase with decreasing temperature and saturates in a
plateau. Our calculations show an decreasing resistivity for T/Dd = 0.0464 ↘ 0.0046 for all four
values of Udf . Afterward, for T = 0.0046↘ 10−4 the resistivity saturates for Udf = 0.955, whereas for
Udf = 0.945, 0.949, 0.95 it increases with decreasing temperature, and saturates below T < 10−4. The
slope is much higher for Udf = 0.945, which agrees with the metal-insulator transition observed in Fig.
6.8, since for lower Udf the insulating state is reached, and therefore the resistivity should increase.
Overall, the increase of resistivity for T/Dd = 0.0046 ↘ 10−4, which saturates at low T , agrees with
experimental observations.
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Fig. 6.12: Comparison of temperature dependent resistivity from DMFT calculations (left) and exper-
imental measurements (right). The left panel displays the resistivity for different values of
Udf . The right panel is taken from [33] and shows experimental results of the resistivity.

At low temperatures (T < 5K) measurements on SmB6 ([24],[25]) indicate a substantial optical
conductivity at finite frequencies, larger than the DC conductivity. Increasing temperature to T ≈
20K, leads to a cross-over to a metallic Drude-like response, i.e. σ(ω) decreases for decreasing ω. For
reference see Fig. 3 & 4 in [24] and Fig. 2 (c) in [25].

Fig. 6.13 displays our results for the optical conductivity σ(ω) for each value of Udf and the
temperatures T = 10−4 − 0.046. Interestingly for Udf = 0.945 and T = 10−4, σ(ω) starts to increase
at ω ≈ 10−3, followed by a short plateu. Subsequently, the optical conductivity increases rapidly
again. This can be qualitatively understood from the formula for the optical conductivity given
in Eq. (6.37) and the spectral functions (for T = 10−8) displayed in Fig. 6.8 as a reference for
the gap position. The self-energy is almost temperature independent below T ≈ 0.0046, hence the
temperature dependence is governed solely by f(ω,T ) for smaller T . The difference quotient of the

Fermi function f̃(ω,ω′,T ) = f(ω′,T )− f(ω′ + ω,T )
ω

defines the frequency region in which the product
Aα,β(ε,ω′)Aα,β(ε,ω′ + ω) contributes to the conductivity. For ω / 10−3, f̃(ω,ω′,T ) only picks up
contributions inside the spectral gap, resulting in a minimum at low frequencies. This is also the
reason for the resistivity saturation for Udf = 0.945 below T = 10−4. Increasing ω further, f̃(ω,ω′,T )
extends into the bandedge and products of Aα,β(ε,ω′)Aα,β(ε,ω′+ω) contribute, in which ω′ lies in the
band, while ω′ + ω is positioned in the gap. Consequently a plateu is formed, followed by a rapid
increase as soon as frequencies ω′ + ω also lie in the band.

At intermediate temperatures the low-frequency behavior changes into a maximum at ω = 0 and a
decrease with increasing ω, saturating in the same previously mentioned plateau. Reason being that
f̃(ω = 10−6,ω′,T ) extends into the band for higher temperatures. The plateau turns into a minimum
for larger values of T which has a similar origin as the plateau for T = 10−4.
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Fig. 6.13: Optical conductivity σ(ω) for temperatures T = 10−4 − 0.0464, calculated via Eq. (6.37).
Each panel represents a different value of Udf .

For larger values of Udf = 0.949,0.95,0.955 the above-mentioned cross-over from low to high tem-
peratures does not occur, since the spectral gap is located at finite frequencies and does not extend
to ω = 0. The overall behavior is similar throughout the three values of Udf . σ(ω) is maximal at
ω = 0 and decreases into a minimum, associated with the bandgap at finite frequencies. Solely the
magnitude of the σ(ω = 0) varies, as displayed in Fig. 6.12 for the resistivity ρ = 1/σ(ω = 0).

Concluding, the optical conductivity for Udf = 0.945 at T = 10−4 exhibits a insulating response
with enhanced conductivity for finite ω. Increasing temperature leads to a cross-over to a Drude-like
response, which shows qualitative similarities to experimental results on SmB6.
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6.3 DCA

6.3.1 Method

Since DCA is carried out in momentum space, the Hamiltonian (6.2) is given in its momentum space
representation:

H =
∑
k,σ

[(εk,d − µ)d†k,σdk,σ + (εk,f + Ef − µ)f †k,σfk,σ + V (f †k,σdk,σ + h.c.)]

+ U
∑

k1,k2,q

f †k1+q,σf
†
k2+q,σ̄fk2,σ̄fk1,σ

+ Udf
∑

k1,k2,q,σ,σ′
f †k1+q,σd

†
k2+q,σ′dk2,σ′fk1,σ. (6.41)

In the following, the DCA self-consistency equations are presented for the cases Udf 6= 0, tf = 0 and
Udf = 0, tf 6= 0. The Brillouin zone is split into Nc momentum patches Pi, with i = 1, . . . , Nc. For
our analysis Nc = 2 patches are used.

Cluster and lattice Green’s functions, used in the self-consistency equations, are calculated. Be-
cause the Green’s functions are diagonal in the cluster momentaKi, their structure is similar to DMFT
equations presented in Sec. 6.2.1, except that the self-energy and hybridization function now depends
on Ki.

Case Udf 6= 0, tf = 0:
In case of tf = 0 only the d electrons couple to the bath. The corresponding cluster Hamiltonian
reads:

H =Hcl +Hbath +Hhyb (6.42)

Hcl =
∑
i,σ

[(εKi − µ)d†Ki,σ
dKi,σ + (Ef − µ)f †Ki,σ

fKi,σ + V (f †Ki,σ
dKi,σ + h.c.)]

+ U
∑
i,j,l

f †Ki+Ql,σ
f †Kj+Ql,σ̄

fKj ,σ̄fKi,σ

+ Udf
∑

i,j,l,σ,σ′

f †Ki+Ql,σ
d†Kj+Ql,σ′

dKj ,σ′fKi,σ (6.43)

Hbath =
∑
i,λ,σ

εi,λb
†
i,λ,σbi,λ,σ (6.44)

Hhyb =
∑
i,λ,σ

Vi,λ(d†Ki,σ
bi,λ,σ + h.c.) (6.45)

εKi = 1
V(Pi)

∑
k

χPi(k)εk,d. (6.46)

Here χ is the indicator function, i.e. χPi(k) = 1 if k ∈ Pi and χPi(k) = 0 if k /∈ Pi. The cluster
Green’s functions reads:

Gcl(Ki,ω) =

ω + µ− Ef − Σf (Ki, ω) −V − Σdf (Ki,ω)

−V − Σfd(Ki,ω) ω + µ− εKi −∆d(Ki,ω)− Σd(Ki,ω)


−1

. (6.47)
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Inverting the matrix yields the d- and f- components of the Green’s function:

Gf,cl(Ki,ω) = [ω + µ− Ef − Σf − (V + Σdf )(V + Σfd)(ω + µ− εKi − Σd −∆d)−1]−1, (6.48)

Gd,cl(Ki,ω) = [ω + µ− εKi − Σd −∆d − (V + Σdf )(V + Σfd)(ω + µ− Ef − Σf )−1]−1. (6.49)

Note, that Σ = Σ(Ki,ω) and the hybridization function ∆d(Ki, ω) =
∑
k

V 2
i,λ

ω − εi,λ
are functions of

ω and the cluster momntum Ki. For the sake of a less bulky expression we will not display this
dependence sometimes.
In the same way, f-/d-component of the lattice Green’s function Glatt(k,Ki,ω) can be expressed as:

Gf,latt(k,Ki,ω) = [ω + µ− Ef − Σf − (V + Σdf )(V + Σfd)(ω + µ− εk − Σd)−1]−1, (6.50)

Gd,latt(k,Ki,ω) = [ω + µ− εk − Σd − (V + Σdf )(V + Σfd)(ω + µ− Ef − Σf )−1]−1. (6.51)

Case Udf = 0:
In case of no interaction between d and f electrons, d electrons can be integrated out. The correspond-
ing cluster Hamiltonian reads:

H =Hcl +Hbath +Hhyb (6.52)

Hcl =
∑
i,σ

[εKi + Ef − µ]f †ki,σ
fKi,σ + U

∑
i,j,l

f †Ki+Ql,σ
f †Kj+Ql,σ̄

fKj ,σ̄fKi,σ (6.53)

Hbath =
∑
i,λ,σ

εi,λb
†
i,λ,σbi,λ,σ (6.54)

Hhyb =
∑
i,λ,σ

Vi,λ(f †Ki,σ
bi,λ,σ + h.c.), (6.55)

εKi = 1
V(Pi)

∑
k

χPi(k)εf,k. (6.56)

The f electron cluster Green’s function is given by

Gf,cl(Ki,ω) = [ω + µ− Ef −∆f (Ki,ω)− Σ(Ki,ω)]−1, (6.57)

while the d- and f- lattice Green’s functions can be expressed as

Gf,latt(k,Ki,ω) = [ω + µ− Ef − εk,f − Σf (Ki,ω)− V 2(ω + µ− εk,d)−1]−1, (6.58)

Gd,latt(k,Ki,ω) = [ω + µ− εk,d − V 2(ω + µ− Ef − εk,f − Σf (Ki,ω))−1]−1. (6.59)

Self-consistency:
As described in Sec. 3.2, the self-energy ΣDCA(Ki,ω), calculated from this cluster model, is used as
an approximation for the lattice self-energy. The local lattice Green’s function is obtained via numeric
integration:

Glatt(Ki,ω) =
∫
Pi

dk

V(Pi)
1

G−1
0 (k,ω)−ΣDCA(Ki,ω)

=
∫
Pi

dk

V(Pi)
G(k,Ki,ω) (6.60)

=
∫
dε ρKi(ε)G(ε,Ki,ω), (6.61)
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in which the momentum space integration is simplified to an integration over the DOS of the cor-
responding momentum patch denoted by ρKi(ε). The self-consistency between lattice and cluster
Green’s function

Glatt(Ki,ω) != Gcl(Ki,ω), (6.62)

is performed for the previously derived lattice and impurity Green’s functions, from which the self-
consistent hybridization is extracted each DCA iteration. In case of tf = 0 the d-component of the
Green’s function is considered and yields the hybridization function:

∆d(Ki,ω) = ω + µ− εKi − Σd − (V + Σdf )(V + Σfd)(ω + µ− Ef − Σf )−1 −G−1
d,latt(Ki,ω). (6.63)

In contrast, for Udf = 0, the self-consistency is performed for the f-component of the Green’s function
and yields the hybridization function:

∆f (Ki,ω) =ω + µ− Ef − εKi − Σ(Ki,ω)−G−1
f,latt(Ki,ω). (6.64)

Brillouin zone patching:
In our DCA calculations, the Brillouin zone is split into Nc = 2 patches, which correspond to the
cluster momenta Ki. To obtain the local lattice Green’s function Glatt(Ki,ω) integrations over each
momentum patch are simplified into a DOS integration over the corresponding patch DOS ρKi(ε). We
have the freedom to choose the shape of the two patches, as long as they split the full BZ equally. We
employ a cubic-shaped patch P1, centered around the Γ-point, which we term “cubic-patching”. The
remainder of the cubic BZ forms the second patch P2, see Fig. 6.14.

Fig. 6.14: Visualization of the cubic-patching scheme of the sc-BZ (right) and the corresponding patch
DOS ρKi(ε) of the inner and outer patch (right). Note, the cubic central patch (red) is
centered around the Γ-point.

To calculate the patch DOS ρKi(ε), the non-interacting Green’s function can be numerically inte-
grated over the momentum region of each patch. Because of symmetries, only one octant of the cubic
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BZ has to be considered. In the case of cubic-patching, the central cubic patch has an edge length of
22/3π, s.t. the remainder of the full cubic BZ with edge length 2π has equal volume. The patches can
be tiled into rectangular shapes, which makes it possible to calculate each corresponding patch DOS
ρKi via momentum integration of the non-interacting lattice Green’s function:

Gi(ω) =
∫
Pi

d3k
1

ω − εk,d + i0+ . (6.65)

Taking spectral part then yields the patch DOS:

ρKi = − 1
π
Im[Gi(ω)]. (6.66)

Numerical parameters:
For our NRG calculations, we use Λ = 3 as the discretization parameter. To reduce the computational
cost we use interleaved NRG (iNRG) and keep Nk = 8000 multiplets at each truncation step. Standard
NRG calculations were performed to verify our iNRG calculations.

6.3.2 Mixed-valence regime, Df = 0

Similar to Sec. 6.2.3 we perform DCA calculations in the mixed-valence (MV) regime and check the
influence of the interaction Udf , the difference being that we are limited to Df = 0. We keep U = 10,
V = 0.4 fixed and tune Udf ∈ [0, 1] . The chemical potential µ and f-lelvel Ef are adjusted with
Udf , such that µ − Udf = −0.4 and −µ + Ef = −9.8. Consequently, the occupation numbers remain
in the MV-regime (nd, nf ) ≈ (0.5, 1.5). From the converged DCA result Af/d(Ki,ω) are obtained.

We calculate the local f- and d-spectral function Ad/f (ω) = 1
2
∑
Ki
Ad/f (Ki,ω), displayed in 6.15, to

compare the results to our DMFT calculations.
Analogous to the discussion in Sec. 6.2.3, the interaction Udf shifts certain excitations like a chemical

potential, which results in a shift of the side peaks of the spectral functions. The only difference here
is that the spectral functions are gapped around ω = 0 for Udf = 0. The reason being that Df = 0
is used for the DCA calculations instead of Df = 0.2, which leads to a bandgap, as discussed in Sec.
6.2.2.

Altogether, our DCA calculations reproduce spectral functions calculated via DMFT, i.e. there
are no nonlocal correlations within the two-patch cluster. For further evidence, we take a look at
the self-energies Σd/f (Ki,ω) of the different momentum patches. The imaginary parts Im[Σd/f (Ki,ω)]
are presented in Fig. 6.16. Self-energies of different patches show similar behavior, indicating that
no nonlocal correlations are present. The overall behavior is analog to the discussion of self-energies
in Sec. 6.2.3. Concluding, our DCA calculations in the case Df = 0, show no signs for nonlocal
correlations in the mixed-valence regime. Local spectral functions and self-energies can be reproduced
from DMFT calculations.
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Fig. 6.15: Local spectral functions Ad(ω),Af (ω) for Udf ∈ [0, 1]. The remaining parameters are fixed
to U = 10, V = 0.4, Df = 0, T = 10−8. In addition, the legend shows the occupantions and
that the chemical potential is shifted with Udf . Note, we also tune Ef , s.t. −µ+Ef = −9.8
is constant.

6.3.3 Mixed-valence regime, Udf = 0

DCA calculations are performed for the case Udf = 0 and finite Df . The remaining parameters are set
to U = 10, V = 0.4. As before the chemical potential and f-level are fixed to µ = −0.4, Ef = −10.2,
s.t. the mixed valence regime (nd, nf ) ≈ (0.5, 1.5) is reached. Analogous to the case Df = 0 and
Udf finite, it turns out that the DCA results can be reproduced by single-site DMFT calculations. In
Fig. 6.17, a direct comparison between spectral functions obtained via DCA and DMFT is shown for
Df = 0.2. The curves of the DMFT and DCA results lie on top of each other, making clear that no
nonlocal correlations are present in the mixed-valence regime. Moreover, the self-energies of the two
momentum patches coincide as well, which we spare to show.
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Fig. 6.16: Imaginary parts of the patch self-energies Σd/f (Ki,ω), corresponding to spectral functions
in Fig. 6.15 for Udf ∈ [0, 1]. The remaining parameters are fixed to U = 10, V = 0.4, Df =
0, T = 10−8.

Fig. 6.17: Local spectral functions Af (ω), Ad(ω) obtained from DCA calculations (red) compared to
DMFT results (blue).
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6.3.4 Away from the mixed-valence regime

Without going into much detail, a phase diagram of the PAM is discussed to give intuition why nonlocal
correlations are not present in the mixed-valence regime. The PAM around half-filling (〈nf 〉 = 1)
is known to show competition between the anti-ferromagnetic RKKY [44] interaction and Kondo
screening [45]. On the one hand, the non-interacting conduction electrons, here the d electrons, tend
to screen the spin of the local f-moments, known as Kondo screening. On the other hand, the anti-
ferromagnetic RKKY interaction between different f electrons wants to anti-align the f-moments. The
relative strength of the Kondo screening and the RKKY interaction depends on the hybridization
strength V . By tuning V the PAM can be tuned through a quantum critical point(QCP).

We calculate the phase diagram of the PAM on a Ef − µ-grid and fix the remaining parameters to
U = 10, V = 0.4, Udf = Df = 0. For each data point occupations of d- and f-band are determined.
Moreover, we calculate the cumulant Mf (Ki,ω) = [ω + µ − Ef − Σf (Ki,ω)]−1 for both momentum
patches. The cumulant changes sign between the different momentum patches at ω = 0 if nonlocal
correlations are present, i.e. σ = Mf (K2,0) ·Mf (K2,0) < 0. This originates from the different behavior
of the self-energy in the RKKY and Kondo regime. In Fig. 6.18 the phase diagramm is displayed.
Circles indicate phases with σ < 0, squares regions with σ > 0. The data point at µ = 0.2, Ef = −5.5,
has been studied extensively by Andreas Gleis and can be tuned through a quantum phase transition
by tuning V . For V = 0.4 the state is dominated by the RKKY interaction, i.e. nonlocal interactions
are present. Up to some critical Ef or µ, the RKKY interaction remains dominant, followed by a
cross-over to a region dominated by local interactions.

Fig. 6.18: Average occupation of d- and f electrons on a Ef − µ-grid. Circles indicates states where
the cummulant changes sign between the two different momentum patches, i.e.
σ = Mf (K2,0) ·Mf (K2,0) < 0, while squares indicate states with σ > 0.

Decreasing Ef , a transition to states dominated Kondo screening occurs. Intuitively this can be
understood from the low energy limit of the Anderson model, which can be described by a Kondo
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model with the anti-ferromagnetic coupling

J ∝ V 2
[

1
−Ef

+ 1
Ef + U

]
(6.67)

between f- and d electrons, as long as 〈nf 〉 = 1. By decreasing Ef towards −U , 1
Ef + U

increases and

J enhances. After the transition, the f electron occupancy starts increasing, by further decreasing Ef .
Reducing µ, which suppresses the d electron occupation, also leads to a transition into a state

where local correlations dominate. The RKKY interaction is known to change its sign as the d
electron occupancy decreases with µ. Hence, an intuitive explanation might be that f-moments tend
to align forming a spin one, which is screened by the conduction electrons.

In the mixed-valence regime, both Ef and µ are reduced. Consequently, nonlocal correlations
diminish. Moreover, the f-occupancy 〈nf 〉 = 1.5 is far away from half-filling, meaning that f-moments
do not form at every lattice site, making an (anti-)ferromagnetic alignment between neighboring sites
impossible. No transition by tuning V can be observed. Larger cluster sizes Nc > 2, might show
correlations between next-nearest-neighbor f-moments.

6.4 Conclusion

We have studied the extended PAM in the mixed-valence regime with DMFT and DCA. The DMFT
calculations show that the non-interacting band structure is renormalized by the interaction U between
the f electrons. The additional repulsive interaction Udf between d and f electrons shifts certain
excitations, similar to a chemical potential, resulting in the formation of the bandgap. Altogether,
our DMFT results indicate the picture of a band insulator. Moreover, the calculation of dynamical
susceptibilities does not show signs for the formation of “composite excitons” which could form a
neutral Fermi surface.

Resistivity calculations show an increasing resistivity with decreasing temperature as the insulating
phase is approached, saturating in a plateau. Furthermore, at low temperatures our results indicate
a substantial optical conductivity at finite frequencies, much larger than the DC value. In addition a
temperature dependent cross-over to a Drude-like response can be seen. Both resistivity and optical
conductivity show agreement with experimental measurements on SmB6.

The origin of the quantum oscillations(QO) in SmB6 remains unclear. Possibly, the two-band model
does not capture all the essential effects of the full electronic bandstructure of SmB6 or nonlocal
interactions beyond the two-site cluster approximation play an important role. However, it has been
pointed out that QO can occur in band insulators with narrow band gaps ([34], [35]), i.e. without the
existence of a Fermi surface. In [34] a model of spin-less non-interacting fermions on a two-dimensional
cubic lattice, which hybridize with a flat band, are considered. Even, in this simple setting QO in
the magnetization are found, if the gap size is of the order of the cyclotron energy and the chemical
potential lies close to or within the flat band. The temperature dependence of the QO amplitude
shows a maximum at low temperatures, which deviates from the standard Lifshitz-Kosevich behavior.
Experiments on SmB6 [30] do also indicate an anomalous maximum in the oscillation amplitude at
low temperatures, however, the magnitude and precise form is not captured by the simple model.

It would be interesting to see if such QO could be seen in the setting of DMFT as the insulating
state is approached and how interactions influence them. This could agree with our results, since we
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find similarities to experimental results for states which are very close to the metal-insulator transition,
i.e. in our case the chemical potential is very close to the lower band or barely lies within it, and
the bandgap is narrow. Furthermore, our DCA calculations do not show nonlocal correlations, which
supports that the DMFT calculations capture the essential physics.
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