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Abstract

Systems with a quadratic band touching point (QBTP) as described by
the Luttinger Hamiltonian [1] have been found to exhibit a zero-temperature
non-Fermi liquid phase [2], commonly called the LAB (Luttinger-Abrikosov-
Beneslavsky) fixed point. Its existence has been predicted using the di-
mensional regularization variant of the renormalization group. This thesis
expands the calculations to finite temperatures: First, the LAB scaling is
shown to be observable from the viewpoint of a random phase approxima-
tion. Second, dimensional regularization is applied to show that the flow
equations don’t acquire an explicit temperature dependence. Third, a mo-
mentum shell renormalization approach is pursued to derive full flow equa-
tions including temperature-dependent factors produced by the UV-finite
terms neglected in dimensional regularization. The RPA exponent 1/2 of
the bosonic mass turns out to be incorrect and evaluates numerically to
about 1.1 in the momentum shell approach.
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1. Introduction

In recent years, there has been substantial interest in the behavior of materials
whose electronic dispersion exhibits a quadratic band touching point (QBTP) –
that is to say, with E ∼ ±k2 in the vicinity of the Γ point. This particular con-
stellation is produced by a strong spin-orbit coupling leading to the inversion of an
otherwise degenerate energy band. For crystals with cubic symmetry, the general
Hamiltonian leading to a QBTP has first been derived by Joaquin Luttinger in
1956 [1] by the use of k · p theory. To ensure inversion symmetry is respected,
it requires two pairs of doubly degenerate energy bands instead of just one non-
degenerate upper and lower band. Materials with this feature are called Luttinger
semimetals. They were later found to be of special interest because of their inter-
esting phase diagram including topologically non-trivial as well as superconducting
phases. An example for such a material – in fact the most promising one for the
observation of the behavior described here – are pyrochlore iridates [2].
As early as in the 1970s, A. A. Abrikosov and S. D. Beneslavsky predicted a low-

temperature phase with non-Fermi liquid behavior when combining the Luttinger
Hamiltonian with a Coulomb interaction [3], later dubbed Luttinger-Abrikosov-
Beneslavsky (LAB) phase, and calculated some of its critical indices [4]. Their
work has been continued and expanded recently, induced by a modern formulation
using renormalization group techniques by Eun-Gook Moon et al. [2]. Their pa-
per provides the foundation for this thesis: it uses the dimensional regularization
scheme [5][6][7] near the upper critical dimension d = 4 to find the renormaliza-
tion group (RG) flow equations of the parameters defining the Hamiltonian which
then lead to a stable non-Gaussian fixed point at a finite value of the interaction
strength e. The work has been done perturbatively at one-loop level (order e2)
which is also the scope of this thesis – no calculations will be made beyond that
order.
However, its emergence is a phenomenon found at zero temperature and it is

not immediately clear how finite temperature will influence it. At the very least,
it will appear as additional parameter in the renormalization procedure and result
in a runaway flow in the parameter space. The goal of this project is to narrow
down the concrete influence of finite temperature on the LAB phase addressing
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the general question of whether and how the LAB phase survives and may be
observable while also discussing possible temperature ranges for its existence. In
particular, it tackles the open question how the thermal screening of the Coulomb
interaction influences the LAB phase. We will pursue three approaches here: First,
we encapsulate the finite temperature effects in a simple screened Coulomb poten-
tial and calculate its screening length in random phase approximation. Then, we
estimate its impact by comparing it to the characteristic length scale of the LAB
phase. Second, we will explore the original dimensional regularization approach
at finite temperature and establish the flow equations. Finally, we will derive the
RG flow again within a more intuitive momentum shell calculation encouraged by
the fact that temperature doesn’t change renormalization factors in dimensional
regularization.

1.1. Remarks on Notation

All variable names used will be introduced and explained as needed. To ease the
reading and achieve maximum notational transparency, it’s useful to mention some
of those used throughout the entire thesis here:

• ε designates the difference to the upper critical dimension 4, such that ε =
4 − d where d is the dimension of the system. Therefore, all equations
containing d can be equivalently written in terms of ε and vice-versa.

• x and y will in general be used instead of multiple band masses for the
Hamiltonian and the Green’s functions. Their exact meaning is discussed
in section 2.1. Both names won’t be overloaded with different meanings –
with the slight exception of subscripts for momentum components such as
kx which is never ambiguous.

• Outside of specific functions, ~k will be used to denote vector quantities and
k for their absolute values. Deviations from this rule are made for clarity
whenever context should make it clear what is meant. A common exception
are the functions da(k) and pc(k) introduced later which always depend on
the vectorial quantity, not only its absolute value.
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Furthermore, all calculations will be made in natural units c = ~ = kB = 1
unless explicitly stated otherwise. Thus, temperatures, masses etc. are to be
thought as the corresponding energies. For the comparisons with the electrostatic
energy, the charge e should always be measured in Gaussian units such that e2

r
is

the entire Coulomb energy. This implies that we need to scale the charge with the
relative permittivity of the medium at hand or rather include sensible ranges for
it when estimating energies.
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2. The Zero-Temperature LAB Phase

In this chapter, the system will be presented in its path integral formulation start-
ing with the Hamiltonian. Then, the calculations made by Moon et al. in [2] and
its supplementary material will be retraced and the gaps closed – they omit most
steps and give only results along with their general approach. This chapter lies
the groundwork for the analogous calculations at finite temperature in chapter 4.

2.1. The System

The Luttinger Hamiltonian can be derived using k ·p-theory up to the second order
when imposing cubic and inversion symmetry [1]. A four-dimensional representa-
tion is needed to obtain a QBTP since in any two-dimensional one, the degeneracy
of the two branches of the dispersion can’t be broken. This is because the energy
must be independent of the spin direction of electron which requires a two-fold
degeneracy of each band. The natural form explicitly showing the symmetries of
the Hamiltonian uses the four-dimensional J = 3/2 spin matrices, Jx, Jy and Jz
[2, supplemental material]:

H(~k) = α1k
2 + α2(~k · ~J)2 + α3(k2

xJ
2
x + k2

yJ
2
y + k2

zJ
2
z ) (1)

The three addends are the second-order invariants under cubic symmetry (with
only the third breaking the invariance under arbitrary rotations), the αi are com-
monly called Luttinger parameters. For actual calculations, it is more convenient
to switch to a set of band masses directly involved in the dispersion by introducing
a set of five 4 × 4 gamma matrices Γa generating a Clifford algebra. They obey
the anticommutation relations

{Γa,Γb} = 2δab (2)

and can be computed explicitly as products of the spin matrices [8].
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Γ1 = 1√
3

(JyJz + JzJy)

Γ2 = 1√
3

(JxJz + JzJx)

Γ3 = 1√
3

(JxJy + JyJx)

Γ4 = 1√
3

(J2
x − J2

y )

Γ5 = J2
z −

5
4

(3)

While the first three of these matrices appear directly in the second term of
equation 1, the fourth and fifth will combine for the non-mixed terms by the use
of J2

x + J2
y + J2

z = 15/4 · 1. The Hamiltonian then takes the following form with
three “band masses” m, M0 and Mc whose meaning will be discussed shortly after
obtaining the eigenenergies [2].

H = da(k)Γa
2m + k2

2M0
+ d4(k)Γ4 + d5(k)Γ5

2Mc

(4)

Here, five momentum functions da(k) have been introduced in analogy to (3):

d1(k) = −
√

3kykz
d2(k) = −

√
3kxkz

d3(k) = −
√

3kxky

d4(k) = −
√

3
2 (k2

x − k2
y)

d5(k) = −1
2(2k2

z − k2
x − k2

y)

(5)

To improve readability, da(k) instead of da(~k) is understood throughout the the-
sis. Similarly, da(k+ q) as it appears later should be read as da(~k+ ~q). Returning
to the Hamiltonian, diagonalization is achieved easily by separating the part pro-
portional to the unit matrix (second addend) and squaring the rest which yields a
diagonal matrix due to the anticommutation relation (2). The resulting dispersion
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features two branches, each with a two-fold degeneracy.

E±(k) = k2

2M0
±

√√√√( k2

2m

)2

+ m+ 2Mc

4mM2
c

pc(k)

=: E0(k)±∆E(k)
(6)

Here, pc(k) = ∑
i k

4
i −

∑
i<j k

2
i k

2
j encodes the cubic anisotropy – it takes the

largest values along the coordinate axes. The anisotropic band mass Mc controls
its strength (with larger Mc corresponding to less anisotropy). For the system to
exhibit a QBTP, M0 > m is required such that the branches have different signs
– M0 breaks the symmetry between the lower and upper branch and is therefore
associated with particle-hole asymmetry. For all future calculations, it is useful
to pass to another set of parameters, namely the mass ratios x = m/Mc and
y = m/M0, and separate the dependences on the absolute value of the momentum
~k and its direction.

E± = k2

2m

(
y ±

√
1 + x(2 + x)pc(k̂)

)
(7)

Here, k̂ denotes the unit vector in ~k direction. The band mass m controls the
general scale of the dispersion – it is the only one that needs to be finite in order
for a QBTP to exist. y will be called particle-hole asymmetry: at y = 0, the
upper and lower branches of the dispersion only differ in sign and are otherwise
symmetric upon reflection on the k axis. The previously mentioned condition on
the mass M0 translates into y < 1. Otherwise, the lower branch of the dispersion
will no longer be negative and “flip”, effectively destroying the QBTP. x controls
the degree of cubic anisotropy in the system. While the x = 0 model is completely
isotropic (invariant under arbitrary rotations of the 3-dimensional space), x 6= 0
breaks this symmetry to a cubic one by turning on pc(k) – the system then will be
invariant only under the associated discrete set of rotations and inversions. The
mass ratio x must be positive, but otherwise has no upper bound. It will turn
out that the LAB fixed point has both x and y at zero. The dependence of the
dispersion on x and y is qualitatively displayed in figure 1.
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Figure 1: Qualitative plots of the dispersion in the kx-ky plane. The orange surface
represents the upper branch, blue the lower one. (a) has x = y = 0, (b)
y 6= 0 and (c) x 6= 0.

2.2. Action and Green’s Functions

Together with the Coulomb interaction, the action functional for the Luttinger
semimetal reads as follows in the euclidean path integral formulation. The inter-
action is mediated by a bosonic field ϕ.

S =
∫
dτddx

{
Ψ†(x, τ)

(
∂t − iẽϕ+H(−i~∇)

)
Ψ(x, τ) + 1

8π∂iϕ(x, τ)∂iϕ(x, τ)
}
(8)

Here, ẽ designates the interaction strength, Ψ the fermionic and ϕ the bosonic
field. H(−i~∇) denotes the Hamiltonian with ~k replaced by −i~∇. All calculations
will be performed in a frequency-momentum representation obtained with a Fourier
transformation. After inserting the Hamiltonian (4), it takes the form
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S =
∫
q

∑
ω

Ψ†(q, iω)
(
−iω + q2

2M0
+

3∑
a=1

da(q)Γa
2m +

5∑
a=4

da(q)Γa
( 1

2m + 1
2Mc

))
Ψ(q, iω)

− ieµ
ε
2

∫
q,k

∑
ω,Ω

Ψ†(q + k, iω + iΩ)ϕ(k, iΩ)Ψ(q, iω)

+ 1
8π

∫
k

∑
Ω
ϕ(−k,−iΩ)k2ϕ(k, iΩ). (9)

In this equation, the integrals over momenta have been abbreviated as
∫
k ≡∫ ddk

(2π)d . The sums over frequencies are to be replaced either by integrals in the
zero temperature case (∑ω ≡

∫ dω
2π ) or by sums over fermionic (ω) or bosonic

(Ω) Matsubara frequencies at finite temperature (∑ω f(ω) ≡ 1/β∑i f(ωi)). In
preparation for the RG calculations within the dimensional regularization scheme,
a momentum scale µ has been introduced to keep the canonical dimension of the
new interaction parameter e = ẽµ−ε/2 fixed when the dimensionality of the system
varies. The correct power of µ is determined by the canonical dimensions given
in (12). As mentioned in the introduction, ε = 4 − d denotes the deviation from
the upper critical dimension 4 where the interaction becomes irrelevant in the
RG sense. The first line represents the noninteracting electrons with the QBTP
dispersion, the second line incorporates the Coulomb interaction via a bosonic field
and the third one the free (“kinetic”) energy of that field.
For the calculation of the self energies, we need the fermionic and bosonic Green’s

functions, Gf and Gϕ respectively. The explicit form of Gf can be obtained with
a multiplication similar to the diagonalization of the Hamiltonian.

Gϕ(~k,Ω) = 4π
k2 (10)

Gf (~k, ω) = (−iω +H)−1

=

(
−iω + k2

2M0

)
− da(k)

2m Γa − d4(k)Γ4+d5(k)Γ5

2Mc(
−iω + k2

2M0

)2
− k4

(2m)2 − m+2Mc

4mM2
c
pc(~k)

=
(−iω + E0)− da(k)

2m Γa − d4(k)Γ4+d5(k)Γ5

2Mc

(−iω + E2
0)2 −∆2

E

(11)
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It is to note that the bosonic Green’s function carries no frequency dependence.
Computations involving the general fermionic propagator tend to become quite
cumbersome, therefore it will often be necessary to consider the caseM0,Mc →∞
(equivalently x = y = 0) to simplify the Green’s function.

2.3. T=0 Renormalization Group

To find the LAB phase at zero temperature, we employ the method of dimensional
regularization to derive the RG flow: We compute the one-loop diagrams at arbi-
trary dimension d and continue the expression to non-integer dimensions. Working
close to the upper critical dimension 4 yields a small expansion parameter ε = 4−d,
to be taken into account up to first order. The one-loop diagrams will then show a
UV divergence of order 1/ε. Following a minimal subtraction scheme [6][7], these
infinities will be subtracted from the action, resulting in so-called Z-factors of the
form 1 + C/ε. The original form of the action needs to be restored thereafter by
rescaling the appearing quantities (fields and couplings) with appropriate powers
of the Z-factors. The couplings then flow with the arbitrary momentum scale µ
introduced earlier. Finally, one obtains their flow equations and can solve them
for fixed points which may depend on ε. Eventually a non-Gaussian fixed point
will emerge at finite values of ε.

As a first step, the canonical dimensions of all fields and parameters in the
action need to be determined. Under the condition that the action needs to be
dimensionless (working in natural units), they evaluate as given in (12). One
dimension can be taken as reference, it is convenient to choose [k] = 1.
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[k] = 1
[ω] = z

[Ψ] = −d2 − z

[ϕ] = −2 + z + d

2
[e] = z − 2

2
[m] = [Mc] = [M0] = 2− z

(12)

Here, z is the dynamical exponent to be determined during the renormalization
procedure. In the noninteracting case, ω scales with k2 such that z = 2.
To proceed, we will calculate all three one-loop diagrams displayed in figure

2. These comprise the bosonic and fermionic self energies as well as the vertex
correction, each corresponding to one of the three integrals in the action (9) and
determining their associated Z-factors. To simplify, all finite contributions can
be dropped since only the parts that diverge for ε → 0 are needed for the coun-
terterms in the minimal subtraction scheme. The fermionic Green’s functions will
be parametrized from the start using the parameters x = m/Mc and y = m/M0

instead of the band masses Mc and M0.

Gf (~k, ω) = 2m(−2miω + yk2)− da(k)Γa − x(d4(k)Γ4 + d5(k)Γ5)
(−2miω + yk2)2 − k4 − x(2 + x)pc(~k)

=: 2m(−2miω + e0(k))− da(k)Γa − x(d4(k)Γ4 + d5(k)Γ5)
(−2miω + e0(k))2 − δE(~k)2

(13)

To shorten future equations, the abbreviations e0 = 2mE0 = yk2 and δE =
2m∆E = k2

√
1 + x(2 + x)pc(k̂) have been introduced.

2.3.1. Bosonic Self Energy

We start with the bosonic self energy. Its diagram is given by
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Figure 2: The one-loop diagrams necessary to be calculated. Dashed lines rep-
resent bosonic Green’s functions, unbroken lines fermionic ones. All
diagrams are to be calculated in amputated version, that is, without
Green’s functions for the external legs. Momentum designations have
been omitted for the vertex correction for space reasons and because it
won’t be calculated explicitly in the main text. A fully annotated dia-
gram can be found in figure 16 in the appendix.

Σϕ(~q,Ω) = −e2µε
∫ ddk

(2π)d
∫ dω

2π Tr
{
Gf (~k, iω)Gf (~k + ~q, iω + iΩ)

}
. (14)

Because the gamma matrices and combinations of the form ΓaΓb with a 6= b are
traceless, only terms proportional to the identity matrix survive the trace. The
Ω dependence is subdominant [2] and irrelevant to the Z-factor, hence we will set
Ω = 0. After resolving the trace and plugging in the Green’s functions, we obtain

12



Σϕ(~q, 0) = −16(me)2µε
∫ ddk

(2π)d
∫ dω

2π
[−2miω + e0(k)][−i2mω + e0(k + q)] + da(k)da(k + q) + x(2 + x)[d4(k)d4(k + q) + d5(k)d5(k + q)]

[(−2miω + e0(k)2)2 − δE(k)2][(−2miω + e0(k + q)2)2 − δE(k + q)2] .

(15)

The product of da-functions in the numerator can now be resolved by using

da(k)da(p) = 3(~k · ~p)2 − k2p2

2
d4(k)d4(p) + d5(k)d5(p) =

∑
i

k2
i p

2
i −

1
2
∑
i 6=j

k2
i p

2
j =: p̃c(k, p).

(16)

The abbreviation in the last line has been chosen to emphasize the close relation
to the cubic anisotropy function pc(k) = p̃c(k, k) appearing in the dispersion.
To proceed, we will perform a Taylor expansion in small q under the integral.

The constant term vanishes upon frequency integration because of the second-order
pole in z = 2miω. Turning to the derivatives of the integrand, it is important
to note that it only depends on the momenta through k2, pc(k) and the two
combinations in (16) with p = k + q. It is

d

dqi
da(k)da(k + q)|q=0 = 2k2ki

d

dqi
[d4(k)d4(k + q) + d5(k)d5(k + q)]|q=0 = 2k3

i − kik2
⊥

d

dqi
(~k + ~q)2|q=0 = 2ki

d

dqi
pc(k + q)|q=0 = 4k3

i − 2kik2
⊥.

(17)

where k2
⊥ is the squared absolute value of the components perpendicular to

ki. These inner derivatives cause each linear term in the Taylor expansion being
antisymmetric in one component of the integration variable k. The first order
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therefore vanishes after the momentum integration. The same is true for the
mixed terms of the second order since they remain antisymmetric in at least one
momentum component. Hence, only the isotropic contribution ∼ q2 doesn’t vanish
at this order. This is an implication of cubic symmetry which doesn’t allow other
(scalar) contributions.
Calculating the second-order term is straightforward, but cumbersome in the

general case of x 6= 0, y 6= 0. Therefore, we first turn to the case x = y = 0. The
self energy reads

Σϕ(~q, 0) = −16(me)2µε
∫ ddk

(2π)d
∫ dω

2π
(2miω)2 + k4 + 3 cos2 θ−1

2 k2q2

((2miω)2 − k4)((2miω)2 − (~k + ~q)4)
. (18)

θ denotes the angle between the ~k and ~q vectors: kq cos θ = ~k · ~q. Expanding
to second order and dropping the constant and first order terms for the reasons
explained above yields

Σϕ(~q, 0) = −4me2µε
∫ ddk

(2π)d
∫ dz

2πi
k2((−5 + 27 cos2 θ)k8 + 2k4z2(1 + 13 cos2 θ) + z4(3 + 11 cos2 θ))

(z2 − k4)4 × q2. (19)

In preparation for the frequency integration, ω has been substituted by z =
2miω. It can then be resolved via the residue theorem. This is straightforward
in principle despite the complex form of the numerator and the high order of z in
the denominator. The poles are located at the eigenenergies of the Hamiltonian,
z = ±k2. The integrand falls off ∼ z−4 at infinity such that the contour can be
closed in either half plane – one pole will then fall within the enclosed region.

Σϕ(~q, 0) = −3me2µε
∫ ddk

(2π)d
5 cos2 θ − 1

k4 × q2 (20)

In analogy to Moon et al. [2], the general d-dimensional integral will be resolved
in a manner that respects the cubic symmetry only defined in d = 3. The angular
part of the integral will first be resolved in three dimensions. Then, general di-
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mensionality d will be restored by substituting the remaining radial integral with a
d-dimensional equivalent while ensuring that prefactors reflect the correct surface
area of the hypersphere in d dimensions. This procedure ensures that the constants
will be correct in three dimensions, but may differ when another method for the
angular integration is chosen. This is not relevant to the general existence of the
LAB fixed point. Formally, the replacement rule is

∫ ddk

(2π)df(~k) −→
∫ dk

(2π)d
∫
dΩ(θ, φ)f(~k) −→

∫ dkd

(2π)dS
−1
3 F (|~k|) (21)

F (|~k|) :=
∫
dΩ(θ, φ)f(~k).

Here, Sd signifies the surface area of the unit hypersphere in d dimensions, in
particular S3 = 4π and S4 = 2π2. It is easy to check that this procedure produces
the correct result for an isotropic integrand.
Since in (20), the angular and radial dependence of the integrand separate, it

follows

Σϕ(~q, 0) = −8πme2µεS−1
3

∫ ddk

(2π)d
1
k4 × q

2 (22)

As it should be, the integral shows a logarithmic divergence in d = 4 and has
am ε-peak ∼ 1/ε in d < 4.
For the general case, we briefly sketch the important parts of the calculation.

The particle-hole asymmetry y does influence the location of the poles, but changes
neither the value of the residues nor the sign of an eigenenergy (moving it between
the half planes). Therefore, the final result only depends on x. After the expansion
in q and the resolution of the frequency integration, the integrand does separate
again in an angular and a radial part where the angular part depends on x. It has
no longer an analytic solution, but can be encoded in an anisotropy function f3(x)
(the notation follows Moon et al. here). The explicit form is complex and is given
in appendix C – we present is the asymptotic form here [2]. The integral can then
be treated numerically which leads to the function displayed in figure 3.
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f3(x) = − 3
8π

∫
dΩk

x4k̂x
2
(
k̂y

2
− k̂z

2
)2

(√
1 + x(2 + x)pc(k̂)

)5 +O
(1
x

)
(23)

It is f3(0) = 1 for the isotropic system and f3(x → ∞) ≈ 0.88. Thus, the
bosonic self energy at one-loop level becomes

Σϕ(~q, 0) = 8πme2µεf3(x)S−1
3

∫ ddk

(2π)d
1
k4 × q

2. (24)

This result still contains the arbitrary momentum scale µ and an IR divergence
that needs to be taken care off with a lower momentum cutoff a. Near d = 4, both
dependencies vanish since

∫
ddkk−4 ∼ a−ε/ε which equals 1/ε in the limit ε → 0.

Similarly, the unphysical momentum scale dependence vanishes since µε → 1.
When keeping track of all factors arising from the angular integration, it is

µεS−1
3

∫ ddk

(2π)d
1
k4 = 1

ε

Sd
S3(2π)d = 1

ε

1
32π3 . (25)

The last equality is valid in d = 4 (⇔ ε = 0). From here on, we can directly
insert this concrete value whenever the corresponding integral appears. The final
result for Σϕ reads

Σϕ(~q, 0) = me2f3(x)
4π2ε

q2. (26)

2.3.2. Fermionic Self Energy and Vertex Correction

Let’s turn to the fermionic self energy. The calculations proceed in analogy to the
bosonic ones, with the minor complication that the fermionic self energy is a 4× 4
matrix. It breaks down in three independent coefficients, one associated with the
unity matrix and two with the distinct subsets of gamma matrices (index 1, 2, 3
and 4, 5). These coefficients will be denoted by F0, F1 and F2, respectively. For
the same reasons as for the bosonic part, the first order contribution vanishes. The
constant part contains no ε-peak and can therefore be neglected for the dimensional
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Figure 3: The anisotropy function f3(x) for the bosonic self energy. It is normalized
to 1 for the isotropic system and converges towards a value of about 0.88
for strong anisotropy.

regularization. The second order part is given by

Σ(2)
f (~q, ω) = F0q

2
1 + F1

3∑
a=1

Γada(q) + F2

5∑
a=4

Γada(q). (27)

F0q
2 = 1

4Tr(Σ(2)
f )

F1d1(q) = 1
4Tr(Σ(2)

f Γ1)

F2d4(q) = 1
4Tr(Σ(2)

f Γ4).

(28)

It will be seen shortly that the form of the matrix components indeed results
in the Γa contribution being proportional to da(q). The fermionic self energy is
independent of the external frequency because the bosonic Green’s function is. A
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momentum shift therefore cancels its apparent dependence. The one-loop diagram
is given by

Σf (~q, ω) = −e2µε
∫ ddk

(2π)d
∫ dω

2π Gf (~k, iω)Gϕ(~k + ~q, i(ω + Ω)). (29)

Let’s now turn to the three contributions in (27). For F0, plugging in the Green’s
functions yields

F0q
2 = −2me2µε

∫ ddk

(2π)d
∫ dω

2π
4π

(~k + ~q)2
· (−2miω + yk2)

(−2miω + yk2)2 − k4 − x(2 + x)pc(k) .

(30)

On the right-hand side, expansion to second order in q is understood from here
on. The right fraction has the form (z2−a2)/((z−a)2−b2) with a and b depending
on k. The residues at its poles however are independent of a and b such that the
integral becomes independent of the external momentum q. Therefore, there is
no second-order contribution and F0 = 0. It is to note that there is an (infinite)
constant term that can be absorbed by a global shift of the energy. For this reason,
it will be dropped.

The information relevant to the dimensional regularization procedure is con-
tained in the F1 and F4 part.

F1d1(q) = −2me2µε
∫ ddk

(2π)d
∫ dω

2π
4π

(~k + ~q)2
· d1(k)
(−2miω + yk2)2 − k4 − x(2 + x)pc(k)

(31)

As the boson propagator is frequency-independent, the frequency integration
and expansion in q can be performed simultaneously. The integrand contains two
poles, one in each half plane. The contour can again be closed in either one,
resulting in one pole contributing to the integral. It is
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Res
( 1
z2 − a2 , z = a

)
= 1

2a (32)

∂qi∂qj
1

(~k + ~q)2

∣∣∣∣∣
q=0

= 8kikj
k6 (i 6= j). (33)

It is clear that the k-integral vanishes by antisymmetry unless i and j in (33)
match the components in d1(k) = −

√
3kykz. The second-order contribution F1

reads therefore

F1 = −16πe2µε
∫ ddk

(2π)d
k2
yk

2
z

k6
√
k4 + x(2 + x)pc(k)

. (34)

Similarly to the bosonic self energy, the angular and radial integrals will be split
for the final result

F1 = −8π2(4π)e2µεS−1
3 f1(x)

∫ ddk

(2π)d
1
k4

f1(x) = 2
π

∫
dΩk

k̂y
2
k̂z

2√
1 + x(2 + x)pc(k̂)

.

(35)

Again, k̂ denotes the unit vector in ~k direction. f1(x) will be displayed together
with f2(x) from the upcoming calculation in figure 4.
Finally, the computation of F4 proceeds in the same way:

F4d4(q) = −2me2µε(1 + x)
∫ ddk

(2π)d
∫ dω

2π
4π

(~k + ~q)2
· d4(k)

(−2miω + yk2)2 − k4 − x(2 + x)pc(k)
(36)

The form of d4 makes the expansion in q slightly more delicate. It is

(∂qi)2 1
(~k + ~q)2

∣∣∣∣∣
q=0

= 8k2
i

k6 −
2
k4 . (37)

Because d4 is antisymmetric under exchange of kx and ky, the only contribution
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comes from the first addend. For the same reason, the q2
z term vanishes. After the

frequency integration has been resolved with the residue theorem, it is

F4d4(q) = −16πe2µε(1 + x)
∫ ddk

(2π)d
−
√

3
2 (k2

x − k2
y)(k2

xq
2
x + k2

yq
2
y)

k6
√
k4 + x(2 + x)pc(k)

= −8πe2µε(1 + x)
∫ ddk

(2π)d
(k2
x − k2

y)2

k6
√
k4 + x(2 + x)pc(k)

× d4(q). (38)

The last equality follows by splitting the integral to separate the addends of the
second factor, then exchanging kx and ky under the second integral and recombin-
ing. The final result is

F4 = −8π2e2µεS−1
3 f2(x)(1 + x)

∫ ddk

(2π)d
1
k4

f2(x) = 1
π

∫
dΩk

(
k̂x

2
− k̂y

2
)2

√
1 + x(2 + x)pc(k̂)

.

(39)

The anisotropy functions f1(x) and f2(x) are shown in figure 4. Both have
f1/2(0) = 8

15 and f1/2(x→∞) = 0 in common.

Finally, the computation of the vertex correction is not needed explicitly. The
frequency independence of the fermionic self energy at one-loop level ensures that it
vanishes due to a Ward identity. For a brief derivation of this fact, see appendix B.
At higher orders, the self energy will depend on the external frequency and a vertex
correction will appear naturally [2].

2.4. Dimensional Regularization and Flow Equations

We proceed now with the renormalization procedure. Taking into account the
nonzero contributions of the one-loop diagrams (24), (35) and (39), three Z-factors
Z3, Z1 and Z2 need to be introduced to eliminate the first-order divergences in ε:
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Figure 4: The anisotropy functions f1(x) and f2(x) for the fermionic self energy.

S =
∫
q

∑
ω

Ψ†(q, iω)
(
−iω + q2

2M0
+ Z1

3∑
a=1

da(q)Γa
2m + Z2

5∑
a=4

da(q)Γa
( 1

2m + 1
2Mc

))
Ψ(q, iω)

− ieµ
ε
2

∫
q,k

∑
ω,Ω

Ψ†(q + k, iω + iΩ)ϕ(k, iΩ)Ψ(q, iω)

+ 1
8πZ3

∫
k

∑
Ω
ϕ(−k,−iΩ)k2ϕ(k, iΩ) (40)

With the results of the previous sections, they take the form
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Z3 = 1 + 1
πε
me2f3(x)

Z1 = 1 + 1
2πεme

2f1(x)

Z4 = 1 + 1
2πεme

2f2(x)(1 + x).

(41)

Here, the d-dimensional integrals have been resolved according to (25). To
restore the original form of the action, rescaling has to be done as given in (42).
Quantities with the B subscript represent the bare versions.

ϕB = Z
1
2
3 ϕ( 1

m

)
B

= Z1
1
m( 1

m
(1 + x)

)
B

= Z4

( 1
m

(1 + x)
)

eB = µ−
ε
2Z
− 1

2
3 e

(42)

All other quantities don’t acquire anomalous dimensions. Introducing a dimen-
sionless coupling u := me2/2π, the β-functions (βξ := µ dξ

dµ
) become

β 1
m

= (z − 2) 1
m

+ uf1(x) 1
m

βy = −uf1(x)y
βx = −u(1 + x)(f1(x)− f4(x))
βu = εu− (2f3(x) + f1(x))u2.

(43)

The equation for the interaction strength u has a fixed point at a finite value
uc:

uc = ε

2f3(x) + f1(x) =
x=y=0

15
38ε (44)

Since uc > 0, both mass ratios x and y are irrelevant there. Furthermore, the
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fixed point is stable. To keep m (and thus the energy scale) fixed, one can choose
z = 2− f1(x)u which results in the dynamical critical exponent z = 2− 4ε/19 at
the fixed point. This is the isotropic, stable LAB fixed point.

2.5. The LAB Phase and Further Results

To conclude the section on the LAB phase, the key characteristics of the LAB
fixed point relevant for this thesis will be presented alongside some further research
results.
We don’t treat any experimental indicators for a LAB phase here, but con-

centrate on the theoretical fixed point and the implications of finite temperature.
Moon et al. give a way of calculating the scaling of any operator and hence physical
observable [2]. They explicitly do so for some thermodynamic response functions
such as the specific heat cv ∼ T 1.7 and spin susceptibility χ ∼ a + bT 0.5. Their
results for the electric conductivity leads to (undoped) LAB materials being power-
law insulators. Additionally, they perturbatively analyze the effect of a strain δ

and a Zeeman field H and arrive at multiple phases in the δ-H parameter plane.
These results are of no particular interest for the computations of this thesis, but
of course relevant to the actual detection of the LAB phase.
Additional research around the Luttinger Hamiltonian and the LAB phase has

been conducted by Igor Herbut and his group [9][10]. The most important result is
the treatment of possible phases adjacent to the LAB to arrive – at least qualita-
tively – at a phase diagram with possible temperature boundaries on the appearing
of the LAB phase. They include additional couplings g1(Ψ†Ψ)2 and g2(Ψ†ΓaΨ)2 in
the action leading to a new quantum critical point at g1, g2 6= 0 which with increas-
ing ε collides with the LAB fixed point at a lower critical dimension dlow ≈ 3.26
and leaves only a runaway flow in the parameter space at lower dimension. They
argue that the LAB scaling remains observable in a certain temperature window
[Tc, T ∗] where at Tc, the system undergoes a phase transition towards a gapped
Mott insulator ground state and T ∗ is a crossover temperature to the usual Fermi
liquid phase. The estimates are based on a comparison of typical thermal and
LAB length scales.
Furthermore, Igor Boettcher and Igor Herbut [11] argue that despite the isotropic
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nature of the LAB fixed point, the RG flow of the anisotropy x (or an equivalent
parameter) is exceptionally slow such that it can be treated as approximately
constant during the RG flow. They come to the conclusion that in this setting,
anisotropy actually supports the formation of the LAB phase by making it observ-
able in a wider range of temperatures and lowering the lower critical dimension
dlow discussed above.
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3. Screened Potential Approach

As a first estimate of the influence of temperature on the LAB phase, we explore
a screening length approach: the unscreened Coulomb interaction that results in
the zero-temperature LAB phase will be replaced by a screened version with a
Yukawa-like decay ∼ e−x/lscr/x. The screening length lscr can be estimated based
on the bosonic self energy at absolute zero as described in the following section.
This is the essence of the random phase approximation (RPA), capturing the ef-
fects of interaction in a screened potential. Igor Herbut and Lukas Janssen [9] have
identified a characteristic length scale for the LAB phase lLAB in three dimensions
which will be compared against lscr. If the screening length is much smaller than
the LAB characteristic length, the LAB phase is expected to be severely affected
– possibly destroyed or altered – because the Coulomb interaction is already ther-
mally suppressed over the relevant length scales. In the opposite case, screening
only kicks in at a greater length scale and the non-Fermi liquid behavior should
be observable without drastic changes. However, the scope of this section lies in
searching qualitative evidence since a naive screening approach cannot be expected
to yield quantitative results in terms of the observability of the LAB phase.

3.1. Calculation of the Screening Length

This section will briefly explain the link between the bosonic self energy and screen-
ing length following [12, p.223-225] and then turn to deriving an expression for the
latter. In the self energy approach, the bosonic Green’s function Gϕ is the solution
of a Dyson equation:

Gϕ(~k) = G0(~k) +G0(~k)Σϕ(~k)Gϕ(~k) (45)

Here, G0 denotes the noninteracting Green’s function. A formal solution is given
by

G−1
ϕ = G−1

0 − Σ−1
ϕ . (46)
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Plugging in the free bosonic Green’s function 4π/k2 and using that all quantities
are scalar in our case yields

Gϕ(~k) = 4π
k2 − 4πΣϕ(~k)

. (47)

Neglecting all but the constant part of the self energy Σϕ(0) and applying a
Fourier transform to the three-dimensional position space results in a Yukawa-like
Green’s function describing the screened Coulomb interaction. The characteristic
screening length is given by lscr := (−4πΣϕ(0))− 1

2 .

Gϕ(~r) = e−
r
lscr

r
(48)

Let’s now turn to the computation of the constant part of the bosonic self energy.
This is the first calculation carried out at finite temperature: this corresponds to
replacing the frequency integrals from the previous section by Matsubara sums.
The use of an artificial length scale µ is not necessary in this section as we fix d = 3.
To avoid confusion with the other chapters, the physical interaction constant –
which we avoided to use in dimensional regularization because it changes units
with varying ε – shall be denoted by ẽ. It is related to the previously used one
by ẽ2 = e2µε, in particular ẽ2 = e2µ in three dimensions. The integral to solve is
given by

Σϕ(0) = −ẽ2
∫ d3k

(2π)3

∑
ωn

Tr
{
Gf (~k, iωn)2

}
(49)

= −4(2m)2ẽ2
∫ ddk

(2π)d
1
β

∑
ωn

(−2miωn + yk2)2 + k4 + x(2 + x)pc(k)
[(−2miωn + yk2)2 − k4 − x(2 + x)pc(k)]2 . (50)

The frequency sum runs over fermionic Matsubara frequencies ωn := (2n+1)π/β
with inverse temperature β and will be evaluated by transforming it into an integral
over z := 2miω with an additional fermionic occupation function nF (z/2m)) under
the integral. This method to resolve Matsubara sums is briefly recapitulated in
appendix A. The final path derived there is C3 enclosing all but the imaginary
axis of the complex z space – this means that the poles of nF (z) located at 2miωn
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don’t contribute. Unless otherwise noted, all complex contour integrals from here
on are to be taken along C3.

Σϕ(0) = −8mẽ2
∫ d3k

(2π)3

∮ dz

2πnF
(
z

2m

) (−z + yk2)2 + k4 + x(2 + x)pc(k)
[(−z + yk2)2 − k4 − x(2 + x)pc(k)]2

(51)

nF (z) := 1
eβz + 1 (52)

The z integral is solved with the aid of the residue theorem, it is

Res [(integrand of (51)), z = 2mE±] = −β4m
eβE±

(1 + eβE±)2 . (53)

We recall that E± denote the eigenenergies of the Hamiltonian. Summing up
the residues leads to

Σϕ(0) = −2ẽ2β
∫ d3k

(2π)3

1 + cosh
(
yβk2

2m

)
cosh

(
β

2m

√
k4 − x(2 + x)pc(k)

)
[
cosh

(
yβk2

2m

)
+ cosh

(
β

2m

√
k4 − x(2 + x)pc(k)

)]2 . (54)

The temperature and mass dependence can then be isolated in front of the
integral by passing to spherical coordinates and substituting k2 → βk2/(2m).

Σϕ(0) = −2(2m) 3
2 ẽ2β−

1
2

∫ d3k

(2π)3
1 + cosh(yk2) cosh(k2

√
1− x(2 + x)pc(k̂))[

cosh(yk2) + cosh
(
k2
√

1− x(2 + x)pc(k̂)
)]2

(55)

The momentum integral has no analytic solution, but can easily be solved nu-
merically. For the isotropic, particle-hole symmetric case of x = y = 0, it results
in
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Σϕ(0) ≈ 0.15m 3
2 ẽ2β−

1
2 (56)

lscr ≈ 0.72 β
1
4

m
3
4 ẽ
. (57)

This result agrees with Ipsita Mandal [13] who calculated the screening length
in the same system for the isotropic Hamiltonian.
Finally, let’s turn to the influence of x and y. For efficiency, the numerical

integration has been performed with a Monte Carlo method to a precision sufficient
to see general tendencies – maximum accuracy was not the goal. The displayed
“jumps” in some of the quantities are not expected to be physical, but numerical
artifacts because Σϕ is small.

Figure 5: Dependence of the screening length on the particle-hole asymmetry y for
selected values of x. The noise for higher x is a numerical artifact due
to the decreasing self energy close to zero.
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Figure 5 shows that the y-dependence is not dominant and gets even weaker
when x 6= 0. It is to be noted again that y = 1 is not a physical value because it
leads to a “degenerate” dispersion without a quadratic band touching point – this
may be an explanation for the erratic behavior in the vicinity of this limit. We will
focus on the y � 1 case in which y can be comfortably set to zero. There is a slight
tendency though for particle-hole-asymmetry to decrease the range of the Coulomb
interaction. An intuitive explanation for this phenomenon is that with increasing
y, the effective band mass for the negative branches increases while it decreases for
the positive ones. This results in a higher density of states for negative energies
and vice-versa. Fewer available (empty) states above zero in comparison with the
occupied ones below then hinder the interaction.

Figure 6: Dependence of the screening length on the anisotropy x for various y.

Figure 6 clearly shows that the anisotropy is a more relevant parameter when
it comes to the screening length. For the most part, the screening length seems
to scale linearly in x, with a slightly stronger screening for small x. Anisotropy
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therefore reduces the importance of screening in the finite temperature case – this
translates into supporting the formation of a LAB-like phase at finite temperature.
This result is in agreement with Boettcher and Herbut finding that anisotropy
tends to help the LAB phase [11].

3.2. LAB Length Scale and Comparison

The LAB phase emerges due to the q2-contribution in the bosonic and fermionic
self energies as seen in sections 2.3.1 and 2.3.2. Specifically, the form of the Z-
factors in (41) results in the flow equations and determines the strength of the
flow. In d = 3 (ε = 1), the characteristic length scale lLAB is given by

lLAB = 1
8πmẽ2f3(x) . (58)

This is to be seen as an order of magnitude – here, lLAB is chosen as the point
where Z0 = 2. Below this scale, the non-Fermi liquid behavior can be observed
– or put differently, LAB electrons are strongly correlated over this scale. It
corresponds to the one Herbut et al. identify for the NFL behavior to set in and
that they use to estimate a transition temperature by comparing it to the inverse
of a characteristic thermal momentum [9].
For simplicity, let’s start with the isotropic case x = 0 where f3(x) = 1 and the

screening length is given by (56). Due to the overall weak dependence on y, the
particle-hole asymmetry will be set to zero as well. The ratio of the two relevant
length scales is given by

K := lscr
lLAB

= 12.1(βm) 1
4 ẽ. (59)

As a consistency check, this quantity is indeed dimensionless: in natural units,
β is an inverse energy while m is an energy and ẽ is dimensionless (as ẽ2/r is the
Coulomb energy). Now, K � 1 means that screening interferes critically with the
LAB phase by modifying the Coulomb interaction over the relevant length scales.
K � 1 is the opposite case of screening having little influence. Naturally, K
decreases with rising temperature, but the exponent 1

4 constitutes a rather weak
dependence. Unsurprisingly, a stronger interaction ẽ helps the LAB phase survive,
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as does an increase of the symmetric band mass m.
Now, let’s find sensible values for β, m and ẽ. It is easiest to remain in natural

units. According to Herbut et al., temperatures relevant to the LAB phase are of
the order 10 . . . 100 K [9] which yields inverse thermal energies β ≈ 0.1 . . . 1 meV−1.
Relative band masses (compared with the free electron mass) range from 0.02 to
about 1 and translate into m ≈ 10 . . . 500 keV. The dimensionless coupling ẽ is
obtained by combining the fine structure constant α = ẽ2/4π ≈ 1/137 with an
estimate for the relative permittivity which will be taken between 1 and 30 here.
Altogether, this results in ẽ ≈ 0.3 . . . 1.66. The overall ratio K is mainly driven
by the fraction of electron band mass and thermal energy which is in the order
of magnitude 106. The prefactors together with the fourth root then result in
K ∼ 102 . . . 103 � 1. In the RPA approximation, screening should have no drastic
impact on the LAB phase. As shown in figure 7, the temperature dependence
∼ T−

1
4 is weak enough such that this holds over a large range.

Figure 7: K over T for ẽ = 1 and m = mel. The weak dependence on T ensures
thatK � 1 for the whole temperature range in question up to 100Kelvin,
marked by the red dashed line.

Including anisotropy in the calculation will assist the LAB phase by weakening
the screening even more as shown in figure 6. lLAB stays relatively unchanged due
to f3(x) = O(1) for all x. At extreme values of the particle-hole asymmetry y . 1,
screening will take over, but this should be attributed to the general breakdown
of the dispersion for y → 1. For reasonable values of y, there should be no drastic
change.
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4. Dimensional Regularization at Finite
Temperatures

Let’s now turn to a more rigorous approach. The goal of this section is to retrace
the renormalization calculation which leads to the LAB phase for the case of
nonzero temperature. This corresponds again to the replacement of frequency
integrals with Matsubara sums which will then be solved by introducing fermionic
occupation functions ∼ (eβz + 1)−1. At the very least, temperature is expected to
be a relevant parameter which manifests as a runaway flow in the phase space and
thus renders the LAB fixed point unstable

4.1. Self Energies

As for the zero temperature case, the first step towards the flow equations is de-
riving an expression for the various one-loop-diagrams and examining their tem-
perature dependency.

4.1.1. Bosonic Self Energy

The starting point for the bosonic self energy reads

Σϕ(~q,Ω) = −e2µε
∫ ddk

(2π)d
1
β

∑
ωn

Tr
{
Gf (~k, iω)Gf (~k + ~q, iω + iΩ)

}
(60)

where the frequency sum runs over fermionic Matsubara frequencies ωn = (2n+
1)π/β. For simplicity, the external frequency Ω will again be set to zero. When
expanding the integrand in small q, the first order term will vanish due to the
asymmetry in k-components. The constant part is in analogy to (55) given by

Σϕ(0) = −e2µεβ
∫ ddk

(2π)d
1 + cosh

(
yβk2

2m

)
cosh

(
β

2m

√
k4 − x(2 + x)pc(k)

)
[
cosh(yβk2

2m ) + cosh
(
β

2m

√
k4 − x(2 + x)pc(k)

)]2 (61)

in general dimension d. It is no longer zero, but finite for all dimensions d: for
small k, the integrand tends to 1

2 while it vanishes exponentially ∼ eE−(k) for large
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k. Therefore, no ε-peak appears and no cancellation of infinities and subsequent
rescaling is necessary.
Hence, the second order term is therefore the important one for renormalization.

The case x = y = 0 will be examined first by reusing the results of section 2.3.1.
It is

Σϕ(~q, 0) = −16(me)2µε
∫ ddk

(2π)d
1
β

∑
ωn

(2miω)2 + k4 + 3 cos2 θ−1
2 k2q2

[(2miω)2 − k4][(2miω)2 − (~k + ~q)4]
. (62)

As a next step, the frequency sum is transformed into a contour integral (C3

understood) by introducing nF (z) while substituting z = 2miω.

Σϕ(~q, 0) = +4me2µε
∫ ddk

(2π)d
∮ dz

2πinF
(
z

2m

)
z2 + k4 + 3 cos2 θ−1

2 k2q2

[z2 − k4][z2 − (~k + ~q)4]
(63)

It is easiest to expand the integrand in small q before resolving the z-integration.
Both operations do commute, choosing this order avoids dealing with infinities in
q at intermediate steps however (which of course cancel out in the end). The
fraction expands to

z2 + k4 + 3 cos2 θ−1
2 k2q2

(z2 − k4)(z2 − (~k + ~q)4)
= z2 + k4

(z2 − k4)2 + 4k2(z2 + k4)
(z2 − k4)3 (~k · ~q)

+ (5− 27 cos2 θ)k4 + (3− 53 cos2 θ)z2

2(z2 − k4)3 k2q2 + 32z4

(z2 − k4)4 (~k · ~q)2. (64)

The constant term leads to (61) while the first order term vanishes during the
momentum integration. The second order term with poles at z = ±k2 leads to

Σ(2)
ϕ (~q, 0) = −3βme2µε

∫ ddk

(2π)d

[
5 cos2 θ − 1

k4 tanh βk
2

4m +R(k)
]
× q2. (65)

The rest terms R(k) are of order k−2 and exponentially suppressed for large k:
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R(k) = (5 cos2 θ − 1)
4mk2 cosh2 βk2

4m

+
(2 cos2 θ − 1)β2 sinh βk2

4m

12m2 cosh3 βk2

4m

+
k2β3 cos2 θ

(
2 sinh2 βk2

4m − 1
)

32m3 cosh4 βk2

4m
(66)

They represent a finite contribution to the self energy and can be omitted for the
dimensional regularization process. After resolving the angular integration with
the method described in section 2.3.1, the final result for the isotropic system is

Σϕ(~q, 0) = −me2µε8πS−1
d

∫ ddk

(2π)d
1
k4 tanh βk

2

4m × q
2. (67)

Before turning to the fermionic self energy, let’s discuss the influence of the
parameters x and y. Even with algorithmic assistance, the expansions and residues
become quite convoluted which is the reason why a full computation hasn’t been
made. The starting point is the equation akin to (15). Encouraged by the weak
influence of the particle-hole asymmetry y on the screening length, we will leave
it at zero. It is worth noting though that it doesn’t disappear after the frequency
integration anymore – it will instead enter into the fermionic occupation functions
and remain inside the hyperbolic functions in the result. The simplified one-loop
integral then reads

Σϕ(~q, 0) = −16(me)2µε
∫ ddk

(2π)d
1
β

∑
ωn

(2miω)2 + k4 + 3 cos2 θ−1
2 k2q2 + x(2 + x)p̃c(k, k + q)

[(2miω)2 − δE(k)2][(2miω)2 − δE(k + q)2]
(68)

where the auxiliary functions δE and p̃c are defined as in section 2.3.1. Trans-
forming the frequency sum into a contour integral and substituting z = 2miω
yields

Σϕ(~q, 0) = +4me2µε
∫ ddk

(2π)d
∮ dz

2πinF
(
z

2m

)
z2 + k4 + 3 cos2 θ−1

2 k2q2 + x(2 + x)p̃c(k, k + q)
[z2 − δE(k)2][z2 − δE(k + q)2] .

(69)
The cubic anisotropy prevents an elegant expansion in q since spherical coordi-
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nates are no longer a good basis. Inferring from the isotropic case, the principal
symmetries will still lead to only the second-order term in q being relevant for the
Z-factors. More than that, the solution will contain a hyperbolic tangent factor
similar to (65) with the argument containing the full eigenenergy. This factor then
prevents the separation of angular and radial integration. Under these considera-
tions, an educated guess for the relevant part of the bosonic self energy (that is to
say, the one containing the ε-peak) is given by

Σϕ(~q, 0) = 8πme2µε
∫ ddk

(2π)d
1
k4 x4k̂x

2(k̂y
2
− k̂z

2)2(√
1 + x(2 + x)pc(k̂)

)5 +O
( 1
x2

) tanh
(
βk2

4m

√
1 + x(2 + x)pc(k̂)

)
. (70)

The part in square brackets is the integrand of f3(x) in the zero-temperature
case – its full form can be found in appendix C. The integral ultimately needs to
be solved numerically, though one can factor out the dependency on β and m by
substituting k2 → βk2/(4m). Then, it depends only on the dimension d and the
anisotropy x. For the treatment of the angular integrals, the method described
in section 2.3.1 cannot be applied directly – solving the angular portion in 3D is
not possible separately from the radial part. However, a variant of this method
can be used to extract an anisotropy function f̃3(x) analogous to f3(x): the whole
integral including the radial part is computed numerically in three dimensions and
the general dimensionality reintroduced artificially to produce the correct ε-peak.
This procedure is not as rigorous as the separation of angular and radial integrand
since the dimension of the k-vector is directly connected with the anisotropy x

inside the hyperbolic tangent and can’t be strictly separated. However, it allows a
much more concrete treatment of the problem in the renormalization group. The
resulting anisotropy function is displayed in figure 8.

It may seem problematic to reintroduce an IR divergence this way that is orig-
inally suppressed by the temperature factor. However, it is justified because the
minimal subtraction of the ε-peak doesn’t care about finite contributions of the
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Figure 8: The anisotropy function f̃3(x) for the bosonic self energy. It is equal
to f3(x), the zero temperature analogue, when properly normalized to
eliminate the unphysical dependency on the arbitrary momentum scale.

self energy, only about the UV divergence when sending d → 4. The dependence
on the temperature is a low-momentum phenomenon not related to the ε-peak. It
can therefore be absorbed into the initially introduced momentum scale µ.
Most importantly, the bosonic self energy acquires a factor that suppresses the

integrand at low momenta, but leaves it unchanged at high k. Formally, the
integral will assume the form A/ε+B(T ) with the temperature contributing to the
finite portion. This is because temperature naturally destroys correlation at large
length scales while leaving shorter ones relatively untouched. The limit towards
zero temperature (β →∞) correctly restores the formerly calculated self energy.
To conclude the discussion of the bosonic self energy, a comment on the striking

fact that the anisotropy functions f3(x) and f̃3(x), corresponding to zero and finite
temperature, are completely equal. This should surprise when considering that the
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hyperbolic tangent factor is strictly smaller than 1: the resolution of this apparent
paradox lies in the normalization procedure necessary to ensure independence of
µ (because it is an arbitrary scale) and separation of the angular integral. From
the “raw” momentum integral

∫
ddkk

−4, the UV components leading to the ε-peak
need to be extracted while ensuring independence on IR phenomena. This is done
by introducing an effective lower cutoff canceling out with the prefactor µ−ε.

4.1.2. Fermionic Self Energy

Let’s now pass on to the fermionic self energy. Its components can again be traced
out with the Γ matrices and 1.

F0 := 1
4Tr(Σf )

Fa := 1
4Tr(ΣfΓa)

(71)

At the second order, symmetry will again lead to Fa ∼ da(q) and an identical
form for a = 1, 2, 3 and a = 4, 5 respectively.

Σf (~q,Ω) = −e2µε
∫ ddk

(2π)d
1
β

∑
ωn

Gf (~k, iω)Gφ(~k + ~q, i(ω + Ω))

= +e2µε
∫ ddk

(2π)d
∮ dz

2πinF
(
z

2m

) 4π
(~k + ~q)2

· −z + yk2 − da(k)Γa − x(d4(k)Γ4 + d5(k)Γ5)
(z − yk2)2 − k4 − x(2 + x)pc(k)

(72)

Here, the ωn in the first line are again fermionic and z = 2miω has been substi-
tuted in the second line. As for zero temperature, there is no dependence on the
external frequency Ω because it doesn’t appear in the boson propagator. For that
reason, the z integration can be resolved separately. The contour again encloses
the poles located at the eigenenergies z± = 2m(E0 ±∆E) = e0 ± δE. Let further-
more A := da(k)Γa+x(d4(k)Γ4 +d5(k)Γ5) be the sum of the Γa-components of the
numerator. It is
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∮ dz

2πinF
(
z

2m

) −z + e0 − da(k)Γa − x(d4(k)Γ4 + d5(k)Γ5)
(z − e0)2 − (δE)2

= −
(
nF (E0 + ∆E)A+ δE

2δE
− nF (E0 − δE)A− δE2δE

)

= A

2δE
sinh β∆E

cosh βE0 + cosh β∆E

+ 1
2

(
1− sinh βE0

cosh βE0 + cosh β∆E

)
.

(73)

This is now plugged back into the self energy and the various components propor-
tional to 1 and the Γa are computed separately. First, let’s focus on the constant
part Σf (0).

Σf (0) = +4πe2µε
∫ ddk

(2π)d
∮ dz

2πi
1
k2

[
A

2δE
sinh β∆E

cosh βE0 + cosh β∆E

+1
2

(
1− sinh βE0

cosh βE0 + cosh β∆E

)]
(74)

The matrix A is a sum of contributions proportional to the da(k) functions.
Symmetry dictates that all integrals of the form

∫
d3kda(k)fc(k) vanish where fc(k)

is any function invariant under cubic symmetry transformations. For example,
d1(k) ∼ kykz is antisymmetric under the change of sign of either ky or kz. The
first addend in the square bracket therefore gives no contribution to the self energy.

The second addend becomes constant for large k which leads to a divergence of
the integral. However, this divergence doesn’t take the form of an ε-peak around
d = 4, but becomes infinite for all d ≥ 2. This is not a problem since the correction
is an irrelevant global shift of the energy levels – it can be discarded. Notably, the
global shift only acquires a temperature dependence in the presence of nonzero
particle-hole-asymmetry (y 6= 0).

The first-order terms again become zero for symmetry reasons. The antisym-
metric factors in A will not be canceled by the Taylor coefficient ∝ ki/k

4, e. g.,
d1(k) will remain antisymmetric in at least one of the momentum components.
The expansion of the q-dependent parts of the integral gives
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∂i∂j
1

(~k + ~q)2

∣∣∣∣∣
q=0

= 8kikj
k6 − 2δij

k4

1
(~k + ~q)2

= (lower order terms)− q2

k4 + 4(~k · ~q)2

k6 +O(q3)
. (75)

As argued for the lower-order contributions, only the specific terms “matching”
the da will survive the integration in the addends proportional to the Γa. This
gives the following results for the different components of the fermionic self energy
defined in (71).

F
(2)
0 = −2πe2µε

∫ ddk

(2π)d
1 + 4 cos2 θ

k4
sinh βE0

cosh βE0 + cosh β∆E

× q2

a = 1, 2, 3 : F (2)
a = −4πe2µε

∫ ddk

(2π)d
k̂2
y k̂

2
z

k4
√

1 + x(2 + x)pc(k̂)
sinh β∆E

cosh βE0 + cosh β∆E

da(q)

a = 4, 5 : F (2)
a = −4πe2µε(1 + x)

∫ ddk

(2π)d
(k̂2
x − k̂2

y)2

k4
√

1 + x(2 + x)pc(k̂)
sinh β∆E

cosh βE0 + cosh β∆E

da(q)

(76)

The results for Fa (a 6= 0) are in agreement with the zero temperature case
examined in section (2.3.2). For β → ∞, the hyperbolic part becomes 1 and the
anisotropy functions f1 and f2 remain. The momentum components inside the
integral are interchangeable due to cubic symmetry which results in F1/2/3 and
F4/5 having the same form, respectively. The F0 component loses the temperature
independent part of the residue since it has no second order contribution: The
integral doesn’t depend on the external momentum for the reasons outlined in
section 2.3.1. It is only nonzero in the presence of particle-hole anisotropy which
we won’t treat in depth here. Furthermore, the temperature-dependent hyperbolic
factors in the expressions for Fa with a = 1 . . . 5 reduce to tanh(β∆E/2) for y = 0,
analogous to the bosonic self energy.
While the integration can no longer be split into a radial and an angular part,

the temperature dependency can be factored out by substituting k2 → βk2/(2m)

40



as for the bosonic self energy. This leads to a dependency proportional to β−ε/2 –
notably, it is weak near d = 4. Inside the integral, the temperature results again
in a regularization of the IR part while leaving the UV part responsible for the
ε-peak untouched. Anisotropy functions f̃1(x) and f̃4(x) can be calculated with
the same method as in the bosonic case – they are displayed in figure 9 and are
no different from their zero temperature equivalents.

Figure 9: The anisotropy functions f̃1(x) and f̃4(x) for the bosonic self energy.
They don’t differ from the ones calculated for zero temperature

As in the zero temperature case, the fermionic self energy remains independent
of the frequency which leads to the vertex correction vanishing.
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4.2. Modified Flow Equations

The procedure goes in complete analogy to the zero temperature case in section
2.4. However, temperature acts as a new parameter in the system with canonical
dimension z (the same as the frequency). The other flow equations remain un-
affected up to first order in ε. The Z-factors need to be introduced in the same
places as before and are given as follows.

S =
∫
q

∑
ω

Ψ†(q, iω)
(
−iω + q2

2M0
+ Z1

3∑
a=1

da(q)Γa
2m + Z4

5∑
a=4

da(q)Γa
( 1

2m + 1
2Mc

))
Ψ(q, iω)

− ieµ−
ε
2

∫
q,k

∑
ω,Ω

Ψ†(q + k, iω + iΩ)ϕ(k, iΩ)Ψ(q, iω)

+ 1
8πZ0

∫
k

∑
Ω
ϕ(−k,−iΩ)k2ϕ(k, iΩ) (77)

With the results of the previous sections, they take the form

Z̃0 = 1 + 1
πε
me2f̃3(x) (78)

Z̃1 = 1 + 1
2πεme

2f̃1(x) (79)

Z̃4 = 1 + 1
2πεme

2f̃4(x)(1 + x). (80)

Clearly, there’s no change in the rescaling when comparing to the zero temper-
ature case since the Z factors look the same:

ϕB = Z̃
1
2
0 ϕ (81)( 1

m

)
B

= Z̃1
1
m

(82)( 1
m

(1 + x)
)
B

= Z̃4

( 1
m

(1 + x)
)

(83)

eB = µ−
ε
2 Z̃
− 1

2
3 e (84)

All other quantities scale according to their canonical dimensions. With the
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dimensionless coupling u := me2/2π, the β-functions (βξ := µ dξ
dµ
, not to be con-

founded with the inverse temperature β) write the same as before. However,
temperature T is now included in the parameter space.

β 1
m

= (z − 2) 1
m

+ uf̃1(x) 1
m

(85)

βy = −uf̃1(x)y (86)
βx = −u(1 + x)(f̃1(x)− f̃4(x)) (87)
βu = εu− (4f̃3(x) + f̃1(x))u2 (88)
βT = zT (89)

The known fixed point at uc = ε/(2f̃3(x) + f̃1(x)) acquires an instability in T -
direction here. The formerly stable LAB fixed point is now unstable – therefore, a
true zero-temperature phase cedes to exist. There may however be a region around
the fixed point where LAB scaling still dominates the electronic behavior. The rest
of this chapter is dedicated to identify potential regions for this to happen.

4.3. Reduced Temperature Phase Diagram

The two-dimensional parameter space is spanned by the interaction strength and
temperature and exhibits an unstable fixed point at zero temperature. It is conve-
nient to switch to canonically dimensionless quantities that isolate the anomalous
flow due to the renormalization group. The natural choices are given by the di-
mensionless coupling u introduced earlier and a reduced temperature τ that relates
the thermal energy with the characteristic energy scale of the system – since the
LAB fixed point is isotropic, the only such scale is given by the band mass m.

u = 2πme2 (90)

τ = 2mT
µ2 (91)

The anomalous scaling of τ is given by
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βτ = − 8
15uτ (92)

at x = 0. It is displayed in figure 10(a) at ε = 1. Figure 10(b) shows the
instability of the LAB fixed point with the runaway temperature T . However,
there can be low-temperature regions where the flow towards the fixed point is
stronger than the runaway flow to higher effective temperature. This is the region
where LAB scaling is expected to be visible in experimental data.

Figure 10: The RG flow in the (a) u − τ and (b) u − T parameter space. Both
figures are at d = 3, the fixed point at u = 15

38 is clearly seen. The units
for the physical temperature are irrelevant in principle – the ones given
in the square bracket are not to be confounded with the definition of τ
where those quantities counter the normal scaling.

To identify regions of different behavior in the reduced temperature flow dia-
gram (figure 10 (a)), the characteristic temperatures estimated by Herbut et al. [9]
are taken into account. To be able to generalize the flow diagrams to arbitrary
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dimension, lLAB from (58) needs to be generalized. As a reminder, it is the length
scale emerging from comparing the free boson propagator with the q2-part of the
bosonic self energy at zero temperature:

1 ∼ |Σϕ(q)|
q2 (93)

With the result from (26), this leads to a momentum scale µ∗ and an associated
length scale L∗ when reinserting the physical interaction strength ẽ2 = e2µε:

µ∗ =
(

8πmẽ2f3(x)
ε

) 1
ε

(94)

L∗ = 1
µ∗

(95)

A corresponding temperature scale T ∗ (and, to be precise, a reduced temperature
scale τ ∗) then results from comparing Coulomb energy ẽ2/(L∗)d−2 and thermal
energy T :

T ∗ = ẽ2

(L∗)2−ε (96)

τ ∗ = ε

4π

(4u
ε

) 2
ε

(97)

It can be seen that in three dimensions, the reduced temperature below which
Herbut et al. locate the LAB scaling goes quadratically with the interaction con-
stant. This holds equally true for the transition temperature to a Mott ground
state Tc ≈ T ∗/100 identified by them. Both temperatures are implemented in the
flow diagram in figure 12.
Finally, let’s determine the region affected by screening. In essence, this should

confirm the estimates made in chapter 3 in the sense that screening is weak in
the relevant portion of the flow diagram. To achieve this, the product lscrµ is
examined where µ is the momentum scale entering the reduced temperature (ex-
perimentally speaking, the momentum scale at which the effective temperature
should be determined).
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The region where screening is irrelevant is determined by a large screening length
(compared to the characteristic length scale µ−1) such that lscrµ > 1. After in-
serting all the definitions of τ and u, this estimate results in

τ−
1
4u−

1
2 · 2.146 > 1. (98)

This equation is valid in three dimensions. In general dimensionality, the ex-
pression for the screening length (56) is modified using the result for Σϕ(0) from
(61). It reads

Σϕ(0) = C(d)m d
2 ẽ2β1− d2

lscr = 1√
C(d)

β
d
4−

1
2

m
d
4 ẽ

(99)

with the dimensional factor C(d) displayed in figure 11. Equation lscrµ = 1 then
gives

τ
1
2−

d
4u−

1
2

2 d
4
√
π√

C(d)
> 1 (100)

for the unscreened region. Qualitatively, the border of this region follows τ ∼
u−2 in d = 3 and τ ∼ u−1 in d = 4 with intermediate exponents in between.
Quantitatively though, the whole area that is relevant for LAB scaling following
the arguments of Herbut et al. lies in the unscreened region.
In conclusion, the finite temperature calculation supports the existence of a LAB

scaling at one-loop level. In dimensional regularization, the temperature depen-
dency remains largely invisible because of the UV nature of the diagram parts that
diverge like 1/ε – the Z-factors and subsequently the flow equations don’t acquire
temperature-dependent contributions. However, the LAB phase critical point be-
comes unstable in the presence of a new relevant parameter, temperature. It is
probable that the nearby unstable fixed point still influences the low-temperature
behavior in a certain region of the parameter plane: the zero-temperature LAB
phase is therefore replaced by a scaling region gradually showing the predicted
LAB properties below a crossover temperature. Screening does not seem to have a
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Figure 11: The dimensional factor C(d) for the constant part of the bosonic self
energy, entering the screening length result for a general dimension d.

significant effect in this region such that the scaling is expected to be observable.
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Figure 12: The flow diagram in the u-τ parameter plane for d = 3 and d = 3.8.
The red lines represent the temperatures τ ∗ (upper LAB limit) and τc
(lower LAB limit) obtained after Herbut et al. The colored region is
allowed for LAB scaling. The whole plot lies within the unscreened
region where lscrµ > 1.
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5. Momentum Shell RG at Finite Temperatures

While the reasons for the invisibility of temperature in Z factors is mathematically
clear, another renormalization approach can produce the dependence we’re looking
for. When following the original idea of passing towards larger and larger length
scales by integrating out low-distance (that is to say, large momentum) degrees
of freedom, temperature should eventually play a larger role once the momentum
cutoff Λ and its associated energy come near the thermal energy (E(Λ) ∼ T ).
E(Λ) describes some energy characteristic for the system, usually given by the
dispersion.
The momentum-shell renormalization program starts by imposing a general

high-momentum cutoff Λ on all integrals. It proceeds by integrating out addi-
tional degrees of freedom in order to reduce the cutoff to a smaller one at Λ/b –
the contribution of this momentum shell then has to be included in the effective
action including valid for smaller momenta. Finally, the fields and parameters of
the effective action are rescaled to restore the original form of the action. Now,
both actions are built to describe the same physical system which gives rise to
conditions on how the involved quantities scale with the momentum cutoff. This
results in continuous flow equations when implementing the above program in
infinitesimal steps b = 1 + dl ≈ edl.
For simplicity, all calculations in this chapter will be done in the isotropic,

particle-hole symmetric system. Unlike for dimensional regularization, finite con-
tributions to the self energies (at d = 4) are also of interest now – this is where
temperature is expected to enter the flow equations. As before, we will expand
all diagrams up to second order in q. Throughout the chapter, ∆(ξ) denotes the
quantity ξ with all momentum integrals only carried out over the momentum shell
[Λ/b,Λ].

5.1. Self Energies

The first step is the calculation of the self energies well-known by now. Most
equations of the previous chapters can be recycled when properly generalized.
The momentum integrals run up to a cutoff Λ and only the shell Λ/b < |~k| < Λ is
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needed to derive the RG flow. However, there is one complication that will alter
the fermionic self energy: one needs to include a boson mass mϕ with canonical
dimension 2 from the start since it will be generated by the RG flow anyway. This
corresponds to replacing q2 → q2 +mϕ in the action and setting Gϕ = (q2 +mϕ)−1

as the new bosonic Green’s function.

5.1.1. Bosonic Self Energy

There are two contributions up to second order, the constant part Σϕ(0) as well
as the quadratic contribution Σ(2)

ϕ (~q). The former leads to a boson mass mφ,
effectively a screening parameter. The latter renormalizes the boson field ϕ.

Σϕ(0) is given by (61) evaluated at x = y = 0:

Σϕ(0) = −ẽ2β
∫ ddk

(2π)d
1

1 + cosh βk2

2m

δl (101)

The momentum shell integral then yields

∆(Σϕ(0)) := −ẽ2β
Sd

(2π)d
∫ Λ

Λ/b
dkkd−1 1

1 + cosh βk2

2m

= β
Sd

(2π)dΛd 1
cosh2 βΛ2

4m

δl (102)

with b = 1 + δl and δl � 1. The fraction Sd/(2π)d evaluates to 1/2π2 in three
and 1/8π2 in four dimensions.
The second order contribution is given by (65). The rest terms R(k) are expo-

nentially suppressed when compared with the term proportional to tanh βk2/4m
and will therefore be neglected. Performing the angular integration in 3D and
restoring the general dimension d afterwards following the known protocol (21)
gives

∆(Σϕ(~q)) = −8πmẽ2 Sd
(2π)dS3

∫ Λ

Λ/b
dkk−1−ε tanh βk

2

4m × q
2

= −8πmẽ2 Sd
(2π)dS3

Λ−ε tanh βΛ2

4m δl × q2.

(103)
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5.1.2. Fermionic Self Energy

The second-order integrals for the fermionic self energy are given in (76). Its
constant contributions vanish either due to antisymmetry (integrating over da(k))
or can be absorbed by a global energy shift (component ∼ 1). F0 has no second-
order contribution for y = 0 which leaves the Fa with two independent components
(e.g. F1 and F4). The corresponding integrals are given by

F
(2)
1 (~q) = −4πẽ2

∫ ddk

(2π)d
k̂2
y k̂

2
z

(k2 +mϕ)2 tanh βk
2

4md1(q)

F
(2)
4 (~q) = −4πẽ2

∫ ddk

(2π)d
(k̂2
x − k̂2

y)2

(k2 +mϕ)2 tanh βk
2

4md4(q).
(104)

The angular integration can be resolved as usual, giving the final result

∆
(
F

(2)
1 (~q)

)
= −16π

15 ẽ2 Sd
(2π)dS3

4πΛ−ε
(1 +mϕΛ−2)2 tanh βΛ2

4m δl × d1(q)

∆
(
F

(2)(~q)
4

)
= −16π

15 ẽ2 Sd
(2π)dS3

4πΛ−ε
(1 +mϕΛ−2)2 tanh βΛ2

4m δl × d4(q).
(105)

As it should be, both contributions are equal in the x = 0 case.
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5.2. Effective Action, Rescaling and Flow Equations

These contributions are now plugged back into (9) to get an effective action S<

valid when all momentum integrations are performed with a new cutoff Λ/b:

S< =
∫
q

∑
ω

Ψ†(q, iω)
(
−iω +

5∑
a=1

da(q)Γa
(

1
2m + 16π

15 ẽ2 Sd
(2π)dS3

4πΛ−ε
(1 +mϕΛ−2)2 tanh βΛ2

4m δl

))
Ψ(q, iω)

− iẽ
∫
q,k

∑
ω,Ω

Ψ†(q + k, iω + iΩ)ϕ(k, iΩ)Ψ(q, iω)

+ 1
8π

∫
q

∑
Ω
ϕ(−q,−iΩ)

[
q2
(

1 + 8πmẽ2 4πSd
(2π)dS3

Λ−ε tanh βΛ2

4m δl

)

+
mϕ + β

Sd
(2π)dΛd 4π

cosh2 βẽ2Λ2

4m

ϕ(q, iΩ) (106)

To restore the original cutoff Λ, fields, momenta and frequencies need to be
rescaled with b according to their canonical scaling dimensions given in (12):

q → q′ = bq

ω → ω′ = bzω
(107)

Caution is needed when rescaling the bosonic field ϕ since it acquires an anoma-
lous dimension due to the second order contribution of Σϕ:

ϕ′ = b
d+z+2

2

(
1− 8πmẽ2 4πSd

(2π)dS3
Λ−ε tanh βΛ2

4m δl

) 1
2

ϕ (108)

(109)

By comparison with the original action, we find the primed equivalents of m,
mϕ and ẽ. The scaling of the interaction strength ẽ comes from the anomalous
scaling of the boson field. When replacing b = 1+ δl again and keeping only terms
up to first order in δl, they evaluate to the following set of equations where the
dimensional factor Sd/(2π)d has been evaluated in four dimensions:
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1
2m′ = (1 + δl)z−2

(
1

2m + 2
15π ẽ

2 Λ−ε
(1 +mϕΛ−2)2 tanh βΛ2

4m δl

)

= 1
2m + 1

2m(z − 2)δl + 2
15π ẽ

2 Λ−ε
(1 +mϕΛ−2)2 tanh βΛ2

4m δl

(110)

m′ϕ = (1 + δl)2

1 + βẽ2

2π
Λd

cosh2 βΛ2

4m

δl


= mϕ + 2δlmϕ + βẽ2

2π
Λd

cosh2 βΛ2

4m

δl

(111)

ẽ′2 = (1 + δl)−d+z+2
(

1 + 1
π
mẽ2Λ−ε tanh βΛ2

4m δl

)−1

ẽ2

= ẽ2 + (ε+ z − 2)ẽ2δl − 1
π
mẽ4Λ−ε tanh βΛ2

4m δl

(112)

Passing to the dimensionless interaction constant u = mẽ2Λ−ε/2π, boson mass
m̄ϕ = mϕΛ−2 and temperature β̄ = βΛ2/2m then results in the flow equations

d

dl

1
2m =

(
z − 2 + 8u

15
1

(1 + m̄ϕ)2 tanh β̄2

)
1

2m (113)

dm̄ϕ

dl
= 2m̄ϕ +

¯2βu
cosh2 β̄

2

(114)

du

dl
= εu− 2

(
1 + 4

15(1 + m̄ϕ)2

)
tanh β̄2u

2 (115)

dT̄

dl
=
(

2− 8u
15

1
(1 + m̄ϕ)2 tanh β̄2

)
T̄ . (116)

The three equations for the parameters in the Hamiltonian are supplemented
by the flow of the reduced temperature β̄−1 = 2mT/Λ2. These equations are the
central result of this thesis and completely describe the impact of finite temperature
on the RG flow at one-loop level.
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5.3. Discussion of the Flow

First to note, the momentum shell calculation reproduces (43) in the corresponding
T̄ = m̄ϕ = 0 case.
The only fixed point of the flow equations is the well-known LAB one at uc =

15ε/38, T̄c = 0 and mϕ,c = 0. m defines the global energy scale which should
remain fixed during the running of parameters: this results in z = 2−4ε/19 at the
fixed point and ensures that any observed scaling in T̄ and u stems from T and e2

respectively, and not from a potentially running energy scale m.
The flow in u-T̄ parameter space (with zero boson mass) is displayed in figure

13 (a) and (b). The hyperbolic tangent doesn’t introduce dramatic changes to the
general structure when compared with figure 10. A shift of the “effective fixed
point” of u to larger values at finite temperatures is visible, distorting the flow.
Furthermore, (c) shows the m̄ϕ − T̄ parameter plane at u = uc and merely

demonstrates the collective divergence of those parameters. In the same fashion,
the u− m̄ϕ flow is dominated by the runaway of m̄ϕ as displayed in (d).
The coupled differential equations cannot be solved analytically, but we can

compute numerically how the bosonic mass m̄ϕ(l = ∞) at the end of the flow
depends on the initial temperature T̄ (l = 0). This allows us to compare the
result with the screening length approach made in chapter 3 which resulted in
mϕ ∼ 1/l2scr ∼

√
T .

We proceed as follows: We find numerical solutions for the flow equations start-
ing at initial values m̄ϕ(0) = 0, u(0) = u0 and T̄ (0) = t0. Varying t0 when keeping
u0 fixed, we then plot m̄ϕ(l � 1) against t0 and fit a function atb0 to the data to
find the exponent B. To check whether there is any u0 dependence in the expo-
nent, we repeat this procedure for multiple starting values u0. It turns out that B
is independent of u0.
As a check, the RPA result from chapter 3 can be reproduced by neglecting all

anomalous flow terms in T̄ and u. Figure 14 shows the fits using (a) the simplified
flow equations and (b) the full ones. The exponent evaluates to b ≈ 1.1 for small
initial values t0. Thus, the anomalous temperature and interaction flow increases
the screening strength when compared with the RPA approach.
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Figure 13: The flow diagrams originating in the momentum shell approach. (a) and
(b) show the u− T̄ plane where the normal scaling of the temperature
has been factored out in (a) while (b) includes it. (c) shows the m̄ϕ −
T̄ and (d) the u − m̄ϕ plane. Both diagrams are dominated by the
divergence of m̄ϕ and T̄ .
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Figure 14: m̄ϕ(l � 1) over T̄ (l = 0) together with a fit of the form a(T̄ (0))b (red
line). (a) is obtained using the simplified flow equations neglecting the
anomalous flow of the temperature and the interaction constant and
has b = 1/2. (b) shows the results for the full flow equations (114)
through (116) with b ≈ 1.1. The exponent b is independent of u(l = 0)
in both cases.
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6. Discussion

Finally, let’s recapitulate the calculations and discuss the results while linking the
different chapters. We started with the calculation leading to the LAB fixed point
made by Moon et al. [2] with the goal of extending its results to finite temperature
and examining the fate of the LAB fixed point. The problem was tackled from
three angles: First, a random phase approximation has been used to calculate
the screening length confining the Coulomb interaction at finite temperature and
to compare it with the characteristic LAB length scale identified by Herbut and
Janssen [9]. We found their ratio to indicate the screening to be irrelevant since
lscr � lLAB by a factor of around 102 for reasonable choices of the interaction
strength and band mass. Due to the relatively weak T−1/4 scaling of lscr, this
hierarchy holds over the entire temperature window for the observation of LAB
scaling obtained in [9] and beyond.
Second, the natural extension of the calculation in [2] has been made in chapter

4. Within the dimensional regularization approach, the temperature doesn’t alter
the RG flow of the existing parameters when correctly absorbing the IR divergence
– only the small momentum (large distance) modes are affected by temperature
and the UV divergence is left untouched. The RG flow does include temperature
as an additional parameter however, with a scaling dimension z = 2 − 4ε/19 > 0
at the critical point. The LAB fixed point therefore becomes unstable and one is
left with a runaway flow towards the high-temperature Fermi liquid phase. The
existence of a crossover region where the LAB scaling (that is to say, the scaling of
physical quantities with the critical exponents at the LAB fixed point) is possible
and not suppressed by finite temperature effects.
Third, the momentum shell approach led to flow equations including both a finite

boson mass mϕ generated during the procedure and incorporated temperature-
dependent factors such as tanh βΛ2/(2m) in the RG flow. The results were in
agreement with the dimensional regularization approach when setting the temper-
ature and boson mass to zero. Their fixed point structure is unaltered. The boson
mass mϕ was shown to scale approximately as T (0)1.1 in contrast with T 1/2 from
chapter 3. Screening is therefore reinforced in the LAB model and the RPA doesn’t
produce correct results at one-loop level when it comes to the renormalization of
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the Luttinger Hamiltonian.
All calculations hint towards the fixed point scaling being visible in the temper-

ature window derived by Herbut and Janssen [9] considering the borders to other
phases generated by additional interactions. Finite temperature does indeed de-
stroy the stability of the fixed point though: both the temperature and the boson
mass generated in the momentum shell approach ultimately diverge.
The dimensional regularization scheme showed no temperature dependence in

the flow equations where the momentum shell procedure did. There are two rea-
sons for this. First, the diverging parts of the integrals treated in dimensional
regularization acquired temperature-dependent factors such as tanh βk2/4m. For
large k, they converge to 1 and are therefore irrelevant for the UV part of the
integral which is responsible for the ε-peak. Including finite counterterms would
indeed have introduced a temperature dependence. The momentum shell approach
is fundamentally different because it starts with a cutoff Λ on all momentum inte-
grals. Thus, the temperature factor always plays a role determined by the ratio of
thermal energy to the cutoff energy Λ2/2m. Second, the momentum shell integrals
did not drop finite terms such as the constant part of the bosonic self energy. This
results in a finite boson mass being generated even if zero in the original action. As
it should be, this boson mass turns out to be closely related to temperature: it will
only be newly generated at finite T , and both quantities diverge simultaneously
during the RG flow. Of course, both renormalization schemes are still compatible
in the sense that they generate the same fixed points and the same relevant and
irrelevant parameters.
The anisotropy x has only been included in the dimensional regularization ap-

proach, however, the momentum shell integrals will contain similar anisotropy
functions fi(x). A finite value x 6= 0 seems to assist the LAB scaling as argued in
the length scale hierarchy in section 3. However, it shouldn’t be forgotten that it
remains an irrelevant RG parameter that will flow to zero at the LAB fixed point.
This justifies the focus on the isotropic system in the momentum shell calculation.
When seeking to expand the results of this thesis, it could be valuable to in-

clude the additional contact interactions g1(Ψ†Ψ)2 and g2(Ψ†ΓaΨ)2 by Herbut and
Janssen [9] in a similar finite temperature calculation. Higher-order terms are
unlikely to change the picture drastically, but could be explored for example to
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check how the vertex correction (vanishing at first order) influences the flow in the
interaction strength.
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Appendices

A. Matsubara Sum Evaluation

This section will give a brief explanation of how sums over Matsubara frequencies
are resolved in this thesis. The main principle is described in [12, p.170-171]. The
goal is to calculate sums like

S =
∑
ωn

f(iωn) (117)

with the ωn being either fermionic or bosonic Matsubara frequencies (n ∈ Z):

ωn =


(2n+1)π

β
if fermionic

2nπ
β

if bosonic
(118)

The sum can then be transformed into an integral using that these frequencies
are where the poles of nF (iω) and nB(iω) are located. These poles have the residue
ζ 1
β
with ζ = 1 for bosonic frequencies and ζ = −1 for fermionic ones.

nF/B(z) = 1
eβz ± 1 (119)

Therefore, S can be expressed as contour integral over the C1 in figure 15, using
the residue theorem in reverse. Conversely, the “infinite circle” path C2 contains all
poles of both nF/B(z) and f(z). Because the integrand is exponentially suppressed
for large z, the sum of the residues at all these poles is zero: it follows that S can
be written as sum over the residues at the poles of f(z) alone, or equivalently as
contour integral over C3:
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S = ζβ
∮
C1

dz

2πif(z)nF/B(z) (120)

= ζβ
∮
C2

dz

2πif(z)nF/B(z)− β
∮
C3

dz

2πif(z)nF/B(z) (121)

= −ζβ
∮
C3

dz

2πif(z)nF/B(z) (122)

= −ζβ
∑

poles of f
Res(f(z)nF/B(z)) (123)

When used in the thesis, it will be understood that the intermediate steps involv-
ing C1 and C2 will be skipped and all complex contour integrals involving fermionic
or bosonic occupation functions nF/B(z) are to be understood with contour C3

unless otherwise specified.
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Figure 15: Overview over the relevant contours for Matsubara summation. C1 in-
cludes the poles at Matsubara frequencies, C2 both those and the poles
of f(z) and C3 only the poles of f(z).
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B. Fermionic Self Energy and Vertex Correction - A
Ward Identity

To avoid the explicit calculation of the vertex correction γ(~k, ~k′, ω, ω′) in the main
text, it was mentioned that frequency independence of the fermionic self energy
causes it to become zero. This section will give a brief explanation of the Ward
identity leading to this result. For briefness and because no other case is needed,
all work is done at one loop level.

Figure 16: The vertex correction. Dashed lines represent bosonic Green’s func-
tions, unbroken ones are fermionic. The bosonic Green’s function is in-
dependent of frequency, the designations on the dashed lines are given
only for completeness.

It will be shown that the diagonal part of the vertex correction γ(~k,~k, ω, ω) is
proportional to the partial derivative of the self energy with respect to frequency.
The starting point is the same derivative of the fermionic Green’s function:
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∂

∂ω
Gf (~k, ω) = ∂

∂ω
(iω −H(~k))−1 = −i(iω −H(~k))−2 = −i(Gf (~k, ω))2 (124)

Given that the bosonic Green’s function doesn’t depend on frequency, it follows

∂

∂ω
Σf (~k, ω) = e2µ−ε

∫
q,Ω

∂

∂ω
Gf (~k + ~q, ω + Ω)Gϕ(~q) (125)

= −ie2µ−ε
∫
q,Ω

(Gf (~k + ~q, ω + Ω))2Gϕ(~q) (126)

= −iγ(~k,~k, ω, ω). (127)

Therefore, if the fermionic self energy is independent of the external frequency,
γ(~k,~k, ω, ω) vanishes.

C. Complete Form of the Bosonic Anisotropy
Function

The bosonic anisotropy function f3(x) encapsulates the dependency of the bosonic
self energy on the anisotropy parameter x in the zero temperature case (section
2.3.1) and is assumed to extend in a similar form to finite temperature (section
4.1.1):

f3(x) = 3
8π

∫ 1

−1
dc
∫ 2π

0
dφ

6
√

2s2(√
1 + x(2 + x)pc(k̂)

)5×

[
8− 2x(7c4 − 10c2 − 5)− x2(23c4 − 26c2 − 5)

+ 16c2s2(c3 − 4c2s2x4 − s2x(2 + x))(3 + x2(1 + 4x(2 + x) cos 4ϕ))
]

(128)

Here, the abbreviations c = cos θ and s = sin θ have been used in addition to
the ones in the main text. To find the asymptotic form given there, only terms of
order x4 are kept in the numerator – all others will vanish in the limit of large x.
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