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New signatures of the spin gap in quantum
point contacts
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One dimensional semiconductor systems with strong spin-orbit interaction are both of
fundamental interest and have potential applications to topological quantum computing.
Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The
spin gap is predicted to manifest as a field dependent dip on the first 1D conductance plateau.
However, disorder and interaction effects make identifying spin gap signatures challenging.
Here we study experimentally and numerically the 1D channel in a series of low disorder p-
type GaAs quantum point contacts, where spin-orbit and hole-hole interactions are strong.
We demonstrate an alternative signature for probing spin gaps, which is insensitive to dis-
order, based on the linear and non-linear response to the orientation of the applied magnetic
field, and extract a spin-orbit gap AE ~ 500 ueV. This approach could enable one-dimensional
hole systems to be developed as a scalable and reproducible platform for topological
quantum applications.
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he physics of 1D (one-dimensional) electron and hole

systems has been an area of ongoing research interest since

conductance quantised in integer multiples of 2¢2/h was
discovered in short quantum point contacts (QPCs) in GaAs
heterostructures’>2. The Landauer-Biittiker formalism describes
the quantised steps in ballistic 1D conductance by means of
transmission probabilities®. In QPCs in the quantum limit, many-
body interactions lead to an additional anomalous feature below
the first conductance plateau at 0.7 x 2e2/h*>. In longer 1D sys-
tems, interaction-driven spin-charge separation (where spin and
charge excitations travel at different speeds through the 1D
constriction) has also been observed®”.

Recently, there has been a resurgence of interest in 1D systems
with strong spin-orbit interaction (SOI) due to the potential for
engineering non-trivial topological superconductivity. A semi-
conducting quantum wire with strong SOI can host p-wave
superconductivity and Majorana zero-mode states when coupled
to a regular s-wave superconductor®-10. The system is tuned from
the trivial to the topological regime by the application of a
magnetic field perpendicular to the effective spin—orbit field Bgo;
in the wire. This mixes the two chiral spin species, opening up a
spin gap at k = 0. When the Fermi energy Ey is tuned into this
spin gap, the states at Ey effectively become spinless and Major-
ana zero modes can form at the ends of the wire.

The key experimental signature of the opening of a spin gap in
a quantum wire or point contact with normal contacts is the
appearance of a ‘dip’ in conductance on the first 1D subband
plateau when a magnetic field is applied parallel to the current
direction!!-13. However, electron-electron interaction effects
become strong in the 1D limit, increasing the magnetic suscept-
ibility and spin gap. These interactions cause additional con-
ductance features near 0.7 x 2e*/h that change the spin-gap
signatures predicted by single-particle models. Furthermore,
unambiguous identification of this spin gap dip is complicated by
disorder and finite-length effects in the 1D channel which can
also cause dips and oscillations on the first conductance pla-
teau!3-1>. To overcome these complications the 1D system should
be free of unwanted disorder and non-adiabatic effects, and the
analysis should include many-body interactions.

In this study, we examine the 0.7 anomaly and spin-gap sig-
natures in ultra-low disorder, adiabatic QPCs on GaAs using both
electrons (no SOI) and holes (strong SOI). In III-V and group IV
semiconductors the conduction band electrons originate from
I = 0 s-shell atomic orbitals, so have weak L s SOIs (where s = +1
is the electron spin). Valence band holes are formed from
[ = 1 p-shell orbitals, so have strong spin-orbit coupling and a
total angular momentum ] =L+ S = J_r%. The 2D quantum well
confinement causes a splitting of the m; = +1 light-hole and
m; = +3 heavy-hole bands at k = 0 of order ~10meV, so that
only the heavy hole states are occupied!®. For both electrons and
holes, a magnetic field parallel to the current causes Zeeman
splitting of the higher subbands, and a characteristic evolution of
the 0.7 anomaly to 0.5 x 2¢%/h in magnetic field. However, for
holes we find that while the evolution of the conductance is not
affected by the strong SOI, the opening of a spin gap shifts the 0.7
anomaly in energy and causes the apparent g-factor of the first 1D
subband to go to zero. Our results are explained by numerical
functional renormalisation group calculations of a tight-binding
model that accounts for spin-orbit and strong electron-electron
interactions on an equal footing!” and we extract a spin-orbit gap
AE = 500 eV for hole QPCs. Most significantly, we show that
rotating the in-plane magnetic field so that it is parallel or per-
pendicular to the spin—orbit field inside the QPC opens and closes
the spin gap, and produces a unique signature of the spin gap in
the magnetoconductance.

Results

Figure 1la is a schematic of a typical QPC device (dimensions of
all devices are given in Supplementary Table 1). The 2D systems
have typical mean free paths of 5 um for both electrons and holes,
and carrier densities of 1.5-2.5 x 10! cm~2. Figure. 1b-d shows
schematically how the conductance of a QPC with a saddle point
potential V =V, — 3mwix* +3mw;y* depends on the applied
magnetic field B (the magnetic field axes are scaled with Q,,
which is set by the curvature of the QPC potential along the
direction of current flow), the strength of electron-electron
interactions U, and spin-orbit interaction R. Figure. 1b depicts a
conductance plateau at G = 2¢?/h for U=0 and R =0, with an
additional step developing at G = ¢2/h with an in-plane magnetic
field. Adding electron-electron interactions (Fig. 1c) introduces
an additional feature at G ~ 0.7 x 2¢2/h, which evolves to a plateau
at G = e2/h with magnetic field. In contrast, when SOIs are added
with U = 0, the conductance at B =0 is unaffected by the SOI
(Fig. 1d). At finite field, the opening of a spin gap leads to a dip in
conductance on the 2¢2/h plateau.

Figure le-h shows the measured conductance of one electron
and three different hole QPCs, fabricated on accumulation
mode GaAs/AlGaAs heterostructures. The 1D subbands and 0.7
anomaly show the same behaviour for electrons and holes; at zero
magnetic field (leftmost black trace) all QPCs exhibit clean con-
ductance steps, quantised in integer multiples of 2¢2/h. The
absence of resonance structures is consistent with a low disorder,
adiabatic 1D system. Applying an in-plane magnetic field parallel
to the current lifts the spin degeneracy and causes additional spin
split steps at (n+ 1/2) x 2¢2/h. Whereas the in-plane Zeeman
splitting for electrons is isotropic?, the strong SOI in hole systems
leads to a highly anisotropic Zeeman splitting for the n>2 sub-
bands; the Zeeman splitting for B||I is much bigger than that for
BLI'8. This anisotropy has recently been understood as a single
particle effect arising from momentum-dependent mixing
between light holes and heavy holes!?20. The out-of-plane g-
factor is an order of magnitude larger than the in-plane g-factors,
so precise alignment of the magnetic field with the 2D hole sys-
tem (2DHS) is important in order to minimise orbital effects?. In
this work, the magnetic field is aligned to the 2D system to better
than 0.5°. Both electron and hole QPCs also show additional
structure below the first subband, indicated by arrows in
Fig. 1e-h. In all devices this feature evolves smoothly from 0.7 to
0.5 x 2e2/h with applied magnetic field, a characteristic signature
of the 0.7 anomaly. Further evidence that the feature observed in
the hole QPCs has the same origin as the 0.7 anomaly in electron
QPCs comes from the non-linear differential conductance, which
shows the same zero bias peak as observed in electrons2223,
Additionally, the reduced conductance in the vicinity of the 0.7
anomaly scales as (1 — B2), consistent with behaviour of the 0.7
anomaly identified in ref. 2 (see Supplementary Information
Section 3).

In contrast to the linear response conductance, which is the
same for electrons and holes, the strong SOI fundamentally alters
the energy-dependent behaviour of the first 1D subband in
magnetic field, as shown in Fig. 2. The transconductance dG/dV,
probes the local density of states in the QPC, and is routinely used
to map the 1D subband edges as a function of energy (gate vol-
tage). Figure. 2a—f shows the transconductance colour maps,
plotted against gate voltage and magnetic field for the same four
QPC devices in Fig. le-h. In Fig. 2a, all the first three 1D electron
subbands spin-split linearly in magnetic field, with no qualitative
difference between the subbands. The arrow indicates the position
of the 0.7 anomaly. In contrast, the 1D hole systems in Fig. 2b-d
show a linear spin-splitting of the second and third subbands,
while the splitting of the first subband is almost unaffected by the
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Fig. 11D conductance in a QPC in magnetic field with spin-orbit and many-body interactions. a Schematic of a quantum point contact (QPC), with two
gate electrodes biased to define a narrow one-dimensional constriction by locally depleting the 2D electron or hole system in the 2D GaAs/Al,Ga;_,As
heterostructure. b Schematic showing how the conductance G of non-interacting electrons in a saddlepoint potential would evolve according to the
Landauer-Bittiker model, with a smooth rise from O to 2 x 2e2/h as the gate potential Vg (scaled by the curvature of the 1D constriction ,) is made more
negative. Application of an in-plane magnetic field B creates an additional step at G = 0.5 x 2e2/h. ¢ Schematic showing the effect of adding
electron-electron interactions, which causes a characteristic shoulder-like anomaly at 0.7 x 2e2/h to appear at B = 0. This evolves to 0.5 x 2e2/h in
magnetic field, as indicated by the black arrows. d Including strong SOI with no electron-electron interactions does not change the situation from the non-
SOl case at B = 0. For B > 0 the conductance rises from O to 2e2/h, then dips as the Fermi energy moves through the spin gap in the dispersion relation.
e Measurements of 1D electrons in a QPC, with a waterfall plot of the conductance showing the evolution of the quantisation from 2e2/h at B = O (black
trace) to e2/h in in-plane magnetic field (B||) up to 5T (red trace). Traces are offset horizontally for clarity. The 0.7 anomaly is indicated with the black
arrow for the B = O trace, and evolves to 0.5 x 2e2/h. f-h Measurements of 1D holes in three different QPCs (labelled hole QPCs 1-3) from two different
wafers. Waterfall plots show evolution of the conductance quantisation from 2e2/h at B = 0O (black trace) to e2/h with in-plane magnetic field up to 10 T
(red trace). The field is applied B||/ (BLBsp,) and traces are offset in Vj for clarity. The 0.7 anomaly is indicated with the black arrow for the B = O trace,
and evolves to 0.5 x 2e2/h.
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Fig. 2 Measured transconductance dG/dV; of the first three 1D subbands for electrons and holes in QPCs, as a function of energy (gate voltage) and
magnetic field. a Experimental data from an electron QPC, showing a transconductance colour map of the Zeeman spin splitting of the first three 1D
subbands as a function of gate voltage V,; and magnetic field B. Dark-blue regions correspond to conductance plateaus, and the green to red regions
correspond to conductance risers (which mark the subband edges). The dashed white boxes in (a) and (b) mark the first subband and are examined in
greater detail in Fig. 3. Each subband splits linearly in magnetic field, including the 0.7 anomaly (indicated by the black arrow). b-d Experimental
transconductance colour maps of the Zeeman spin splitting of the first three 1D hole subbands for hole QPCs 1-3. In all the cases, subbands 2 and 3 spin-
split linearly in magnetic field, whereas the first hole subband is only weakly affected by the magnetic field.

magnetic fleld. We note that the conductance behaviour in differences between electrons and holes become very clear; the

Fig. 1f-h and transconductance behaviour in Fig. 2b-d is repro-
duced for a further three hole QPCs in Supplementary Infor-
mation Section 4, and has also been observed in previous studies,
although it has remained unexplained?!:2>-26,

In Fig. 3a we zoom in on the first 1D electron subband from
Fig. 2a, and compare it directly to Fig. 3b where we zoom in on
the first 1D hole subband of hole QPC 1 from Fig. 2b. In both
Fig. 3a and b, the gate voltage and magnetic field axes have been
scaled with Q, to allow comparison with theory. Close up, the

first 1D electron subband has a weakly resolved 0.7 anomaly
structure at B =0 that splits in magnetic field. In contrast, the
first 1D hole subband has a strongly resolved 0.7 anomaly
structure at B = 0 that does not broaden in energy as magnetic
field increases, along with the two transconductance peaks that do
not split.

The apparent suppression of the spin-splitting in the first 1D
hole subband is unexpected, since the magnetic field strongly
affects the conductance of the first 1D hole subband, as shown in
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Fig. 3 Comparison of measured 1D transconductance to tight-binding numerical calculations. a Close up of the measured transconductance of the first
1D subband in the electron QPC (the region in the white dashed box in Fig. 2a), showing the first 1D electron subband spin-splits in magnetic field. Gate
voltage V; and magnetic field B axes are converted to energy and scaled with the QPC constriction curvature parameter Q, for comparison with theory.
b Close up of the measured transconductance from hole QPC 1 (the region in the white dashed box in Fig. 2b), showing the transconductance of the first 1D
hole subband is clearly different to electron QPCs, and does not split in magnetic field. ¢ Calculated dispersion relation of the first spin-resolved subband
(spin-up shown in blue, spin-down in red) in B> 0. The vertical axis is energy @ and the horizontal axis is wavevector k. The B = 0 dispersion relation is
indicated by the black dotted line. d The local density of states (LDOS) calculated from the dispersion relation shown in (¢), plotted against energy E. Again
the LDOS is shown for each resolved spin-species in blue and red (indicated by the up and down arrows), and the black dotted line is the LDOS in zero
magnetic field. e Calculated transconductance colour map of the first 1D subband with no Rashba SOI (R = 0) and no on-site Coulomb interactions (U = 0).
The circle and square markers correspond to the two spin-resolved peaks in the LDOS in (d). f Calculated transconductance colour map of the first 1D
subband with no Rashba SOI and finite on-site Coulomb interactions U= 0.8. The 0.7 anomaly is indicated by the black arrow. g Calculated dispersion
relation of the first subband with spin-mixing in magnetic field. The pure spin-states are indicated by the red and blue regions in the dispersion relation at
k = 0. The spin-mixed states are indicated by the purple regions away from k= 0. h The LDOS for the dispersion model shown in (g). For B >0, the spin-
up species in blue forms a single large peak, while the spin-down species in red forms two smaller peaks, with the peak at low energy emerging because of
spin-mixing. i Calculated transconductance colour map of the first 1D subband with Rashba SOI R =1.26 and zero on-site Coulomb interactions U= 0.
Circle and square markers correspond to the LDOS peaks indicated by the same markers in panel (h). j Calculated transconductance colour map of the first
1D subband with Rashba SOI magnitude R =1.26.

Fig. 1f-h, indicating that the g-factor cannot be zero. We also
cannot attribute this behaviour to peculiarities of the in-plane g-
factor anisotropy; even if B is applied out-of-plane, where the g-
factor is an order of magnitude larger than the in-plane g-factors,
the first subband shows no spin-splitting of transconductance up
to 0.9 T, whereas the higher subbands have already entered the
quantum Hall regime (see Supplementary Information Section 3).

To understand the difference between electron and hole sys-
tems in the 1D limit we study an infinite tight-binding chain at
zero temperature in the presence of SOIs and an external mag-
netic field!7. The first subband of the QPC is modelled as a
smooth potential barrier, which is non-zero only in a finite
region, separating two semi-infinite leads. Electron-electron
interactions are also present only in the central QPC region of the
system. Without electron-electron interactions this model is
exactly solvable, while the interacting model can be studied using
functional renormlisation group (fRG) theory. This model has
been used for electron QPCs to reproduce the observed con-
ductance of the 0.7 anomaly, as well as for reproducing the shot
noise and compressibility, due to increased electron-electron
interactions, inelastic scattering, and increased magnetic sus-
ceptibility?4. This model has been extended to ‘heavy’ electrons
with the inclusion of a Rashba SOI term to make predictions for
the 0.7 anomaly in hole QPCs.1”.

Assuming (without loss of generality) that for carriers travel-
ling in the x-direction the effective spin-orbit field Bgcy is parallel

to the y-axis, the Rashba energy contribution equals —aok,
where k is the momentum of the electron, a characterises the
strength of the SOI, and o, is a Pauli matrix. Without an external
magnetic field, this contribution results in a negative energy offset
in the dispersion relation of magnitude AEso; = a2m*/2h%, where
m* is the effective mass of the charge carriers. We parameterise
the Rashba SOI by the dimensionless number R,

AEsor _ ap [m (1)
Q h\l2q,

X

R =

X

Further details of the model are given in Supplementary Infor-
mation Section 1 and in refs. 1724 We note that a strong SOI is a
necessary, but not sufficient, condition to observe a spin gap in the
conductance; the simple picture of the spin gap causing a con-
ductance dip from 2¢2/h to e%/h with an applied field assumes an
infinitely long, translationally invariant quantum wire. A finite-
length system will, in practice, exhibit a much weaker conductance
dip due to lifetime broadening of the 1D eigenstates in the
wire!®17. Physical insight into the effective strength of the SOI in
the 1D channel, R, can be obtained by re-expressing Eq. (1) as

where AEsqy; is the size of the spin gap, and h/Ty.ng is the energy
uncertainty arising from the finite lifetime of ballistic charge
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carriers moving through the finite length 1D constriction. If this
energy broadening is larger than AEgqy, ie. R <1, then the spin
gap cannot be resolved. Even if R > 1 the spin gap may only cause
a small dip in the conductance.

We start our discussion with the ‘simple’ case of the first 1D
electron subband, where there is no SO in the presence of a
magnetic field B. The 1D subband dispersion for non-interacting
electrons is parabolic and spin-resolved in energy due to Zeeman
spin-splitting, as shown in Fig. 3c. The local 1D density of states
(LDOS) at the top of the barrier is shown for the two spin species
in Fig. 3d. The open circle and open square indicate the spin-split
peaks in the LDOS. The transconductance is a direct probe of the
LDOS; the calculated transconductance colour map in Fig. 3e
shows a linear splitting of the transconductance peaks with field
B. The absence of electron—electron interactions means there is
no 0.7 anomaly. In Fig. 3f we include a finite on-site Coulomb
interaction U = 0.8. This causes an enhanced and asymmetric
splitting of the transconductance peaks, consistent with an
enhanced spin susceptibility, and in good agreement with mea-
surements of the 1D electron device in an in-plane magnetic field
shown in Fig. 3a. The on-site Coulomb interaction also gives rise
to the 0.7 anomaly at finite field.

In Fig. 3g onward, we now include a strong SOI where the
Rashba SOI coefficient az = 0.3, which is equivalent to R = 1.26,
consistent with the estimated strength of the SOI in the 2D hole
system and the confining potential in the 1D QPC (see Supple-
mentary Information Section 3). At zero magnetic field the 1D
subbands are separated in momentum by tksor due to the Rashba
interaction. Applying a magnetic field parallel to the current
causes spin-mixing and the opening of a spin gap at k = 0 in the
1D hole dispersion, as shown in Fig. 3g. This spin-mixing causes a
strong enhancement of the low energy peak in the spin-‘up’
LDOS ([), while the spin-‘down’ LDOS splits into two smaller
peaks: one below the enhanced spin-‘up’ peak, and one higher in
energy (o) (Fig. 3h). This splitting of the spin-‘down’ LDOS peak,
with the resultant suppression in the LDOS in the vicinity of
w(k) = 1.2, corresponds to the spin gap in the dispersion relation
in Fig. 3g. The higher energy peak in the LDOS (o) marks the
energy at which the spin gap closes.

Spin-mixing of the Rashba split bands means that the energies
of the low-energy spin-‘down’ peak and the enhanced spin-‘up’
peak ([]) are only very weakly dependent on magnetic field; they
are effectively ‘pinned’ with respect to energy. This pinning is
evident when we plot the transconductance in Fig. 3i, where there
is a strong, single first subband peak ([J) that hardly moves in
energy. The weaker peak that is higher in energy () in trans-
conductance emerges in finite B and then moves rapidly up in
energy as B increases. Again, the absence of electron-electron
interactions means there is no 0.7 anomaly.

In Fig. 3j we turn on the Coulomb interactions, which sig-
nificantly changes the behaviour of the transconductance. The
enhanced spin-‘up’ peak and the low-energy spin-‘down’ peak that
formed one large peak in Fig. 3i now form two transconductance
peaks that run parallel to each other in magnetic field, with the 0.7
anomaly in between (marked by the black arrow) that does not shift
in gate voltage (energy). The enhanced magnetic susceptibility
strengthens the spin gap, making it visible at lower magnetic field,
as indicated by the purple region in the top right of Fig. 3j. The key
features of spin-orbit and electron-electron interactions in com-
bination are the pinning of the two transconductance peaks, and the
formation of a spin gap feature in the transconductance. These
features are distinct from the observed transconductance in electron
devices where SOI is weak or close to zero.

The pinning of the transconductance peaks and 0.7 anomaly
produced in calculations is in very close agreement with the

observed behaviour of the first 1D hole subband transconduc-
tance in Fig. 3b, and is compelling evidence for the SOI in our
hole QPCs being sufficiently strong to open a spin gap. We note
that that although the T = 0 fRG calculations are unable to fully
reproduce the T > 0 experimental behaviour of the 0.7 anomaly at
B = 0 (see refs. 1724 and Supplementary Information Section 1),
we do expect and observe good agreement at finite B where both
the 0.7 anomaly and spin gap are present. The absence of an
observable spin-gap signature in the conductance across all six of
the hole QPCs presented here and in Supplementary Information
Section 4 indicates that simply applying a magnetic field along a
1D system may not be a reliable method of detecting spin gap
physics. A new spin-gap signature could therefore be a valuable
tool for studying spin physics in 1D systems.

If the pinning of the first two transconductance peaks is related
to strong SOIs and the opening of a spin gap, it should be
extremely sensitive to the orientation of the in-plane magnetic
field, since the spin gap will close if B||Bso;. Figure. 4 shows the
calculated and measured angular dependence of the transcon-
ductance. We start by considering R = 0.42 (ag = 0.1), for which
we do not expect to observe spin gap physics (due to lifetime
broadening). Figure. 4a shows the first 1D subband transcon-
ductance peak splitting as the magnetic field applied parallel to
the current direction is increased up to |B| = 0.2Q),. Figure. 4b
shows the evolution of these two transconductance peaks as a
function of in-plane magnetic field angle ¢, for fixed |B|. Despite
the presence of the SOI, the energy gap between the two peaks
remains constant as a function of magnetic field orientation, as

indicated by the white arrows, although both peaks shift slightly

down in energy around ¢ = 0 (where B L T).

Increasing the strength of the SOI to R = 1.26 causes the
picture to change dramatically, as shown in Fig. 4c, d. The
transconductance peak at B = 0 no longer splits with increasing
B; instead the peak stays almost fixed at V; = 0 in magnetic field,
with the second peak emerging at V, = —0.8 at higher fields. For
B > 0.1Q, a weak dip in the conductance around V; = —2 due to
spin gap opening causes additional transition from dark blue to
light blue as V; becomes more negative, as highlighted by the
white spot on the figure. Rotating the magnetic field orientation
changes both the splitting of the first two transconductance peaks
and the spin gap, as shown in Fig. 4d. The two blue ‘wing-like’
structures associated with the spin gap in the range —1 > V,/
Q, > —3.5 disappear as |¢/|m — 0, where B L T and the spin gap
closes. Lower in energy, the two transconductance peaks no
longer have a fixed separation: the 0.7 anomaly is ‘squashed’ by
the opening spin gap away from |¢|/m = 0, indicated by the short
arrow. As the field is rotated towards |¢|/m = 0, the 0.7 anomaly
broadens, indicated by the longer arrow. The light blue structures
at high energy, and the narrowing of the 0.7 structure away from
lp|/m = 0, provide unique signatures of the spin gap.

Figure 4e shows the first 1D subband transconductance peak
splitting as the magnetic field applied parallel to the current
direction is increased up to |B| = 4T. The transconductance
peaks from the n>2 subbands show a characteristic Zeeman
splitting, while the ones associated with the first 1D subband are
almost unaffected by B. However, changing the magnetic field
orientation at fixed |B| = 4 T (the out of plane component of the
magnetic field is always less than 4 mT). has a clear effect on the
first 1D subband, as shown in Fig. 4f (note that Fig. 4f is taken
over the field orientation range of |¢|/m = 0.5 or 90°, and is
presented as a mirror image for easy comparison with theory. For
the full data set taken over 240° including higher subbands and
further analysis of the 1D subband spacings, see Supplementary
Information Section 6.). The data show the same squashing of the
0.7 anomaly away from |¢|/m = 0 as in Fig. 4d. More significantly,
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Fig. 4 Transconductance of a QPC in magnetic field with spin-orbit and
many-body interactions. a Calculated transconductance of first 1D
subband with small Rashba SOI R = 0.42 in increasing magnetic field up to
B/Q, = 0.8. b Calculated transconductance of the first 1D subband with
small R = 0.42 as a function of magnetic field angle ¢ where the
magnitude of the magnetic field is fixed at B/Q, = 0.8. The width of the
energy gap between the two transconductance peaks is indicated by the
white arrows. ¢ Calculated transconductance of first 1D subband with
strong R = 1.26 (abbreviated from Fig. 3j) in increasing magnetic field up
to B/Q, = 0.4. The white dot indicates the region corresponding to the spin
gap conductance minima in the vicinity of B/Q, = 0.4. d Calculated
transconductance of the first 1D subband with small R = 1.26 as a function
of magnetic field angle ¢ where the magnitude of the magnetic field is fixed
at B/Q, = 0.4. The width of the energy gap between the two
transconductance peaks is indicated again by white arrows. e Measured
transconductance of first 1D hole subband (abbreviated from Fig. 3b) in
increasing magnetic field up to B = 4 T. f Measured transconductance of
the first 1D hole subband as a function of magnetic field angle ¢ where the
magnitude of the magnetic field is fixed at B = 4 T.

there are also ‘wing-like’ structures that emerge in the range
—1 > V,/Q, > —1.5 as |¢| increases. We note that in the theo-
retical model these ‘wing-like’ structures do not occur for R < 1;
they only occur for sufficiently strong SOI that the spin gap is
larger than the lifetime broadening.

The main discrepancy between theory in Fig. 4d and experi-
ment in Fig. 4f is due to the impact of the second 1D hole sub-
band, which is not considered in our purely 1D model. The ‘wing-
like’ structures associated with the spin gap are more prominent
in the calculations than in the experiments, where they do
not extend all the way to the edge of the figure but vanish as

lpl/m — +0.5 (B || T). The absence of the spin gap structure

=
when (B || I) is consistent with the measurement shown in
Fig. 3b, where a spin gap structure is not observed despite the SOI
being sufficiently strong to cause the transconductance peaks to
split and run parallel to each other as magnetic field is increased.
We attribute the absence of an observable spin gap structure at

B | T to the presence of the second, spin-split 1D subband
moving down in energy. The proximity of the second 1D subband
to the first 1D subband in energy is shown here to be a key factor
in the ‘visibility’ of any spin-gap signature, and may in part
explain the ongoing difficulty in unambiguously detecting spin-
gap signatures in QPCs. This problem may be exacerbated in
higher 1D subbands where the 1D subband spacing is much
smaller than the first and second 1D subband spacing, and spin-
gap signatures have been predicted to occur but have not been
observed?’. Further analysis and discussion of the higher 1D hole
subbands is provided in Supplementary Information Section 6.

Discussion

In experimental systems strong electron—electron interactions are
always present in the 1D limit, and so must be considered on an
equal footing with the SOI. Our measurements of the first 1D
subband in QPCs with and without strong SOI demonstrate that
the SOI fundamentally alters the behaviour of the first 1D hole
subband compared to the first 1D electron subband. The
experimental data and the modelling both show that the magnetic
field evolution of the transconductance is a much more sensitive
probe of the spin gap than the conductance. Although the model
does not contain some of the more complex spin-physics of holes,
it nevertheless reproduces the key experimental observations:
(i) despite the magnetic field causing the 0.7 anomaly to evolve
towards 0.5 x 2¢2/h, the associated transconductance peaks
remain pinned in energy and hardly change as B is increased, and
(ii) rotating the magnetic field causes characteristic features to
appear in the transconductance.

By comparing the experimental data of Figs. 2-4 with theory
we can obtain an estimate of the spin-orbit gap. We calculated
the transconductance for a range of SOI values 0 <R <1.26,
electron—electron interaction strengths 0 < U < 0.8, and magnetic
fields 0 < B < 0.88Q), and then compared them to the measured
transconductance. We found R =1.26 and U = 0.8 to be in
closest agreement with experiment in Fig. 3j and B = 0.4Q, in
Fig. 4d. Using R = 1.26 and Eq. (1), we estimate the size of the
spin gap in the device in Fig. 3b to be AE = 550 + 100 ueV. This is
consistent with the value expected from independent measure-
ments of the Rashba splitting in the 2D hole system (see Sup-
plementary Information Section 3).

Finally, we remark on the impact of this work on topological
superconductivity and Majorana physics in 1D systems. To enter
the topological regime strong SOI, low disorder and super-
conducting contacts are prerequisites. The wing-like structure
shown in Fig. 4 is a universal and unambiguous signature of the
spin gap, and can be used to tune the system into the topological
regime. Our work also shows that the effective strength of the SOI
in the 1D system should be large (the 1D system should be as long
as possible while maintaining ballistic transport, to maximise R),
and the 1D subband spacing should be maximised. With the
recent demonstration of superconducting contacts to ultra-low
disorder 2D electron systems in GaAs/AlGaAs heterostructures,
and to high mobility holes in Ge quantum wells?3-2°, this work
shows a route to scalable topological superconducting circuits.

Methods
Experimental set-up. All devices for these experiments were fabricated on
undoped accumulation mode (100) GaAs/Al,Ga,_,As heterostructures, using
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standard electron beam lithography techniques to define the QPCs. Details of all
the wafers used and dimensions of the QPCs, are given in Supplementary Infor-
mation Section 4. Measurements were performed in dilution refrigerators with base
temperatures below 40 mK, using standard low-frequency ac lock-in techniques
with an applied excitation voltage of V4 = 50 to 100 pV, where typically more
than half of V4 is dissipated across the 2DEG/2DHG, ohmic contacts and cold
filters. Typical electron and hole densities were from 1.0 to 2.5 x 10!} cm~2, with
electron and hole mobilities above 1 x 10cm?V~1s~1L

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Received: 14 July 2020; Accepted: 12 October 2020;
Published online: 04 January 2021

References

1. Wharam, D. A. et al. One-dimensional transport and the quantisation of the
ballistic resistance. J. Phys. C 21, L209 (1988).

2. van Wees, B. J. et al. Quantized conductance of point contacts in a two-
dimensional electron gas. Phys. Rev. Lett. 60, 848-850 (1988).

3. Biittiker, M. Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57,
1761-1764 (1986).

4. Thomas, K. J. et al. Possible spin polarization in a one-dimensional electron
gas. Phys. Rev. Lett. 77, 135-138 (1996).

5. Micolich, A. P. What lurks below the last plateau: experimental studies of the
0.7x2e2/h conductance anomaly in one-dimensional systems. J. Phys.:
Condens. Matt. 23, 443201 (2011).

6. Auslaender, O. M. et al. Spin-charge separation and localization in one
dimension. Science 308, 88-92 (2005).

7. Jompol, Y. et al. Probing spin-charge separation in a Tomonaga-Luttinger
liquid. Science 325, 597-601 (2009).

8. Kitaev, A. Y. Unpaired majorana fermions in quantum wires. Phys.-Uspekhi
44, 131-136 (2001).

9. Sau,J. D, Lutchyn, R. M., Tewari, S. & Sarma, S. D. Generic new platform for
topological quantum computation using semiconductor heterostructures.
Phys. Rev. Lett. 104, 040502 (2010).

10. Oreg, Y., Refael, G. & vonOppen, F. Helical liquids and majorana bound states
in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

11. Quay, C. H. L. et al. Observation of a one-dimensional spin-orbit gap in a
quantum wire. Nat. Phys. 6, 336 EP - (2010).

12. Heedt, S. et al. Signatures of interaction-induced helical gaps in nanowire
quantum point contacts. Nat. Phys. 13, 563-567 (2017).

13. Kammbhuber, J. et al. Conductance through a helical state in an Indium
antimonide nanowire. Nat. Commun. 8, 478 (2017).

14. Rainis, D. & Loss, D. Conductance behavior in nanowires with spin-orbit
interaction: a numerical study. Phys. Rev. B 90, 235415 (2014).

15. Heyder, J. et al. Relation between the 0.7 anomaly and the Kondo effect:
geometric crossover between a quantum point contact and a Kondo quantum
dot. Phys. Rev. B 92, 195401 (2015).

16. Winkler, R. Spin-orbit Coupling Effects in Two-dimensional Electron and Hole
Systems. Springer Tracts in Modern Physics (Springer, Berlin, 2003).

17. Goulko, O., Bauer, F., Heyder, J. & vonDelft, J. Effect of spin-orbit
interactions on the 0.7 anomaly in quantum point contacts. Phys. Rev. Lett.
113, 266402 (2014).

18. Danneau, R. et al. Zeeman splitting in ballistic hole quantum wires. Phys. Rev.
Lett. 97, 026403 (2006).

19. Miserev, D. S. et al. Mechanisms for strong anisotropy of in-plane g -factors in
hole based quantum point contacts. Phys. Rev. Lett. 119, 116803 (2017).

20. Srinivasan, A. et al. Detection and control of spin-orbit interactions in a GaAs
hole quantum point contact. Phys. Rev. Lett. 118, 146801 (2017).

21. Nichele, F. et al. Characterization of spin-orbit interactions of GaAs heavy
holes using a quantum point contact. Phys. Rev. Lett. 113, 046801 (2014).

22. Cronenwett, S. M., Oosterkamp, T. H. & Kouwenhoven, L. P. A tunable
Kondo effect in quantum dots. Science 281, 540-544 (1998).

23. Wieck, A. D., Batke, E., Heitmann, D., Kotthaus, J. P. & Bangert, E. Lifting of
the spin degeneracy of hole subbands in a surface electric field on silicon. Phys.
Rev. Lett. 53, 493-496 (1984).

24. Bauer, F. et al. Microscopic origin of the ‘0.7-anomaly’ in quantum point
contacts. Nature 501, 73-78 (2013).

25. Chen, J. C. H. et al. Observation of orientation- and k-dependent Zeeman
spin-splitting in hole quantum wires on (100)-oriented AlGaAs/GaAs
heterostructures. N. J. Phys. 12, 033043 (2010).

26. Komijani, Y. et al. Anisotropic Zeeman shift in p-type GaAs quantum point
contacts. EPL (Europhys. Lett.) 102, 37002 (2013).

27. Pershin, Y. V., Nesteroff, J. A. & Privman, V. Effect of spin-orbit interaction
and in-plane magnetic field on the conductance of a quasi-one-dimensional
system. Phys. Rev. B 69, 121306-1-121306-4 (2004).

28. Wan, Z. et al. Induced superconductivity in high-mobility two-dimensional
electron gas in gallium arsenide heterostructures. Nat. Commun. 6, 7426 EP
(2015).

29. Hendrickx, N. W. et al. Gate-controlled quantum dots and superconductivity
in planar germanium. Nat. Commun. 9, 2835 (2018).

Acknowledgements

We gratefully acknowledge T. Li, V. Richards and A. Laucht for helpful discussions. This
work was funded by the Australian Research Council (ARC) through the Discovery
Projects Scheme and the ARC Centre of Excellence in Future Low-Energy Electronics
Technologies (CE170100039). J. von Delft acknowledges support from the Deutsche
Forschungsgemeinschaft under Germany’s Excellence Strategy, EXC-2111-390814868.
D. A. Ritchie acknowledges support from the Engineering and Physical Sciences Research
Council, United Kingdom.

Author contributions

QW., AS.and L.AY. fabricated the samples. K.L.H. and A.S. performed the measurements.
O.G. derived the theoretical model with input from J.v-D.LF., D.AR, AL and AD.W.
supplied the heterostructure wafers. K.L.H. analysed the data with input from ARH,, AS.
and O.K.. KLH. and A.RH. wrote the manuscript with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-19895-3.

Correspondence and requests for materials should be addressed to A.RH.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
BY

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

| (2021)12:5 | https://doi.org/10.1038/s41467-020-19895-3 | www.nature.com/naturecommunications 7


https://doi.org/10.1038/s41467-020-19895-3
https://doi.org/10.1038/s41467-020-19895-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

Supplementary Information: New signatures of the spin
gap in quantum point contacts

K. L. Hudson?, A. Srinivasan2, O. Goulko?, J. Adam!, Q. Wang!2, L. A. Yeoh!, O. Klochan'?,

L. Farrer?, D. A. Ritchie®, A. Ludwig®, A.D. Wieck®, J. von Delft” & A. R. Hamilton'**

LSchool of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.

2ARC Centre of Excellence in Future Low-Energy Electronics Technologies, University of New
South Wales, Sydney, NSW, 2052, Australia.

3Department of Physics, University of Massachusetts, Boston, MA, 02125, USA.

4Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, United Kingdom.
®Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United
Kingdom.

6 Angewandte Festkorperphysik, Ruhr-Universitit Bochum, D-44780 Bochum, Germany

" Arnold Sommerfeld center for Theoretical Physics, Ludwig-Maximilians Universitit, Miinchen,
Theresienstrasse 37, D-80333, Miinchen, Germany.

xe-mail: alex.hamilton @unsw.edu.au

S-1



Notes on theory S-3

Subband properties and calculation of R for QPCs S-6

Further evidence of dependence of first subband with spin-orbit interaction

in magnetic field S-11

Fabrication and measurement methods S-23

S-2



1 Notes on theory

Our theoretical description ! is based on the following infinite tight-binding chain Hamiltonian,

1
H = Z dt, {(Vj +27)0 50 — 5(o— : B)w/] djor (1)

],0’70'
—I-Z dT —7'05 /+E(O') ’ d/+hC

' / j+1lo oo 2 y)oo Jo

],0’,0’
+> Uydlidjpdt djy,

J

where d;, and dj.g annihilate and create an electron with spin o € {1, ]} at site j, respectively,
and 0 = (04, 0,,0) is a vector of Pauli matrices. The external magnetic field B and spin orbit
parameter « are constant throughout the chain. The effective mass of the charge carrier is m =
h?/21a* with T = \/m , where 7 1s the hopping between sites in the discrete model and a
is the spacing between sites. We keep 7 fixed when varying «, in order to ensure that the effective
mass in the discrete model matches the physical effective mass. This is equivalent to matching the

bandwidth.

In our calculations the QPC region consists of 101 sites centered around ;7 = 0 and thus
has overall length . = 2Na with N = 50. Sites 5 < —N and j > N represent two leads with

bandwidth 47. The QPC barrier potential,

. (2ja/L)?
V= Viia) = (ot ) exp |- D). @
and the (on-site) electron-electron interaction,
o (2ja/L)°
U] - U(]CI,) - UeXp |: 1 — (2]@/[;)2 ) (3)
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are nonzero only in the QPC region. Both the barrier potential and interaction are symmetric
around the center and vanish smoothly at the boundary of the QPC region. The barrier potential is
quadratic around the central site j = 0, representing the lowest QPC subband. The barrier height
Vg, measured w.r.t. the chemical potential ;1 = 27, mimics the role of the gate-voltage. If Vj is

swept downwards through zero, the linear conductance g increases from O to 1.

In the main paper we discuss results for the following physical quantities at zero temperature:
the local density of states (LDOS), .A;‘-:O, at the central site of the system (with U = 0) and the

linear conductance, g. The former is given by
A5 (@) = ~ImGZ? () /ma, 0

where g;;’ is the retarded propagator from site j” with spin ¢’ to site j with spin o. Due to SOI,
gs7 " is not spin-diagonal, but at j = 0 its off-diagonal elements are negligible compared to the

diagonal ones. The linear conductance can be calculated via 2

g=g1+ g < Tr(tTt) = eig(t't), (5)

oo’

where 177" = G V. (1) is the transmission matrix of the QPC. The eigenvalues of t't, which yield

the conductance, are independent of V.

The non-interacting system (U = 0) can be solved exactly. In the presence of electron-
electron interactions, we calculate the conductance at zero temperature with the functional Renor-
malization Group technique in the one-particle irreducible version *~ using the coupled ladder

approximation, which was presented in Ref [8] for a model without SOL.

S-4



Note on 7" = 0 calculations and finite 7" experiments

The T" = 0 fRG theory captures the behaviour of the (0.7 anomaly at finite magnetic field, in good
agreement with experimental data. This is the regime in which the key physics of spin gap is ob-
served, and is the regime we concentrate on in this work. The agreement between the calculations
and measurement is less good at low B, where finite 7' effects become more significant. Here the
T = 0 theory appears to show a suppression of the 0.7 anomaly at low B, which does not occur
in experiment. This suppression is a limitation of the fRG technique used to solve the 1D model;
finite 7" calculations using second order perturbation theory do not show a suppression of the 0.7

anomaly at 7' > 0, B = 0, but do not fully capture the electron-electron interactions, as discussed

in Ref. [9].
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2 Subband properties and calculation of R for QPCs

Summary of QPC parameters

Here we summarise the gate dimensions, charge density, spin polarisation and provide and estimate
of the magnitude of R for each QPC device in Supplementary Tables 1 and 2. The method for

calculating these values including is provided below, along with discussion about the challenges

of obtaining an accurate value of R.

Device Wafer no. 2DEG/2DHG | x w (nm) nop (10Mem™2) Ap/p R AFEsor
depth (nm) (ueV)
Electron QPC 1 [W639] 160 60 x 350 1.5 0 0 0
Hole QPC 1 2[W713] 85 300 x 300 1.2 0.10 0.7753, 580
Hole QPC2  3[W917] 60 100 x 300 2.5 0.46 1.6%075 450
Hole QPC 3 3[W917] 60 100 x 300 2.5 0.46 1.61075 480
Hole QPC 4 1 [W639] 160 200 x 800 2.5 0.20 1.8%932 250
Hole QPC5 4 [B13180] 200 400 x 400 1.5
Hole QPC6  5[W918] 60 350 x 350 2.1 0.40 257055 960

Supplementary Table 1. Summary of measured spin populations and spin-orbit parameter R cal-
culated from Ap/p and [ for each device. T Characterisation of Rashba SOI via Shubnikov-de Haas

oscillations were not performed for this wafer. No value for Ap/p or R available.
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Device Wafer no.  2DEG/2DHG [ x w(nm) €Q,(ueV) Q. (ueV)
depth (nm)
Electron QPC 1 [W639] 160 60 x 350 1900 600
Hole QPC 1 2 [W713] 85 300 x 300 490 150
Hole QPC2 3 [W917] 85 100 x 300 475 180
Hole QPC 3 3 [WI17] 85 100 x 300 500 190
Hole QPC 4 1 [W639] 160 200 x 800 290 75
Hole QPC5 4 [B13180] 200 400 x 400 240 110
Hole QPC 6 5 [W918§] 60 350 x 350 520 150

Supplementary Table 2. Summary of subband spacings (2, and €2, for each device.

Calculating R via Ap/p and QPC length [

The value of R can be obtained from the measured strength of the spin-orbit interaction in the
2DEG/2DHG system and the length of the QPC. The Rashba interaction in 2D systems derived

from the Luttinger Hamiltonian is:

e

1 5
H=q ((% + 572) P’ —2%(p- S)2> (6)

The 2D potential is applied to restrict motion in the z-direction. At experimental densities, we have
(p?) > pt =p2 + pz, so that the dominant terms in (1) are proportional to p?S? and are diagonal

in a basis of states with definite S,. States with .S, = :I:% (heavy holes) are split in energy from
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states with .S, = i% (light holes). The light holes are higher in energy by a splitting equal to

2 2
Apg-ro = _2elp:) ~ 10meV, (7

Me

so that the low energy sector consists of a doublet of heavy holes.

The remaining terms containing 5,5, introduce mixing between heavy and light hole states.

Accounting for a correction in third order perturbation theory due to the terms

= (P + 245, + (PS4 2,5, p:S:)) ®)

e

we find that the interaction is of the form

1a
Hp =5 (Pio- —ploy) ©)

where a is a numerical coefficient depending on the shape of the well. Due to parity selection rules,

a = 0 for a symmetric well.

The Rashba interaction splits the 2D bands. The dispersion has the form

2

p
5;[ =5 + ap’. (10)

Magnetotransport experiments in 2D hole systems show two Fermi surfaces with carrier densities
p+ and p_ that are typically different by a factor of two, although this factor may be as large
as twenty. The strength of the Rashba interaction may be extracted in a straightforward manner.

Introducing the parameter

p=+\2mEp (11



we can characterise the spin-orbit interaction in terms of the dimensionless constant

3 3 3
ap apy  ap’
— =92 N — 12
By CPETR T RS (12)

This can be solved given knowledge of p., p_

2 2 2 2
b 3 p_ 3 by —p”

EFr=—"—ap, = — +ap’ — 2map = p———= 13

F= g5 T apy = o +ap p pp§+pi (13)

For QPC 4 (a typical experimental situation), the densities p_ and p. are in the ratio 0.29 : 0.71.
Writing

P =0.71(2p%), p> =0.29(2p%) (14)
we can substitute into (8) and find

2p?) - p(0.71 — 0.2
omap = LV POTLZ0) ¢ o (15)
(2p?)2(0.712 + 0.292)

The large value of this dimensionless size of the spin-orbit interaction reflects the fact that,
in inversion asymmetric 2D hole systems, the Rashba interaction is a considerable proportion of

the kinetic energy.

In a QPC, an additional harmonic potential is applied to the confine the electrons to a 1D
channel. Therefore momentum along the y-direction is quantized. We can make the substitution

(p2) — 2mEg, (p,) = 0. Then expanding the 2D Hamiltonian we obtain
Hip — —3ap§pxay + apiay (16)
Near the top of the barrier, p, — 0 and the first term dominates. We may write it in the form

Hr — —ap,oy, a= 3ap§ = bmakEp a7
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The dimensionless parameter R is defined to be the ratio of « to the velocity scale determined by

mQ2z?
2

o fm
= — = _ 1
R ” « Q. (18)

From the expression for the Fermi energy Er inside the parabolic potential

0212 E
PO %sz,/ég—F (19)
8 mil2

we can express R in terms of the 1D channel length

22 _ ma? _ ma? | mi? _ (ma)? 2 _lp(ma 2 20)
0, 2 \[26r 2 Vo2mE, 2\ 7

Using a density of 2.5 x 10'*cm =2 and length [ = 300 nm as typical values, and the value of 2map

the shape of the parabolic barrier inside the channel, U(x) ~ Uy —

found in equation (10), we find
3
— =3map = E(Qmap) = 0.42 21

This yields a final value of R?> = 3.3 -+ R ~ 1.8.

The main limitation of using equation (20) to estimate R is the uncertainty in the true QPC
length felt by the first harmonic, which will likely be longer than the lithographic gate length. The
QPC length felt by the first 1D subband is determined by the electrostatic profile of the surface
gates when the QPC is being squeezed, which is determined by the dimensions of the surface gates
and the depth of the 2DHG. The method above provides a reasonable estimation of R. However
we argue that the form of the first 1D subband in magnetic field (i.e., the absence of Zeeman

spin-splitting) is the most reliable indicator of R > 1.
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3 Further evidence of dependence of first subband with spin-orbit interaction

in magnetic field

In this section we include Zeeman spin-splitting measurements on additional QPCs, source-drain

bias, and additional analysis in the small energy limit B and higher subbands.

Additional Zeeman spin-splitting measurements

Additional Zeeman spin-splitting measurements on hole QPCs have been presented here to provide
further evidence for the first 1D hole subband behaviour in magnetic field described in the main

text.

Supplementary Figure 1 shows the conductance waterfall plots and transconductance colour
maps for hole QPCs 4-6 evolving in magnetic field. The data is shown for subbands n = 1..3. Sub-
bands n = 2, 3 spin split in magnetic field, while subband n = 1 has a 0.7 anomaly that evolves to
0.5 x 2¢?/h in magnetic field in field B > 5T [indicated by the green arrows in panels (a,c,e)]. In
transconductance, subbands n > 2 Zeeman spin-split, while the first subband remains unaffected
by the magnetic field [panels(b, d, f)]. The 0.7 anomaly is indicated by the black arrows on the

right side of panels(b, d, f).

Supplementary Figure 2 shows the angular response of the first subband in 8 T of magnetic
field in hole QPC 2. Similarly to Fig. 4f, the data has been trimmed and reflected around ¢ /7 = 0

for easy comparison with theory. The 0.7 anomaly is broadest around ¢ /7 = 0, and narrows at
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¢/m = +0.5 (indicated by the white arrows). The spin gap structures in the top corners of the
figure (indicated by the red arrows) are greatly suppressed in QPC 1 due to the small 1D subband

spacing and spin-split subband n = 2.

Hole QPC 4 (wafer 1)

0.4
Ve (V) B(T)
Supplementary Figure 1: (a, c, e) Waterfall plots of the conductance of 1D holes in hole QPCs 4-6 respectively, showing the evolution of the
quantization from 2¢? /h at B = 0T (black trace) to e? /hinin-plane B L Bgos magnetic field up to 10T (red trace). Traces are offset in Vgg
for clarity. The 0.7 anomaly is indicated with the black arrow for the B = 0T trace, and evolves in 0.5 X G. (b, d, f) Experimental transconductance
colour maps of the Zeeman spin splitting of the first three 1D hole subbands for three different QPC devices. In all cases subbands 2 and 3 spin-split

linearly in magnetic field, whereas the first hole subband is only weakly affected by the magnetic field.
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Supplementary Figure 2: Measured transconductance of the first
1D hole subband in hole QPC 2 as a function of magnetic field

angle ¢ where the magnitude of the magnetic field is fixed at B =

Vs (V)

8 T. Vertical axis is gate voltage scaled by €2, and horizontal axis
is magnetic field angle with respect to Bgor. The white arrows

indicate the breadth of the 0.7 anomaly. The red arrows indicate the

transconductance structures corresponding to the spin gap emerging

in the top corners of the figure.

The Zero-Bias Anomaly

The zero-bias anomaly (ZBA) is intimately linked to the 0.7 anomaly *!°. To confirm that the
feature observed in the hole QPCs has the same origin as the 0.7 anomaly in electron QPCs we
show the non-linear differential conductance as a function of source-drain bias for hole QPCs in
Supplementary Figure 3. At low conductances G < 0.7 x 2¢?/h, there is a peak centred around

zero bias, consistent with the 0.7 anomaly and zero bias peak reported in electron QPCs!°.

(a) Hole QPC 1 (wafer 2) (b) Hole QPC 2 (wafer 3) (c) Hole QPC 3 (wafer 3) (d) Hole QPC 4 (wafer 1)

1.0‘\\/ % 7
N

0.0 . ——

0.4 0.0 0.4 -0.4 0.0 0.4 -0.4 0.0 0.4 -0.4 0.0 0.4
Ve (MV) Vge (MV) V4 (MV) Ve (MV)

@

Supplementary Figure 3: Non-linear differential conductance G as a function of dc voltage V;c for a range of side-gate bias values (or QPC width)
for hole QPCs 1-4. In each QPC device there is a conductance peak centered around V. = 0 that splits into two peaks where 0.7 x (2¢2/h) >

G > (2¢2/h).
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Limit of small energy B

Modelling of the first 1D electron subband in Ref [9] using (SOPT) yields the following prediction:
that for fixed values of side gate voltage V,,, or 1D confinement, the leading dependence of the

non-linear conductance on B is quadratic. The quadratic relation takes the form

) Sd) BQ T2 f/s%i
gnl(oa 07 0) BE T2 ‘Z?d*

(22)

where B / B, < 1and B,, T, and V4, are Vi, dependent crossover scales that govern the strength
of the 0.7 anomaly for finite exchange interaction energies. We demonstrate here that the relation-

ship holds for the hole 0.7 anomaly with SOI in Supplementary Figure 4.
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Supplementary Figure 4: g(B)/g(0) as a function of B for a range of top gate voltages (densities) for hole QPCs 1-4 in (a-d) respectively. Vertical

axis is normalised conductance g(B)/g(0) plotted against logarithmic B scale. Insets: logarithmic conductance 1 — g(B)/g(0) plotted against

logarithmic B, following the quadratic relation in equation (22).
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Proximity of the second subband to the first subband

In the main text we discuss the absence of a spin gap minima on the first 1D hole conductance
plateau for the traces shown in Figures 1f-g and Supplementary Figure 1a,c,e with reference
to the transconductance colour maps in Figure 4. Here we directly compare the calculated con-
ductance with the measured conductance for both electrons and holes as a function of scaled gate

voltage V; /€2, in Supplementary Figure 5.

The calculated conductance is shown for electrons in Supplementary Figure 5a, where U =
0.1 and R = 0 for magnetic field B = 0 T and B = 4 T(~ 0.4€2,). The measured conductance for
1D electrons is shown in Supplementary Figure 5b for magnetic field B = 0T and B = 4 T(~
0.4Q2,). The model in Supplementary Figure 5a is purely 1D and describes only one subband,

while Supplementary Figure Sb shows two conductance plateaus over the same energy scale.

Particular care must be taken when comparing the purely 1D model to measured conductance
in the case of 1D holes with SOI and 0.7 anomaly. In Supplementary Figure Sc, the calculated
conductance at R = 1.26 shows the 0.7 anomaly structure (indicated by the green arrow), and the
spin gap structure (indicated by the blue arrow) on the first plateau. The first ‘riser’ containing
the 0.7 structure extends over a gate range of AV, /), ~ 1, while the spin gap structure extends
over a much further range of AV, /Q, ~ 3. We compare the calculated conductance with our
(scaled) measured conductance in Supplementary Figure 5d and find that the second n = 2
subband riser emerges right where we expect the spin gap conductance minima to occur based on

Supplementary Figure Sc.
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Supplementary Figure 5: (a) Calculated conductance of the first 1D subband for weakly interacting electrons with no SOI. When the magnetic field
is increased a half step forms in the conductance trace (red) that crosses the zero-field conductance trace (black). (b) The experimental conductance
trace where the spin-resolved conductance trace crosses the zero-field trace similarly to the theoretical model in (a). (c) Calculated conductance of
the first 1D subband for strongly interacting holes with strong SOI. The spin-resolved conductance trace (red) does not cross the zero-field trace
(black). The 0.7 anomaly is evident at low energy and an emerging dip in the conductance at higher energy is indicative of the opening of the spin
gap. (d) The experimental conductance trace where the spin-resolved conductance trace does not cross the zero-field conductance trace, consistent
with the theoretical model in (c). The 0.7 anomaly is also evident (indicated by the green arrow). A second shoulder in the conductance above the

0.7 anomaly (indicated by the black arrow) suggests the weak emergence of a dip in conductance due to the opening of the spin gap.
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Anisotropy of the in-plane hole g-factor

In the main text we make note that the anisotropy of the first 1D hole subband ‘splitting” (that is,
the ‘size’ of the 0.7 anomaly in gate voltage (energy)), has the opposite anisotropy to the Zeeman
spin-splitting of the higher 1D hole subbands. In Supplementary Figure 6 we present for the
reader’s verification the complete transconductance colour map of n = 1..7 subbands as a function
of magnetic field angle with respect to the spin-orbit field Bgo; (or QPC channel). The first
subband has a broad (in Vsg) 0.7 anomaly at /7 = 0,1.0 (or B || Bsoy); in contrast subbands
n = 2..7 have minimal spin splitting. When ¢/7 = 0.5 (or B L Bgo), the opening of the spin
gap coincides with the 0.7 anomaly becoming narrower, while subbands n = 2..7 are Zeeman

spin-split.
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angle (deg)
0 45 90 135 180

2 Supplementary Figure 6: Complete transconductance map (of data pre-

sented in Figure 4 in the main text) plotted against Vs and magnetic

1.5
1= field angle  (angle in degrees provided on top axis), where |B| = 4 T.
m————— Magnetic field orientation with respect to the spin-orbit field Bgor, and
T(y ) T(X) T(y ) the corresponding x, y-directions, are indicated at the bottom of the colour
Bl|Bso BL1Bgo BI|Bso
2.0 map. Subbands are labelled 1..7 in white just above the subband at the
0 0.5 1.0
91/ point of minimal spin-splitting on the left side of the colour map.
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Zeeman spin-splitting of the first 1D hole subband in the out-of-plane z-direction

The theory in Ref [1] assigns the direction of the spin orbit field Bgo; to in-plane perpendicular
with the QPC (y-direction). The field will couple to Bso; when the applied magnetic field has a
component either parallel to the QPC (z-direction) and/or aligned out of the plane of the 2DHG
(z-direction). In the main text of the paper we examined the first subband in the plane of the
of the 2DHG (x, y-directions). Here we briefly comment on the first subband in an out-of-plane

(z-direction) field.

The quantisation axis for holes confined to a 2D plane is along the z-direction; light-hole-
heavy-hole (LH-HH) mixing leads to a small in-plane component. The out-of-plane tensor com-

21112 consistent with theory 315, (The

ponent g, has been measured to be in the range of 5 — 7
in-plane g-factors are an order of magnitude smaller, with g,, ~ 0.5 and g,,, generally too small to

resolve in measurements '°.

In Supplementary Figure 7, the measured transconductance is shown for B L 2D HG, the
out-of-plane field direction. At relatively low magnetic field B < 1T, the large out-of-plane g, -
factor gives rise to large Zeeman spin-splitting. This field orientation also couples to the orbital
momentum of the subbands, resulting in an upward curvature of the subbands. As B increases,
the magnetic length of the holes shrinks and eventually becomes smaller than the width of the 1D

constriction, and the higher subbands one by one enter the quantum Hall regime.

When the magnetic field is oriented along the out-of-plane z-direction, it is also B L Bgor
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and should open a spin-gap in the first 1D hole subband. This opening of the spin-gap is consistent
with the absence of spin-splitting in the first 1D hole subband up to 0.9 T Supplementary Figure
7. This behaviour has also been observed in Ref [17] where there is an absence of spin-splitting up
to~ 3T, and in Ref [11] up to ~ 2T At higher field, the first 1D hole subband abruptly begins to

spin-split, and the size of the spin-splitting becomes large quickly.

At low magnetic field, the spin-orbit energy Fso; is larger than the Zeeman energy Fz, and
the first subband is insensitive to magnetic field. The sudden transition to large spin-splitting occurs
when £/ > FEgoy. In this regime, the spin gap in the dispersion relation has become so large as
to resemble the usual parabolic dispersion relation once more, and the bands become sensitive to

magnetic field once more (see Supplementary Figure 8).

Once the Zeeman energy overwhelms the spin-orbit gap, gup B > FEso;, we expect the first
1D hole subband to Zeeman spin-split. In our 1D hole QPCs, Eso; ~ 500ueV and g.., ~ 5 '2.
We therefore do not expect to observe Zeeman spin-splitting of the first 1D hole subband until

B > 1.7T. This is a higher magnetic field than was accessible in our experiments for this work.
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Supplementary Figure 7: Transconductance colour map of
Zeeman spin-splitting of the 1D subbands in hole QPC 4
in magnetic field aligned perpendicular to the QPC and out
of the 2DHG plane (see schematic above panel). The sub-
bands n = 2..6 strongly spin split in magnetic field, while

the first subband in both panels remains unchanged. The

position of the 0.7 anomaly is indicated by the black ar-

0.6 0.8T
B, 206 (T) rows.

Supplementary Figure 8: (a) 1D parabolic dispersion relation spin-split in k& due to SOL (b) Applied magnetic field results in spin gap opening in
1D dispersion relation at k = 0. Egsor > Ez. (c) Large applied magnetic field results in £z > Egor and the bands resemble the generic 1D

dispersion relation again.
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4 Fabrication and measurement methods

The following includes information on the device fabrication and electrical set-up for the measure-

ments presented in the Main Text and Supplementary Information.

Electron QPC device AuGe was used for the ohmic contacts to the 2DEG. A 20 nm thick layer
of Al,O3 was used to insulate the Ti/Au top gate electrode from the ohmic contacts. Electrical
measurements were performed at a temperature of 300 mK using standard AC lock-in techniques
with an excitation voltage of 50 uV at a frequency of 7 Hz. QPC electron densities, surface gate

dimensions and 2DEG depth are summarised in Supplementary Table 1.

Hole QPC devices AuBe was used for the ohmic contacts to the 2DHS. A 20nm thick layer
of Al;O3 was used to insulate the Ti/Au top gate electrode from the ohmic contacts. Electrical
measurements were performed at a temperature of 40 mK using standard AC lock-in techniques
with an excitation voltage of 100 uV at a frequency of 7 Hz. QPC hole densities, surface gate
dimensions and 2DHG depth are summarised in Supplementary Table 1. QPC 1 has hole mobility

of £ = 0.1 x 105%cm? V~1s~t. QPCs 2-6 have hole mobilities ;z = 0.5 x 10°cm? V—1s1
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