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Understanding quantum many-body states of correlated electrons is one main theme in modern condensed-
matter physics. Given that the Fermi-Hubbard model, the prototype of correlated electrons, was recently
realized in ultracold optical lattices, it is highly desirable to have controlled numerical methodology to provide
precise finite-temperature results upon doping to directly compare with experiments. Here, we demonstrate the
exponential tensor renormalization group (XTRG) algorithm [Chen et al., Phys. Rev. X 8, 031082 (2018)],
complemented by independent determinant quantum Monte Carlo, offers a powerful combination of tools for
this purpose. XTRG provides full and accurate access to the density matrix and thus various spin and charge
correlations, down to an unprecedented low temperature of a few percent of the tunneling energy. We observe
excellent agreement with ultracold fermion measurements at both half filling and finite doping, including the
sign-reversal behavior in spin correlations due to formation of magnetic polarons, and the attractive hole-doublon
and repulsive hole-hole pairs that are responsible for the peculiar bunching and antibunching behaviors of the
antimoments.

DOI: 10.1103/PhysRevB.103.L041107

Introduction. The Fermi-Hubbard model (FHM), describ-
ing a paradigmatic quantum many-body system [1,2], has
relevance for a broad scope of correlation phenomena, ranging
from high-temperature superconductivity [3], metal-insulator
transition [4], and quantum criticality [5] to interacting topo-
logical states of matter [6]. Yet puzzles remain in this strongly
interacting many-body model after several decades of inten-
sive investigations. In solid-state materials, FHM is often
complicated by multiband structures and interactions such as
spin-orbital and Hund’s couplings [7]. In this regard, recent
progress in two-dimensional (2D) fermionic optical lattices,
where the interplay between the spin and charge degrees of
freedom in FHM has been implemented in a faithful way
[8–14], enables a very clean and powerful platform for sim-
ulating its magnetic [15–22] and transport [23,24] properties.
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With the state-of-the-art quantum gas microscope tech-
niques, single-site and spin-resolved imaging is now available,
and “snapshots” of correlated fermions have been studied
experimentally [8–10,12]. On top of that, detailed local spin
and charge correlations [11,13–15,17,22], as well as hidden
orders revealed by pattern recognition [19,20], all inaccessible
in traditional solid-state experiments, can be read out by a
microscope. As a highly controlled quantum simulator, ultra-
cold fermions in optical lattices therefore serve as a promising
tool for resolving various intriguing theoretical proposals in
the 2D FHM. However, numerous challenges remain, both
theoretically and experimentally. The currently lowest achiev-
able temperature is T/t � 0.25–0.5 (with t being the fermion
tunneling energy) on a finite-size system with about 70–80
6Li atoms [17,20,22], and T/t ∼ 1 in 40K systems [12,25].
These temperatures are still much higher than the estimated
superconductivity transition temperature, Tc/t ∼ 0.05, near
the optimal doping of the square-lattice FHM [3,26].

On the theoretical side, it is then of vital importance to
provide precise quantum many-body calculations in the 2D
FHM with system size and fermion density similar to those
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studied experimentally. With that, one can benchmark theory
with experiment, determine the effective temperature of the
fermionic optical lattice system, explain experimental results,
and provide accurate guidance for future progress. However,
accurately computing properties of the 2D FHM at finite
temperature and finite doping is difficult. Quantum Monte
Carlo (QMC) methods suffer from the minus-sign problem,
although with finite size and temperature it can actually be
performed, yielding unbiased results before one hits the “ex-
ponential wall.” In this regard, it is highly desirable to have an
alternative and powerful method, whose accessible parameter
space extends to more difficult yet highly interesting regions.
In this Letter, we demonstrate that the thermal tensor network
approach constitutes the method of choice.

In fact, various tensor renormalization group (TRG)
methods have been developed to compute the ground-state
properties of the 2D FHM [27–34]. However, the T > 0 prop-
erties at finite doping are much less explored. In this work,
we generalize the exponential TRG (XTRG) from spin sys-
tems [35,36] to strongly interacting fermions and employ it to
simulate the FHM at both half filling and finite doping, down
to a few percent of the tunneling energy t . We compare the
results obtained from both the XTRG and determinant QMC
(DQMC) [37] in the parameter space where both methods
are applicable and find excellent agreement between them.
Then we carry out XTRG+DQMC investigations of the 2D
FHM to cover the entire parameter space accessed by current
cold-atom experiments. We find that the experimental data
can be perfectly explained by our numerical simulations. The
combined XTRG+DQMC scheme therefore opens a route
for systematic investigation of the finite-temperature phase
diagram of the 2D FHM and constitutes an indispensable
theoretical guide for ultracold fermion experiments.

The Fermi-Hubbard model. We consider the interacting
electrons on an L × L square lattice with open boundary con-
ditions,

H = −t
∑

〈i, j〉,σ
(ĉ†

i,σ ĉ j,σ + H.c.) + U
∑

i

n̂i↑n̂i↓ − μ
∑

i,σ

n̂i,σ ,

(1)

with t = 1 being the nearest-neighbor hopping amplitude
(which sets the unit of energy throughout), U > 0 being the
on-site Coulomb repulsion, and μ being the chemical po-
tential. The fermionic operator ĉi,σ annihilates an electron
with spin σ ∈ {↑,↓} on site i, and n̂i,σ ≡ ĉ†

i,σ ĉi,σ is the local
number operator.

In the large-U limit (U 
 t ) and at half filling (μ =
U/2), FHM can be effectively mapped to the Heisenberg
model with exchange J = 4t2/U , giving rise to a Néel-
ordered ground state with strong antiferromagnetic (AF)
correlations at low temperature [depicted schematically in
Fig. 1(b)]. This has been demonstrated in many-body cal-
culations [38] and recently observed in ultracold fermion
experiments [17]. To make a direct comparison with recent
experiments [12,17,20,25], we take L = 4, 6, 8, set U = 7.2,
and further tune the chemical potential μ < U/2 to introduce
hole doping.

Fermion XTRG. Finite-temperature TRG methods have
been proposed to compute the thermodynamics of interact-

FIG. 1. (a) Bilayer calculation of the spin-spin 〈Ŝi · Ŝ j〉 and hole-
doublon 〈ĥi · d̂ j〉 correlators by sandwiching corresponding operators
in between ρ̂(β/2) and ρ̂†(β/2), where the snakelike ordering of
sites for the XTRG is indicated by thick gray lines. (b) In the
low-temperature AF background (blue down and red up spins), a
magnetic polaron (gray shaded region) emerges around a moving
hole, where the spins around the hole can be in a superposition of
spin-up and -down states. The blue ellipse represents a hole-doublon
pair showing a strong bunching effect. (c) A hole moves in the system
along the path indicated by the gray string, leading to a sign reversal
of the diagonal spin correlation. The red and blue shaded regions
illustrate the deformed magnetic background due to the interplay
between the hole and spins. Diagonal correlations are indicated red
(aligned) or blue (antialigned).

ing spins [35,39–45]. However, the simulation of correlated
fermions at finite temperature has so far been limited either
to relatively high temperature [46,47] or to rather restricted
geometries, like one-dimensional (1D) chains [48]. XTRG
employs a density-matrix renormalization group (DMRG)-
type setup for both 1D and 2D systems [35,36] and cools down
the systems exponentially fast. It has shown great precision in
quantum spin systems [35,49,50], thus holding great promise
to be generalized to correlated fermions.

As shown in Fig. 1(a), we represent the density matrix
ρ̂(β/2) as a matrix product operator defined on a 1D snakelike
path [thick gray lines in Fig. 1(a)]. To guarantee the positive-
definite condition of the density matrix and accurately
compute the expectation value of an observable Ô, we adopt
the bilayer technique [48], yielding 〈Ô〉 = 1

ZTr[ρ̂(β/2) · Ô ·
ρ̂†(β/2)], with Z = Tr[ρ̂(β/2) · ρ̂†(β/2)] being the parti-
tion function. We consider mainly two-site static correlators,
〈Ô〉 = 〈Ôi · Ô j〉, with Ôi being a local operator such as
the SU(2) spinor Ŝi ≡ [ −1√

2
ĉ†

i↑ĉi↓, 1
2 (n̂i↑ − n̂i↓), 1√

2
ĉ†

i↓ĉi↑]T , the
fermion number n̂i ≡ n̂i↑ + n̂i↓, the occupation projectors
ĥi ≡ |0〉〈0|i (hole) and d̂i ≡ | ↑↓〉〈↑↓ |i ≡ n̂i↑n̂i↓ (doublon),
etc. The spin-spin 〈Ŝi · Ŝ j〉 and hole-doublon 〈ĥi · d̂ j〉 correla-
tions are schematically depicted in Fig. 1(a).

We also fully implement non-Abelian spin and particle-
hole symmetries in the QSpace framework [51,52] (for
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FIG. 2. Half-filled FHM with U = 7.2 and L = 4, 6, 8. (a) The
finite-size AF order pattern is determined from the spin correlation
CS (d ) versus (dx, dy ), which melts gradually as T increases. We show
in (b) the spin correlation function |CS (d )| of various d = 1,

√
2, 2

and in (c) the finite-size spontaneous magnetization ms. Excellent
agreement between the calculated (L = 8) data and the experimental
data [17] can be observed.

technical details, see [53]). To be specific, for the half-filled
case we exploit SU(2)charge ⊗ SU(2)spin, and for the doped
case we exploit U(1)charge ⊗SU(2)spin symmetry. The imple-
mentation of symmetries has been shown to be very useful in
the DMRG-type calculations [54–56], and here it allows us to
reduce the D states retained in XTRG to an effective dimen-
sion of D∗ multiplets. Practically, for the half-filled (doped)
cases, the effective dimensional reductions D/D∗ ∼ 5.6(2.6),
corresponding to a (D/D∗)4 � 50–1000 fold reduction of
computation time, guaranteeing high efficiency and accuracy
for the thermal simulations. We obtain well-converged XTRG
results on the L = 8 square lattice at half filling (total site
number N = L2 = 64) using up to D∗ = 900 multiplets (D �
5000 states) and, upon doping, using up to D∗ = 1200 multi-
plets (D � 3100 states) [53] down to temperature T/t � 0.06,
which is unprecedentedly low for such system sizes. The
DQMC simulation performed here is of the finite-temperature
version with fast update [57].

Spin correlations and finite-size magnetic order at half
filling. In recent experiments with the FHM, the AF has
been realized in ultracold optical lattices at low effective
temperature T/t < 0.4 [17]. We first benchmark the XTRG
method, along with DQMC, with the experimental results of
the half-filled FHM. Figure 2(a) exhibits the spin correla-

tions CS (d ) ≡ 1
Nd

∑
|i− j|=d

〈Ŝi ·Ŝ j 〉
S(S+1) , summed over all Nd pairs

of sites i and j (Cartesian coordinates) with distance d . It
shows AF magnetic order across the finite-size system at
low temperature, e.g., T � 0.12, which melts gradually as
temperature increases and effectively disappears above T ∼
0.49, in good agreement with recent experiments [17]. In
Fig. 2(b), we show |CS (d )| vs T at three fixed distances d =
1,

√
2, 2, where the XTRG and DQMC curves agree rather

well in the whole temperature range. Figure 2(c) shows the
finite-size spontaneous magnetization ms ≡ √

S(π, π ) vs T ,

where S(q) = 1
N (N−1)

∑′
i, j

〈Ŝi ·Ŝ j 〉
S(S+1) e

−iq·(i− j) is the spin structure
factor, with the summation �′ excluding on-site correlations

FIG. 3. Doped FHM with U = 7.2 and L = 6, 8. (a) The spin
correlation pattern CS (d ) versus δ, plotted at T = 0.06, where the
finite-size AF order fades out for δ � 0.15. The computed (b) spin
correlations |CS (d = 1)| and (c) staggered magnetization ms are
compared to the experimental data [17]. The XTRG data in (b) and
(c) are obtained via extrapolation 1/D∗ → 0 [53]. In the inset in (c),
we show how δ, computed by both XTRG and DQMC, varies with
T and on an L = 6 lattice and at a fixed chemical potential μ = 1.5.

(following the convention from experiments [17]). For all
sizes considered, ms grows quickly as T is decreased from
1 to 0.1. Notably, for both spin correlations and spontaneous
magnetization, the L = 8 XTRG data show good qualitative
agreement with the experimental measurements. This may be
ascribed to the similar system sizes and boundary conditions
[17].

Staggered magnetization upon hole doping. By tuning the
chemical potential μ < U/2, we dope holes into the system
and study how they affect the magnetic properties. Figure 3(a)
shows the spin correlation patterns for different dopings δ at
low T . The AF order clearly seen at low doping becomes
increasingly short ranged as δ increases, effectively reduced
to nearest neighbor (NN) only for δ � 0.15. The falloff of
AF order upon doping can also be observed in |CS (d )| with
a fixed distance d . In Fig. 3(b), we show the d = 1 NN
spin correlations, where the XTRG and DQMC agree well,
whenever the latter is available (for L = 6 lattice at T = 0.24
and T = 0.49). Remarkably, our L = 8 XTRG data again
show excellent agreement with the experiments, while the
sign problem hinders DQMC from reaching such system size
at T = 0.24 [53].

Figure 3(c) shows the staggered magnetization ms vs δ.
Again a rapid drop of the finite-size AF order at approximately
δ ∈ [0.1, 0.25] can be seen. Based on the agreements between
the XTRG (L = 8) and experimental results [Figs. 3(b) and
3(c)], we find the effective temperature of ultracold fermions
in the doped case is also around T/t = 0.24, consistent with
the experiments [17]. In our calculations we tune the dop-
ing δ by scanning the chemical potentials μ. In the inset of
Fig. 3(c), we show the doping δ vs T for a fixed μ = 1.5
(again the XTRG and DQMC results agree for T � 0.24 with
a tolerable sign problem [53] for DQMC). The behavior of
δ is nonmonotonic: it first increases as T is lowered [having
δ(T = ∞) = 0] and then slowly decreases due to hole repul-
sion [53].
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FIG. 4. Diagonal and NNN CS (d ) correlations versus δ for an
L × L system with U = 7.2 and L = 6, 8 for (a) d = √

2 and (b) d =
2. The inset in (b) zooms in on small CS (d ) values. The sign reversal
of Cd is in good agreement with experimental data [20].

Two-point spin correlations upon hole doping. In Fig. 4,
we analyze spin correlations between the diagonal (d = √

2)
and next-nearest-neighbor (d = 2, NNN) sites. We compare
them to recent measurements where the diagonal correlation
CS (

√
2) undergoes a sign reversal around δ � 0.2 [20]. Our

computations reproduce this fact [Fig. 4(a)], and the L = 8
XTRG results computed at T = 0.24 accurately reproduce the
experimental measurements. For the NNN correlations (d =
2) [Fig. 4(b)], we find that an analogous sign reversal, hardly
discernible in experiments, takes place around δ � 0.25.

The sign reversal can be explained within the geometric
string theory [58]. It signals the formation of a magnetic
polaron in the system. As shown in Fig. 1(c), the hole motion
through the system generates a string of misaligned spins.
The strong NN AF spin correlations are thus mixed with the
diagonal and even further correlations, e.g., CS (2), resulting
in even ferromagnetic clusters [red and blue shaded regions in
Fig. 1(c)]. Due to the interplay between the charge impurity
and magnetic background, the moving hole distorts the nearby
AF background [see the gray “cloud” in Fig. 1(b)], giving
rise to the magnetic polaron. Such exotic quasiparticles have
been imaged experimentally [22] for a doublon in the particle-
doped Fermi-Hubbard model and investigated numerically in
the context of the t-J model [59].

Hole-doublon bunching and hole-hole antibunching. A
quantum gas microscope can also access parity-projected
antimoment correlation functions defined in the charge
sector, ḡ2(d ) ≡ 1

Nd

∑
|i− j|=d

〈α̂i α̂ j 〉
〈α̂i〉〈α̂ j 〉 [13] and g̃2(d ) ≡

1
Nd

∑
|i− j|=d [ 1

δ2 (〈α̂iα̂ j〉 − 〈α̂i〉〈α̂ j〉) + 1] [20], with the

antimoment projector α̂i ≡ ĥi + d̂i [60]. Figures 5(a) and
5(b) show the computed antimoment correlation results.
Antimoments are bunching (ḡ2 > 1) at low doping yet
become antibunching (ḡ2 < 1) at large doping, in quantitative
agreement with an earlier 40K experiment [13] and a more
recent 6Li gas measurement [20]. The antibunching at large
doping is attributed to hole repulsion, and the bunching at low
doping is attributed to hole-doublon pairs [13].

Now antimoments contain contributions from both holes
and doublons, yet their individual contributions cannot be
distinguished via parity projection measurements [13,20].
XTRG, however, readily yields detailed correlators gll ′

2 (d ) ≡
1

Nd

∑
|i−j|=d

〈l̂i l̂ ′j〉
〈l̂i〉〈l̂ ′j 〉

, with l ∈ {h, d} and l̂i ∈ {ĥi, d̂i} for hole and

FIG. 5. Various g2 correlators for an 8 × 8 system with U = 7.2.
The antimoment correlators (a) ḡ2(d = 1) and (b) g̃2(d = 2) are
shown versus δ. Experimental data with d = 1, T/t � 1.0 [13] and
d = 2, T/t � 0.25 [20] are included for comparison. (c) and (d) The
two-site hole-doublon (ghd

2 ), hole-hole (ghh
2 ), and full-density (gnn

2 )
correlations for (c) d = 1 and (d) d = 2. The d = 1 hole-doublon
correlation ghd

2 is compared with experiment in (c), with a nice
agreement despite a separate U/t � 11.8 in experiment [25].

double-occupancy projectors, respectively. Later we also use
l = n for l̂ j = n̂ j , the local density.

Our results for the correlations ghh
2 (d ) and ghd

2 (d ) vs δ are
shown in Figs. 5(c) and 5(d). We always find anticorrelation
among holes (ghh

2 < 1) but strong bunching between a hole
and a doublon (ghd

2 > 1). As shown in Fig. 5(c), the computed
ghd

2 data show qualitative agreement with very recent experi-
mental measurements using the full-density-resolved bilayer
readout technique [25,61]. The change from bunching to anti-
bunching behaviors in antimoment correlations in Figs. 5(a)
and 5(b) can be ascribed to the fact that the hole-doublon
attraction is advantageous over the hole-hole repulsion at low
doping, while the latter dominates at relatively large doping
[53]. When comparing the charge correlations at d = 1 and 2
in Figs. 5(c) and 5(d), we find that the hole-doublon bunching
effect in ḡ2(1) is particularly strong at δ � 1, where the holes
mostly stem from NN hole-doublon pairs [see the illustration
in Fig. 1(b)]. The further-ranged ghd

2 (2) still shows the bunch-
ing effect yet gets much reduced.

The full density correlation gnn
2 (d ) is shown in Figs. 5(c)

and 5(d). We observe gnn
2 (d ) ≈ 1 at low doping for both

d = 1, 2, i.e., weak nonlocal charge correlations near half
filling, and a more pronounced anticorrelation gnn

2 (d ) < 1
as δ increases. Based on our XTRG results, we further
reveal that the longer-ranged gnn

2 (2) also exhibits anti-
correlations upon doping, suggesting the statistical Pauli
holes may be rather nonlocal, though decaying rapidly
spatially.

Conclusion and outlook. In this work, we generalized
XTRG [35,36] to the 2D FHM. Employing XTRG and
DQMC, we obtained reliable results for both half filling and
doped cases and found consistency with the ultracold-atom

L041107-4



QUANTUM MANY-BODY SIMULATIONS OF THE … PHYSICAL REVIEW B 103, L041107 (2021)

experiments. XTRG can explore a broader parameter space,
especially in the doped case, than DQMC, which is lim-
ited by a minus-sign problem. XTRG+DQMC constitutes a
state-of-the-art complimentary numerical setup for probing
the phase diagram of FHM, for SU(2) fermions here and
generally SU(N) fermions [62], thanks to the implementation
of non-Abelian symmetries [51]. Fundamental questions such
as the explanation of the Fermi arcs and the pseudogap phase
[63,64], with their implications for the breaking of Luttinger’s
theorem [65–68], and the role of topological order [69–71] are
open interesting topics to be studied by XTRG+DQMC and
optical lattices.
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A. Exponential Tensor Renormalization Group Approach for
Correlated Fermions

1. Renormalization group algorithms for 2D fermion models

Renormalization group numerical methods provide power-
ful tools tackling fermion many-body problems. Among oth-
ers, the density-matrix [2] and tensor-network renormalization
group (TRG) [1, 3, 4] methods have been developed to sim-
ulate fermion models in two dimensions (2D), with focus on
the T = 0 properties, playing an active role in solving the
challenging Fermi-Hubbard model at finite doping [5–8].

For T > 0, thermal TRG algorithms exploits the pu-
rification framework in simulating thermodynamics of both
infinite- and finite-size systems [9–12]. Recently, generaliza-
tions of DMRG-type calculations to finite temperature have
become available via matrix-product-state samplings [13, 14]
and the exponential TRG (XTRG) [15–17]. Most of the ther-
mal TRG methods mainly apply to the spin/boson systems,
and there are few attempts for fermions at finite temperature.
For example, an infinite TRG approach has been proposed to
simulate 2D fermion lattice models directly in the thermody-
namic limit, however it is restricted to relatively high tempera-
ture [18]. Therefore, it is highly desirable to have reliable and
accurate TRG algorithms for simulating large-scale correlated
fermion systems down to low temperatures.

XTRG can be employed to simulate large-scale system
sizes, e.g., width-8 cylinders for the square-lattice Heisen-
berg model [17], and width-6 cylinders [16] for the triangular-
lattice Heisenberg model, providing full and accurate access
to various thermodynamic quantities as well as entanglement

∗ weichselbaum@bnl.gov
† zymeng@hku.hk
‡ w.li@buaa.edu.cn

and correlations down to low temperature. Here, we general-
ize XTRG to 2D fermion models and perform the calculations
on L×L open square lattices up to size L = 8 (half filling) and
L = 6 (finite doping).

2. Particle-hole and spin symmetries

In the XTRG calculations of the Fermi-Hubbard model, we
implement non-Abelian/Abelian particle-hole and spin sym-
metries in the matrix-product operator (MPO) representa-
tion of the Hamiltonian and the thermal density operators,
which greatly reduces the computational resources and makes
the high-precision low-temperature simulations possible in
XTRG. Here the symmetry implementation is based on the
QSpace tensor library [19].

To be specific, consider the SU(2)charge⊗ SU(2)spin symme-
try as an example. The SU(2)charge, i.e., particle-hole symme-
try is present in the Fermi-Hubbard model at half-filling on a
bipartite lattices, such as the square lattice considered in this
work. QSpace permits to turn symmetries on or off at will,
such that either of the symmetries above can also be reduced
to smaller ones, such as U(1)charge or U(1)spin. This is required
for example in the presence of a chemical potential or an ex-
ternal magnetic field, respectively. Throughout, we stick here
to the order convention that the charge label comes first, fol-
lowed by the spin label, i.e., q = (C, S ). For SU(2)charge, the
‘S z’ label corresponds to 1

2 (ni − 1), that is, one half the local
charge relative to half-filling.

The fermion operators can be organized into an irreducible
four-component spinor [19],

F̂(1/2,1/2)
i =


siĉ
†

i↑
ĉi↓

siĉ
†

i↓
−ĉi↑

 . (S1)
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FIG. S1. Tensor-network representation for fermion operators. — (a)
An irreducible operator (irop) can always be assigned an irop index,
shown as the horizontal line sticking out towards the right of a tensor
indicated by a circle. The vertical lines describe a local state space.
The irop index is also assigned symmetry labels q ≡ (C, S ) which
describe the transformation of the operator under given charge (C)
and spin (S ) symmetry. Here examples of local irops are the fermion
operator F̂ [with qF ≡ (1/2, 1/2)] or a trivial identity operator Î [with
qI ≡ (0, 0)]. These may be combined into the (non-irop) tensor X̂
that now describes a (to the extent required) complete local operator
basis. (b) For the MPO of the Hamiltonian, the local tensor T is
constructed from the local operator basis X̂ and the A tensor of a
super-MPS, connected by the operator basis indexed by q. Fermionic
signs are taken are of by the charge parity operator Ẑ ≡ (−1)n̂ which
needs to be applied at every crossing point of lines if negative charge
parity can occur on both lines (this is completely analogous, e.g., to
the swap gate in fermionic iPEPS [1]). It is denoted by the small red
dot. (c) When using SU(2) particle-hole symmetry, the local fermion
operator is decorated with an additional Z̃i (denoted by the green
diamond), F̂i → Z̃iF̂i, to recover the correct hopping structure in
terms of signs, with Z̃i ∈ {Î, Ẑ} for even (odd) sites i, respectively. (d)
A single hopping term in the Hamiltonian, i.e., hi, j ≡ F̂†i · F̂ j from
site j to site i is constructed in MPO form from the local tensor as
schematically depicted in panel (b). Local terms in the Hamiltonian
are also added to the local MPO basis X̂ [suggested by the ⊕ . . . in
(a)], e.g., with the onsite interaction given by (n̂i − 1)2 ≡ 4

3 Ĉ†i · Ĉi ,
i.e., the Casimir operator in the SU(2)charge symmetry.

It is an irop that transforms like qF = (1/2, 1/2). Because it
consists of multiple components, this results in the third index
[depicted as leg to the right in Fig. S1(a)]. The local Hilbert
space σ(i) of a site i with d = 4 states can be reduced to d∗ = 2
multiplets, qσ = (1/2, 0) combining empty and double occu-
pied, i.e., hole and double states, and qσ = (0, 1/2) for the
local spin S = 1/2 multiplet at single occupancy.

In Eq. (S1), the index i ≡ (i1, i2) denotes a 2D Cartesian co-
ordinate of the site in original square lattice. The implemen-
tation of SU(2)charge requires a bipartite lattice, L = A ∪ B,
which we distinguish by the parity si = ±1, e.g., choosing ar-
bitrarily but fixed that the sites inA are even, i.e., have si = +1
for i ∈ A. In practice, we adopt a snake-like mapping of the
2D square lattice (as shown in Fig. 1), with a 1D site ordering
index i. This leads to a simple rule: a site with i ∈ even (odd)

site of the quasi-1D chain also corresponds to the even (odd)
sublattice of the square lattice with si = ±1.

For SU(2)charge, to recover the correct hopping term in
the Hamiltonian, this requires the alternating sign factor si.
In fact, this alternating sign can be interpreted as different
fermion orderings on the even and odd sites [19], i.e.,

|↑↓〉i = si ĉ†i↑ĉ
†

i↓|0〉 =


ĉ†i↓ĉ

†

i↑|0〉, i ∈ odd, si = −1,

ĉ†i↑ĉ
†

i↓|0〉, i ∈ even, si = 1.
(S2)

By reversing the fermionic order of every other site for the lo-
cal state space as above, we thus recover the correct structure
in the electron hopping term

ĥi, j = F̂†i · F̂ j = (ĉ†i↑ĉ j↑ + ĉ†i↓ĉ j↓) + H.c., (S3)

with site i and j always belonging to different sublattices of the
square lattice. By summing over all pairs of hopping terms,
we recover the tight-binding (TB) kinetic energy term on the
square lattice, whose Hamiltonian reads

ĤTB =
∑
〈i, j〉

ĥi, j =
∑
〈i, j〉

F̂†i · F̂ j . (S4)

By the structure of a scalar product, Eq. (S4) explicitly reveals
the SU(2) particle-hole and spin symmetry.

When the interaction U is turned on, the Fermi-
Hubbard Hamiltonian [see Eq. (1) in the main text] remains
SU(2)charge⊗SU(2)spin invariant, as long as half-filling is main-
tained, i.e., µ = U/2. Then∑

i

Un̂i↑n̂i↓ −
U
2 (n̂i↑ + n̂i↓) ≡ U

2

∑
i

(n̂i − 1)2 + const.

has a SU(2) charge symmetry, and the system has a totally
symmetric energy spectrum centered around Cz = 0. It is
proportional to the Casimir operator of SU(2)charge. However,
when µ , U/2, this acts like a magnetic field in the charge
sector, and the SU(2)charge symmetry is reduced to U(1)charge.

3. Fermionic MPO

Given this symmetric construction of the local fermionic
operator F̂i we describe below how to represent the many-
body Hamiltonian as a fermionic MPO, by taking the square-
lattice tight-binding model Eq. (S4) mentioned above as an ex-
ample. We first introduce a super matrix product state (super-
MPS) representation in Fig. S1, which encode the “interac-
tion” information compactly and can be conveniently trans-
formed into the MPO by contracting the A tensor with the
local operator basis X̂, as shown in Fig. S1(a,b).

To be specific, consider a single hopping term hi, j between
site i , j in Fig. S1(d). In the super-MPS, the correspond-
ing A tensors have a simple internal structure, as listed in
Tab. I, since the main purpose of the A-tensor is to route lines
through. Hence they also contain simple Clebsch Gordan co-
efficients, with the fully scalar representation (0, 0) always at
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‖Aq [k]
α,α′
‖ α α′ q k

1. (0,0) (0,0) (0, 0) k < i or k > j
1. (0,0) ( 1

2 ,
1
2 ) ( 1

2 ,
1
2 ) k = i

1. ( 1
2 ,

1
2 ) (0,0) ( 1

2 ,
1
2 ) k = j

1. ( 1
2 ,

1
2 ) ( 1

2 ,
1
2 ) (0, 0) i < k < j

TABLE I. The nonzero reduced tensor elements ‖Aq [k]
α,α′
‖ at site k [cf.

Fig. S1(d)], in the MPO representation of a specific hopping term hi, j

(Eq. S3) between site i and j. The indices α, α′, and q are labeled by
symmetry quantum numbers (C, S ).

least on one index. In ‖Aq [k]
α,α′ ‖, α, α

′ can be qF = ( 1
2 ,

1
2 ) or

qI = (0, 0) as shown in Fig. S1(c). Correspondingly, this
contracts with either the fermion operator F̂ or Î in X̂q, re-
spectively. Contracting X̂q onto A, this casts the super-MPS
which is made of A-tensors only, into “MPO” form consisting
of the rank-4 tensors T , as indicated in Fig. S1(b). With the
index α routed from site i to site j, its q-label is fixed to that
of the irop. Therefore each single hopping term hi, j can be
represented as an MPO as in Fig. S1(d), with reduced bond
dimension D∗ = 1 (one multiplet per geometric bond). Fol-
lowing a very similar procedure as in XTRG for spin systems
[15], we can thus sum over all hi, j terms and obtain a com-
pact MPO representation of the Hamiltonian Eq. (S4) through
variational compression which as part of the initialization is
cheap. This guarantees that an MPO with minimal bond di-
mension D∗ is obtained.

4. Fermion parity operator Ẑ

The X̂q operator basis acts on the local fermionic Hilbert
space, and thus fermionic signs need to be accounted for in
the construction of the MPO representation of the Hamilto-
nian. As shown in Fig. S1(d), we introduce a product of parity
operators Ẑ between site i and j, generating a Jordan-Wigner
string connecting the operators F̂†i and F̂ j. The parity opera-
tor Ẑ is defined as (−1)2C+1 for any state space, which yields
z = +1 if C is half-integer (e.g., C = 1/2 for empty and dou-
ble occupied), and z = −1, otherwise (e.g. C = 0 for a singly
occupied site). In practice, for SU(2)charge, based on Eq. (S1)
we use for even sites (si = +1)

F̂ ≡ F̂(1/2,1/2)
even =


ĉ†i↑
ĉi↓

ĉ†i↓
−ĉi↑

 , (S5)

while for odd sites, we use (purely in terms of matrix ele-
ments) in the MPO, F̂odd = ẐF̂, instead (cf. discussion with
Eq. (S2); [19]), with the Hermitian conjugate (ẐF̂)† = F̂†Ẑ.
Therefore introducing Z̃i ∈ {Î, Ẑ} for even (odd) sites i, re-
spectively, this takes care of the alternating sign structure, as
illustrated in Fig. S1(c), and consistent with Eq. (S1).

Overall, assuming i < j with similar Fermionic order in that
site i is added to the many body state space before site j, the

hopping term ĥi, j can thus be represented as

ĥi, j = (F̂†Z̃)i ⊗ Ẑi+1 ⊗ ... ⊗ Ẑ j−1 ⊗ (ẐZ̃F̂) j. (S6)

Given the bipartite lattice structure, therefore up to the dagger,
the same F̂ (or ẐF̂) is applied at both sites i and j depending
on whether i is even (or odd), respectively.

5. Exponential cooling and expectation values

XTRG requires the MPO of the Hamiltonian as input for
initialization. Therefore when building the MPO for the
Hamiltonian, this is the only place where fermionic signs play
a role. Thereafter XTRG follows an automated machinery.
We compute the thermal density operator ρ̂(β/2), and then es-
timate thermodynamics quantities, entanglement, and corre-
lations from it. We start with a very high-T density operator
ρ̂0(τ) at inverse temperature τ � 1, obtained via the series
expansion [20]

ρ̂0(τ) =
∑

k

(−τ)k

k! Ĥk.

Here the initial τ can be exponential small, which thus limits
the series expansion to very few terms to already reach ma-
chine precision for the initial ρ̂0(τ). Then, we cool down the
system exponentially by squaring the density matrix. The n-th
XTRG iteration yields

ρ̂n−1(2nτ) ⊗ ρ̂n−1(2nτ)→ ρ̂n(2n+1τ). (S7)

With ρ̂n(2n+1τ), we can compute thermal expectation values
at inverse temperatures βn = 2n+2τ using the thermofield dou-
ble trick of purification [11, 15, 21], equivalent to the simple
procedure in Fig. 1.

One advantage in the fermion XTRG is its simplicity. In
the cooling step ρ̂n−1 ⊗ ρ̂n−1 → ρ̂n in Eq. (S7), no fermion
parity operators Ẑ are involved when we perform MPO iter-
ation and compression just as for spin/boson systems. Be-
sides, in the calculations of density-density correlations such
as spin-spin and hole-hole(-doublon) correlations, the charge
quantum numbers C in the q-label of operators Ŝ and ĥ (d̂)
are always even, and thus the Jordan-Wigner string consists
of trivial identity operators and can also be safely ignored,
as illustrated in Fig. 1(a) of the main text. Even though not
required here, also fermionic correlations can be computed
within fermionic XTRG, and proceeds completely analogous
to fermionic MPS expectation values, then also with a Jordan
Wigner string stretching in between sites i and j.

B. Convergence check and extrapolation

Here we provide detailed convergency check of the spin
correlation functions shown in the main text. As shown in
Fig. S2, with up to D∗ = 800(900) SU(2)-invariant multiplets
kept for L = 6(8) half-filling systems, the truncation errors are
within 5 × 10−3 for the covered temperature range. Note that,
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FIG. S2. Truncation errors in XTRG simulations. In the half-filled
L× L Hubbard lattice with U = 7.2, L = 6, 8, the truncation errors δρ
in XTRG simulations are shown versus temperature T .

FIG. S3. XTRG+DQMC bechmark results. (a) NN spin correlation
|CS (d = 1)| of half-filled square-lattice Hubbard system for U = 7.2
and sizes L = 6, 8, with D∗ = 400-900. The L = 6 data have been
shifted upwards by 0.1, for the sake of readability. In the inset, |CS |

at low temperature T ' 0.12 is shown versus 1/D∗, with the DQMC
results [mean (line) and standard deviation (color matched shaded
region)] provided. (b) Upon doping, |CS (1)| is shown as a function
of δ for L = 6 system at T ' 0.24 (the lowest temperature reach-
able by DQMC, before the sign problem becomes prohibitive; cf.
Fig. S7), with D∗ = 800-1200. Linear extrapolations 1/D∗ → 0 are
performed, with the extrapolation values depicted as asterisk sym-
bols. The detailed extrapolations at δ ' 0.1, 0.3 are shown in the
inset. In both panels, the DQMC results are also shown for compari-
son as depicted by the square symbols.

different from DMRG, the truncation errors translated directly
into the relative errors of free energy, i.e., δ f / f ∼ O(10−3),
which guarantees an excellent agreement of our XTRG results
with DQMC data and cold-atom measurements.

In Fig. S3(a), at half filled cases, we show the spin correla-
tion function CS (d = 1) for different system size L = 6, 8, ver-
sus temperature T with various bond dimensions D∗ = 400-
900. For better readability, CS is shifted upwards by 0.1, for
L = 6 system. As shown, in the whole temperature regime, for
both L = 6, 8 systems, all CS curves lie on top of each other,
showing good agreement with the DQMC data. In the inset,
CS at a low temperature T ' 0.12 are collected at various D∗,
showing excellent convergency versus 1/D∗. In Fig. S3(b),
|CS (d = 1)| is shown as a function of hole doping δ for L = 6
system, with D∗ = 800-1200, at T ' 0.24. At each dop-
ing rate, the XTRG data exhibit good linearity with 1/D∗, en-
abling us to perform a linear extrapolation to 1/D∗ = 0. As

FIG. S4. Hole-hole correlation at doped cases. (a) Hole-hole cor-
relation Chh(d), plotted as function of displacement dx, dy along the
horizontal and vertical directions, at various temperatures, for 6 × 6
system at fixed µ = 1.5 (U = 7.2). (b) Chh(d) vs. d at various tem-
peratures, and (c) Chh(d) vs. T for various distances d = 1,

√
2, 2.

shown, the extrapolation value shows good qualitative agree-
ment with the DQMC results. In the inset, the detailed ex-
trapolations 1/D∗ → 0 at around δ ' 0.1 and δ ' 0.3 are
provided.

C. Charge Correlations in the Doped Fermi-Hubbard Model

1. Hole-hole and hole-doublon correlations

In this section, we provide more results on charge correla-
tions

Chl(d) = 1
Nd

∑
|i− j|=d

〈ĥi l̂ j〉 − 〈ĥi〉〈l̂ j〉, (S8)

with l ∈ {h, d} corresponding to l̂ ∈ {ĥ, d̂}, where ĥi ≡ |0〉〈0|
and d̂i ≡ |↑↓〉〈↑↓| are projectors into the empty and double
occupied states, respectively. We consider a 6 × 6 system and
set µ = 1.5 throughout.

Figure S4(a) shows the hole-hole correlation Chh plotted
versus dx and dy from low (left) to high temperatures (right).
There clearly exists a non-local anticorrelation in the spatial
distribution, having Chh ≤ 0 throughout, and decays roughly
exponentially with distance for any fixed T [Fig. S4(b)].
When plotted vs. T as in Fig. S4(c), the hole-hole anticorre-
lation persists to relatively high temperature [T . 2], beyond
which it rapidly decays to zero. Note also that around T ' 2
for given fixed µ = 1.5, a maximal doping δ ' 0.17 is reached
[see Fig. 3(c) in the main text]. This appears naturally related
to the energy scale of the half-bandwidth 2t = 2 for the ki-
netic energy of the 2D square lattice (ignoring the chemical
potential since δ � 1).

A completely analogous analysis is performed for the hole-
doublon correlations Chd as showns in Fig. S5. Figure S5(a)
shows Chd vs. dx and dy at various temperatures, where we ob-
serve nonlocal correlations between the hole-doublon pairs.
Figure S5(b,c) shows that Chd decays rapidly with increas-
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FIG. S5. Hole-doublon correlation at doped cases. Same layout as
in Fig. S4 otherwise.

FIG. S6. Antimoment correlation functions. The antimoment corre-
lations Cαα(d) with (a) d =

√
2 and (b) d = 2 are shown vs. δ at two

different temperatures T = 0.12 and 0.49. The experimental data at
T/t ' 0.25 are also shown for comparison. The hole-hole (‘h-h’) and
hole-doublon (‘h-d’) correlation function Chl with (c) d =

√
2 and

(d) d = 2 are shown versus doping δ. The results are computed on a
6 × 6 square lattice (U = 7.2).

ing distance d, and the hole-doublon correlation again per-
sist to a relatively high temperature T ∼ 2. Overall, the re-
sults in Figs. S4 and S5 show that the repulsive hole-hole and
attractive hole-doublon pairs are mainly limited to nearest-
neighboring sites, as expected given the sizable Coulomb in-
teraction U = 7.2.

10−1 100 101 102 103

T

0.0

0.2

0.4
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1.0
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n
>

L=4

L=6

L=8

FIG. S7. DQMC average sign versus lattice size L and temperature
T . In the calculations, the chemical potential is fixed at µ = 1.5,
which corresponds to the data of Fig. 3 in the main text.

2. Antimoment correlations

In this section, we provide the results of antimoment corre-
lation,

Cαα(d) = 1
Nd

∑
|i− j|=d

〈α̂iα̂ j〉 − 〈α̂i〉〈α̂ j〉 (S9a)

= Chh + 2Chd + Cdd , (S9b)

with α̂i ≡ ĥi + d̂i. This can be directly compared with existing
experimental data [22] for d =

√
2 and d = 2. Figure S6(a,b)

shows Cαα vs. doping δ, where a qualitative agreement with
the experimental data can be observed. In both Fig. S6(a,b),
near half-filling a weak bunching effect is present. Thereafter
the antimoments soon exhibit strong anti-bunching effect as
one dopes some holes into the system (δ & 3% for d =

√
2

and δ & 5% for d = 2).

Within XTRG, we can also compute all the partial contri-
butions to the antimoment correlations as in Eq. (S9b). The
doublon-doublon correlation Cdd is negligibly small due to
the rare density of doublons considering hole-doping for large
U = 7.2. We thus only provide the results of Chh(d) and
Chd(d) vs. doping in Fig. S6(c,d). Over the entire hole-doping
regime considered in the present work, the hole-hole corre-
lation Chh(d) exhibits antibunching while the hole-doublon
correlation Chd(d) exhibits bunching, for both d =

√
2 in

Fig. S6(c) and d = 2 in Fig. S6(d).

In the vicinity of half-filling, i.e., at low doping, the hole-
hole correlation Chh in Fig. S6(c,d) becomes smaller (in abso-
lute values) as compared to the hole-doublon Chd > 0. This
is responsible for the bunching of antimoments at low dop-
ing [Fig. S6(a,b)]. However, when more holes are doped into
the system, e.g., δ & 5 % as shown in Fig. S6, the hole-hole
repulsion becomes predominant and thus leads to the overall
antibunching of antimoments.
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D. DQMC simulation and average sign in the doped cases

We investigate the 2D square lattice Hubbard model with
determinantal QMC simulations. The quartic term in Eq. (1)
of the main text,

Un̂i↑n̂i↓ = −
U
2

(n̂i↑ − n̂i↓)2 +
U
2

(n̂i↑ + n̂i↓)

is decoupled by a Hubbard-Stratonovich transformation to a
form quadratic in (n̂i↑ − n̂i↓) = (ĉ†i↑ĉi↑ − ĉ†i↓ci↓) coupled to an
auxiliary Ising field on each lattice site [23]. The particular de-
composition above has the advantage that the auxiliary fields
can be chosen real. The DQMC procedure obtains the parti-
tion function of the underlying Hamiltonian in a path integral
formulation in a space of dimension N = L × L and an imag-
inary time τ up to β = 1/T . The auxiliary Ising field lives on
the L × L × β space-time configurational space and each spe-
cific configuration gives rise to one term in the configurational
sum of the partition function. All of the physical observables
are measured from the ensemble average over the space-time
(Nβ) configurational weights of the auxiliary fields. As a con-
sequence, the errors within the process are well controlled;
specifically, the (∆τ)2 systematic error from the imaginary-
time discretization, ∆τ = β/M, is controlled by the extrapo-
lation M → ∞ and the statistical error is controlled by the
central-limit theorem.

The DQMC algorithm employed in this work is based on
Ref. [23] and has been refined by including global moves to

improve ergodicity and delay updating of the fermion Green
function. This improves the efficiency of the Monte Carlo
sampling [24]. We have performed simulations for system
sizes L = 4, 6, 8. The interaction is set as U = 7.2 and we
simulate temperatures from T = 0.061 to 1000 (inverse tem-
peratures β = 0.001 to 16.39).

We comment briefly on the sign problem in the Monte Carlo
sampling which becomes pronounced at finite doping. In gen-
eral, the computational complexity in the presence of minus
sign grows exponentially in the space-time volume Nβ. This
is because the correct physical observable now must include
the effect of the sign of each Monte Carlo weight. One com-
mon practice is to use the absolute value of the weight to con-
tinue the Monte Carlo simulation, and then the expectation
value becomes 〈Ô〉 =

〈Ô·sign〉
〈sign〉 .

Since the expectation value of the averaged sign, 〈sign〉,
scales as e−βN , one cannot further extrapolate to the thermo-
dynamic limit in this manner, as the error bar of any physical
observables will explode. However, for finite size systems as
investigated in this work, there is no problem of performing
DQMC and obtaining unbiased results before 〈sign〉 becomes
too small. As shown in Fig. S7, for our system sizes L = 4, 6, 8
at chemical potential of µ = 1.5 [cf. Fig. 3 (c) of the main
text], the average sign is still affordable down to T = 0.244
for L = 6, 8 [cf. Fig. S3(b)].

Other DQMC parameters of the doped case, with minus
sign problem in the main text, are investigated in a similar
manner before the average sign becomes too small.
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