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The crossover from fluctuating atomic constituents to a collective state as one lowers temperature or
energy is at the heart of the dynamical mean-field theory description of the solid state. We demonstrate that
the numerical renormalization group is a viable tool to monitor this crossover in a real-materials setting.
The renormalization group flow from high to arbitrarily small energy scales clearly reveals the emergence
of the Fermi-liquid state of Sr2RuO4. We find a two-stage screening process, where orbital fluctuations are
screened at much higher energies than spin fluctuations, and Fermi-liquid behavior, concomitant with spin
coherence, below a temperature of 25 K. By computing real-frequency correlation functions, we directly
observe this spin-orbital scale separation and show that the van Hove singularity drives strong orbital
differentiation. We extract quasiparticle interaction parameters from the low-energy spectrum and find an
effective attraction in the spin-triplet sector.
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Introduction.—Atoms with partially filled shells have a
spectrum of many-body eigenstates with degeneracies
associated with fluctuating spin and orbital moments.
For instance, the isolated ruthenium atom in the Ru4þ
configuration, subject to an octahedral crystal field, has a
ninefold degenerate ground state corresponding to spin and
orbital quantum numbers S ¼ L ¼ 1 [1,2]. In materials
with strong electronic correlations, these local fluctuations
can be observed at high temperature and energy through,
e.g., Curie–Weiss-like spin susceptibilities. In correlated
metals, these fluctuations are suppressed as one reaches low
temperature and energy. In the Fermi-liquid regime, a
nondegenerate collective ground state is formed, with
long-lived coherent quasiparticle excitations and suscep-
tibilities displaying Pauli behavior [3].
How the crossover from fluctuating atomic constituents

to a collective state takes place is at the heart of the
dynamical mean-field theory (DMFT) description of the
solid state [4]. In this theory, each atom is viewed as
exchanging electrons with an environment which self-
consistently represents the whole solid. The gradual sup-
pression of local fluctuations can be thought of as a self-
consistent (multistage) Kondo screening process [5] of both
spin and orbital moments [6,7].
The renormalization group (RG) is the appropriate

framework to describe and monitor these crossovers as a
function of energy scale. Indeed, Wilson’s numerical

renormalization group (NRG) [8] has been a tool of choice
for solving DMFT equations for lattice models with few
orbital degrees of freedom [9], with the additional merit of
providing real-frequency properties at any temperature.
Following a number of two-particle applications [10–15],
recently, even three-orbital studies have become possible
[6,7,16–19]. Yet, all of these works operated in the model
context. We demonstrate here that NRG can be successfully
applied to an actual material, accounting for its electronic
structure in a realistic manner using density functional
theory (DFT) and DMFT [20].
The material we focus on, Sr2RuO4, is one of the more

thoroughly studied quantum materials [21] and an ideal test
bed for fundamental developments in quantum many-body
theories. Besides the unconventional superconducting state
below∼1.5 K [22,23], also the normal, Hund-metal state of
Sr2RuO4 [2,7,24–27] attracts attention, due to textbook
Fermi-liquid behavior below TFL ≈ 25 K [21,28–33]
(though signatures of quasiparticles are found up to
elevated temperatures of ∼600 K [24]). However, temper-
atures below TFL could not be reached with controlled
computational methods hitherto.
In this Letter, we show that Sr2RuO4 undergoes a two-

stage Kondo screening process [6,7,26], where orbital
fluctuations are screened well before the spin degrees of
freedom. We determine the associated Kondo temperatures
to Torb ≈ 6000 K and Tsp ≈ 500 K, respectively, and show
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that Fermi-liquid behavior emerges when spin coherence is
fully established below a scale of TFL ≈ 25 K [34]. With
NRG as impurity solver, the entire DMFT calculation is
performed on the real-frequency axis [35], and we can
compute correlation functions at arbitrarily low energy
scales and temperatures. Hence, we are able to go beyond
previous Monte Carlo–based DFTþ DMFT studies
[24,26,27,33,38–41] and enter deep into the Fermi-liquid
regime, even down to T ¼ 0 [42]. This enables us to
explore the counterintuitive observation that the more
itinerant (xy) orbital has the smaller quasiparticle weight
[21,24,27,38,41,44,45]. We show that this effect is driven
by a van Hove singularity close to the Fermi level, as
elaborated in Ref. [24].
Model.—The low-energy structure of Sr2RuO4 can be

well described by a local basis of three maximally localized
Wannier functions [46,47] with Ru-4d t2g symmetry
denoted by fxy; xz; yzg. The corresponding noninteracting
Wannier Hamiltonian is characterized by the density of
states (DOS) shown in Fig. 3(a) below, reflecting the quasi-
2D tetragonal crystal structure of Sr2RuO4, with quasi-2D
xy orbitals and a strongly one-dimensional character of the
degenerate xz=yz orbitals. We employ the same Wannier
Hamiltonian as in Refs. [39,40,48] (without spin-orbit
coupling) combined with a local Kanamori interaction
[2,49], Hint ¼ ðU − 3JÞNðN − 1Þ=2 − 2JS2 − JL2=2, par-
ametrized by U ¼ 2.3 and J ¼ 0.4 [24]. Throughout this
work, we use eV ¼ 1 as the unit of energy if not otherwise
indicated. In the Hund-metal phase of Sr2RuO4, the pair-
hopping term of the Kanamori interaction, as part of
−JL2=2, is almost inactive. It can thus be neglected to
obtain a model with higher symmetry, which is more
tractable for NRG, as explained in Ref. [50].
Spin-orbital separation, Fermi liquid.—Since NRG can

reach arbitrarily small energy scales, we are able to directly
observe both spin-orbital scale separation and the onset of
Fermi-liquid behavior. The zero-temperature real-fre-
quency orbital and spin susceptibilities [50], χ00orb and
χ00sp, exhibit a separation of their maxima by more than
one decade, see Fig. 1(a). This spin-orbital separation in
Kondo scales, with Torb ≈ 6000 K and Tsp ≈ 500 K as
found from the maxima of χ00, is distinctive of correlated
Hund metals [2,6,7,19], where the Hund coupling J causes
the screening of the respective fluctuations to occur at
disparate energy scales. Further, the completed screening of
fluctuations [7] is signaled by linear behavior, χ00 ∝ ω,
found below roughly 1000 K and 25 K for χ00orb and χ00sp,
respectively. The fully coherent Fermi-liquid state thus
emerges below an energy scale of 25 K. The Fermi-liquid
onset is also seen in the temperature dependence of the
static spin susceptibility, χspðω ¼ 0Þ, which crosses over
from Curie–Weiss- to Pauli-like behavior, saturating
below TFL ≈ 25 K, see inset of Fig. 1(a). These results
clearly establish spin-orbital scale separation in the

low-temperature Fermi-liquid state of Sr2RuO4, as pro-
posed by previous studies above TFL [7,26].
A very direct observation of Fermi-liquid behavior is

possible by studying the renormalization group flow
diagram of the NRG algorithm [6,9,18,19]. Figure 1(b)
shows the NRG Hamiltonian’s (lowest) rescaled eigene-
nergies, ΛN=2EiðNÞ, depending on the energy scale Λ−N=2

of the RG flow, where Λ is the NRG discretization
parameter and N the length of the Wilson chain [50]. At
high energy, the states are pure atomic eigenstates, which
are screened by the bath when flowing down in energy.
Below TFL, the Fermi liquid is formed. There, the flow
reaches a fixed point, where the rescaled eigenenergies
become independent of N, ΛN=2EiðNÞ ¼ E�

i . The Fermi-
liquid nature of this fixed point is determined by
“towers” [9] of equidistant excitation energies within the
same symmetry sector, where each E�

i is composed of n
quasiparticle excitations, E�

i ¼ nEqp.
Each eigenstate has the quantum numbers ðQxy;Qxzþ

Qyz; 2SÞ, with orbital-resolved charge Qm relative to the
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FIG. 1. (a) Dynamic spin and orbital susceptibilities, χ00spðωÞ and
χ00orbðωÞ, showing spin-orbital scale separation. Inset: Static spin
susceptibility as a function of temperature. (b) NRG flow
diagram, showing the rescaled eigenenergies (with quantum
numbers given in the legend) as a function of the energy scale
[50], for the impurity model at self-consistency. The spin and
orbital Kondo temperatures (maximum of χ00) and the Fermi-
liquid scale, TFL, are marked by vertical lines.
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ground state, and total spin S. The most prominent tower of
states stems from xz=yz quasiparticles, i.e., eigenstates with
quantum numbers (0,0,0), (0,1,1), (0,2,2), (0,2,0), (0,3,1),
etc.; see solid lines in Fig. 1(b). States with an additional xy
quasiparticle are marked as dash-dotted lines. The Fermi-
liquid scale TFL is seen in the RG flow as the point where
eigenstates with equal charge but different spin become
degenerate; see the pairs (0,2,0), (0,2,2) and (1,1,0), (1,1,2).
Our direct evidence of the Fermi-liquid scale of Sr2RuO4,
which conforms to the TFL ≈ 25 K found in experiments
[21,28–31], is one of the main results of this work.
In order to understand how the different orbitals behave

regarding spin-orbital scale separation, we investigate in
Fig. 2 the orbitally resolved spin and angular-momentum
susceptibilities [50]. We find strong orbital differentiation
with larger amplitude in the xy than the xz spin response,
and generally a shift of spectral weight to lower frequencies
in the xy compared to the xz orbital. In nuclear magnetic
resonance (NMR) spectroscopy, the inverse nuclear
spin-lattice relaxation time, 1=ðT1TÞ, is related to the
zero-frequency slope of the electronic spin susceptibility,
1=ðT1TÞ∝∂ωχ

00jω¼0 (neglecting matrix elements) [62,63].
Computing the orbitally resolved ∂ωχ

00jω¼0 as a function of

temperature, we find that the xy response is about 2.5 times
stronger than the xz response, see inset of Fig. 2, in
qualitative agreement with experimental [31,64,65]
and theoretical works [66]. The temperature dependence
changes from linear to constant at TFL, in a similar fashion
for both orbitals, which we attribute to the strong orbital
mixing on the two-particle level [39].
Single-particle spectrum.—Apart from the RG flow

and (dynamic) susceptibilities, our calculations also pro-
vide single-particle spectral information. Although the
single-particle properties of Sr2RuO4 have been studied
extensively [24,26,27,33,38,45,48] using continuous-time
quantum Monte Carlo (CTQMC) solvers [67], these
calculations have a challenging scaling with inverse tem-
perature β, making it hard to reach the Fermi-liquid regime
with T < 25 K, i.e., β > 464 eV−1. Additionally, the
analytic continuation to real frequencies severely hampers
spectral resolution [68]. Here, we go beyond previous
works by analyzing Sr2RuO4 deep in the Fermi-liquid
regime at low temperatures, and even T ¼ 0, directly on the
real-frequency axis.
The local spectral function AlocðωÞ of Sr2RuO4 is

considerably renormalized compared to the DFT DOS
[24,45,48], see Fig. 3(a). When accounting for correlations,
the spectral features are retained but shifted towards the
Fermi level—both for the double peak in the xz=yz orbitals
and the narrow xy peak. The latter is generated by the van
Hove singularity in the xy orbital, which is shifted towards
the Fermi level by electronic correlations. The height of the
van Hove peak grows with decreasing temperature and
saturates below TFL, see inset of Fig. 3(a).
The imaginary part of the self-energy ImΣðωÞ, shown in

Fig. 3(b), determines the lifetime of excitations. It has
larger values at negative compared to positive frequencies,
yielding shorter lifetimes for hole excitations. Fermi-liquid
behavior only emerges at frequencies below TFL. The
real part of the self-energy ReΣðωÞ displays linear
(Fermi-liquid) behavior on the same small energy scale, see
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FIG. 2. Orbital-resolved, dynamic spin and angular-momentum
susceptibilities, χ00ðωÞ. Inset: Temperature dependence of ∂ωχ

00jω¼0

in the spin sector, with TFL marked as a dashed line.
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FIG. 3. Main panels: Real-frequency correlation functions at zero temperature. Insets: Characteristic values as a function of
temperature, converging below TFL (dashed line). (a) Local spectral function, AlocðωÞ, from DFTþ DMFT (solid lines) and DFT
(dotted lines). Inset: maxωAlocðωÞ. (b) Imaginary part of the self-energy, ImΣðωÞ. Inset: ImΣðω ¼ 0Þ. (c) Real part of the self-energy,
ReΣðωÞ, with the two linear regimes for ω < 0 and the low-energy, positive slope forω > 0 highlighted. Inset: Z ¼ ð1 − ∂ωReΣjω¼0Þ−1;
thick horizontal lines show the T ¼ 0 result for Z calculated via renormalized parameters.
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Fig. 3(c). However, at ω ≈ −100 meV, it exhibits a “kink”
leading to a second linear regime [lines in Fig. 3(c)], while,
for ω in the range þ200–400 meV, the slope of ReΣðωÞ
changes sign, “retracting” the renormalization of the
quasiparticle dispersion. Hence, in this energy range, the
quasiparticle velocity is larger than the bare one [33],
as opposed to the usual low-energy reduction due to
strong correlations. These single-particle properties are
in qualitative agreement with previous Monte Carlo results
[24,26,27,33,38,45,48].
The pronounced differentiation between the different

orbitals, seen in Figs. 1(b) and 2, is also reflected in the self-
energy. The xy orbital shows much stronger correlations
than the xz=yz ones, with higher curvature in ImΣðωÞ and
steeper slope in ReΣðωÞ at ω ¼ 0, as visible in Figs. 3(b)
and 3(c), respectively. The slope is related to the quasi-
particle weight, Z ¼ ð1 − ∂ωReΣjω¼0Þ−1, shown in the
inset of Fig. 3(c). The zero-temperature values of Z agree
with renormalized parameters extracted directly from the
spectrum (horizontal lines, see discussion below) and
are also consistent with experiments [21,48]. The low-
temperature relation Zxy < Zxz contrasts with Zxy > Zxz at
high temperature. Indeed, when lowering temperature, the
quasiparticle weights cross at ∼350 K, and, while Zxz
levels off at T ∼ 100 K, Zxy only saturates below TFL. This
shows that the coherence-to-incoherence crossover and the
corresponding coherence scales in Sr2RuO4 are strongly
orbital dependent [24,40]. It is only below TFL that all
orbitals are in the coherent Fermi-liquid regime.
At first sight, the stronger correlation in the xy orbital as

compared to the xz=yz orbitals, indicated by Zxy < Zxz, is
rather counterintuitive. Usually, the ratio between the local
Hubbard interaction U and the bandwidth W, U=W, is a
good estimator for the strength of correlations. However,
this clearly does not hold for Sr2RuO4, since the xy orbital
has a significantly larger bandwidth, Wxy > Wxz, see
Fig. 3(a). In Ref. [24], it has been argued that the strong
xy correlations result from the proximity of its van Hove
singularity to the Fermi level, see Fig. 3(a).
To understand this, we consider the spectral part of the

hybridization function AΔðωÞ of the self-consistent impu-
rity model. The van Hove singularity in Aloc;xyðωÞ gen-
erates a dip in AΔ;xyðωÞ [50] close to zero frequency, see
Fig. 4(a), which implies a reduction of the effective
coupling between impurity and bath at low energies for
the xy orbital. The weaker coupling, in turn, increases the
correlations and reduces the quasiparticle weight. The
temperature dependence of the dip, inset of Fig. 4(a),
matches the one of maxωAloc;xy in the inset of Fig. 3(a).
To disentangle the effect of the van Hove singularity

from other factors, we consider a simple, half-filled two-
orbital model with both orbitals having the same band-
width. We choose a semicircular lattice DOS for one orbital
and set the second one such that its hybridization function
has a dip at zero energy, see Fig. 4(b). Even in this

simplified model, we find that Z is smaller in the orbital
with a dip in the hybridization. This suggests that the
relevant measure of the correlation strength is the Hubbard
interaction divided by the effective low-energy hybridiza-
tion strength, U=AΔðω ¼ 0Þ, rather than U=W.
Quasiparticle parameters.—Within the NRG frame-

work, we can extract information about the Fermi liquid
and its quasiparticles not only from correlation functions
but directly from the RG flow. To this end, we compute
(zero-temperature) renormalized parameters from the low-
energy spectrum of the (self-consistent) impurity model
[69–72]. The impurity Green’s function has the low-energy
expansion

GðωÞ ≈ Z½ω − ϵ̃ − ZΔðωÞ�−1; ϵ̃ ¼ Z½ϵþ Σð0Þ�:

For a (finite) Wilson chain of lengthN,GðωÞ has first-order
poles at the single-particle excitation energies. Taking the
lowest particle- and hole-excitation energy EiðNÞ from
Fig. 1(b), we have two equations that can be solved for Z
and ϵ̃ and converged in N [69]. The results for Z [and ϵ̃ or
Σð0Þ] are reported in Ref. [50] and agree quantitatively with
those taken from ΣðωÞ, see inset of Fig. 3(c).
To go beyond the single-particle picture, we exploit that,

at any finite N, there are residual quasiparticle interactions
in the form of exponentially small corrections to the
equidistant tower of quasiparticle excitations. By compar-
ing two-particle-excitation energies ES

mm0 , with orbital
indices m and m0 and spin index S, to two single-particle
excitations Em and Em0 , the quasiparticle interaction ŨS

mm0

is given by [69]

ES
mm0 − Em − Em0 ¼ ŨS

mm0 jψmð0Þj2jψm0 ð0Þj2;

where jψmð0Þj2 is the quasiparticle density at the impurity
[50]. Hence, we are in the unique position to compute
quasiparticle interactions ŨS

mm0 as well as the zero-energy
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FIG. 4. (a) Spectral function of the hybridization AΔðωÞ in
DFTþ DMFT (solid lines) and DFT (dotted lines). Inset:
temperature dependence of the van Hove dip in AΔ;xyðωÞ.
(b) Quasiparticle weight Z as a function of Hubbard U, for a
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real-frequency vertex Γ, related via ŨS
mm0 ¼ ZmZm0ΓS

mm0

[69,71], for Sr2RuO4. The results, listed in Ref. [50], show
that the orbital dependence of ŨS

mm0 is governed by Zm,
while ΓS

mm0 displays only weak orbital dependence.
Strikingly, the effective interaction in the spin-triplet sector
is attractive. We attribute this to the same mechanism as the
Hund-metal s-wave spin-triplet superconducting instability
found in model studies [74,75].
Conclusion.—By following the NRG flow starting from

high and proceeding to the lowest temperature and energy
scales, we have analyzed spin-orbital scale separation and
the emergence of the Fermi liquid in Sr2RuO4 within a real-
materials DFTþ DMFT setting. Through linear frequency
behavior of zero-temperature dynamic susceptibilities and
fixed-point analysis of the NRG flow, we provide theo-
retical evidence for a Fermi-liquid scale, in remarkable
agreement with the experimentally observed TFL ≈ 25 K
[21,28–31]. Characteristic quantities, like χsp and Z, are
found to converge below 25 K. Further, our real-frequency
and zero-temperature results substantiate a number of
features, such as strongly shifted spectral peaks and the
peculiar frequency dependence of the self-energy, previ-
ously found from analytically continued Monte Carlo data
[24,26,27,33,38–41]. We showed that the proximity of the
van Hove singularity to the Fermi level drives strong orbital
differentiation in Sr2RuO4. Notably, the effect of van Hove
singularities on the correlated state is of importance even in
nontransition metal systems like twisted bilayer graphene
[76–78]. Finally, the extracted quasiparticle interactions
ŨS

mm0 reveal attractive coupling in the spin-triplet sector
within our ab initio analysis. This paves the way towards
a complete description of quasiparticles and their inter-
actions in Sr2RuO4, which are of crucial importance for
the understanding of the still puzzling superconducting
state [23,79].
Generally, our work demonstrates the potential of DFTþ

DMFTþ NRG as a new computational paradigm for real-
material systems to (i) directly access real-frequency proper-
ties at arbitrarily low temperatures and (ii) reveal and
elucidate the intricate renormalization process that occurs
during the dressing of atomic excitations by their solid-state
environment.
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