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Abstract

In this thesis, we develop an algorithm for a multiloop functional renormalization group
(mfRG) approach to the pseudo-fermion Heisenberg model on the Kagome lattice. This algo-
rithm refines previous pseudo-fermion-fRG approaches by its generalization to multiloop cor-
rections of arbitrary order. This can be used to compute an fRG flow that is independent
of the choice of regulator which can substantially improve the quantitative reliability of fRG
analyses. In the scope of this thesis, we use this algorithm to compute the phase diagram at
T = 0 with nearest (J1) and next-to-nearest neighbor (J2) interactions in the one- and two-loop
scheme. We find two spin liquid phases for J2 ≈ 0 and J1 ≈ 0, respectively, as well as four
distinct magnetically ordered phases. By computing the magnetic susceptibility, we find indi-
cation that both spin liquid phases are Z2 (gapped) spin liquids with an exponential decay of
spin-correlations in real space. Our determined correlation length of ξ = 1.1424 lattice spacings
for the spin liquid phase at the Heisenberg point is in excellent agreement with the literature
values. Further, we investigate the effects of second-order corrections on the phase diagram and
find that the phase boundaries from our (and other previous) one-loop-fRG studies are shifted
towards the ones found in DMRG studies, making further investigations of higher order loop
corrections very promising.
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1. INTRODUCTION

1 Introduction

A ubiquitous phenomenon in many branches of physics is the breaking of symmetries at low tem-
peratures, the transition from the para- to the ferro-magnetic phase at the Curie temperature being
one famous example in the context of magnetism. However, frustrated quantum magnets in which
localized magnetic moments interact strongly, do not necessarily share this property and provide
valuable insights into the physics of competing ground states and strongly correlated many body
systems with unusual properties where, even at T = 0, strong quantum fluctuations persist and no
symmetries are broken. These phases are called spin liquids.
Remarkably, spin liquid states support fractional excitations (such as spinons that carry spin 1

2 but
no charge), exhibit strong long-range entanglement and give rise to artificial gauge fields [2]. The
lattice gauge theories decribing these states comprise many analogies to high energy physics, such
as the Higgs mechanism and particle confinement as known from QCD [44].
The analysis of quantum magnets with competing ground states has seen numerous approaches
on the analytical (e.g. large-N-expansion [43], mean-field approaches [52]) and numerical (e.g.
DMRG [6], fRG [39]) side which have by now led to a good understanding and classification of
spin liquid states. However, there remain open questions such as for the ground state of the spin- 1

2
Heisenberg model on the Kagome lattice which we address in this thesis. Though most numerical
studies seem to find evidence for a spin liquid ground state, there is still disagreement about its
exact nature and the details of the phase diagram.
In this thesis, we turn our attention to these questions under use of the functional renormalization
group (fRG). This method is ideally suited for quantum magnetic systems as it treats tendencies
for magnetic order and disorder on an equal footing and is a priori not restricted to certain spa-
cial dimensions. Though previous fRG studies of Heisenberg models have led to interesting results
and have demonstrated the power of this technique [5, 16, 47], they have so far mostly been useful
for qualitative analyses. The quantitative reliability of the standard fRG approach is limited due
to its dependence on the choice of regulator that is introduced by hand. This dependence is the
result of the so-called one-loop approximation - a truncation that is needed in order to render the
flow equations solvable and with which one neglects the 6-point- and all higher-order vertices. Re-
cently, a multiloop fRG scheme has been derived that overcomes precisely this issue and provides
a framework that restores the regulator independence of the flow equations by adding corrections
that mimic the effect of the 6-point vertex [22]. In this thesis, we implement this multiloop fRG
scheme for the Kagome Heisenberg model (KHM) in the pseudo-fermion approach and explicitely
compare the results of the one- and two-loop scheme.
It should be mentioned that previous pseudo-fermion fRG studies on the KHM have already derived
and implemented effective flow equations for the 1-loop case [39, 47]. Moreover, the effect of two-
loop corrections has been investigated on the square lattice in Ref. [42] but there has not yet been
a systematic treatment of higher loop orders in the pseudo-fermion KHM.

This thesis is structured in the following way:
Chapter 2 is devoted to a review on the theoretical description of spin liquids, followed by a
short conceptual overview over the functional renormalization group. We follow the reasoning from
Ref. [23] to argue why it is important to go to higher loop orders in order to restore self-consistency
and regulator-independence in the truncated flow equations and review the mfRG-scheme that is
based on the parquet formalism and provides important corrections to the standard (truncated)
fRG flow equations [22].
In Chapter 3, we present the analysis in the fRG scheme. We use the general vertex parametrization
from Ref. [39] in order to derive bubble and loop functions which can be combined to reproduce the
flow equations presented in Ref. [39] but contain additional important information that is vital for the
implementation of higher loop orders. Furthermore, we adapt the high frequency parametrization
from Ref. [54] to our system and present our algorithmic implementation of the pf-mfRG for the
KHM that allows in principle to compute arbitrary loop orders.
Our physical results are presented in Chapter 4. We discuss our findings and relate them to
previous research on this topic.
In Chpater 5, we summarize our findings and give an outlook to possible future applications of
our algorithm.
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2. THEORETICAL BACKGROUND

2 Theoretical Background

Systems of localized spins with pairwise interactions offer a rich variety of phenomena and pose
challenging questions which have attracted much attention during the past decades and to which
possible answers have partly remained unaswered until today. The simplest quantum mechanical
model describing the dynamics of interacting spins on a lattice is the Heisenberg model, given by
the Hamiltonian:

Ĥ =
∑
ij

Jij ~Si · ~Sj , (1)

where ~Si is the spin operator on lattice site i and Jij are the exchange couplings.

J1J2

Fig. 1: The Kagome lattice is based
on a corner sharing triangular geometry.
The dotted lines denote nearest neigh-
bor (J1) and next-to-nearest neighbor
(J2) interaction between the spins resid-
ing on the lattice sites.

?
Fig. 2: Ising spins on the corners of a
triangle as simple example for geometric
frustration. No antiferromagnetic oder
is possible. This geometry leads to a
six-fold degenerate ground state [2].

Typically, one restricts Jij to nearest neighbor, and
maybe also to next-to-nearest neighbor interactions as
sketched in Fig. 1 for the Kagome lattice. On this lat-
tice, interesting effects emerge due to magnetic frustra-
tion. Magnetic frustration can either be the consequence
of a spatial geometry (typically triangular-based struc-
tures) or of competing interactions that lead to a situa-
tion where it is impossible to find a spin configuration for
the ground state that simultaneously minimizes the bond
energies between all pairs of spins.

The simplest example for geometric frustration is the
ferromagnetic Heisenberg interaction on a triangle with
Ising spins on the corners as shown in Fig. 2. In this ar-
rangement, not all spins can be aligned antiparallel which
results in a six-fold degenerate ground state.
Generally, in systems where magnetic order is prevented
in the ground state, the nature of the ground state can be
very exotic, inluding phases of matter such as spin liquids;
states that do not break any symmetries and exhibit long-
range entanglement and fractional excitations [2, 44,52].

Let us give a brief review on the theoretical descrip-
tion of spin liquids:

2.1 Quantum Spin Liquids

Resonating Valence Bonds
A first step towards quantum spin liquids (QSLs) in
the context of the spin-1/2 antiferromagnetic Heisenberg
model (1) is the concept of valence bonds. Valence bonds
are pairs of spins that are entangled such that they form
a spin-0 singlet. The state where a lattice is completely
covered with valence bonds, such that each spin is part of
exactly one bond, is called valence-bond solid (VBS) and
can be written as:∏

i,j

1√
2

(
|↑〉i |↓〉j − |↓〉i |↑〉j

)
, (2)

where each site index appears exactly once. Importantly,
VBS states spontaneously break the space-group symmetry whereas the Hamiltonian of which they
are the ground state preserves the lattice symmetries [44]. The broken lattice symmetries can be
restored by linearly superposing a broad distribution of different possible VBS states. These states
have first been proposed by Anderson in 1973 and were dubbed resonating valence bond (RVB)
states [1]. This idea is sketched on the triangular lattice in Fig. 3. The RVB state is the pro-
totypical spin liquid and allows for an intuitive picture of fractionalized exciations: By flipping a
single spin, which amounts to a ∆S = 1 triplet excitation, one can break one singlet bond. As a
consequence, one obtains two spins pointing in the same direction that can move as independent
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2. THEORETICAL BACKGROUND

|VBS〉 = with = 1√
2

(
−

)

(a) Valence bond solid where the lattice is covered with spin- 1
2

singlets. Lattice symmetries are broken in
this state.

|RVB〉 = + +...

(b) Short range RVB state as superposition of all possible different singlet coverings. This state does not
break lattice symmetries.

|RVB〉 = +...

(c) Long range RVB state where singlets bonds are not restricted to nearest neighbors.

→ →

(d) Making a triplet exciation (∆S = 1) by flipping one spin breaks a singlet and creates two spinon
excitations with spin 1

2
but no charge that can move independently.

Fig. 3: Sketch of VBS and RVB states on the triangular lattice. Subfigure d) shows two spinons
that result from a fractionalized ∆S = 1 triplet excitation. Figure after Ref. [2].

exciations and carry spin 1
2 but no charge, see Fig. 3d. These excitations are called spinons and

are the result of a fractionalization of the triplet exciation.
The fact that valence bonds can be created in many different ways (in particular from short range
and long range VBS states) makes it plausible that there are many different kinds of spin liquids on
different lattice geometries.

Classification of Spin Liquids
One approach to their classification has been undertaken by Wen who developed a scheme to dis-
tinguish betwen different kinds of spin liquids by the type of gauge fluctuations that arise in the
low-energy effective theories based on a mean-field approach [50–53]. The first step in constructing
these mean-field theories is to rewrite the physical spin operators as product of “parton” operators
that can either be fermionic or bosonic. In the fermionic case – the one that is used in this thesis –

9



2. THEORETICAL BACKGROUND

the spin operators are written as:
~Si = 1

2

∑
α,β

ĉ†i,α~σαβ ĉi,β , (3)

with σµ(µ = 1, 2, 3) being the Pauli matrices. As a consequence of the parton-formulation, there is
now a local U(1) gauge redundancy in the physical spin operators: ĉi → ĉie

iθi [53]. Furthermore, it
must be mentioned that the original Hilbert space containing only the states |↑〉 and |↓〉 is enlarged
in the parton-formulation and consists now of four states:

H = {|↑〉 , |↓〉} → {|0〉 , |↑〉 , |↓〉 , |↑↓〉}.

The first and the last state are pure artefacts of the parton formulation and only the states with
one fermion per site are physical. It is therefore necessary to enforce the contraint:∑

σ

ĉ†iσ ĉiσ = 1. (4)

Consequently, the ground state |ΨMF〉 of the mean-field Hamiltonian must be projected onto the
subspace of physical states to yield a physical spin wave function. This projection is equivalent to
including gauge fluctuations in the mean field theory which imposes condition (4) and delivers a
valid low-energy effective theory of the spin liquid in which the gauge redundancy from the parton
construction is implemented as gauge invariance [52,53].

From this reasoning, Wen developed the Projective Symmetry Group (PSG) which serves as a
classification scheme for different mean field approaches in this “parton”-formulation1 and is de-
fined as set of all transformations GXX that leave a specific mean field ansatz (e.g. χij = 〈ĉ†i,αĉj,α〉)
invariant. Each such transformation is the combination of a symmetry transformation X, e.g. a
lattice translation, combined with a corresponding gauge transformation GX . It is precisely the
gauge transformations GX that allow to distinguish between different ansätze that share the same
space-group symmetry: All elements of the PSG that are pure gauge transformations also form a
group, called Invariant Gauge Group (IGG), that is associated with the gauge group that charac-
terizes the spin liquid phase. Importantly, the PSG is a property of the mean field ansatz and is
therefore independent of the Hamiltonian. If the corresponding mean field states are stable against
fluctuations, this classification applies to real physical spin liquids [52]. Let us elucidate this point
in more detail and present two types of spin liquids that will be important for our analysis:

U(1) and Z2 Spin Liquids
In this section, we outline how to obtain U(1) and Z2 spin liquid states from a mean field approach.
The idea is to use the Higgs mechanism in order to break a SU(2) lattice gauge theory down to a
U(1) or a Z2 gauge theory that describes physical spin liquid states. We sketch only the idea and
refer to Refs. [51–53] for details.
Writing the Heisenberg Hamiltonian in the parton-formulation yields (up to a constant):

H =
∑
i,j

− 1
2Jij

(
ĉ†i,αĉj,αĉ

†
j,β ĉi,β + 1

2 ĉ
†
i,αĉi,αĉ

†
j,β ĉj,β

)
. (5)

In addition to the mean field ansatz χijδαβ = 〈ĉ†i,αĉj,β〉 introduced above, we define a pairing term,
ηijεαβ = −2〈ĉi,αĉj,β〉, that allows for the condensation of fermion pairs. Making the following
definitions:

Uij =

(
χ†ij ηij
η†ij −χij

)
= U†ji and ψ̂ =

(
ĉ↑
ĉ↓

)
,

one obtains the following Hamiltonian on the mean field level [52]:

HMF =
∑
ij

3
8Jij

[
1
2 tr(U†ijUij)− (ψ̂†iUijψ̂j + h.c.)

]
+
∑
i

al0ψ̂
†
i τ
lψ̂i, (6)

1However, the PSG classification is not exhaustive since there exist ansätze that fall in the same PSG-class but
can give rise to different states upon variation of the parameters in the ansatz [52].
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2. THEORETICAL BACKGROUND

where the last term enforces the constraint 〈ψ†i τ lψi〉 = 0 (which is equivalent to constraining the
Hilbert space to one fermion per site on average). Here, l = 1, 2, 3, where τ l are the Pauli matrices
and al0 are Lagrange multipliers. This formulation has the great advantage that the invariance of
the Hamiltonian under local SU(2) gauge transformations Wi,

ψ̂i →Wiψ̂ (7)

Uij →WiUijW
†
j , (8)

becomes visible. In fact, this is a consequence of the parton formulation which has a SU(2) re-
dundancy that is more general than the above mentioned U(1) gauge redundancy. Dropping the
constant term in front and including phase fluctuations of Uij around the mean field:

Uij = Ūije
ialijτ

l

,

one obtains the following Hamiltonian that describes spinons coupled to SU(2) lattice gauge fields
[51]:

HMF =
∑
ij

− 3
8Jij(ψ̂

†
i Ūije

ialijτ
l

ψ̂j + h.c.) +
∑
i

al0ψ̂
†
i τ
lψ̂i. (9)

Again, τ l for l = 1, 2, 3 are the Pauli matrices. The 2 × 2 matrices alijτ
l describe the gauge

fluctuations. Now comes the important point: To describe a physical spin liquid state, we need
a way to construct a stable mean-field theory in which interactions induced by fluctations vanish
at low energies. This can be achieved by giving the gauge fluctuations a finite gap through the
Higgs mechanism which breaks the SU(2) gauge structure down to a U(1) or a Z2 gauge structure,
depending on the form of the mean field ansatz [44,53]. To understand this, it is helpful to first realize

that the energy of a configuration is a function of the mean field ansatz Uij , i.e. E(Ūij , e
ialijτ

l

) [53].
Let us distinguish between two cases:

1. ηij = 0 and χij 6= 0: In this case, one can choose: Ūij ∝ eiφijτ
3

[53]. Hence, the global U(1)

gauge transformation eiθτ
3

leaves the ansatz invariant whereas it is not invariant under eiθτ
1,2

.
The SU(2) gauge structure is effectively broken down to a U(1) gauge structure. Knowing
that the energy must be gauge invariant and setting a1,2

ij = 0 for the moment, one finds [53]:

E(Ūij , e
ia3
ijτ

3

) = E(Ūij , e
i(a3

ij+θi−θj)τ
3

),

i.e. a3
ij transforms as a3

ij = a3
ij+θi−θj . A mass term ∝ (a3)2 would be incompatible since it is

not invariant under this transformation. Hence, this state has gapless U(1) gauge fluctuations.
In contrast, by writing down all terms for the energy that are compatible with gauge invariance
and expanding to quadratic order in the al (we refer to Ref. [53] for details), one finds that a2

and a3 do acquire as mass such that these gauge bosons are gapped.

2. ηij 6= 0 and χij 6= 0: In this case, it is not possible to choose a distinguished direction for

the ansatz, such that the Higgs mechanism generates a mass for all al. The only gauge
transformation that leaves the ansatz invariant is Wi = −τ0. The SU(2) gauge structure has
been broken down to a Z2 gauge structure, i.e. the spin liquid state is gapped.

Let us only mention that the Higgs mechanism is realized here through the condensation of “SU(2)
gauge flux” which is defined as P (Ci) = ŪijŪjk...Ūli. The two above cases can just as well be
distinguished in terms of this flux: If the flux for all possible loops with the basepoint i point in
the same direction, e.g. P (C) ∝ χ0(C) + iχ3(C)τ3, we have case 1 and the SU(2) gauge structure
is broken down to a U(1) gauge structure. If different loops result in fluxes pointing in different
directions, case 2 is realized and we obtain a Z2 spin liquid.

Spin Liquids on the Kagome Lattice
The Kagome lattice (see Fig. 1) is a geometry that features strong geometric frustration due to
its triangular corner-sharing structure combined with a small coordination number of 4 and it is
therefore a promising candidate for a quantum spin liquid ground state. On the experimental side,
the interest for spin liquids on the Kagome lattice was spurred by the synthesization of the mineral

11



2. THEORETICAL BACKGROUND

herbertsmithite ZnCu3(OH)6Cl2 in 2005 which is a perfect realization of the Kagome lattice with a
strong spin-1/2 antiferromagnetic nearest neighbor interaction [46]. In addition to the Heisenberg
interaction, it has an exchange anisotropy and Dzyaloshinkii–Moriya interaction which is a conse-
quence of spin orbit coupling and comes from a broken mirror symmetry [10, 28]. Measurements
of the magnetization in herbertsmithite show indeed no sign of magnetic order down to very low
temperatures [46].

Though theoretical studies of pure Heisenberg systems on the Kagome lattice strongly support
the hypothesis of spin liquid ground states for certain paramater regimes, there is still no consensus
about their exact nature. Numerical analyses hint particularly at two possible types of spin liquids
on the Kagome Heisenberg model (KHM) which are precisley the ones introduced in the previous
subsection, namely:

• Z2-spin liquid with a finite gap2 and hence exponential decay of spin-correlations in real
space [5, 6, 47,50,55],

• Gapless U(1)-Dirac-spin liquid with fermionic excitations and power-law decay of real space
spin-corrrelations [11,12,14].

In this thesis, we are going to address the question for the ground state with the help of the functional
renormalization group that we will briefly explain in the following section.

2.2 Functional Renormalization Group

2.2.1 Generating Functional Approach

In the analysis of strongly correlated systems in Condensed Matter Physics, one often deals with
models where different physical phenomena and different types of collective excitations emerge on
very different energy scales. The functional renormalization group (fRG) is a versatile framework to
renormalize such theories which allows to analyze phenomena that are not accessible with standard
perturbative methods in which all energy scales are treated at once which often leads to divergencies
and unphysical results. Conceptually, fRG is closely related to the Wilson-RG approach in the sense
that it is based on successively integrating out high energy degrees of freedom in order to obtain an
effective low energy theory. However, instead of considering the flow of coupling constants, it allows
to compute the flow of n-particle vertex functions, Γ(n)({ki}, {ωi}), with their full momentum and
frequency dependence. In its exact representation, the fRG-flow is very compactly encoded in the
Wetterich equation, a flow equation for a generating functional Γ[φ] called effective action. This
functional differential equation being unsolvable in practice, it is is often times useful to expand it in
the fields φ to obtain an infinite hierarchy of coupled first order differential equations for all n-particle
vertex functions that is a good starting point for approximations. In the following, we will briefly
sketch the conventional fRG approach (for computational details we refer to Refs. [3, 21,29]) which
will allow to motivate the multiloop fRG (mfRG) approach that has recently been been derived in
the framework of the parquet formalism in Ref. [22] (see also Sec. 2.2.2) and that we implemented
for our analysis.

Starting from the standard generalized many body action S[ψ,ψ] = −(ψ,G−1
0 ψ) + V [ψ,ψ] with

Grassmann fields ψ and ψ, we define the generating functional for connected Green’s functions as:

G[η, η] = − log
(∫
D[ψ,ψ]e−S[ψ,ψ]+(η,ψ)+(ψ,η)

)
, (10)

with (η, ψ) =
∫
k
ηkψk as notational simplification which implies integration over continuous and

summation over discrete quantum numbers that are contained in the general multiindex k. This
multiindex could for instance contain a fermionic Matsubara frequency ω, a momentum vector k,

2Though finite, the gap is expected to be small in a potential Z2-spin liquid: ∆
J1

< 0.17 in Ref. [55], ∆
J1

= 0.13(1)

in Ref. [6].
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2. THEORETICAL BACKGROUND

and a spin σ, i.e. k = (ω,k, σ). The connected n-particle Green’s functions for the fields ψ and ψ
are given by

G(2n)(k1′ , .., kn′ ; k1, .., kn) = (−1)n
δn

δηkn′ ...δηk1′

δn

δηkn ...δηk1

G[η, η]
∣∣∣
η=η=0

. (11)

Moreover, it is convenient to introduce new Grassmann fields φ and φ that are defined by:

φ = −δG[η, η]

δη
φ =

δG[η, η]

δη
. (12)

From this, one can define the effective action Γ[φ, φ] as Legendre transform of G[η, η]:

Γ[φ, φ] = (η, φ) + (φ, η) + G[η, η], (13)

where η[φ] and η[φ] depend on the Grassmann fields φ and φ since they are determined by the
inversion of Eq. (12). Importantly, the functional derivatives of Γ[φ, φ] that are defined in analogy
to Eq. (11) – now with respect to φ and φ – yield the one-particle irreducible vertex functions.
These are related to the n-particle connected Green’s functions by the generic properties of the
Legendre transform which result in particular in the important relation:

Γ(2)(k′; k) =
∂Γ[φ, φ]

∂φk′∂φk

∣∣∣∣∣
φ=φ=0

= G−1
0 (k′; k)− Σ(k′; k), (14)

where Σ denotes the self energy and, for a systems with translation and spin rotation invariance,
the bare propagator is given by

G0(k′; k) =
1

iω − (εk − µ)
δωω′δkk′δσσ′ .

Here, εk denotes the single particle energy and µ is the chemical potential.
More generally, one finds the reciprocal correspondence: ∂2Γ

∂φk′∂φk

∂2Γ
∂φk′∂φk

∂2Γ
∂φk′∂φk

∂2Γ
∂φk′∂φk


︸ ︷︷ ︸

Γ(2)[φ,φ]

= −

(
∂2G

∂ηk∂ηk′
∂2G

∂ηk∂ηk′
∂2G

∂ηk∂ηk′
∂2G

∂ηk∂ηk′

)−1

︸ ︷︷ ︸(
G(2)[η,η]

)−1

. (15)

The effective action Γ[φ, φ] has a very distinct advantage over the action S[ψ,ψ]: Since the orig-
inal action S[ψ,ψ] is fixed by the microscopic model, its equations of motion for the fields ψ and
ψ describe the classical dynamics of the system. In Γ[φ, φ] however, the quantum fluctuations have
been fully accounted for and are therefore implicitly contained in all quantities that are derived
from the effective action. It is thus clear that it is most convenient to formulate the flow equations
in terms of Γ[φ, φ] in order to capture the quantum effects of the theory.
In order to introduce a scale dependence to the effective action, one implements an infrared cutoff

in the bare Greens function G
(2)
0 (k′; k) ≡ G0(k′; k) such that

G0(k′; k)→ G0,Λ(k′; k) with

{
G0,Λ(k′; k) = G0(k′; k) for Λ→ 0

G0,Λ(k′; k) = 0 for Λ→∞.
(16)

There are different ways to implement a regulator that fulfills these conditions and in practice, the
nature of the problem makes one or the other choice more favorable. One possibility is to introduce
a mass term to the Greens function that suppresses the low energy modes:

G−1
0,Λ(k′; k) = G−1

0 (k′; k)− fregΛ (k′; k),

where fregΛ (k′; k) is a frequency or momentum-dependent regulator that can freely be chosen as long
as the conditions in Eq. (16) are met. Another possibility (which we will use in our analysis) is a
multiplicative regulator, e.g.:

G0,Λ(k′; k) = Θ(|ω| − Λ)G0(k′; k).
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2. THEORETICAL BACKGROUND

In principle, however, the exact flow equations are independent of the realization of the regulator
and any regulator fullfilling Eq. (16) is valid.
Implementing a regulator automatically introduces a Λ-dependence to GΛ[η, η] and by Eq. (12) also
to η → ηΛ and η → ηΛ. Replacing all constituents of Eq. (13) by their scale dependent version
and taking the derivative on both sides with respect to Λ yields the flow equation for ΓΛ[φ, φ], the
well-known Wetterich equation3:

d

dΛ
ΓΛ[φ, φ] = −

(
φ, ( d

dΛG
−1
0,Λ)φ

)
− 1

2
tr

[
( d
dΛG−1

0,Λ)
(
Γ

(2)
Λ [φ, φ]

)−1
]
, (17)

with

G−1
0,Λ(k′; k) =

(
G−1

0,Λ(k′; k) 0

0 −G−1
0,Λ(k; k′)

)
.

It is worth making the connection between Γ[φ, φ] and S[φ, φ] more precise in order to under-
stand more intuitively what these objects mean:

At the initial energy scale of the flow Λ0, where effects from quantum fluctuations are suppressed,
the effective action reduces to the regularized bare action:

ΓΛ0 [φ, φ] = SΛ0 [φ, φ].

In the limit Λ→ 0, the effective action simply becomes the unregularized effective action since the

regulator vanishes in this limit, i.e. ΓΛ[φ, φ]
Λ→0−→ Γ[φ, φ]. Physically, variation of Λ thus corresponds

to tuning between the regularized bare action and the unregularized effective action which describes
the effective low energy theory sought-after4.
It remains to insert the power expansion of the vertex functions,

Γ[φ, φ] =
(−1)n

(n!)2

∑
k1..kn
k1′ ..kn′

Γ
(2n)
Λ (k1′ , ..., kn′ ; k1, ..., kn)φ1′ · · ·φn′φ1 · · ·φn, (18)

and Eq. (15) into the Wetterich equation (the latter is necessary in order to handle the inverse
vertex function on the right hand side). Identifying terms of equal power in the fields, one obtains
a hierarchy of coupled flow equations for all n-particle vertex functions. With the definition of the
single scale propagator SΛ as

SΛ =
d

dΛ
GΛ

∣∣∣∣∣
Σ=const.

, (19)

they can graphically be represented as shown in Fig. 4.
In order to obtain a closed set of equations, it is necessary to truncate the hierarchy of flow equations
at some order. In practice, already computation of the 6-point vertex, Γ(6), is beyond the numer-
ically feasible which motivates the very widely used one-loop approximation in which the 6-point
vertex in the flow equation for Γ(4) is left out and all flow equations for higher order vertices are
neglected.

3To arrive at this compact result, it is essential to use the identities in Eq. (12). For a rigorous treatment in full
detail, we refer in particular to Refs. [3, 21].

4In the literature, it is also common practice to define the flow equation in terms of the average effective action
ΓWet

Λ [φ, φ] (c.f. Ref. [3]) which is related to the effective action above by: ΓWet
Λ [φ, φ] = ΓΛ[φ, φ] − (φ, fregΛ φ) if

a regulator fregΛ is introduced as a mass term: G−1
0,Λ = G−1

0 − fregΛ . The functional ΓWet
Λ [φ, φ] reduces to the

unregularized bare action S[φ, φ] at the initial energy scale and thus tunes smoothly between the macroscopic action
and the renormalized action at the end of the flow. However, this comes at the cost of a less natural definition of
ΓWet

Λ [φ, φ] which is no longer a simple Legendre transform of GΛ[ηΛ, ηΛ] as it was our case (c.f. Eq. (13)).
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2. THEORETICAL BACKGROUND

a)

b)

1̂′ 1̂
= −

1̂′ 1̂

1̂′ 1̂

2̂ 2̂′

=

1̂′ 1̂

2̂ 2̂′

+ 1
2

1̂′ 1̂

2̂ 2̂′

−

1̂′ 1̂

2̂ 2̂′

+

1̂′ 1̂

2̂ 2̂′

Fig. 4: Lowest order fRG flow equations. a) Self energy flow. The crossed fermion line represents
the single scale propagator. b) Flow of the 2-particle vertex function. In the conventional one-loop
approach, the hierarchy is truncated before the six-point vertex as indicated by the red line. The
black dashed lines indicate that the two internal propagators are differentiated w.r.t. Λ at constant

self energy, i.e. ∂Λ(GΛ ·GΛ)
∣∣∣
Σ=const.

= SΛ ·GΛ +GΛ · SΛ .

2.2.2 Multiloop Approach from Parquet formalism

The truncation described above is a necessary step to render the flow equations solvable. However,
there is space for improvements that can partially compensate for the error introduced by the
uncontrolled approximation of truncating the flow equations at order n = 2. In the literature, a
very common approach for including corrections is the Katanin substitution which consists of adding
a term to all differentiated propagators that mimics some of the higher order vertex contributions
that are discarded by the truncation:

SΛ → ∂ΛGΛ = SΛ +GΛ(∂ΛΣ)GΛ.

Although this leads to significant improvement in some cases, there remains a major issue in the
RG-flow described by the truncated equations which prevents quantitative reliability of the data:
The truncation destroys the total derivative that is present in the (exact) Wetterich equation. Con-
sequently, the flow of Γ(2) and Γ(4) is no longer independent of the choice of regulator which is
introduced by hand. The main advantage of the multiloop fRG (mfRG) approach is its ability to
restore this total derivative on the right side of the flow equations. In the following, we will briefly
sketch the derivation of the multiloop flow equations presented in Ref. [22], relate them to the one-
loop equations and clarify their physical meaning.
The mfRG approach builds on the parquet formalism which provides a natural classification scheme
for two-particle reducible (2PR) four-point vertices that is used to construct self consistent equations
for general four-point vertices. The classification amounts to the identification of any possible two-
particle-vertices either as reducible in a specific channel r ∈ {a, p, t} or as two-particle-irreducible
(2PI). The three two-particle-reducible channels are denoted as “a” (anti-parallel), “p” (parallel),
and “t” (transverse) according to the way in which one needs to cut two internal fermionic lines to
split the diagram into two parts. Moreover, the mfRG method used in this thesis is based on the
approximation of the totally irreducible four-point vertex R as bare vertex, i.e. R = Γ0, which is
known as parquet approximation. The parquet equations for the two-particle vertex are very com-
pactly stated as:

Γ = R+
∑
r

γr, (20)

Ir = R+
∑
r′ 6=r

γr′︸ ︷︷ ︸
≡γr̄

, (21)

γr = Ir ◦Πr ◦ Γ, (22)
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2. THEORETICAL BACKGROUND

where γr (Ir) are all diagrams that are 2PR (2PI) in channel r and Πr are two full propagators that
connect two vertices such that they form a bubble that is 2PR in channel r. Starting from these
relations, it is straightforward to introduce a scale dependence by replacing all propagators by their
scale dependent version in the same manner as in Eq. (16). This results in a scale dependence of
also all other constituents in the parquet equations besides the totally 2PI vertex R = Γ0 (in the
parquet approximation) which makes it safe to suppress all Λ-dependencies in the notation of the
following. The parquet approximation is the only approximation that is made in the mfRG scheme
and it is also the only input that one needs to specify at the beginning of the flow.
The last step towards the flow equations consists of taking the derivative with respect to the flow
parameter Λ on both sides of Eq. (22). Carefully employing the Leibniz rule and reshuffling iden-
tities that result from differentiating also the other parquet relations 5, one arrives at a differential
equations for γr:

γ̇r = Γ ◦ Π̇r ◦ Γ︸ ︷︷ ︸
γ̇

(1)
r

+ İr ◦Πr ◦ Γ︸ ︷︷ ︸
γ̇

(L)
r

+ Γ ◦Πr ◦ İr ◦Πr ◦ Γ︸ ︷︷ ︸
γ̇

(C)
r

+ Γ ◦Πr ◦ İr︸ ︷︷ ︸
γ̇

(R)
r

, (23)

and thus at the compactly written flow equation for the general vertex Γ:

Γ̇ =
∑
r

γ̇r. (24)

The right side of Eq. (23) can be constructed iteratively as shown diagrammatically in Fig. 24 in
Appendix A. From Eq. (23), it becomes clear what the term “multiloop” precisely means in this
context: It refers to the fact that one iteratively computes multiple higher order corrections to the
flow equations which are separately all of the one-loop structure. These higher order contributions
are important corrections that are missed with the conventional one-loop truncation as will become
clear in the following.
In order to compute the bubbles in Eq. (23) at different values for Λ, it is necessary to gain
knowledge about the evolution of the self energy Σ during the flow. Knowing the Schwinger-Dyson
equation which relates the self energy to the two-particle-vertex,

Σ = −(Γ0 + Γ0 ◦ΠpΓ) ·G,

one can again find a flow equation by making all propagators (also those implicitly contained in Γ)
scale dependent and then taking the derivative with respect to Λ on both sides. Although this is
conceptually straight forward, casting the right side into a form that contains only known objects at
a specific Λ during the flow becomes quite involved. Hence, we only state the result for the parquet
approximation R = Γ0 and refer to Ref. [22] for all details:

Σ̇ = [−Γ · S]︸ ︷︷ ︸
Σ̇std

+ [−γ̇(C)
t ·G]︸ ︷︷ ︸
Σ̇t

+ [−Γ · (G · Σ̇t ·G)]︸ ︷︷ ︸
Σ̇t

. (25)

The first contribution is the standard term from the self energy flow that was derived in Sec. 2.2,
whereas the last two contributions stem from the multiloop contributions in the vertex. The vertex

γ̇
(C)
t was defined in Eq. (23). The diagrammatic representation of the flow equation is shown in

Fig. 5.

5The derivation is explained in detail in Ref. [22]
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= − − −γ̇t̄,C

Σ̇t̄

︸ ︷︷ ︸
Σ̇std

︸ ︷︷ ︸
Σ̇t̄

︸ ︷︷ ︸
Σ̇t

Fig. 5: Extended self energy flow in the mfRG scheme. The last two contributions are computed
iteratively from the first self energy contribution and the vertex flow. The crossed fermion line in
the first contribution represents the single scale propagator.

It is worth mentioning that there is a relation that connects the irreducible vertex of the t-channel,
It, to a functional derivative of the self energy [22]:

δΣ

δG
= −It.

Understanding variation with respect to the flow parameter Λ, one can rewrite this as an equation
containing only regular partial derivatives:

Σ̇ = −It · Ġ = −Γ · S, (26)

which is precisely Σ̇std. However, solving this equation in the fRG flow is only consistent with the
functional derivative if the expression on the right hand side of Σ̇ constitutes a total derivative of
diagrams which is not the case since the mfRG flow equations for Σ in the parquet approximation
must also include contributions from Σ̇t and Σ̇t that are missing in Eq. (26). In fact, in order
to simultaneously satisfy the functional derivative relation and the Schwinger-Dyson-equation, one
would require the exact solution. With the flow equation in Eq. (25), the self energy flows towards
the Schwinger-Dyson solution computed with the parquet vertex, i.e. R = Γ0 [22].
We stress that, as a result of the construction, the solution of the mfRG flow is equivalent to the
parquet solution with R = Γ0 [22]. The great advantage of mfRG as opposed to a direct parquet
approach is the possibility to enter parameter regimes that are otherwise intractable as they lead to
divergencies. In particular, we will also be interested in phase transitions at Λ > 0 which are never
accessible with the direct parquet approach which is only equivalent to the mfRG result at Λ = 0.
Relating mfRG to the conventional one-loop-approach, one can understand the additional higher
order corrections in the vertex and in the self energy flow equations as partial compensation for
the diagrammatic contributions that are lost by performing the truncation. Most importantly,
they restore the total derivative within the parquet approximation scheme which makes the flow
independent of the choice of regulator.

2.3 Physical Model

Our model is given by the Heisenberg interaction in the pseudo-fermion representation, Sµi =
1
2

∑
α,β

ĉ†i,ασ
µ
αβ ĉi,β :

Ĥ =
∑
i,j

Jij ~Si · ~Sj =
∑

α,β,γ,δ

∑
i,j

1

4
σµαβσ

µ
γδJij ĉ

†
i,αĉi,β ĉ

†
j,γ ĉj,δ. (27)

Note that this Hamiltonian is particle-hole-symmetric. Using the anticommutation relation of the
fermionic operators, {ĉ†i,α, ĉj,β} = δi,jδα,β , to rewrite the Hamiltonian in its normal ordered form in

the grand canonical ensemble, Ĥ −
∑
i

µin̂i with n̂i =
∑
α
ĉ†iαĉiα, one obtains:

Ĥ =
∑

α,β,γ,δ

∑
i,j

1

4
σµαβσ

µ
γδJij ĉ

†
i,αĉ
†
j,γ ĉj,δ ĉi,β︸ ︷︷ ︸

Hint

−
∑
i,α

(−3

4
Jii + µi)︸ ︷︷ ︸
≡µ̃i

ĉ†i,αĉi,α.
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2. THEORETICAL BACKGROUND

The chemical potential µi must be tuned such that the condition:∑
α

〈
ĉ†i,αĉi,α

〉
= 〈n̂i〉 = 1 (28)

is met which imposes that every site is only singly occupied on thermodynamic average. This
constraint is necessary due to the enlargement of the Hilbert space in the parton formulation (see
Sec. 2.1). We will return to this matter in Sec. 3.2.1.

In the following diagrammatic derivations of the specific mathematical expressions that enter
the fRG flow equations for the considered system, the signs and overall factors are to be understood
with respect to the general many-body action:

S = −
∑
1̂1̂′

c1̂′ G
−1
0 (1̂′; 1̂)︸ ︷︷ ︸

=G−1
0 (iω1)δ1̂1̂′

c1̂ −
1

4β

∑
1̂′,1̂,2̂′,2̂

Γ0(1̂′2̂′, 1̂2̂)c1̂′c2̂′c2̂c1̂, (29)

where the multiindices with a hat include frequency, spin and a site index and the bare vertex6

Γ0(1̂′2̂′, 1̂2̂) is separately anti-symmetric under the exchange of (1̂↔ 2̂) and (1̂′ ↔ 2̂′). The absence
of dispersion in the fermionic Hamiltonian results in a particularly simple form of the bare Greens
function7:

G0(iω) =
1

iω
.

Moreover, the two- and four-point Greens functions are defined as:

G
(2)

1̂1̂′
= −〈c1̂c1̂′〉 (30)

G
(4)

1̂2̂1̂′2̂′
= 〈c1̂c2̂c2̂′c1̂′〉 . (31)

In order to obtain the self energy and the four-point vertex, one needs to eliminate all discon-
nected diagram from Eqs. (30) and (31), respectively, and amputate the external legs.

The flow parameter Λ is introduced by a regulator in G0. In our analysis, we wish to compute
the phase diagram of the ground state, i.e. we perform all Matsubara sums in the limit T → 0.
Consequently, all Matsubara sums become integrals with continuous frequencies,

1

β

∑
ω

T→0−−−→
∞∫
−∞

dω
2π ,

which makes some regulators more tractable than others. Since the vertex functions are nested in the
higher order corrections, sharp regulators result in integrands with many discontinuities which are
numerically unfavorable. Hence, we use a smoothened version of the step function as multiplicative
regulator:

G0,Λ(ω) =
(

1− e
−
(
|ω|
Λ

)2)
G0(ω). (32)

Since all analytical calculations are performed in the Matsubara formalism, we present all calcula-
tions in this thesis for the general case with sums over discrete Matsubara frequencies and take the
limit T → 0 only for the actual implementation.

We undertake our analysis on the Kagome lattice which is shown in Fig. 1. The spin operators
of the original Heisenberg Hamiltonian (27) reside on the individual lattice sites and interact with
energies J1 for nearest neighbors and J2 for next-to-nearest neighbors.

6In the following part of this thesis, the term “vertex” always refers to the “two-particle vertex function” unless
specified differently.

7The Fourier transform of the Grassmann fields has been chosen such that the Greens functions are always free of
factors of β which corresponds to: ci,α(τ) = 1√

β

∑
ω e
−iωτ ci,α(iω) and ci,α(τ) = 1√

β

∑
ω e

+iωτ ci,α(iω).

18
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3 Analysis

3.1 Vertex Parametrization

3.1.1 System-specific Parametrization

Since the Hamiltonian of the theory (27) lacks a kinetic term, it follows immediately that the propa-
gators of this theory are diagonal in real space. Hence, each vertex depends only on two lattice sites.
Due to the fermionic nature of our degrees of freedom, each vertex must be antisymmetric under the
exchange of the two external arguments which motivates the following real space parametrization
(as introduced in Ref. [39]):

Γ(1̂′2̂′; 1̂2̂) = Γ )
(

i1i2
(1′2′; 12)δi1i1′ δi2i2′ − Γ)(

i1i2
(1′2′; 12)δi1i2′ δi2i1′ . (33)

The multiindices without a hat include only frequency and spin.
This parametrization can diagramatically be represented as:

1̂′

2̂

1̂

2̂′

=

1′, i1

2, i2

1, i1

2′, i2

−

1′, i2

2, i2

1, i1

2′, i1

.

Note that this diagrammatic convention has the feature that the frequency and spin arguments
are always at the same position and only the lattice site arguments differ.
It is convenient to formulate the equations entirely in terms of vertices with horizontal fermion
lines, Γ )

(

i1i2
(1′2′; 12), such that one does not need to distinguish between two different types in the

equations and can thus drop the corresponding superscript. In order to achieve this, the translation
from diagrammatics to mathematical expressions requires the extensive use of the identities:

Full vertex: i.e. Γ )
(

i1i2
(1′2′; 12) = Γ)(

i1i2
(2′1′; 12)

1′

2

1

2′

=

2′

2

1

1′

a-reducible: γa i.e. γ )
(

a,i1i2
(1′2′; 12) = γ)(

t,i1i2
(2′1′; 12)

1′

2

1

2′

= γt

2′

2

1

1′

p-reducible: γp i.e. γ )
(

p,i1i2
(1′2′; 12) = γ)(

p,i1i2
(2′1′; 12)

1′

2

1

2′

= γp

2′

2

1

1′

t-reducible: γt i.e. γ )
(

t,i1i2
(1′2′; 12) = γ)(

a,i1i2
(2′1′; 12)

1′

2

1

2′

= γa

2′

2

1

1′

While the relation is straight forward for the full vertex and vertices reducible in the p-channel,
it maps the t and the a-channel onto each other. This can be derived by considering the crossing
relation,

γa(1̂′2̂′, 1̂2̂) = −γt(2̂′1̂′, 1̂2̂), (34)
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and rewriting both sides in their site-resolved form:

l.h.s. = γ )
(

a,i1i2
(1′2′; 12)δi1i1′ δi2i2′ − γ

)(

a,i1i2
(1′2′; 12)δi1i2′ δi2i1′ (35)

r.h.s. = −γ )
(

t,i1i2
(2′1′; 12)δi1i2′ δi2i1′ + γ)(

t,i1i2
(2′1′; 12)δi1i1′ δi2i2′ . (36)

By comparing the proportionalities in real space (for the t-channel relation, one needs to exchange
(1′ ↔ 2′) in Eqs. (34-36) which leaves the site indices unaffected), one can identify the relations:

γ )
(

a,i1i2
(1′2′; 12) = γ)(

t,i1i2
(2′1′; 12) (37)

γ )
(

t,i1i2
(1′2′; 12) = γ)(

a,i1i2
(2′1′; 12). (38)

Since we want to keep the following derivations as general as possible such that they are valid,
irrespective of whether the appearing vertices are reducible in a specific channel or not, we mark
each general vertex that has been translated from a site-resolved vertex with vertical lines with a
tilde8, implying that the mapping between the a- and the t-channel needs to be performed for these
objects, i.e.

1′

2

1

2′

= Γ̃i1i2(2′1′, 12)︸ ︷︷ ︸
or Γ̃i2i1 (1′2′,21)

→
=


Γi1i2(2′1′, 12) if Γ = full vertex
γt,i1i2(2′1′, 12) if Γ = γa

γp,i1i2(2′1′, 12) if Γ = γp

γa,i1i2(2′1′, 12) if Γ = γt.

where the expression in the underbrace is an equivalent translation that is related to the upper
one by the generic identity of all two-particle vertices:

Γi1i2(1′2′, 12) = Γi2i1(2′1′, 21).

It is worth mentioning that in the one-loop-approximation, only full vertices appear in the equa-
tions for which this subtlety is irrelevant. In that case, all tildes in the flow equations can simply
be dropped and there is no need to mark whether a vertex has been obtained from a diagram with
vertical or horizontal fermion lines. In the multiloop corrections, however, one deals with nested
bubble functions where only certain reducible parts of vertices are fed into higher order functions
which requires a careful treatment following the procedure described above.

Further, by realizing that the only SU(2) invariant spin interactions9 that do not violate conser-
vation properties are given by terms ∝ δαβδγδ and ∝ δαδδβγ , one could in principle make a similiar
decomposition as for the real space parametrization in Eq. (33) and formulate all equations in terms
of two different vertex parts belonging to these two proportionality classes. However, it is convenient
to adopt a more natural spin parametrization that makes a distinction between a spin-interaction
part, Γs and a density-interaction part, Γd, of the vertex [39]:

Γi1i2(1′2′; 12) =
{

Γsi1i2(ω1′ω2′ ;ω1ω2)σµσ1′σ1
σµσ2′σ2

+ Γdi1i2(ω1′ω2′ ;ω1ω2)δσ1′σ1δσ2′σ2

}
.

In Appendix B, we demonstrate the exact relation between these two approaches and explain how
the names “spin-” and “density-” vertex are motivated.
Writing the bare vertex function in Eq. (29) in its fully parametrized form and comparing it to the
Hamiltonian, one can identify the initial conditions for the vertex as:{

lim
Λ→∞

Γsi1i2(ω1′ω2′ ;ω1ω2) = Γ0,s
i1i2

(ω1′ω2′ ;ω1ω2) = − 1
2Ji1i2δω1+ω2,ω1′+ω2′

lim
Λ→∞

Γdi1i2(ω1′ω2′ ;ω1ω2) = 0.
(39)

8Note that in Ref. [42] which carries out a two-loop-analysis, all vertices in the explicit real space parametrization
carry a tilde which has no further meaning. The tilde in our notation has nothing to do with theirs and indeed
encodes important information about the mapping.

9It should be emphasized that the SU(2) invariance is a direct consequence of the pseudo-fermion decomposition
of the spin operators. However, this symmetry does not imply anything about the gauge structure of the effective
low-energy theory (which refers to the type of present gauge fluctutations in the ground state) and thus does not
conflict with a possible Z2- or U(1)-spin liquid ground state. See Ref. [52] for a detailed clarification of this matter.
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γ
Ωp,νp,ν

′
p

p,i1i2

γ
Ωt,νt,ν

′
t

t,i1i2

γ
Ωa,νa,ν

′
a

a,i1i2

Γν,ν
′,ν′′

i1i2

ν′p +
Ωp
2 , i1

−νp +
Ωp
2 , i2−ν′p +

Ωp
2 , i2

νp +
Ωp
2 , i1

p-reducible

ν′t − Ωt
2 , i1

νt − Ωt
2 , i2νt + Ωt

2 , i2

ν′t + Ωt
2 , i1

t-reducible

ν′a − Ωa
2 , i1

ν′a + Ωa
2 , i2νa + Ωa

2 , i2

νa − Ωa
2 , i1

a-reducible

ν′′, i1

(ν′ + ν′′ − ν), i2ν′, i2

ν, i1

purely fermionic
notation

Fig. 6: Definition of the natural frequencies in the three channels and in a purely fermionic notation.
Each vertex is characterized by one bosonic and two fermionic frequencies.

3.1.2 Channel-specific Frequency Arguments

Whenever specific frequency arguments are needed in the following, they refer to the natural fre-
quencies in the individual channels as shown in Fig. 6 – the bosonic frequency Ω is always the
transfer frequency of the respective channel. We chose this convention such that the asymptotics
of the vertex functions are always centred around νr = ν′r = 0 which will be elucidated more thor-
oughly in Sec. 3.3. Note that the full vertex can be expressed in any of the three mixed conventions,
i.e.

Γ
Ωa,νa,ν

′
a

i1i2
= Γi1i2(νa − Ωa

2 , ν
′
a + Ωa

2 ; ν′a − Ωa
2 , νa + Ωa

2 )

Γ
Ωp,νp,ν

′
p

i1i2
= Γi1i2(νp +

Ωp
2 ,−νp +

Ωp
2 ; ν′p +

Ωp
2 ,−ν

′
p +

Ωp
2 )

Γ
Ωt,νt,ν

′
t

i1i2
= Γi1i2(ν′t + Ωt

2 , νt −
Ωt
2 ; ν′t − Ωt

2 , νt + Ωt
2 ).

Labels “s/d” for the spin- and density parts have been suppressed here since the frequency parametriza-
tion is independent of the spin parametrization.
For reference, the conversion between the frequency arguments in the respective channels is given
in Table 1.

In the following, we will often drop the channel labels for the frequencies (Ω, ν, ν′) understanding
that all quantities that are associated with one of the three channels are always labeled with their
natural frequency arguments, i.e. frequency arguments on an a-bubble are always (Ωa, νa, ν

′
a) for

instance. With this, the bubbles are readily parametrized as shown in Fig. 7.
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a-channel
(Ωa, νa, ν

′
a)

p-channel
(Ωp, νp, ν

′
p)

t-channel
(Ωt, νt, ν

′
t)

a-channel
Ωa = Ωa
νa = νa
ν′a = ν′a

Ωp = νa + ν′a
νp = (−ν′a + νa − Ωa)/2
ν′p = (ν′a − νa − Ωa)/2

Ωt = νa − ν′a
νt = (νa + ν′a + Ωa)/2
ν′t = (νa + ν′a − Ωa)/2

p-channel
Ωa = −νp − ν′p

νa = (−ν′p + νp + Ωp)/2
ν′a = (ν′p − νp + Ωp)/2

Ωp = Ωp
νp = νp
ν′p = ν′p

Ωt = νp − ν′p
νt = (−νp − ν′p + Ωp)/2
ν′t = (νp + ν′p + Ωp)/2

t-channel
Ωa = νt − ν′t

νa = (νt + ν′t + Ωt)/2
νa = (νt + ν′t − Ωt)/2

Ωp = νt + ν′t
νp = (ν′t − νt + Ωt)/2
ν′p = (ν′t − νt − Ωt)/2

Ωt = Ωt
νt = νt
ν′t = ν′t

fermionic
Ωa = ν′ − ν

νa = (ν + ν′)/2
ν′a = ν′′ + (ν′ − ν)/2

Ωp = ν′ + ν′′

νp = ν − (ν′ + ν′′)/2
ν′p = (ν′′ − ν′)/2

Ωt = ν − ν′′
νt = ν′ − (ν − ν′′)/2
ν′t = (ν + ν′′)/2

Table 1: Frequency conversions between the three mixed conventions and the purely fermionic
notation.

a-channel:

p-channel:

t-channel:

Γ Γ′

ν′ + Ω
2

−ν + Ω
2−ν′ + Ω

2

ν + Ω
2 ν1 + Ω

2

−ν1 + Ω
2

Γ Γ′

ν′ − Ω
2

ν′ + Ω
2ν + Ω

2

ν − Ω
2 ν1 − Ω

2

ν1 + Ω
2

Γ

Γ′

ν′ − Ω
2

ν − Ω
2ν + Ω

2

ν′ + Ω
2

ν1 − Ω
2

ν1 + Ω
2

Fig. 7: Frequency label convention of bubble functions in all three channels with their natural
frequencies.

3.2 System-specific Loop and Bubble Functions

The basic computational constituents of the flow equations fall into two classes: Bubble functions
that connect two vertices in the vertex flow equations and loop functions that close fermionic loops in
the self energy flow equation. However, their implementation depends strongly on the parametriza-
tion of the vertices which must be chosen appropriately for the underlying system. In our case, the
spin parametrization leads to nontrivial combinatorial factors in the flow equations and the mapping
identities in Eqs. (37,38) lead to further subtleties that become important for the mutliloop correc-
tions as explained in Sec. 3.1.1. Since the flow equations with the combinatorial factors have been
stated in the literature only without general consideration for the channel mapping (e.g. Ref. [36]
for the one-loop case, Ref. [42] for the two-loop case), we consider it sensible to sketch the derivation
of general bubble and loop functions that take care of this in the most general fashion and from
which one can build up the flow equations at arbitrary loop order, reproducing also those in the
mentioned references.
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3.2.1 Loop Functions

We define a general loop function L(Γ, G) as a general vertex Γ of which the upper frequency legs
are connected by a fermionic propagator G which can be of any type (e.g. full propagator, single
scale propagator, etc.). The easiest way to find this function in its fully parametrized form is to
start by inserting the real space parametrization of the vertex, Eq. (33), on the diagrammatic level:

L(Γ, G) = −
∑
2,i2

1, i1 1, i1

2, i2

= −
∑
2,i2

1, i1 1, i1

2, i2

+
∑
2

1, i1 1, i1

2, i1

,

which is the diagrammatic translation of:

L(Γ, G)(ω1) = −
∑

2̂

Γ(1̂2̂; 1̂2̂)G(ω2) = −
∑

2

G(ω2)

{∑
i2

Γi1i2(12; 12)− Γ̃i1i1(21; 12)

}
.

Note that the last term does not contain a summation over lattice sites due to the fact that the
propagator is local which implies that the site index cannot change along fermion lines. Moreover,
energy and spin conservation has been employed. The loop function carries neither a site nor a spin
index since it holds for an arbitrary site i1 and spin σ1.
Using the spin parametrization explicitly, one finds for the individual terms on the right hand side:

s d

s d−
∑
2,i2

1, i11, i1

2, i2

= − 1
β

∑
ω2,i2

=0︷ ︸︸ ︷∑
σ2

σµσ1σ1
σµσ2σ2

− 1
β

∑
ω2,i2

ω1, i1 ω1, i1

ω2, i2
=2︷ ︸︸ ︷∑

σ2

δσ1σ1δσ2σ2

ω1, i1 ω1, i1

ω2, i2

∑
2

1, i11, i1

2, i1

= 1
β

∑
ω2

=3︷ ︸︸ ︷∑
σ2

σµσ2σ1
σµσ1σ2

+ 1
β

∑
ω2

ω1, i1 ω1, i1

ω2, i1
=1︷ ︸︸ ︷∑

σ2

δσ2σ1δσ1σ2 .

ω1, i1 ω1, i1

ω2, i1

This yields nontrivial combinatorial factors for the spin and density parts of the vertex that enter
the loop function. Collecting all parts, one obtains for the loop function:

s dd

ω1, i1ω1, i1

= −2 · 1
β

∑
ω2,i2

ω1, i1 ω1, i1

ω2, i2

+ 3 · 1
β

∑
ω2

ω1, i1 ω1, i1

ω2, i1

+ 1 · 1
β

∑
ω2

ω1, i1ω1, i1

ω2, i1

.

The corresponding mathematical expression reads:

L(Γ, G)(ω1) =

− 1

β

∑
ω2

G(ω2)

{
2 ·
∑
i2

Γdi1i2(ω1ω2;ω1ω2)− 3 · Γ̃si1i1(ω2ω1;ω1ω2)− Γ̃di1i1(ω2ω1;ω1ω2)

}
, (40)
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from which one can directly infer the standard contribution to the self energy flow equation by
replacing G → S on the right hand side of Eq. (40). All spin indices have been summed out and
are now encoded in the combinatorial factors.

Having derived the general loop function with the combinatorial factors, lets us return to the
condition in Eq. (28) and to the initial condition for the self energy. In principle, the latter is given
by the Fock-contribution which is frequency independent and does not change during the flow. This
can be seen by integrating the differentiated self energy in a small interval at the beginning of the
flow:

ΣΛ→∞(ω1)
(1)
= lim

Λ0→∞

Λ0∫
∞

dΛΣ̇Λ(ω1) = (41)

(2)
= lim

Λ0→∞

Λ0∫
∞

dΛ(− 1

β
)
∑
ω2

SΛ(ω2)(−3) · Γ0
ii(ω2ω1;ω1ω2) = (42)

(3)
= −3

2
Jii

( 1

β

∑
ω2

GΛ=0(ω2)− lim
Λ0→∞

0∫
Λ0

dΛ
1

β

∑
ω2

SΛ(ω2)︸ ︷︷ ︸
=0

)
= (43)

(4)
= −3

2
Jii

1

β

∑
ω2

G(ω2)eiω20+

︸ ︷︷ ︸
−〈Tτ ĉα(τ=0−)ĉ†α(0)〉

(5)
= −3

2
JiinF,α(ΣΛ→∞ − µ̃). (44)

In step (2), we used the limit
lim

Λ→∞
ΓΛ = Γ0

from Eq. (39) such that only the “spin-term” in Eq. (40) contributes to the differentiated self
energy. In step (3), we used that the Matsubara sum vanishes for any finite Λ ∈ [0,Λ0] since

SΛ(ω) = −GΛ(ω) ·
(
d
dΛG

−1
0,Λ(ω)

)
·GΛ(ω) is antisymmetric in ω with present particle-hole symmetry

as will be shown explicitly in Sec. 3.4.1. Finally, in step (4), we restored the infinitesimal regularizer
that is an artifact of the discreteness of the imaginary-time in the path integral formalism.
The condition from Eq. (28) and spin SU(2) symmetry require that nF,↑ = nF,↓ = 1

2 which implies
that

µ̃ = ΣΛ→∞ = −3

4
Jii → µ = 0.

This result is not surprising since µ = 0 corresponds to half filling in a particle-hole symmetric
system. Consequently, half of the states are projected out on average10 such that the condition in
Eq. (28) is satisfied. Since in the full propagator, G−1(ω) = iω + µ̃ − Σ(ω), the self energy and
the chemical potential enter with different signs, the constant Fock-contribution in the self energy
(constant during the flow and independent of ω) and the effective chemical potential µ̃ always cancel
to zero and one can therefore set both quantities to zero at the beginning of the flow, i.e. the initial
condition for the self energy (corresponding to µ̃ = µ = 0) reads:

ΣΛ→∞(ω) = 0, (45)

which matches the initial condition stated in Ref. [5, 39]. In fact, since Jii = 0 in our specific case
of the KHM, this statement is trivial and µ̃ = ΣΛ→∞ = 0 is always true.

3.2.2 Bubble Functions

An similar strategy yields the combinatorial factors for the bubble functions in the three different
channels which, however, differ quite significantly in their complexity. We explain only the deriva-
tion for p-bubbles in the main text since it requires translating vertical fermion lines to horizontal

10This reasoning is used in Ref. [36] to obtain µ = 0 immediately.
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lines and marking certain vertices with a tilde which has not explicitly been stated in the literature
for the general case. The a-channel is less interesting because no translation is necessary and the
t-channel is a bit more intricate and does not serve as pedagogical example. Hence, both these
channels are shown in Appendix C.

We define a general bubble in the p-channel as:

Bp(Γ,Γ
′)1̂′2̂′,1̂2̂ = 1

2

∑
3̂4̂

Γ(1̂′2̂′, 3̂4̂)Γ′(3̂4̂, 1̂2̂)G(ω3)G(ω4).

Note that we include a factor of 1
2 in the definition of a bubble in the p-channel due to the indistin-

guishability of the two propagators.
Again, the antisymmetry of the full vertex under the exchange of to external variables, Eq. (33), is
used to parametrize the bubble function in real space on the diagrammatic level:

Γ Γ′
∑̂
3,4̂

1
2

1̂′

2̂

3̂

4̂

1̂

2̂′

=
∑
3,4

(
1
2

1′, i1

2, i2

3, i1

4, i2

1, i1

2′, i2

− 1
2

1′, i2

2, i2

3, i2

4, i1

1, i1

2′, i1

− 1
2

1′, i2

2, i2

3, i1

4, i2

1, i1

2′, i1

+ 1
2

1′, i1

2, i2

3, i2

4, i1

1, i1

2′, i2)
.

By comparing the contributions, one finds that the first and the last diagram have the same
proportionality in real space, δi1i1′ δi2i2′ . The same is true for the second and the third diagram
which are both proportional to δi2i1′ δi1i2′ . Identifying the respective terms with the appropriate
object in the decomposed bubble function,

Bp(Γ,Γ
′)1̂′2̂′,1̂2̂ = B )

( ,Γ,Γ′

p,i1i2
(1′2′, 12)δi1i1′ δi2i2′ −B

)(,Γ,Γ′

p,i1i2
(1′2′, 12)δi1i2′ δi2i1′ ,

one can write the left and right side of the flow equations in this decomposed form and thus reduce
the flow equations to only one proportionality class. Using the spin parametrization from above,

one obtains for B )
( ,Γ,Γ′

p,i1i2
(1′2′, 12) (in the following we will always drop the horizontal lines from all

bubble functions understanding that we always consider only this part):
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s s

s d

d d

d s

Bp

1′, i1

2, i2

1, i1

2′, i2

= 1
β

∑
ω3,ω4

1
2

({ −2σµ
1′1σ

µ

2′2+3δ1′1δ2′2︷ ︸︸ ︷∑
σ3σ4

σµσ1′σ3
σµσ2′σ4

σνσ3σ1
σνσ4σ2

σµ
1′1σ

µ

2′2︷ ︸︸ ︷∑
σ3σ4

δσ1′σ3δσ2′σ4σ
µ
σ3σ1

σµσ4σ2

σµ
1′1σ

µ

2′2︷ ︸︸ ︷∑
σ3σ4

σµσ1′σ3
σµσ2′σ4

δσ3σ1
δσ4σ2

δ1′1δ2′2︷ ︸︸ ︷∑
σ3σ4

δσ1′σ3
δσ2′σ4

δσ1σ3
δσ4σ2

}

1′, i1 1, i1ω3, i1

ω4, i2 2′, i22, i2

+

+

+

+

{
→

})
,

where all frequency and site indices have been suppressed in all but the first diagram on the right
hand side as they are exactly the same. The abbreviation in the last line is intended to imply that
the first four diagrams are repeated with a slightly different fermionic line structure but with the
same index structure and hence with the same combinatorial factors (which is an effect of SU(2)
spin symmetry). Note that in the one-loop-scheme, the first four contributions are equivalent to the
second four which can diagramatically be seen by using the identity for the full vertex:

1′

2

1

2′

=

1′

1

2

2′

,

and interchanging the dummy indices 3↔ 4.
After the evaluation of the spin sums, one finds the same proportionalities as in the initial spin
parametrization of the full vertex. Consequently, one can rewrite the right hand side in terms of a
spin vertex and a density vertex. Schematically, this leads to the rule for p-channel-bubbles in the
spin-density parametrization that is shown in Fig. 8.
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s s

s s d d

s dd s

BΓ,Γ′

p,i1i2
(1′2′, 12) = 1

2 Γ Γ′ =

∝ δi1i1′ δi2i2′

= 1
2

({(
− 2 + +

)
σµσµ

+
(

3 +
)
δδ

}

+

{
→

})

Fig. 8: Effective rule for bubbles in the p-channel.

The expression in the first bracket in Fig. 8 is the spin part of the bubble function and the
second bracket encloses the density part. The mathematical translation can be made by restoring
the frequency and site arguments from above:

BΓ,Γ′

p,i1i2
(1′2′, 12) =

1

2

1

β

∑
ω3,ω4

G(ω3)G(ω4)×

×

({(
− 2 · Γsi1i2(ω1′ω2′ ;ω3ω4)Γ′si1i2(ω3ω4;ω1ω2)

+ Γdi1i2(ω1′ω2′ ;ω3ω4)Γ′si1i2(ω3ω4;ω1ω2)

+ Γsi1i2(ω1′ω2′ ;ω3ω4)Γ′di1i2(ω3ω4;ω1ω2)
)
σµσ1′σ1

σµσ2′σ2

+
(

3 · Γsi1i2(ω1′ω2′ ;ω3ω4)Γ′si1i2(ω3ω4;ω1ω2)

+ Γdi1i2(ω1′ω2′ ;ω3ω4)Γ′di1i2(ω3ω4;ω1ω2

)
δσ1′σ1

δσ2′σ2

}

+

{
(Γ→ Γ̃) and (Γ′ → Γ̃′)

})
.

(46)

We recall that energy conservation is implicitly contained in the vertices according to Eq. (39).
In order to arrive at this compact result, we exchanged the dunmmy variables ω3 ↔ ω4 in the last
bracket after translating the vertices with vertical lines to ones with horizontal lines and marking
them with a tilde. This exchange is possible due to the indistinguishability of the propagators. Also
on this level it is obvious that, when dropping the tildes (corresponding to the one-loop scheme),
every term has an exact equivalent such that combining them reduces the expression to half its
number of terms which can be used to cancel the overall factor 1

2 . If, however, the vertex is not
always a full vertex, mapping between the a- and t-channel may play a role and it is crucial to
take the tildes into account. Though they seem to appear in a very lucid way here, the t-channel
proves that this is not generally the case and it is not possible to account for the correct mappings
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a posteriori if one only knows the one-loop equations where this feature is not considered.
The derived combinatorial factors are valid for any bubble function in the p-channel, i.e. irrespective
of details of the propagators and vertices.

3.3 Frequency Asymptotics

Our algorithmic implementation is based on the diagrammatic classification of 2PR diagrams ac-
cording to their high frequency behavior11. This section focuses on diagrammatic arguments where
we follow the reasoning from Ref. [54] very closely. For the actual implementation, we propose a
slightly altered scheme which will further be explained in Sec. 3.5.2.
The philosophy behind the high frequency classification can be stated very compactly: Since the
bare interaction is frequency independent, it cannot “forward” the information about the external
fermionic frequency ν (ν′) into an arbitrary higher order diagram if both legs carrying the frequency
index ν (ν′) are connected to the same bare vertex12 – in that case, the entire diagram is independent
of the respective fermionic frequency. From Fig. 7, it is clear that both legs with the same fermionic
frequency label are always attached to the same vertex, i.e. Γ can only know about ν and Γ′ is only
given information about ν′. This yields criteria for the asymptotic classification of 2PR-diagrams
into four distinct classes:

1. KΩ
1,ij : Both legs with the same fermionic frequency argument are connected to the same bare

vertex, respectively. Hence, none of the fermionic frequency arguments enters the diagram
and it depends only on the bosonic transfer frequency due to energy conservation.

2. KΩ,ν
2,ij : The legs depending on ν are connected to different bare vertices in Γ and the legs

depending on ν′ are connected to the same bare vertex in Γ′. Hence, only ν enters the
diagram.

3. KΩ,ν′

2′,ij : The legs depending on ν are connected to the same bare vertex in Γ and the legs
depending on ν′ are connected to different bare vertices in Γ′. Hence, only ν′ enters the
diagram.

4. KΩ,ν,ν′

3,ij : All external legs are connected to different bare vertices. Hence, ν and ν′ both enter
the diagram.

Moreover, we introduce the generalized notation “K~ω
n,r, ~R

” which will come in handy at a later

point. This is to be understood as a vertex of the asympotic class n ∈ {1, 2, 2′, 3} in the r-channel.

The site indices are confined to the vector ~R and the frequency vector ~ω contains all necessary
frequency arguments for class n, i.e. ~ω = (Ω) if n = 1, ~ω = (Ω, ν) if n = 2, etc.

From diagrammatics, one can deduce that two external fermion legs of an r-reducible diagram
that carry the same fermionic frequency label can only touch different bare vertices if they are
connected to a diagrammatic building block that is reducible in a channel r′ 6= r. This is shown for
a simple case in Fig. 9.

From Table 1, it follows that the bosonic transfer frequency Ωr′ 6=r of this channel then depends
linearly on the respective external fermionic frequency, νr or ν′r, of the r-reducible vertex. Since∣∣∣G(ν2 ±

Ωr′ 6=r
2 )G(∓ν2 +

Ωr′ 6=r
2 )

∣∣∣ Ωr′ 6=r→∞−−−−−−−→ 0,

we can argue that these subdiagrams vanish if the external fermionic frequency of the r-channel
diagram is taken to infinity. Hence, it is possible to specifically eliminate all diagrammatic contribu-
tions from a general vertex that depend on νr, ν

′
r, respectively, by taking the appropriate fermionic

11The classification refers only to the reducible diagrams since the class of totally 2PI diagrams in the parquet
approximation contains only the bare interaction which is frequency independent.

12The external fermionic legs themselves are amputated and only fix the external argument.
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ν′a − Ωa
2

ν′a + Ωa
2

ν1 − Ωa
2

ν1 + Ωa
2

ν 2
−

(ν
a
−
ν 1

︸︷︷
︸

=
Ω
t

)/
2

ν 2
+

(

=
Ω
t

︷︸︸
︷

ν a
−
ν 1

)/
2

νa − Ωa
2

νa + Ωa
2

Fig. 9: “Fish-eye diagram” as simple example of how a fermionic frequency can enter a higher order
vertex. The boxed subdiagram belongs to the t-channel whereas the overall diagramm belongs to
the a-channel. Note that the bosonic tranfer frequency in the subdiagram depends linearly on νa:
Ωt = νa − ν1. Hence, this diagram vanishes for νa →∞. Since it is independent of ν′a, it belongs to
the class K2,a.

high frequency limits. More precisely:

lim
ν→∞

lim
ν′→∞

B~ω
r,~R

= K Ω
1,r, ~R

(47)

lim
ν′→∞

B~ω
r,~R

= K Ω,ν

2,r, ~R
+K Ω

1,r, ~R
(48)

lim
ν→∞

B~ω
r,~R

= K Ω,ν′

2′,r, ~R
+K Ω

1,r, ~R
(49)

B~ω
r,~R

= K Ω
1,r, ~R

+K Ω,ν

2,r, ~R
+K Ω,ν′

2′,r, ~R
+K Ω,ν,ν′

3,r, ~R
. (50)

Conceptually, one could solve this set of equations for all four asymptotic classes. Having indi-
vidual access to the asymptotic functions, where only K3 has the full frequency dependence, comes
with great algorithmic advantages:

The diagrammatic class KΩ,ν,ν′

3 decays when any of the three frequencies is increased. Consequently,
its contributions will only play a role in a small frequency range around the origin in three dimen-

sional frequency space13. The decay properties for KΩ,ν
2 and K Ω,ν′

2′ are similar with the difference
that they do not decay with ν′ and ν, respectively, and thus show asymptotic behaviour only in
certain directions in frequency space. The KΩ

1 -class is completely independent of the fermionic
arguments and decays only with Ω. Consequently, though a general reducible vertex is in principle
the sum of all diagrammatic classes according to Eq. (50), only certain classes contribute farther
away from the origin where K3 has always decayed. Since the K2-, K2′ - and especially the K1-class
can be computed with strongly reduced numerical costs, one can store very exact vertex values for
almost arbitrary high frequencies. In practice, we store values for K3 in a small box around the ori-
gin with fixed side length, K2- and K2′ in a two-dimensional array with greater side length and K1

in a one-dimensional array with the greatest length. Depending on the frequency combination, we
compute the vertex values as the sum of all relevant asymptotic classes. This idea is schematically
shown in Fig. 10.

3.4 Symmetries

3.4.1 Symmetries of the 2- and 4-Point Vertex

At the one-particle level, particle-hole-symmetry has the effect that all two-particle correlators in
frequency space are purely imaginary which is a result of their local nature as can be derived by

13The fact that the asymptotics are centered around the origin in all three channels is a direct consequence of
our frequency label convention - Ref. [54] uses a different convention where the asymptotics are centered around
(0,±ν/2,±ν′/2).
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ν

ν′ 0

BΩ,ν,ν′

0

0

KΩ
1

= 0

0

KΩ,ν
2

+ 0

0

K Ω,ν′

2′

+ 0

0

K Ω,ν,ν′

3

+ 0

Fig. 10: The asymptotic classes decay in different frequency directions, here sketched for an arbitrary
channel and constant bosonic frequency. If a given frequency combination lies in the white area for
one of the classes, this class does not contribute. The arrows indicate that the values beyond the
square are equal to the values on the edge in this direction. Note: The different colors have been
chosen for demonstration and do not encode quantitative information. Different levels of opacity
mark the relevant areas and directions of decay of the individual classes though the functional
behaviour may be nontrivial in theses areas. For numerical data, see Sec. 3.5.3.

rewriting Eq. (30) on the operator level in imaginary time:

G(τ, 0) = −
〈
Tτ ĉi,σ(τ)ĉ†i,σ(0)

〉
= −Θ(τ)

〈
ĉi,σ(τ)ĉ†i,σ(0)

〉
+ Θ(−τ)

〈
ĉ†i,σ(0)ĉi,σ(τ)

〉
=

1

β

∑
ω

e−iωτ (−1) 〈ci,σ(iω)ci,σ(iω)〉︸ ︷︷ ︸
G(iω)

. (51)

For the complex conjugate, one finds in the local case (anti-time-ordering is denoted by T̃τ ):

G∗(τ, 0) = −
〈
Tτ ĉi,σ(τ)ĉ†i,σ(0)

〉∗
= −

〈
T̃τ ĉi,σ(0)ĉ†i,σ(τ)

〉
= −

〈
Tτ ĉi,σ(τ)ĉ†i,σ(0)

〉
= G(τ, 0). (52)

Using particle-hole symmetry, one finds the identity:

G(τ, 0)
p.h.-sym

= −
〈
Tτ ĉ†i,σ(τ)ĉi,σ(0)

〉
= −Θ(τ)

〈
ĉ†i,σ(τ)ĉi,σ(0)

〉
+ Θ(−τ)

〈
ĉi,σ(0)ĉ†i,σ(τ)

〉
= −G(−τ, 0). (53)

Consequently, taking Eqs. (51 - 53) together, one can conclude that G(iω) is purely imaginary and
antisymmetric in ω which results in the relation:

G∗(iω) = G(−iω) = −G(iω).

Considering the Schwinger-Dyson equation,

G(iω) = G0(iω) +G0(iω)Σ(iω)G(iω),

it is clear that the above statements about the Greens function (antisymmetry and vanishing real
part) must also hold true for the self energy itself.

On the two-particle level, the imaginary time correlation function (for the real space proportion-
ality class δi1i1′ δi2i2′ ) is defined as:

G
(4)
i1i2,σ1′σ2′ ,σ1σ2

(τ1′τ2′ ; τ1τ2) = −
〈
Tτ [ĉi1,σ1

(τ1)ĉi2,σ2
(τ2)ĉ†i2,σ2′

(τ2′)ĉ
†
i1,σ1′

(τ1′)]
〉
. (54)

In the SU(2) invariant case, the two-particle propagator only depends on two spins with either
(σ1 = σ1′ ∧σ2 = σ2′) or (σ1 = σ2′ ∧σ2 = σ1′). Even though a time reversal transformation flips spin,
it is safe to suppress the spin indices in the following because G↑↓ = G↓↑ and G↑↑ = G↓↓. Making
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analogous manipulations as in the one-particle case, one finds the following relations between the
symmetry transformations and complex conjugation:

(G
(4)
i1i2

(τ1′τ2′ ; τ1τ2))∗ = G
(4),time-rev.
i1i2

(τ1′τ2′ ; τ1τ2) (55)

G
(4),hole

1i2
(τ1′τ2′ ; τ1τ2) = G

(4)
i1i2

(τ1τ2; τ1′τ2′). (56)

This implies in Matsubara frequency space:

(G
(4)
i1i2

(ω1′ω2′ ;ω1ω2))∗ = G
(4),time-rev.
i1i2

(−ω1′ ,−ω2′ ;−ω1,−ω2) = (57)

= G
(4)
i1i2

(−ω1,−ω2;−ω1′ ,−ω2′) (58)

G
(4),hole
i1i2

(ω1′ω2′ ;ω1ω2) = (G
(4)
i1i2

(ω1′ω2′ ;ω1ω2))∗. (59)

Remarkably, this implies that all two-particle-quantities are purely real in the case of unbroken par-
ticle hole symmetry14. By amputating the external legs and eliminating all disconnected diagrams
from G(4), one obtains the full interaction vertex, Γ(1̂′2̂′, 1̂2̂).

In order to derive symmetry relations for the different diagrammatic classes in all three channels,
we successively apply the three symmetry operations:

• (a): Simultaneous exchange of both incoming and both outgoing legs

• (b): Complex conjugation (= particle-hole-transformation for p-h-symmetry)

• (c): Time reversal transformation

Operations (a) and (b) can always be used to derive identities for all two-particle quantities such
that only a reduced frequency range needs to be computed explicitly. In the special case of particle-
hole and time reversal symmetry, all three operations leave the two-particle quantities invariant.
In terms of diagrammatics, complex conjugation has the effect of switching the direction of the
arrows on all fermionic lines and additionally switching the sign of each frequency. A time reversal
transformation also switches the arrows but does not change the signs. Exchanging both incoming
and outgoing legs amounts to a π-rotation of the diagram.

Though this procedure is independent of the underlying system, we explicitly use the SU(2) spin
symmetry of our vertices, i.e. Γαβγδ = Γδγβα and Γαβγδ = Γγδαβ , such that the three symmetry
transformations have no effect in spin space. This allows us to work on the level of the vertices in

their final parametrization, Γ
s/d
ij (ω1′ω2′ ;ω1ω2), i.e. without carrying around spin indices.

In the K1,r class of diagrams, one obtains the relations:

K Ω
1,a,i1i2 =


(a)
= K −Ω

1,a,i2i1
(b)
= (K −Ω

1,a,i1i2
)∗

(c)
= K Ω

1,a,i1i2

K Ω
1,p,i1i2 =


(a)
= K Ω

1,p,i2i1
(b)
= (K −Ω

1,p,i2i1
)∗

(c)
= K Ω

1,p,i2i1

K Ω
1,t,i1i2 =


(a)
= K −Ω

1,t,i2i1
(b)
= (K Ω

1,t,i1i2
)∗

(c)
= K −Ω

1,t,i1i2

For the classes K2 and K2′ , the symmetry operations yield15:

14A general analysis of the effects that physical symmetries have on the properties of local n-particle Greens
functions is presented in Ref. [40] for instance.

15Note that K2 and K2′ are interchanged by some operations. In that case we combine the operations such that
we find two equivalent expressions for every object of the class K2
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K Ω,ν
2,a,i1i2

=



(a)
= K −Ω,ν

2′,a,i2i1
(b)
= (K

−Ω,(−ν)
2′,a,i1i2

)∗

(c)
= K Ω,ν

2′,a,i1i2

(a+b)
= (K

Ω,(−ν)
2,a,i2i1

)∗

(a+c)
= K −Ω,ν

2,a,i2i1

K Ω,ν
2,p,i1i2

=



(a)
= K

Ω,(−ν)
2,p,i2i1

(b)
= (K −Ω,ν

2′,p,i2i1
)∗

(c)
= K

Ω,(−ν)
2′,p,i2i1

(b+c)
= (K

−Ω,(−ν)
2,p,i1i2

)∗

K Ω,ν
2,t,i1i2

=


(a)
= K −Ω,ν

2′,t,i2i1
(b)
= (K

Ω,(−ν)
2,t,i1i2

)∗

(c)
= K −Ω,ν

2,t,i1i2

and for the K3-class:

K Ω,ν,ν′

3,a,i1i2
=


(a)
= K −Ω,ν′,ν

3,a,i2i1
(b)
= (K

−Ω,(−ν′),(−ν)
3,a,i1i2

)∗

(c)
= K Ω,ν′,ν

3,a,i1i2

K Ω,ν,ν′

3,p,i1i2
=


(a)
= K

Ω,(−ν),(−ν′)
3,p,i2i1

(b)
= (K

−Ω,(−ν′),(−ν)
3,p,i1i2

)∗

(c)
= K Ω,ν′,ν

3,p,i1i2

K Ω,ν,ν′

3,t,i1i2
=


(a)
= K −Ω,ν′,ν

3,t,i2i1
(b)
= (K

Ω,(−ν),(−ν′)
3,t,i1i2

)∗

(c)
= K −Ω,ν,ν′

3,t,i1i2

These relations can be used to significantly lower the numerical costs for the evaluation of the
right hand side of the flow equations. In particular, knowing that all reducible vertices on all loop
levels are symmetric under exchange of the outer vertices of the corresponding bubble functions, we
can entirely dispense with calculating the class K2′ . Moreover, we use that:

• in K1, it is sufficient to treat only positive bosonic frequencies,

• in K2 and K2′ , it is sufficient to treat only positive frequencies for both, the bosonic and the
fermionic, argument,

• in K3, it is sufficient to treat only positive frequencies in the bosonic and the first fermionic
argument. Since the relations also include exchange of the fermionic frequencies, it is further-
more sufficient to consider only those frequencies for the second fermionic argument whose
absolute values exceed those of the first fermionic argument.

In fact, there is still room for simplifications: So far we have only argued that taking high
frequency limits can cause certain diagrammatic classes to vanish. However, not only the frequency
but also the lattice site arguments can have this effect. This can happen in two ways:

1. Since, in the Heisenberg model, Jii = 0 is always true from the initial condition, any higher
order diagram vanishes when one of its bare interactions is evaluated with both lattice site
arguments being equal. This happens for instance in the second and third diagrammatc type
of the t-channel (cf. Fig. 25) where one of the vertices touches only a single fermion line – if
the frequency class is such that both external fermionic legs attached to this vertex merge in
a bare vertex (which is then inevitably evaluated for twice the same lattice index), the whole
diagram is always zero regardless of its detailed structure.

2. In the a- and in the p- channel, all vertices are evaluated with the same lattice site arguments.
Therefore, all diagrams that do not belong to K3 vanish when the external site arguments
(i1, i2) correspond to a combination for which Ji1i2 = 0 because in those cases, there is always
at least one bare vertex that must be evaluated with a site combination for which it is zero.
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These properties are of general nature and persist during all steps of the flow. In Table 2, we list the
only diagrammatic classes that do not vanish for external site arguments (i1, i2) for which Ji1i2 = 0
(this condition is met for the vast majority of lattice site combinations when only nearest and next-
to-nearest neighbor interactions are present in the Hamiltonian). A further source of simplification is
the fact that only the spin part of the vertex can be nonzero in the initial condition. Since the spin-
and the density part of bubble functions have different constituents (and thus different properties),
it is sensible to distinguish between the spin and the density part in the table. All diagrammatic
classes not appearing in the table need not be evaluated explicitly.

a-channel p-channel t-channel

Spin part K3

type 1 K3 type 1 K1,K2,K2′ ,K3

type 2 K3 type 2 K2,K3

type 3 K2′ ,K3

Density part K3

type 1 K3 type 1 K3

type 2 K3 type 2 K3

type 3 K3

Table 2: This table lists the only diagrammatic classes that do not vanish for site-arguments (i1, i2)
for which Ji1i2 = 0. It is valid at any step of the flow. In the p- and the t-channel, the types refer
to the different diagrammatic contributions in these channels (cf. Figs. 8,25) and are labeled in the
respective order of appearance in the formulae.

3.4.2 Symmetries and Parametrization of the Kagome Lattice

ê1

ê2

Fig. 11: The Kagome Lattice is a triangluar Bra-
vais Lattice with a three-atomic unit cell. We only
treat a finite number of lattice sites. Since the
vertices depend only on relative real space coordi-
nates if translational symmetries are not broken,
the considered sites are defined in a circle centered
around an arbitrary site.

The vertices only depend on the spacial distance
of two lattice sites i1 and i2. Using invariance of
the lattice under rotations about π

3 and trans-
lation along the unit vectors, one can always
choose i1 to be the origin such that the two site
indices (i1, i2) can be replaced by a single ef-
fective site i′2. On the Kagome lattice, where
each unit cell contains three atoms, each site is
characterized by three coordinates - two coor-
dinates which indicate the unit cell and a third
one specifying the lattice site within the given
unit cell.
In the following, we use the notation

~d =

(
a
b

)
c

,

where a and b are translations along the
unit vectors ê1 and ê2, respectively and
c ∈ {1, 2, 3} denotes the site within a given
unit cell in the following correspondence to
the picture: 1 =̂ red, 2 =̂ blue, 3 =̂
green.

In order to obtain the effective site ~i ′2, one
needs to perform the following three steps:

• Translate the vector ~i2 by the vector that translates ~i1 to the first unit cell.

• Rotate the translated vector ~i2 in the following way: (~i2)k → (T̂c1)kl(~i2)l with c1 ∈ {1, 2, 3}
labeling the site pointed at by ~i1 within the first unit cell and T̂c1 being defined as:
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T̂1 =

(
1 0
0 1

)
T̂2 =

(
−1 −1

1 0

)
T̂3 =

(
0 1
−1 −1

)
.

• Simultaneously, shift the index c2 in the range (1, 2, 3) according to the rule:not at all for c1 = 1
one position in anticyclic sense for c1 = 2
one position in cyclic sense for c1 = 3.

The resulting new vector ~i ′2 is physically equivalent to the initial vector ~i2 −~i1 as this procedure

amounts to a redefinition of the origin such that ~i1 =

(
0
0

)
1

.

Another important operation is the inversion of two lattice sites: Γi1i2 → Γi2i1 . Though this can
be viewed as a special case of the above, it is worth pointing out the procedure.

The corresponding transformation starting from a vector ~d =

(
a
b

)
c

is:

• Perform the rotation on the projected vectors: (~d)k → −(T̂c)
kl(~d)l where T̂c are the matrices

defined above.

• Simultaneously, shift the index c in the range (1, 2, 3) according to the rule:1→ 1
2→ 3
3→ 2.

A third observation that can be made is the fact that every distance vector ~d with respect to
the origin in the lower part of the plane has an equivalent in the upper part. Hence, it is sufficient
to only explicilty consider those index combinations that correspond to lattice sites in the upper
half. The relation between two equivalent vectors is a rotation around the origin by π. In terms of

coordinates, the vector ~d ′ in the upper half can be obtained from a vector ~d =

(
a
b

)
c

in the lower

half by making the transformation:

(
a
b

)
c

→
(
−a
−b

)
c

−



(
0
0

)
c

for c = 1(
0
1

)
c

for c = 2(
1
0

)
c

for c = 3.

In order to find an expression for the distance of an arbitrary site to the reference site at the
origin, it is useful to write the distance vector in cartesian coordinates, where:

ê1 =

(
1
0

)
and ê2 =

1

2

(
1√
3

)
.

The distance vector is then given by: ~d = a · ê1 + b · ê2 + ~∆c, where

~∆c =


~0 for c = 1
1
2 · ê2 for c = 2
1
2 · ê1 for c = 3

accounts for the appropriate shift according to the color. Hence:∣∣~d∣∣2 = (a+ 1
2 · b+ ∆c,1)2 + (

√
3

2 · b+ ∆c,2)2.
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s

d

γa

γp

γt

Γ0
ij

γa

γp

γt

KΩ
1,a,ij

KΩ,ν
2,a,ij

KΩ,ν′

2′,a,ij

KΩ,ν,ν′

3,a,ij

...

...

KΩ
1,a,ij

KΩ,ν
2,a,ij

KΩ,ν′

2′,a,ij

KΩ,ν,ν′

3,a,ij

...

...

(I)

(II)

(III)

(IV)

Fig. 12: Implementation of the decomposed vertex: A general vertex on level (I) consists of a
spin and a density part (level (II)). Both parts are again decomposed on level (III) according to
the channel classification. All 2PR-vertices contain more diagrammatic sub-classes corresponding
to the high-frequency decomposition on level (IV). Note that there is no bare vertex in the density
channel since it is always zero from the initial conditions and does not change during the flow.

3.5 Algorithmic Implementation

3.5.1 General Vertex

In order to benefit from the channel decomposition and the frequency asymptotics in the vertices,
it is crucial that the implementation structure of the vertices satisfies certain requirements. Most
prominently, it should allow for:

• Exploitation of channel dependent symmetries in the asymptotic classes (cf. Sec. 3.4.1),

• Uncomplicated and intuitive implementation of the effective loop and bubble functions (cf.
Secs. 3.2.1/3.2.2) where the physical input is given by spin and density vertices without any
specification as to the channel or the asymptotic decomposition,

• Efficient computation and storage of all individual asymptotic classes.

The most natural way to implement a general vertex with these properties is the structure shown in
Fig. 12 which defines four levels of hierarchy. Performing calculations in the one-loop approximation
without the channel decomposition (as done in Refs. [39,42] for instance) corresponds to working on
level (II) with the vertex values being the sum of all subclasses. However, the calculation of higher
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loop orders requires a more efficient parametrization where the high frequency asymptotics play a
crucial role. In the following section, we argue that already inclusion of level (III) leads to enhanced
accuracy without additional numerical costs and that the last level in the vertex structure allows
for improved efficiency.
Our used convention of parametrizing the vertices in a channel-dependent way with one bosonic and
two fermionic frequencies as introduced in Sec. 3.1.2 is a choice and different conventions for the
frequency arguments are possible. If the parametrization of the vertices does not go beyond level
(II), one does not have access to diagrams that are reducible in the individual channels and therefore,
there is no way to account for the asymptotic behaviour of single diagrammatic subclasses. In this
case, it is advisable to use a convention that does not favor any specific channel and to label all
vertices with the same set of three frequency arguments that are either all bosonic (most naturally,
these are the bosonic transfer frequencies Ωa,Ωp,Ωt) or fermionic and are defined in a cube around
the origin. However, uniform frequency arguments unavoidably lead to the fact that one either limits
the high-frequency content of the vertices in an uncontrolled way or needs to store a greater number
of vertex values than necessary. In Fig. 13, we show the frequency points that are considered by
defining a cube in purely bosonic (a) and purely fermionic (b) frequency parametrizations (drawn in
yellow) and the frequency points that are accounted for when defining a cube of the same size in a
mixed and channel-dependent coordinate system with (Ωr, νr, ν

′
r) along the axes (blue shape). This

illustrates that already extending the parametrization by the additional parametrization level (III)
can improve accuracy: Certain areas of the yellow cube are not reached by the blue shape, meaning
that the vertex values that are stored in this frequency range have little relevance in the specific
channel due to the asymptotic behavior. On the other hand, the blue shape exceeds the yellow cube
at some points which indicates that there are relevant values beyond the accessible frequency range
in a uniform parametrization scheme.
Including level (III) with the three individual mixed frequency conventions ensures that all important
contributions from the vertices are taken into account and that this source of error is avoided. Level

Ωa

Ωp

Ωt

(a) Bosonic coordinate system.

ν

ν′′

ν′

(b) Fermionic coordinate system.

Fig. 13: Yellow cube: Frequency points in a cube in a purely bosonic (a) and purely fermionic
(b) coordinate system with (Ωa,Ωp,Ωt) and (ν, ν′, ν′′) along the axes, respectively. Blue shape:
Frequency points corresponding to a cube of the same size in a mixed coordinate system with
(Ωa, νa, ν

′
a) along the orthogonal axes, represented in the “pure” coordinate systems (a) and (b).

(IV) exploits the mixed parametrization as it allows to store the different asymptotic classes in
different frequency ranges. Knowing that the K3-class decays fastest, this allows for a very efficient
calculation of vertex values for large frequency arguments where only the classes with a reduced
frequency dependence, K1,K2 and K2′ , contribute.
Increasing the complexity of the vertex structure comes at the cost of the requirement for more
sophisticated functions to efficiently read out the vertex values at different levels of the hierarchy.
While in the most general case, the output function on each hierarchy level simply calls all output
functions of the next higher level and returns their sum, the situation is more subtle when the
vertices are part of bubble functions since the output functions should intrinsically know about the
high frequency structure as will become clear in Sec. 3.5.3.
The next section will therefore be devoted to the implementation of bubble functions after which
we will come back to the matter of reading out vertices in the context of bubble functions.
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3.5.2 Bubble Functions

In correspondence to Sec. 3.2.2, there are two different parametrization levels of bubble functions:
The unparametrized one (see left side of Eqs. (46,75,76)) takes two vertices on parametrization level
(I) as input and effectively calls another bubble function that takes two vertices on parametrization
level (II) as input (see right side of the equations, respectively) and performs the actual Matsubara
sum. Consequently, we refer to them as “outer” and “inner” bubble function. Making the connec-
tion to the hierarchic structure of the vertex, they can be characterized by the levels between which
they operate. Since, by definition, all bubbles in channel r belong the r-reducible diagrams, it will
be convenient to introduce the level label (I(r)) which characterizes a vertex on level (I) with the
special property that level (III) contains only a contribution in channel r, i.e. there is no further
junction between level (II) and the r-reducible vertex on level (III). Let us start at the outer bubble
function which is the algorithmic analogue of the bubble functions as they appear in most general
flow equations from Fig. 24, and then move to the inner one:

Outer Bubble: Mapping between levels I → I(r)

On the “coarsest” parametrization level, the bubble functions should have a very simple form such
that the flow equations can be transcribed in one-to-one correspondence from Fig. 24. Thus, they
take exactly the information that is needed to describe all bubble functions appearing in the flow
equations, which amounts to:

• Two vertices, Γ,Γ′, on parametrization level (I),

• Two propagators which can individually be of the type GΛ, SΛ or SΛ +GΛΣ̇ΛGΛ,

• Information if one the vertices contains only complementary channels (c.f. loop orders l > 1).
We refer to the variable containting this information as “complement”.

In particular, no explicit external arguments (lattice sites and frequencies) are needed since the

desired output of this function is the full vertex on level (I(r)) for all argument combinations.

Inner Bubble: Mapping between levels II → IV
As derived in Sec. 3.2.2, the inner bubble function should take combinations of the spin and density
part, Γ.Γs and Γ.Γd, as input. This function should allow to compute the values for the individual
subclasses, i.e. the physical values that are stored as numbers. Following the logic from Ref. [54],
the output would be an r-reducible vertex on level (III) – as outlined in Sec. 3.3, we could extract
the asymptotic classes by taking appropriate limits in the external arguments of the kind ν, ν′ →∞
when performing the Matsbuara sums and subtracting the resulting diagrams from each other in a
way such that we are left with only level-(IV)-diagrams16.
However, this is is the point where we suggest to modify their proposed procedure and to implement
the inner bubble function such that it directly yields values for K~ω

n,r, ~R
, i.e. objects on level (IV),

without the need to take limits and without the necessity to compute diagrams from which we
then substract certain contributions that have been computed redundantly17. Before explaining
our procedure in detail in the next paragraph, let us mention that this is not only a matter of
algorithmic elegance but it has a precise practical advantage: The substraction of diagrams can
lead to a significant loss of precision since in pf-fRG applications as ours, the values in the different
asympotic classes can differ by multiple orders of magnitude with K1 containing the largest and
K3 containing the smallest values. If the K2 class is obtained from Eq. (48), where the formerly
computed K1-class is substracted componentwise in the next step, even small relative errors of the
Matsubara sum (or integral at T = 0) have a substantial impact on the precision of K2. Directly
computing the class-(IV)-diagramms avoids this source of errors and nothing stands in the way of
computing all values in all classes with the same relative precision.
In order to explain our algorithmic implementation of the “direct” approach, it is important to bring
to the point why the matter of computing only the “needed” contributions is nontrivial and either

16See also Ref. [54] for details.
17It should be mentioned that the advantage of our algorithmic high frequency implementation over the one proposed

in Ref. [54] relies on the fact that we have full access to all subclasses of the vertex at every step of the flow. In
different approaches, such as DMF2RG, where the starting point of the flow is obtained from DMFT (e.g. Ref. [49]),
our procedure is not always applicable.
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requires computing unwanted diagrammatic contributions that are subtracted afterwards or more
intricate strategies:
As explained in Sec. 3.3, the asymptotic classification can be boiled down to the two criteria of
whether the two pairs of external legs carrying the same fermionic frequency label are connected to
the same bare vertex or not. If this is the case for both pairs (corresponding to K1), the situation is
easy because all diagrammatic contributions of a vertex that do not fulfill this condition vanish when
the corresponding fermionic frequency is taken to infinity, i.e. taking the limit when performing the
Matsubara sum eliminates all unwanted contributions from the vertices.
However, suppose we wish to compute a diagramm of the class K2 where the external legs on Γ
are not connected to the same bare vertex: we would need a way to suppress all contributions of Γ
where both legs do touch the same bare vertex. In an r-bubble, these contributions are K1,r,K2′,r

and the bare vertex Γ0. This unveals the tricky point: These are precisely the contributions of Γ
that do not depend on ν, the fermionic frequency attached to Γ. Hence, there is no way to get a
handle on these contributions by modifying the external physical arguments.

The algorithmic implementation of the “direct” approach follows a simple strategy: When calling
the inner bubble function, we define an extra argument carrying information about the asymptotic
class that is computed which we refer to as “class”18. Knowing the two-particle channel in which
a bubble is computed, one can deduce from this extra argument not only what channels in the two
vertices Γ and Γ′ can contribute to the asymptotic class we wish to compute but also what asymptotic
subclasses of the relevant channels in Γ and Γ′ contribute. Hence, the variable “channel” needs to
be passed to the vertex output functions such that they do not return a simple sum of all subclasses
but suppress the unwanted parts on which we do not have a handle. For the sake of conceptual
coherence, we use this technique for all diagrammatic classes, even for K1,r where taking limits
would do the job, such that no frequency limits are necessary in our algorithm. At this point it
becomes clear that the actual heart of this approach is not part of the bubble functions themselves
but must rather be implemented in the vertex output functions which we will therefore equip with
the expertise to return only selected subclasses.
Before coming back to the vertex output functions in the context of bubble functions, there is one
more subtlety that needs to be taken care of: On the right side of Eqs. (46,75,76), some vertices carry
a tilde, indicating that they have been obtained from mapping a vertex with vertical fermion lines
to one with horizontal lines (cf. Sec. 3.1.1). This mapping effectively interchanges the a- and the t-
channel. Therefore, this is only relevant when dealing with bubbles in the a- or t-channel and when,
in addition, one of the vertices contains only complementary channel contributions. In all other
cases, interchanging the two contributions has no effect since they are summed up anyways which
is always the case in the one-loop-approximation as mentioned earlier. Algorithmically, we define
two additional variables containing information about the channel mapping for the two vertices,
“mapΓ” and “mapΓ′”, and one variable “complement” that signals the vertex output function if
only complementary channels are considered for one of the vertices. Finally, since this function
returns the value of a level-(IV)-object for a specific combination of arguments, we need to specify
the external lattice sites and frequencies. All in all, the arguments required for the inner bubble
functions are:

• Two vertices, each either Γ.Γs or Γ.Γd, (parametrization level (II)),

• Two propagators,

• “complement”,

• “class”,

• “mapΓ” and “mapΓ′”,

• Frequency and lattice site arguments.

3.5.3 Vertex in Bubble Function

With the structure of the bubble functions being established, it is now straight forward to determine
the most sensible structure of the vertex output functions such that they return only the necessary

18It should be emphasized that our algorithm never computes a “general” bubble but always a specific asymptotic
class Kn,r.
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parts. There is no need to define an output function on level (I) since we are never interested
in the sum of the spin and the density part of a vertex. Starting at level (II), the arguments and
functionalities of the vertex output functions are listed in Table 3. The new argument “side” tells the
vertex if it appears in a bubble as Γ or as Γ′. Note that the arguments “mapping” and “complement”
are also relevant for the calculation of the second self energy correction. In cases where they are
not needed, each output function returns the sum of their subclasses with no contributions being
suppressed.

Level Input Functionality

(II) ~ωr, ~R,
channel,
side,class,
mapside,
complement

Deduces from the last five arguments which two-
particle channels – and if the totally 2PI vertex – in the
vertex contribute and calls output functions on level
(III) while passing on the arguments that further de-
termine the relevant asymptotic classes.

(III) ~ωr, ~R, chan-
nel19, side20,
class21

Converts the frequencies to the natural frequencies if
“channel” is different from the two-particle channel of
the vertex. Calls output functions on level (IV) while
suppressing specific asymptotic subclasses if the com-
bination of “side” and “class” forbids them (cf. Sec.
3.3).

(IV) ~ωr, ~R Converts physical arguments to storage address us-
ing all symmetry relations and returns vertex value as
number.

Table 3: Input and functionality of output functions on the different levels of the vertex hierarchy.
The arguments “side”, “class”, “mapping”, and “complement” are only needed when the vertex is
part of a bubble function. See Fig. 14 for an example.

When numerically performing the Matsubara sums that appear in the inner bubble function, it
is helpful to make the following observation in order to improve performance and accuracy:
In the vertices Γ and Γ′ that enter the bubble BΓ,Γ′

r , there are certain contributions that do not
depend on the integration variable ν1. These are:

• the totally 2PI vertex (which is the bare interaction in the parquet approximation)

• the diagrammatic class KΩ
1,r in Γ and Γ′

• the diagrammatic class KΩ,ν
2,r in Γ

• the diagrammatic class KΩ,ν′

2′,r in Γ′.

All other diagrammatic contributions vanish for large ν1. From Table 1, one can deduce the maxi-
mal interval in which the ν1-dependent part of the vertices in an r-bubble can give a contribution.
However, these values are not static since they depend strongly on what diagrammatic subclasses
the vertices Γ and Γ′ contain and if the channel mapping from Eqs. (37,38) is relevant. The part of
the sum beyond this interval simplifies to a Matsubra sum of two (regularized) propagators that are
multiplied by the the product of the constant vertex contributions and depends only on the bosonic
transfer frequency of the respective channel. This residual sum can be evaluated with strongly re-
duced numercial costs, in some instances (for the parts where the self energy has decayed sufficiently
far and the effect of the regulator has vanished) even analytically.

19Denotes the channel r′ to which the given frequencies refer.
20If the vertex is used in a bubble function, this argument indicates if this vertex is Γ or Γ′ according to the

definition in Sec. 3.2.2.
21If the vertex is used in a bubble function, this argument indicates what asymptotic class (cf. vertex level (IV))

is computed.
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Computing a diagram of the class KΩt,νt
2,t,ij :

γst̄

Γ′s

site i

site j

νt − Ωt
2νt + Ωt

2

ν′t − Ωt
2ν′t + Ωt

2

ν1 − Ωt
2

ν1 + Ωt
2

νt − Ωt
2

νt +
Ωt
2

ν1 − Ωt
2

ν1 +
Ωt
2

νt − Ωt
2

νt +
Ωt
2

ν1 − Ωt
2

ν1 +
Ωt
2

γsa

γsp

γst

Γ0,s
jj

γsa

γsp

γst

Γ0,s
ij

K
Ω̃p
1,p,jj

K
Ω̃p,ν̃p
2,p,jj

K
Ω̃p,ν̃

′
p

2′,p,jj

K
Ω̃p,ν̃p,ν̃

′
p

3,p,jj

K
Ω̃t
1,t,jj

K
Ω̃t,ν̃t
2,t,jj

K
Ω̃t,ν̃

′
t

2′,t,jj

K
Ω̃t,ν̃t,ν̃

′
t

3,t,jj

ν′t +
Ωt
2 ν′t −

Ωt
2

ν1 +
Ωt
2 ν1 − Ωt

2K
Ωt
1,ij

K
Ωt,ν1
2,ij

Ω̃p = ν1 + νt

ν̃p = νt−ν1−Ωt
2

ν̃′p = −νt+ν1−Ωt
2

Ω̃t = νt − ν1

ν̃t = νt+ν1+Ωt
2

ν̃′t = νt+ν1−Ωt
2

Fig. 14: Example of the algorithm for reading out the vertices in the computation of the diagram
KΩt,νt

2,t,ij as it appears in the loop extensions in the t-channel. Note that the t-reducible part of the
upper vertex is not read out with the initial t-channel arguments due to the channel mapping.
The faint parts of the two vertices are suppressed in the “direct” approach. All diagrammatic
constituents of this vertex depend on νt and are independent of ν′t.

For all calculations, we use the same frequency discretization which is implemented as a combi-
nation of a logarithmic grid (for frequencies |ω| < 6.5 with 16 discretized frequencies) and a linear
grid reaching up to |ω| = 333.5 and containing another 224 discretized frequencies. The grid is sym-
metric around ω = 0 which is not contained itself. The logarithmic part, though small compared to
the whole grid, allows for good resolution of the small frequencies (the smallest being |ω| = 0.1) for
which the vertex functions are typically quite vivid. For the individual asymptotic classes, we chose
the following number of frequency points for each frequency axis: 34 (i.e. |ω|max = 32.7) for K3, 160
(i.e. |ω|max = 216.7) for K2 and K2′ and 240 (i.e. |ω|max = 333.5) for K1. These values are such
that the respective classes have largely decayed at the frequency bounds. In Fig. 15, we show plots
of the K3 class in all three channels for fixed bosonic frequency (Ω = 0.1) and neigboring lattice
sites as these arguments correspond to the greatest values in the vertex function. The fact that the
K3 class has almost completely decayed at the bounds implies that is it sufficient to consider only
the other asymptotic classes outside of this frequency range.

Reading out the vertices for continuous frequencies requires interpolation between the values
that are stored on the discrete grid. We use simple n-dimensional linear interpolation for the class
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Fig. 15: Plot of the storage array for the K3 class. The axes refer to the discrete frequency grid indices for

the fermionic arguments – in this case we store 34 frequency points in each direction, i.e. iν = 17 =̂ |ν|min,

where |ν|min = 0.1 in our case. The values of the vertex function decay towards the bounds such that the K3

class does not contribute significantly beyond this frequency range. These plots were made at the beginning

of the flow with neigboring sites (i, j) and fixed bosonic frequency Ω = 0.1.

Kn as proposed in Ref. [36]. For the class K2, for example, the interpolation scheme reads:

KΩ,ν
2 =

(
KΩ<,ν<

2 (Ω> − Ω)(ν> − ν)

+KΩ>,ν<
2 (Ω− Ω<)(ν> − ν)

+KΩ<,ν>
2 (Ω> − Ω)(ν − ν<)

+KΩ>,ν>
2 (Ω− Ω<)(ν − ν<)

)
× 1

(Ω> − Ω<)(ν> − ν<)
, (60)

where Ω>(<) and ν>(<) are the frequencies on the discrete frequency mesh that lie directly above
(below) the physical frequencies Ω and ν. This scheme is analogous in one and three dimensional
frequency space with two and eight summands, respectively.
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4 Results

In order to draw physical conclusions from the computed quantities, it is desirable to relate them
to physical observables that are accessible in experiment. An important such quantity is the spin-
correlation function χij(Ω) that is given by [36]:

χij(Ω) =

β∫
0

dτeiΩτ
〈
Tτ{Szi (τ)Szj (0)}

〉
(61)

=
1

β

β∫
0

dδτ

β∫
0

dτeiΩτ
〈
Tτ{Szi (τ + δτ )Szj (δτ )}

〉

=
1

β

∑
ω

1′ω2′
ω1ω2

∑
αβγδ

β∫
0

dδτe
iδτ (ω1′+ω2′−ω1−ω2)

︸ ︷︷ ︸
βδω

1′+ω2′ ,ω1+ω2

β∫
0

dτeiτ(Ω+ω1′−ω1)

︸ ︷︷ ︸
βδΩ,ω1−ω1′

×

× 1

β2
〈ci,α(ω1′)ci,β(ω1)cj,γ(ω2′)cj,δ(ω2)〉 1

4
σzαβσ

z
γδ

=
1

4β

∑
ω1′ ,ω2′

∑
αβγδ

〈
ci,α(ω1′ − Ω

2 )ci,β(ω1′ + Ω
2 )cj,γ(ω2 + Ω

2 )cj,δ(ω2 − Ω
2 )
〉
σzαβσ

z
γδ, (62)

where we exploited time translation invariance (τ → τ + δτ ) in the second line to impose energy
conservation. Moreover, the z-direction has been chosen arbitrarily which is possible due to SU(2)
symmetry. According to the definitions in Eqs. (30,31), performing all Wick contractions and
evaluating the sums yields:

s

s

d

χij(Ω) = 1
4β2

∑
ω1′

∑
αβ

γδ

σzαβσ
z
γδ

(
δγβδδαδijβ

j, γ

j, δ i, α

i, β

ω1′ − Ω
2

ω1′ + Ω
2

+

+
∑
ω2

δij
j, γ

j, δ

i, β

i, α
ω1′ − Ω

2ω2 − Ω
2

ω1′ + Ω
2ω2 + Ω

2

−
∑
ω2

j, γ

j, δ

i, β

i, α

)

= 1
4β2

∑
ω1′

(
β

2︷ ︸︸ ︷∑
αβ

γδ

σzαβσ
z
βα

j, γ

j, δ

i, β

i, α

δij +

−2︷ ︸︸ ︷∑
αβ

γδ,ω2

σzαβσ
z
γδσ

µ
δασ

µ
βγ δij

j, γ

j, δ

i, β

i, α

+

2︷ ︸︸ ︷∑
αβ

γδ,ω2

σzαβσ
z
γδδδαδβγ δij

j, γ

j, δ

i, β

i, α

−

4︷ ︸︸ ︷∑
αβ

γδ,ω2

σzαβσ
z
γδσ

µ
βασ

µ
γδ

j, γ

j, δ

i, β

i, α

)
.
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Collecting everything, the formula for the spin-correlation function reads:

χij(Ω) =
1

4β

∑
ω1′

2 ·G(ω1′ − Ω
2 )G(ω1′ + Ω

2 )δij

+
1

4β2

∑
ω1′

∑
ω2

G(ω1′ − Ω
2 )G(ω1′ + Ω

2 )G(ω2 − Ω
2 )G(ω2 + Ω

2 )×

×
{
− 2 · Γsii(ω2 − Ω

2 , ω1′ + Ω
2 ;ω1′ − Ω

2 , ω2 + Ω
2 )δij

+ 2 · Γdii(ω2 − Ω
2 , ω1′ + Ω

2 ;ω1′ − Ω
2 , ω2 + Ω

2 )δij

− 4 · Γ̃sij(ω1′ + Ω
2 , ω2 − Ω

2 ;ω1′ − Ω
2 , ω2 + Ω

2 )
}
. (63)

The tilde on the last vertex can be dropped since the correlation function is always computed
with the full vertex such that the tilde does not have an effect. Though diagramatically very
reminiscent of the KΩ

1,r-class diagrams in the a and t-channel, the spin-correlation function in its

spin-density parametrized form cannot immediately be obtained from the vertex values in the KΩ
1,r-

class by a relation of the form KΩ
1,r,ij ∝ χr,ij(Ω) as opposed to the argument made in Ref. [54] for

unparametrized diagrams. A simple way to understand this is to remember that Jii = 0 in the
Heisenberg model: When diagrams like the last one appear in the KΩ

1,r-class of any channel (where
the end-points are bare vertices), they are either zero due to their site-index structure or they contain
a summation over site indices, unlike the diagram that we wish to extract. It is worth noting that
even in the case Jii 6= 0 we would not be better off since with our classification of diagrams, even
in that case we would not be able to extract only those diagrams without site-summations which
prevents direct access to the correlation function in general and thus requires its separate evaluation.
Ultimately, we are interested in the ~k-space resolved static susceptibility which is given by the Fourier
transform of the spin-correlation function in real space at Ω = 0 [36,45]:

χ(Ω = 0,~k) =
1

3

∑
ic∈{1,2,3}

∑
j

ei
~k(~Ri−~Rj)χij(0), (64)

where the first sum denotes the sum over all atoms in the unit cell of an arbitrary site i and ~Ri, ~Rj
are vectors22 corresponding to the sites i and j.
The susceptibility can easily be tracked during the flow and yields valuable information about
the phase of the system. If the initial parameters are such that the systems has a magnetically
ordered ground state, the susceptibility will diverge at specific vectors ~k as the energy scale is
lowered. The position of these vectors reveals the kind of magnetic order by which the ground
state is characterized. However, there are certain parameter regimes where the susceptibility shows
no sign of divergence throughout the entire flow. These symmetry-preserving states are associated
with spin liquid phases. In Fig. 16, we show an approximate phase diagram that contains four
magnetically ordered states, as well as two spin liquid phases. It is plotted as function of the angle

α = arctan
(
J2

J1

)
. One spin liquid phase is obtained for J2 ≈ 0 (“Heisenberg point”) and the other

one for J1 ≈ 0.

The magnetically ordered phases themselves are not accessible in the fRG scheme – we can only
observe the divergencies as signs of phase transitions from a disordered to an ordered phase. The
spin liquid phases, however, allow for further investigations: The main quantity of interest is the
spacial decay of the spin-correlation since it allows to draw conclusions about the type of spin liquid.
As mentioned in the introduction, the spin-correlation of a gapped Z2-spin liquid phase would decay
exponentially, ∝ exp(−xξ ), with spacial distance x and correlation length ξ. The correlation length
being accessible from the numerical data, one can determine the energy gap.
A gapless U(1) spin liquid, on the other hand, would be identified by an algebraic decay of the
form ∝ 1

xd
with d ≈ 4 [12]. Consequently, the long-distance correlations are much stronger than in

gapped spin liquids.

22We recall that an index i is our notation for a vector ~Ri pointing site i which is parametrized by three coordinates.
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Fig. 16: Approximate phase diagram for the KHM as function of the angle α = arctan

(
J2

J1

)
as

obtained for example in Refs. [20, 47] (the exact positions of the boundaries are not consistent
between different techniques).

4.1 Numerical Results

4.1.1 One-Loop Results

In Fig. 17, we present contour and surface plots of the susceptibility which show the characteristic
diverging peaks shortly before the phase transition to the four ordered phases. In this figure, the
susceptibility was computed from the 1-loop-renormalized vertex at the last Λ-integration step before
the phase transition. The first (second) Brillouin zone is indicated with solid (dashed) lines in the

contour plots. This way, it is easy to read off the vectors ~k at which the susceptibility diverges at
the transition to the ordered phases23. Fig. 18 tracks the value of χ(~k) at precisely these points
down to the phase transition at specific values Λc (visible as divergencies in the curve or pronounced
peaks) at which magnetic order sets in.
All calculations in the main part of this thesis have been performed with a correlation area of 181
sites which still allows for acceptable computation times at higher loop orders.

23These are: ~kq=0 =

(
0
4π√

3

)
, ~kcuboc =

(
0
2π√

3

)
, ~kferro =

(
0
0

)
, ~k√3×

√
3 =

(
0
8π
3

)
.
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Fig. 17: Contour plots (left) and surface plots (right) of the susceptibility shortly before the phase transition
to the four different magnetically ordered phases. They were computed from the vertex in the one-loop flow.
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Fig. 18: One-loop flow of the peaks in the susceptibility χ(~k).

For the spin liquid regimes, the susceptibility looks quite different. Since no symmetry is broken,
is it in principle possible to integrate the flow equation down to Λ = 0. In practice, our calculations
for these phases end at some Λ > 0 below which the effects of the discrete frequency mesh does not
allow for reliable data any more. The surface plots at the endpoints of the flow are shown in Fig.
19 for the two different spin liquid phases.

As mentioned before, it is of special interest to gain information about the kind of spacial decay
that the spin-correlations exhibit. This information can directly be extracted from χij(Ω = 0) which

we plotted in Fig. 20 as a function of distance, x = |~Ri − ~Rj |, on a logarithmic scale and for the
two different spin liquid phases.
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(a) Spin Liquid I at α = 1◦ and Λ = 0.95 along
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3
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Fig. 20: Real space decay of the spin-spin correlation, χij(Ω = 0). Spacial distance x is given in
units of the nearest neighbor site distance d = 1

2 |êi|. The solid line is an exponential fit to the data.
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Fig. 19: Contour plots (left) and surface plots (right) of the susceptibility for the two different spin liquid
phases. The susceptibility was computed at the end of the flow.
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Fig. 21: Two-loop flow of χ(~k) deep in the ordered phases.

4.1.2 Two-Loop Results

Even though the algorithm described in this thesis is in principle applicable to arbitrary loop orders,
computation times make higher loop orders quite costly. Within the scope of this thesis, we therefore
limit ourselves to the investigations of two-loop corrections, leaving the analysis of higher loop orders
for future analyses. The two-loop results are presented in this section.
It is primarily interesting how the boundaries of the phase diagram are affected by the second loop
orders. Since the qualitative features from Figs. 17 and 19 are unchanged at higher loop orders, we
do not show the corresponding contour and surface plots but focus on the more interesting flow of
χ(~k) at the relevant vectors ~k. In Fig. 21, we show this flow towards the four ordered phases.

Figs. 22 and 23 show the flow of χ(~k) for selected angles at the boundaries in the phase diagram
where previous fRG studies have not been conclusive [5,47] or do not match with the analysis from
different methods as DMRG [20].
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Fig. 22: Flow of χ(~k) at ~k = ~kq=0 for different angles α at the boundary of the q = 0 phase.
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Fig. 23: Flow of χ(~k) at ~k = ~k√3×
√

3 for different angles α at the boundary of the
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3 phase.
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4.2 Discussion

Let us interpret the results from Secs. 4.1.1 and 4.1.2 and put them into perspective with previous
works.
In the one-loop case, the different magnetically ordered phases can be identified by the characteristic
shapes of the susceptibility in Fig. 17. We reproduce the four magnetically ordered phases that
have been obtained in previous studies with different methods (e.g. Refs. [5, 20, 47]). In particular,
the order of the critical values Λc at which the susceptibility diverges in these phases is in agreement
with the fRG-results from Ref. [47], see Fig. 18a. Note that we amplified some of the curves for
better visibility. The ordered phases at α = 45◦ (q = 0) and α = 135◦ (cuboc) show less pronounced
peaks which can be explained by a smaller magnetization in theses phases as compared to the other
two magnetic phases [47].
The susceptibility in the non-magnetic case has no diverging peaks. The plots for both spin liquid
phases in Fig. 19 were taken at the value of Λ down to which we computed the flow. In principle,
the flow can be continued to Λ = 0 since no phase transition (and thus no divergence in the
susceptibility) occurs (cf. Fig. 18b). In practice, however, our flow stops at some Λ > 0 where the
discreteness of the frequency mesh prevents us from obtaining reliable data for smaller values of the
flow parameter. This issue should be resolved for future projects where an adaptive grid may be
useful.
By comparing the contour plots of the two spin liquid phases, it is easy to see their resemblance: The
pattern in the contour plot from SL II is the essentially same as the one from SL I, rotated about π

6
and strechted by a factor 1√

3
. This can be understood by looking at the real space Kagome lattice

and realizing that the distance between next-to-nearest neighbors is by the factor
√

3 larger than
the one between next neighbors. Since the two spin liquids phases arise around the limits J2 = 0
(i.e. only nearest neighbor interaction for SL I) and J1 = 0 (i.e. only next-to-nearest neighbor
interaction for SL II), it is intuitive that the susceptibilities in reciprocal space are related by the
factor 1√

3
.

The real space decay of the susceptibility (Fig. 20) is best fitted by an exponential decay, though
we emphasize that the plot for SL I was obtained at quite large Λ since our plots showed an in-
creasingly random distribution at later points in the flow. Nonetheless, this is strong indication
for Z2 gapped spin liquid ground states for which we determined correlation lengths (in units of
neighboring spin distance) of ξ = 1.1424 for SL I and ξ = 0.7375 for SL II. Since most numerical
studies have focused on the SL I phase, we compare our value to the literature values for SL I:
The fRG analysis in Ref. [47] finds ξ = 0.98 while DMRG methods find ξ ≈ 0.8 [17], ξ ≈ 1.0 [6], and
ξ ≈ 1.5 [55] such that our value is perfectly in line with the reference values that all hint at very
short ranged spin-spin correlations.

In the literature, however, the phase diagram from fRG studies is quantitatively not in total
agreement with other methods – especially DMRG predicts slightly different locations of the phase
boundaries. We shall focus on this point more thoroughly with the example of the phase transition
from the Spin Liquid I-phase around the Heisenberg point to the q = 0-phase:
While one-loop fRG in Ref. [47] predicts this boundary to be located at α ≈ 35◦, DMRG detects
the boundary at α ≈ 11◦ [20]. We computed the flow of the susceptibility for several angles in the
range α ∈ [1◦, 15◦] in order to investigate the effect of two-loop corrections, hoping for indication
if higher loop orders may be able to reconcile the disagreeing results. In agreement with Ref. [47],
our one-loop flow remains smooth throughout the entire flow for all angles in this range. However,
adding two-loop corrections changes the flow such that the tendency for magnetic order is enhanced,
see Fig. 22. In this figure, we plotted the flow of the highest points of χ(~k) for the one- and two-loop
scheme with an inset that shows the susceptibility at the last computed steps of the flows. When
the curves become to steep, we are not able to integrate any further and more refined integration
schemes with an adaptive step size would be needed to continue the flow. Even though the curve
in the two-loop scheme at α = 1◦ becomes quite steep (which may hint at a phase transition that is
certainly unexpected in this regime), the inset shows that no peaks and thus no magnetic order is
developed as far as we can compute the flow with our current numerical integration technique.
This is different for the other angles in this figure where surface plots of the susceptibility show a
clear tendency towards order in the q = 0-phase. However, while the peaks never diverge in the
one-loop scheme, they grow quite fast in the two-loop corrected flow. The greater the angle, the
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more does the two-loop corrected curve deviate from the one-loop curve, strongly hinting at a phase
transition. This makes it plausible that higher order correction indeed shift the one-loop-fRG results
towards the reference values from the cited DMRG studies.

We make a similar observation close to the transition from the SL I phase to the
√

3 ×
√

3-
ordered phase. Fig. 23 again shows the flow of the highest point in the susceptibility. While fRG
predicts the phase boundary to lie at α ≈ 333◦ [47], the analysis from DMRG in Ref. [20] yields a
value of α ≈ 354◦. Our results at two angles within the range of discrepancy (at α = 352◦, 350◦)
show a one-loop flow that stays smooth for a long time and shows a sign of divergence only very
late in the flow where the reliability of our data is poor due to effects from the discreteness of the
frequency mesh. The two-loop corrected results, however, diverge a lot earlier in the flow, indicating
that these angles of the phase diagram may indeed correspond to an ordered phase as predicted by
DMRG [20]. The surface plots of the susceptibility (see insets in Fig. 23) show the clear signature
of the

√
3×
√

3-ordered phase.
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5 Summary and Outlook

In this thesis, we presented our algorithm for a pf-mfRG analysis of the Heisenberg model on
the Kagome lattice with nearest and next-to-nearest neighbor interactions. The difference with
respect to former fRG algorithms (as in Ref. [39]) is the implementation of two additional vertex
parametrization levels which allows for an efficient vertex parametrization by accounting for the
frequency asymptotics of the vertex functions [54]. We used our algorithm to compute the phase
diagram of the ground state in the KHM at T = 0 and reproduced the results from previous fRG
studies [47]. Furthermore, we obtained second-order results at the points of the phase diagram where
previous fRG studies were in disagreement with the results from other methods, especially DMRG
(see Sec. 4.2 for the references that we considered). Our results show that two-loop corrections
significantly alter the quantitative predictions concerning the transition points in the phase diagram.
The presented data awakens the hope that higher order corrections my indeed lead to a better
quantitative agreement of fRG studies with the DMRG reference values.
In addition, our findings confirm the predicition from former fRG studies regarding the Z2-nature
of the spin liquid ground state. Clearly, the goal is to explore the effects of higher order corrections
in future projects which could not be considered on a structured way in the scope of this thesis
due to time limitations that conflicted with computation times. Preliminary results for third-order
corrections, however, seem to yield curves that lie between the first and the second order result.
The hope is that the curves converge in the next few loop orders.
In order to find an estimate for the reliablity of the quantitative results, some technical points might
be interesting to consider in future projects.
As a check, it would be helpful to explicitly show the regulator-independence of the mfRG flow.
One possibility for another regulator that could be implemented is a smooth version of the widely
used Litim regulator:

(GLitim
0,Λ )−1(ω) = i sgn(ω)max(|ω|,Λ)

smoothen−−−−−−→ iω − i(ω − Λ)e−
( |ω|

Λ

)2

. (65)

It is expected that different realizations of the regulator lead to quite different quantitative results
at low loop orders but converge to the same values when the loop number is increased.
Moreover, it would be interesting to implement the susceptibility as its own independent flow equa-
tion in the multiloop scheme as suggested in Ref. [22] and implemented in Ref. [48] for the 2D-
Hubbard model. This would allow for a better understanding of the quantitative validity of the
standard pf-fRG procedure where the susceptibility has so far always been computed from flowing
vertices as “post-processed” quantity.

These being technical perspectives, it seems promising to apply the pf-mfRG algorithm to further
models that exhibit magnetic frustration. In recent years, pf-fRG studies have also been pursued in
3D materials [16] with interesting examples being Heisenberg models on the hyperkagome [5] and
the pyrochlore lattice [15]. These systems are numerically challenging and other methods fail here:
Monte Carlo methods struggle with the sign problem and DMRG, which is well-suited for 1D and
has successfully been generalized to 2D for certain systems, is generally not applicable in 3D. The
functional renormalization group, however, is in principle not limited to a certain dimensionality
and has proven successful. Since previous studies have not implemented multiloop corrections and
the quantitative results therefore always depend on the choice of regulator, the pf-mfRG scheme
could be used to improve the quantitative accuracy for this kind of systems.

In conclusion, it is probably safe to say that there are many remaining questions in the field of
frustrated magnetism where pf-mfRG could help to complete the picture and understand interesting
effects which makes this method very promising for future research in the field.
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Appendices

A Two-particle Vertex Flow Equations in the mfRG Scheme
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Fig. 24: Two-particle vertex flow equations in the mfRG scheme for the first, second and (l + 2)th
loop order. Double dashed lines denote the differentiated propagator ∂ΛGΛ. These diagrams relate

to Eq. (23) by γ̇r =
∑
l

γ̇
(l)
r . Adopted from Ref. [23].

B Vertex Spin Parametrization

In correspondence to the real space parametrization in Eq. (33), it would be straightforward to
introduce the spin parametrization of the vertex in the following way:

Γi1i2(1′2′; 12) =
{

Γxi1i2(ω1′ω2′ ;ω1ω2)δσ1′σ1
δσ2′σ2

+ Γyi1i2(ω1′ω2′ ;ω1ω2)δσ2′σ1
δσ1′σ2

}
. (66)
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C. DERIVATION OF PARAMETRIZED BUBBLE FUNCTIONS IN THE T - AND
A-CHANNEL

Let us make clear how this is related to the parametrization from Ref. [39] as introduced in the
main text:

Γi1i2(1′2′; 12) =

Γsi1i2(ω1′ω2′ ;ω1ω2) σµσ1′σ1
σµσ2′σ2︸ ︷︷ ︸

2δσ
1′σ2δσ2′σ1−δσ1′σ1δσ2′σ2

+ Γdi1i2(ω1′ω2′ ;ω1ω2)δσ1′σ1δσ2′σ2

 .

(67)
By comparing proportionalities, one can make the identification:

Γx = −Γs + Γd (68)

Γy = 2Γs (69)

In order to see that both approaches are equivalent (i.e. a translation between the two is possible
at any step of the flow), we examplarily compute the combinatorial factors for an a-bubble in the
“x-y-parametrization” and demonstrate the equivalence to the bubble as computed in the “spin-
density-parametrization”.
In symbolic notation, we obtain:

Ba = GGΓxΓx︸ ︷︷ ︸
Bx

δσ1′σ1δσ2′σ2 +GG(ΓyΓx + ΓxΓy + ΓyΓy)︸ ︷︷ ︸
By

δσ1′σ2δσ2′σ1 . (70)

Substituting relations (68) and (69) in order to eliminate Γx and Γy yields:

Bx = GG(ΓsΓs − ΓsΓd − Γd + ΓdΓd) (71)

By = GG(4ΓsΓs + 2(ΓdΓs + ΓsΓd)) (72)

Using relations (68) and (69) again in order to tranlate Bx and By to Bs and Bd, we finally arrive
at:

Bs = GG(2ΓsΓs + ΓdΓs + ΓsΓd) (73)

Bd = GG(3ΓsΓs + ΓdΓd), (74)

which is precisely what we obtain for the a-bubble in the spin-density parametrization (see Appendix
C). Hence, Eqs. (68) and (69) hold also for the bubble functions themselves. This calculation is
completely analogous in the other channels and the same idea can straight forwardly be used for
the self energy. Since all vertices are built up iteratively from bubble functions, these relations must
hold for any vertex such that the parametrizations can always be switched. For practical purposes,
the spin-density parametrization is much more convenient, though, since at Λ → ∞, Γs is directly
proportional to the spin interaction Jij from the Hamiltonian and density vertex Γd is simply zero.
The term “density” vertex is related to the fact that it describes a term proportional to δσ1′σ1

δσ2′σ2

which means that both pseudofermion operators with the same site index (stemming from the same

spin operator ~Si) also carry the same spin index. This leads to a term ∝ ĉ†i,αĉi,α︸ ︷︷ ︸
n̂i,α

ĉ†j,β ĉj,β︸ ︷︷ ︸
n̂j,β

which

describes an effective density-density interaction.

C Derivation of Parametrized Bubble Functions in the t- and
a-Channel

Bubbles in the t-channel
This procedure of determining the combinatorial factors can be used in all three channels. In the
t-channel, the bubble is defined as:

Bt(Γ,Γ
′)1̂′2̂′,1̂2̂ = −

∑
3̂2̂

Γ(4̂2̂′, 3̂2̂)Γ′(1̂′3̂, 1̂4̂)GΛ(ω3)GΛ(ω4).

In this definition, a factor of (−1) is included which reflects the crossing symmetry between the
a-channel and the t-channel. With the inclusion of this minus sign, the flow equation for the vertex
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becomes simply the sum of the Λ-derivatives of all three bubbles without any additional signs. Using
this definition, the site-parametrization yields:

Γ

Γ′

−
∑̂
3,4̂

1̂′ 1̂

4̂

3̂

2̂ 2̂′

= −
∑
3,4

(∑
i3

1′, i1 1, i1

4, i3

3, i3

2, i2 2′, i2

−

1′, i1 1, i1

4, i2

3, i2

2, i2 2′, i2

−

1′, i1 1, i1

4, i1

3, i1

2, i2 2′, i2

+

1′, i2 1, i1

4, i2

3, i1

2, i2 2′, i1

)
.

By inspection, it is clear that the first three diagrams belong to the proportionality class
δi1i1′ δi2i2′ whereas only the fourth one connects the lattice sites differently.
Inserting the spin-parametrized vertices, one obtains for the three individual contributions:

s

s

d

s

d

d

s

d

∑
3,4

∑
i3

=

1′, i1 1, i1

4, i3

3, i3

2, i2 2′, i2

= 1
β

∑
ω3,ω4
i3

(

ω1′ , i1 ω1, i1

ω4

i3
ω3

ω2, i2 ω2′ , i2

2σµ
1′1σ

µ

2′2︷ ︸︸ ︷∑
σ3σ4

σµσ4σ3
σµσ2′σ2

σνσ1′σ1
σνσ3σ4

+

0︷ ︸︸ ︷∑
σ3σ4

δσ4σ3
δσ2′σ2

σµσ1′σ1
σµσ3σ4

+

0︷ ︸︸ ︷∑
σ3σ4

σµσ4σ3
σµσ2′σ2

δσ1′σ1
δσ3σ4

+

2δ1′1δ2′2︷ ︸︸ ︷∑
σ3σ4

δσ4σ3
δσ2′σ2

δσ1′σ1
δσ3σ4

)
.
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s

s

d

s

d

d

s

d

∑
3,4

=

1′, i1 1, i1

4, i2

3, i2

2, i2 2′, i2

= 1
β

∑
ω3,ω4

(

ω1′ , i1 ω1, i1

ω4

i2
ω3

ω2, i2 ω2′ , i2

−σµ
1′1σ

µ

2′2︷ ︸︸ ︷∑
σ3σ4

σµσ2′σ3
σµσ4σ2

σνσ1′σ1
σνσ3σ4

+

σµ
1′1σ

µ

2′2︷ ︸︸ ︷∑
σ3σ4

δσ2′σ3
δσ4σ2

σµσ1′σ1
σµσ3σ4

3δ1′1δ2′2︷ ︸︸ ︷∑
σ3σ4

σµσ2′σ3
σµσ4σ2

δσ1′σ1
δσ3σ4

+

δ1′1δ2′2︷ ︸︸ ︷∑
σ3σ4

δσ2′σ3
δσ4σ2

δσ1′σ1
δσ3σ4

)
.

s

s

s

d

d

d
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s
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4, i1

3, i1

2, i2 2′, i2
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β

∑
ω3,ω4

(

ω1′ , i1 ω1, i1
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i1
ω3

ω2, i2 ω2′ , i2

−σµ
1′1σ

µ

2′2︷ ︸︸ ︷∑
σ3σ4

σµσ4σ3
σµσ2′σ2

σνσ3σ1
σνσ1′σ4

+

3δ1′1δ2′2︷ ︸︸ ︷∑
σ3σ4

δσ4σ3
δσ2′σ2

σµσ3σ1
σµσ1′σ4

σµ
1′1σ

µ

2′2︷ ︸︸ ︷∑
σ3σ4

σµσ4σ3
σµσ2′σ2

δσ3σ1
δσ1′σ4

+

δ1′1δ2′2︷ ︸︸ ︷∑
σ3σ4

δσ4σ3
δσ2′σ2

δσ3σ1
δσ1′σ4

)
.

The resulting effective rule for the terms proportional to δi1i1′ δi2i12
in bubbles of the t-channel

is depicted in Fig. 25.
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Fig. 25: Effective rule for bubbles in the t-channel.

In terms of mathematical objects it reads:

BΓ,Γ′

t,i1i2
(1′2′, 12) = − 1

β

∑
ω3,ω4

G(ω3)G(ω4)

{(
2 ·
∑
i3

Γsi3i2(ω4ω2′ ;ω3ω2)Γ′si1i3(ω1′ω3;ω1ω4)

+ Γ̃si2i2(ω2′ω4;ω3ω2)Γ′si1i2(ω1′ω3;ω1ω4)− Γ̃di2i2(ω2′ω4;ω3ω2)Γ′si1i2(ω1′ω3;ω1ω4)

+ Γsi1i2(ω4ω2′ ;ω3ω2)Γ̃′si1i1(ω3ω1′ ;ω1ω4)− Γsi1i2(ω4ω2′ ;ω3ω2)Γ̃′di1i1(ω3ω1′ ;ω1ω4)
)
σµσ1′σ1

σµσ2′σ2

+
(

2 ·
∑
i3

Γdi3i2(ω4ω2′ ;ω3ω2)Γ′di1i3(ω′1ω3;ω1ω4)

− 3 · Γ̃si2i2(ω2′ω4;ω3ω2)Γ′di1i2(ω1′ω3;ω1ω4)− Γ̃′di2i2(ω2′ω4;ω3ω2)Γdi1i2(ω1′ω3;ω1ω4)

− 3 · Γdi1i2(ω4ω2′ ;ω3ω2)Γ̃′si1i1(ω3ω1′ ;ω1ω4)− Γdi1i2(ω4ω2′ ;ω3ω2)Γ̃′di1i1(ω3ω1′ ;ω1ω4)
)
δσ1′σ1

δσ2′σ2

}
.

(75)

The first three lines are the three different kinds of diagrams that become the new spin vertex and
the last three lines are the three different kinds of diagrams forming the new density vertex.

Bubbles in the a-channel
Bubbles in the a-channel are defined as:

Ba(Γ,Γ′)1̂′2̂′,1̂2̂ =
∑
3̂4̂

Γ(1̂′4̂, 3̂2̂)Γ′(3̂2̂′, 1̂4̂)GΛ(ω3)GΛ(ω4).

Straightforwardly employing the real space parametrization yields:
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Γ Γ′
∑̂
3,4̂

1̂′

2̂

3̂

4̂

1̂

2̂′

=
∑
3,4

(

1′, i1

2, i2

3, i1

4, i2

1, i1

2′, i2

−

1′, i2

2, i2

3, i1

4, i1

1, i1

2′, i1

−

1′, i2

2, i2

3, i2

4, i2

1, i1

2′, i1

+
∑
i3

1′, i2

2, i2

3, i3

4, i3

1, i1

2′, i2)
.

Note that the diagrams of the a-channel are related to those of the t-channel by crossing symme-
try, e.g. by the exchange of two ingoing legs. Also the real space parametrization introduced above
is nothing but an explicit implementation of the fermionic anti-symmetry under the exchange of two
ingoing legs. Knowing that three of the four diagrams in the t-channel belong to the proportionality
class δi1i2δi1′ i2′ , it is intuitive that there is only one “remaining” site-resolved bubble diagram in
the a-channel that is proportional to δi1i2δi1′ i2′ . Inserting the spin parametrization leads to:

s s

d s

s d

d d

Ba

1′, i1

2, i2

1, i1

2′, i2

= 1
β

∑
ω3,ω4

( 2σµ
1′1σ

µ

2′2+3δ1′1δ2′2︷ ︸︸ ︷∑
σ3σ4

σµσ1′σ3
σµσ4σ2

σνσ3σ1
σνσ2′σ4

σµ
1′1σ

µ

2′2︷ ︸︸ ︷∑
σ3σ4

δσ1′σ3
δσ4σ2

σµσ3σ1
σµσ2′σ4

σµ
1′1σ

µ

2′2︷ ︸︸ ︷∑
σ3σ4

σµσ1′σ3
σµσ4σ2

δσ3σ1
δσ2′σ4

δ1′1δ2′2︷ ︸︸ ︷∑
σ3σ4

δσ1′σ3
δσ4σ2

δσ3σ1
δσ2′σ4

)
,

1′, i1 1, i1ω3, i1

ω4, i22, i2 2′, i2

+

+

+

Thus, one can derive the effective rule for general bubble functions in the a-channel as shown in
Fig. 26.
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s s d s s d

s s d d

BΓ,Γ′

a,i1i2
(1′2′, 12) =

= =

(
2

∝ δi1i1′ δi2i2′

Γ Γ′ + +

)
σµσµ

+

(
3 +

)
δδ.

Fig. 26: Effective rule for bubbles in the a-channel.

In full mathematical detail, this corresponds to:

BΓ,Γ′

a,i1i2
(1′2′, 12) =

1

β

∑
ω3,ω4

G(ω3)G(ω4)×

{(
2 · Γsi1i2(ω1′ω4;ω3ω2)Γ′si1i2(ω3ω2′ ;ω1ω4)

+ Γdi1i2(ω1′ω4;ω3ω2)Γ′si1i2(ω3ω2′ ;ω1ω4) + Γsi1i2(ω1′ω4;ω3ω2)Γ′di1i2(ω3ω2′ ;ω1ω4)
)
σµσ1′σ1

σµσ2′σ2

+
(

3 · Γsi1i2(ω1′ω4;ω3ω2)Γ′si1i2(ω3ω2′ ;ω1ω4) + Γdi1i2(ω1′ω4;ω3ω2)Γ′di1i2(ω3ω2′ ;ω1ω4)
)
δσ1′σ1

δσ2′σ2

}
.

(76)

D Numerical Consistency Checks

There are multiple tests that can be used to ensure self consistency and accuracy of the numerical
results. One of these tests consists of computing the fRG flow separately in the different channels
with bare propagators at every step of the flow. The RPA diagrams that are produced in this scheme
can be compared to analytical results in the following manner:
It is straight forward to compute the polarization function χr(iΩ) in the discrete Matsubara formal-
ism. Since the Hamiltonian lacks a kinetic term, the result is particularly simple, e.g. in the case of
the a/t-channel:

χa/t(iΩm) =
1

β

∑
ωn

1

iωn + µ

1

i(ωn + Ωm) + µ
=
−1

4T
δΩm,0. (77)

In the p-channel, the polarization function is given by:

χp(iΩm) =
1

β

∑
ωn

1

iωn + µ

1

i(−ωn + Ωm) + µ
=

1

4T
δΩm,0. (78)

Since in this formalism, the temperature can be interpreted as a low-energy cutoff similarly to Λ
in the fRG flow, one can make a one-to-one correspondence between Λ and the temperature T . To
identify the conversion factor, one can compute χr(Ω) at T = 0 in the sharp cutoff scheme. For the
a/t-channel:

χa(Ω) =
1

2π

∞∫
−∞

dω
Θ(|ω| − Λ)Θ(|ω + Ω| − Λ)

iω · i(ω + Ω)
=


−1
π|Ω| log

(
1 + |Ω|

Λ

)
for Ω 6= 0

−1
πΛ for Ω = 0,

(79)

and in the p-channel:

χp(Ω) =
1

2π

∞∫
−∞

dω
Θ(|ω| − Λ)Θ(| − ω + Ω| − Λ)

iω · i(−ω + Ω)
=


1

π|Ω| log
(

1 + |Ω|
Λ

)
for Ω 6= 0

1
πΛ for Ω = 0.

(80)
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D. NUMERICAL CONSISTENCY CHECKS

As opposed to χa(iΩm) in Eq. (77) which is zero for Ω 6= 0, this function decays slowly on both
sides as |Ω| is increased. However, one can observe that the dependence on the cutoff parameter is
equivalent in both functions at Ω = 0 such that one can make the identification:

Λ =
4T

π
.

In the a- and p-channel where the bubble functions do not include summations over site indices,
this allows to compute the RPA-result analytically at Ω = 0 for any Λ during the flow. Reducing
the considerations to only the spin-part of the vertices, this yields:

ΓΛ,RPA
r,i1i2

(Ωr = 0) = Γ0
i1i2 + Γ0

i1i2 · χ
Λ
r (0) · ΓΛ,RPA

r,i1i2
(Ωr = 0) (81)

=
Γ0
i1i2

1− Γ0
i1i2
· χΛ

r (0)
, (82)

where no fermionic frequency arguments appear since all constituents belong to the diagrammatic
classes Λirr or KΩ

1,r,i1i2
. Inserting χΛ

r (0) from Eq. (79) as function of the flow parameter Λ = 4T
π ,

yields an analytic expression for the flow of RPA-diagrams in the a- and p-channel. Observing
that the second summand in Eq. (81) is proportional to KΛ,Ω=0

1,r,i1i2
, one can check that the following

equivalence holds within the range of validity of the geometric series (i.e. |Γ0
i1i2
· χΛ

r (0)| < 1):

KΛ,Ω=0
1,r,i1i2

=
Γ0
i1i2

1− Γ0
i1i2
· χΛ

r (0)
− Γ0

i1i2 =
Γ0
i1i2

1− (−2) · Γ0
i1i2
· 1
πΛ

− Γ0
i1i2 , (83)

where the left hand side is obtained by reading out the values of KΛ,Ω=0
1,r,i1i2

during the flow, the term
in the middle is obtained by plugging in the numerically computed value of a bare bubble at Λ and
the right term is computed purely analytically. The factor (−2) in the right term of Eq. (83) stems
from the combinatorial factors that appear in the a- and p-channel where the signs are such that the
above result is valid in both channels. Note that accurate results can only be obtained if the initial
Λ is chosen big enough or if one computes the initial condition for KΛ,Ω=0

1,r,i1i2
analytically at Λ = Λinit.

Moreover, it is important to remark that Eq. (83) holds only if one sets all density interactions to
zero which corresponds to spinless particles.

Another precision and consistency test for spinless particles (with all density parts of the vertices
set to zero) consists of setting Jij = J for all (i, j) and checking that

0 = K
(2),Ωp
1,p +K

(2),Ωt,no RPA
1,t ,

where the diagonal line represent the Λ-derivative of the propagators with the Leibniz rule. The

vertex functions K
(2),Ωp
1,p and K

(2),Ωt,no RPA
1,t are computed at lowest order, i.e. at second order in the

bare interaction and the term with the site-summation from the t-channel diagramm is left out. The
bosonic frequencies Ωp and Ωt depend on the a-channel-frequency arguments and can be computed
by making use of the conversion table. This identity holds only since the interaction is local and
only if particle-hole symmetry is present, such that G(iω) = −G(−iω), as can be seen by translating
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D. NUMERICAL CONSISTENCY CHECKS

this diagram to an analytic expression with the sharp regulator, i.e.

∝

{
S(−Λ)G(−Λ + Ωa)(K

ω−Λ+
Ωa
2

1,p +K
−ω−Λ+

Ωa
2

1,t )

+S(Λ)G(Λ + Ωa)(K
ω+Λ+

Ωa
2

1,p +K
−ω+Λ+

Ωa
2

1,t )

+G(−Λ− Ωa)S(−Λ)(K
ω−Λ−Ωa

2
1,p +K

−ω−Λ−Ωa
2

1,t )

+G(Λ− Ωa)S(Λ)(K
ω+Λ−Ωa

2
1,p +K

−ω+Λ−Ωa
2

1,t )

}
,

where we have suppressed in the notation that the Kr diagrams refer to the lowest order and that
the RPA-contribution from the t-channel is neglected.

Making use of the identity K
(2),Ωp
1,p = K

(2),−Ωp
1,p = −K(2),−Ωp,no RPA

1,t (for the site-independent
interaction J), one sees that the first and the last line, as well as the second and third line cancel
out pairwise. Exactly the same test can be made for this fish-eye-like diagram in the p-channel in
which case one deals with Ka instead of Kp.
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J1−J2 heisenberg model on the kagome lattice. Phys. Rev. B, 91:104418, Mar 2015.

64



[21] P. Kopietz, L. Bartosch, and F. Schütz. Introduction to the Functional Renormalization Group.
Introduction to the Functional Renormalization Group. Springer, 2010.

[22] F. B. Kugler and J. von Delft. Derivation of exact flow equations from the self-consistent
parquet relations. New Journal of Physics, 20(12):123029, Dec 2018.

[23] F. B. Kugler and J. von Delft. Multiloop functional renormalization group for general models.
Phys. Rev. B, 97:035162, Jan 2018.

[24] F. B. Kugler and J. von Delft. Multiloop functional renormalization group that sums up all
parquet diagrams. Phys. Rev. Lett., 120:057403, Jan 2018.

[25] P. A. Lee. From high temperature superconductivity to quantum spin liquid: progress in strong
correlation physics. Reports on Progress in Physics, 71(1):012501, dec 2007.

[26] J. B. Marston and C. Zeng. Spin-peierls and spin-liquid phases of kagomé quantum antiferro-
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[39] J. Reuther and P. Wölfle. J1−J2 frustrated two-dimensional heisenberg model: Random phase
approximation and functional renormalization group. Phys. Rev. B, 81:144410, Apr 2010.

[40] G. Rohringer. New routes towards a theoretical treatment of nonlocal electronic correlations.
PhD thesis, Vienna University of Technology, 2013.

[41] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E. Antipov, M. I. Katsnelson, A. I.
Lichtenstein, A. N. Rubtsov, and K. Held. Diagrammatic routes to nonlocal correlations beyond
dynamical mean field theory. Rev. Mod. Phys., 90:025003, May 2018.

65



[42] M. Rück and J. Reuther. Effects of two-loop contributions in the pseudofermion functional
renormalization group method for quantum spin systems. Phys. Rev. B, 97:144404, Apr 2018.

[43] S. Sachdev. Kagome- and triangular-lattice heisenberg antiferromagnets: Ordering from quan-
tum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. Phys.
Rev. B, 45:12377–12396, Jun 1992.

[44] S. Sachdev. Quantum magnetism and criticality. Nature Physics, 4:173 EP –, 03 2008.

[45] S. Sachdev. Quantum Phase Transitions. Cambridge University Press, 2 edition, 2011.

[46] M. P. Shores, E. A. Nytko, B. M. Bartlett, and D. G. Nocera. A Structurally Perfect S = 1/2
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