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Abstract

Subject of this study are two Kondo impurities coupled to helical edge modes of 2D time-reversal
invariant topological insulator. The latter is described by using a Kane Mele lattice model. Helic-
ity is defined as a lock in relation between spin and propagation direction. an edge with a specific
helicity supports only modes which share the same helicity.
The physics of such a system are determined by a competition of two seminal phenomena: The
Kondo effect and the Ruderman-Kittel-Kasuya-Yosida (RKKY) indirect exchange interaction.
The Kondo effect leads to a screening of the impurity spins by itinerant conduction electrons for
each impurity separately whereas the RKKY indirect exchange interaction correlates them. The
Kondo/RKKY competition has intensively been studied in the literature starting with the seminal
paper by Doniach [1]. The Kondo phase is normally suppressed in 1D usual systems, thus the
RKKY phase dominates in a huge range of Kondo couplings and interimpurity distances.
However, the Kondo/RKKY competition in a 1D helical Luttinger liquid (HLL) is highly nontriv-
ial [2]. Namely, the Kondo effect can be enhanced significantly by magnetic anisotropy or Coulomb
interaction. The latter is typically strong in realistic samples. One can come across the case where
the Kondo effect overwhelms the RKKY interaction even at small distances. This behavior can
be explained with Doniach’s criterion. The two characteristic energy scales of the RKKY indirect
exchange interaction (the RKKY energy) and the Kondo effect (the Kondo temperature) can be
used to compare the two effects. If the RKKY energy is greater than the Kondo temperature, the
RKKY phase will win. However, the Kondo temperature can be significantly increased in HLL,
thus the Kondo effect is possibly superior to the RKKY phase.

The current project is devoted to a numerical study of a two impurity Kondo model coupled to
helical edge modes of a quantum spin Hall system via NRG calculations. Numerical treatment
is needed as a complimentary tool to the existing analytical theory [2] to investigate a real lat-
tice model which can not be included in the analytical considerations. Furthermore, analytics
addressed only limiting cases far from the RKKY/Kondo transition (e.g. decoupling limit for the
Kondo description). A detailed theory of RKKY/Kondo transition do not exist.
Numerics include evaluating energy flow diagrams (outcome of NRG calculations), calculating
interimpurity spectral functions and expectation values of interimpurity operators xSz

1
Sz
2

y.
These methods has allowed us to study the RKKY/Kondo transition for this particular model
because the expectation value of the interimpurity operator differs in the RKKY phase compared
to the Kondo phase.
The main result of the current project is the numerical confirmation of the analytically ob-
tained predictions of the RKKY/Kondo competition in a helical 1D system [2]. In that paper, a
RKKY/Kondo transition is predicted for an effective Luttinger parameter of K̃a “ 1{2 whereas
the numerical calculation during this project obtains a critical effective Luttinger parameter of
K̃n « 3{4.
The difference can be explained with the use of different models in analytical and numerical stud-
ies as well as with the phenomenological nature of the Doniach criterion which can only yield an
approximate value of the critical Luttinger parameter.
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Chapter 1

Introduction

In the last decades the finding of new kinds of phases in condensed matter physics was a cor-
nerstone in the research for sophisticated materials [3]. These substances can be used for new
applications in spintronics [4]. Compared to phases that have been well known before these ones
are characterized by their topology. The topological class is characterized by a topological invari-
ant which is specific for a given system and for given symmetries. As long as the specific value of
this invariant does not change, the same physics can be expected. Because of the similarities to
the mathematical definition, where some elements of the same topology can be transformed (with
some allowed manipulations) but stay in the same topology, the name topological phase is suitable
in physics, too. If, for instance, the genius is considered as the topological invariant, 3D objects
with the same genus belong to the same topology class. Thus, a cup and a torus will be in the
same topology, they have 1 hole, wheres a pretzel will not be in the same topology. In physics,
a change of the topology invariant value can be caused by a gap closing of a dispersion relation
which changes the phase from a topological trivial to a non trivial one [3] or vice versa.
One of these discovered topological classes was rewarded by a Nobel prize in physics to Haldane,
Thouless and Kosterlitz in 2016. Von Klitzing et al. experimentally discovered the integer quan-
tum Hall effect (IQHE) [5] awarded with the Nobel prize 1985, which is a nontrivial topological
phase and supports chiral modes on the spatial boundaries.
Haldane suggested a possible lattice model realization of the IQHE without applying an external
magnetic field [6].
A further step was taken by Kane and Mele who suggested a lattice model which realizes the
quantum spin Hall effect (QSHE), also known as topological insulator (TI), in graphen [7]. The
topological invariant of a quantum spin Hall system is isomorph to the Z2 group. The TI has
gapped bulk states, but supports helical edge states on its boundaries. They are gapless states
which traverse the same edge in opposite directions for different spins. Thus, their helicities
“ spinˆ cirality are equal [8, 9, 10, 11] and are defined as ˘1.
Helicity is defined as a lock in relation between group velocity and spin. On the other edge, there
exist modes with opposite helicity ¯1. The TI is time reversal symmetric (TRS) [9] in contrast to
Haldane’s model where TRS is broken.
The trivial topological phase would be a complete gaped spectrum.
Due to their finite gap, the bulk states are irrelevant for low energy physics [8]. Interesting physics
happens on the boundary of a 2d TI, where the helical edge states are located. The fixed helicity
for the edge states protect electrons from backscattering off a nonmagnetic scatterer. This is due
to the fact that backscattering can only appear if it is accompanied by a spin flip of the electron.
This is only possible, if a magnetic impurity is involved as a scatterer.
The system studied in this thesis is a non-interacting Kane Mele system with magnetic impurities
attached to the honeycomb structure. The Kane Mele system will be in the non trivial topological
phase, if proper parameters are chosen.



2 1. Introduction

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

K

-0.5

0

0.5

1

ρ
0
 J

z

decoupling
 limit

Kondo phase

RKKY phase

Figure 1.1: Phase diagram of the two impurity Kondo model (see Fig.1 in [2]). The
system parameters are the Luttinger parameter K and the dimensionless anisotropic
Kondo coupling ρ0Jz. The Kondo coupling ρ0JK stays fixed.

The goal of this work is a numerical confirmation of analytic obtained results contained in [2]. In
this paper, analytical calculations are done for a system consisting of a helical Luttinger liquid.
Two Kondo impurities (i.e. spin-spin interaction of bath electrons and impurity) are coupled to
the helical Luttinger liquid.
The paper explained in the abstract of V. Judson and O. Yevtushenko suggests a competition
between a regime where the leading interaction results from the RKKY interaction and a regime
where the system is Kondo screened, hence it is in the Kondo phase [2] (i.e. magnetic impurities
are screened by itinerant electron spins). The argumentation of [2] follows a well proofed state-
ment of Doniach which states a criterion to distinguish the RKKY from the Kondo regime [1].
The different phases are depicted in the phase diagram Fig. 1.1.
Backscattering in a topological insulator is only possible if magnetic impurities such as Kondo
impurites are involved. Forward scattering can be included into the description by introducing an
effective interaction. Thus, the system is fully described by an effective interaction parameter K̃
(depending on the forward scattering Kondo coupling constant Jz) and the backscattering Kondo
coupling JK. This absorption of forward scattering into an effective Luttinger parameter is not
possible for non helical Luttinger liquids, hence the Kondo effect can not be enhanced by intro-
ducing anisotropy which will be used during this thesis.
The model is tackled by the numerical renormalization group (NRG) method. Equipped with
this method, one can calculate different physical observables. Subject of the present study is the
numerical analysis of correlation functions (more accurate spectral functions which are the imag-
inary part of the correlation functions), like the correlation function in [2], numerically.
This correlators are the interimpurity retarded Greens function xSz

1
Sz
2

y and the local on xSz
1
Sz
1

y,
where the lower index marks which impurity spin operator is considered (i.e. first or second im-
purity).

The suggested crossover between a Kondo regime and a Ruderman-Kittel-Kasuya-Yoshida (RKKY)
regime should be detected.
This can be realized by changing the system parameters from isotropic to anisotropic Kondo cou-
pling and driving the interaction parameter Jz (see Fig. 1.1) to strong anisotropy [2].
Another way to observe the crossover contains the change of the interimpurity distance. The
Kondo temperature is independent of the interimpurity distance [1]. But the RKKY energy de-
creases for increasing separation of the impurities. Thus, the RKKY energy can be lowered in this
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way and one can try to suppress it even below the Kondo temperature which drives the system to
the Kondo regime.

1.1 Goal of the thesis

This project is devoted to a numerical study of a two impurity Kondo model coupled to helical
edge modes of a quantum spin Hall system using NRG calculations.
A proper lattice model which supports helical edge modes has to be chosen. The edge modes have
to be localized very close to the edges and their helicity should be guaranteed.
In our case, we chose the Kane Mele lattice model because it provides helical edge modes according
to our numerical investigation.
The main goal of the project is a numerical confirmation of the analytically obtained predictions
of the RKKY/Kondo competition in a helical 1D system [2] by using the model type mentioned
above.
The intermediate goals for achieving the aforementioned are calculating the Kondo temperature
for a single Kondo impurity model, estimating the RKKY energy for a two Kondo impurity model
and comparing them afterwards. Those two energy scales are the characteristic energy scales for
each effect concerned. The reasoning for those goals is a criterion presented by Doniach [1] which
can be used to make a statement about the dominant effect by comparing those characteristic
energy scales. If the Kondo temperature is greater than the RKKY energy, the system is in the
Kondo regime. For the opposite case, which is the usual one, physics are dominated by the RKKY
indirect exchange interaction.
The Kondo effect can be highly enhanced in a 1D helical system if it is a strong interacting sys-
tem. This interaction can be mimicked by applying strong anisotropic Kondo coupling in helical
Luttinger liquids.
A critical effective Kondo coupling can be determined by driving the system into the Kondo dom-
inant regime starting in the RKKY regime. This is done by means of increasing anisotropy Jz
which is the forward scattering Kondo coupling.



Chapter 2

Introduction to the physics of
topology and interacting systems

The following chapter presents the main ingredients and methods used during the project. It is
supplemented by the Appendices where lengthy calculations are given which are excluded form
the main text.
The outline is as follows: The thesis starts in Sect. 2.1 with topological non trivial systems and
their realization in lattice models.
An introduction in 1d physics (Sect. 2.2) gives us a machinery to work with sophisticated methods
to handle interacting systems with minimal approximations. This is an outstanding feature of 1d
physics.
The edge modes of a topological insulator can be seen as a quasi 1d system, because the bulk
modes are gapped.
The RKKY interaction is an interimpurity exchange interaction which is mediated by conduction
electrons. The RKKY interaction and the Kondo effect (Sect. 2.3.3) are discussed in Sect. 2.3.2
and in Sect. 2.3.3 respectively.

Sect. 2.3.4 compares the RKKY interaction and the Kondo effect. They compete with each other.
If the considered system is a helical one, the above mentioned competition changes qualitatively
which is the topic of Sect. 2.3.5.
Finally (Sect. 2.4), the numerical renormalization group (NRG) method suggested by Wilson is
introduced in Sect. 2.4. Results obtained with the help of this method are presented in Sect. 3.1.4
to solve the impurity problem (i.e. realistic lattice 2d model, 2 impurity Kondo model with
anisotropy).

2.1 Topology matters

Physics of topological phases reflects global properties of quantum states in materials [11]. These
global properties are symmetries which leaves the system Hamiltonian invariant under such sym-
metry transformation and the spatial dimension of the system. The space dimension constitutes
the supported edge modes. A TI in two spatial dimension host helical edge states on its boundaries,
where has a time reversal quasi one dimensional system supports edge modes at its boundaries
which are points know.

To characterize these topological non trivial phases one can define a topological invariant. The
quantum Hall effect can be described with the normal Chern number which is a Z number [8]. The
spin Chern number characterizes the quantum spin Hall effect, it is out of the set Z{Z2 [9]. Both
are, in principle, measurable observables, that can be detected by state of the art experiments [5]
[12].
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If the magnitude of the topological invariant changes, e.g. between a trivial and a non trivial
phase of a topological insulator, interesting physics can be detected. Zero energy edge modes are
located at the interface between materials which have different topological invariant values. This
appearance can be explained by the bulk boundary correspondence [13].
This section is devoted to give a short introduction to the huge field of symmetries in physics
and their implications in terms of topology. The quantum spin Hall system is of mayor interest,
because it hosts zero energy helical edge states on its spatial boundaries which serves as quasi 1d
helical system latter on [7].

2.1.1 Symmetries

If a given system has a symmetry, its Hamiltonian commutes with the symmetry operator A which
reflects the symmetry under consideration

rHprq, As “ 0. (2.1)

The bracket is the commutator.
A non-trivial topological quantum phase is characterized by the spatial dimensionality of the sys-
tem as well as special symmetries and their corresponding topological invariants [14].

In the following the time reversal symmetry (TRS) is considered. This symmetry can be rep-
resented by an anti-unitary operator [15] acting on the Hilbert space of the underlying system
Hamiltonian.
This anti-unitary operator can be split into two operators. One of these operators is a unitary
operator and the other one is complex conjugation, i.e. T̂ “ K̂Û where T̂ is the time reversal
operator, K̂ is complex conjugation and Û is a unitary operator. These operators all act on the
same Hilbert space.

The physical meaning of time reversal symmetry is that there is no difference for the system to
evolve from a point of time in the past to one in the future or vice versa. Thus no measurable
quantity (observable) depends on the time axis direction.
If one considers an electron flying in free space with a fixed velocity, the system will be TRS.
Whereas the system will not be TRS if a magnetic field perpendicular to the electron’s flying
direction is applied.

The time reversal operator for a system consisting of spinful fermions (S “ 1{2) [10] is

Θ “ ´iσyK. (2.2)

In this case, K is complex conjugation and σy is a Pauli matrix in spin space. Note, that the

above mentioned unitary operator is Û “ ´iσy in this context.
A time reversal symmetric Hamiltonian fulfills

Hp´~kq “ ΘHp~kqΘ´1. (2.3)

For example, the topological insulator (TI) is a time reversal symmetric system see below ,e.g.
Kane Mele lattice model, whereas TRS is broken for systems supporting the integer quantum Hall
effect, see below e.g. Haldane’s lattice model).

2.1.2 Graphene

The following section introduces graphene, which its honeycomb lattice structure serve as a ba-
sis for lattice model realizations of topological non trivial states (e.g. Kane Mele Model). Its
Hamiltonian is

HGraphen “ t
ÿ

ăiją
c

:
icj `

ÿ

i

µA{Bc
:
ici, (2.4)
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where the sum runs over its nearest neighbor’s sites and t is the hopping term between those sites.
Nearest neighbor hopping does not take place within the same sublattice depicted in Fig. 2.1
(hopping from a red to a blue site). The second term introduces a sublattice potential which is
dependent on the lattice site species ˘µ.
The spatial lattice structure is of the form of a honeycomb, thus consists of hexagons. In Fig. 2.1 the
unit cell for a confined graphene lattice is depicted (unit cells are separated by vertical solid lines),
where there are 6 sites in the unit cell for this specific confinement. Open boundary conditions
(OBC) are applied along the vertical direction and periodic boundary conditions (PBC) are applied
along the horizontal direction. The distance between two neighboring unit cells is a1 “

?
3a, where

a is the graphene lattice constant.
The Hamiltonian for graphene Eq. (2.4) is time reversal symmetric.

t

a
1 PBC

Figure 2.1: This figure shows the lattice structure of grahene with 2 horizontal zigzag
boundaries. The vertical lines mark the unit cell. a1 is the distance between 2
unit cells and t is the nearest neighbor hopping term. The red/blue points mark a
sublattice.

The Fourier transform of the single particle creation operator is

c:
xy “ 1

Nx

ÿ

kx

eikxxc
:
kxy

, (2.5)

and the corresponding Fourier transformed Hamiltonian of graphene [10]

Hpkxq “ ´t
ÿ

j

´

c
:
2jkx

c2j`1kx
` h.c.

¯

´ t
ÿ

j

c
:
2jkx

c2j´1kx

`

peikxa1 ` e´ikxa1q ` h.c.
˘

. (2.6)

The j sum runs through all sites within the unit cell of graphene. The unit cells are separated
from eachother with the vertical solid lines in Fig. 2.1.
There are flat bands (i.e. 2 for two edges, neglecting spin) between the two Dirac points [16]
K “ 2π{3a1 and K 1 “ 4π{3a1 at the Fermi level depicted in Fig. 2.2(a). By turning on a
sublattice potential a trivial gap opens at the two Dirac points which is shown in Fig. 2.2(b)
where the edge modes do not traverse over the Fermi level (0 energy level). I.e. a topological
trivial gap is introduced by a sublattice potential [10][11]. There are as many bands as sites in the
unit cell (in the figure there are 80 sites within the unit cell). By increasing the amount of sites
within the unit cell, the bulk bands get denser in the bulk.
Based on the graphene lattice structure, Haldane suggested a realization of the Integer quantum
Hall effect which is the topic of the following section.

2.1.3 Integer quantum Hall effect (IQHE)

The integer quantum Hall effect is the first upcoming example in this thesis for a topological state
of quantum matter [17].
The integer quantum Hall effect arises when electrons are confined to 2d and a magnetic field
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(a) Graphene without a gap (b) Graphene with a gap

Figure 2.2: The band structure of graphene along the quasi impulse kx. The two
Dirac points K and K 1 are connected via a flat band which consists of the edge
modes (a). In (b) a trivial band gap opens due to a sublattice potential of µ “ 0.05.

is applied [5]. This state is not a usual insulating nor a metallic phase. The electron energy
spectrum splits into so called Landau levels due to the perpendicular applied magnetic field [18].
The spectrum is

ǫn “ ωc~pn` 1{2q, (2.7)

with ωc “ qBe{mc being the cyclotron frequency and n being an integer. For the case that N
Landau levels are filled and the others are empty, there is gap between the valence and conduc-
tion band like in an ordinary insulator. But if one applies an electric field, the cyclotron orbits
drift (skipping orbitals) which leads to a Hall current. This Hall current is quantized and the
corresponding conductivity is

σxy “ Ne2{h. (2.8)

This astonishing result was confirmed by von Klitzing et al. experimentally [5].
The skipping orbitals are located at the edges of the 2d system. The conduction carrier mode
is also located at the edge and is chiral in the following sense. The direction of the supported
mode is determined by the given edge and the direction of the perpendicularly applied magnetic
field. The second edge supports the counter propagating mode, with a respectively opposite group
velocity (i.e. opposite sign, direction) as the aforementioned first chiral mode.
If the magnetic field is applied in opposite direction, the chiral modes will change there direction
as well. Thus, each edge can be assigned by a chiral quantum number characterizing the edge
state. This chiral quantum number serves as a topological invariant which is stable within the
above given topology definition.

Haldane suggested a 2d lattice model, which is in the quantum Hall phase without an external
applied magnetic field [6].
The net magnetic flux in Haldane’s unit cell is 0, but at each lattice site there is a non zero
magnetic flux which breaks time reversal symmetry. This lattice model consists of a honeycomb
structure (like Fig. 2.1), where nearest neighbor sites are of different type (A/B). An inversion
symmetry breaking on site energy term µ can also be considered (see Sect. 2.1.2).
Haldane included one more hopping term into the model which is a next nearest neighbor contri-
bution t2 . This hopping is within the same sublattice (i.e. A/A or B/B) and can be assigned with
a phase (i.e. t2 P C). This phase factor generally breaks the time inversion symmetry (for special
phase factor values the time inversion symmetry will remain, e.g. t2 P R). Haldane’s lattice model
Hamiltonian is

HH “ t1
ÿ

ăiją
c

:
icj ` t2

ÿ

!ij"
c

:
icj `

ÿ

i

µA{Bc
:
ici, (2.9)
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with µA{B “ ˘ǫ being different for a specific sublattice (A or B) and the two hopping terms,
nearest neighbor t1 and next nearest neighbor t2 denoted by ă ij ą and ! ij ", respectively.

As mentioned before, the system described by Eq. (2.9) is a lattice model in 2d. The quasi impulse
is a good quantum number. Thus, one can Fourier transform Haldane’s real space Hamiltonian
Eq. (2.9) to end up with [10]

HHp~kq “ c:p~kqrt1
3

ÿ

i

pcosp~k~aiqσx ` sinp~k~aiqσyq`

`
6

ÿ

j

pt2 cospφq cosp~k~bjqσ0 ` pM{6 ´ t2 sinpφq sinp~k~bjqqσzqscp~kq. (2.10)

Here, φ is the phase factor of the imaginary hopping t2, ~k is the quasi momentum, ~ai(~bj) the 3(6)
displacement vectors, which connect a B(A) site to its 3 nearest neighbors A sites. The σpx,y,zq

are Pauli matrices and I is the identity in sublattice space, so the diagonal terms correspond to
hopping within the same sublattice and the off-diagonal ones correspond to inter sublattice hop-
ping (A/B or B/A). Thus, the sublattice space serves as a pseudo spin.
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2.1.4 Quantum spin Hall effect (QSHE)

The quantum spin Hall effect (QSHE) has a charge excitation gap within the bulk, but has sym-
metry protected 1d gapless edge states which lie inside the bulk insulating gap [19].
The edge states counterpropagate along the same edge for opposite spin, thus they are called
helical edge modes (propagation direction and spin are connected).
The helical edge modes appear as Kramers doublets.
The Kramers degeneracy theorem states that for a time reversal invariant spin-1{2 system (e.g.
QSHE system), there are always two states which share the same energy.
TRS ensures the crossing of their energy levels at special points (Dirac points) in the Brillouin
zone. Because of this level crossing, the spectrum of a QSH insulator cannot be adiabatically
deformed into that of a topologically trivial insulator without helical edge states. Therefore, in
this sense, the QSH insulator represents a new topologically distinct state of matter.
The topological properties of the QSH state can be characterized by the spin Chern number [20].
More generally, the topological properties of the QSH state are mathematically characterized by a
Z2 topological invariant [9]. Physical systems with an even number of Kramers pairs of edge modes
at a given boundary are topologically trivial, while those with an odd number are topologically
nontrivial [8].

Kane and Mele suggested a realization of the QSHE in a real lattice model [7]. Based on the
graphene lattice structure and the considerations of Haldane, they considered a next nearest
neighbor hopping which is time reversal symmetric. Thus, the whole Kane Mele model is time
reversal symmetric. A property which does not generally exist in the Haldane lattice model, it
explicitly breaks time reversal symmetry (see Sect. 2.1.3).
The quadratic Kane Mele Hamiltonian is

HKM “ t
ÿ

ăijąσ

c
:
iσcjσ ` itso

ÿ

!ij"σσ
1

νijc
:
iσS

z
σσ

1 cjσ1 ` µA{B
ÿ

iσ

c
:
iσciσ. (2.11)

The sum of the first term in Eq. (2.11) runs over nearest neighbors and spins, whereas the second
sum runs over next nearest neighbors and spins. The νij characterizes the sign of the next near-
est neighbor hopping, it takes the value of `1 for counter clockwise or ´1 for clockwise hopping
depicted in Fig. 2.3. It reflects the hermitian conjugation in the given notation ! ... ". If it is
missing, the Hamiltonian will not be hermitian.
The Sz

σ,σ1 is the z Pauli matrix which is diagonal and consists of the entries `1/´1 for the spin
up/down component.
The last term is diagonal in real and spin space, and represents a sublattice potential. µA{B takes
different values for sites of type A or type B (in Fig. 2.3 the red (A) and blue (B) sites constitute
a sublattice for each site species).

The Hamiltonian defined in Eq. (2.11) is time reversal symmetric. The reason for this lies in the
fact that Kane and Mele included a non trivial spin dependency in their system (i.e. the next
nearest neighbor hopping in Eq. (2.11)). The time reversal operator Θ is defined in Eq. (2.2)).
The non trivial part of the Kane Mele Hamiltonian transforms under time reversal like

ΘitsoS
zΘ´1 “ p´iσyKqpitsoSzqppiσyKqq

“ ´itsoσySzσyKK “ ´itsop´Szq “ itsoS
z. (2.12)

The other terms of the Kane Mele Hamiltonian are real and diagonal (proportional to the identity)
in spin space, thus these terms transform trivially under time reversal.
This leads to

ΘHKMΘ´1 “ HKM , (2.13)

which shows that the Kane Mele Hamiltonian is time reversal invariant.
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unit cell

leg 1

leg 2

leg 3

-it
so

a
1

t

PBC

+it
so

trough

crest

Figure 2.3: The confined Kane Mele lattice model with nearest neighbor hopping
t and imaginray next nearest neighbor hopping tso is depicted. The next nearest
neighbor hopping is dependent on the hopping direction, it is negative for clockwise
and positive for counter clockwise hopping. Legs are separated via the dotted lines.
The unit cell is within two vertical solid lines and consists of 2 ˆ N sites (N being
the amount of legs, 3 in this case) for the finite Kane Mele model. The crest sites are
the outermost sites on the leg edge, the trough sites are the innermost sites on the
leg edge.

In Fig. 2.3 the spatial lattice structure of the finite Kane Mele model is depicted. The hopping
terms are denoted by arrows, where the clockwise/counter clockwise dependence of the next nearest
neighbor hopping is illustrated. For the depicted lattice structure 3 legs are considers which leads
to 6 sites in the unit cell. Thus, the edges of this system consist of leg 1 and leg 3. The reason for
the use of the nomenclature crest and trough sites becomes clear in further sections. Crest sites
denote the outermost sites of the boundary, trough sites denote the innermost sites of the edge
leg.
If one considers an odd number of legs (like in Fig. 2.3), the crest sites on the two boundary legs
are not on spatial equivalent positions in x direction, whereas by considering an even amount of
legs, the crest sites sit on spatial equivalent positions in x direction.

The band structure of the Kane Mele model is depicted in Fig. 2.4(a) (the band structure is the
same as in the original paper of Kane and Mele [9]). There are zigzag boundaries applied along the
OBC direction. The system consists of 40 legs, i.e. 80 sites per unit cell (constitutes the amount
of bands), the next nearest neighbor hopping is tso “ 0.03t and the nearest neighbor hopping
determines the energy scale in which every energy is expressed t “ 1. No sublattice potential is
turned on so far, and PBC are applied along the horizontal direction.
The dispersion relation is plotted for both spins (up and down) which are degenerated (they lay
on top of each other).
The 2 previous (for graphene) Dirac points K and K 1 are gapped, but the edge modes survive
at 0 energy. The reason for this is that the introduced 2nd neighbor hopping opens a gap. The
mass term responsible for the gap has a inversed sign at K compared to K 1. The helical edge
modes corresponding to the same mass term has to cross the Fermi surface. Thus, K and K 1 are
connected non trivial (crossing of the Fermi level) via the helical edge modes.

The edge modes cross each other at kx “ π{a1 which serves as a new Dirac point in the Kane
Mele model. In the vicinity of this point a linear dispersion can be assumed.
If one introduces a mass term which has the same sign at K and K 1, the Dirac points will be
connected topologically trivial, where the Fermi level will not be crossed (as for the graphene
model Fig. 2.2).
The mass term ∆ depends linearly on tso via |∆| “ 6

?
3tso (whole gap size) [10].

If a sublattice potential µ “ 0.01 is turned on (i.e. for A sites it is `µ and for B sites it is ´µ),
the energy degeneracy of different spins is lifted which is illustrated in Fig. 2.4(b).
Here, the blue curve depicts the spin down and the red curve the spin up band. The points
where the helical edge states cross the Fermi level is shifted to higher/lower quasi impulses for
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(a) Kane Mele dispersion relation for sub-
lattice potential µ “ 0.01t. Spin up and
spin down particles are degenerated

(b) Kane Mele dispersion relation for sub-
lattice potential µ “ 0.01t. The spin de-
generacy is removed

Figure 2.4: The band structure of the Kane Mele model with (a) and without (b)
sublattice potential. The system consists of 40 legs and PBC are applied along the x
direction. The next nearest neighbor hopping tso “ 0.03t and the nearest neighbor
hopping is t. The Dirac points of graphene K and K 1 are gapped now. Helical edge
states traversing the Fermi level connect the K and K 1 non trivially. Panel (b) shows
the dispersion relation of the Kane Mele model where a sublattice potential splits the
degeneracy of spins. The red curve depicts spin up and the blue curve depicts spin
down. The two crossing points at the Fermi level are shifted in opposite directions
for different spins.

spin down/up. Up to this feature, the band structure is quite the same as without a sublattice
potential. The bulk states are gapped and there are helical edge states.
If one further increases the sublattice potential µ{tso ą 3

?
3, the system will be trivially gapped

again [10].

The states which are located at exactly 0 energy (right at kx “ π{a1 in Fig. 2.4(a)) are helical
edge states. There are 4 helical edge states (2 Kramer doublets), their degeneracy is due to the 2
edges and 2 spin configurations for a spin-1{2 fermionic system.
Each edge hosts two states with different spin and different group velocities where their helicity
is the same. If the bulk is big enough (i.e. there are many sites within the boundaries), the
edge states of different edges are well separated from each other (i.e. their overlap is 0). The
penetration of the edge state into the bulk decays exponential (see Fig. 3.1).
The above claimed statements about helical edge states at the edge of the Kane Mele model and
the exponential decreasing penetration depth will be confirmed in Sect. 3.1.1.
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2.2 1d physics

Physics in one spatial dimension are extraordinary compared to physics in higher dimensions.
Fermi liquid theory is quite suitable for describing interacting electron systems in dimensions
higher than 1 [21].
A Fermi liquid is a quasi free quasi particle theory if weak interactions are considered. The
fundamental principle underlying the Fermi liquid theory is adiabatic continuity [22].This means
a smooth evolution of a non-interaction ground state into an interaction one, if the interaction
strength is increased. Thus, the excited state of the interaction system can be approximated by
the non-interaction exited state. The excitations are particle hole excitations.

Essential for the validity of Fermi liquid theory is the stability of the quasi particle excitations
near the Fermi surface. We deal with low energy physics nearby the Fermi surface.
This stability can be proven and shows that the lifetime of the quasi particles diverges close to
the Fermi surface at T Ñ 0.
In d “ 1 the Fermi liquid theory breaks down, the life time of electron hole excitation shrinks to
zero if the excitation energy goes to zero (nearby the Fermi points). Thus the electron hole pair
is not stable any more and decays in an uncontrolled fashion.
A natural question arises due to the above mentioned break down of Fermi liquid theory in 1d:
Is there another suitable theory to describe interacting fermionic systems in 1d? Such a theory
indeed exists. It is called Luttinger liquid theory where the excitations are collective modes (e.g.
charge, spin). Bosonization is a technique which is applicable to Luttinger liquids and allows a
transformation from fermionic degrees of freedom to bosonic ones [21]. It can be used to arrive at
a Luttinger liquid Hamiltonian for long wavelengths (low energies).
By considering Luttinger liquids, the interaction of the electrons is included by the Luttinger
parameter K and a renormalized velocity u.
If the desired system consists of spinful particles, adjustments of the above theory have to be done.
However, the conceptual structure does not change [21].

The electron momentum density of states has a power-law non-analyticity at the Fermi point in
1d [23][21]. This is in sharp contrast to the usual discontinuity of the electron momentum density
of states at the Fermi surface in Fermi liquids.
The reason for this different situation is that electron-electron interactions destroy this disconti-
nuity in 1d [21].
The excitations in 1d consist of collective modes like charge density waves (CDW) and for spinful
fermions also spin density waves (SDW) [21] rather than single particle excitations (particle-hole
excitations) as in Fermi liquids.
The life time of an excitation characterizes its stability. The life time for particle hole excitation
approaches to zero if it happens closer and closer to the Fermi point in 1d. Thus, particle hole
excitations are not stable in 1d and are not a suitable description of excitations.

The particle density expressed in bosonic field φ is

ρpxq “ pρ0 ´ 1

π
∇φpxqq

ÿ

p

ei2ppπρ0x´φpxqq. (2.14)

A single particle operator can always be written as [21]

ψ:pxq “ rρpxqs1{2e´iθpxq, (2.15)

where the density Eq. (2.14) is used and θ is an operator whose physical interpretation becomes
clear later.
A generic 1d Hamiltonian should consist of kinetic energy

Hkin “
ż

dx
1

2m
p∇ψ:pxqqp∇ψpxqqq “

ż

dx
ρ0

2m
p∇θpxqq2, (2.16)
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as well as a density density interacting part which is proportional to
ş

dxp∇ρq2pxq9
ş

dxp∇φpxqq2 .
This leads to the most general Hamiltonian describing the low energy (long wavelength) properties
of a massless 1d spinless fermionic system [21]

HLL “ u

ż

dxpK
2

p∇φq2 ` 1

2K
p∇θq2q. (2.17)

K is the Luttinger parameter, indicating the nature of the interaction, and u is the plasmon
velocity.
The bosonic field spatial derivatives can be interpreted as charge fluctuations ∇φ and phase shift
(current) ∇θ, respectively.

A field theoretical approach can be used to describe Luttinger liquids. For this purpose, one
changes from Hamiltonian to Lagrangian formalism where the action is the integral over the
Lagrangian in imaginary time

´S{ℏ “
ż β

0

dτ

ż

dxr i
π
∇θpx, τqBτφpx, τq ´ 1

2π
puKp∇θpx, τqq2 ` u

K
p∇φq2qs. (2.18)

Where S is the action and β is inverse temperature. The path integral formalism yields for the
partition function

Z “
ż

Dtφ, θue´S{ℏ. (2.19)

One can integrate out one of the fields φ or θ. This is possible if one Fourier transforms the action
Eq. (2.18) and completes the square in the fields. By rescaling and integrating out one of the fields
(see Appendix B.1) the action in the field theory formalism is

Sφ “ 1

2πK

ż

dx

ż β

0

dτ

„

1

u
pBτφpx, τqq2 ` upBxφpx, τqq2



, (2.20)

where one can read of the Lagrangian density of the φ field

Lφ “ 1

2πKu

“

pBτφpx, τqq2 ` puBxφpx, τqq2
‰

. (2.21)

Finally, we want to arrive at a so called helical Luttinger liquid consisting of right movers with
spin up and left movers with spin down (helicity as defined above), or vice versa.

The difference of helical Luttinger liquids to spinless/spinful Luttinger liquids lies in the interaction
with magnetic impurities. Backscattering of a helical Luttinger liquid is accompanied by a spin
flip if it scatters at an magnetic impurity. Spinless Luttinger liquids do not interact with magnetic
impurities and spinful Luttinger liquids do interact with magnetic scatterer, but there is not a
constrain such as a spin flip.
This implies that non magnetic impurities can not backscatter a helical Luttinger liquid mode,
whereas spinless/spinful Luttinger liquid modes can be backscattered.
The Lagrangian for HLL with two spin-1{2 Kondo impurities is given below in 2.26. It is possible
to formally eliminate forward scattering by rescaling fields and changing the Luttinger parameter
to an effective one which is done in the Appendix B.2. One can mimic an electron interacting
system by changing Jz which is done during the project.
Due to the different scattering possibilities of helical and non-helical Luttinger liquids, different
physics can be expected.
If one is interested in low energy physics, the helical edge modes of a 2d Kane Mele system
presents a helical Luttinger liquid. This is one reason why the Kane Mele model has been chosen
as lattice model during this project. If the system parameters are chosen properly (i.e. non-trivial
topological phase, bulk gap is big enough compared to other energy scales), we can assume the
helical edge states as helical Luttinger liquid.
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2.3 Impurity interactions with conduction electrons

The lattice system will be the Kane Mele lattice that interacts with magnetic impurities. The
reason for a specific parameter configuration (i.e. boundary conditions, hoppings etc.) choice will
be given in Sect. 3.1.1.
The interaction is between the impurity spin and the bath electron spin via a Kondo type exchange
interaction (Sect. 2.3.1).
If one impurity is considered, the system is a standard realization of the Kondo problem (Sect. 2.3.3)
where the local moment of the impurity can be screened by the bath electron spins.
If two impurities are considered, they can interact with each other via the itinerant electrons (ex-
change or RKKY interaction) which is considered in Sect. 2.3.2.
But for two impurities, the Kondo effect can also lead to screened impurity spins (as it is the case
in the one impurity model), where the RKKY interaction would be suppressed.
Thus, a competition of both effects exists, first discussed by Doniach [1]. This will be discussed
in Sect. 2.3.4.
The peculiarity of helical modes serving as conduction electron bath will be considered in such a
way that not all scattering processes are allowed and lead to a changed competition of RKKY and
Kondo regimes as for non helical systems (Sect. 2.3.5).

2.3.1 Kondo impurity

A Kondo impurity is attached to the lattice which will be called an add atom in the following (it
does not substitute a lattice site of the Kane Mele lattice). This specific configuration is depicted
in Fig. 2.5 where no hopping between the lattice site and the impurity site is allowed. The solid
line which connects the impurity to the crest site of the lattice marks only the location of the local
spin-spin interaction (see Eq. (2.22) below)

impurity

Kane Mele lattice

Figure 2.5: Kane Mele lattice with one impurity attached to it. There is no hopping
between the lattice and the impurity site, only a spin interaction is allowed (there
are no charge fluctuation between lattice and impurity).

The interaction Hamiltonian of an isotropic Kondo impurity is

HK “ J ~s ~Simp

“ J
ÿ

σσ1ττ 1

c:
σ~σσσ1cσf

:
τ~τττ 1fτ , (2.22)

where ~σ and ~τ are the Pauli matrices, ~σ “ pσx, σy, σzq and ~τ “ pτx, τy, τzq. The c operators
denote the electron creation and annihilation operators at the Kane Mele lattice where the Kondo
impurity is attached. The f operators denote the electron creation and annihilation operators of
the impurity. These f operators have to fulfill the constrain that the occupation of the impurity
site is 1 (i.e. impurity is always occupied by an up or down particle).
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Anisotropy can also be considered, then the Hamiltonian Eq.(2.22) is modified

HK “ JzS
zpc:

ÒcÒ ´ c
:
ÓcÓq ` JKpc:

ÒcÓS
´ ` c

:
ÓcÒS

`q. (2.23)

Here, the abbreviations S´ “ f
:
ÓfÒ, S` “ f

:
ÒfÓ and Sz “ f

:
ÒfÒ ´ f

:
ÓfÓ are used. An in-plane

isotropic Kondo coupling for the Jx and Jy is assumed. It is straightforward to extend the above
mentioned Hamiltonians for systems with more Kondo impurities. This implies an additional sum
over these impurities with an extra index of the creation and annihilation operators.
If one considers a helical bath, the interaction Hamiltonian Eq. (2.23) has to respect helicity. For
such a system spin and propagation direction are in a lock in relation. A backscattered bath
electron has to undergo a spin flip of its spin that helicity is conserved. This leads to a spin flip
of the impurity spin because of conservation of overall Sz.
With respect to the path integral formalism the impurity problem can be expressed in terms
of Lagrangian densities. The Lagrangian densities for forward/backward scattering in a helical
Luttinger liquid are

Lfs “ iJz

πuK

ÿ

j“1,2

δpx ´ xjqSz
j Bτφpx, τq (2.24)

Lbs “ JK
2πα

ÿ

j“1,2

δpx ´ xjq
”

S`
j e

´2iφpx,τq ` S´
j e

`2iφpx,τq
ı

, (2.25)

where φ is the bosonic field introduced in 2.2 and Sz
j , S

˘
j are fields describing the degrees of free-

dom of the Kondo impurity j. α is a UV cut off in form of a lattice constant for example.

The helical nature of the underlying 1d electron bath influences the scattering Lagrangian densities.
There is no backscattering of a conduction electron without an impurity spin flip (see Eq. (2.25))
and no spin flip is allowed for forward scattering processes (see Eq. (2.24)).
The full action of the system is

Stot “
ż

dxdτLtot “
ż

dxdτpLbs ` Lfs ` LHLLq, (2.26)

where τ is the imaginary time and the Lagrangian density of the helical Luttinger liquid LHLL is
defined in Eq. (2.21).

The path integral formalism is used in [2] to tackle the above mentioned two impurities problem
in 1d.
An expansion of the backscattering Lagrangian density in Lbs to J2

K order leads to a RKKY in-
teraction description after integration out the bulk bosons.
The bulk bosons in Stot will be integrated out after the expansion, thus only a fermionic theory
description of the impurity model remains which is explained in the next section.
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2.3.2 RKKY interaction

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction is an indirect magnetic exchange inter-
action. It can be described by a perturbation expansion of the backscattering Lagrangian density
in Lbs in the local interaction Kondo coupling constant (see Eq. (2.23)).
Each impurity interacts with an itinerant electron spin (the interaction is local). Those electrons
can interact with the other impurity spin. This leads to an effective interimpurity interaction (spin
density fluctuation), the RKKY interaction.

The Kondo interaction Hamiltonian up to 2nd order in perturbation theory is (suppress the im-
purity index convention of Eq. (2.22), now, a capital letter represents the impurity spin)

H
p2q
ij “ J~s~S ´ J2 ă p~si ~Siqp~sj ~Sjq ąth |ω“0. (2.27)

The expectation value is defined in 2.43. It is taken over the bath electrons in the static limit
ω “ 0. The reason for this is that small time differences contribute most [2] which allows a local
(in time, i.e. coinciding times) Hamiltonian like in Eq. 2.27.
The second term in Eq. (2.27) is the RKKY interaction Hamiltonian [24]

HRKKY
ij “ ´J2

4

ÿ

αβσσ1

Sα
i σ

α
σσ1σ

β
σ1σS

β
j Π

σσ1

ij p0q. (2.28)

The Sα
i is the impurity spin operator at site i and α P tx, y, zu. The σα are the Pauli matrices

where α P tx, y, zu.
Πσσ1

ij is the conduction electron density propagator between the sites i and j

Πσσ1

ij piωq “ ´1

β
Gijσpiǫn ` iωqGjiσ1 piǫnq. (2.29)

Gijσ is the electron propagator from i to j with spin σ. β is the inverse temperature.
Eq. (2.28) is the RKKY interaction for a general bath.

Now, focusing helical Luttinger liquids serving as bath connected with two anisotropic Kondo
impurities, one can describe the system in an effective RKKY regime if perturbative small Kondo
coupling is considered [25, 26, 2].

Anisotropy means that forward and backward scattering differs from each other, where Jz is the
Kondo coupling which leads to forward scattering (see Eq. 2.24) and JK is the Kondo coupling
which leads to backscattering (see Eq. 2.25).

The path integral formalism can be used to integrate out the bath bosonic degrees of freedom (the
bosonic φ fields in Eq. (2.21)) explained in [21].

The outline of [2] is described here: One can rotate the Lagrangian density Ltot of Eq. (2.26) in
the same spirit of what is shown in Appendix B.2 for the Hamiltonian, that one can omit the
forward scattering lagrangian density by introducing an effective Luttinger parameter K̃.
Thus, only the backward scattering term and the helical Luttinger bath survive with a modified
Luttinger parameter given in Eq. (2.26). One can expand the backscattering part of the action
expp´βpSbs ` SHLLqq in terms of

ż

Dtfieldsup1 ` β2

2
S2

bsq expp´βSHLLq,

up to second order in JK.
The helical Luttinger liquid action SHLL is quadratic in bosonic fields, thus one integrates out the
itinerant electrons (or their bosonic counterparts) perturbatively and re-exponentiates the result.
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One arrives at an effective action which consists only of the impurity spin degrees of freedom (this
is done in [2]). The effective RKKY action is

S “ ´ J2

K
p2παq2

ÿ

j,j1

ż

dτ1dτ2S
`
j pτ1qΠpτ1 ´ τ2qS´

j1 pτ2q, (2.30)

where the parameters and the function Πpτq will be defined below.

If one restricts oneself to T |τ1 ´ τ2| « |xj ´ xj1 |{LT ! 1 the action is local in time

SRKKY “ ´ERKKY

ż

dτ rS`
1

pτqS´
2

pτq ` S`
2

pτqS´
1

pτqs. (2.31)

This leads to an effective RKKY Hamiltonian which is of J2

K order

ĤRKKY
HLL “ ´ERKKY pŜ`

1
Ŝ´
2

` Ŝ`
2
Ŝ´
1

q. (2.32)

The RKKY energy ERKKY in Eq. (2.32) is

ERKKY “ 2J2

K
p2παq

ż β

0

dτΠpτq

“ 2J2

K
p2παq

ż β

0

dτ

˜

ˆ

βu

πα

˙2 „

sinpπτT q2 ` sinhpxi ´ xj

LT

q2


¸´K̃

9 J2

K
uα

«

Γp1{2 ´ K̃q
Γp1 ´ K̃q

ˆ

α

LT

˙2K̃´1

` ΓpK̃ ´ 1{2q
ΓpK̃q

´α

R

¯2K̃´1

ff

9 ΓpK̃ ´ 1{2q
ΓpK̃q

´α

R

¯2K̃´1

if 1{2 ă K̃ ă 1 and T Ñ 0, (2.33)

where Πpτq is the bosonic correlator, β is inverse temperature T , τ is imaginary time, u is the
renormalized plasmon velocity, LT “ βu{π is the thermal length and α is a ultra violate cut off
(e.g. lattice spacing).
The effective Luttinger parameter in helical Luttinger liquids is (Eq. (B.17))

K̃ “ Kp1 ´ Jz

2πuK
q2, (2.34)

where one can introduce the density of states ρ0 “ πu

The effective RKKYHamiltonian Eq. (2.32) can be used to analyze the system in the RKKY phase.
This includes calculations of correlation functions (spectral functions) defined in Appendix B.3.
The Hilbert space of this effective Hamiltonian is (basis |β, iy xα, j|, where the Greek indexes mark
the impurity spin (up or down) and the Latin letters specify the impurity location (first or second))

H
eff
RKKY “

¨

˚

˚

˝

0 0 0 0
0 0 ´ERKKY 0
0 ´ERKKY 0 0
0 0 0 0

˛

‹

‹

‚

. (2.35)

The matrix in Eq. (2.35) is diagonalized by the eigenvectors of Hamiltonian Eq. (2.32) which are
one singlet and three triplet states. The spectrum is r˘ERKKY , 0s and the eigenvalue 0 is degen-
erate. If the RKKY energy is ERKKY ą 0, the triplet state 1

2
p|Öy ` |Œyq is the ground state and

for negative ERKKY the singlet state is the ground state.



18 2. Introduction to the physics of topology and interacting systems

Now, the retarded Greens function can be calculated for the case that the system temperature
approaches 0 and the effective RKKY description is valid

Gr
Sz
1
Sz
2

pωq “
ż 8

´8
dteiωt´0

`|t|p´iqΘptqxrŜz
2

ptq, Ŝz
1

p0qsy

“
ż 8

0

dteiωt´0
`t ´i
Z

ÿ

n,m

e´βEnreipEn´Emqt xn| Ŝz
2

|my xm| Ŝz
1

|ny ´

´ e´ipEn´Emqt xn| Ŝz
1

|my xm| Ŝz
2

|nys
T=0“

ż 8

0

dteiωt´0
`tp´iq

ÿ

m

reipEG´Emqt xG| Ŝz
2

|my xm| Ŝz
1

|Gy ´

´ e´ipEG´Emqt xG| Ŝz
1 |my xm| Ŝz

2 |Gys assume ERKKY ą 0 Ñ |Gy “ |T y

“ i

4

ż 8

0

dteiωt´0
`t

ÿ

m“|Sy
reipEG´Emqt ´ e´ipEG´Emqts

“ i

4

ˆ

1

´ipω` ´ 2ERKKY q ´ 1

´ipω` ` 2ERKKY q

˙

(2.36)

“ ´ ERKKY

pω`q2 ´ p2ERKKY q2 . (2.37)

Here, the frequency ω` “ ω ` 0`i is shifted to the upper half plane of the complex plane, |Gy
is the ground state and EG the corresponding ground state energy. Θptq is the step function and
r..., ...s is the commutator. In the third row of Eq. (2.37) zero temperature is assumed, thus only
the ground state contributes within the n sum.
Assumed that the RKKY energy is positive, i.e. the triplet state is the ground state, the only
non-zero matrix element xG| Ŝz

2
|my xm| Ŝz

1
|Gy is for |my “ |Sy (triplet and singlet states are no

eigenvectors of the local impurity spin operators Sz
i ) which yields

xT | Ŝz
2 |Sy xS| Ŝz

1 |T y “ xT | Ŝz
1 |Sy xS| Ŝz

2 |T y “ ´1

4
. (2.38)

If one assumesERKKY ă 0, the singlet state is the ground state. The calculation can be done in the
same way as above, but a global minus sign appears, due to the switched arguments ipEG ´Emqt
in the exponentials of Eq. (2.37) compared to the ERKKY ą 0 case. This global minus sign cancels
itself with the negative sign of ERKKY .
Hence, the interimpurity correlation function for the Sz operators is

Gr
Sz
1
Sz
2

pωq “ ´ |ERKKY |
pω`q2 ´ p2ERKKY q2 ERKKY P R, (2.39)

which is in agreement with the correlator given in [2] Eq. (15).
According to the definition (B.31), the spectral function (2.39) is

ASz
1
Sz
2
pωq “ ´ 1

π
ℑpGr

Sz
1
Sz
2

pωqq

“ ´ 1

π
ℑ

ˆ

1

4

ˆ

1

´pω` ´ 2ERKKY q ´ 1

´pω` ` 2ERKKY q

˙˙

“ 1

4π
ℑ

ˆ

ω ´ 2ERKKY ´ i0`

pω ´ 2ERKKY q2 ` p0`q2 ´ ω ` 2ERKKY ´ i0`

pω ` 2ERKKY q2 ` p0`q2
˙

“ 1

4π

ˆ ´0`

pω ´ 2ERKKY q2 ` p0`q2 ´ ´0`

pω ` 2ERKKY q2 ` p0`q2
˙

“ ´1

4
pδpω ´ 2ERKKY q ´ δpω ` 2ERKKY qq . (2.40)
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The spectral function is antisymmetric and is peaked at ω “ ˘2ERKKY which can be used to
calculate the RKKY energy.
Eq. (2.40) fulfills the sum rule (here for T Ñ 0)

ż 8

0

dωASz
1
Sz
2
pωq “ xSz

1S
z
2y “ ´1

4
. (2.41)

If one restrict oneself to positive frequencies ω, the interimpurity spectral function is strictly neg-
ative deep in the RKKY regime.

The local retarded Green’s function of one impurity is

Gr
Sz
1
Sz
1

pωq “ Gr
Sz
2
Sz
2

pωq “ ´Gr
Sz
1
Sz
2

pωq, (2.42)

where the same calculation as above 2.37 can be done.
The crucial difference to the interimpurity retarded correlator given in Eq. (2.37) is the matrix
element

xT | Ŝz
1 |Sy xS| Ŝz

1 |T y “ 1,

which has the opposite sign factor as the correlator in Eq. (2.38) (here, ERKKY ą 0 which implies
that the ground state is the triplet state).
Eq. (2.42) can be used in numerical analysis. If it holds true (i.e. the interimpurity spectral
function is the negative counterpart of the local spectral function), it will be a strong indicator
that the system is in the RKKY regime. This will be tested in Sect. 3.1.4.

The effective RKKY Hamiltonian at coinciding times allows one to calculate the expectation value
for the interimpurity Sz

1
Sz
2
operators. The triplet state |T, 0y is the ground state, the sum runs

offer all states of the Hilbert space
|my P t|T, 0y , |T, 1y , |T,´1y , |S, 0yu where the T/S denotes triplet/singlet sate, and the number
the spin z component) and the RKKY energy is denoted with ER

xSz
1S

z
2y “

ř

m xm| e´βĤSz
1

ř

n |ny xn|Sz
2

|my
ř

m xm| e´βĤ |my
(2.43)

“ 2 xT,´1|Sz
1
Sz
2

|T,´1y ` xT, 0|Sz
1
Sz
2

|T, 0y eβER ` xS, 0|Sz
1
Sz
2

|S, 0y e´βER

e´βER ` eβER ` 2

Ñ ´1

4
for T “ 1{β Ñ 0. (2.44)

Thus, the expectation value of the interimpurity operator approaches ´1{4 in the RKKY regime
for temperatures which approaches 0.
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2.3.3 Kondo effect

The Kondo effect was discovered in experiments measuring the resistivity of noble metals in the
1930s [27]. Before that date, it was commonly accepted that the resistivity of metals decreases if
the temperature is lowered. This holds true for many different metals, but not for noble metals
like gold or silver. Here, a global minimum of the resistivity exists and the resistivity approaches
a finite value for really low energies compared to the so-called Kondo temperature TK which is
defined below (see Fig. 2.6). The Figure shows the Au3 resistivity dependence on temperature.

Figure 2.6: Figure copied from [27]. It shows the
resistivity minimum of Au3 in the range of the
Kondo temperature. The resistivity is a increas-
ing function for higher temperatures, whereas the
resistivity decreases for low energies if the tem-
perature is increased.

The resistivity of metals typically originates
from scattering of phonons (lattice vibra-
tions) and impurities or from the lattice
umklapp scattering. A T 5 dependence of
the resistivity results from phonon scatter-
ing and a T 2 contribution follows from the
electron-electron interaction which can be
explained by Landau’s Fermi liquid theory
[28].
An explanation of the difference in theory
(no minimum) and experiments (minimum)
was given by Jun Kondo in 1964. He
suggested that the minimum results from
a spin-spin interaction between conduction
electron spin and a magnetic impurity spin
[29].

The Hamiltonian of the Kondo impurity prob-
lem is

HK “
ÿ

kσ

ǫkc
:
kσckσ ` J~s~Simp, (2.45)

where ǫk is a usual quadratic (i.e. non interact-

ing) dispersion relation, the ~Simp is the impu-
rity spin operator, ~sc “ c:~σc is the conduction
electron spin at the impurity site and ~σ are the
3 pauli matrices ~σ “ pσx, σy, σzq. The interac-
tion happens local, thus the involved conduc-
tion electron is located nearby the impurity.
The impurity spin results from a localized elec-
tron (e.g. the d-orbital of a transition metal)
and the conduction electron spin from a s-
orbital of a noble metal (e.g. Au). Thus, the
above mentioned model is called s-d model or
Kondo model.

There are different methods to attack the single impurity Kondo problem. One can apply pertur-
bation theory in J , this has been done by Anderson and is known as poor man’s scaling [30]. It
picks up the spirit of RG and predicts an vanishing effective coupling J̃ Ñ 0 for a ferromagnetic
coupling J ă 0 and the strong coupling regime in the antiferromagnetic case.
The second order in perturbation theory results in a logarithmic contribution of the form J2 lnpT {Dq [31],
where J is the coupling constant, T the temperature and D the conduction electron band width.
The effects of the RG can be included in an effective coupling constant. If this renormalized cou-
pling constant is of the same order of the first order term of perturbation theory, the perturbation
ansatz fails and one approaches the Kondo temperature TK which can be defined in this way.
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Interesting physics happens, if an antiferomagnetic coupling J ą 0 is considered. There are 2
different energy regimes. The regime where the energy is higher than TK corresponds to an effec-
tive Kondo coupling which is J̃ “ 0 which implies a non interacting magnetic impurity with the
conduction electrons.
The other regime is where energies are smaller than TK . The effective Kondo coupling explodes
J̃ Ñ 8 called strong coupling limit. Here, the magnetic impurity forms a singlet with one con-
duction electron spin which effectively quenches the overall spin.

To extract the Kondo temperature one can calculate the Sz
1S

z
2 spectral function of the impurity

and get the position of the peak. The Kondo temperature is the energy scale which separates
energy regimes where physical properties are of conceptual different nature. This can be seen in
Sect. 3.1.3 for a single impurity Kondo impurity model. The spectral function is a linear function
of frequency for lower/higher energies compared to the Kondo temperature. But the slopes differ
and the transformation happens at the Kondo temperature, this can be used as definition of the
Kondo temperature (i.e. position of the spectral function maximum).
This is used in Sect. 3.1.3 to calculate the Kondo temperature for the single Kondo impurity model.
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2.3.4 Competition of RKKY and Kondo effect

The Kondo effect and RKKY interaction represents two different tendencies of the system to
quench the local moments with conduction electrons or by themselves, respectively [32].
The characteristic energy for the Kondo effect is TK (see Sect. 2.3.3) and ERKKY for the RKKY
interaction, see Sect. 2.3.2.

TK 9 ρ´1

0
expp ´1

ρ0J
q (2.46)

ERKKY 9 CJ2ρ0{R, (2.47)

where ρ0 is the density of conduction electron states, C is a dimensionless constant depending on
the band structure and R is the interimpurity distance [1].

For specific parameter settings (J ă Jc) the RKKY interaction overwhelms the Kondo effect or
vice versa (J ą Jc) which has been investigated by Doniach [1]. The Kondo effect is strong and
essentially non-perturbative coupling which can hardly be realized for ordinary systems (e.g. non
helical).
The goal of this study is to reach the Kondo regime. The two regimes can be distinguished if one
compares their characteristic energy scales which are depicted in Fig. 2.7.
The Kondo effect will overwhelm the RKKY interaction if the Kondo temperature is bigger than
the RKKY energy TK ą ERKKY and vice versa for TK ă ERKKY .
The RKKY energy and the Kondo temperature will be calculated as explained in previous sections
and compared afterwards.
This competition of the different regimes are also examined numerically [33, 34, 35]. In these
studies the conduction electrons are non helical. This non-helicity makes the difference between
their system and the lattice system which is chosen in this thesis.
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Figure 2.7: Doniach phase’s diagram for the competing effects RKKY and Kondo
in 1D. The RKKY energy is quadratic in J and the Kondo temperature is TK «
expp´1{2ρ0Jq. Thus, for Kondo couplings bigger than the quantum critical point
Jc the Kondo effect overwhelms the RKKY effect, whereas for small J 1s the RKKY
energy is bigger.

The aforementioned comparison of energy scales will be modified if helical Luttinger liquids are
considered due to the scattering process constrains.
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2.3.5 Competition of RKKY and Kondo effect in HLL

A system which consists of a helical Luttinger liquid and two Kondo impurities, has another scaling
behavior of the RKKY energy and the Kondo temperature compared to a non helical system [2]
(see. 2.3.4).
The Kondo temperature has different functional dependencies for different parameter regimes [36]

TK 9
#

D expp ´1

ρ0J
q for 0 ă 1 ´ K̃ ! 1 weak repulsion

Dpρ0JKq1{p1´K̃q for 1 ´ K̃ " ρ0JK strong repulsion
. (2.48)

K̃ is the effective Luttinger parameter defined in Eq. (B.17) where forward scattering Jz is included.
D is the bandwidth, ρ0 is the density of states at the Fermi level.
The Kondo temperature dependence can be separated into two different repulsive interaction
regimes (strong and weak interactions). Their conditions are given in the equation above.
Eq. 2.48 is verified in Sect. 3.1.3 for a single Kondo impurity model. There are 3 possibilities for
our set up (obligatory non-interacting bath K “ 1):
(1) Investigate the weak repulsion regime for isotropic Kondo coupling
(2) Study the strong repulsion regime for anisotropic Kondo coupling for fixed and perturbation
small JK
(3) Study the strong repulsion regime for anisotropic Kondo coupling for fixed Jz to confirm the
power law (Eq. (2.48)) in JK
These calculations are done in Sect. 3.1.3. For strong repulsive interaction one sees from Eq. (2.48)
that the Kondo temperature TK is enhanced by the effective interaction K̃.
Thus, the Kondo temperature can be increased by changing the Luttinger parameter K (which is
not possible in this setup) or by introducing anisotropy (Jz " JK), which leads to a change of the
effective Luttinger parameter K̃.
The RKKY energy scales like (from Eq. 2.33)

ERKKY 9 Dpρ0JKq2pα{Rq2K̃´1 1{2 ă K̃ ď 1. (2.49)

R is the interimpurity distance.
The RKKY energy can be calculated via Eq. (2.40) which is done in Sect. 3.1.4.
Now, it is possible to compare the two characteristic energy scales TK for the Kondo effect in heli-
cal Luttinger liquids (Eq. (2.48)) and ERKKY (Eq. (2.49)) which is done in Sect. 3.1.4 numerically
for a real lattice system.

In Fig. 1.1 the RKKY/Kondo regimes are depicted. They are separated by the condition K̃ “ 1{2.
The paradigmatic RKKY description fails for strong correlated systems K̃ ă 1{2. In such a system
one will expect two Kondo screened singlets [2]. The system is in the RKKY phase for weak
repulsive interactions K̃ ą 1{2.
The phase diagram suggests two conceptually different possibilities to change the dominant regime.
One can changes the interacting parameter K or one can vary the anisotropic Kondo coupling in
terms of Jz.
The next sections introduces the concept of numerical renormalization method.
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2.4 Numerical Renormalization Group (NRG)

For tackling the aforementioned impurity problem (e.g. Kondo impurities interacting with a bath),
the numerical renormalization group (NRG) method is used. NRG is based on the seminal work of
Wilson who discovered the usefulness of renormalization group (RG) theory [37] to solve impurity
problems non-perturbative.
In this project, the NRG code written by Seung-Sup B. Lee [38, 39] is used, which implements
the full-density-matrix NRG [40] by using tensor networks [41, 42].
The gain of NRG in terms of the Kondo problem is a non-perturbation description of the full
crossover from a free spin at high temperatures to a screened spin (for the single Kondo impurity
model) at low temperatures compared to the Kondo temperature TK [43].
An impurity with only few degrees of freedom (e.g. spin-1/2 impurity contains only two states)
couples to a non-interacting bath (e.g. spinful fermionic system) where symmetries can be used
to reduce the computational costs.
The Kondo impurities interact with the conduction electron nearby the impurity, i.e. the local
density of states (LDoS) at the Kondo impurities. The occupation of the impurity is fixed. Thus,
no charge fluctuations appear at the Kondo impurity site. The allowed interactions between
conduction electrons and impurities are only mediated by spin-spin interactions.
The continuum bath is discretized in energy space with a logarithmically chosen grid. If ωc is the
maximum of the conduction band energy, the grid (positive part) can be constructed as follows:

rΛ´pn`1qωc,Λ
´nωcs intervals, where n P N0, (2.50)

with Λ ą 1 determining the the discretization.
The width of the intervals decreases exponentially with increasing n. Thus, the resolution of the
discretized bath is coarse for high energies but becomes better and better if n increases (i.e. for
low energies). This is one of the main advantages of the logarithmic discretization scheme. Since
the excitations are expected nearby the Fermi surface, these states will contribute most. Thus, a
better resolution of these energetically low states is desirable.
The logarithmic discretization suits problems where no universal energy ranges exist which de-
scribes the overall system physics. The Kondo problem is such a problem.
Its perturbation expansion results in logarithmic terms which signals that all energy scales con-
tribute equally to the final result [31]. Hence, no energy range is a priori extraordinary compared
to other energy scales and thus all energy scales should be considered.
The logarithmic discretization considers this lack of an outstanding energy scale, it considers every
interval equally.
In the logarithmic discretization scheme an easy truncation procedure is conveniently during the
iterative diagonalization procedure.
This coarse graining is followed by an exact mapping onto a semi infinite Wilson chain [37, 43].
Its hopping amplitudes decay exponentially. This introduces energy scale separation and thus
justifies iterative diagonalization of the Wilson chain.

Based on the argument of energy scale separation by logarithmic discretization, the NRG algorithm
proceeds with iterative diagonalization of the Wilson chain. This generates a complete set of well
approximated energy eigenstates [38].
The spectral function calculated during this project is [38]

AO1O2
pωq “

ÿ

E1,E2

δpω ´ E2 ` E1q

ˆ
´

xE1| Ô1 |E2y xE2| Ô:
2
ρ̂ |E1y ´ xE1| Ô1 |E2y xE2| ρ̂Ô:

2
|E1y

¯

. (2.51)

ρ̂ is the thermal density matrix, |E1y and |E2y are full density matrix eigenstates obtained by
iterative diagonalizing the Wilson chain [40] with corresponding energies E1 and E2. The spectral
function of the operator Ô1Ô2 is calculated.
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Conventional broadening of the discrete spectral density data from NRG calculations is used to
improve the resolution of dynamical properties at finite energies. It uses the single width of
broadening for all discrete spectral weights.



Chapter 3

Results and discussion

In the following chapter, the results of the numerical analysis are presented. In Sect. 3.1.1, the
reason for the choice of specific parameters in the Kane Mele Model that is used in this thesis are
given. The local density of states (LDoS) at the edges of the Kane Mele lattice are calculated in
Sect. 3.1.2. The Kondo temperature is calculated for a single impurity problem with and without
anisotropy in Sect. 3.1.3. In Sect. 3.1.4 two Kondo impurities are considered and RKKY Kondo
competition is studied.

3.1 Numerical results

The numerical goal is to investigate the RKKY/Kondo transition in a standard lattice model of
the TI. To perform this task, the interimpurity xSz

1
Sz
2

y spectral functions defined in B.32 and the
local impurity xSz

1
Sz
1

y spectral function defined in B.33 are calculated. These spectral functions
can be used to estimate the RKKY energy and the Kondo temperature discussed in previous
sections.
Then, following the arguments of Sect. 2.3.5, one identifies the actual regime (either Kondo or
RKKY) for the underlying system by comparing their energy scales which are characteristic for
each regime.
With this consideration it is possible to yield a more detailed phase diagram like Fig. 1.1 where
the winner of the competition is dependent on Jz and K.
A single Kondo impurity model is considered, where the Kondo temperature can be calculated
for this system. If the two Kondo impurity system is in the Kondo regime, the two impurities are
essentially screened individually, i.e. they are almost uncorrelated. Thus, the two impurities can
be treated as two single Kondo impurities. For this reason it is convenient to compare the Kondo
temperature calculated from the single impurity Kondo model (Sect. 3.1.3) with the RKKY energy
of the two impurities Kondo problem (Sect. 3.1.4) to confirm Doniachs criterion to distinguish
RKKY interaction and Kondo effect.
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3.1.1 Finite Kane Mele model

The Kane Mele model is chosen because it can be in a topologically nontrivial state [7] and therefor
hosts helical edge states at its boundaries.To have access to the boundary, the Kane Mele lattice
model is confined in one spatial direction where open boundary conditions (OBC) are applied.
This confinement includes different suitable configurations of the boundary, for example zigzag or
armchair.
In the following periodic boundary conditions are applied along the horizontal axis and open
boundary conditions are applied along the vertical direction depicted in Fig. 3.2.

The focus of interest in this work is the zigzag boundary configuration of the Kane Mele model
(see Fig. 2.3). The penetration depth (Fig. 3.1) on its edge states is smaller than the penetration
depth of the armchair boundary configuration edge state which is shown in Fig. 3.3 [44].
The penetration of the edge modes is exponentially suppressed into the bulk which is shown in
Fig. 3.1 for a zigzag boundary along the OBC direction. Here, the occupation of each site within
the unit cell (Fig. 2.1) is depicted. The first site corresponds to the upper edge and the 80th site
corresponds to the lower edge. Machine precision will be reached if the 0 energy mode penetrates
into the bulk roughly at the 35th site counting from the boundary.
The sharp peaks in the exponential decrease are an artifact of the difference between crest and
trough sites in the same leg (see Fig. 2.3). E.g. for the 4th site the occupation is increased compared
to the 3th site but will decay afterwards. This feature occurs for a given sequence of sites. But
there is an overall exponential decrease which leads to the commonly accepted averaging over a
finite amount of sites perpendicular to the edge (a possible averaging is over a leg within a unit
cell, thus over 2 sites). This feature will become more important by considering the penetration
depth of the armchair configuration (see Fig. 3.3).
Due to this exponential decrease, the 2 edge states are well separated, i.e. their overlap is zero.
The penetration depth depends on the spin orbit coupling tso and the spatial width of the system
(here, the width is 80 sites (40 legs)) along the OBC.
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Figure 3.1: This figure depicts the penetration depth of a zero energy mode into the
bulk of a Kane Mele lattice where zigzag boundaries are applied. The position of a
specific site in the unit cell is marked by the leg number (1 is the upper, 80 is the
lower edge). The occupation of these unit cell sites is shown. Here, it is visible that
the edge modes decrease exponentially by going into the bulk.

Another possible edge of the honeycomb lattice is the armchair configuration depicted in Fig. 3.2.
In this case, a different labeling of sites along the OBC direction is used. One counts layers per-
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pendicular to the edge into the bulk (for the zigzag configuration the legs are counted, 2 layers
built up 1 leg. However, an enlarged unit cell compared to the zigzag configuration has to be
taken into consideration. The unit cell consists of 2 sites per layer. The definition that the spatial
upper edge consists of the 1st and the 2nd layer is used within this thesis which will be important
by considering the penetration depth into the bulk of the 0 energy states.

Layer 3

Layer 4

Layer 1

Layer 2

Layer 5

Layer 6

OBC

PBC

u.c.

Figure 3.2: Armchair edge along the OBC direction. Here, a different nomenclature
is appropriate to label the sites in the unit cell along the OBC direction. 2 layers
are 1 leg (nomenclature for the zigzag boundary). It is reasonable to interpret the
first two layers of each boundary as the edge which is important for the penetration
depth.

The penetration depth of the 0 energy modes (edge modes) in the armchair configuration is
depicted in Fig. 3.3. There are 164 layers along the OBC direction (the amount of layers shall
guarantee that the system is in the metallic phase seen below). The occupation of each different
layer is plotted. There is an exponential decrease if the edge mode penetrates into the bulk. The
same spin orbit coupling is used as for the zigzag configuration tso “ 0.06t so that the two results
are comparable.
The system size of both configurations is also similar but not exactly equal. The reason for this
is the necessity to be in the metallic phase for the armchair configuration (164 layers).
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Figure 3.3: This figure depicts the penetration depth of a 0 energy mode for armchair
boundary conditions along OBC direction into the bulk. The penetration decreases
exponentially. The next nearest neighbor hopping is tso “ 0.06t. For the armchair
boundary the site position in the unit cell are labeled with layers. The figure shows
a armchair configuration with 164 layers.

The penetration depth of edge states in the zigzag boundary configuration depicted in Fig. 3.1
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decreases faster than the one in the armchair boundary configuration depicted in Fig. 3.3. Thus,
one does not need as many lattice sites along the OBC direction for the zigzag configuration as for
the armchair configuration for comparable penetration depth (helical edge states are separated).
Since we are interested in a model where one spatial dimension is quite small, we exclude the
armchair configuration from our considerations.

The armchair configuration is also accompanied by the downside that there are only zero energy
modes for a specific amount of sites along the OBC direction [45], which is depicted in Fig. 3.4.
A metallic system shows up if the amount of layers along the OBC is Ny “ 3n ` 2 for n P N0,
otherwise it is gapped. Thus the above chosen system with Ny “ 54ˆ3`2 “ 164 is in the metallic
phase.
The gap size shrinks with increasing amount of sites along the OBC direction. In the limit N Ñ 8
the gap is closed. This is reasonable since if one extents the system to infinity, there is no boundary,
thus no distinction between armchair and zigzag configuration should appear. The gap size also
decreases for increasing amount of layers within the armchair configuration which can be seen in
Fig. 3.4. If the system is large (along the OBC direction), it should not change as much by adding
one further layer to it as a system which is considerably small. Thus, the gap closing is reasonable.
The gap closing for an infinite extended Kane Mele model should be restored.
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along OBC N “ 11
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Figure 3.4: Dispersion relation for armchair edge configuration for different amount
of legs. There are only metallic configurations in (b) and (e), the others (a)(c)(d)(f)
are gapped. The gap shrinks by increasing leg number and approaches 0 if one takes
the limit N Ñ 8.

The zigzag configuration is characterized by the leg number (legs are parallel to the x axis) and
the amount of sites along the x direction (for quantization of quasi impulse) which is depicted in
Fig. 2.3.

The unit cell of this system consists of two sites per leg. The amount of sites has to be even
along PBC as every site from sublattice A has to have a neighboring site from sublattice B. This
condition will not be fulfilled if the amount of sites along PBC are odd. This would lead to a term
where two sites from the same sublattice are nearest neighbors.
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There is a distinction if the dispersion for N is odd or even. This difference appears in the location
of the helical states. For odd N , the helical edge states are located at one specific edge depending
on its spin which is expected. If N is even, one helical edge state is located at both edges by
exactly one half occupation [46]. At first glance, this sounds like a contradiction as helicity should
be fixed for each edge mode. However, the edge state which is supported on both edges can fulfill
this constraint. Helicity is the signum of group velocity and spin. Thus, the constraint is fulfilled
if the edge state part which lives on the upper edge has a different group velocity to the group
velocity of the edge state part which lives on the opposite edge (the specific edge state has the
same spin).
This half occupation of the boundary for one single helical edge mode can be explained by the
geometrical structure of a system consisting of an even amount of legs. For N being even, the
boundary consists of different sublattice sites, whereas the edges are constructed from lattice sites
which are from the same sublattice for the N being odd case.
In the N being even case there are exact 0 energy modes only in the limit of Nx Ñ 8 which means
that the energy level spacing approaches to 0 [46].

There are 4 exact zero energy modes (helical edge states) in the N being odd configuration inde-
pendent of the amount of sites along the PBC direction. The degenerated states can be labeled
by spin and edge (or by helicity and spin).
The quadratic Kane Mele model can be Fourier transformed and diagonalized. The Fourier trans-
formation is done in Appendix A.1 and results in the matrix which is given in Appendix A.13 which
has to be diagonalized. This can be done easily because it is hermitian and has only 1 diagonal
and 4 off-diagonal terms. One gets 2Ny eigenenergies for each quasi impulse kx (amount of kx is
dependent on Nx{2 sites along open boundary direction). Thus, the dispersion relation consists of
2 ˆ Ny bands and there are exactly the same number of valence band states as conduction band
states below and above the Fermi level.
A sublattice potential lifts the spin degeneracy of the dispersion relation. Fig. 2.4 shows the
dispersion relations of the Kane Mele model without sublattice potential and with a sublattice
potential.
We have come to the conclusion that the following set of parameters will be optimal for the numer-
ical study of the finite Kane Mele lattice: Spin orbit coupling of tso “ 0.03t, sublattice potential
of µ “ 0, amount of sites along PBC direction (M “ 500), amount of legs along OBC N “ 11
(odd configuration).

The Kane Mele model Eq. (2.11) can be described with spatial (x,y lattice site position) and
spin quantum numbers. The Kane Mele Hamiltonian is diagonalized to get the eigen spectrum
and eigen vectors of it. The specific chosen basis and labeling of the lattice sites is explained in
Appendix A.2). This allows the calculation of specific observables (i.e. the local density of states
which is explained below) within a real space resolution.
The treatment (Fourier transformation along one spatial direction) of the Kane Mele Hamiltonian
described above is only needed to describe properties of the system without impurities.
The technical procedure for real space quantum number description of the Kane Mele model is
explained in Appendix A.2. Each lattice site has to be labeled and a suitable basis in real space
has to be chosen (Kane Mele is diagonal in spin). Here, a matrix is generated which has the size
of the spatial dimensions Nx ˆNy, where the spins are suppressed for the moment.
One is free to choose OBC or PBC (along the x direction) as kx does not need to be a good
quantum number anymore.
This generated matrix can be diagonalized and one is able to use the eigenenergies and eigen states
of this system to compute the local density of states which is described in the next section.
Here, one is limited to a smaller system size (e.g. amount of legs is N “ 11, amount of sites along
PBC is 500 yields a Hamiltonian with a dimension of dimpHKM q “ 5500).
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3.1.2 Local density of states

The Kondo impurity interacts with conduction electrons at the site, where the Kondo impurity is
attached Eq. (2.22) (see Fig. 2.5). The local density of conduction electron states at this site is
needed for further calculations (i.e. NRG method to solve impurity problems).
The LDoS is defined as
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Figure 3.5: The local density of states (LDoS) for different positions on the edge
(crest or trough). In the vicinity of the Fermi energy (around 0 frequency) the LDoS
is suppressed for the trough site and peaked for the crest site.

∆D
i pω1q “

ÿ

n

xi|ǫny xǫn|iy δpω1 ´ ǫnq “
ÿ

n

WDpǫnqδpω1 ´ ǫnq, (3.1)

|ǫny is an eigen state of the Kane Mele Hamiltonian with corresponding eigenenergy ǫn. |iy marks
the state for which the LDoS is calculated; the state has its position and spin as its quantum
number.
We are interested in the local density of states (LDoS) at the boundary of the Kane Mele lattice.
There are only two different LDoS for the boundary of this lattice type (when PBC are applied)
which are depicted in Fig. 3.5. The LDoS is measured at a crest or a trough site (see Fig. 2.3).
PBC ensure that each crest/trough site on its one is equivalent to another crest/trough site along
the periodic boundary direction as long as the crest/trough site belongs to the same leg (i.e. here
it is the edge leg).
The discrete data generated by implementing Eq. (3.1) has to be broadened because the NRG

procedure needs a continuous LDoS. This broadening is done by a linear Gaussian broadening
kernel

Bpω, ω1q “ 1?
πη

expppω ´ ω1q{ηq2q, (3.2)

where η is the broadening bandwidth, ω is the frequency argument of the broadened function and
ω1 is the frequency where the discrete weight is located (i.e. position of the Dirac delta function).
The broadened LDoS is

∆B
i pωq “

ż

dω1WDpω1qBpω, ω1q, (3.3)

and will be called LDoS in the following.
The LDoS is peaked at zero energy for the crest site and suppressed for the trough site which can
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Figure 3.6: LDoS for OBC. The impurities are attached to the boundary; [1,50] and
[1,80] in brick stone notation. The Kane Mele lattice consists of 11 legs and 500 sites
along the x direction. tso “ 0.03t and the nearest neighbor hopping is t “ 1, µ “ 0.
There is no obvious difference of the LDoS visible, only by zooming into the figure a
noticeable difference can be detected.

be seen in Fig. 3.5. The bulk band gap of the underlying Kane Mele system is in the range of the
two local minima (∆gap “ tso6

?
3 « 0.3t) of the crest LDoS. The band width is 6t. This specific

lattice system consist of 11 legs (in Appendix A.2 this implies Ny “ 22 sites within the unit cell)
along the OBC direction and 500 sites along the PBC. The nearest neighbor hopping is t “ 1, the
next nearest neighbor hopping is tso “ 0.03t and no sublattice potential is turned on µ “ 0.
The spatial structure of correlations around a quantum impurity at the edge of a two-dimensional
topological insulator is studied in Ref. [47]. The authors also calculated the LDoS for the
crest/trough sites at the boundary. Fig. 3.5 shows the LDoS outcome of my calculation which is
the same as the result at the crest/trough site at the edge of the Kane Mele lattice given in [47]
Fig. 3.
A. Allerdt, A. E. Feiguin, and G. B. Martins choose tso “ 0.1 to see the finite LDoS of a trough
site more clearly at 0 energy.
For OBC along both spatial directions, the LDoS slightly changes compared to the PBC case
depicted in Fig. 3.6 if the position along the leg is varied (i.e. 1st crest to 2nd crest along same
leg). However, the main feature survives (i.e. crest site LDoS consists of a peak, trough site LDoS
is suppressed around the Fermi level).
The parameters are the same as for the PBC case; one spatial direction (along y direction N “ 11)
is significantly not as extended as the other one (amount of sites along horizontal direction
M “ 500). In Fig. 3.6 the LDoS for two impurities attached to two different crest sites along
the edge is depicted. One impurity is attached to the 50th site along the edge (blue curve) and
the other impurity is attached to the 80th site along the edge (red curve). The inset is a zoom
into the region of the bulk gap edge where the difference is most visible.

To consider at the final stage two Kondo impurities attached to the Kane Mele lattice, a more
general form as the normal LDoS is needed.
Calculating the interimpurity correlations which is done in Sect. 3.1.3 and Sect. 3.1.4 requires the
overlap of eigen states with states located at spatial separate lattice sites ∆αβpωq (hybridization).
The above mentioned overlap corresponds to a LDoS

∆αβpωq “
ÿ

n

xα|ǫny xǫn|βy δpω ´ ǫnq, (3.4)
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Figure 3.7: Both impurities are attached to crest sites along the edge. The real and
imaginary part of the off-diagonal part of ∆ from Eq. (3.4) can also be seen. The im-
purities are separated by 10 lattice sites. The real part of the off-diagonal of Eq. (3.4)
is symmetric, the imaginary part is antisymmetric.
System parameters: t “ 1, tso “ 0.03t, µ “ 0, M “ 500, N “ 11 and Impurity posi-
tion in brick stone notation Imp1 “ r1, 20s, Imp2 “ r1, 30s (first entry corresponds
to leg number and second entry to the position along the leg).

where |ǫny are the eigen states with corresponding eigenenergy ǫn of the Kane Mele Hamiltonian
Eq. (2.11) and the |βy,|αy are the impurity states.
The diagonal part of ∆ is the usual LDoS defined in Eq. (3.1). ∆ is a 4 ˆ 4 matrix and the im-
purity states are r|1, Òy , |2, Òy , |1, Óy , |2, Óys where the number marks the impurity (location) and
the arrow marks the spin.
The diagonal part of ∆ corresponds to the LDoS for each impurity. The off-diagonal part is a
hybridization of the local states where the impurities are attached.
There are no spin mixing terms because the Kane Mele Hamiltonian defined in Eq. (2.11) is diago-
nal in spin space. Thus, ∆ is in block diagonal form and it is hermitian which yields, in principal,
6 independent entries.

The off-diagonal part of ∆ is generally complex and is depicted in Fig. 3.7. Here, the two impuri-
ties will be connected to two crest sites along the same boundary, hence the LDoS for both crest
sites will look equal to Fig. 3.5. The first impurity is attached to the 20th site on the outermost
leg (first leg) which is noted by r1, 20s. The second impurity is attached to the 30th site on the
outermost leg (first leg) which is noted by r1, 30s, hence the interimpurity distance corresponds to
10 lattice sites.
The real and imaginary part of the hybridization off-diagonal (∆1Ò,2Òpωq or ∆1Ó,2Ópωq) is symmet-
ric and antisymmetric around 0 energy, respectively.
The visible oscillations within the bulk band gap depend on the interimpurity distance. One os-
cillation (from 0 energy to the bulk band edge) results from each interimpurity distance change of
8 lattice sites (e.g. the interimpurity distance consists of 10 lattice sites, there is one oscillation).
The larger the interimpurity distances the larger the oscillation frequency.

The LDoS for spin up and spin down are equal, but the off-diagonal elements for spin up of ∆
are the complex conjugated of the off-diagonal elements of ∆ for spin down which can be seen in
Fig. 3.8. The reason for this behavior of different spins is the special structure of the Kane Mele
Hamiltonian. The two spins are distinguished by a spin orbit term which is `itso for the spin up
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Figure 3.8: The real and imaginary part of the off-diagonal elements for spin up and
spin down of the hybridization defined in Eq. (3.4) are depicted here. The real part
remains the same for spin up and spin down, but the imaginary part is mirrored
around the Fermi level (0 energy). Thus, the off-diagonal elements for spin up and
spin down are connected via complex conjugation.

and ´itso for the spin down part (see Eq. (2.11)).
The hybridization ∆αβpωq is used for the logarithmic discretization procedure which is within the
calculation of the Wilson chain hopping’s and on-site energies.

3.1.3 Single impurity Kondo model

Only one Kondo impurity is considered in this subsection. The LDoS calculated introduced in the
previous section is needed. The impurity site is attached to the crest site of leg number 1 (i.e. at
the boundary) like in Fig. 2.5. LDoS is peaked at zero energy and decreases if one goes to higher
energies until the energy is of the same order of the bulk gap. Then, the LDoS increases again
(see Sect. 3.1.2).

The eigenenergies which are calculated by the NRG iterative diagonalized of the Wilson chain
explained in Sect. 2.4 are depicted in Fig. 3.9.
A non stable behavior of the rescaled eigenenergies can be detected in a range of high energies
(n P r1; 35s) and a stable fix point is reached after chain site 40 (the discretization parameter is
Λ “ 2). The degeneracies in energy (marked by numbers near the plotted lines) of the approximate
many body eigenstates are typical for a Fermi liquid if the fixed point is reached.
The impurity forms a singlet with the first site of the Wilson chain. The remaining Wilson chain
is effectively decoupled from this singlet. Each Wilson chain site can be occupied by 4 different
states (empty, 1 particle spin up/down, 2 particles). For an even Wilson chain length the Fermi
level is between the ground state and the first exited state. In the Fermi liquid picture, excitations
are described by particle hole excitations. Hence, the many body ground state is unique for the
even configuration (upper figure).
The Fermi level is at the ground state level for an odd Wilson chain length, hence the ground state
is degenerate. There are 4 different states which can occupy the first Wilson chain site, hence the
ground state is fourfold degenerate.
This is the ordinary even/odd behavior of the Wilson chain, but the physical content is the same.
Strictly speaking, the fixed point Hamiltonian is only a fixed point Hamiltonian of the double
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Figure 3.9: Energy flow digaram for single impurity Kondo model with anisotropic
coupling. For high energies (i.e. low Wilson chain site number) no convergence can
be seen. After a specific Wilson chain site the rescaled energies are stable which
signals that a fix point is reached. The numbers within the plot near the lines specify
the degeneracy of one given many body energy level. The legend shows the quantum
numbers which correspond to a given line ([0,1] [charge quantum number, spin z
quantum number]). The quantum numbers result from the given system symmetry
(ablian charge U(1), and U(1) Sz symmetry)
System parameters: Jz “ 0.4, JK “ 0.1, nz “ 2, λ “ 2, Nkeep “ 2000.

applied renormalization group transformation

RpRpHqq Ñ H.

This reflects the antisymmetry between even or odd amount of Wilson chain sites.
The linear spectrum of a Fermi liquid can be seen in the left panel (a) of Fig. 3.9. This suggests
that one reaches a Fermi liquid fixed point.
The different lines correspond to different many body states where the quantum numbers for these
states are noted in the legend via ra, bs.
The system under consideration has 2 symmetries, charge conservation and spin symmetry, which
yields a Up1q ˆ Up1q symmetry. Thus, the quantum numbers, which describe the system, are
charge and spin in z direction of the whole system. The charge is measured from half filling.
For example the quantum numbers r1,´1s mean that the system consists of one more particle as
half filling and the overall spin in z direction is sz “ ´1. These quantum numbers characterize
symmetry sectors. The combined impurity and bath Hamiltonian is in block form with respect to
these symmetry sectors.

In such a setup (LDoS + single magnetic impurity), it is possible to calculate the imaginary part
of the retarded Greens function (Eq. (B.28)) ℑpGr

SzSzpωqq (i.e. the spectral function) depicted in
Fig. 3.10.
The spectral function is antisymmetric, its maximum position is within the range of positive
frequencies and corresponds to the Kondo temperature TK . For energies lower than the Kondo
temperature the spectral function linearly depends on the frequency. This behavior corresponds to
a Fermi liquid behavior in such an energy range and corresponds to the NRG energy flow depicted
in Fig. 3.9 where the fix point Hamiltonian (here a Fermi liquid) is reached.
For frequencies higher than TK the spectral function decreases linearly.
The Kondo temperature can be calculated by finding the maximum of the spectral function given
in Eq. (2.51) in frequency space. In Fig. 3.10 the Kondo temperature is roughly TK “« 5.7ˆ10´7,
whereas the system temperature is T “ 10´12.
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Figure 3.10: The single impurity spectral function for positive energies can be seen
in this figure. The isotropic Kondo coupling is J “ 0.1. The Kondo temperature
is at TK « 5.7 ˆ 10´7 which is the spectral function maximum position along the
frequency axis. The chosen system temperature is T “ 10´12.

Fig. 3.11 illustrates spectral functions for different isotropic Kondo couplings J P r0.062, 0.1s. The
peak positions of the spectral function in frequency space is shifted to higher energies in that case.
This implies that the Kondo temperature increases to higher energies if the Kondo coupling is
increased. This figure shows how the Kondo temperature is measured for different couplings.
One can turn ones attention to check that the numerically obtained Kondo temperature agrees
with analytically obtained results for the Kondo temperature.
The Kondo temperate is an exponential decaying function of the inverse Kondo coupling for the
isotropic single impurity Kondo problem, see in Eq. (2.48). This can be verified numerically.
Fig. 3.12 shows a linear fit which confirms that the Kondo temperature depends on the isotropic
Kondo coupling J in an exponential way.
The examined Kondo couplings are in the range J P r0.07; 0.1s.
The slope of the fitted curve is

δ « 1.2,

which is the inverse density of states at the Fermi level

ρ0 « 0.83.

The value of logpTKq where the Kondo coupling obeys 1{J “ 0 is logpTKp8qq « ´2.4 which leads
to the prefactor of the exponential decay

logpDq “ ´2.4 Ñ D “ 0.09.

D is of the order of the bulk band gap.
Fig. 3.13 shows the power law of the Kondo temperature in JK P r0.02; 0.1s where Jz “ 0.4 and
Jz “ 0.2 is fixed for the anisotropic case (see Eq. (2.48)).
The slopes of the fitted curves are the exponent of the power law. The slopes are for the depicted
parameter sets

δ « 3.2 for Jz “ 0.4

δ « 5.4 for Jz “ 0.2.

The exponent of the power law can be calculated with Eq. (2.48) where the Luttinger parameter
has to be replaced by the effective Luttinger parameter K̃ “ Kp1 ´ ρ0Jz{2Kq2 (where K “ 1)
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Figure 3.11: The single impurity spectral functions for different isotropic Kondo
couplings J are shown in the figure. The Kondo temperature can be extracted from
the position of the global maximum of each curve. The main feature is that the
maximum of the spectral function shifts to higher energies if the Kondo coupling is
increased.

1{p1 ´ K̃q “ 1

1 ´ p1 ´ ρ0Jz{2q2 “ 1

ρ0Jz ´ pρ0Jzq2{4 «
#

3.05 for Jz “ 0.4

5.82 for Jz “ 0.2
, (3.5)

ρ0 “ 0.9 is assumed for the density of states at the Fermi level.

The predicted exponents for the different Jz Kondo couplings fit very well to the numerical obtained
ones. The result above confirms the theoretical prediction of the Kondo temperature in a helical
quasi 1d system for isotropic and anisotropic Kondo coupling [2].
The attention is now turned to the Kondo temperatures for anisotropic Kondo couplings Jz,
whereas JK “ 0.01 is fixed and perturbatively small. Strong anisotropy enhances the Kondo
effect: TK becomes a power law in JK. This leads to an enhanced Kondo temperature, see
Eq. (2.48). The system temperature is T “ 10´12. It should be smaller than the examined Kondo
temperature to reach a fixed point in the NRG iteration.
Fig. 3.14 shows the Kondo temperature dependence on the Kondo coupling Jz. The Kondo
temperature decreases governed by the dependence given in Eq. (2.48)

logpTKq 9 1{p1 ´ K̃q logpJKq ` logpDq “ 1{pJz ´ J2

z {4q logpJKq ` logpDq. (3.6)

This behavior is checked in Fig. 3.14(b) for different small JK P r0.005; 0.01; 0.02s.
For lower JK values the equation above is more accurate than for higher ones. The reason for this
is the constraint given in Eq. (2.48). This constraint is more satisfied for lower JK as for higher
ones.
From Fig. 3.14(a) one can easily read the Kondo temperature for a given parameter set. This
will be useful to compare the single Kondo impurity Kondo temperature with the RKKY energy
discussed in the next section.

3.1.4 Two Kondo impurities Kondo/RKKY transition in the Kane Mele
model

Two Kondo impurities are coupled to the Kane Mele lattice. They interact with the edge modes
via a Kondo exchange interaction, see Eq. (2.3.1).
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Figure 3.12: The Kondo temperature for isotropic single impurity Kondo coupling.
The data points are fitted by a linear fit. The slope is δ « 1.2 and logpTKpJ “ 8qq «
´2.4. This figure confirms TK 9 D expp´1{Jq for isotropic coupling.

For handling such problems with NRG, the general hybridization function ∆αβpωq discussed in
Sect. 3.1.2 and defined in Eq. (3.4) is needed.
The Wilson chain for two impurities has a ladder geometry. There are two spin-1{2 impurities,
i.e. two channels, serving as seeds for each ladder leg. Thus, the Hilbert subspace spanned by the
impurities is four dimensional. Each site of the Wilson chain has two degrees of freedom; one rung
of the ladder consists of for bath sites.
The impurities are coupled to these first bath sites which leads to a Hilbert space dimension of
the Hamiltonian consisting of the impurities and the first rung dimpH1q “ 22 ˆ 24 “ 64.
By attaching one rung to the already existing Wilson ladder, the Hilbert space dimension of the
ladder Hamiltonian is dimpHnq “ dimpHn´1q ˆ 24 “ 22 ˆ 24n. The Wilson chain can be diagonal-
ized, see Sect. 2.4. Below, we will proceed after the following steps:
(1) Study energy flow diagrams
(2) Calculate (interimpurity) spectral functions
(3) Calculate expectation values.

The energy flow diagrams depicted in Fig. 3.15 are more complicated compared to the single
Kondo impurity ones. As mentioned above, the Hamiltonian dimension increases faster than for
the single impurity Kondo model by going along the Wilson ladder.
The Fermi liquid fix point energy spectrum will be governed by other degeneracies of the many
body eigenstates. Those degeneracies are denoted by numbers near the corresponding energy line
in the figure.
For this setup the competition of RKKY interaction and the Kondo effect leads to two charac-
teristic energy scales for the system. By studying the energy flow diagrams regions where the
characteristic energy scales will occur can be estimated. For the chosen configuration (Jz “ 0.25,
JK “ 0.01, λ “ 8, Nkeep “ 4000, NWilson “ 45 and T “ 10´16) these energy scales are visible. The
first one roughly occurs at roughly at n “ 10 (corresponding energy « 3 ˆ 10´5) and the second
one at n “ 18 (corresponding energy « 7.5ˆ10´9). This energy scales are only an estimation and
without a deeper understanding of the system nothing can be said about their nature. At this
stage, it can be claimed that there are characteristic energy scales at which physics can change.
Later on, one is able to interpret one of these characteristic energy scales as the RKKY energy
if the system is in the RKKY regime (for suitable chosen parameters, i.e. weak anisotropy, see
below). If one drives the system away from the RKKY regime by increasing the anisotropy, the
characteristic energy scale which was the RKKY energy before is now another energy scale which
is not connected with the RKKY regime. However, it describes the underlying physics (starting
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Figure 3.13: Power law of the Kondo temperature versus anisotropic coupling JK
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fit of logpTKq and logpJKq. Thus, the slopes (« 3.2)/(« 5.4) for red/blue yield the
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from the RKKY phase). This energy will serve as a quasi RKKY energy which can be compared
to the Kondo temperature for a single Kondo model.
The fix point in Fig. 3.15 is reached after n “ 25 Wilson chain sites. The energy spectrum af-
ter reaching the fix point Hamiltonian looks like a Fermi liquid one which can be seen from the
degeneracies.
The local and non-local (interimpurity) spectral functions are calculated to estimate the RKKY
energy. If the system is in the RKKY phase, there is a relation between the local and the interim-
purity Green’s functions stated in Eq. (2.42). That leads to a connection of the spectral functions
(interimpurity and local one)

ASz
1
Sz
2

“ ´ASz
1
Sz
1
. (3.7)

The interimpurity and the local spectral function calculated by using NRG are shown in Fig. 3.16.
They obey relation Eq. (3.7) in panel (a). The interimpurity spectral function is negative in the
RKKY phase whereas the local one is positive. The peak positions are the same for both spectral
functions and are related to the RKKY energy via ωpeak “ 2ERKKY . The characteristic energy
scale for the shown configuration (weak anisotropy) in panel (a) is ERKKY “ 1.3{2 ˆ 10´6.
By increasing the anisotropy there should be a qualitative change of the spectral functions, i.e.
the spectral functions will not obey Eq. (3.7) any longer which can be seen in Fig. 3.16(b). Here,
the peak positions are shifted. The peak for the local spectral function remains quite unchanged
whereas the peak position of the interimpurity spectral function appears at an energy scale which
is roughly 2 magnitudes smaller than the peak position of the interimpurity spectral function for
the weak anisotropic case (panel (a)). This change signals that the system is not in the RKKY
regime anymore.

Finally, to identify the regime (either Kondo or RKKY) containing the system, the expectation
value of the interimpurity spin z operator xSz

1S
z
2y defined in Eq. (2.43) is calculated.

If the system is in the RKKY regime, it can be described by the effective Hamiltonian at coinciding
times Eq. (2.32). The ground state is the triplet (with m “ 0), see Sect. 2.3.2). The expectation
value within the RKKY regime for system temperatures approaching 0 is given by Eq. (2.44)

xSz
1
Sz
2

y Ñ ´1{4 for T Ñ 0. (3.8)

Eq. 3.8 follows from the sum rule Eq. (2.41). The given expectation value corresponds to the
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Figure 3.14: The Kondo temperature versus the Kondo coupling in z direction (for-
ward scattering) is depicted. In (a) one is able to read the Kondo temperature for
specific JK and Jz. (b) shows the numerical confirmation of Eq. (3.6), the curves
should be linear until a specific Kondo temperature is reached (smaller but compara-
ble to the system temperature). The equation only holds true in the strong repulsive
regime with high anisotropy (i.e. JK ! p1 ´ K̃q).

RKKY regime. It shares the same expectation value as a triplet (singlet) state. The ground state
of the RKKY regime is the triplet state.
By changing the parameter sets (increase anisotropy Jz for perturbative small JK) one can drive
the system into the Kondo phase according to the phase diagram shown in Fig. 1.1.
In the Kondo regime; the interimpurity expectation value approaches 0 (in the low temperature
limit).

xSz
1S

z
2y Ñ 0 for T Ñ 0. (3.9)

This is reasonable since the two Kondo impurities are not related anymore in the Kondo regime
they form a Kondo singlet each on its own. Thus, the expectation value decouples in xSz

1
yxSz

2
y

which yields 0, because each expectation value on its own is zero.
The numerical calculated expectation value of the interimpurity operator Ŝz

1
Ŝz
2
is shown in the

lower panel of Fig 3.17. A plot of the expectation values for a wider range of Jz is shown in
Appendix A.1.
The upper panel of Fig. 3.17 shows the ERKKY /TK competition versus anisotropic Kondo cou-
pling Jz (for fixed and small JK “ 0.01). The RKKY energy (red crosses) overwhelms the Kondo
temperature (blue crosses) for small anisotropy (weak repulsive interactions), but at some state
(Jcrit

z “ 0.25) the Kondo temperature starts to become greater than ERKKY (strong repulsive in-
teractions). The point where the RKKY energy and the Kondo temperature intersect corresponds
to Doniach’s criterion [1] where both energy scales are of the same order.
The black line corresponds to a polynomial fit of the RKKY energy. Due to a break down of the
RKKY regime near the RKKY/Kondo transition, the RKKY energy has to be fitted. Due to this
break down, the interimpurity spectral function peak positions for Jz, which are in the vicinity of
Jcrit
z , do not correspond to the RKKY energy any more.

The interimpurity spectral function behaves in a strange way (e.g. sign change) for Jz ą Jcrit
z

(not shown in this thesis). This behavior is not clear to us until now (see Sect. 3.3).
The Kondo temperature corresponds to a single Kondo impurity calculation, discussed in Sect. 3.1.3.
The lower panel depicts the expectation value of the interimpurity operator Ŝz

1
Ŝz
2
. The critical

Kondo coupling is within the RKKY/Kondo transition region which is explained above.

The RKKY/Kondo transition in HLL is predicted at K̃ “ 1{2 in [2]. The numerically calculated
crossover happens for Jz “ 0.25 which gives

K̃n “ p1 ´ Jzρ0{2q2 “ 0.7656. (3.10)
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Figure 3.15: Energy flow diagram for two Kondo impurities model with anisotropic
coupling. Two characteristic energy scales can be seen at Wilson chain site n “ 14
and n “ 20. For a chain longer then 25 sites a fixed point Hamiltonian which looks
like a Fermi liquid one, is reached. System parameters: Jz “ 0.25, JK “ 0.01,
nz “ 1,λ “ 8,Nkeep “ 4000, NWilson “ 45, T “ 10´16.

The numerically found critical effective Luttinger parameter determines the RKKY/Kondo tran-
sition line. The difference of the numerically calculated effective Luttinger parameter to the one
predicted in [2] can originate from several reasons, which are presented in the following: The
investigated models are not the same. In the project at hand a quasi 1d HLL is simulated via the
edge states of a TI whereas in [2] a perfect 1d system is used. Within my system the bulk band
gap size should be considerably bigger then other system energy scales in the system so that the
approximation of the helical edge states is still valid. However, the bulk band gap is always finite.
The effective Kondo coupling can only be changed by varying the forward scattering Jz . It is not
possible to check Jcrit

z for other values of K as K “ 1 has to stay fixed. This corresponds to a
line in Fig. 1.1. For other Luttinger parameter values no statement can be made.
The critical effective Luttinger parameter K̃crit corresponding to the critical forward scattering is
bigger in this project compared to [2]. That means that the paradigmatic RKKY descriptions
fail for even weaker repulsive interactions than in the analytical calculations of V. Judson and O.
Yevtushenko. In my studies, a quite low interimpurity distance is used (10 lattice sites) whereas
the aforementioned authors assumed α ! R ! LT which affects their calculations of ERKKY .
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Figure 3.16: Comparison between inter impurity and local spectral functions calcu-
lated for a system which is (a) and is not (b) in the RKKY regime. In panel (a)
the spectral functions only differ from each other by an opposite sign factor. Their
peak positions are the same. Panel (b) shows the spectral functions behavior (in-
terimpurity/local) for increased anisotropy. Their peak positions are not the same
anymore.
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3.2 Conclusions

In this project, I have studied the physics of two Kondo impurities coupled to edges of a QSH
sample. The latter has been mimicked with the help of the Kane Mele lattice model.
In the first part of the project, various geometric configurations and system parameters were
analyzed in order to find those suitable for the project. The most convincing choice for this lattice
model is a boundary consisting of honeycomb zigzag edges. This specific boundary choice ensures
that the helical edge states are more confined to the edge than it is the case for the armchair
boundary. The edge state for the zigzag configuration supports exact zero energy modes whereas
for the armchair configuration the gap is only completely closed in the continuum limit. Thus,
their edge states are not exact zero energy modes in a finite system.
Next, properties of a single KI coupled to the Kane Mele lattice have been studied. The single
Kondo impurity TK was calculated where the impurity is attached to the edge of the lattice model
mentioned above. The RG predictions for the behavior of TK in a HLL were confirmed: the
exponential dependence of TK for weak repulsive interactions and the power law dependence of
TK for strong repulsive interactions (i.e. by driving the system into a strong anisotropic regime)
given in Eq. (2.48) nicely fit the numerically calculated values.

Finally, the RKKY/Kondo competition in the case of an extremely low impurity density has been
investigated. This has been done by considering only two Kondo impurities.
The expected behavior of the interimpurity and local spectral functions deep in the RKKY regime
was verified with the help of NRG calculations. The peak position of the minimum of the inter-
impurity spectral function corresponds with the ERKKY . The RKKY energy can be understood
as the energy gap which occurs after the RKKY correlations lift a degeneracy in the energy of the
uncorrelated Kondo impurities [2]. If the anisotropy Jz is increased beyond a certain value, this
gap will decrease which marks a weakening of the RKKY interaction.
The RKKY interaction overwhelms the Kondo effect for weak anisotropy. However, by increasing
the anisotropy Jz the physics are not dominated by the RKKY indirect exchange interaction any
longer. The only possible other regime is the Kondo regime where the two magnetic impurities are
involved in forming two independent Kondo singlets. This can be explained by Doniach’s criterion
which states that the RKKY/Kondo transition occurs when the two different characteristic energy
scales, the RKKY energy and the Kondo temperature, of both effects become comparable. The
numerical results qualitatively fit the analytical theory of Ref. [2]. However, lower anisotropy in
comparison to [2] is needed to reach the critical effective Luttinger parameter. The reason for this
can be seen in the fact that the Doniach criterion, which is used to estimate the transition region,
overestimates the critical coupling [1].
Another possible explanation could be related to different modes used in analytical and numerical
approaches.
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3.3 Remaining open questions and possible further studies

The first successful study of two Kondo impurities coupled to a Kane Mele lattice model with
the help of the NRG paves the way towards various interesting continuations and reveals several
important open questions:

• Study of two Kondo impurities coupled to a Kane Mele lattice model for larger interimpurity
distances:
The RKKY energy depends on the interimpurity distance R. From above considerations it
can be assumed that one reaches the Kondo regime by separating the two impurities in a
great distance from each other. As the Kondo temperature is independent of interimpury
distance, the RKKY energy will be smaller than TK at some critical distance.

• Investigation of the interimpurity spectral function for higher anisotropy than Jcrit
z :

– Detailed analysis of the peak position of local spectral function. Until now, do not have
any interpretation for it.

– Detailed analysis of the peak position of interimpurity spectral function. There are more
characteristic energy scales upcoming from numerics which we have not understood quit
well.

• One can also extend the study to different parameter ranges of the Kane Mele model:

– Turning on a sublattice potential µ which lifts the spin degeneracy of the Kane Mele
model.

– Varying the next nearest neighbor hopping tso of the Kane Mele lattice model leads
to a bigger bulk band gap. However, the next nearest neighbor hopping should not be
increased too large compared to the nearest neighbor hopping t. This would destroy
the helicity structure of the edge modes.

– Including Rashba spin orbit coupling allows spin mixing terms within the Kane Mele
model.

– Changing the boundary conditions from the zigzag configuration to the armchair con-
figuration.
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Appendix A

Numerical supplements

A.1 Fourier transformed Kane Mele in one direction

Here, a zigzag boundary along the open boundary direction is considered. We can Fourier trans-
form the system along the periodic boundary direction. There are Ny sites within the unit cell
(Ny{2 legs) and Nx unit cells.
The used Fourier transformation of the creation operator is

c
:
ijσ “ 1?

Nx

Nx
ÿ

kx

c
:
kxjσ

e´ikxxi . (A.1)

Here, kx P r0, 2π
a1

s with a step width of 2π
Nxa1

, where a1 “
?
3a is the distance of two unit cells and

a is the lattice constant. The indexes i and j correspond to the site location in real space in the
periodic and the open boundary direction,respectively.
Now, two different cases can appear:
1) Hopping happens within the unit cell and
2) the hopping enters or leaves the unit cell of consideration, which leads to an accumulation of
an imaginary phase factor.

Case 1: Hopping within the unit cell (intra unit cell hopping)

´t
Ny´1,Nx,2

ÿ

ăijąσ

c
:
ijσcij`1σ “ ´t

Nx

Nx,Nx,Nx,Ny´1,2
ÿ

i,kx,k
1

x,j,σ

´

c
:
kxjσ

ck1

xj`1σe
ipkx´k

1

xqxi ` h.c.
¯

. (A.2)

From now on, I will not assign the summation limits to the sum. The sum over i is a delta function.

1

Nx

Nx
ÿ

i

eipkx´k
1

xqxi “ δpkx ´ k
1

xq

Thus, this part of the Hamiltonian Eq. (A.2) is

HNN{u.c. “ ´t
Ny´1
ÿ

kxjσ

´

c
:
kxjσ

ckxj`1σ ` h.c.
¯

. (A.3)

There is a next nearest neighbor hopping term, which is denoted by ! ij " within the unit cell

HNNN{u.c. “ ´tsoi
Ny´2
ÿ

!ij"σσ
1

c
:
ijσs

z
σσ

1 ci,j`1,σ
1 “ ´tsoi

Ny´2
ÿ

kxjσσ
1

rp´qc:
kxjσ

sz
σσ

1 ckxj`1σ
1 ` h.c.s. (A.4)
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Case 2: Inter unit cell hopping
NN hopping: j{Z4 means i modulo Z4 and it is diagonal in spin space, thus spin indexes are
excluded here

j{Z4 “ 1 Ñ HNN “ ´t 1

Nx

Ny´1
ÿ

kxk
1

xj

c
:
kxj`1

ck1

xj
eipkx´k

1

xqxi´ikxa1 ` h.c.

“ ´t
Ny´1
ÿ

kxj

c
:
kxj`1

ckxje
´ikxa1 ` h.c.

j{Z4 “ 3 Ñ HNN “ ´t
Ny´1
ÿ

kxj

c
:
kxj`1

ckxje
ikxa1 ` h.c. . (A.5)

For horizontal NNN hopping:

j{Z2 “ 0 Ñ HNNN{hor “ ´ tsoi

Ny
ÿ

j“even

kx,k
1

x,σ,σ
1

rp´qc:
kx,j,σ

sz
σ,σ

1 ck1

x,j,σ
1 eikxpxi´aq´k

1

xxi ` h.c.s

“ ´ tso2

Ny
ÿ

j“even

kx,σ,σ
1

c
:
kx,j,σ

sz
σ,σ

1 ck1

x,j,σ
1 sinpkxa1q

j{Z2 “ 1 Ñ HNNN{hor “ ´ tso2

Ny
ÿ

j“odd

kx,σ,σ
1

p´qc:
kx,j,σ

sz
σ,σ

1 ck1

x,j,σ
1 sinpkxa1q. (A.6)

The NNN hopping into/out of the unit cell can be distributed in 4 terms, depending on their
position in the unit cell:

j{Z4 “ 1 Ñ HNNN{vert “ ´ tsoi

Ny´2
ÿ

kx,j,σ,σ
1

rc:
kx,j`2,σs

z
σ,σ

1 ckx,j,σ
1 e´ikxa1 ` h.c.s (A.7)

j{Z4 “ 2 Ñ HNNN{vert “ ´ tsoi

Ny´2
ÿ

kx,j,σ,σ
1

rc:
kx,j`2,σs

z
σ,σ

1 ckx,j,σ
1 eikxa1 ` h.c.s (A.8)

j{Z4 “ 3 Ñ HNNN{vert “ ´ tsoi

Ny´2
ÿ

kx,j,σ,σ
1

rp´qc:
kx,j`2,σs

z
σ,σ

1 ckx,j,σ
1 eikxa1 ` h.c.s (A.9)

j{Z4 “ 0 Ñ HNNN{vert “ ´ tsoi

Ny´2
ÿ

kx,j,σ,σ
1

rp´qc:
kx,j`2,σs

z
σ,σ

1 ckx,j,σ
1 e´ikxa1 ` h.c.s. (A.10)

One can also consider a sublattice potential, which is diagonal in real and spin space. It distin-
guishes A and B sites.

j{Z2 “ 0 Ñ Hµ “ ´µ
Ny
ÿ

kx,j“even,σ

c
:
kx,j,σ

ckx,j,σ (A.11)

j{Z2 “ 1 Ñ Hµ “ `µ
Ny
ÿ

kx,j“odd,σ

c
:
kx,j,σ

ckx,j,σ. (A.12)

The Kane Mele Hamiltonian Eq. (A.14) can be expressed via the matrix Eq. (A.13) within a
suitable basis. This basis consists of states which are of following form |j, σy pkxq. j denotes the
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spatial position in the unit cell (along OBC) and σ is, as usual, the spin (e.g. first row corresponds
to leg 1 site A, second row to leg 1 site B ...).
Here, only the spin up component is shown, the matrix for the whole system (both spins) is in block
diagonal form with respect to spin. For the spin down block, one has to change the next nearest
neighbor hopping tso Ñ ´tso, whereas all other system parameters have to stay unchanged.

HKM
Ò pkxq “

¨

˚

˚

˚

˚

˚

˚

˝

A B ´ t C 0 0 0
B˚ ´ t ´A ´t D 0 0
C˚ ´t A B˚ ´ t C˚ 0
0 D˚ B ´ t ´A ´t D˚

0 0 C ´t A B ´ t

0 0 0 D B˚ ´ t ´A

˛

‹

‹

‹

‹

‹

‹

‚

, (A.13)

with A “ ´2tso sinpkxa1q, B “ ´teikxa1 , C “ itsopeikxa1 ´ 1q and D “ itsope´ikxa1 ´ 1q
Thus:

ĤKM pkxq “
ÿ

n,m,σ

|c:
n,kx,σ

yHKM
σ pkxq xcm,kx,σ| . (A.14)

In principal, the system can be extended to an arbitrary size y by enlarging the unit cell. The
diagonal and off-diagonal parts of the above matrix can be continued corresponding to the above
”minimal” system (6 ˆ 6 matrix which corresponds to a system width of 3 legs).
Two different physical situations can occur along the open boundary direction for the conditions
Ny

2
{Z2 “ 1 and

Ny

2
{Z2 “ 0. The number of legs

Ny

2
can be even or odd. This reflects a geometric

symmetry distinction. The spatial lattice system is axis symmetric to a parallel to the edge for
the even case and inversion symmetric for the odd one.
However, both system configurations will host helical modes on their edges. For

Ny

2
{Z2 “ 1 there

are exact 0 energy modes, whereas for
Ny

2
{Z2 “ 0 the states which are nearest to the Fermi level

will approach to it if one considers more and more sites along the PBC direction, which leads to
a shrinking of the inter level spacing of the energies.
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A.2 Implementation of real space Kane Mele

The Kane Mele model can also be implemented in real space. This has the advantage that the
two impurities can be attached to the Kane Mele lattice in real space. For this, the actual matrix
representation of the Kane Mele Hamiltonian is given here.
The used basis consists of states which live on a Hilbert space of the dimension dimpHq “ N ˚M ˚2
amount of legs N , amount of sites along PBC M and 2 spin configurations are possible.
For the nearest neighbor hopping (spin indexes are suppressed here):

HNN{hor “ ´ t

Nx,Ny´1
ÿ

i,j,σ

rc:
i`1,j,σci,j,σ ` h.c.s (A.15)

HNN{ver “ ´ t

Nx,Ny´1
ÿ

i,j,σ

rc:
i,j`1,σci,j,σ ` h.c.s, (A.16)

and the next nearest neighbor hopping terms vertical forward

è

:

j “ odd, i “ odd HNNN{vert “ ´ tsoi

Nx´1,Ny´1
ÿ

i,j,σ,σ
1

rp´qc:
j´1,i`1,σs

z
σ,σ

1 cj,i,σ1 ` h.c.s (A.17)

j “ odd, i “ even HNNN{vert “ ´ tsoi

Nx´1,Ny´1
ÿ

i,j,σ,σ
1

rp`qc:
j´1,i`1,σs

z
σ,σ

1 cj,i,σ1 ` h.c.s (A.18)

j “ even, i “ odd HNNN{vert “ ´ tsoi

Nx´1,Ny´1
ÿ

i,j,σ,σ
1

rp`qc:
j´1,i`1,σs

z
σ,σ

1 cj,i,σ1 ` h.c.s (A.19)

j “ even, i “ even HNNN{vert “ ´ tsoi

Nx´1,Ny´1
ÿ

i,j,σ,σ
1

rp´qc:
j´1,i`1,σs

z
σ,σ

1 cj,i,σ1 ` h.c.s, (A.20)

and the next nearest neighbor hopping terms vertical backward é:

j “ odd, i “ odd HNNN{vert “ ´ tsoi

Nx,Ny´1
ÿ

ią1,j,σ,σ
1

rp`qc:
j`1,i´1,σs

z
σ,σ

1 ci,j,σ1 ` h.c.s (A.21)

j “ odd, i “ even HNNN{vert “ ´ tsoi

Nx,Ny´1
ÿ

ią1,j,σ,σ
1

rp´qc:
j`1,i´1,σs

z
σ,σ

1 ci,j,σ1 ` h.c.s (A.22)

j “ even, i “ odd HNNN{vert “ ´ tsoi

Nx,Ny´1
ÿ

ią1,j,σ,σ
1

rp´qc:
j`1,i´1,σs

z
σ,σ

1 ci,j,σ1 ` h.c.s (A.23)

j “ even, i “ even HNNN{vert “ ´ tsoi

Nx,Ny´1
ÿ

ią1,j,σ,σ
1

rp`qc:
j`1,i´1,σs

z
σ,σ

1 ci,j,σ1 ` h.c.s, (A.24)

and the next nearest neighbor hopping terms horizontal:

j “ odd HNNN{hor “ ´ tsoi

Nx´2,Ny
ÿ

i,j,σ,σ
1

rp`qc:
j`1,i´1,σs

z
σ,σ

1 ci,j,σ1 ` h.c.s (A.25)

j “ even HNNN{hor “ ´ tsoi

Nx´2,Ny
ÿ

i,j,σ,σ
1

rp´qc:
j`1,i´1,σs

z
σ,σ

1 ci,j,σ1 ` h.c.s. (A.26)

The sublattice potential is diagonal in real and spin space, thus easy to implement.
Periodic boundary conditions can also be inserted. This means that the last site in x direction
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can for example hop to the first site . This connection of the 2 ends of the Kane Mele model
also implies a connection of sites via NNN hopping. Thus, there are some terms which should be
included in the Hamiltonian.

A.3 Supplementary figures
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Figure A.1: Expectation value of interimpurity spin z operator xSz
1
Sz
2

y. The range
of anisotropic couplings covers the whole transition from RKKY to Kondo regime
(i.e. for increasing the Jz the expectation value increases and approaches eventually
0, which is the expected value in the Kondo regime).
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B.1 Supplementary to Luttinger liquid

This section is devoted to generate a connection between the LL Hamiltonian 2.17 and its corre-
sponding Lagrangian. This step is taken as the Lagrangian is needed for the Feynman field integral
formalism, which is a powerful tool to handle many body problems. To do so, it is convenient to
Fourier transform Eq.(2.18) with the following definition

φpx, τq “ 1

βL

ÿ

q“pωn,kq
φpqqeikx´iτωn . (B.1)

Thus, the action is

´S “ 1

βL

ÿ

q

„´ikωn

π
φpqqθp´qq ´ uK

2π
k2θpqqθp´qq ´ u

2πK
k2φpqqφp´qq



. (B.2)

For the Fourier transformed fields φ˚pqq “ φp´qq and the same for θ. The partition function in
field integral formalism

Z “
ż

Dpφ, θqe´S , (B.3)

completing the square

´S “ 1

βL

ÿ

q

„ ´ω2

n

2πuK
φpqqφp´qq ´ uk2

2πK
φpqqφp´qq ´ uKk2

2π
rθpqq ` iωn

uKk
φpqqsrθpqq ` iωn

uKk
φpqqs



,

(B.4)

and shifting one field θ̃pqq “ θpqq ` iωn

uKk
φpqq which does not change the measure of the field

integration, one can easily integrate out the θ̃ field

Z “ Zθ

ż

Dpφq exp
˜

1

βL

ÿ

q

´1

2πK
pω

2

n

u
` uk2qφpqqφp´qq

¸

(B.5)

“ Zθ

ż

Dpφq exp
˜

´ 1

βL

ÿ

q

Lrφpqqs
¸

. (B.6)

Fourier transforming back gives the action as a functional depending on φ where the field is in
imaginary time τ and real space x coordinates basis expressed

Sφ “ 1

βL

ÿ

q

1

2πK

„

ω2

n

u
` uk2



φp´qqφpqq (B.7)

“ 1

2πK

ż

dx

ż β

0

„

1

u
pBτφpx, τqq2 ` upBxφpx, τqq2



. (B.8)

A similar action is the result of a field integration of φ. One can proceed as above or simply detect
that the Hamiltonian is invariant under φ Ñ θ and K Ñ 1{K. Thus, if this replacements are be
done, the corresponding action is

Sθ “ K

2θ

ż

dx

ż β

0

„

1

u
pBτθpx, τqq2 ` upBxθpx, τqq2



. (B.9)
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B.2 Gauge transformation of the helical Luttinger Hamil-
tonian

The Hamiltonian 2.17 describes an interaction 1d fermionic system. Forward scattering 2.24 can
be absorbed into an effective interaction K̃ if one applies a unitary transformation [48, 49, 50].
The Hamiltonian for a helical Luttinger liquid with a magnetic impurity at location 0 is

HLL “ u

ż

dxpK
2

p∇φpxqq2 ` 1

2K
p∇θpxqq2q (B.10)

Hbs “ JK
2πα

”

S`e´2iφp0q ` S´e`2iφp0q
ı

(B.11)

Hfs “ ´Jz

π
SzBxθp0q. (B.12)

HLL is the Luttinger liquid Hamiltonian described and defined in Eq. (2.17). Hbs is the backscat-
tering Hamiltonian where the bosonic bath operator picks up a phase shift and the local impurity
spin generates a spin flip of the impurity. Here, the helical nature of the underlying bath can be
seen. There is no such term which is not helical, e.g. a backscatter process without a spin flip
which will also change the helicity of this mode, thus helicity will not be conserved.
Hfw is the forward scattering Hamiltonian, where now a spin flip of the impurity spin is forbidden
due to the helical nature.

It is convenient for further reason to rescale the bosonic fields tφ, θu Ñ t
?
Kφ1, θ1{

?
Ku which

leads to

H 1
LL “ u

2

ż

dxpp∇φ1q2 ` p∇θ1q2q (B.13)

H 1
bs “ JK

2πα

”

S`e´2i
?
Kφ1 ` S´e`2i

?
Kφ1

ı

(B.14)

H 1
fs “ ´Jz

π
SzBxθ1{

?
K. (B.15)

Apostrophes will be omitted from now on.
Then, a unitary transformation U “ exppiλφSzq (which is equivalent to an Emery-Kivelson rota-
tion [51]) with λ “ Jz

uπ
?
K

is applied to the transformed Hamiltonian

UpHLL `Hbs `HfsqU : “ H̃LL ` H̃bs, (B.16)

where the Luttinger parameter K is replaced by an effective Luttinger parameter

K̃ “ Kp1 ´ Jz

2πuK
q2. (B.17)

To confirm Eq. (B.16) one can calculate the transformation explicitly.
The canonical commutator relation of the bosonic field is

rBxθpxq, φp0qs “ ´iπδpxq. (B.18)

Hfw transforms trivially under U , but UHLLU
: obeys an additional term which cancels the

forward scattering term and it remains its own form. The backward scattering Hamiltonian

changes its phase factor ˘2i
?
K Ñ ˘2i

a

K̃.
To see this, one can calculate a part of HLLU

:

ż

dxBxθpxqrBxθpxq expp´iλφp0qqs “
ż

dxBxθpxqrp´iπδpxqiλSzq ` expp´iλφp0qqBxθpxqs

“ p´i2πiλSzqBxθp0q ` expp´iλφp0q
ż

dxpBxθpxqq2,
(B.19)
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which leads to

UHLLU
: “ U

u

2π

ż

dxrpBxθpxqq2 ` pBxφpxqq2sU :

“ HLL ` Jz

π
SzBxθ{

?
K, (B.20)

where the second term is ´Hfw.
The backscattering Hamiltonian changes its phase factor for a spin-1{2 system

S`pSzqn “ p´1{2qnS`

pSzqnS` “ p1{2qnS`,

which can be used for calculating the transformed backscattering Hamiltonian

H̃bs “ UHbsU
: “ JK

2πα

”

e´iλφSzS`e´2i
?
KφeiλφSz ` h.c.

ı

“ JK
2πα

”

S`e´2i
?
Kp1´λ{2qφ ` h.c.

ı

. (B.21)

Thus, the unitary transformation U transforms the original Hamiltonian to Eq. (B.16), where
forward scattering is absorbed in the Luttinger Parameter. Forward scattering can be seen as
modification of the bath electron Coulomb interaction.
This absorption of Hfw only works for helical systems as for backscattering of non helical liquids
there is no constraint that the backscattering of an electron is accompanied by a spin flip of the
impurity.
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B.3 Green functions and spectral functions

Definition of correlator functions (CF)

Gτ pτ2 ´ τ1q “ ´Tτ xB̂pτ2qÂpτ1qy imaginary time CF (B.22)

Gtpt2 ´ t1q “ ´iTtxB̂pt2qÂpt1qy real time CF (B.23)

Grpt2 ´ t1q “ ´iΘpt2 ´ t1qxrB̂pt2q, Âpt1qsσy retarded CF (B.24)

Gapt2 ´ t1q “ `iΘpt1 ´ t2qxrB̂pt2q, Âpt1qsσy advanced CF, (B.25)

where τ/t is imaginary/real time, Tt/Tτ is the real/imaginary time ordering operator, Θptq is the
Heaviside theta function (1 for positive, 0 for negative argument) and r..., ...sσ is the commuta-
tor/anti commutator for σ “ `{´ (i.e. bosonic/fermionic operators).
Switch from Schrödinger to Heisenberg picture of operators

Apτq “ eτpĤ´µN̂qAe´τpĤ´µN̂q (B.26)

Aptq “ eitpĤ´µN̂qAe´itpĤ´µN̂q. (B.27)

We can express the Green’s function using the Lehmann-representation, where En |ny is an exact
eigenstate of pĤ ´ µN̂q. Then, the average can be understood as a expectation value ă ... ą“
1

Z

ř

n e
´βEn xn| ... |ny, where Z is the partition sum and β inverse temperature.

For instance, the retarded Greens function in frequency space can be calculated as

Grpωq “
ż 8

´8
dteiωt´0

`|t|Grptq

“
ż 8

0

dteiωt´0
`t ´i
Z

ÿ

n,m

e´βEnreipEn´Emqtrxn| B̂ |my xm| Â |ny ´

´ σe´ipEn´Emqt xn| Â |my xm| B̂ |nys

“ ´i
Z

ÿ

n,m

e´βEn

«

xn| B̂ |my xm| Â |ny
´ipω ` i0` ` En ´ Emq ´ σ

xn| Â |my xm| B̂ |ny
´ipω ` i0` ` Em ´ Enq

ff

“ 1

Z

ÿ

n,m

e´βEn ´ σe´βEm

ω ` i0` ` En ´ Em

xn| B̂ |my xm| Â |ny . (B.28)

The last equality sign holds true after renaming the states |ny and |my in the second expression.
Now, the spectral function, which can be calculated numerically, can be defined as (shift time axis
t2 “ t and t1 “ 0)

Apωq “ 1

´2πi
pGrpωq ´Gapωqq “ 1

´2πi
pGrpωq ´G:

rpωqq (B.29)

“
ÿ

n,m

`

e´βEn ´ σe´βEm
˘

xn| B̂ |my xm| Â |ny δpω ´ Em ` Enq. (B.30)

Eq. (B.29) presents the relation between the spectral function and the retarded Green’s function.
One is able to connect the imaginary part of the retarded Green’s function with the spectral
density via

Apωq “ ´ 1

π
ℑpGrpωqq. (B.31)

The operators B̂ “ Ŝz
1
and Â “ Ŝz

2
commute in the considered case, thus σ “ `1 in Eq.(B.29).

The calculated quantity is the interimpurity Ŝz
1 , Ŝ

z
2 spectral function, defined by

ASz
1
Sz
2
pωq “

ÿ

n,m

`

e´βEn ´ σe´βEm
˘

xn| Ŝz
2

|my xm| Ŝz
1

|ny δpω ´ Em ` Enq, (B.32)
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as well as the local spectral functions Ŝz
1 , Ŝ

z
1 and Ŝz

2 , Ŝ
z
2

ASz
i
Sz
i
pωq “

ÿ

n,m

`

e´βEn ´ σe´βEm
˘

xn| Ŝz
i |my xm| Ŝz

i |ny δpω ´ Em ` Enq, (B.33)

where i P r1, 2s indicates which impurity is considered.
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