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Due to an error in the production processes, numerous indices in the following equations and symbols
mistakenly appearedwith a prime. The equations should read:
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The caption offigure A1 should include the sentence: The positions of the external (amputated) legs refer to
the arguments of G ¢ ¢x x x x, ; ,1 2 1 2

.
The sentence before equation (A2) should read: For this, wewill use auxiliary objects that depend on

channel-dependent tuples of quantumnumbers (e.g. G = G¢ ¢ ¢ ¢˜ ( ) ( )x x x x a x x x x, ; , ; , , ,1 2 1 2 1 2 2 1
) and define a contraction ◦ that

always comes together with a two-particle propagatorΠr of a certain channel (consisting of two one-particle
propagatorsG).
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Abstract
Weexploit the parquet formalism toderive exactflowequations for the two-particle-reducible four-point
vertices, the self-energy, and typical response functions, circumventing the relianceonhigher-point
vertices. This includes a concise, algebraic derivationof themultiloopflowequations,whichhave
previously beenobtainedbydiagrammatic considerations. Integrating themultiloopflow for a given input
of the totally irreducible vertex is equivalent to solving theparquet equationswith that input.Hence, one
can tune systems fromsolvable limits to complicated situations by variationof one-particle parameters,
staying at the fully self-consistent solutionof the parquet equations throughout theflow.Furthermore,we
use the resultingdifferential formof the Schwinger–Dyson equation for the self-energy todemonstrate
one-particle conservationof the parquet approximation and to construct a conserving two-particle vertex
via functional differentiationof the parquet self-energy.Our analysis gives aunifiedpictureof the various
many-body relations and exact renormalization group equations.

1. Introduction

Themany-body problemof nonrelativistic quantum-field theory is equippedwith awell-known set of exact
equations for its correlation functions [1, 2]. If these self-consistentmany-body relations are expressed in their
energy-momentum representation, they interrelate the different correlation functions between all energy scales,
often involving integrations over all energy-momenta. However, a typical feature of interacting quantummany-
body systems is that their relevant energy scales span several orders ofmagnitude. Conventional perturbative
approaches or approaches that directly workwith the self-consistentmany-body relations treat all energy scales
at once—they are therefore prone to inaccuracies and often plagued by infrared divergences. A very successful
approach to such systems is instead given by the renormalization group (RG) techniquewhich treats energy
scales successively, starting fromhigh ones and progressing towards lower ones [3].

The simplest realization of such aRG scheme considers the renormalizationof effective couplings in analogy to
Anderson’s poorman’s scaling [4]. There, the successive treatment of high-energy degrees of freedom is encoded in
the evolutionof running coupling constants. Since then, quantum-field-theoretical RG techniques have seen great
development. Awidely used,modern formulation is givenby the functional RG (fRG), which allows one to study
theflowof all coupling ‘constants’ in their full functional dependence [5, 6]. The respective couplings are nothing
but the (field-theoretical) vertex functions; hence, the fRGcanbedirectly applied tomicroscopicmodels.

The fRGflow is based on an exact functionalflow equation for the generating functional of the (one-particle-
irreducible) vertex functions [7]. If this flow equation is expanded in terms of the vertices, one obtains an infinite
hierarchy offlow equations, where, in order to compute the flowof an n-point vertex, knowledge about the
other vertices up to the n+2-point vertex is required. The obviousway of truncating the hierarchy by
disregarding higher-point vertices has led to a variety of successful applications of the fRG.However, one often
wants to extend the usage of fRGbeyond the validity of this approximation, and, in cutting-edge algorithmic
development, this formof truncationmay indeed be an exceedingly severe approximation.
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In fact, considering a systemof, say, interacting electrons, possibly subject to externalfields, onemay askwhy
it is necessary to include six- and higher-point vertices, i.e. effective interactions between three andmore
particles, if one is ultimately interested in one- and two-particle properties of the system. Although the fRG
hierarchy offlow equations and also the hierarchy of Schwinger–Dyson equations (SDEs, or equations of
motion) [8] interrelate all n-point vertices, the fundamental interaction is only of the (one- and) two-particle
type; thus, it should suffice towork on the one- and two-particle level. Fortunately, amany-body framework that
provides a complete description on the one- and two-particle level is available; it is the parquet formalism [2, 9].

Themain idea of the approach presented in this paper is to apply the RGpoint of viewneither to the
generating functional of vertices [7]nor to the hierarchy of SDEs [8] but to the self-consistentmany-body
relations of the parquet formalism. Exploiting the organizational structure of the parquet formalism allows us to
circumvent the inclusion of higher-point vertices and to freely navigate between different two-particle channels.
Inspired by the fRG framework, we induce an internal scale dependence by using a scale-dependent propagator
GΛ that suppresses low-energy degrees of freedomand recovers the original theory at a final valueΛf. It should be
noted that this differs in technical aspects frommore traditional RG schemes [3, 10], which, instead of solely
using a scale-dependent propagator, restrict all involved energy-momenta to decreasing energy-momentum
shells (often referred to as ‘mode elimination’). Here, we simply substituteG→GΛ in thewell knownmany-
body relations and study the behavior of the solution to these equations upon varyingΛ.

As a result, we derive exactflow equations for the two-particle-reducible four-point vertices, the self-energy,
and response functions. This provides a concise, algebraic derivation of themultiloop fRG (mfRG)flow
equations, which have previously been obtained using diagrammatic arguments [11–13]. Our analysis also
reveals howone can perform suchmultiloop flows beyond the parquet approximation (PA), thus including
higher-order expressions for the totally irreducible vertex.Moreover, we establish an intimate connection
between the functional derivative of the self-energy and the fRG flow equation for the self-energy: the latter
constitutes an integration of the former along a specific path in the space of theories.

On a slightly different note, we use our approach to address fundamental questions of (traditional) parquet
theory (i.e. without an explicit RG treatment): on the one hand, we demonstrate that the parquet self-energy can
be obtained from the SDEusing either of two possible orderings of the bare and full vertex. According to Baym
andKadanoff [14], it then follows that the PA fulfills one-particle conservation laws.On the other hand, we give
an explicit construction to obtain a new, conserving vertex from the parquet self-energy, equivalent to taking the
functional derivative. This construction not only allows one to quantify the degree towhich the PA violates two-
particle conservation laws. It can also be used tomodify the PA, which fulfills the SDE but violates two-particle
conservation, to obtain a fully conserving solution, albeit violating the SDE. Aswe show in the appendix, a
fulfillment of both the SDE and the functional-derivative relation necessarily amounts to the exact solution of
themany-body problem, in agreement with a result by Smith [15].

The paper is structured as follows. In section 2, we first focus (as is typical for RG approaches) on the effective
interactions: we deriveflow equations for the two-particle-reducible four-point vertices based on the parquet
formalism, assuming the one-particle propagator to be given. Then, in section 3, we complement theflowof the
four-point vertex by the flowof the self-energy, considering the various relations at hand. In section 4, we use
our approach to discuss conservation properties of the PA. Finally, in section 5, we derive (dependent)flow
equations for response functions, i.e. three-point vertices and suceptibilities, used to study collective excitations.
In section 6, we summarize our results.

2.Derivation of the vertexflow

2.1. Preliminaries
Weconsider a general theory of interacting fermions, defined by the action

å å= - - G
¢

¢ -
¢

¢ ¢
¢ ¢ ¢ ¢¯ [( ) ] ¯ ¯ ( )S c G c c c c c , 1

x x
x x x x

x x y y
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1
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1

4
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with a bare propagatorG0 and a bare four-point vertexΓ0, which is antisymmetric in itsfirst and last two
arguments. The index x denotes all quantumnumbers of theGrassmann field cx. Correlation functions offields,
corresponding to time-ordered expectation values of operators, are given by the functional integral

 òá ñ = - ¯ [¯] [ ] ¯ ( )c c
Z

c c c c
1

e , 2x x x x
S

n n1 1

whereZ ensures normalization, such that á ñ =1 1. Two-point correlation functions are represented by the full
propagator = -á ñ¢ ¢¯G c c ;x x x x, four-point correlation functions can be expressed via the full (one-particle-
irreducible) four-point vertexΓ:

2
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The notation given so far is identical to the one in [12]; all formulae further needed in this paper are defined
in appendix A. In the following derivation offlow equations, we use a compact notation of contractions and
need notwrite quantumnumbers (such as ¢x x, , etc) explicitly.

2.2. Parquet equations for the four-point vertex
The fRGflow equation for the four-point vertex,Γ(4)≡Γ, contains the six-point vertex,Γ(6), which poses great
difficulty for a numerical treatment. Similarly, the SDE (equation ofmotion) forΓ containsΓ(6) and therefore is
likewise impractical. To circumvent the calculation ofΓ(6), we revert to the parquet formalism [2, 9], which
provides self-consistent equations for the two-particle-reducible contributions to the four-point vertexΓ but
assumes as input a given, totally irreducible four-point vertexR. In a diagrammatic expansion,R is given by the
bare vertex,Γ0, with corrections starting at fourth order. The famous parquet approximation [16–18] (see
section 4) consists of usingR=Γ0 and allows one to sumup all leading logarithmic contributions in
logarithmically divergent perturbation theories [9, 19]. Importantly, however, the parquet equations can be used
more generally as an exact classification of all diagrams of the four-point vertex.

In the parquet formalism, one decomposes the full four-point vertex,Γ, into the totally irreducible vertex,R,
and the three two-particle-reducible vertices γr, rä {a, p, t}4 . Diagrams belonging to γr are reducible in channel
r, i.e. they can be separated into two parts by cutting two antiparallel, parallel, or transverse antiparallel lines,
respectively. Diagrams that cannot be separated in this way belong toR. (For exemplary diagrams, see figure A1
in appendix A.)While the γr are subject to further equations, this set of coupled equations closes only for afixed
choice ofR.

Let us assume a given expression for the totally irreducible vertex,R. Furthermore, wewill for now assume
the one-particle propagator,G, to be given; computation ofG via the self-energywill be discussed later. The
parquet equations, involving the two-particle-reducible vertices, γr, and two-particle-irreducible vertices, Ir, read

å g g gG = + = G - = + ( )¯R I R a, , 4
r

r r r r

g = P G◦ ◦ ( )I b. 4r r r

For givenR, these equationsmust be solved self-consistently toobtain the appropriate reducible vertices,γr, that
complement the full vertex,Γ. In equation (4a), weuse thenotation r̄ for the complementary channel of a given
channel r, such that g g= å ¢¹ ¢r̄ r r r . TheBethe–Salpeter equation (BSE) (4b)describes twovertices, Ir andΓ, connected
by abubble,Πr, of twodressedpropagators in channel r (see alsofigure 1). This bubble of vertices canbe expressed as
amatrixmultiplication (given a suitable parametrizationdependingon the channel r, see appendixA), as indicated by
the symbol◦ attached toΠr.Note thatΠp andΠt implicitly contain a factor of 1/2 and (−1), respectively.

In the following, we list relations that can be easily deduced from the parquet equations (4) andwill be used
repeatedly in the derivations offlow equations. The combination of equations (4a) and (4b) directly yields
Γ=Ir+Ir ◦Πr ◦Γ (for all channels r). Exploiting themultiplicative structure, we can isolateΓ on the lhs to
obtain the inverted BSE,

G = + P G  G = - P -◦ ◦ ( ◦ ) ◦ ( )I I I I1 . 5r r r r r r
1

A further straightforwardmanipulation yields an extended BSE,

Figure 1.The Bethe–Salpeter equations for the channels r=a, p, t are solved in anRG approach by introducing a scale (Λ)
dependence to the propagators connecting the vertices. Consequently, g G,r , and Ir inherit a scale dependencewhile the totally
irreducible vertex,R, remains as given input. (See appendix A for details on the diagrammatic notation.)As prime example for the
scale dependence, one canmultiply the frequency-dependent propagator by a step function, w w w= Q - LL( ) (∣ ∣ ) ( )G G , such that
themany-body relations are trivially solved at L = ¥i and reproduce the desired solution atΛf=0.

4
Our nomenclature follows the seminal application of the parquet equations to the x-ray-edge singularity by Roulet et al [9].While we useΓ,

R, γr, and Ir for the full, totally irreducible, two-particle-reducible, and -irreducible vertices, respectively, another common choice [20–22] is
given by F,Λ,Φr,Γr, respectively. Similarly, a commonnotation [20–22] for the channels a, p, t is ph pp ph, , , referring to the (longitudinal)
particle-hole, the particle-particle, and the transverse (or vertical) particle-hole channel, respectively. One also finds the labels x, p, d in the
literature [23], referring to the so-called exchange, pairing, and direct channel, respectively.

3
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Using the inverted BSE (5), one directly sees (by isolating γr) that the order of the vertices in the BSE (4b) is
irrelevant:

g g g= P G = P +  = - P P = G P-◦ ◦ ◦ ◦ ( ) ( ◦ ) ◦ ◦ ◦ ◦ ◦ ( )I I I I I I I1 . 7r r r r r r r r r r r r r r r
1

2.3. Flowof the four-point vertex
The central aspect of our RG treatment is incorporated by attaching a scale (Λ) dependence to the propagator,
G→GΛ, appearing in the self-consistentmany-body relations. The physical picture is thatΛ separates high-
and low-energy degrees of freedom, and by usingGΛwe allow for successive renormalization of the low-energy
(<Λ) theory by high-energy (>Λ) degrees of freedomasΛ is decreased.However, one can also simply consider
Λ as some additional dependence in the propagators connecting the vertices in the BSEs:  P  PL LG G , r r

(cffigure 1). Hence, the reducible vertices gL
r
—and consequentlyΓΛ and LIr —will inherit a scale (Λ)dependence,

obtained from the requirement that the parquet relations be fulfilled for each value ofΛ, whileR remains as given
input.

The scale dependence is auxiliary in the sense thatwe are ultimately interested in the fully renormalized
theory: we are interested in g g=L

r r
f where (at thefinal scale) =LG Gf . Supposewe know the vertices at the

initial scale, i.e. we can solve the BSEs using LG i. Then, we can obtain gL
r

f by solving a differential equation

specified by the initial condition together with the flow g g¶ ºL
L L˙r r

, which is induced by the scale dependence of
GΛ in the BSEs.We remark that it is natural to exclude the totally irreducible vertexR from the renormalization
flow, as it constitutes precisely the part of the vertex that cannot be constructed iteratively and therefore does not
have aflow equation that allows for an efficient (i.e. iterative one-loop) calculation.

2.3.1. Flow equation
Tofind the scale dependence of the two-particle-reducible vertices, gr , we start by differentiating the BSEswrtΛ
(suppressing theΛ dependence to lighten the notation) according to the product rule and decomposing the full
vertex via the parquet equation (4a):

g
g

= P G + P G + P G
= P G + P G + P +

˙ ◦ ˙ ◦ ˙ ◦ ◦ ◦ ◦ ˙

◦ ˙ ◦ ˙ ◦ ◦ ◦ ◦ (˙ ˙ ) ( )
I I I

I I I I . 8
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Similar to themanipulations in equation (7), we bring ġr to the lhs and subsequentlymultiply by - P -( ◦ )I1 r r
1

from the left. According to the inverted BSE (5), we get
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and, resolving the remaining inverse by the extended BSE (6), we find

g = G P G + P G + G P P G + G P
g g g g
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1 L C R

The algebraic derivation of this exactflow equation, as the differential formof the BSE (4b), is ourfirstmain
result. It is depicted diagrammatically infigure 2(a) (exemplified by the a channel) and contrastedwith the
corresponding standard fRGflow equation (figure 2(b)). It describes theflowof the reducible vertices, γr; the
totally irreducible vertex,R, does not have an efficient flow equation and remains as input. Since =Ṙ 0, we have

g g= å º¢¹ ¢
˙ ˙ ˙¯Ir r r r r , and equation (10) constitutes a closed, coupled set of differential equations for all reducible
vertices γr. The natural way to solve these equations is to start by computing the independent, one-loop part, ġ ( )

r
1 ,

Figure 2. (a)ExactmfRGflow equation for the reducible vertex γa, involving the differentiated propagator, Ġ , (linewith two vertical
dashes) and the differentiated irreducible vertex given by g g= å º¢¹ ¢

˙ ˙ ˙¯Ir r r r r (as =Ṙ 0 in our construction). (b)Exact fRGflow
equation for γa involving the single-scale propagator, = ¶L S=∣S G const, (linewith one vertical dash) and the six-point vertex, whose
contribution is (for conceptual purposes) reduced to the part reducible in the a channel via the projector a .
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for each channel, and then iteratively insert the results into the left, right, and center parts g g g( ˙ ˙ ˙( ) ( ) ( ), ,r r r
L R C ,

respectively) of the various channels. If this is organized by the number of loops (connecting full vertices), we
precisely recover themfRG vertexflowwhich has been derived diagrammatically in [11, 12] (see figure 5 of [12]).
It is worthmentioning that the numerical effort of this iterativemfRGflowgrows only linearly with the
number of loops that are kept (on average) as compared to the standard (truncated) fRGflow [11–13]. First
implementations [11, 13] of this iterative scheme formoderate interaction strengths have found convergence for
a number of loops8. In general, we expect that with increasing interacting strength the convergencewith loop
orderwill become slower—and possibly not occur at all for sufficiently strong interactions—in away that will
depend on themodel at hand.

From the above derivation, it is clear that, if the scale dependence ofG is chosen such that we are initially able
to solve the BSEs (using LG i) andfinally revert to the original theory ( =LG Gf ), then solving themfRGvertex
flow (10) is equivalent to solving the BSEs (4b). An initial solution is always available by using =LG 0i , but can
also be chosen differently, if desired (see below). In the sameway that any solution of the BSEs depends on a
certain choice ofR, so do results ofmfRG.However, themultiloop flow equation requires only the initial
condition of the full vertex gG = + åL LR r r

i i and not of the individual two-particle-reducible or -irreducible
vertices; the decomposition into ġr is only performed on the differential level. Nevertheless, the degree of
approximation in our approach is encoded in the underlying expression forR, which can range from the
simplest approximation,R=Γ0, to the exact object, Rex.

2.3.2. Examples
Let us give some examples for possible flowswhich are specified by the inputR and the choice of LG i initializing
the progression towards =LG Gf . Recall that, in this section, we focus on the two-particle level, i.e. we study the
influence of varying the full propagator,GΛ, on the vertex,ΓΛ. In practice, the variation ofGΛwill be realized by
tuning the bare propagator, LG0 , and complementing the vertex flowwith a self-energy flow to computeGΛ (see
section 3).

(i) The BSEs at the initial scale are trivially solved if =LG 0i : Due to P =L 0r
i , the corresponding initial

condition for the reducible vertices is g =L 0r
i . Aswe introduce the scale dependence only for the

propagators connecting the vertices in the BSEs but leave the totally irreducible vertexR—the input to the
parquet equations—unchanged, the initial condition for the full vertex is given by G =L Ri

5. Hence, the
mfRG flow generates all two-particle-reducible diagrams given the irreducible building blockR; the special
case of = GR 0 yields all diagrams of the PA [11, 12].

(ii) The mfRG flow (10) is an exact flow equation for the two-particle-reducible vertices and thus gives us full
control over the vertices corresponding to given propagatorsGΛ. Immediate consequences are that (a) for
given boundary conditions L LG G,i f , we are completely free to choose any specificΛ dependence inGΛ

—the
results of theflowdonot depend on this choice; and (b) that we can perform loops in theory space, going
from LG i to =L LG Gf i without any loss of information. Conceptually, this underlines the power of the
mfRG flow; practically, it can also be used as a consistency check for a numerical implementation (which
might employ approximate parametrizations of the vertex functions, etc).We emphasize that, while both
properties directly follow from the given derivation based on the BSEs, they are violated in thewidely used
one-loop form (g g»˙ ˙ ( )

r r
1 ) of the truncated fRGflow.

A loop in theory space could for instance be realized via = LL L( )G f G i with L = L =( ) ( )f f 1i f . If we

already have the result of the PA (R=Γ0) in the formof =LG GPAi and G = GL PAi , the vertex flow
naturally gives the corresponding parquet vertex for all values ofΛ (asR=Γ0 throughout) andfinally
returns to the original result. If we assume (from a conceptual point of view)wehad the exact solution of the
many-body problem in the formof = G = GL LG G ,ex exi i , then such a vertex flowwould return to the
exact result, too.However, as the totally irreducible vertex remains fixed, the results at intermediateΛ do
not correspond to the exact solution for thatGΛ. Instead, at each value ofΛ, the reducible vertices gL

r
solve

the BSEswith propagatorsGΛ and ¹ LR Rex . AtΛf, the BSEswith =LG Gexf and Rex reproduce gr
ex and

thus gG = + åR r r
ex ex ex.

(iii) As a highly correlated and, yet, numerically tractable initial condition [24], one can choose the solution of
dynamicalmean-field theory (DMFT) [25] and use themfRG flow to generate nonlocal correlations
[20, 26], thus extending theDMF2RG idea [26] tomultiloopDMF2RG [11, 12] (orD(MF)2RG [27]). A
related approach that gives diagrammatic, nonlocal corrections toDMFT is given by the dynamical vertex

5
Whereas the initial condition G =L Ri at LG i is natural in the parquet approximationR=Γ0, itmight seem counter-intuitive for other

cases, when thinking of the totally irreducible vertex,R, being itself composed of diagrams containing propagators. In this way of thinking,
we have to treat propagators inR differently from those propagators that connect the building blockR in the two-particle-reducible diagrams
of the γr. This special treatment is necessary asR does not have an efficient flow equation.
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approximation (DΓA) [28–30]. This approach directly employs the parquet equations, using as input
RDMFT, the totally irreducible vertex from the local DMFT solution [21]. If we used the same initial
propagator =LG 0i as in example (i) above, wewould start the vertex flow from G =L RDMFTi , in perfect
analogy to theDΓAalgorithm.However, at this point we can leverage the flexibility of the RG framework
and perform a continuous deformation starting directly from the full DMFT vertex: indeed, if we use

=LG GDMFTi (as opposed to =LG 0i ), the vertex flow is not initiated by RDMFT, but from the actual, full
vertex GDMFT [26]. (Recall that the decomposition into two-particle channels in equation (10) occurs only
for differentiated vertices ġr , which are ultimately combined to give gG = å˙ ˙r r .)Although the results are
(in principle) independent of the specificΛ dependence, the choice =LG GDMFTi with G = GL DMFTi has
the decisive numerical advantage that it avoids any explicit appearance of RDMFT. The corresponding
multiloop flow is hence not affected by the (likely) unphysical divergences of the totally irreducible vertex,
which have been observed in strongly correlated systems [31–35], and can thus be used to analyze such
systems inwider regimes of the phase diagram. The combination of vertex and self-energy flow inmultiloop
DMF2RG, as used in practice, is further discussed in section 3.1.2 (iv).

So far, we have assumed the dressed propagator,G, to be known.However, as this is in general not the case,

we now combine equation (10)with a self-energy flow,SL˙ , to generateGΛ during the flow.Via theDyson
equation, we then have = - SL - L - L( ) ( )G G1

0
1 in aflow controlled by the scale-dependent bare

propagator, LG0 .

3.Derivation of the self-energyflow

First, let usmention that the straightforward derivation of the vertex flowwas based on the parquet equations
(for given inputR). Thesemerely represent a classification of diagrams, reducing the need for an explicit input
expression to themost fundamental building block.We did not use equations which provide a construction of
the four-point vertex fromhigher-point vertices, such as the SDE involvingΓ(6), or a functional derivative
connecting four- and six-point vertices.

By contrast, we next want to construct the self-energy,Σ, from the four-point vertex,Γ. For this purpose,
three equations are available: (i) the SDE relatingΣ toΓ, typically used in the parquet formalism [2], (ii) a
functional derivative between self-energy and two-particle-irreducible vertex, known fromHedin’s equations
[1] andΦ-derivable approaches [36, 37], and (iii) the fRGflow equation forΣ [5].While all these equations are
exact, their outcomesmight differ when inserting an approximate vertex. In section 3.2, we show that the fRG
flow forΣ can be easily derived from the functional derivative (as a necessary condition). However, as we show in
appendix B, the SDE and the functional derivative are complementary in the sense that any solution that fulfills
both equationsmust be the exact solution. It is therefore not surprising that it is complicated to relate a self-
energyflow to the SDE forΣ. Nevertheless, wewill use the SDE to derive a self-energy flow (different from the
standard fRGflow), which is well-suited for the PA and allows us to gain insight into its conservation properties
(see section 4).While thismultiloopflowdeduced from the SDE indeed proves beneficial in the PA [12], the
general advantages and disadvantages of the different starting points (i) and (ii) are not entirely clear (see also
section 3.1.2).

3.1. Self-energyflow from the SDE
Deriving aflow equation from the SDE of the self-energy is a difficult task since (as alreadymentioned) SDEs and
differential equations are of fundamentally different nature—for instance, SDEs always contain the bare
interactionwhereas differential equations are typically phrasedwith renormalized objects only. In [8], the SDE
was used to derive the fRG self-energy flowup to terms G[( ) ]O ;3 here, we demonstrate agreement up to G[( ) ]O 4 .
In fact, we derive themfRG self-energy flow from [12], which includes important terms thatwould be neglected
if one simply inserts the approximate parquet vertex into the standard fRG self-energy flow equation [12]. The
calculationwith themain results given in equations (26) and (30) (see alsofigure 3) is presented in detail in the
following section 3.1.1 and interpreted in section 3.1.2.

3.1.1. Flow equation
The starting point of our calculation is the Schwinger–Dyson equation for the self-energy (see figure 3(a)):

S = S G G = - G + G P G = - G + G P G( ) ( ◦ ◦ ) · ( ◦ ◦ ) · ( )G G G, , . 11p aSD 0 0 0 0
1

2 0

Here, we have used bubbles in either the a or the p channel, as well as the contraction of two vertex legs with a
propagator (denoted by G · G, see appendix A, equation (A5)). Aswe can freely choose the specific propagator

6
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for thefinal contraction, we canwrite the SDEwith a bubble in either the p or the a channel—the factor of 1/2 is
implicitly contained inΠp andmust be explicitly writtenwhen usingΠa.

The presence of two equivalent lines (i.e. parallel lines connected to (anti)symmetric vertices) in the second
summand of the SDE opens the possibility for furthermanipulations. For this, let us explicitly denote the
propagators contained in a bubble byP ;r G G; ,1 2

the standard bubble is then simply given byP º Pr r G G; , . In the
SDE, we cannot only freely choose the propagator used in the final contraction (equation (12a)), we can also
switch the equivalent lines by crossing two external legs of both vertices, G  G G  Gˆ ˆ,1 1 2 2 (see equation (A3)).
The relations deduced from this contracted crossing operation (see figure 4(a)) are

G P G = G P G( )◦ ◦ · ( ◦ ◦ ) · ( )G G a12a G G p G G
1

2 1 ; , 2 3 1 ; , 2 21 2 1 3

= G P G = G P G( )ˆ ◦ ◦ ˆ · ( ˆ ◦ ◦ ˆ ) · ( )G G b. 12a G G p G G
1

2 1 ; , 2 1 1 ; , 2 23 2 3 1

Wewill use the contracted crossing relations extensively on the relevant vertices, which obey the crossing
symmetries

g g g g g gG = -G G = -G = - = - = - = -ˆ ˆ ˆ ˆ ˆ ˆ ( )R R, , , , , . 13p p a t t a0 0

Note that the vertices in the particle-hole channels a, t aremapped onto each other upon crossing two external
legs. For this reason, wewill often combine contributions from the a and t channel in the following calculations.

The SDE yields a scale-dependent self-energy if we attach aΛ dependence to every propagator connecting
the vertices in equation (11) and account for theΛ dependence of the four-point vertex,Γ, as discussed in
section 2. In light of the functional derivative d dS = -G It (see section 3.2 below), we aim at generating the
irreducible vertex It, for whichwe need the totally irreducible vertex,R, instead of the bare vertex,Γ0. Hence, we
define ¢ = - GR R 0, and, since equation (11) is linear inΓ0, we obtain

S = S G - S ¢ G( ) ( ) ( )R G R G, , , , . 14SD SD

Wenow consider theflowofS G( )R G, ,SD and organize our computation according to (see figures 4(b) and (c))

S = ¶ S G - - P G + - P G - ¶ S ¢ GL

S S

L

S
        ˙ ( ) [ ( ◦ ◦ ˙ ) · ] [ ( ◦ ◦ ˙ ) · ] ( ) ( )

˙ ˙ ˙

R G R G R G R G, , , , . 15p pSD SD

1 2 3

Here, we have subtracted and added a term such that thefirst bracket, Ṡ1, contains only those terms of the
differentiated SDE inwhich the derivative is explicitly applied to propagators. The second part, Ṡ2, accounts for
the differentiated vertex forwhichwewill insert the vertex flow (10). Finally, Ṡ3 contains all remaining
contributions proportional to ¢R . In the PA, one has = G  ¢ =R R 0;0 thus, Ṡ3 will only be relevant in
calculations that go beyond the PA. In fact, from equation (14), we see that the role of Ṡ3 is to cancel the extra
terms that have been added toS + S˙ ˙

1 2 by usingS G( )R G, ,SD instead ofS G G( )G, ,SD 0 .We begin our
calculations with Ṡ1.

Generate · ˙I Gt —As alreadymentioned, wewant to single out the two-particle-irreducible vertex It (since it
constitutes the functional derivative of the self-energy). Thefirst summand in equation (11) (usingR instead of
Γ0 with =Ṙ 0) is easily differentiated as- · ˙R G. In the remaining part of Ṡ1, we have three propagators to
differentiate. Two of the resulting terms can be combined to factor out Ġ if we use the contracted crossing
symmetry (12) onR andΓ:

-S - = P + P G + P G = P G + P G

( )
˙ · ˙ ( ◦ ( ) ◦ ) · ( ◦ ◦ ) · ˙ ( ◦ ◦ ) · ˙ ( ◦ ◦ ) · ˙˙ ˙

16

R G R G R G R G R G.p G G p G G p G G a p1 ; , ; , ; ,

Next, we collect the terms for g= + = + P G + P G◦ ◦ ◦ ◦¯I R R I It t a a p p (see equation (4)) andfind

g g g g-S = + P G + P G = - + P G + + P G˙ [ ( ◦ ◦ ) ( ◦ ◦ )] · ˙ · ˙ [( ) ◦ ◦ ( ) ◦ ◦ )] · ˙

( )
R R R G I G G.

17
a p t p t a a t p1

Figure 3. (a) Schwinger–Dyson equation (SDE) for the self-energy, where the second term contains two equivalent lines connected to
antisymmetric vertices and hence requires a factor of 1/2.One notes that the three propagators in the second summand can be both
viewed as contracting a parallel and antiparallel bubble of the verticesΓ0 andΓ. (b)Multiloop fRG self-energy flow [12], derived from
the SDE in the parquet approximation. Thefirst term, Ṡstd, constitutes the standard fRG self-energy flow.

7
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Use differentiated bubbles—The extra terms accompanying · ˙I Gt in equation (17)will later be combined
with contributions from Ṡ2. Since Ṡ2 contains the differentiated vertex, which itself is built fromdifferentiated
bubbles Ṗr , we rewrite these contributions in terms of Ṗr . Using the contracted crossing symmetry (12), wefind

g g g gP G = P G + P G = P G( ◦ ◦ ) · ˙ ( ◦ ◦ ) · ( ◦ ◦ ) · ( ◦ ˙ ◦ ) · ( )˙ ˙G G G G a, 18p a G G p p G G p p G G p p; , ; , ; ,

g gP G = P G( ◦ ◦ ) · ˙ ( ◦ ◦ ) · ( )˙G G b, 18t a G G a a G G; , ; ,

g g g g+ P G = P G = P G[( ) ◦ ◦ ] · ˙ ( ◦ ◦ ) · ˙ ( ◦ ◦ ) · ( )˙G G G c2 . 18a t p G G a p G G a a G G; , ; , ; ,

This leads to thefinal expression for Ṡ1 (illustrated infigure 4(b)):

g gS = - + P G + P G˙ · ˙ ( ◦ ˙ ◦ ◦ ˙ ◦ ) · ( )I G G. 19t a a p p1

Organize vertex derivative—The second contribution to equation (15), Ṡ2, contains the differentiated
vertex. Inserting the decomposition gG = å˙ ˙r r , we can combine the contributions fromboth particle-hole
channels, a and t, by applying the contracted crossing symmetry (12) onR and ġt :

g g-S = P G = P + P˙ ( ◦ ◦ ˙ ) · ( ◦ ◦ ˙ ) · ( ◦ ◦ ˙ ) · ( )R G R G R G. 20p a a p p2

Oncewe insert the flow equation (10) for ġa and ġp in equation (20),Rwill be connected to further bubbles of
vertices. These connections can be simplified if we have Ir instead ofR. Hence, we rewrite equation (20), using

g= + ¯I Rr r , as

g g g g g g g g-S = P - + P + P - + P˙ ( ◦ ◦ ˙ ) · [( ) ◦ ◦ ˙ ] · ( ◦ ◦ ˙ ) · [( ) ◦ ◦ ˙ ] ·
( )

I G G I G G.

21
a a a p t a a p p p a t p p2

The next step consists of repeated use of the contracted crossing symmetry (12):

g g g g g gP = P + P( ◦ ◦ ˙ ) · ( ◦ ◦ ˙ ) · ( ◦ ◦ ˙ ) · ( )G G G a, 22p a a p p a p p t

g g g gP = P( ◦ ◦ ˙ ) · ( ◦ ◦ ˙ ) · ( )G G b, 22t a a a a t

g g g g g+ P = P[( ) ◦ ◦ ˙ ] · ( ◦ ◦ ˙ ) · ( )G G c. 22a t p p a a p

After using g=˙ ˙¯Ir r , we then obtain

å g gS = - P - P
=

˙ ( ◦ ◦ ˙ ◦ ◦ ˙ ) · ( )I I G. 23
r a p

r r r r r r2
,

Insert vertex flow—Whereas the previousmanipulations were possible due to the contracted crossing
symmetry, the following insertion of the vertex flow for ġr , given by equation (10), can be simplified already on
the vertex level. In fact, using the parquet equations (4)with g = P G◦ ◦Ir r r and gG = +Ir r, we get

g
g g

P = P G P G + P G + G P P G + G P
= P G + G P P G + P

◦ ◦ ˙ ◦ ◦( ◦ ˙ ◦ ˙ ◦ ◦ ◦ ◦ ˙ ◦ ◦ ◦ ◦ ˙ )
◦ ˙ ◦ ◦ ◦ ˙ ◦ ◦ ◦ ◦ ˙ ( )

I I I I I

I I . 24

r r r r r r r r r r r r r

r r r r r r r r

Thefirst term also occurs (with opposite sign) in equation (19), the second term reproduces ġ ( )
r

C , and the third

term gets canceled in equation (23). Hence, Ṡ2 can be simplified (as summarized infigure 4(c)) to

Figure 4. Illustrations for the derivation of the self-energy flow. (a)As stated in equation (12), a bubble of vertices closedwith an
additional loop can be viewed as a contracted a or p bubble and can be rewritten by exchanging two of the external legs (G  Ĝ) of
the vertices (contracted crossing symmetry). Note that equation (12a) is fully encoded in the diagramon the lhs and equation (12b)
in the one on the rhs. Thus, the individual equations (12a) and (12b)merely represent a redundancy in the algebraic description.
(b)Rewriting of Ṡ1, the part of ¶ SL SD where the derivative is applied to the propagators appearing explicitly in the SDE. The double
dash crossingmultiple lines denotes the derivative of the product of propagators, i.e. a sumof termswhere each line is differentiated
once. (c)Rewriting of Ṡ2, the part of ¶ SL SD containing Ġ.
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å g gS = - + P G
=

˙ ( ˙ ◦ ˙ ◦ ) · ( )( ) G. 25
r a p

r r r2
,

C

With the definition g g g= +˙ ˙ ˙¯
( ) ( ) ( )

t a p
C C C , the full derivative of the self-energy is given by

gS = S + S - S = - - - S˙ ˙ ˙ ˙ · ˙ ˙ · ˙ ( )¯
( )I G G . 26t t1 2 3
C

3

This result forS º ¶ SL˙
SD in skeleton form (i.e. phrasedwith dressed propagators ˙G G, only)will be considered

more closely in section 4.Here, wemove on by noting that equation (26) still contains Ṡ on both the lhs and the
rhs (via Ġ).

Isolate Ṡ—At this point in our derivation, we specify how theΛdependence is supposed to enterG: it shall
be incorporated in the bare propagatorG0 such that theDyson equation, = + S· ·G G G G0 0 , entails
= + S˙ · ˙ ·G S G G with the single-scale propagator = ¶ = - ¶L L

-
S= · ( ) ·∣S G G G G0

1
const

. Oncewe insert this

expression for Ġ into equation (26), wewill face the contraction of a vertexwith a composite line S· ˙ ·G G. In
such a case, one can equivalently attribute the two propagators to either the self-energy or the vertex, such that
we have the following equality for a composite contraction (recall theminus sign inΠt; see equation (A6) for
details):

S = - P S· ( · ˙ · ) ◦ · ˙ ( )I G G I . 27t t t

We insert equation (27) into equation (26) to isolate Ṡ:

g g

g

S=- + S - - S = - + P S - - S

 S=- - P - - P + S- -

˙ · ( · ˙ · ) ˙ · ˙ · ◦ ◦ ˙ ˙ · ˙
˙ ( ◦ ) ◦ · ( ◦ ) · ( ˙ · ˙ ) ( )

¯
( )

¯
( )

¯
( )

I S G G G I S I G

I I S I G1 1 . 28

t t t t t t

t t t t t t

C
3

C
3

1 1 C
3

Next, we use the inverted BSE (5) as well as the extended BSE (6) to express this throughΓ and + G P◦1 t ,
respectively:

gS = -G - + G P + S˙ · ( ◦ ) · ( ˙ · ˙ ) ( )¯
( )S G1 . 29t t
C

3

For convenience, we finally write the contraction of G P( ◦ )t with both summands as composite contractions
(using equation (27) for a general vertex and self-energy) and obtain

gS = -G + - + -G S - S - -G S
S S S

        
˙ [ · ] [ ˙ · ] [ · ( · ˙ · )] ˙ [ · ( · ˙ · )] ( )

˙
¯
( )

˙

¯
˙¯

S G G G G G . 30t t
C

3 3

t tstd

This is our final result for themfRG self-energy flowdeduced from the SDE. It constitutes the bare
(‘nonskeleton’) formof equation (26) as it involvesG and S instead ofG and Ġ. Thefirst term in equation (30),
Ṡstd, is the standard fRG self-energy flow. The next two terms, Ṡt̄ and Ṡt , constitute themultiloop corrections to
the self-energy flow (see figure 3(b)), which have been derived diagrammatically in [12]. These contributions are
needed to ensure that the self-energy flow generates all contributions to the self-energy arisingwithin the PA.
Finally, the two terms involving Ṡ3 remain in ourfinal result and—in calculations beyond the PA—are required
to cancel doubly counted terms coming from the replacementS G G  S G( ) ( )G R G, , , ,SD 0 SD in equation (14).
We remark that Ṡ3 constitutes precisely the part that cannot be simplified furtherwith our parquet tools, as it
originates from the appearance of a bare instead of renormalized vertex in the SDE.

3.1.2. Interpretation
Let us interpret theflow equation (30) step by step:

(i) Since ġ¯
( )

t
C and ¢R [and henceS = ¶ S ¢ GL˙ ( )]R G, ,3 SD are of order G[( ) ]O 4 , we have explicitly shown how to

derive the standard fRG self-energy flow, Ṡstd, from the SDEup to and including terms of fourth order in
the (effective) interaction. If wewere in the standard fRG settingwhere every line isΛ-dependent, further
terms coming from ¹Ṙ 0would arise in our derivation.However, as these terms are similarly of order

G[( ) ]O 4 , the result ¶ S = S + GL ˙ [( ) ]OSD std
4 would remain unchanged.

(ii) In the PA, the totally irreducible vertex is reduced to its simplest approximation, such that
= G  ¢ =R R 00 and thusS =˙ 03 . In this case, equation (30) reproduces themfRG self-energy flow from

[12] including the corrections Ṡt̄ and Ṡt (see figure 3(b)), necessary to provide a total derivative of the SDE
using the approximate parquet vertex.

(iii) Let us come back to the idea of a loop in theory space, which—including the self-energy flow—
is now driven by the bare propagator LG0 . A possible realization is given by = LL ( )G f G0 0 with

L = L =( ) ( )f f 1i f . If we start the flow from the solution in the PA ( = GR 0)with S = SL PAi and

G = GL PAi , the combination of themfRG vertex flow (10) and self-energy flow (30) (using S =˙ 03 ) gives
the corresponding result in the PA for allΛ (asR=Γ0 throughout) and returns to the original solution
atΛf. However, starting the flow from a solution with ¢ ¹R 0, we would have to include Ṡ3 in the
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self-energy flow (30) in order to precisely return to the original self-energy,Σ, and vertex,Γ (dressed
byΣ), atΛf; with ¢ ¹R 0, setting S =˙ 03 introduces an approximation in the full derivative of the SDE.
Conversely, one can compare results of the flow atΛi andΛf to (numerically) gauge the importance of
the individual terms in equation (30).
To better understand the effect of Ṡ3, we recall that Ṡt̄ and Ṡt were originally derived diagrammatically
to compensate formissing diagrams of ṠPA when using the parquet vertex in Ṡstd [12]. With this
perspective on S + S˙ ˙

t̄ t inmind, it is intuitively clear that higher-order contributions toR (i.e. ¢ ¹R 0)
generate doubly counted terms between Ṡstd and S + S˙ ˙

t̄ t . Yet, as equation (30) is exact, these
overcounted terms are precisely canceled by the parts involving Ṡ3.
For illustration, consider the (parquet) self-energy at fourth order in the interaction, which contains no
approximation and whose flow is fully described byS + S + S˙ ˙ ˙

t̄ tstd using vertices in the PA. Now,
fourth-order diagrams of ¢ ¹R 0 generate fourth-order terms in Ṡstd but not in Ṡt̄ and Ṡt (due to their
structure involving further vertices that raise the interaction order). The additional fourth-order
contributions of Ṡstd are precisely canceled by ¢ · ˙R G (containing only oneΛ-dependent line) as part of
Ṡ3. Generally, we believe that, for situations where ¢ ¹R 0, the overcounting of differentiated diagrams
in S + S + S˙ ˙ ˙

t̄ tstd has rather small weight and that, even if using S »˙ 03 , themultiloop additions
S + S˙ ˙

t̄ t provide an improvement of the standard self-energy flow, Ṡstd.

(iv) An interesting application with ¢ ¹R 0 is the previously mentioned multiloop DMF2RG approach. In its
full form, combining the flow equations of the vertex (10) and self-energy (30), themfRG flow is controlled
by the bare propagator LG0 , which interpolates between the local theory ofDMFT and the actual lattice
problem. The simplest realization [26] of aflow fromΛi=1 toΛf=0, formulated in terms ofMatsubara
frequencies iω andmomentum k , is given by w m w= + - LD - - LL -( ) ( ) ( )G i i 1 k0

1 . Here,Δ(iω) is
the self-consistently determined hybridization function of the auxiliary Anderson impuritymodel [25] and
k the lattice dispersion.With w m w= = + - DL [ ( )]G G 1 i i0 0

DMFTi , theflow is conveniently started from
S = SL DMFTi and G = GL DMFTi .While the vertex flow (10) exactly solves the BSEs (for givenGΛ), the
differential formof the SDE contains Ṡ3 and therefore prevents complete equivalence to theDΓAapproach.
In this regard, it remains to be seenwhether the standard fRG self-energy flow, Ṡstd, with orwithout the
multiloop correctionsS + S˙ ˙

t̄ t , or other realizations, incorporating parts of Ṡ3 in equation (30), lead to
optimal results.

3.2. Self-energyflow from the functional derivative
Wenow showhow the standard fRG self-energy flow, Ṡstd, can be directly derived from the equality between the
functional derivative of the self-energy and the (particle-hole) two-particle-irreducible vertex. To be in perfect
accordancewith the standard fRG setup, we have to require that everyG line beΛ-dependent—even those in the
totally irreducible vertex, = LR R . Incorporating theΛ dependence in the bare propagatorG0, we again relate
the differentiated propagator, Ġ, to the single-scale propagator, S, via = + S˙ · ˙ ·G S G G.

The functional derivative between self-energy and vertex, d dS = -G It (see equation (A8)), holds for any
variation ofG. If this variation is realized by having a scale-dependent propagatorGΛ and varying the scale
parameterΛ, this equation impliesS = -˙ · ˙I Gt . Starting from this, we can perform the same steps as above: to
obtain the standard fRGflow equation for the self-energy, it remains to insert = + S˙ · ˙ ·G S G G, express the
composite contraction S· ( · ˙ · )I G Gt as- P S◦ · ˙It t (see equation (27)), and use the inverted BSE (5):

S=- = - + S = - + P S
 S=- - P = -G-

˙ · ˙ · ( · ˙ · ) · ◦ · ˙
˙ ( ◦ ) ◦ · · ( )

I G I S G G I S I

I I S S1 . 31
t t t t t

t t t
1

Solving forΣ in a specific fRG flowvia equation (31) amounts to integrating d dS = - ·I Gt along a specific path
in the space of theories defined by the bare propagator = LG G0 0 (and the bare interactionΓ0, see equation (1)).
Only if this integration is independent of the path, i.e. if Ṡ contains a total derivative of diagrams, the standard
self-energy flow (31) yields results consistent with the functional derivative. In the scenarios considered so far,
this is not the case: the truncated fRG flow (withoutΓ(6) andmore than one channel) employs equation (31) but
does not generate a total derivative of diagrams [11, 12]; themfRGflowoffigure 3with = GR 0 does provide a
total derivative of diagrams but deviates from equation (31) by the additions Ṡt̄ and Ṡt . (In fact, the latter
reproduces precisely the self-energy diagrams generated by the SDEusing the vertex in the PA.However, as
shown in appendix B, the requirement of fulfilling both the functional derivative and the SDEnecessitates the
exact solution.)

As a direct application of the above calculations, we can derive a fRG flowwhich is equivalent to self-
consistentHartree–Fock (HF), in agreementwith a result byKatanin [38]. This conserving fRGflowprovides a
simple example forwhich the integration of d dS = - ·I Gt is indeed independent of the path. InHF theory, the
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functional derivative of the self-energy is given by the bare vertex, d dS = -GGHF
0. By replacing It→Γ0 in

equation (31), we immediately find

S = -G = - - G P G = -G-˙ · ˙ ( ◦ ) ◦ · · ( )G S S a1 , 32t t
HF

0 0
1

0
lad

G = G + G P G  G = - G P G-◦ ◦ ( ◦ ) ◦ ( )b1 , 32t t t t t
lad

0 0
lad lad

0
1

0

G = G P G + G P G  G = - G P G P G = G P G-˙ ◦ ˙ ◦ ◦ ◦ ˙ ˙ ( ◦ ) ◦ ◦ ˙ ◦ ◦ ˙ ◦ ( )c1 . 32t t t t t t t t t t t t
lad

0
lad

0
lad lad

0
1

0
lad lad lad

Equation (32c) describes the vertex flow in the truncatedKatanin form6, restricted to the t channel. If the same
vertex is used for the standard self-energy flow (equation (32a)), the fRGflow yields theHF self-energy together

with a particle-hole ladder vertex (note G = -Gˆ
t a
lad lad). As this vertex consists of ladder diagrams in only one

channel, it clearly violates crossing symmetry.

4. Conservation laws in the PA

In this section, we take a slightly different perspective and are not concernedwith RG flows. Instead, we use our
insight into the structure of themany-body relations gained from the above derivations to address conceptual
questions ofmany-body (parquet) theory. First, we derive two technical results: (i)we showhowone can
construct a two-particle-irreducible vertexwhich equals the functional derivative of the parquet self-energy.
Evidently, the operation δΣ/δG can be performed in an analytical study of Feynman diagrams [39]. However, in
a numerical treatment, one never has access to the self-energy as a functional of the full propagator. Instead, one
only has its value for the specific, given propagator, and the general construction for such a vertex remains
unknown [15]. Here, we provide its construction for the case of the parquet self-energy. (ii)Wedemonstrate that
the parquet self-energy can be obtained from the SDEusing either of two possible orderings of the bare and full
vertex.While it is believed thatmost approximations forΣ obtained from the SDE obey this property [14], it has
(to our knowledge)not been shown for the PA. These results can then be interpreted in the context of
conservation laws in the PAusing arguments fromBaymandKadanoff [14].

4.1. Functional derivative of the parquet self-energy
We start from the flow equation for the self-energy in skeleton form: in the PA,we haveR=Γ0, and thus
¢ =R 0 andS =˙ 03 , such that equation (26) reads

gS = - -˙ · ˙ ˙ · ( )¯
( )I G G. 33t t

PA C

AsR is here given by the bare vertex, our construction of a scale-dependentΓ (section 2) andΣ (section 3)
actuallymakes every propagator scale-dependent. Furthermore, this scale dependence is completely arbitrary,
andwe can view the scale derivative of the self-energy as coming from the chain rule, d dS = S˙ ( ) · ˙G G.
Regarding equation (33), wewant to similarly factorize Ġ from the term ġ ·¯

( ) Gt
C . For this, let g̄( )

t
C be the six-

point vertex obtained from ġ¯
( )

t
C be removing the differentiated line, such that ġ¯

( )
t

C is recovered by a contraction

with Ġ, and g g= ˙ · ( · ) · ˙
¯
( )

¯
( )G G Gt t

C C (see figures 5 (a) and (b)). It then follows from equation (33) that

Figure 5. Illustrations for g( )
r

C . (a)The six-point vertex g( )
r

C is obtained from ġ ( )
r

C by removing its differentiated line; hence, ġ ( )
r

C is
recovered by contracting g( )

r
C with Ġ . (b)A contraction of g( )

r
C denoted as g ·( ) Gr

C , such that ġ ·( ) Gr
C is reproduced by

g( · ) · ˙( ) G Gr
C . (c)As an example for the construction of g( )

r
C , we consider the six-point vertex g( )

p
1 obtained by removing the

differentiated line in the one-loop part of the vertexflow in p channel, leaving two further amputated legs (marked in light red).
(d) Inserting the vertex from (c) into the center part of the flow in the a channel, we generate a contribution to the six-point vertex g( )

a
C

(being part of g̄( )
t

C ). (e)By contracting two upper legs of the vertex from (d) according to g ·¯
( ) Gt
C , we get a contribution to the new,

two-particle-irreducible vertex ¢It . The lowest-order realization of this, obtained by inserting a bare vertex forΓ, constitutes an
envelope diagram,which is not contained in the initial It in the PA.

6
The substitution  ˙S G in the truncated fRG vertexflow is often calledKatanin substitution [38].
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d
d

g
S

= - - º - ¢ · ( )¯
( )

G
I G I . 34t t t

PA
C

Here,SPA is the self-energy obtained from the SDE in the PA (using the vertex G = + P G◦ ◦I It t t ), and ¢It is
the (new) two-particle-irreducible vertex that results from a functional derivative of the parquet self-energy.
(The corresponding full vertex G¢ can be obtained by solving G¢ = ¢ + ¢ P G¢◦ ◦I It t t .)The crucial point is that
—instead of taking the functional derivative—we can construct this vertex ¢It by taking the (initial) vertex It in the
PA and adding the term g ·¯

( ) G;t
C the six-point vertex g̄( )

t
C needed for this can be constructed iteratively.

To elaborate this point, recall that the four-point vertex ġ¯
( )

t
C constitutes a certain part of the vertex flow (10),

which can be computed in a iterative one-loop fashion. To generate the six-point vertex g̄( )
t

C , one simply has to

remove the differentiated line, Ġ, in this construction: one starts from a six-point vertex obtained by removing
the differentiated line in the one-loop part of equation (10). Let us call the resulting object from the p channel g( )

p
1 .

Then, g( )
p
1 can be inserted into the center part of equation (10) to generate afirst contribution for g( )

a
C . These

steps are illustrated infigures 5(c)–(e). Further contributions of g( )
r

C (for a certain channel r) are obtained as, e.g.
g( )

r
1 is inserted into the left, right, or center parts (see equation (10)) of channels ¢ ¹r r before inserting the

resulting objects into g( )
r

C .We remark that this scheme is directly accessible numerically by computing one-loop
integral equationswith six-point vertices. Though this will be computationally costly, it is conceptually notmore
complicated than computing the four-pointmfRG flow. In fact, it is not surprising that one has to deal with six-
point objects to go beyond the initial parquet vertex, since the PA exhausts (by construction) all diagrams that
can be obtained in an iterative one-loop computation involving only four-point objects.

4.2. SDEwith reversed order
Next, we show that the self-energy in the PA can equivalently be obtained from the SDEwith either ordering of
the involved vertices, i.e.

S = S G G = S G G( ) ( ) ( )G G, , , , . 35PA
SD 0 SD 0

In section 3.1, we have used the expressionS G G( )G, ,SD 0 to derive the self-energy flow (26), which finally
yielded equation (34) for the functional derivative in the PA. If we use the SDE in the ‘reversed’ order, we can
actually follow these steps in close analogy tofind the same relation for the functional derivative. First, starting
fromS = S G G( )G, ,SD 0 , we find a replication of equation (19)with reversed order:

g gS = - + G P + G P˙ · ˙ ( ◦ ˙ ◦ ◦ ˙ ◦ ) · ( )I G G. 36t a p p1

Concerning the simplifications of Ṡ2, we start from G P( ˙ ◦ ◦ ) ·R Gp to get (instead of equation (23))

å g gS = - P - P
=

˙ ( ˙ ◦ ◦ ˙ ◦ ◦ ) · ( )I I G. 37
r a p

r r r r r r2
,

Then, we use the BSEwith ‘reversed’ order, g = G P◦ ◦ Ir r r (see equation (7)), tofind the appropriate version
of equation (25)

å g gS = - + G P
=

˙ ( ˙ ◦ ˙ ◦ ) · ( )( ) G. 38
r a p

r r r2
,

C

Thefinalmanipulations can bemade in complete analogy to obtain

g
d
d

gS = S + S = - - 
S

= - - ˙ ˙ ˙ · ˙ ˙ · · ( )¯
( )

¯
( )I G G

G
I G, 39t t t t

PA
1 2

C
PA

C

i.e. the identical differential equation (34). Since, for the specific propagatorG=0, one has
S G G = = S G G( ) ( ), , 0 0 , , 0SD 0 SD 0 , it follows that the self-energy in the PA can indeed be obtained fromany of
the two versions of the SDE.

The strategy of generating, first, a self-energy via the SDE and, then, obtaining a vertex by functional
differentiation has been famously put forward by Baym andKadanoff [14]. They showed that, if the self-energy
can equivalently be constructed via the SDEwith either order of the vertices, then, the one-particle propagator is
conserving. Thus, using this argument togetherwith equation (35), onefinds that the PA fulfills one-particle
conservation laws. Baym andKadanoff further showed that, if the vertices are subsequently constructed from

d d¢ = - SI Gt and G¢ = ¢ + ¢ P G¢◦ ◦I It t t , two-particle conservation laws are fulfilled as well. As is well
known, the PAdoes not fulfill two-particle conservation laws. In fact, equation (34) shows how the parquet
vertex It needs to bemodified to be conserving; in other words, the correction term g ·¯

( ) Gt
C allows one to

quantify towhat degree the vertex It in the PA violates conservation laws.
Furthermore, equation (34) provides a construction how to generate a fully conserving solution originating

from the parquet self-energy. After both the vertex It and the self-energySPA in the PAhave been obtained, one
computes g ·¯

( ) Gt
C and adds this to It to get a conserving vertex ¢It . Note that the original parquet self-energy

need not bemodified. Similarly as one computes G¢ = ¢ + ¢ P G¢◦ ◦I It t t with the originalΠt (containingSPA),
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physical quantities (such as susceptibilities, conductivities, etc) are computed using ¢It (or G¢) together withSPA.
The resulting solution fulfills one- and two-particle conservation laws, but, clearly, it does not fulfill the SDE
anymore. This is not surprising since, as shown in appendix B, a solution that fulfills both the SDE and the
functional derivativemust be the exact solution. The preferential choice betweenΓ and G¢will surely depend on
the physical application.

We remark that there have also been suggestions of how to keep the vertex It in the PA butmodify the self-
energy,SPA, to obtain a thermodynamically consistent description [40].While these ideasmight be useful in
practical situations, it is, however, not possible to construct a combination of the skeleton two-particle-
irreducible vertex It[G] in the PA togetherwith any skeleton self-energy S̃[ ]G , such that the functional derivative

d d= - S̃I Gt is fulfilled. The reason is that the functional derivative generates from any diagramof S̃ a
multitude of diagrams for It—the same self-energy diagram related tomissing diagrams of It in the PA also
relates to diagrams that are contained in It (see figure 6). Therefore, the functional derivative cannot be fulfilled
by starting from the PA and simply removing diagrams from the self-energy.

5. Response functions

Finally, we use our results from section 2 to derive dependent,mfRG flow equations for response functions. In
fact, the (fermionic) four-point vertex,Γ, and the self-energy,Σ, give us full control over correlation functions
up to the four-point level, and thus they suffice to compute response functions such as three-point vertices, G( )3 ,
and susceptibilities,χ. IfΓ andΣ are obtained by anRG flow, the response functions can be deduced from the
scale-dependent G SL L, at any stage during the flow. Alternatively, the response functions G L( )3 , andχΛ are
often deduced from their ownRG flows [5]. In this case, theflow equations provided by the standard fRG
hierarchy again require knowledge about unknown, higher-point vertices (namely afive-point vertex for the
flowofΓ(3) and a boson-fermion four-point vertex forχ) [6]. In particular, the inevitable truncation in the fRG
hierarchy leads to ambiguities in the computation of the response function [13, 41]. These ambiguities have been
recently resolved by a diagrammatic derivation of themfRG flow equations for the response functions [13].
Here, we provide algebraic derivations of these flow equations.Wefind that one can circumvent the influence of
unknown, higher-point vertices by using exactflow equations for the response functions, which follow from the
standard relations between the response functions and the (known) fermionic four-point vertex and self-energy.

5.1. Three-point vertex
The SDE relating the (full) three-point vertex to the bare three-point vertex (often taken to be unity) and the
four-point vertex [6] is given by (see figure 7)

G = G + G P G◦ ◦ ( )( ) ( ) ( ) . 40r r r r
3

,0
3

,0
3

Employing the scale dependence described in the previous sections, we can differentiate equation (40) to get

gG = G P G + G P G = G P G + G P +˙ ◦ ˙ ◦ ◦ ◦ ˙ ◦ ˙ ◦ ◦ ◦ (˙ ˙ ) ( )( ) ( ) ( ) ( ) ( ) I . 41r r r r r r r r r r r
3

,0
3

,0
3

,0
3

,0
3

We insert themfRG vertex flow (10), combine several terms according to equation (40), and obtain

G = G P G + G P + G P G P G + G P + P G + G P P G

= G P G + G P + P G

( )

˙ ◦ ˙ ◦ ◦ ◦ ˙ ◦ ◦ ( ◦ ˙ ◦ ◦ ◦ ˙ ˙ ◦ ◦ ◦ ◦ ˙ ◦ ◦ )
◦ ˙ ◦ ◦ ◦ ( ˙ ˙ ◦ ◦ )

( ) ( ) ( ) ( )

( ) ( )

42

I I I I

I I .

r r r r r r r r r r r r r r r r

r r r r r r r

3
,0
3

,0
3

,0
3

3 3

Thefirst termoccurs similarly in the fRGflow equation (with the typical replacement «Ġ S). However, the
remaining part of our flow equation successfully replaces the contributions from the unknown five-point vertex
in the fRGflow.

Figure 6. Illustration for the relation between (skeleton) diagrams of the vertex and the self-energy at fourth order in the interaction:
inserting thefirst (parquet) vertex diagram into the SDE, we generate the second diagram as part of SPA. Upon taking the functional
derivative wrt to the full propagator, this self-energy diagram relates tomultiple diagrams of the two-particle-irreducible vertex It.
Among those, the third diagram, obtained by cutting the (light) red line, is an envelope diagram and not part of It in the PA.However,
the fourth diagram, obtained by cutting the blue line, belongs to it. Note that we ignore signs and prefactors in these diagrams.

13

New J. Phys. 20 (2018) 123029 FBKugler and J vDelft



5.2. Susceptibility
The susceptibility is fully determined by the three-point vertex or (via equation (40)) the four-point vertex [6],
according to (see figure 8)

c = G P G = G P G + G P G P G◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ( )( ) ( ) † ( ) ( ) † ( ) ( ) †. 43r r r r r r r r r r r
3

,0
3

,0
3

,0
3

,0
3

,0
3

Wecan differentiate either relation; choosing the first one, we insert themfRGflow (42) ofΓ(3) tofind themfRG
flowof the susceptibility:

c = G P G + G P G

= G P G + G P G + G P + G P P G P G

= G P G + G P P G

˙ ◦ ˙ ◦ ˙ ◦ ◦

◦ ˙ ◦ ( ◦ ˙ ◦ ◦ ◦ ◦ ˙ ◦ ◦ ˙ ◦ ◦ )◦ ◦

◦ ˙ ◦ ◦ ◦ ˙ ◦ ◦ ( )

( ) ( ) † ( ) ( ) †

( ) ( ) † ( ) ( ) ( ) ( ) †

( ) ( ) † ( ) ( ) †

I I

I . 44

r r r r r r r

r r r r r r r r r r r r r r

r r r r r r r r

3
,0
3 3

,0
3

3
,0
3 3 3 3

,0
3

3 3 3 3

Again, the first termoccurs similarly in the fRGflow equation (with «Ġ S), and the remaining terms in our
flow equation replace the contributions from the unknownboson-fermion four-point vertex in the fRG flow.

Let us briefly summarize: the response functionsΓ(3),χ can be deduced from the four-point vertex,Γ, and
the self-energy,Σ, at any point of the RG fow. AsΓ andΣ evolve withΛ, so doΓ(3) andχ.With the above
derivation, we have cast this evolution into exact,mfRGflow equations for the response function, each
containing the vertex flow from the complementary channel ( g=˙ ˙¯Ir r). The two-particle-reducible vertices still
obey themfRG flow (10); approximations come from the chosen expression for the totally irreducible vertex,R,
which affects the initial conditions but is itself not part of the flow.

6. Conclusion

Wehave used thewell-known self-consistent relations of the parquet formalism to derive exactflow equations
for various vertex and correlation functions. Compared to the standard fRG framework, thesemfRG flow
equations can be advantageous as they circumvent the reliance on higher-point vertices. In fact, our calculations
include concise, algebraic derivations of themfRG flow equations that have previously been derived

Figure 7. Illustration of three exact equations for the three-point vertex in the a channel: (a) Schwinger–Dyson equation between
three- and four-point vertex; thewhite dot denotes the bare three-point vertex; (b)mfRG flow equation containing differentiated
vertices from the complementary channel, g=˙ ˙ ¯I ;a a and (c) standard fRGflow equation containing an unknown five-point vertex.

Figure 8. Illustration of three exact equations for the susceptibility in the a channel: (a) Schwinger–Dyson equation relating the
susceptibility to the full and bare three-point vertex; (b)mfRGflow equation containing differentiated vertices from the
complementary channel, g=˙ ˙ ¯I ;a a and (c) standard fRGflow equation containing an unknown fermion-boson four-point vertex G̃.
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diagrammatically [11–13] and have already been used [11, 13] to improve the approximations of the truncated
fRGflow (for results of two-loop fRG, see [22, 42, 43]).

The analysis presented in this paper puts themfRG approach on a general basis. The algebraic derivations
open the route to RGflows beyond the diagrams of the PA. Since the totally irreducible vertex,R, is precisely the
part of the vertex that cannot be efficiently included in the flow, the focus can now shift to systematic ways of
computingR. If one chooses a scale dependence in the propagators that starts from =LG 00

i , all reducible
contributions built onRwill be fully included by themfRGflow.Other starting points for the flow are a possible
aswell. In particular, if one uses as initial, bare propagator the (self-consistently determined) one fromDMFT,

=LG G0 0
DMFTi , the nonlocal correlations not contained inDMFTwill be added by aflow that starts from the self-

energySDMFT and the full vertex GDMFT [26], thus circumventing potential divergences of RDMFT. Similarly, if
the system in question is related to another, solvable reference system [22] by variation of one-particle
parameters,mfRG can be used to tune between these systems via LG0 , with the guarantee that the self-consistent
parquet equations are fulfilled throughout the flow. As examples, let usmention Fermi polarons [44, 45], where
one can tune the chemical potential of themajority species, and nonequilibrium transport (see below), where
one can gradually increase the bias voltage. Our computations also provide a basis for setting upmfRG flows for
more complicated theories, including, for instance, further bosonic degrees of freedom.Generally, we believe
that the insights presented in this paperwill be useful for further development of quantum-field-theoretical RG
techniques.

Additionally, we have demonstrated an intimate relation between the functional derivative of the self-energy
(inducing a conserving solution) and the (standard) fRG self-energy flow: theflow equation directly follows
from the functional derivative for the case that the propagator is varied through a scale parameter. However, a
solution of the fRGflow is consistent with the functional derivative only if the flow is independent of the specific
scale dependence, i.e. only if G · S constitutes a total derivative of diagrams. A simple example forwhich this is
indeed the case is given by a truncated fRG flowwith a (particle-hole) ladder vertex that reproduces self-
consistentHF. Building on this, it would beworthwhile to devise other approximate flows that complywith the
functional derivative but go beyondHF, thereby including an interplay between different two-particle channels.

Lastly, we have used our approach to address important general questions of (traditional)parquet theory.
Using an argument of Baym andKadanoff [14], we have demonstrated that the PA fulfills one-particle
conservation laws. Furthermore, we have shownhow to construct a two-particle-irreducible vertex equivalent to
taking the functional derivative of the parquet self-energy.With this, one can quantify towhat extent the PA
violates two-particle conservation laws, and one canmodify the PA to obtain a fully conserving approximation.
It would be interesting to apply thismodified parquet approach in situationswhere conservation properties are
crucial, such as studies of transport phenomena.

The generality of our formalismopens up a vastfield of applications.mfRGflows have already yielded
impressive results for the prototypical 2DHubbardmodel [13] (see [42] for results using two-loop fRG) and
promise a better understanding of strongly correlated electron systems [5, 12, 20]. In the study of quantum
magnetism, the pseudo-fermion fRG approach [46]has become a competingmethod, and first calculations with
two-loop corrections [43] suggest that a fullmultiloop treatment would yield further improvements.Moreover,
mfRG can be directly applied to a variety of interesting physical problemswhere themost relevant properties are
expected to emergewithin the PA, such as various forms ofmobile impurity problems [45, 47] or one-
dimensional fermion systems [48] beyond the Luttinger liquid paradigm [49]. In thefield of transport
phenomena in disordered systems, ourmfRG approach could provide unprecedented insight intomany-body
localization in large systems [50, 51] or interaction effects on the Anderson localization transition [52]. Finally,
we remark thatmfRG flows can also be naturally set upwithin theKeldysh formalism [23, 53] to provide real-
frequency information, both in and out of equilibrium.
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AppendixA.Matrix notation of bubbles and loops

In this section, we define our notation for the contraction of various vertex functions. It is common to view the
contraction of one-particle quantities asmatrixmultiplications, such that e.g. theDyson equation between
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propagator, = -á ñ¢ ¢¯G c cx x x x, , and the self-energy,S ¢x x, , (see figures A1(a) and (b)) reads

å= + S =¢ ¢· · ( · ) ( )G G G G A B A B, . A1x x
y

x y y x0 0 , , ,

For the contraction of two four-point vertices, we have three inequivalent possibilities corresponding to
the three two-particle channels r=a, p, t (standing for antiparallel, parallel, transverse, respectively; see also
figure A1(c)). In [12], the different combinations have been labeled as ‘bubble functions’ G G¢( )B ,r . Here, we
repeat the corresponding equations and show that they can be conveniently written asmatrixmultiplications.
For this, we will use auxiliary objects that depend on channel-dependent tuples of quantumnumbers (e.g.
G = G¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢˜ ( ) ( )x x x x a x x x x, ; , ; , , ,1 2 1 2 1 2 2 1

) and define a contraction ◦ that always comes together with a two-particle
propagatorΠr of a certain channel (consisting of two one-particle propagatorsG):

å

å

G G¢ = G G¢

= G P G¢ º G P G¢

¢ ¢ ¢ ¢
¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

( )

˜ ˜ ˜ ( ◦ ◦ ) ( )( ) ( ) ( ) ( ) ( ) ( )

B G G

a

,

, A2

a x x x x
y y y y

x y y x y y y y y x x y

y y y y
a x x y y a y y y y a y y x x a x x x x

, ; ,
, , ,

, ; , , , , ; ,

, , ,
; , , , ; , , , ; , , , , ; ,

1 2 1 2

1 1 2 2

1 2 1 2 1 1 2 2 1 2 1 2

1 1 2 2

1 2 2 1 2 1 1 2 1 2 2 1 1 2 1 2

å

å

G G¢ = G G¢
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Note that a factor of 1/2 has been absorbed intoΠp and aminus sign intoΠt. From equations (1) and (3), it is
clear thatΓ0 andΓ are antisymmetric in their indices. Using the bubble functions (A2) togetherwith the parquet
equations (4), onefinds the further crossing symmetries stated in equation (13), which use the symbol

G = G = G¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ˆ ( ). A3x x x x x x x x x x x x, ; , , ; , , ; ,1 2 1 2 1 2 2 1 2 1 1 2

If we combine two fermionic indices into one bosonic index, the above equations directly translate to three-
point vertices. For instance, one could combine the two external legs of the first vertex in the a bubble according
to some function f and interpret

å åG = G  G P G¢ = G P G¢¢ ¢
¢ ¢

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
¢ ¢

¢ ¢ ¢ ¢ ¢ ¢( ◦ ◦ ) ( ◦ ◦ ) ( )( ) ( )f f . A4
a z x x

x x
z x x x y y x a a z x x

x x
z x x a x x x x; , ,

3

,
, , , ; ,

3
, ,

,
, , , ; ,

2 1

1 2

1 2 1 2 1 2 2 1

1 2

1 2 1 2 1 2

Furthermore, one can contract a four-point vertexwith a one-particle propagator to obtain another one-
particle object.We define the symbol · between vertex and propagator to be such a contraction applied to the
‘upper’ external legs of the vertex (i.e. legs 2 and ¢2 infigure A1(c)). In [12], this has been dubbed a ‘self-energy
loop’, L, defined as

å å- G = G = G º G¢ ¢
¢

¢ ¢ ¢
¢

¢ ¢ ¢ ¢ ¢( ) ˜ ˜ ( · ) ( )
( )

( ) ( ) ( )L G G G G, . A5x x
y y

x y x y y y
y y

t x x y y y y x x,
,

, ; , ,
,

; , , , , ,

If the contracting line is a composite object of the type S· ·G G, we can view theG lines as a t bubble attached to
the vertex, according to

Figure A1. (a)Dyson’s equation relating the full propagator ¢Gx x, (black, thick line) to the bare propagatorG0 (gray, thin line) and
the self-energyΣ (circle). (b) First-order diagram for the self-energy using the (antisymmetrized) bare vertexΓ0 (solid dot).
(c)Diagrammatic expansion of the four-point vertexΓ (square) up to second order in the interaction. The positions of the external
(amputated) legs refer to the arguments of G ¢ ¢ ¢ ¢x x x x, ; ,1 2 1 2. Diagrams from left to right belong toR, γa, γp, and γt, respectively; diagrams for
Ir follow from the relation Ir=Γ−γr.
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å

å

G S = G S

=- G P S º - G P S
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; , , , ; , , , , ,

The SDE for the self-energy contains a contraction of three propagators. Using the bubble functions defined
above, this can equivalently bewrittenwithPp andΠa:

å å-S = G + G G

= G + G P G = G + G P G

¢
¢

¢ ¢ ¢
¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢ ¢
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G G . A7
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2
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, ; ,
0

, , , , ; ,

0 0
,

0
1

2 0
,

The functional derivative between self-energy and two-particle-irreducible vertex (in the tora channel) is given by

d
d
S

= - =¢

¢
¢ ¢ ¢ ¢ ( )

G
I I . A8x x

y y
t x y x y a x y y x

,

,
; , ; , ; , ; ,

Note that in order to obtain the two-particle-irreducible vertex in the p channel from functional
differentiation, d d= S¢ ¢ ¢ ¢/I Gp x y x y x y x y; , ; , , , , one has to allow for variations around the physical solutionwhich
break charge conservation.

Appendix B. SDE and functional derivative

Weconsider the SDE for the self-energy as well as the functional derivative between self-energy and vertex (see
equation (A8)),

S = -G - G P G· ( ◦ ◦ ) · ( )G G a, B1p0 0

d
d

= -
S

G = + P G◦ ◦ ( )I
G

I I b, , B1t t t t

and show that a solution forΣ andΓ that fulfills both equations (B1a) and (B1b)must necessarily be the exact
solution. In essence, this proof has already been given by Smith [15]. However, wefind it useful to present it here
in our notation, which exclusively consists of properly symmetrized objects. In fact, this proof puts on solid
groundwhat has long been known to the community [2]: in any approximate solution to themany-body
problem, one has to decidewhether to complywith either conservation laws or crossing symmetry; achieving
both amounts tofinding the exact solution.

To be able to apply the functional derivative, we consider the self-energy as a functional of the full
propagator,Σ[G]. This is perfectly compatible with the SDE (B1a), which is formulated using full propagators
only. Furthermore, all vertex functions depend on the given theory’s bare vertexΓ0 (whichwe here labelΓ0=U
for ease of notation); in particular, this holds forΣ[G,U] andΓ[G,U]. SinceU is the bare vertex, we have
G = +[ ] ( )G U U O G U, , ;2 2 by use of either the SDE (B1a) or the functional derivative (B1b), it is clear
thatS = +[ ] · ( )G U U G O G U, ,3 2 .

Assume thatweknow the exact vertexup to termsof ordern�2 inbothG andU, i.e., G = G + ( )O G U,n nex . If
we apply the SDE (B1a),weobtain (inserting into the second term)S = S + + +( )O G U,n nex 3 1 .Now,weapply the
functional derivative (B1b) andget = + + +( )I I O G U,t t

n nex 2 1 . Finally, using theBSE (B1b) yields G = G +ex

+ +( )O G U,n n2 1 , i.e. the exact vertexoneorderhigher inG2 andU thanwe startedwith. Sincewedoknow theexact
vertexup to termsof secondorder, G = +[ ] ( )G U U O G U, ,2 2 , it followsby induction that a solutionwhich fulfills
both equation (B1a) and (B1b) consists of the exact functionalsS G[ ] [ ]G U G U, , ,ex ex .

We remark that this proof applies equivalently tofinite-order approximationsofΣ andΓ aswell as to
approximations of infinite order inU. As soon as an expression forΓ contains the bare vertexU [15], the combination
of equation (B1a) and (B1b) requires all expansion coefficients ofΣ andΓ to be the ones of the exact solution.
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