
PHYSICAL REVIEW B 98, 220302(R) (2018)
Rapid Communications

Spectra of heavy polarons and molecules coupled to a Fermi sea
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We study the spectrum of an impurity coupled to a Fermi sea (e.g., minority atom in an ultracold gas, exciton
in a solid) by attraction strong enough to form a molecule/trion. We introduce a diagrammatic scheme which
allows treating a finite mass impurity while reproducing the Fermi-edge singularity in the immobile limit. For
large binding energies the spectrum is characterized by a semicoherent repulsive polaron and an incoherent
molecule-hole continuum, which is the lowest-energy feature in the single-particle spectrum. The previously
predicted attractive polaron seems not to exist for strong binding.
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Introduction. The interaction of a single impurity with a
surrounding fermionic bath is a problem at the very heart of
quantum many-body physics, which is easily formulated, and
yet difficult to solve. It is characterized by a rich interplay
of kinetic and interaction effects, which can strongly modify
the quasiparticle (polaronic) nature of the impurity. Controlled
experimental realization and analysis of impurity physics has
recently been achieved in ultracold gas setups [1–5], where the
impurity is usually an excited hyperfine state of an atom, and
the interaction strength is tunable via Feshbach resonances
[6]. An alternative are semiconductor or transition metal
dichalcogenide (TMD) experiments [7,8], where the impurity
is a valence band hole or exciton, in the presence of a finite
conduction band population controlled by gate voltage.

On the theory side, a major part of the literature is devoted
to the computation of ground-state energies following Chevy’s
[9] pioneering work, which proposed an ansatz for the ground-
state wave function consisting of the impurity dressed by
a single electron-hole pair. This ansatz works well in the
polaronic regime where the impurity-bath interaction is weak,
but breaks down if the formation of a molecule, or trion in
semiconductor language, becomes favorable. This regime can
be described by a complementary ansatz [10–12] involving a
dressed molecule. In two dimensions (2D), a similar picture
applies [13–15].

The variational energy has recently been verified using
diagrammatic quantum Monte Carlo [16–21]. The situation is
quite different for the impurity spectrum, which is the actual
quantity measured in experiments: In Monte Carlo, extracting
the spectrum is difficult due to the infamous analytical contin-
uation problem, and only few definite statements can be made
[22]. Analytically, it has been realized that the Chevy ansatz is
equivalent to the non-self-consistent T -matrix approach [23],
from which spectra can be easily extracted [1,5,8,24–26].
However, this ansatz is a priori reliable for weak coupling
only. In the molecule limit, extracting the spectrum from a
variational ansatz is difficult since the coefficients are not
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analytically known. As for the functional renormalization
group [27], its accuracy is hard to assess [28].

Besides the interaction strength and Fermi energy, a third
control parameter in the impurity problem is the impurity
mass M . Infinitely heavy impurities are subject to Anderson
orthogonality [29], and the universal properties of the impu-
rity spectrum in the presence of a bound state can be computed
exactly from a functional determinant [30–33]. The goal of
this Rapid Communication is to characterize the spectrum for
arbitrary impurity mass, while maintaining consistency with
all known limits. Building on the framework developed in
our recent work [34], we find that a rigorous expansion in
the number of fermion-hole pairs reproduces the infinite mass
spectrum, and obtain controlled estimates of the impurity
spectrum deep in the molecular limit; in particular, we present
a controlled computation of the incoherent molecular feature
in the single-particle spectrum. We mostly focus on 2D for
clarity, listing the modifications in 3D along the way.

Model. Consider a single impurity (annihilation operator
d) immersed in a bath of fermions (c). In a cold atom system,
the impurity can be a spin-up fermion in a bath of spin-down
particles; in semiconducting systems, the impurity is usually
an exciton containing a conduction electron with a given spin,
together with a bath of the opposite spin conduction electrons
[35]. The usual model Hamiltonian reads

H =
∑

k

(εkc
†
kck + Ekd

†
kdk ) − V0

S
∑
k,p,q

c
†
kck−qd

†
pdp+q, (1)

with εk = k2/2m, Ek = k2/2M . V0 > 0 is the attractive con-
tact interaction [36], S the system area, and h̄ = 1. Our
goal is to find the single-particle spectrum A(ω) at zero
momentum, which is proportional to the Fourier transform of
the imaginary part of the retarded impurity Green’s function,
D(t ) = −iθ (t ) 〈0|d0(t )d†

0 (0)|0〉, where |0〉 is the Fermi sea
without impurity. We work in the real frequency formalism
at zero temperature.

Chevy’s ansatz versus the Fermi-edge singularity. Chevy’s
ansatz corresponds to a summation of all impurity self-energy
diagrams �1 with a single hole (the T -matrix series), shown
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FIG. 1. (a) Self-energy diagrams with one hole, indicated by the
arrow. Solid (dashed) lines denote electron (impurity) propagators.
The blue box indicates the T matrix. (b) (M = ∞) spectrum for
Eb = 5μ from the Chevy ansatz. Repulsive and attractive features
in the spectrum are shown in different colors for clarity. For the
attractive polaron, a finite width is used.

in Fig. 1(a). For infinite mass, one finds, in 2D,

�1(ω) = −
∫ μ

0
dεk

1

ln
(

ω+εk−μ+i0+
−Eb

) . (2)

Here, ω is the energy measured from the impurity level,
and μ = k2

F /2m is the Fermi energy. We define the complex
logarithm with a branch cut on the negative half axis. −Eb is
the energy of the bound state of the attractive contact potential,
which always exists in 2D. It is determined from the pole
of the T matrix. Due to this bound state, Im[�1](ω) has a
molecule continuum ∝θ (ω + Eb). Its width is μ, representing
the different energies of the hole in the Fermi sea created
when the impurity binds an electron. For Eb � μ, inserting
�1 into the bare impurity Green’s function D0(ω) = 1/(ω +
i0+) leads to three prominent features: First, the bare pole
of the impurity is shifted (“repulsive polaron”). Second, the
aforementioned molecule-hole continuum is created. Third,
Re[�1] gives rise to another pole below the molecule-hole
continuum, the “attractive polaron.” Between the latter two
there is a spectral gap of �−0.582μ as Eb/μ → ∞ [13]. A
typical plot is shown in Fig. 1(b). The 3D result is similar (see
Supplemental Material [37]). For finite mass, expression (2)
is more complicated, but the qualitative form of the spectrum
is unchanged [25].

The “Chevy” spectrum for M = ∞ is to be contrasted with
the exact result of Combescot and Nozières [30], who showed
that the spectrum is dominated by two divergent power laws
[38] A(ω) ∝ ∑

i=1,2(ω − ωth,i )αi θ (ω − ωth,i ). Here, ωth,i are
the threshold energies determined from Fumi’s theorem [39],
and the exponents αi are characterized by δ, the phase
shift of the bath fermions at the Fermi energy due to their
scattering by the immobile impurity, α1 = (δ/π )2 − 1, α2 =
(1 − δ/π )2 − 1. For infinite mass, the dimensionality of the
problem only affects the value of δ. For Eb � μ one can then
approximate [40,41]

1 � 1 − δ/π � γ ≡
{

1/ ln(Eb/μ) for d = 2,

kF a/π for d = 3,
(3)

with the 3D scattering length a. In this limit, with exponents
to leading order in γ , the spectrum looks like

A(ω) � θ (ν1)ν−2γ

1 + θ (ν2)νγ 2−1
2 , νi ≡ ω − ωth,i. (4)

ν−2γ
1

νγ2−1
2

A(ω)

1/
√

ν2

M < ∞

ω

M = ∞
Eb � μ

ω

Erecoil

ν3
1

β−2γ

Γ2ν−2γ
1

Erecoil

νγ2−1
2

FIG. 2. Sketch of the spectrum for Eb � μ. Power laws are
measured from the respective thresholds; �2 � μ4/Eb

4β is the width
of the repulsive polaron (see main text). Colors are chosen as
in Fig. 1.

A sketch is shown in Fig. 2 (upper panel). The lower (blue)
feature, which starts close to ω = −Eb and corresponds to
the molecule-hole continuum, has a weak power law (close
to a step). The upper feature, which can be identified with the
repulsive polaron, has a strong power-law spectrum (close to
a delta function). Note that there is no well-defined “attractive
polaron” in the spectrum. We claim that, for Eb � μ, this will
persist for finite masses M , and thus the Chevy spectrum of
Fig. 1(b) is incorrect for large binding energies.

Method. Our approach is to reproduce Eq. (4) in a diagram-
matic expansion in γ generalizable to finite mass. However,
γ does not directly appear in the Hamiltonian; instead, one
must resort to an expansion in the number of holes: A diagram
involving n holes contains n integrations over filled states
∝μn, and μ is small in units of Eb. In effect, as shown below,
this leads to an expansion in γ [12,14,15,23,42].

The one-hole diagrams are already considered as the im-
purity self-energy within the Chevy approach [Fig. 1(a)], and
resummed with Dyson’s equation. For heavy impurities, this
resummation is uncontrolled. Instead, one must add up the
most important (log-divergent) diagrams order by order in
γ , which ultimately removes the attractive polaron from the
spectrum. Thus, we reattach the impurity lines to �1, defining
H1(ω) = D0(ω)2�1(ω). Of course, H1 only represents the
first-order process: The impurity can interact with an arbitrary
number of electrons, creating electron-hole excitations in the
Fermi sea. The processes involving two holes are represented
in Fig. 3(a). Here, the interaction lines can be drawn arbitrarily
often in any order, as long as the structure of the diagrams is
preserved, e.g., in diagram Ha

2 the first and last interaction
lines should connect to the lower part of the “horseshoe,” and
to the upper loop in diagram Hc

2 . These diagrams can also
be redrawn with T -matrix blocks, as exemplarily shown in
Fig. 3(b); we never expand in the number of T matrices, but
always resum diagrams with an infinite number of T matrices
at the two-hole level. We note that the contribution of the
two-hole diagrams to the ground-state energy is much less
significant [12,43].

Results: The molecule/attractive polaron spectrum. For
dispersionless infinite mass impurities, the evaluation of all
two-hole diagrams is possible. Following Ref. [34], one can
either work in the time or frequency domain, employing
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FIG. 3. (a) All relevant two-hole diagrams. (b) T -matrix repre-
sentation of diagram series Ha

2 , Hd
2 . The gray-shaded diagram is

contained in the Chevy approach.

different approximations [37]. In particular, for small ω + EB ,
close to the molecular threshold, we find [44]

H1(ω) + H2(ω)

� 1

Eb

[
ln

(
ω + Eb + i0+

−μ

)
− γ ln2

(
ω + Eb + i0+

−μ

)]
,

(5)

where H2 = ∑
i H

i
2. The term ∝ ln2 in Eq. (5) arises solely

from diagram Ha
2 . Curiously, the contribution of Hd

2 is sub-
leading, while the contribution from diagrams Hb

2 ,H c
2 effec-

tively shifts the bound-state energy as Eb → Eb + μ(1 − γ )
in 2D, or Eb + μ(1 − 2γ /3) in 3D, in agreement with Fumi’s
theorem [39] to leading order in γ . Redefining ν1 to include
these shifts, we find a contribution to the spectrum,

A1(ν1) � θ (ν1)

Eb
(1 − 2γ ln[ν1/μ]), (6)

in agreement with Eq. (4) when expanded in γ . This ex-
pansion has the same form as the perturbative expansion of
the polarization in the standard Fermi-edge singularity case
[45–47]. This was to be expected, as in the limit Eb → ∞
we can formally regard the diagrams H1,2 as polarization
diagrams containing a molecule and a bath fermion, with
an effective molecule-bath interaction γ . We expect higher-
order leading logarithmic (parquet) contributions to arise in
a similar fashion from diagrams containing a larger number
of holes.

Let us now address the modification of the molecule-hole
feature for a large but finite impurity mass M . The general
strategy is to reevaluate the frequency-domain diagrams of
Fig. 3(b) for finite mass [37], and trace the modification of
the logarithmic singularities [34,48–52]. Our results hold to
leading order in the mass ratio β = m/M only, but we expect
them to be qualitatively correct all the way up to β � 1. First,
introducing a finite mass shifts the binding energy, Eb →
Ẽb, but we will not compute those shifts in detail, limiting
ourselves to the form of the spectrum. In terms of ν1 =
ω + Ẽb, the real part of the logarithmic singularities is modi-
fied as ln (max[ν1 − βμ, γ 2βμ]/μ), again reminiscent of the

Fermi-edge singularity case [48]. In contrast to M = ∞, the
logarithmic singularities for finite mass are peaked at ν1 = βμ

(“direct threshold” [48]). This is simply understood: When
an incoming zero momentum impurity binds an electron and
leaves behind a low-energy hole, the resulting molecule must
have a momentum �kF by momentum conservation. Since the
molecule is now mobile, with mass M+ = M + m, one must
pay its recoil energy Erecoil � βμ, which shifts the maximum
of the logarithms to ν1 = βμ. Subsequently, the so created
molecule can decay into a zero momentum state, by exciting
an electron-hole pair. The rate of this indirect process is �1 =
γ 2βμ, leading to a cutoff of the logarithmic singularities.
Mathematically, this cutoff arises from the diagram Hc

2 , which
can be interpreted as a molecule self-energy diagram with an
imaginary part �1. For large frequencies, ν1 � Erecoil, one
recovers the infinite mass behavior ∝ν

−2γ

1 .
Apart from cutting off the singularity, the decay of the

molecule leads to a shift of the threshold from the direct to the
“indirect” one at ν1 = 0, which corresponds to the creation of
zero momentum molecules. Near the indirect threshold, the
spectrum starts continuously, with a power law ∝ν3

1 in 2D
and ∝ν

7/2
1 in 3D. This behavior is obtained by computing

the imaginary parts of diagrams H
a,c
2 , which yield the lead-

ing contributions in γ via standard phase space estimation
[34,37]. For a spinless Fermi sea, the two contributions cancel;
however, even in this case we expect that the power-law be-
havior is robust, since it is (a) determined from a generic phase
space estimate and (b) there may well be processes involving
three holes that yield the same behavior. Exponentiating the
logarithms [34], one finds the spectrum near both thresholds
to be

A1(ν1) � 1

Eb

(√
(ν1 − βμ)2 + (γ 2βμ)2

μ

)−2γ

θ (ν1)f1(ν1),

(7)

where f1(ν1) smoothly interpolates between f1(ν1) �
γ 2(ν1/βμ)3 in 2D and f1(ν1) � γ 2(ν1/βμ)7/2 in 3D, for
ν1 
 βμ, and f1(ν1) � π for ν1 � βμ. A typical plot of the
resulting spectrum is shown in Fig. 2 (blue feature in the lower
panel). Let us reiterate: The ground-state signal in the spec-
trum is purely incoherent, with maximum ∝(β )−2γ [53]; there
is no polaronic delta peak.

Results: The repulsive polaron spectrum. We now discuss
the repulsive polaron already predicted by the Chevy ansatz
[5,14,27,54–56]. For Eb � μ, the repulsive polaron contains
most of the spectral weight, ∼1 − μ/Eb, as seen in Fig. 1(b):
As Eb/μ → ∞, the repulsive polaron is essentially a spectral
probe of the impurity without the Fermi sea, with unit weight.
For infinite mass, the asymptotic form of the repulsive polaron
is given by the second term in Eq. (4), with ωth,2 � γμ in
2D and ωth,2 � 2

3γμ in 3D. To leading order in γ , A2(ν2) �
γ 2θ (ν2)/ν2, which reduces to a delta function as γ → 0.
This leading-order term can already be obtained from the
first-order diagram H1 for small positive frequencies. One
can also reproduce the full power-law singularity in a linked
cluster approach, formally exponentiating H1. Extending the
latter approach to finite mass, one finds a delta peak with
weight βγ 2

, on top of an incoherent background ∝1/
√

ν2
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(ω + Eb)/μ

μ/Eb

ν
(δ/π)2−1
1

FIG. 4. Sketch of the full 2D spectrum for general values of
μ/Eb. Thick lines indicate the threshold position determined from
Fumi’s theorem.

for ν2 
 βμ, similar to the results of Ref. [51]. In 3D, the
incoherent part is approximately constant. For much larger
frequencies ν2 � βμ, one recovers the infinite mass behavior

∝ν
γ 2−1
2 [37].
Thus, in a first approximation, the repulsive polaron is a

delta peak plus incoherent background. However, for finite
mass, the delta peak may be broadened due to decay into the
low-lying molecule-hole continuum, resulting in a finite width
�2. This width can be estimated by computing the self-energy
part of the diagrams H2 (called �2) at the repulsive polaron
threshold ν2 = 0. Note that, for infinite mass, the problem
becomes single particle [33], forbidding such a transition; this
behavior is reproduced by our calculations. Unfortunately, for
finite mass a complete evaluation of Im[�2(ν = 0)] is out of
reach. A simple estimate can be obtained from a golden-rule-
type expansion of �2 in T matrices [37], similar to Ref. [57];
we find, in 2D, �2 ∼ γ 2β

μ4

Eb
3 ; in 3D, �2 should still be small

in μ/Eb, but the scaling could be different. Putting everything
together, an approximate expression for the repulsive polaron
spectrum reads

A2(ν2) � (β )γ
2 �2

ν2
2 + (

1
2�2

)2 + f2(ν2), (8)

where f2(ν2) interpolates between the limits f2(ν2) �
γ 2/

√
βμν2 in 2D and f2(ν2) � γ 2/(βμ) in 3D, for ν2 
 βμ,

and f2 � 1/μ(ν2/μ)γ
2−1 for ν2 � βμ. A sketch is shown in

Fig. 2 (yellow feature in the lower panel).
Discussion. So far, we have only discussed the spectrum

in the molecular limit Eb � μ. In the opposite limit, the in-
fluence of the bound state should be negligible. The spectrum
of a heavy impurity without a bound state was computed in
Ref. [51], and we expect the same result here: a single feature
of a form similar to the repulsive polaron described above,
but with a delta peak that is not broadened, and singularity

exponents controlled by δ 
 1 for μ � Eb. Both known
limits (in 2D) are sketched in Fig. 4, along with the thresh-
olds as determined from Fumi’s theorem, which should be
approximately correct for large masses. Note that if we follow
the lower spectral feature, we see a “molecule-to-polaron
transition,” since, for μ 
 Eb, the single-particle spectrum is
fully incoherent, but fully coherent in the opposite limit. The
details of this transition/crossover [58] remain to be explored.
In particular, it would be interesting to analyze this in 3D,
where a vacuum bound state only forms at a > 0.

Let us also comment on the connection to quantum Monte
Carlo and experiments. A major difference is that the Monte
Carlo works extract the molecule solely from a pole in the
two-particle propagator. The latter was obtained in our recent
work [34], and we found essentially opposite behavior to the
one presented here, e.g., for Eb � μ, there is a sharp feature
related to the molecule, and a broad continuum at larger ener-
gies. However, here we have argued that the molecule emerges
as an incoherent ground-state feature in the single-particle
propagator as well. This seems to be in agreement with the
ultracold gas experiments in both 3D [1,2,4,5] and 2D [3],
while the results of the 2D TMD experiment are somewhat
less clear [8]. The incoherent molecule feature was not seen
in the “polaron spectra” of the recent Monte Carlo work [22],
possibly due to problems with analytical continuation. Finally,
let us note that most Monte Carlo works, in 3D [16–18,21,22]
and 2D [19,20], deal with the (almost) equal mass case, while
in the experiment also heavily mass-imbalanced 6Li-40K mix-
tures are used. Anyway, we do not expect significant changes
in the spectra for equal masses, except for the disappearance
of the orthogonality power laws beyond Erecoil.

Conclusion. We presented a controlled computation of
polaron spectra, providing the connection to the infinite mass
limit. We found that, for large binding, the attractive polaron
and molecule-hole continuum merge into a single incoherent
feature, and also gave a detailed description of the repulsive
polaron spectrum. Our work paves the way towards the study
of many impurity physics, including the effective interac-
tion between impurities, molecular condensate versus polaron
Fermi gas, etc. [59,60].
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