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We use a recently developed fRG method (extendend Coupled-Ladder Approximation) to study the 0.7 analog
in quantum point contacts, arising at the crossing of the first and second band at sufficiently high magnetic fields.
We reproduce the main features of the experimentally observed magnetic field dependence of the conductance at
the 0.7 analog, using a QPC model with two bands and short-range interactions. In particular, we reproduce the
fact that this dependence is qualitatively different, depending on whether the analog is approached from higher
or lower magnetic fields. We show that this effect can be explained qualitatively within a simple Hartree picture
for the influence of the lowest electrons.
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I. INTRODUCTION

In quasi-one-dimensional structures, such as quantum
wires or quantum point contacts (QPCs), an in-plane magnetic
field induces a Zeeman splitting of different spin subbands.
When this splitting equals the one-dimensional level spacing
introduced by the lateral confinement of the structure, one
finds crossing features similar to the 0.7 anomaly, as observed
at zero magnetic field. Therefore, these features are called 0.7
analogs [1]. The most prominent of these 0.7 characteristics
is the development of a shoulderlike structure in the conduc-
tance with increasing magnetic fields. In Fig. 1, one can see
this shoulder in the original 0.7 regime (dashed ellipse) as
well as the similar feature at the 0.7 analog (solid ellipse).
The apparent similarities have intertwined the explanation
attempts of 0.7 anomaly and 0.7 analogs, prominently fea-
turing spontaneous spin-polarization [2], and quasilocalized
states [3].

However, despite observed similarities, there are also fea-
tures specific to the 0.7 analog that have no counterpart for
the 0.7 anomaly. A striking example is the asymmetry in the
magnetic field dependence of the conductance, depending on
whether the analog is approached from higher or lower fields,
see Fig. 1, which is a annotated version of Fig. 1 in Ref. [1].
While the 0.7 analog resembles the 0.7 anomaly at higher
magnetic fields (green curve), the conductance curves at lower
fields (red curve) are much more symmetric and show no sign
of a 0.7 shoulder.

Some years ago, an interpretation of the 0.7 anomaly was
introduced in Ref. [4] that traces its origins back to the
structure of the noninteracting van Hove ridge in the local
density of states. This interpretation has been supported by
direct conductance calculations of the QPC via the functional
renormalization group (fRG). Following this approach, we use
here a recently developed extended coupled-ladder approxi-
mation (eCLA) fRG scheme [5] to study the features of the
0.7 analog at the crossing of the 1↑ and 2↓ spin subbands of
a QPC, working out the similarities and differences between
0.7 analog and 0.7 anomaly.

We argue that the 0.7 analog physics can be explained
in a similar manner as the 0.7 anomaly, evoking a smeared
van Hove singularity in the local density of states. However,
the effects of the electrons in the lowest spin subband are
of critical importance. We demonstrate that these electrons
cause the above-mentioned asymmetry in the magnetic field
dependence of the conductance and study its dependence on
the ratio of intra- to interband interaction strength.

II. THEORETICAL MODEL AND METHOD

A. Model

Since our goal is a qualitative understanding of the 0.7
analog physics, we use here the simplest model that should be
able to give us the relevant features. We model the lowest two
bands of the QPC via one-dimensional spinful tight-binding
chains with an intra- and interband short-ranged interaction.
The external magnetic field is modeled by a Zeeman term,
splitting the energies of spin up and spin down electrons. We
point out that, in experiments, one observes additionally to
the Zeeman effect also a diamagnetic shift with increasing
magnetic field. This shift is understood analytically [6], and
is expected not to be relevant for the qualitative physics
of interest here [1]. Therefore, we will omit this effect in
the present qualitative study, and concentrate on the physics
caused by the interactions. Our Hamiltonian will thus be of
the form

H = −τ
∑
i,s,σ

[c†isσ ci+1sσ + H.c.] +
∑
i,s,σ

Visσ nisσ

+
∑
i,s

U intra
is nis↑nis↓ +

∑
i,σ1,σ2

U inter
i ni1σ1ni2σ2 , (1)

where cisσ annihilates an electron at site i in band s with spin
σ ∈ {+,−} = ↑,↓, and nisσ = c

†
isσ cisσ is the corresponding

number operator. In our calculations, we will use the hopping
amplitude τ as unit of energy, i.e., we measure the on-site
energy, Visσ , as well as the intraband interaction, U intra

is ,
and the interband interaction, U inter

i , in units of τ . Within a
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FIG. 1. Figure 1 of Ref. [1] with some additional annotations.
As a guide for the eye, we colored three curves: The analog (blue)
of the zero-field conductance step as well as two curves at magnetic
fields �B = ±2.4T above (green) and below (red) of the analog of
the zero-field conductance step. The 0.7 anomaly is indicated by the
dashed ellipse, that of its analog by the solid one. Clearly this 0.7-like
behavior is only present if the analog is approached from above.

central region, i ∈ [−N,N ], we use the following form for
the potential term:

Visσ = Vg exp
[
− (i/N )2

1 − (i/N )2

]
+ V off

s + σ
B

2
. (2)

Here the first summand leads to a quadratic barrier top in
the middle of the QPC with curvature �x = 2

√
Vgτ/N and

corresponding characteristic length lx = a
√

τ/�x , with a be-
ing the lattice constant. The second term constitutes the band
offset (we choose V off

1 = 0, and therefore use the abbreviation
V off := V off

2 ) and the third term is the Zeeman splitting. To
illustrate these settings, we have plotted the potential structure
in Fig. 2.

Analogous to Ref. [4], we take both Vg as well as U intra
is ,

and U inter
i to be zero outside of the central region, where we

thus have two noninteracting tight-binding leads with the site
independent energy offset

Visσ = V off
s + σ

B

2
. (3)

Those can be integrated analytically and their contribution
absorbed in the self-energy � of the central region. Note that
this contribution will, however, depend on V off

s , as well as
B. The short-ranged interactions U intra

is and U inter
i are treated

as free parameters, chosen as site independent within the
middle of the central region, and reduced smoothly to zero
at its edges. All our calculations will be carried out in thermal
equilibrium at zero temperature, implying that all states below
the chemical potential μ are filled, all states above are empty.

FIG. 2. Schematic illustration of the potential structure for the
two spin-split bands, as given by Eq. (2). Note that the curvature of
the barrier, �x , is the same for all four subbands.

Our typical observable will be the linear response conduc-
tance through the system, and its dependence on the chemical
potential μ, as well as on the magnetic field B.

Note that to keep things simple and clear, we have made
here several simplifying assumptions. We omit any hopping
terms between the two bands, keep the offset between the
bands a site independent constant throughout the whole sys-
tem (in particular the barrier curvature for both bands is the
same) and omit any longer-ranged interactions. Furthermore,
in all our calculations we will keep Vg constant and vary
μ instead. In terms of the Fermi energy on the central site,
εF = μ − Vg , this is the same as varying Vg with constant μ,
but has the advantage that the bare curvature �x (Vg ) of the
barrier does not change.

B. Method

To determine the interaction-induced self-energy, �, and
two-particle vertex, γ , we use the recently introduced eCLA
fRG scheme [5] within a static implementation. This scheme
was originally designed to treat longer-ranged interactions. It
enables the treatment of our two-band model, since it is possi-
ble to map the Hamiltonian Eq. (1) onto a one-dimensional
chain model with longer-ranged interactions. For this, we
simply interleave the different bands, as sketched in Fig. 3,
leading to a new effective one-dimensional Hamiltonian, con-
taining interactions between neighboring sites:

Heff = −τ
∑
j,σ

[c†jσ cj+2σ + H.c.] +
∑
j,σ

Ṽjσ njσ

+
∑

j

Ũ intra
j nj↑nj↓ +

∑
j,σ1,σ2

Ũ inter
2j n2jσ1n2j+1σ2 . (4)

Here the new index is given by j = 2i + s − 1 (s = 1 is
band 1, s = 2 is band 2), and the coefficients are Ṽjσ = Visσ ,
Ũ intra

j = U intra
is , and Ũ inter

j = U inter
i . We will sometimes use

α = (s, σ ) as composite species index.
This Hamiltonian is now in a form suitable for the eCLA

approach. Without going into detail, we just point out that this
method depends crucially on a dimensionless parameter, L,
called the feedback length in Ref. [5], which determines the
spatial extent of the renormalized vertex, γ . This L has to
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FIG. 3. Schematic procedure of interleaving the two bands. Note
that in the effective chain, we get again on-site, as well as anisotropic
nearest neighbor interactions.

be chosen large enough to reach convergence, and we will
comment on the convergence properties in the beginning of
the next section.

Finally, the calculation of the zero-temperature linear
response conductance, g = h

2e2
∂I
∂V

, from the self-energy
obtained with our fRG method, is carried out via the
formula [7–9]

g = 1

2

∑
σ,s

∣∣2πρσs (μ + i0+)Gσs
−NN (μ + i0+)

∣∣2
, (5)

where ρσs is the density of states on the first lead site for spin
σ and band s, and Gσs

−NN is the propagator for a electron in
band s with spin σ from the leftmost to the rightmost site of
the central region.

III. RESULTS

We use the following general settings in this section: The
band offset is chosen as V off = 0.1τ and N = 30, therefore
the total number of spatial sites in the central region is Ntot =
61 and correspondingly the total number of effective sites in
Eq. (4) is Neff-tot = 122. Furthermore, except for Fig. 6, we set
Vg = 0.5τ , implying a curvature �x ≈ 0.05τ .

In Fig. 4(a), we show the noninteracting, as well as the fully
L-converged conductance for our two-band model, with the
simplest nontrivial interaction configuration, U intra

is = U inter
i =

0.7τ . These values correspond to a typical value for the
onsite interactions in a one-band QPC used in Ref. [4].
The main changes caused by the interaction are the slightly
more asymmetric shape of the conductance steps, and the
shift to larger chemical potentials observed for the second
step. Qualitatively, this shift is caused by the additional
interaction energy between the electrons of the two bands
(Hartree shift).

A. Convergence in L

Before we proceed, let us first discuss the convergence
of our method with respect to the feedback length L. For a
one-band QPC with onsite interactions, L has to be of the
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FIG. 4. (a) Conductance g for the non- as well as the interacting
system for L = 10 as function of μ. (b) Difference between the
conductance for several L values to the converged result (at L =
Lmax = 10). We see that convergence is achieved around L = 5.

order of the characteristic length of the harmonic barrier top
to achieve convergence: L ≈ lx/a, with the lattice spacing a.
For our interleaved two-band system, we would thus simply
expect L ≈ 2lx/a, since the effective distance between two
points of the same band is doubled and the effect of the
now-finite interaction range on the convergence should be
negligible, since the introduced nearest-neighbor interaction
is still much shorter than lx . In Fig. 4(b), the convergence
behavior in L is shown. We see that the convergence for
the two-band model is achieved around L ≈ 5. Since in our
system lx ≈ 4.6a, this shows that L can in fact be chosen
smaller than the naive guess, L ≈ 2lx/a, indicating stabilizing
feedback effects between the two bands.

As a side remark, we point out that the finite extent of the
renormalized vertex beyond the lowest value (i.e., L > 1) is
actually important to treat the screening properties between
the two bands. This will be seen in the next section when we
study the magnetic-field dependence of the conductance.

B. Small magnetic field

Before we look at the 0.7 analog, we want to take a brief
look at the properties of the conductance at magnetic fields
much smaller than the band spacing, B � V off, see Fig. 5,
solid curves.

There are two main observations we make here: First,
we see that the magnetic-field dependence of the second
step is more symmetric, indicating that the interaction of the
electrons in the second band is screened by electrons in the
first band. Second, we see that the second conductance step is
broader than the first one. This feature can be qualitatively
understood in a simple Hartree picture: While increasing
μ during the second step, electrons are still filling up the
lowest band, leading to a increasing Hartree shift for the
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FIG. 5. Solid curves: Conductance at low magnetic fields, i.e.,
with B � V off = 0.1τ ≈ 2.12 �x and U intra = U inter = 0.7τ . The
second spin-split double step is more symmetric and broader than
the first. Dotted curves: Spin resolved electron densities nα on the
central QPC site for B/�x = 0 (blue) and B/�x = 1.06 (black).
Note the damping that appears in nα whenever a different particle
species enters the QPC.

electrons in the higher band. As a result, the second step gets
broadened.

To further validate this explanation, we can compute an
estimate for the observed broadening via

�E = U inter(�n1↓ + �n1↑)a, (6)

where �n1σ is the total change of the first-band spin-σ density
at the center of the QPC during the second conductance
step. Instead of considering a “pure” Hartree effect where
one would use for n1σ only the density of a system without
interband interaction, we can improve on that by using the
actual fully interacting densities that we obtained from our
fRG calculation. These densities are given by

nα
i =

∫ μ

−∞
dωAα

i (ω), (7)

where the local density of states at site i for particle species
α, Aα

i (ω) = − Im Gα
ii (ω)/π is given by the imaginary part of

the fully interacting retarded electron propagator Gα
ii (ω). It is

instructive to take a quick look at these densities themselves:
In Fig. 5, we have plotted the density for the different particle
species in the center of the QPC, nα ≡ nα

0 (dotted curves).
Each time a new particle species enters the QPC, the increase
of any other species nα is slowed down, or “damped,” due to
the corresponding interaction. The damping of n1σ during the
second conductance step will lead (starting in second order
in U inter) to a reduction of the pure Hartree broadening of
that step. We see that the damping in n1σ is most pronounced
at B = 0, when both n2↑ and n2↓ particles enter the QPC
at the same time. Correspondingly, the width of the second
conductance step is only slightly larger than that of the first.
On the other hand, for B/�x = 1.06, the damping in n1σ is
relatively small, leading to a pronounced broadening of the
second conductance step. Using Eq. (6), the effective Hartree
broadening can be obtained from the change of the densities
n1σ during the second conductance step. For example, in
the B/�x = 1.06 case, the second conductance step occurs
between μ/�x ≈ 3.3, with densities n1↓ ≈ 0.12/a, n1↑ ≈

6 8 10 12
μ/Ωx

1.0

1.5

2.0

g

B/Ωx

0.00
0.17
0.34
0.50

6 8 10 12
μ/Ωx
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0.50

(a)

L = 1

(b)

L = 5

FIG. 6. Magnetic field dependence of the second conductance
step. (a) L = 1, (b) L = 5. We see that the second conductance step
is more symmetric in the L = 5 case, indicating a better screening of
interactions in the second band.

0.08/a, and μ/�x ≈ 7.8, with densities n1↓ ≈ 0.15/a, n1↑ ≈
0.13/a. Therefore, the effective Hartree broadening given by
Eq. (6) is

�E ≈ 0.7τ · [(0.15 − 0.12) + (0.13 − 0.08)]

= 0.056τ ≈ 1.1�x. (8)

This result can be compared with the observed broadening
of the second conductance step: The widths of the steps
are �μstep 1 ≈ (2.4 − (−1.2))�x = 3.6�x and �μstep 2 ≈
(7.8 − 3.3)�x = 4.5�x , leading to a relative broadening of
�μstep 2 − �μstep 1 ≈ 0.9�x , which is in qualitative agree-
ment with Eq. (8). The effect that the electrons in the first
band change the form of the second conductance step is
quite generic and will be also encountered in the 0.7 analog
case.

Here it is also interesting to look at the L-dependence of
the conductance with various magnetic fields. Particularly for
longer QPCs, where lx � 5a, the increase in L has a visible
impact, see Fig. 6.

For L = 1, the second conductance step is very asymmet-
ric, but becomes more symmetric with increasing L, due to
the screening of the interaction in the second band instigated
by electrons in the first band. The curvature, �x ≈ 0.03τ

(Vg = 0.2τ ), which we used here, is comparable to the one in
a previous fRG study [10] of the two-band model. However,
in that work, the results were not converged in L, therefore
underestimating screening effects.

C. 0.7 analog at large magnetic field

Having studied the properties of the two-band model at
low magnetic fields, we are now prepared to tackle the 0.7
analog. This analog appears at the crossing of the 1↑ and
the 2↓ spin subbands at a magnetic field, B = Bc, which is
of the order of the energy separation of the two bands V off

(determined by the confinement in the lateral direction). This
situation resembles the situation given in the 0.7 anomaly,
in the sense that two particle species are competing while
trying to get through the QPC. Therefore, one might naively
expect that the 0.7 analog shows the same features as the
0.7 anomaly. However, this is only partially true. While for
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FIG. 7. (a) Conductance curves for B � Bc = 0.1τ ≈ 2.12 �x

and (b) for B � Bc at equal intra- and interband interaction strengths.
In (b), the dotted curve is the manually shifted curve, �B/�x =
−0.64, from (a). We see that it has exactly the same form as
the corresponding curve for �B/�x = 0.64. The quantities �μ1↑,
�μ2↓ measure the width of the corresponding half-steps and �p

indicates the pinch-off shift between �B < 0 and �B > 0, see also
Fig. 8.

�B = B − Bc > 0 the experimentally measured conductance
shows the typical feature of 0.7 physics, namely the develop-
ment of a shoulder with increasing magnetic field, this feature
is missing for �B < 0.

In trying to understand the underlying physics, we first
start with the simplest interaction model, U intra

is = U inter
i ≡

U = 0.7τ , which we already used in the last sections. Figure 7
shows the resulting conductance.

We make two main observations: First, the curves for
�B < 0 lie approximately symmetrically around the Bc

curve, while the �B > 0 curves do not. However, second, the
actual shapes of corresponding curves, i.e., for B = Bc − �B

and B = Bc + �B, are very similar, they are just offset by
different amounts.

This behavior can be understood by a similar argument
as used for the broadening of the conductance step in
the low magnetic field case above. As already mentioned,
in a case with only 1↑ and 2↓ particles, the situation
would be completely symmetric. Therefore the different be-
havior must stem from the other particles in the system.
Since, in the analog case, the 2↑ spin subband lies much
higher than the chemical potential and is therefore empty,
the 1↓ particles must be responsible for the change of
situation.

Both of our observations can be explained by taking the
effect of the 1↓ electrons in a simple Hartree argument into
account: The Hartree shift on particle species α induced
by the 1↓ particles in the center of the QPC is given by
Eα

H = Uαn1↓a, where Uα denotes the appropriate interaction
(U intra for α = 1↑, U inter for α = 2↓). Assuming that the
chemical potential μ is already far above the 1↓ van Hove
ridge, A1↓(ω) ≈ A1↓ will be approximately constant, and
the Hartree shift will be approximately of the form Eα

H ≈
Uα (nc

1↓ + (μ − b1↓)A1↓)a, with a constant nc
1↓ and the barrier

top of the 1↓ particles given by b1↓ = Vg − B
2 . Leaving the

other interactions aside for a moment, we can readily write
down the μ- and B-dependence of the renormalized barrier

tops of the 1↑ and 2↓ particles:

b1↑ = Vg + B

2
+ E1↑H (B,μ),

b2↓ = Vg + V off − B

2
+ E2↓H (B,μ). (9)

The qualitative behavior of this equations is shown in Fig. 8,
and provides a good explanation for the observed phenomena:
In contrast to the noninteracting case [Fig. 8(a)], we obtain
for U intra = U inter a pinch-off asymmetry, �p, between the
pinch-offs at magnetic fields above and below the analog,
see Fig. 8(b). Taking into account the interaction between
1↑ and 2↓ (whose main effect is a broadening of the second
half-step), this results in the more symmetric arrangement of
the two half-steps around the crossing curve for �B < 0, and
to a more asymmetric situation in the �B > 0 case. However,
we see that the shape of corresponding curves is the same
since the μ-width of the half-steps, �μ1↑ and �μ2↓, is equal.

If we compare this to experiment [1], we see that this
setting reflects only partially the experimental situation: While
the half-steps are indeed arranged more symmetrically for
�B < 0 than for the �B > 0 case, also the form of the
corresponding curves themselves differs substantially in ex-
periment. For �B > 0, the conductance curves are much
more asymmetric in the μ behavior, developing a 0.7 analog
plateau, while for �B < 0 they are not. To analyze this quan-
titatively in our calculation, we introduce the “conductance
asymmetry” �g(μ) = gm(μ) − g(μ), where gm(μ) is the
mirror image of g(μ) around the point g(μ)/g0 = 1.0 under
reflection in both the horizontal and vertical direction. The
more asymmetric the conductance curve is in μ, the larger gets
the modulus of �g. This is illustrated in Fig. 9(a). Figure 9(b)
shows the dependence of this asymmetry �g on the magnetic
field. We see that contrary to the experiment the asymmetry is
equally strong above and below the crossing value Bc.

This indicates that our description up to now lacks an
important ingredient. We will argue in the following that this
is due to the unphysical choice U intra = U inter. Generically,
one would expect U inter < U intra

2 < U intra
1 . The first statement

is due to the smaller overlap of the transversal wave functions
between different bands, the second because the transversal
wave function in the second band is spread out wider than
in the first band. Both effects lead to a weakening of the
effective one-dimensional interaction strength. Estimates for
the ratios of this different interaction strengths can be ob-
tained in a similar manner as in Ref. [5], see Appendix, and
yield U intra

2 /U intra
1 ≈ 0.77 and U inter/U intra

1 ≈ 0.36. Keeping
our previous U intra

1 fixed, this leads approximately to U intra
2 =

0.5τ and U inter = 0.3τ .
To investigate the influence of these differences in interac-

tion strength, we proceed in two steps. In the ideal case where
the analog region is well separated from the 2↑ conductance
step, we expect that the influence of U intra

2 at the analog is
not important, since the barrier for the 2↑ electrons is way
above the chemical potential. Therefore, we will first keep
U intra

2 equal to U intra
1 = 0.7τ and investigate the influence of

a reduction of U inter = 0.3τ alone. In Fig. 10, we show the
resulting conductance curves. Again, we encounter a pinch-
off shift of the higher spin subband steps; however, due to
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FIG. 8. Schematic behavior of the Hartree renormalized barriers of the 1↑ (red) and 2↓ (blue) particles as function of μ and B. The colored
regions indicate where |bα − μ| < �x/2, i.e., the regions within which the conductance steps occur. (a) Noninteracting case: Bc = V off, no
pinch-off asymmetry, no shape asymmetry. (b) U intra = U inter: Bc = V off, pinch-off asymmetry (�p > 0), no shape asymmetry. (c) U intra >

U inter: Bc < V off, pinch-off asymmetry (�p > 0) and shape asymmetry (�μ1↑ > �μ2↓).

the different interaction strengths, the crossing point Bc is
now shifted, too. More importantly, we see that in addition
to the pinch-off asymmetry, also the shape of corresponding
curves for �B < 0 and �B > 0 differ, the curves for �B < 0
being much more symmetric than the �B > 0 curves. This
is the behavior also observed in experiment and for further
reference, we will call it the “shape asymmetry.”

These features can be readily explained with our Hartree
picture for the renormalized barrier positions Eq. (9). Their
behavior for U intra > U inter (i.e., the Hartree shift for the 2↓
subband is smaller than for the 1↑ subband) is shown in
Fig. 8(c). We see two immediate effects: (i) The 2↓ subband
is shifted to lower values of μ and therefore the value of the
magnetic field Bc, where the two subbands cross is shifted
to lower magnetic fields, as encountered in the Fig. 10, and
(ii) the width �μ2↓ of the 2↓ half-step is decreased, therefore
yielding the shape asymmetry: For �B < 0, the first half-step
(1↑) is broader than the second half-step (2↓), thus counter-
acting the asymmetry introduced by the interband interaction
between the competing particles themselves and leading in

0 1 2 3 4 5
μ/Ωx

0.0

1.0

2.0

g

0 1 2 3 4 5
μ/Ωx

-0.4

0.0

0.4

Δ
B

/
Ω

x

0.0

0.1

Δ
g

0.0 0.1

Δg

(a) (b)

FIG. 9. Illustration of the asymmetry in μ. (a) Conductance
curve �B/�x = −0.64 from Fig. 7 (black), together with its mirror
image (red) under inversion around the g = 1.0 point, and the
difference �g between the two curves (blue). (b) Colorplot of �g

as a function of magnetic field and chemical potential. We see that
the strength of the curve asymmetry is symmetric around Bc.

total to a more symmetric curve. For �B > 0, the effect is
reversed, leading to a more asymmetric curve.

Furthermore, Fig. 8(c) exhibits a third interesting, albeit
less pronounced feature: Due to the smaller interaction with
the lowest electrons, the μ-width of the 2↓-strip is smaller
than the width of the 1↑-strip and therefore the two middle
corners of the intersecting diamond [light pink region in
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g
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ΔB
Ωx

0.00
-0.21
-0.42
-0.63

0 1 2 3 4
μ/Ωx

-0.4

0.0

0.4

Δ
B

/
Ω

x

(c)
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U intra
1 = U intra
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FIG. 10. (a), (b) same plot as in Fig. 7, but for larger intra- than
interband interaction (U intra

1,2 = 0.7τ , U inter = 0.3τ ), resulting in Bc ≈
1.48�x . In (b), the dashed curve is again the �B/�x = −0.63 curve
from (a), manually shifted such that it intersects the corresponding
�B/�x = 0.64 curve at the g/g0 = 1 point. However, contrary to
Fig. 7(b), the shape of the two curves does not coincide. (c) Colorplot
of the shape asymmetry. In contrast to Fig. 9(b), we see that the
asymmetry is clearly stronger for �B > 0 than for �B < 0.
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FIG. 11. Zoom of Fig. 1. Note the slight kink that occurs at the
onset of the blue 0.7 analog curve compared to the steep onset of the
B = 0 curve (circled areas).

Fig. 8(c)] do not lie on the Bc line, but are shifted slightly
upward or downward from it. Directly at the Bc line, i.e.,
at the 0.7 analog, the broader 1↑ and the thinner 2↓ steps
superimpose symmetrically, which leads to a conductance
curve with slightly less steep parts at the onset and at the
end in μ direction. Since the Hartree picture we use in Fig. 8
takes only the interaction with the 1↓ electrons and not the
interaction between the 1↑ and 2↓ electrons themselves into
account, we expect this small effect to be most prominent at
the onset of the second conductance step. In the experimental
data, one might interpret the slight kink that occurs at the onset
of the blue 0.7 analog step, compared to the smooth B = 0
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FIG. 12. (a), (b) same plot as in Figs. 7(a) and 7(b) and
Figs. 10(a) and 10(b), but for three different interactions: U intra

1 =
0.7τ , U intra

2 = 0.5τ , and U inter = 0.3τ . In comparison to Fig. 10,
the crossing point is slightly reduced to Bc = 1.43�x ; however, the
asymmetry persists. (c) Colorplot of the shape asymmetry, which
stays very similar to Fig. 10(c).

-2 0 2 4 6

μ/Ωx

-0.5

0.0

0.5

1.0

Δ
B

/
Ω

x

0

0.5

1.0

dg/d(µ/Ωx)

FIG. 13. Colorplot of the transconductance as function of B and
μ. Note the more pronounced asymmetry at the �B > 0 than the
�B < 0 part of the crossing region.

curve, as a result of the described effect, compare circled
onsets in Fig. 11. However, this feature is quite weak and
could also be caused by other causes, e.g., a gate-dependent
deformation of the QPC potential. Furthermore, we do not
observe any visible effect of this kind in our fRG calculations,
see Fig. 10.

As a last step, we finally also reduce U intra
2 = 0.5τ < U intra

1 .
The results are shown in Fig. 12. We see that the reduction of
U intra

2 slightly shifts the crossing point Bc to lower values of
the magnetic field; however, the shape asymmetry introduced
by the lowering of U inter stays intact. Thus, in terms of Fig. 8,
the net effect of the reduction of U intra

2 is simply a slight shift
of the blue 2↓ barrier top position stripe to the left, i.e., to
lower values of μ, without changing its slope.

D. Limitations

A limitation of our static zero temperature calculation is
that we have no access to inelastic processes. We suspect that
this leads to a main difference between our results and experi-
mental observations, namely that we do not see a pronounced
finite temperature plateau in the conductance. This can be
clearly seen by comparing the transconductances dg/dμ, see
Fig. 13, where we do not observe the “gap” at �B > 0 as in
the experimental data, cf. Fig. 2(a) in Ref. [1] or Fig. 1(b) in
Ref. [11]. However, we also see in the transconductance, that
for �B > 0 the broadening of the conductance curve in the
second half-step is more pronounced than for �B < 0, where
the half-steps are more symmetric in position as well as slope.

IV. CONCLUSION

We have studied the 0.7 analog in QPCs using a two-
band model with intra- and interband onsite interactions and
found that we could qualitatively reproduce the magnetic field
dependence of the conductance around the analog. In partic-
ular, we could reproduce the asymmetry in the conductance,
depending on whether the analog is approached from higher
or lower magnetic fields.

Due to our use of a static fRG scheme, we were not able to
investigate finite temperature properties of the analog, which
is an interesting direction for further research.
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APPENDIX: ESTIMATE OF THE QPC
INTERACTION STRENGTHS

Following the approach of Ref. [12], we calculated in
Ref. [5] the intraband interaction for a QPC with a single band

that resulted from a screened Coulomb interaction. This was
done by taking only the ground state φ1 of the transversal
y direction (in the two-dimensional electron gas plane) into
account. Since the confinement in y direction can be ap-
proximated by a harmonic potential, φ1 is simply the ground
state of a harmonic oscillator. In a QPC with two bands, we
additionally also take the first excited state of the harmonic y

confinement into account. The computation of the resulting
matrix elements for the interaction between two effective
one-dimensional states at x0 and x1 can be done analogously
to the one-dimensional case and yields in terms of integrals
over the relative coordinate r in the transversal direction:

U intra
1 (x0, x1) = (

l2
y (x0) + l2

y (x1)
)− 1

2

∫
dr g(r ), (A1)

U intra
2 (x0, x1) = (

l2
y (x0) + l2

y (x1)
)− 9

2

∫
dr g(r )

[
3l2

y (x0)l2
y (x1)

(
l2
y (x0) + l2

y (x1)
)2 + (

l2
y (x0) + l2

y (x1)
)

× (
l4
y (x0) − 4l2

y (x0)l2
y (x1) + l4

y (x1)
)
r2 + l2

y (x0)l2
y (x1)r4

]
, (A2)

U inter(x0, x1) = (
l2
y (x0) + l2

y (x1)
)− 5

2

∫
dr g(r )

[
l4
y (x1) + l2

y (x0)
(
l2
y (x1) + r2

)]
, (A3)

where ly (x) is the (x dependent) characteristic length in y direction, e the electron charge, κ the dielectric constant, and g(r )
(which consists of the screened Coulomb interaction, as well as the lateral confinement) is given by

g(r ) = e2

κ

[
1√

(x0 − x1)2 + r2
− 1√

(x0 − x1)2 + r2 + l2
s

]
e−r2/(2(l2

y (x0 )+l2
y (x1 ))), (A4)

where ls is the screening length. All these contributions are logarithmically divergent for x0 → x1. In this work, we make the
simplest approximation and ignore the position dependence of the U ’s, by setting them to their value in the QPC center. Then
we obtain for the ratios of the different effective interaction strengths used in Sec. III C:

U intra
2

U intra
1

= lim
x1→0

U intra
2 (0, x1)

U intra
1 (0, x1)

≈ 0.77, (A5)

U inter

U intra
1

= lim
x1→0

U inter(0, x1)

U intra
1 (0, x1)

≈ 0.36, (A6)

where in the last step we used a ratio ls/ ly (0) = 3, which could, for example, be realized in a QPC with ls = 50 nm and
ly = 17 nm, which corresponds in a GaAs 2DEG to a curvature �y = 2 meV.
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