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1 INTRODUCTION

1 Introduction

Applying the principles of quantum mechanics to many-body physics led to a better understand-
ing of strongly correlated electronic systems. It still poses a challenge to describe these systems
realistically, but both the theoretical and experimental sides are improving with every single
day. Strong electronic correlations arise mostly in materials with partially filled d- or f-shells
(such as iron, copper, vanadium and their oxides) and they are of great interest. Whether the
material is in its metallic or insulating state, depends on many parameters, e.g. temperature,
chemical potential, electron filling (of an atomic site), magnitudes of the interaction (intra- and
inter-band interactions) and of the kinetic scales.
To describe these strongly correlated systems, a today widely accepted model was introduced,
the Hubbard-model [1, 2, 3]. Accordingly, it captures the competition between the kinetic and
interaction term of the electrons on an arbitrary lattice, which is a key feature of these sys-
tems. Taking the two limits, the atomic limit with a powerful Coulomb repulsion and the
non-interacting limit, gives us better insight how these materials behave. For the first case, one
can observe the Mott phenomenon, where the electrons become localized and hence the solid is
a Mott insulator. As for the latter case, the electrons are itinerant, i.e. they move (quantum
tunnel) freely between the atomic sites and hence the solid is a conductor. The ambition of
our dissertation is to understand the nature of the Mott-Hubbard metal-insulator transition of
a multi-band Hubbard model under controlled conditions and parameters. In this more complex
model we will see the importance of the Hund’s coupling and see how it affects the Mott tran-
sitions. Finally, we will observe the physics of the crystal fields where the orbital-degeneracy of
the multi-orbital Hubbard model is lifted.
Striving for a numerical solution of the Hubbard Hamiltonian, we will treat the whole system in
the Dynamical Mean-Field Theory (DMFT) [4, 5, 6]. This theory provides a non-perturbative
way to handle strongly correlated systems. Basically, it assumes a local self-energy with fully
screened Coulomb intearactions and it maps self-consistently the many-particle lattice onto an ef-
fective quantum impurity model. The results become exact in the limit of infinite dimenisons but
during the theoretical calculations in the framework of the DMFT one stumbles upon fermionic
many-particle wave functions, which are infamously difficult to handle. In order to make the
numerical calculations tractable, there were many approaches considered in the last few decades
[7, 8, 9]. In the following we will use the Numerical Renormalization Group (NRG) as the impu-
rity solver for the DMFT [10, 11, 12]. The NRG method provides an iterative way to diagonalize
the Hamiltonian of the effective impurity model and with that a way to determine its energy
spectrum (or its spectral function). As we will see, it is crucial for the DMFT iterations to have
NRG results with sufficient accuracy, because otherwise the computations can lead to unreliable
outcomes.
The resulting characteristic spectral functions give information about the physical properties of
the strongly correlated systems. By analysing them, we can tell if the system is in a metallic
or in a Mott insulating phase at different interactions and we can map out the phase diagrams
of the Hubbard models. In these phase diagrams we will see a coexistence regime between the
pure phases, called the hysteresis, where we can stabilize both metallic and insulating solutions.
Our main question is, how does the phase diagram (and the hysteresis) look like if we vary the
interaction terms. Concerning this question, we will investigate the single-band, degenerate and
semi-degenerate (or crystallic) multi-band Hubbard models.
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2 Theory

2.1 Dynamical Mean-Field Theory (DMFT)

A wide variety of numerical techniques and analytical methods have been used to treat strongly
correlated electron systems. Many physical characteristics come from the competition of the ki-
netic energy and Coulomb interaction of the electrons. One possible way to treat the correlated
lattice fermions is to take the limit of infinite dimensions [4, 5, 6]. In this limit the computations
are simplified while the competition of energies is retained. A. Georges and G. Kotliar managed
to map the Hubbard model (a lattice model) onto a self-consistent quantum impurity model
- a set of local quantum mechanical degrees of freedom that interacts with a non-interacting
bath [5]. This construction provides the basis of the Dynamical Mean-Field Theory (DMFT) of
correlated electrons. Considering the DMFT while increasing the number of neighbours (like in
the limit of infinite dimensions: d→∞) leads to exact solutions. How the correlated system is
affected by computing with high dimensions can be seen in Appendix A.
Thus the main principle of the mean-field theory is to map (to reduce) a many-body lattice
problem to a single-site problem with effective and local parameters. Accordingly, it takes out
a single atomic site while the rest of the crystal acts as a reservoir of non-interacting electrons
that can be absorbed in the site. The environment allows the atom to make transitions between
different configurations, i.e. to change the number of the electrons on the site. This constant
change of the on-site electron filling makes the mean-field theory dynamical. In order to include
the ability of electrons to hop on and off a given atomic site (impurity) on a time scale 1/ω, a
hybridization term ∆(ω) needs to be introduced. This approach is like the Anderson impurity
model [13] but with an additional self-consistency condition, discussed with (2.1.26). For the
computations of the quantum impurity model, a certain analytical or numerical method is re-
quired. There are different methods, such as the Quantum Monte Carlo (QMC) method [7, 8]
or the Exact Diagonalization (ED) [9]. In our case, we will use the Numerical Renormalization
Group (NRG), which will be discussed in Sec. 2.2. The strength of the hybridization has a
significant influence on the physics of the material. If the hybridization is small, the electrons
are almost entirely localized at a lattice site, on the other hand if it is large, then the electrons
can move more freely throughout the crystal. As we can see, it is similar to the nature of the
Hubbard model, because there is a competition between the localized and de-localized tenden-
cies. Thus the transformation of the Hubbard model into the Single-Impurity Anderson Model
(SIAM) is well-founded.

In order to derive the general DMFT equations we assume that both the band structure (which
leads to a certain kinetic amplitude t) and the strength of the Coulomb interaction (V ) are
known. In general the Hubbard Hamiltonian can be written as

H =
∑
ijαβσ

tαβij c
†
iασcjβσ +

1

2

∑
ijkl

αβγδσσ′

V αβγδijkl c†iασc
†
jβσ′clδσ′ckγσ . (2.1.1)

First for our purpose, we are only interested in a single band, thus the on-site Hubbard interaction
simplifies to U = Viiii. The extension to the multi-band model affects the local interactions
(which is described in the section of the multi-orbital Hubbard model (2.4.4) and also the coupling
or hybridization to the non-interacting bath Appendix D.

H = Hkin +Hint (2.1.2)

with Hint = U
∑
i

ni↑ni↓ , (2.1.3)

Hkin =
∑
〈ij〉σ

tijc
†
iσcjσ =

∑
kσ

εkc
†
kσckσ , (2.1.4)

where tij in the tight-binding approximation is the hopping amplitude among the nearest neigh-
bour sites i and j. The Fourier transform of tij yields the dispersion relation εk in momentum
space. In order to describe a dynamical, strongly correlated system, an important dynamical
quantity, the retarded one-particle Green’s function needs to be introduced ([14] Sec. 5). In
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general the Green’s function GAB is defined as the expectation value of operators A and B
measured at different times t

GAB(t) = 〈〈A;B〉〉t ≡ −iΘ(t)〈{A(t), B(0)}〉T . (2.1.5)

The system is considered as a grand canonical, thermodynamic ensemble, i.e. the expectation
value of a physical observable O is given by

〈O(µ)〉T =
Tr
[
Oe−β(H−µN)

]
Tr
[
e−β(H−µN)

] ,

with the chemical potential µ, particle number N and the inverse temperature β ≡ ~/kBT . In
imaginary time if the operators A and B are the fermionic annihilation and creation operators
cν(τ), c†ν(0), then the Green’s function gives the probability amplitude for the propagation of a
particle (or hole) excitation with arbitrary set of quantum numbers ν = {spin, momentum, orbital},
that is, the probability amplitude required to create an electron with spin σ (↑ or ↓), momentum
k, band m at a site i at imaginary time τ = 0 and to destroy it at the same site (local) at a later
time τ

G(ν; τ) ≡ −〈Tcν(τ)c†ν(0)〉T ≡ −

{
〈cν(τ)c†ν(0)〉T , if τ > 0

−〈c†ν(0)cν(τ)〉T , if τ ≤ 0 ,
(2.1.6)

with T , the fermionic time ordering operator. The time evolution of the operators is provided by
the Heisenberg picture, with A(τ) = eHτAe−Hτ . Using the Fourier transformation, the Green’s
function in momentum space with imaginary times (also called as Matsubara Green’s function,
more details in [15]) yields

G(ν; iωn) =

∫ β

0

dτ G(ν; τ)eiωnτ , G(ν; τ) = T

+∞∑
n=−∞

G(ν; iωn)e−iωnτ , (2.1.7)

with fermionic Matsubara frequencies iωn = 2πT (n+1/2). The Green’s function of a free single-
particle, using the definition and the time evolution in the Heisenberg picture (Appendix C),
can be written as

G0(ν;ω) =
1

iω − εk
, Gret0 (ν;ω) =

1

ω − εk + i0+
. (2.1.8)

Gret0 (ν;ω) is the Green’s function which is defined only on the time domain that involves real-
time Heisenberg operators. The subscript ‘0’ denotes that these are the Green’s functions of the
free, non-interacting particles. A more practical and measurable quantity is the spectral function
A(ν;ω), defined as:

A(ν;ω) ≡ − 1

π
ImGret(ν;ω) ⇒ A0(ν;ω) = δ(ω − εk) , (2.1.9)

where in the second part, the Green’s function of the free particle Gret0 (ν;ω) was inserted and
a Dirac identity was used, described in Appendix B. (2.1.9) shows a δ-peak right at the excita-
tion energy εk. The spectral function of a many-body system is hence a composition of many
δ-functions, weighted by the probabilities of each excitations. Considering the probability am-
plitudes of the different transitions between the eigenstates and averaging in the grand canonical
ensemble (since the particle number changes with time), one gets the Lehmann representation
of the spectral function A(ν;ω)

A(ν;ω) =
1

Z

∑
n,m

〈n|c†ν |m〉〈m|cν |n〉(e−βEm + e−βEn)δ(ω − (En − Em)). (2.1.10)

This representation uses the set of eigenstates {|n〉} of the Hamiltonian H = H−µN as basis set
with the eigenvalues En. In (2.1.10) Z = Tre−β(H−µN) is the grand canonical partition function.
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The spectral function A(ν;ω) is normalized and positive semi-definite ([16], p. 134.)∫ ∞
−∞

dω A(ν;ω) = 1 , with A(ν;ω) ≥ 0 .

With these properties the spectral function A(ν;ω) can be interpreted as a probability density,
i.e. A(ν;ω)dω is the probability for a particle with quantum numbers ν to have an energy lying
in [ω, ω + dω]. Hence, the spectral function is similar to the density of states at a given energy.
This is evident since the occupation nν of a given state |ν〉 is for fermions given by

∫ ∞
−∞

dω A(ν;ω)nF (ω)

T→0
nF→Θ(−ω)

=

∫ 0

−∞
dω A(ν;ω) = n̄ν ≡ 〈c†νcν〉T , (2.1.11)

with the Fermi-Dirac distribution nF (ω, T ). For a given spectral function, (2.1.11) shows that
if we take the integral for energies ω < 0 (electron propagating from an excited state to its
ground-state or equivalently hole-excitation) we get the average number of the particles with the
set of quantum numbers ν. The same applies for the number of holes for the positive energies
(particle-excitations) ω > 0. For instance if there are more holes on the site than particles, the
weight of the left side of the spectral function will be smaller relative to the right side, since the
more holes the site has, the more particle-excitations are possible. Also, if the particle-state |ν〉
is far below the Fermi surface then n̄ν ≈ 1, since it is unlikely that this low-energy particle gets
excited. This result in fact can be derived from (2.1.11), since εν � EF and the width of A(ν;ω)
is also small compared to EF makes the Fermi function nF (ω, T ) approximately unity. The rest,
A(ν;ω), integrates to 1, hence the expected result follows. Using the spectral function one can
express the Green’s function in the spectral representation, which is basically a sum over the
δ-peaks of the electrons energies (Appendix B)

Gret0 (ν;ω) =

∫ ∞
−∞

dω′
A(ν;ω′)

ω − ω′ + i0+
. (2.1.12)

When electron-electron interactions are present the spectral function changes from the ideal
δ function to a more broadened peak. Due to these interactions, the electrons cause changes
in their environment which result in energy-shifts and hence the particles’ energy (effective
mass) has to be corrected by the electron self-energy : Σσ(k, ω). It is related to the free and
dressed Green’s functions (or propagators) G0 and G. The latter one considers the higher-
order perturbation terms, an inseparable cloud of electron-positron pairs and photons around
the propagating electron. The relation is given by

G = G0 +G0ΣG ⇒ Σ = G−1
0 −G−1 . (2.1.13)

(2.1.13) is also known as the Dyson equation which can be expressed with Feynman diagrams.
Σσ is the sum of all irreducible diagrams without the first term (shown as a simple line), which
represents the free particle. The second term in the sum is the first correction in the Born
approximation.

The irreducible self-energy is a dynamical term which changes together with the potential as the
electron fields move in the medium. However it becomes a purely local quantity as the dimension
of the correlated lattice approaches infinity (Appendix A), which makes it significantly easier to
calculate

Σσ(k, ω)
d→∞

= Σσ(ω) . (2.1.14)

The self-energy Σσ(ω) is not just momentum-independent in k space, but also is a functional
only of the local Green’s function Gσ(ω), because all the interactions of an electron with the
environment happens on the electron’s site. The self-energy has a direct impact on the Green’s
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function (2.1.8),

Gkσ(ω) =
1

ω + µ− εk − Σσ(ω)
= G0

kσ(ω − Σσ(ω)) , (2.1.15)

and in particular, the local Green’s function becomes

Gσ(ω) =

∫
ddk

(2π)d
1

ω + µ− εk − Σσ(ω)

=

∫ ∞
−∞

dε
ρ0(ε)

ω + µ− ε− Σσ(ω)
.

(2.1.16)

This last equation provides a relation between the local self-energy, the local Green’s function
and the free density of states ρ(ε) = 1/(2π)d

∫
ddk δ(ε− εk). The Green’s function depends only

on the dispersion ε via the free density of states ρ(ε).

The Green’s function and the self-energy in (2.1.15) can be now redefined as the lattice Green’s
function and self-energy: Glatt(ω) and Σlatt(ω). In order to map the lattice model onto an
impurity model with effective parameters, one needs to calculate the impurity Green’s function
Σimp. Since interactions only enter locally via the momentum-independent self-energy in DMFT,
the impurity self-energy will equal to the lattice self-energy (considering equal local interactions):

Σlatt(ω) = Σimp(ω) ≡ Σ(ω) . (2.1.17)

As a consequence, the dynamics of the lattice model, which is contained in its local lattice
Green’s function, can be determined via the Green’s function of the impurity model. Hence, the
mapping has to fulfil the condition

Glatt(ω)
!
= Gimp(ω) . (2.1.18)

For the single-band Hubbard Hamiltonian, the effective quantum impurity model is the single
impurity Anderson model (SIAM)

HSIAM = Himp +Hbath +Hhyb , (2.1.19)

Himp =
∑
σ

εdd
†
σdσ + Ud†↑d↑d

†
↓d↓ , (2.1.20)

Hbath =
∑

k∈1.BZ

∑
σ

εkc
†
kσckσ , (2.1.21)

Hhyb =
∑

k∈1.BZ

∑
σ

Vk(d†σckσ + c†kσdσ) , (2.1.22)

where d
(†)
σ denotes the annihilation (creation) operator for an electron of spin σ =↑, ↓ on the

impurity and c
(†)
σ in the bath respectively. εd is the local energy level of the impurity site and

has to be equal to the local single-particle level −µ of the lattice. The local site has four different
states in the one-band lattice model: |0〉 , |↑〉 , |↓〉 and |↑↓〉. In the last case, the electrons have a
repulsive force U on each other. This interaction in the SIAM is equal to the local interaction of
the Hubbard model. The rest of the lattice is described by an effective bath of non-interacting
electrons (Hbath), which couples to the impurity (Hhyb) via the hopping amplitude given by Vk.
Thus, the local impurity model allows charge and spin fluctuations on the site, which can lead to
transitions between different quantum phases. The effect of the external bath onto the impurity
is fully contained in the hybridization function (Appendix D),

∆(ω) =
∑
k

V 2
k

ω − εk
. (2.1.23)

The local interacting Green’s function of the effective impurity model is completely given in
terms of the hybridization function ∆(ω) and the self-energy Σ(ω):

Gimp(ω) ≡ 〈〈d; d†〉〉ω =
1

ω − εd −∆(ω)− Σ(ω)
, εd = −µ . (2.1.24)

5
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This can be derived from the equation of motion (Appendix B),

ω〈〈d; d†〉〉ω = 〈{d, d†}〉T − 〈〈[H, d]; d†〉〉ω . (2.1.25)

In order to map the original lattice onto the effective impurity model, one needs to calculate the

local lattice Green’s function with the impurity Green’s function, using: Glatt(ω)
!
= Gimp(ω).

Inserting Gimp(ω) from (2.1.24) yields the self-consistency condition for the Green’s function

Glatt(ω)−1 + Σ(ω) = ω − εd −∆(ω) = G0
imp(ω)−1 , (2.1.26)

which also leads to a self-consistency condition for the imaginary part of the hybridization,

Γ(ω) = − Im ∆(ω) = −π
∑
k

V 2
k δ(ω − εk)

= Im(Glatt(ω)−1 + Σ(ω)) ,

(2.1.27)

where Γ(ω) is also called the Weiss effective field. These DMFT equations can be solved iter-
atively (Fig. 1) leading to a solution for the hybridization function Γ(ω), the local self-energy
Σ(ω), the local Green’s function and accordingly the spectral function A(ω).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6
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0.8
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1

G
latt

( ) =  d  
0
( )  [  +  -  - ( )]
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( )G
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latt

( )
-1

 + ( )]

( ) = F( ) / G( )

G( ) = d;d+

F( ) = [d,H
int
loc];d+

Figure 1: Schematic DMFT iteration loop, (i) starting with the input hybridization Γ(ω), (ii)
then the numerical calculation with NRG to determine the local self-energy Σ(ω), (iii) computing
the lattice Green’s function Glatt(ω) and (iv) using the self-consistency condition to find the new
hybridization function Γ′(ω) which serves as the input for the next iteration.

In order to begin with the iteration process, one needs an arbitrary starting hybridization func-
tion Γ0(ω). Using Numerical Renormalization Group (NRG) as the impurity solver returns the
self-energy Σ(ω) of the SIAM. This has to be equal to the lattice self-energy (2.1.17) and thus
can be inserted into the integral expression (2.1.16) with a given density of states to compute the
lattice Green’s function. Finally with the self-consistency condition (2.1.27) a new hybridization
function is determined and the first DMFT iteration loop closes. This newly found Γ(ω) serves
as the input for the next loop, and the iterative procedure goes on until it converges to a stable
and most of the time unique solution. The solution is independent of the initial hybridization,
although with the right input the convergence can be reached faster. Finally, using the definition
in (2.1.9) one has the spectral function, which shows the dynamics of the strongly correlated
many-body system more clearly.

6
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With the intention of making the DMFT calculations simpler, a special type of lattice, the Bethe
lattice will be used in the limit of infinite dimensions [17]. In d dimensions the Bethe lattice is a
graph where each lattice site has d nearest neighbours without containing cycles. The only place
where the type of the lattice affects the DMFT computations is in (2.1.16) where for the Bethe
lattice the non-interacting DOS has a semi-elliptic form

ρB0 (ε) =
2

πD

√
1−

( ε
D

)2

, (2.1.28)

with ε ∈ [−D,D] and with the half bandwidth D = W/2. The local lattice Green’s function
is the Hilbert transform of the non-interacting density of states, which with the Bethe lattice
yields

Glatt(ξ) =

∫ ∞
−∞

dε
ρ0(ε)

ξ − ε
ρ0:=ρB0=⇒ Glatt(ξ) =

2

D2

(
ξ −

√
ξ2 −D2

)
, (2.1.29)

with ξ = ω + µ − Σ(ω) and Im ξ = − Im Σ(ω) > 0 (for the retarded Green’s function). In the
second step the continued fraction expansion was used ([18], Appendix D). By inserting (2.1.29)
in (2.1.26) one can derive the following relation

ω − εd −∆(ω) = ω + µ−
(
D

2

)2

Glatt . (2.1.30)

Furthermore, it directly leads to the expressions

∆(ω) =

(
D

2

)2

Glatt(ω) and
Γ(ω)

π
=

(
D

2

)2

A(ω) . (2.1.31)

In the second part, the definition of the spectral function was used, A(ω) = − 1
π ImGlatt(ω).

(2.1.31) shows that for the Bethe lattice the hybridization function Γ(ω) and the spectral func-
tion A(ω) have the same form (up to a constant factor).
The most time-consuming part of the DMFT procedure is the numerical computation of the
self-energy from a certain hybridization function. The accuracy of the impurity solver (NRG)
determines the overall success of the DMFT. In the next chapter we will discuss the methodology
of the NRG in the DMFT framework.

2.2 Numerical Renormalization Group (NRG)

To investigate lattice models in the DMFT we need an impurity solver, the Numerical Renormal-
ization Group (NRG) to compute the full frequency dependence of the self-energy. The Hubbard
model is mapped onto a single-impurity model (SIAM) defined by arbitrary input parameters
(e.g. U, T, µ,∆(ω)). NRG was developed by K.G. Wilson to solve the Kondo model in a fully
non-perturbative way [10, 11] and has been discussed in the DMFT framework more thoroughly
in [12]. It has been later shown that the NRG allows for a very accurate computation of dynam-
ical properties of various impurity models, such as the SIAM [19, 20]. It has already been used
to investigate the Mott transition [20, 21, 22].

In general a quantum impurity model consists of a discrete quantum system with a small number
of degrees of freedom that is embedded in a macroscopic bath of non-interacting fermions. Each
system can be in principle solved exactly on its own, however, the coupling (hybridization)
leads to strongly correlated, complicated quantum many-body phenomena. Let us take the
Hamiltonian from (2.1.19),

H = Himp +Hbath +Hhyb , (2.2.1)

where the impurity Hamiltonian Himp may not only contain the Coulomb repulsion but also the
Hund’s coupling terms for a multi-band Hubbard model. Since by assumption the impurity has
a small amount of degrees of freedom, it can be diagonalised exactly. As for the bath term Hbath,
it describes a continuous excitation spectrum covering a broad range of energies. Since there is
no interactions between the bath fermions, the many-body states are just a product state of the

7
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Figure 2: Schematic figure of the NRG steps for the SIAM (taken from [12]). In (a) a logarithmic
discretization (with the characteristic parameter Λ is used to make a finite set of energy intervals
from the continuous bath spectrum; (b) approximates each intervals with a single state; (c)
transforms the resulting discretized model into the semi-infinite Wilson Hamiltonian chain, where
the impurity couples to the first conduction electron via the hybridization V .

single-particle states and therefore Hbath is in principle also diagonalizable.
Before going into more technical details, let us overview the general idea of the NRG. Since the
bath can add an infinite amount of degrees of freedom to the system, the diagonalization be-
comes a numerical problem. In order to overcome this problem, one needs to discretize the bath
to finite amount of degrees of freedom. The constant bath spectral function is considered within
the interval ω ∈ [−D,D] (with the half bandwidth D := 1, note that later in our computations
D = 2), where the chemical potential µ which is also the Fermi energy EF for T = 0, is set to
zero. (Note, that µ can be set zero, because it is just a shift in the energy spectrum.) First, a
division of the energy support of the bath spectral function is needed to create a set of logarith-
mic intervals, see Fig. 2 (a) (both figures used in this NRG section is adapted from [12]). The
NRG discretization parameter Λ defines a set of discretization points, ±Λ−n, with Λ > 1 and
n = 0, 1, 2, .... The resolution is improved as Λ→ 1 and for Λ = 1 it returns the continuum limit.
This partition is followed by the discretization, i.e. a reduction of the continuous spectrum to a
discrete set of states. Every interval closed in by a pair of logarithmic points, is approximated by
a single state, see Fig. 2 (b). The logarithmic nature of the discretization is crucial, because this
allows to resolve even the lowest relevant energy scales of the system and because it provides a
separation of the energy scales and therefore allows to iteratively diagonalize the low-energy part.
We are interested in the energies near the Fermi energy (or the chemical potential for T → 0),
thus the Mott-Hubbard metal-insulator transition can be investigated with fewer states which
contain more essential information of the physical behaviour of the system. The resulting dis-
cretized model is mapped onto a semi-infinite tight-binding chain with the impurity (filled circle)
corresponding to the first site of this chain. The final step is the iterative diagonalization of the
Hamiltonian chain, shown in Fig. 2 (c). The Hilbert space is exponentially growing as the chain
is becoming longer, which makes the numerical diagonalization more and more time-consuming
and impossible. This is resolved by the scaling of the coupling, i.e. the hopping matrix elements
between the sites decay exponentially with the distance from the impurity, tn ∝ Λ−n/2. Adding
a site to the chain corresponds to decreasing the relevant energy scale by a factor

√
Λ. Since

tn fall off exponentially for the newly added sites, the energy they contribute with becomes
drastically smaller. That is, a so called truncation can be applied, where after each step only

8
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the energetically lowest lying Ns many-particle states are retained and used to build up the
Hamiltonian matrices of the next iteration step, hence keeping the size of the Hilbert space fixed
as one proceeds along the Wilson chain.

As in the previous, DMFT section (Sec. 2.1), it was shown that the effective quantum impurity
model of the Hubbard Hamiltonian can be interpreted with the SIAM. Consequently, HSIAM

will be used here for the NRG calculations as well. The imaginary part of the hybridization
function is Γ(ω) = π

∑
k∈1.BZ V

2
k δ(ω − εk). A possible one-dimensional energy representation

of HSIAM [23] is achieved by replacing the discrete bath operators c
(†)
kσ by the continuum bath

operators a
(†)
εω , using the transformation:

c
(†)
kσ → a

(†)
εσ√
ρ0(ε)

, and
∑

k∈1.BZ

→
∫ 1

−1

dε ρ0(ε) . (2.2.2)

ρ0(ε) is the non-interacting density of states (in our case of the Bethe lattice, ρB0 (ε)). The

transformation is defined such that, {aεσ, a
†
ε′σ′} = δ(ε − ε′)δσσ′ . Applying this transformation

to the SIAM Hamiltonian HSIAM :

H = Himp +
∑
σ

∫ 1

−1

dε ε a†εσaεσ +
∑
σ

∫ 1

−1

dε

√
Γ(ε)

π
(d†σaεσ + h.c.) , (2.2.3)

where the hybridization function has now the form:

Γ(ε) ≡ πρ0(ε)V 2(ε) . (2.2.4)

The resulting Hamiltonian is then submitted to the logarithmic discretization. Using the dis-
cretization parameter Λ > 1 on the energy scale leads to the discretization points:

xn = ±Λ−n with n = 0, 1, 2, ... , (2.2.5)

where the length of the intervals decrease logarithmically dn ≡ xn − xn+1 = Λ−(n+1)(Λ − 1),
for xn > xn+1. Typical values for Λ are between 1.5 and 4, for Λ → 1, the continuum limit is
recovered. To each of these intervals there is a mean energy ξn ordered,

ξ±n =

∫ ±,n
dεΓ(ε)ε∫ ±,n
dεΓ(ε)

=:
1

(γ±n )2

∫ ±,n
dεΓ(ε)ε. (2.2.6)

Here we have defined ∫ +,n

dε ≡
∫ xn

xn+1

dε ,

∫ −,n
dε ≡

∫ −xn+1

−xn
dε .

Finally, one arrives at the discretized Hamiltonian (proper derivation in [12]), where the bath
Hamiltonian is approximated by a single state per interval,

H = Himp +
∑
nσ

ξna
†
nσanσ +

∑
σ

(d†σ
∑
n

γnanσ + h.c.) , (2.2.7)

with the proper fermionic operators which annihilate (create) an electron with spin σ in each
bath interval respectively,

a(†)
nσ ≡

1

γn

∫ ±,n
dε

√
Γ(ε)

π
a(†)
εσ .

A commonly used technique to improve the accuracy of the NRG calculations for physical quan-
tities is to average over various discretizations for a fixed Λ. This procedure is also called
z-averaging (or z-shifting along the energy axis), where the discretization points are modified to:

xn =

{
1 : n = 0

Λ−(n+z) : n ≥ 1
(2.2.8)
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This averaging is essential to enhance the resolution, because in the Wilson chain the bath
character is degraded due to the reduction of the fermionic levels.
Following the thought process of [24], the next step of the NRG procedure is to transform the
discretized Hamiltonian (2.2.7) into a semi-infinite chain form, where the first site represents the

impurity d
(†)
σ with its degrees of freedom and it couples to a single fermionic degree of freedom

from the conduction band f
(†)
σ , with coupling (hybridization)

√
ξ0. New conduction band states

f
(†)
σ are present which are not equivalent to the non-coupled bath states,

f (†)
nσ =

1√
ξ0

∑
n

γna
(†)
nσ , (2.2.9)

with the normalization constant

ξ0 =
∑
n

γ2
n =

∫ 1

−1

dε
Γ(ε)

π
. (2.2.10)

The transformation is achieved via a tridiagonalization procedure using the Lánczos algorithm
[25] which leads to the following Hamiltonian

H = Himp +
√
ξ0
∑
σ

(d†σf0σ + h.c.) +

∞∑
σ,n=0

[εnf
†
nσfnσ + tn(f†nσfn+1σ + h.c.)] . (2.2.11)

The remaining sites of the bath couple to their next neighbour via the decreasing hopping matrix
element tn ∝ Λ−n/2 and each new electron on these sites contribute to the Hamiltonian with en-
ergy εn. For the single-band case, the possible eigenstates of a site are |σn〉 = {|0〉 , |↑〉 , |↓〉 , |↑↓〉}.
Hence by adding a new site to the Wilson chain, the Hilbert space grows exponentially, as 4n.
We can also consider a more complex SIAM, where every site has 3 bands, i.e. the number
of eigenstates is 43 = 64 for just one site and 64n for n sites. This complexity makes it im-
possible to keep all the states in the calculation. Due to the rapid decrease of the hopping
matrix tn, Wilson created a truncation procedure in which only the states with the lowest en-
ergies are kept. Thus, the size of the Hilbert space is fixed by adding a new site to the chain
and the high-energy states do not change the very low frequency behaviour and can be neglected.

In order to calculate the eigenenergies of the chain, an iterative renormalization group (RG)
procedure needs to be introduced. This was first done by K.G. Wilson in his work [10]. The
Wilson chain describes a series of Hamiltonians HN (N = 0, 1, 2, ...) which approaches H (2.2.11)
in the limit N →∞.

H = lim
N→∞

Λ−N/2HN , (2.2.12)

with

HN = ΛN/2

[
Himp +

√
ξ0
∑
σ

(d†σf0σ + h.c.) +

N∑
σ,n=0

εnf
†
nσfnσ +

N−1∑
σ,n=0

tn(f†nσfn+1σ + h.c.)

]
.

(2.2.13)
For convenience the factor ΛN/2 is applied to cancel the N-dependence of tN−1, which is the
hopping amplitude between the last two sites of HN . From (2.2.13) one can create a recursion
relation for HN+1 as the following,

HN+1 =
√

ΛHN + ΛN/2
∑
σ

εN+1f
†
N+1σfN+1σ + ΛN/2

∑
σ

tN (f†σfN+1σ + h.c.) , (2.2.14)

with the starting point of the sequence of the chain Hamiltonian

H0 = Λ−1/2

[
Himp +

∑
σ

ε0f
†
0σf0σ +

√
ξ0
∑
σ

(d†σf0σ + h.c.)

]
. (2.2.15)

The recursion relation described by (2.2.14) and (2.2.15) acts as a renormalization group trans-
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Figure 3: Truncation procedure of the NRG computations (figure taken from [12]). (a) Starting
off with a set of eigenenergies EN (r), which correspond to the eigenstates |r〉N of the Hamiltonian

HN ; (b) rescaling the energy spectrum by
√

Λ > 1; (c) adding a new conduction electron to the
Wilson chain leads to much larger Hilbert space with eigenenergies EN+1; (d) finally after the
truncation only the lowest-lying states are retained for the next iteration.

formation R:
HN+1 = R(HN ) . (2.2.16)

This has also been discussed in [24]. In general, a RG transformation takes a Hamiltonian with

certain set of parameters ~K and maps it into another Hamiltonian of the same form, H( ~K ′), with

a new set of renormalized parameters ( ~K ′). Such a representation where the new Hamiltonian

H( ~K ′) has the same form as the starting one, does not exist. But we can characterize the
Hamiltonians by their eigenenergies which specify a RG flow. Analysing the flow of the many-
particle energies EN (r) along the axis of the number of iterations N , contains information about
the physics of a given model. Thus, one needs to determine the eigenenergies of the system, i.e.
one has to solve the chain Hamiltonian in (2.2.12) by iterative diagonalization. The first step
is to diagonalize the starting Hamiltonian HN to obtain the eigenstates |r〉N and corresponding
eigenenergies EN (r), with HN |r〉N = EN |r〉N . Inserting this diagonalized HN into (2.2.14),
leads to a new, yet to be diagonalized Hamiltonian HN+1. The first term in the recursion
equation (2.2.14) rescales the energies of HN by

√
Λ, i.e. it rescales the energy spectrum since√

Λ > 1, as shown in Fig. 3 (b). The second and third terms in the recursion are responsible
for adding the new site to the chain Hamiltonian. If we consider the one-band SIAM with 4
eigenstates, then a new site increases the degeneracy of each energy level EN (r) by 4 (at the
most, otherwise using the symmetries of the treated Hamiltonian can reduce this dimension
growth), see Fig. 3 (c). For the diagonalization of the new Hamiltonian HN+1, one needs to
construct the corresponding basis as the product of the starting impurity site basis {|r〉N} and
the basis of the first site of the bath {|s〉N+1},

|r, s〉N+1 = |r〉N ⊗ |s〉N+1 . (2.2.17)

Using this basis let us construct the Hamiltonian HN+1 iteratively,

HN+1(rs, r′s′) = N+1〈r, s|HN+1 |r′, s′〉N+1 , (2.2.18)

where the eigenstates |υ〉N+1 and eigenenergies EN+1(υ) of HN+1 can be constructed through
the unitary transformation U :

|υ〉N+1 =
∑
rs

U(υ, rs) |r, s〉N+1 . (2.2.19)

Fig. 3 (c) shows that, as a new degree of freedom is added to the Wilson chain, the ground-state
energy becomes negative. In the following step this is set to zero for convenience. As it was
discussed earlier, a truncation procedure has to be applied after a few iterations steps, since
the size of the Hilbert space grows exponentially for each connected site. The reason that the
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physical system still reflects its real behaviour even with this truncation scheme (which cuts off
the majority of the Hilbert space) is that the high-energy states do not influence strongly the
low-energy spectrum. This statement can be also proven numerically as we change the number of
states which are taken into account for the following iteration step. Discarding the higher-energy
states do not spoil the physical processes described by the low-energy spectrum. Such a separa-
tion of the energy spectrum can be interpreted as a perturbation of relative strength Λ−1/2. For
more reliable results of the self-energy, one needs to take more states into consideration, that is
to increase Ns.

As already mentioned, the recursion relation (2.2.14) defines a RG transformation and with that
a corresponding RG flow of the many-particle energies for adding more and more sites to the Wil-
son chain. With the flow diagram one can determine the various fixed points which correspond
to different physical behaviours of the model. Taking the SIAM, there can be three different
fixed points distinguished from each other. By computing the fix point Hamiltonians and com-
paring their spectrum to the numerical data, one can determine the physical meaning of the
low (N < 10), intermediate and high (N > 60) lying fixed points, referring to Krishna-murthy’s
papers [26, 27]. In his work he explains how to determine the nature of the RG mapping of the
operators by identifying the deviations from these fixed points with an appropriate perturba-
tion of the fixed point Hamiltonians. The first two fixed points are respectively the free orbital
(V = 0) and the local-moment fix points where a free spin decouples from the conducting band.
These fix points are unstable and by adding more sites to the chain Hamiltonian, the system
approaches the stable strong-coupling (hybridization) fixed point of a screened spin (V → ∞).
This stable fixed point is also called the Fermi-liquid fixed point, which is reached for the metallic
state in the one-band Hubbard model. However, using an interleaved NRG the flow diagram is
divided into several parts and it is more difficult to handle [28]. Thus in our analysis we will
exploit the informations received from the spectral functions.

2.3 NRG in the Framework of DMFT

So far we have discussed the main principles of the DMFT and NRG. The purpose of this chapter
is to see how the NRG is applied as a quantum impurity solver within the DMFT. As mentioned
in the previous chapters, in a DMFT iteration loop the NRG is used to calculate the single-
particle self-energy Σ(ω) from an input hybridization function Γ(ω).

Here the problem emerges, that using a non-constant input hybridization in DMFT, the con-
ventional logarithmic discretization does not necessarily lead to an exponential decay of the
hopping matrix elements in the Wilson chain. Without this proper decay rate which is necessary
for the truncation procedure to fix the Hilbert space and to make the numerical calculations
tractable, the NRG calculations lead to artefacts. To overcome this problem, there is an adap-
tive discretization method, introduced by R. Zitko [29, 30], which will take the shape of the
hybridization function into account. In general the asymptotic nature of the discretization grid
as we approach the Fermi energy, can be written as

d x(y)

d y
= −Λ−y ln ΛC(x, y) , (2.3.1)

with the continuous variable y ≡ n + z and y ∈ [−∞,∞), i.e. already considering an infinite
amount of different z-shifts. (In our context, most of the time instead of increasing the number
of z-averaging (usually stays at 2-4) for a higher accuracy, it is more efficient to raise the number
of kept states or to use a finer logarithmic scaling by lowering Λ). C(x, y) is an arbitrary strictly
positive function with a non-zero limit for y →∞ and x→ 0. This last requirement assures that
it has an asymptotic behaviour at ω = 0. The conventional logarithmic discretization used in
NRG calculations uses C(x, y) := 1, which leads to (2.2.8). Using the fixed discretization mesh
in NRG calculations, systematic errors can occur, which cannot be corrected by increasing the
number of z-shifts. These errors become prominent when the density of states vary strongly and
when they are very low over considerable energy intervals, i.e. it is not satisfactory that to every
interval there is a representative state ordered, even when the density of states in that partition
is really low.
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Zitko’s adaptive discretization mesh tries to overcome this problem by lowering the density of
the grid x(y) in those regions where the density of states is low. This is achieved by setting
C(x, y) to

C(x, y) =
f(y)

ρ(x)
(2.3.2)

This way, in the limit ρ(x)→ 0, the corresponding energy intervals will appear weakly or not at

all in the discretization grid. f(y) was originally set to a constant value A =
∫ 1

0
ρ(ω)dω. This can

also be improved by finding such a function C(x, y) that weighs the regions of denser energy more.

Let us turn now to the self-energy calculations with NRG in the frame of DMFT. In order to
calculate the single-particle self-energy of the SIAM, one could use the Dyson equation (2.1.13).
This way we would get a numerically determined value for G(ω)−1 while having an exact solution
for G0(ω)−1, since Γ(ω) is given for each iteration. The sum of these Green’s functions however
can lead to numerical errors and thus inconsistencies. Therefore R. Bulla [21] has constructed
the interaction contribution to the self-energy as the ratio of two correlation functions which was
proven to give more reliable solutions,

Σ(ω) = U
F (ω)

G(ω)
, (2.3.3)

with the on-site correlation function G(ω) (≡ Gimp(ω)) and the two-particle retarded Green’s
function F (ω)

G(ω) = 〈〈dσ; d†σ〉〉ω and F (ω) = 〈〈dσd
†
σ̄dσ̄; d†σ〉〉ω . (2.3.4)

(2.3.3) holds for both T = 0 and T > 0, more details on the derivation and on the more general
form for a multi-band Anderson model are given in Appendix D. Both correlation functions,
G(ω) and F (ω), are calculated numerically, but they are divided by each other, i.e. only the
relative error will be propagated, which leads to a numerically more stable procedure. Finally, by
applying NRG to the DMFT, one gets a reliable, numerically stable solution for the self-energy of
the SIAM. Inserting this resulting self-energy into (2.1.16) returns the new on-site lattice Green’s
function Glatt(ω), which also has to fulfil the self-consistency condition (2.1.26), providing the
input hybridization function Γ(ω) for the next loop.

2.4 Hubbard Model

2.4.1 Single-Orbital Hubbard Model

The one-band Hubbard model, first introduced by J. Hubbard [1, 2, 3], has become a keystone
of understanding the interactions in a system of strongly correlated electrons on a quantum
mechanical level. It gives insight into the insulating, magnetic and even superconducting effects
in a solid. Although it is a fairly simplified model it can still describe a solid state system
realistically and gives quite accurate predictions under certain conditions. In this section, first
we discuss the single-orbital Hubbard model and then the generalization of it for three fully
degenerate orbitals and finally for the two-fold degenerate and one separate orbital, where the
latter case is achieved via the crystal field splitting.
A solid consists of ions and electrons in a three-dimensional crystalline structure. Since the
ions are much heavier than the electrons, we can assume a static lattice, i.e. the dynamics of
the lattice sites are neglected. This means that the Hubbard Hamiltonian (HH) only consists
of terms which describe the fermions’ dynamics and interactions among them. In the single-
orbital Hubbard model the atoms in a solid are assumed as a collection of (static) sites, each
with a single orbital. The number of fermions on a site is constrained by the Pauli principle,
i.e. the sites (with one orbital) can either be empty, filled with a single spin-up, a single spin-
down or be doubly occupied by a pair of spin-up and -down electrons. For the last case, with
2 electrons on the same site, a Coulomb interaction appears. This interaction is screened by
the strongly correlated electrons and could be approximated as purely local, which also means
that the effective potential can be written as a sum of atom centred potentials. Consequently
in the Hubbard model, interactions between electrons of different sites are neglected since these
two-site interactions are considerably weaker. It assumes a low mobility of the band electrons, so
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that the electronic band structure can be described by the superposition of the wave functions
of the isolated atomic sites. In the tight-binding approximation, due to the assumed on-site
interaction, the Hamiltonian matrix elements between two orbitals on different sites are given
by two-centred ‘hopping integrals’ [31]. Thus the kinetic properties of the electrons can be
understood via quantum tunnellings between the neighbouring sites. As (2.4.1) shows, hopping
to another site in the second quantization is realized by destroying an electron on one site and
creating it with the same spin on a neighbouring one.

Ĥ = Ĥkin + Ĥint − µN̂electron
= −t

∑
〈i,j〉

∑
σ=↑,↓

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓ − µ
∑
i

(ni↑ + ni↓) ,
(2.4.1)

where c†iσ and ciσ are creation and annihilation operators of electrons with spin σ localized in

an orbital at site i ∈ 1, 2, ..., N of the lattice, and niσ = c†iσciσ. The symbol 〈i, j〉 emphasizes
that hopping is allowed only between sites i and j which are nearest neighbours. The factors
U and t are real numbers, which set the energy scale and fix the relative strength of them in
the Hamiltonian. Their relationship to each other determines the metallic/insulator behaviour
of a solid. t > 0 has a negative sign, because according to Heisenberg uncertainty principle, the
electrons minimize their kinetic energy through delocalization, i.e. hopping between the atomic
sites lowers the energy. The third term takes into account that the number of fermions changes
and with that changes the local single-particle energy level with the constant chemical potential
µ. Therefore, the role of µ is to control the filling n on the sites. Later on the half-filling
(one electron per site for the single-band model) will be necessary to enforce the particle-hole
symmetry in the material which describes the the Mott-Hubbard metal-insulating transition, see
Sec. 2.4.3.

2.4.2 Single-Site and Non-Interacting Limits

A(ω)

ω

U = 0, µ = 0

-U/2 U/2

A(ω)

ω

t = 0, µ = U/2

Figure 4: Schematic spectral functions in the non-interacting limit U = 0 (left) and atomic limit
U/t→∞ (right), adapted from [18].

In order to get a more in-depth knowledge of the behaviour of strongly correlated electrons on
a lattice, we will discuss the two main limits of the Hubbard model. The electrons hopping to
neighbouring sites lowers the energy, however if there are two electrons on the same site, they
experience a repulsion of strength U , which is energetically not favourable, hence the competition
between the kinetic and the local interaction parts in the Hamiltonian. This correlation also
shows how much the interaction term U influences the overall movement of the electrons and
how it gives rise to profound quantitative and qualitative changes of the physical properties of
electronic systems as compared to non-interacting particles. In the first limit, called the single-
site limit, the electrons are localized, that is, the hopping from site to site is suppressed. This
constraint can be achieved by making the interaction term large in comparison to the kinetic
term: U/t → ∞. But not only the proportion U/t affects the conductivity of a solid, so does
the filling factor of the lattice 〈n〉 = Ne/Nl as well. Here the ratio of the number of electrons
and the number of lattice sites gives the average filling of a site. In order to see how the filling
affects the conductivity, consider a solid with the average filling of 〈n〉 = 2. In this case the
single-band is full and the conduction electrons cannot hop from one site to another, because
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it is restricted by the Pauli principle. At half-filling 〈n〉 = 1, the ratio of the interaction and
kinetic term has a relevant impact on the physical behaviour of the material. In the single-site
limit due to the strong Coulomb interaction, it costs too much energy for an electron to hop
on a site with an extant electron on it. Therefore there are no freely moving electrons and the
solid is in its insulating state, namely the Mott insulator. In order to calculate the actual form
of the spectral function for the limits, we can use the Lehman representation from (2.1.10) and
considering the four eigenstates for a single-band site with the corresponding energies from the
Hubbard Hamiltonian with t = 0 (shown in Fig. 4, right),

Aσ(ω) =
1

2

(
δ(ω − U/2) + δ(ω + U/2)

)
. (2.4.2)

As we can see, there are two δ−peaks in the atomic limit at ω = ±U/2, contributing to the
Hubbard bands. Between these excitations we find the Mott gap with the width of U and since
the Fermi energy lies within the gap, in the atomic limit we find the Mott insulating phase.
Investigating the other extremity, U/t → 0, we find the non-interacting limit, where the solid
behaves like a Fermi gas. Here the kinetic term takes over and the interacting term is sup-
pressed which means that the electrons can move around without any restrictions imposed by
the Coulomb repulsion. Consequently, they are fully delocalized and they create a proper con-
duction band, that is, in the non-interacting limit the solid is in its metallic state. The spectral
function of this case comes from the same calculation like for the single-site limit, but in the
Hubbard Hamiltonian one sets U = 0 (shown in Fig. 4, left),

Aloc(ω) =
∑
k

Aσ(k, ω) =
1

N

∑
k

δ(ω − εk) = ρBethe0 (ω) , (2.4.3)

where N is the number of electrons and the density of states ρσ(ω) has a semi-elliptical form for
the Bethe lattice (2.1.28). At any other filling n, for a finite t the solid cannot reach an insulating
state, since there will always be doubly and singly occupied lattice sites in the same time, which
means that the hopping stays as a possibility to lower the total energy of the system.

2.4.3 Mott-Hubbard Metal-Insulator Transition

We previously discussed how the strongly correlated electronic systems in the two main limits
look like. But the following questions arise, what happens between these two ends and how do
the physical properties of a solid change. The transition between the metallic and insulating
state (MIT) is called the Mott-Hubbard transition. Since the system always strives for a stable
equilibrium state, which is equivalent to the state of the lowest total energy, a competition
appears between the kinetic and correlation energies. This competition leads to the Mott-
Hubbard transition between the two separate states - that is, between the itinerant and localized
character of electrons in the material. To be able to describe this process, one needs to look at
the variation of the local density of states (DOS) - or with other words the spectral function -
as the ratio of the correlation strength U to bandwidth W (and to t) increases (Fig. 5). The
hopping amplitude t of the Hubbard models is related directly to the the bandwidth W . For
instance, on the Bethe lattice at zero temperature the bandwidth is W = 4t [14]. The narrower
the band the longer an electron stays on an atom and therefore it implies stronger correlation.
The part of the spectral function close to the Fermi energy ω ≈ EF = 0, is referred to as the
quasiparticle peak, while the high-energy part forms the Hubbad bands. For U/t → ∞, there
are no quasi-particle excitations at ω ≈ 0 and thus the peak in the middle vanishes. If there
is a finite value for the density of states at the Fermi energy then the solid is metallic, which
also applies to the multi-band Hubbard models. Increasing the Coulomb interaction parameter
between the electrons with respect to the hopping amplitude t (or bandwidth W ) the solid goes
through the Mott-transition and the density of states at the Fermi energy is exactly 0. If the
spectral function vanishes at EF that means that there are no excitations for the outer lying
electrons or holes, i.e. the material is insulating.
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Figure 5: Schematic spectral functions of the single-orbital Hubbard model in a strongly cor-
related material as they go through the Mott transition, adapted from [32]. In (a) we can see
the metallic phase in the non-interacting limit with the bandwidth W , which is equal to 4t for
the Bethe lattice; (b)-(c) increasing the Coulomb interaction energy U lowers the quasi-particle
weight (peak at the Fermi energy EF ) until it vanishes and leaves behind two separate Hubbard
peaks (d), which is the characteristic spectral function of the Mott insulating phase.

2.4.4 Multi-Orbital Hubbard Model

Many of the materials that show a metal-insulator transition, have a multi-orbital structure. But
considering more orbitals leads to new possible on-site interaction integrals, thus the single-band
Hubbard model is not sufficient to describe most of the materials. Let us extend the model to the
multi-band case, where the additional properties of the materials are understood via the Hund’s
coupling. In the following (with the MIT in mind) we will consider three-bands, where each
energetically degenerate band contributes with two electrons to the strongly correlated system.
In order to construct the extended version of the Hubbard Hamiltonian (2.4.1), one needs to
consider a generalized hopping- and interaction matrix. The first one is easier to accomplish, it
needs to contain the possible hopping amplitudes between the intra- and inter-orbital cases. For
the rest of the dissertation we take a diagonal kinetic matrix, i.e. the hopping amplitudes among
different orbitals are neglected. (But with this simplification a part of the orbital character of
the model is lost.) On the other hand finding the more general interaction term for the multi-
orbital model is not so straight forward. We will stick to the approximation of a local Coulomb
interaction, i.e. it is only considered between the electrons on the same site. In the following
equation we will see that the ‘intra-orbital’ repulsion (which we will refer to as the Hubbard
interaction UH) stays the same as in (2.4.1) but a new ‘inter-orbital’ interaction integral U
appears,

Umm′ =

∫
dr dr′φ∗imσ(r)φ∗im′σ′(r′)

e2

|r− r′|
φim′σ′(r′)φimσ(r)⇒

{
Um=m′ = UH

Um6=m′ = U
, (2.4.4)
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where the field operators of the electrons ψσ(r) have been expanded via the low-energy Wannier
wave functions φim(r) corresponding to the orbital m and site i,

ψσ(r) =
∑
im

φim(r)cimσ ,

with the fermionic annihilation operator cimσ [33]. Now we have to determine the additional
interaction terms, which are essential to be able to describe any type of multi-band models well.
At the results, we will see how much of an effect this new parameter has on both the three-fold
and two-fold degenerate (or crystallic) multi-orbital Hubbard model. The inter-orbital Coulomb
interaction (or Hund’s coupling) is given by,

Jmm′ =

∫
dr dr′φ∗imσ(r)φ∗im′σ′(r′)

e2

|r− r′|
φimσ′(r′)φim′σ(r) . (2.4.5)

In these Coulomb integrals J is also approximated to be screened, i.e. all the interaction ampli-
tudes between the sites i and j are neglected. Earlier, for the spectral functions and density of
states we used the Bethe lattice, because of its useful properties. Now, just for the introduction
purposes, we take a cubic lattice and its three, degenerate orbitals on the d-level, labelled as t2g.
With the Hund’s coupling J , the many-body Kanamori Hamiltonian can be formulated for the
degenerate orbit-triplet (t2g) states [34],

H =
∑
〈ij〉
mm′σ

tmm
′

ij c†imσcjm′σ − µ
∑
imσ

nimσ + UH
∑
m

nm↑nm↓ + U
∑
m6=m′

nm↑nm′↓+

+ (U − J)
∑

m<m′,σ

nmσnm′σ − JX
∑
m6=m′

c†m↑cm↓c
†
m′↓cm′↑ + JP

∑
m6=m′

c†m↑c
†
m↓cm′↓cm′↑ ,

(2.4.6)

where UH = U − J , JX = J and JP = 0 are adopted conventions to recover maximal spin- and
real space rotational invariance of the Hamiltonian. (Note that it differs from the convention
often used in Monte-Carlo calculations, where UH = U + 2J and JP = J .) This retained
invariance is believed to reflect the physics of the system well. (2.4.6) ensures that the Hund’s
rules are incorporated as the orbitals are filling up with electrons. The inter-orbital Coulomb
interaction is the lowest for identical spins (U−J) which is followed by the second lowest energy,
the inter-action between different spins (U). It is not energy efficient for the electrons to be in the
same orbital so as they fill up the site, hence they distribute among the orbitals according to the
Hund’s rules: 1) maximizing the total spin S, 2) given the spin S, maximizing the total angular
momentum L and 3) selecting the lowest J = |L − S| for a less than half-filled shell and the
highest J = L+S for more than half-filled shell. But due to its complicated nature this last rule is
not accounted for in the above introduced Hamiltonian. The last two terms in the Hamiltonian
(2.4.6) also contribute to the rotation invariance of the Hamiltonian, they are related to the
spin-flip and pair-hopping processes respectively. But for our computations the pair-hopping is
neglected by using JP = 0. Later we will see how much the Hund’s coupling affects the Mott
transition and the critical interaction values, while recovering some of the qualitative results
of the papers [35, 36, 37, 38, 39, 40]. The ratio of the two interaction terms U and J is also
important, concerning the physics of the system. As in [41] somewhat discussed, the condition
U > 3J (which is fulfilled most of the time in our computations) ensures that the Hubbard
interaction U controls the occupancy mostly and only after that J controls the arrangement of
the electrons among orbitals. For U < 3J it is the other way around and the system tries to
maximize the total spin first and then adjust the local occupancy. The latter type of the strongly
correlated systems has not been relevant.
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2.4.5 Crystal Field Splitting

So far we have investigated the physics of the single-orbital and the fully degenerate multi-orbital
Hubbard model, for which all three orbitals have the same energy level ε1 = ε2 = ε3. Since in
many of the crystals the electron orbitals differ from each other, the assumed orbital-symmetry
does not reflect the reality well enough [42, 43, 44]. For the simplest crystal field splitting we
consider two degenerate orbitals with ε2 = ε3 and one separate orbital with a different energy
level ε1. For such a case, a new characterizing parameter has to be introduced, the crystal
splitting parameter ∆ ≡ ε1− ε2. Shifting the energy levels changes the Hubbard Hamiltonian to

H =
∑
〈ij〉
mm′σ

tmm
′

ij c†imσcjm′σ −
∑
imσ

(µ−∆m)nimσ +
∑
i

Hi
loc ,

(2.4.7)

where m,m′ and σ represent the orbitals and spins on the neighbouring sites 〈ij〉. The non-
diagonal kinetic matrix elements are assumed to be zero, thus only the hopping between the
same orbitals m = m′ of different sites contributes to the kinetic energy. Hi

loc stands for all the
screened Coulomb interactions within and among the orbitals on site i. The crystal splitting
(or the orbital asymmetry) is implemented in the second term by ∆m, which will be set for
the orbitals m = 1, 2, 3 as the following: ∆1 := +∆/2, ∆2,3 := −∆/2. Using the DMFT
approximation, one finds the self-consistent solution of a quantum impurity model given by the
Hamiltonian

Himp = −
∑
mσ

(µ−∆m)nmσ +Hloc −Hhyb −Hbath , (2.4.8)

where the Hbath and Hhyb terms remain the same as in the SIAM Hamiltonian (2.1.19). There
are two possibilities to choose the crystal splitting parameter, one where ∆ is positive which will
be referred to as the 1-up, 2-down shifting. The other one, when ∆ is negative, is the 1-down, 2-
up shifting. It is important to distinguish these two cases, because as the observations show, both
have different physics. In our context the average occupation is fixed to 〈N〉 =

∑3
m=1〈Nm〉 = 2

with 〈Nm〉 ≡
∑
σ〈c†mσcmσ〉T . In the atomic limit for ∆ = 0 the energetically favoured ground-

states are (|0〉 , |↑〉 , |↑〉), (|↑〉 , |0〉 , |↑〉) and (|↑〉 , |↑〉 , |0〉), where the vector components represent
the orbitals m = 1, 2, 3 respectively. Since we are dealing with the superposition of these possible
ground-states, the average occupation of each orbital at the same energy level is 〈Nm〉 = 2/3.
Let us first consider the positive crystal splitting ∆ > 0 at filling 〈N〉 = 2. Shifting the non-
degenerate orbital up means that staying on it is energetically less advantageous for the electrons
and they move to lower-lying degenerate orbitals. (Note that at half-filling 〈N〉 = 3, the corre-
lated system would behave differently due to the Hubbard interaction UH in the same orbital.
The third electron would not necessarily jump down to the lower-lying bands because of the
Coulomb repulsion.) If we lift the separate orbital to a higher energy level the electron oc-
cupation will shift to the lower levels. Similarly, for a constant field splitting and continuous
increase of the interaction U will lead to the same result: the electrons move from the higher
level to the lower one until the non-degenerate orbital depletes. This tendency can be reasoned
by the decrease of the kinetic energy: as the potential energy increases the hopping onto the
site becomes more difficult and the electrons does not distribute to all three orbitals. Instead,
they choose the energetically favourable lower-lying orbitals. At a certain Uoccc , the interaction
becomes large enough that all the electrons move to the lower bands m = 2, 3, which means
that the upper band m = 1 is empty and hence it is a band-insulator. On the other hand
the degenerate double-band is half-filled with the given two electrons. One of the aspects of the
Hund’s coupling is that at half-filling it lowers significantly the critical interaction values U23

c [45],
which can lead to U23

c < Uoccc , i.e. the interaction (which is needed to achieve half-filling on the
double-band) is strong enough to make the electrons localized and the degenerate double-band
is Mott-insulating. The other possibility is when U23

c > Uoccc , which means that the half-filled
bands m = 2, 3 stay metallic, while the empty single-band is in a band-insulating phase.
The other case, with negative crystal splitting ∆ < 0, behaves differently. Here the two de-
generate bands m = 2, 3 are shifted to a higher -, while the separate band m = 1 is shifted to
a lower energy level (2-up, 1-down). The starting occupations are the same as before and the
tendency is similar as well, i.e. the electrons move to the lower-lying energy band. However,
the higher-lying bands do not deplete entirely, because in this case there would be two electrons
on the non-degenerate single-band, thus a strong Coulomb repulsion would come into action,
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which is energy-costly. Correspondingly, with the increase of U the electron orbital-occupation
shifts until the number of electrons becomes 1-1 for the lower band (half-filling) and for the
higher bands (quarter-filling), respectively. To achieve this divided occupation the earlier used
argument with the decreasing kinetic energy due to the increasing interaction, applies again.
Thus via the hybridization of the impurity, the system gains less energy as U becomes stronger.
If the 1-1 occupation is achieved then an interesting phenomenon can be observed. It can occur
that for the same interaction parameters (U, J), the degenerate orbitals are in a different phase
than the unique orbital, which is called the Orbital-Selective Mott Transition (OSMT). In this
case the material is neither a perfect metal nor a perfect insulator. It has the capability of con-
ducting electrons but there are still many strongly correlated, localized electrons. The condition
for the occurrence of the OSMT is that the two-orbital and single-orbital critical interactions
are not equal at the reached filling. Both the orbital-degeneracy (since it increases the kinetic
energy [46, 47]) and the Hund’s coupling at non-half-filling [45] increases the critical interaction,
which leads always to OSM-phases with U1

c < U23
c where the double-band is metallic and the

single-band is Mott insulating. It is also important to note that the Hund’s coupling J plays
the role of a stabilizer of the OSMT. J has to be sufficiently large to decouple the bands from
each other and to suppress the fluctuation among the bands. Thus, if J → 0, the solid would go
through a normal Mott transition without any orbital-selective aspect [44].
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3 Results and Discussion

In this section we will discuss various results of the phase diagrams of the Hubbard model. First
of all we are interested in the critical values of the interaction term U , where the Mott-Hubbard
metal-insulator transition occurs. But the critical values Uc depend on the direction of the phase
transition, i.e. the critical values are different for the metal-insulator and the insulator-metal
transition. As we have previously seen, a characteristic property of the metallic phase is the
quasi-particle peak at ω = 0. If there are excitations at the Fermi energy (at EF = µ := 0
for T = 0) then the system is metallic. On the other hand if the Fermi energy level lies in a
Mott gap between the Hubbard bands, i.e. the spectral function vanishes at ω = 0, then the
system is insulating. Now, if there is a metallic input hybridization and the interaction term
U is increased, then reaching U = Uc2 the system goes through the MIT transition and the
electrons become localized. Similarly, for an insulating input and a decreasing U , the transition
appears at a lower critical value U = Uc1 < Uc2 for which the electrons become delocalized. The
interval U ∈ [Uc1, Uc2] is called the hysteresis, where both states fulfil the DMFT self-consistency
condition but one of them might have a lower total energy. Theoretically we handle the system
in the limit of infinite dimensions and at zero temperature. With respect to these conditions
the transition between the metallic and insulating phases becomes continuous [48], i.e. the
quasi-particle weight vanishes smoothly by increasing the interaction. A large electronic system
however leads to numerical difficulties, which is the reason to treat the system in the limit of
infinite dimensions and thus making the complicated structure of the DMFT numerically more
tractable. Also, considering finite temperatures could significantly change the character of the
phase transitions and thermodynamic quantities. For instance the influence of the temperature
on the Hund’s rule exchange term J is discussed in [49].
The most critical point of the calculations is the Numerical Renormalization Group, which
computes the local self-energy for an input hybridization iteratively. The implemented code
was provided by the group of Jan von Delft at the Chair of Theoretical Solid State Physics at
Ludwig-Maximilian-Universität München. It is based on the QSpace library [50] developed by
Andreas Weichselbaum. The code can be used to calculate spectral functions even for arbitrary
temperatures [51] and to deal with three-band Hund’s metals as well [52]. Its advantage is that
it provides real-frequency solutions for the low energy spectrum (near the Fermi energy), while
this is more difficult to achieve with other methods, such as the Quantum Monte Carlo (QMC)
methods [53].

3.1 Single-Orbital Mott Transition

In order to understand all the elements and characteristics of the spectral functions, critical
interaction values and phase diagrams, let us first discuss the single-orbital case at half-filling.
This filling condition enforces the particle-hole symmetry, which leads to symmetric spectral
functions, i.e. there are as many particle excitations as hole excitations, see Fig. 6. Here we can
also see how the strength of the interaction influences the spectral functions. For the insulator in-
put (Fig. 6 (a)-(b)), as the Coulomb repulsion decreases, so does the width of the Mott gap. The
two separate peaks approach each other as the correlation weakens and the gap between them
vanishes at Uc1, hence it is the insulator-metal transition. Within the metallic phase (Fig. 6 (c)-
(d)), the quasi-particle peak in the middle gets narrower as the repulsion between the electrons
becomes stronger. At Uc2 the metallic peak vanishes and the Fermi energy is in the Mott gap,
hence it is the metal-insulator transition. Note that the critical values Uc have a temperature
dependence, but it will not be discussed in this dissertation, since we take the same temperature
for every calculations. More details on the finite temperature Mott transitions can be found at
[54, 55]. Let us now take a metallic initial phase in the hysteresis, i.e. Uc1 ≤ U ≤ Uc2. In order
to be able to argument that the solid is in a certain phase, the DMFT self-consistent calculations
has to converge for the given MIT parameters. The error margin is set to εhyb = 10−4 − 10−3,
that is, the last output hybridization does not differ from the last input hybridization more than
the margin. For the single-band we enforced the half-filling and during the computations the
value of the occupation stays constant. However, later on for the more complex multi-band
model the occupation deviates from the input filling N = 2. Therefore, the convergence is only
achieved if the fluctuation of the average occupation does not overcome an error margin, which
is usually set to εocc = 10−4. In the hysteresis the convergence is difficult to achieve and one
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Figure 6: Spectral functions of the insulating (a,b) and metallic single-band phases (c,d) at
half-filling (N = 1) as they are approaching the Mott transition critical point. Figures (c) and
(d) are the zoomed in versions respectively. Near to the critical interaction both the Mott gap
(b) and the FWHM of the quasi-particle peak (d) becomes narrower.

has to improve the accuracy of the computations. This can be done by enhancing the NRG
iterations within the DMFT by (i) increasing the number of retained many-particle states and
respectively raising the level of the rescaled truncation energy (for the single-orbital case around
1000-3000 multiplets, and Etrunc = 8), (ii) decreasing the discretization parameter Λ (usually
Λ ≈ 2, note that for Λ = 1 the continuous bath spectrum would be recovered),(iii) applying
z-averaging (z = 2 − 4) or (iv) simply increasing the number of DMFT iterations (it is usually
varied from 25 to 100). All of these changes however lead to longer computations, which for the
single-band case is still not a problem, but the multi-band model can take many days to achieve
convergence.
Let us now determine the exact critical interaction values Uc of the Mott transitions quantita-
tively for the simplified single-band system. The results will also serve as an indicator where the
possible Mott transitions can occur for the multi-band models as well and comparing them to
each other will give us a better understanding how the strongly correlated systems work. For
both type of input hybridizations, we used the same principle to determine the critical interac-
tion values Uc. After many computations with different interaction strength U , we saw that for
the insulating seed the first converged metallic phase was achieved at Uc1 = 4.10t. On the other
hand, taking a metallic seed, the first data for which a converged insulating phase occurs is at
Uc2 = 6.70t. As the system approximates to the critical value Uc1 (and Uc2) the width of the gap
(and of the quasi-particle peak) approaches to zero, see Fig. 7. If we take the width of the Mott
gaps for the last insulating phases and then extrapolate linearly (following the thought process
of [56]), we receive Uc1 = 4.24t for which the gap vanishes. The full width at half maximum
(FWHM) of the quasi-particle peak in function of the interaction U disappears (using the same
method) at Uc2 = 6.62t. Note that our calculations could only use the data near the critical val-
ues Uc. Points further away also seem to change linearly but with a different incline. Approaching
the critical values, makes it more and more difficult to receive converged hybridizations because
the output becomes unstable, which leads to larger errors in every iteration of the NRG and
DMFT computations. A crucial factor that can lead to deviations is the number of kept states
in the NRG iterations (and also the fineness of the logarithmic discretization of the continuous
bath spectrum). The more states we cut off to fix the Hilbert space the more possible it is that
the resulted metallic or insulating phase is not the actual phase of the solid. We have written
down at which interactions did the computations reach a convergence. However, if we had taken
a larger amount of states to be kept in the calculations, these results might be different. The
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Figure 7: The decrease of the FWHM for the metallic phase and the width of the Mott gap
for the insulating phase while approaching the critical interaction values Uc, can be linearly
extrapolated to get a quantitative result for Uc2 and Uc1.

reason is, that although we know that the states with higher energy do not influence the lower
energy physics significantly, we can still neglect important states which do affect the outcome of
the spectral function. The fits on the peaks in order to calculate the actual gaps and widths, are
not perfect either. The reason can be that both lengths become as small as 10−5 and the form
of the spectral function becomes quite complicated while approaching the transition interaction.
Consequently, it becomes difficult to find a well fitted Gaussian peak for the Hubbard band peaks
or for the quasi-particle peak. This can explain the deviations from the literature values, which
are around Uc1 = 4.74t and Uc2 = 5.82t [56]. That is, the size of the hysteresis is smaller for the
literature values. In general, we have also observed that by enhancing the accuracy of the NRG
computations the gap between the critical interactions Uc1 and Uc2 decreases.

3.2 Multi-Orbital Phase Diagram

The extended Hubbard Hamiltonian (2.4.6) to the degenerate multi-band model incorporates all
the new elements of both the kinetic and interaction terms of the system. Since the multi-orbital
model is more complicated than the signle-orbital one, it is crucial to enhance the accuracy of
the NRG computations for the desired converged spectral functions. Because the Hilbert space
grwos even faster exponentially for three-orbitals the logaritchmic scaling parameter had to be
increased to Λ = 8. The number of kept states were also raised to 3000-5000 multiplets. The
Mott transition for degenerate bands takes place at any given integer filling [41] (not just at half-
filling, which was required for the single-band). Furthermore, Uc is the smallest at half-filling
and becomes larger moving away from it. There is a significant distinction between the integer
fillings N = 1, 2 and the half-filling N = 3. If a fourth electron hops onto the atomic site with
half-filling, due to the on-site spin polarization constraint, the electron has to go through a spin
flip process which leads to a much wider Mott gap than for the other integer filling cases. In
principle, the boundaries of the phase transition and with that the Mott gap can be described
by taking the atomic limit [45]. Let En denote the lowest eigenenergy of Hloc, then the Mott
gap can be approximated as the following,

δω(n) = En+1 + En−1 − 2En . (3.2.1)

The actual Mott gap is just shifted by the order of the bandwidth. Setting J to zero, the local
interaction Hamiltonian becomes Hloc = UN(N −1)/2 and that yields the Mott gap δω = U . In
general, J 6= 0, δω(1) = δω(2) = U − 3J . But thus the spin flip of the fourth electron added to
the site, the Mott gap for half-filling N = 3 becomes δω(3) = U + 4J . These theoretical results
show a two-sided effect of the Hund’s coupling [45]. On the half-filled sites, a non-vanishing J
prevents the low-energy electrons to become conducting with a wider Mott gap, thus enforcing
an insulating phase. That is, by increasing J at half-filling, decreases the critical interaction
values, required for the Mott transition. On the other hand, for the integer fillings N = 1, 2,
the orbital fluctuations contribute to a narrower insulating gap, which makes it more possible
for the electrons to be part of the conduction band. Thus increasing J leads to an increased
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Uc. Note that this is not the tendency if we start from a non-Hund correlated system, J = 0.
Here, the introduction of the Hund’s coupling to the system with J > 0 results first in a decrease
of the critical interaction (see Fig. 10). The reason is that for a weak Hund’s coupling J < t
the quasi-particle weight decreases and with it the conductive nature weakens in comparison to
J = 0, hence for the Mott transition the needed critical interaction first becomes lower [57, 58].
In the computations, we examined the Mott transitions always at the filling N = 2, apparently
the system responds more evidently for varied Hund’s coupling and crystal shifting at this exact
filling. The chemical potential µ is adjusted dynamically to fulfil the total on-site occupation
number condition (N = 2). We will use the initial guess, µ = −3/2(U − J) [59].
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Figure 8: Spectral functions of the single- and multi-orbital Hubbard model (J/t = 0) at the same
interaction U/t = 8. It shows that the critical value Uc2 is in general increased for a multi-orbital
system even though the Hund’s coupling is neglected J/t = 0. At U/t = 8 the single-band model
already went through the Mott transition, i.e. it is an insulator, while the multi-orbital model
stays in its metallic phase. In the latter case, for the phase transition a much stronger interaction
would be needed, around U/t = 13. Note that the multi-band spectral function shows one of the
degenerate multi-bands and not the combination of two, thus a direct comparison between the
single-band and multi-bands is not possible.

In general the Hund’s coupling modifies the energetics of the system, i.e. both the critical
values Uc and the shape of the spectral functions are modified. But first of all let us investigate
how the degeneracy of the bands with J = 0 (i.e. U = UH) affect the Mott transition and
compare it to the single-band case. Both of the spectral functions are shown in Fig. 8. The
critical Coulomb interaction parameter Uc increases with the orbital degeneracy for J = 0, due
to the bands’ increased kinetic energy [46, 60]. With other words, for the same value of U in
an initial metallic phase, the single-orbital model can already be in its Mott insulating phase
peak, while the multi-band model has not even approached the transition (Fig. 8). Variation
in the strength of the screened Coulomb repulsions has the same effect on the phase transition
as for the single-band model, i.e. both the quasi-particle weight for the metallic phase and
the Mott gap for the insulating phase decreases while approaching Uc (Fig. 9 (a)-(b)). As we
can see in Fig. 9 the spectral functions are asymmetrical with more spectral weight for positive
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Figure 9: Spectral functions of the (a) metallic and (b) insulating phases as they are approaching
the critical correlation Uc. Respectively, the width of the quasi-particle peak and of the Mott
gap decreases.
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energies ω > 0. This reflects the filling N = 2 (particle-hole asymmetry), since there are
more holes than electrons and thus there are more particle excitations than hole excitations.
With the atomic limit, we can determine the positions of the main peaks of the multi-band
model. There is only one type of hole-excitation which corresponds to the Hubbard peak on
the left side of the spectral function. On the right side, contrary to the resulted figures there
can be two separate particle excitation energies not just one, corresponding to the transitions
(|0〉 , |↑〉 , |↑〉)T → (|↑〉 , |↑〉 , |↑〉)T and (|0〉 , |↑〉 , |↑〉)T → (|0〉 , |↑↓〉 |↑〉)T . The latter one’s energy
is higher by the Hund’s coupling J . But these peaks can be merged together because of the
logarithmic scaling of the NRG discretization, which has the purpose to investigate the system

near the Fermi energy EF
T→0
= µ ⇔ ω = 0 but at the expense of a coarse resolution at higher

energies. Also, for weak interactions these excitation energies lie close together in the energy
spectrum, but if the interaction is strong enough, the sub-peaks can be observed, see Fig. 9 (b)
with U/t = 10.
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Figure 10: Phase diagram of the three-fold degenerate multi-orbital Hubbard model at the
filling N = 2 on the J −U−plane. The full -, hollow circles and the crosses denote the metallic,
coexistent and insulating phases respectively. The dashed lines are supposed to represent the
presumed boarders of the M-I and I-M transitions. Between the boarders, in the hysteresis there
are coexistent phases, both metallic and insulating.

In contrast to the single-orbital model, the Mott transition in the degenerate multi-orbital model
has U and also J dependence. The phase diagram (Fig. 10.) was made to represent the metallic,
insulating and coexistent phases for certain (U, J) points. In general, the exchange coupling
J 6= 0 increases the values of Uc at the filling N = 2, which has been also shown in various
experiments [46, 58, 61]. This increase of Uc can be seen for J ≥ 1 in the phase diagram. As
previously discussed, the critical strength Uc is different if it is a metal-insulator (M-I) or an
insulator-metal (I-M) transition. If the system starts in the metallic (insulating) phase, then it
persists in staying in the initial phase, thus it needs a stronger (weaker) correlation to enforce the
Mott transition. Therefore Uc1 < Uc2 and in between these values we find a coexistent regime of
both metallic and insulating phases. The last metallic and insulating points before the transition
(full circles and crosses in Fig. 10.) outline the shape of the hysteresis in the J − U−plane. All
the points in the coexistent region are denoted by hollow circles. The phase diagram affirms
our theoretical considerations and shows first a decrease in Uc between J = 0 and J = 1 and
then an increase for J = 2. The curved nature of the dashed lines is a consequence of several
computations for non-integer J values. However, the shape of the boarders are not computed in
our figure, it only serves as a representation of the non-linear dependency [58].
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3.3 Crystal Field Phase Diagram

In order to make our discussion of the Mott transition even more comprehensive, let us lift the
three-orbital degeneracy by shifting the energy levels of the orbitals. In the previous section,
due to the degeneracy, the MIT occurred for all the bands simultaneously. However, when one
of the band’s energy levels differs from the other two bands’, then new physics appears for
the system, which is worth to investigate. In the following we will discuss the results for two
different crystal fields, one with a positive splitting ∆ = +0.4 t and one with negative splitting
∆ = −0.4 t. For the latter one an interesting phenomenon can be observed: for the same MIT
parameters the shifted bands can be in different phases, which case is called the Orbital-Selective
Mott Transition (OSMT). Consequently, part of the electrons are itinerant and thus conductive
while the rest of them are still localized to the sites and thus insulating. For instance, this
orbital symmetry breaking is relevant for the Mott transitions in SrRuO3, in which there is
an average occupancy of N = 2 (the filling we consider as well). The simplest case of the
symmetry breaking is described by the three-fold degenerate triplet cubic state t2g splitting into
a singlet and a doublet. Another way to lift the degeneracy of the orbitals is to choose different
bandwidth, which would have similar effects as shifting the orbitals. When the OSMT occurs in
a solid, one has to distinguish two phase transitions: (i) from metallic (M) to orbital-selective
metallic (OSM) and (ii) from OSM to Mott insulating phase (MI). In the absence of the Hund’s
coupling or even for J . 0.3 the OSM phase entirely disappears [43]. If the site has in general a
lower energy level by applying the crystal splitting, it means that the down-shifting creates place
for a possible additional electron. That is, as the term (µ−∆m) decreases, the occupancy of the
down-shifted band(s) m are increased, while the occupancy of the up-shifted band(s) m′ 6= m are
decreased. Since the crystal fields are even more complex then the fully degenerate three-orbital
case, the accuracy of the NRG calculations had to be improved even more, otherwise there would
have no convergence achieved for the hybridizations. We increased the number of kept states
to 6000-8000 multiplets with Etrunc = 9 and the logarithmic scaling parameter was Λ = 7 − 8.
These NRG parameters worked most of the times well for the crystal fields, but there were few
critical cases where they could only approach convergence but could not reach it.

3.3.1 Positive Crystal Field Splitting

Let us handle the two different crystal fields separately and first look at the characteristics of the
positive splitting ∆/t = +0.4. For ∆ > 0 the single-band m = 1 is shifted up and the degenerate
two-bands m = 2, 3 are shifted down (1-up, 2-down). Since the total number of on-site electrons
in average is N = 2, at the beginning all three orbitals have the filling nm = 2/3 (the kinetic
energy prevents the second electron to be on the lower-lying double-orbitals). That is, the
occupation vector yields ~n = (nm=1, nm=2+3)T with nm=1 = 2/3 and nm=2+3 = 2 · 2/3 = 4/3.
Consequently, both behave metallic for weak interactions, see Fig. 11 (a). In the figure we can also
observe that the double-band’s spectral weight on the left side (particle-side) is larger than it is
for the single-band. Since shifting the two-fold degenerate bands down makes them energetically
more favourable, one would first assume that for an arbitrary small (but non-vanishing) crystal
splitting both the electrons would start on the lower-lying double-band. But the kinetic energy
via the hybridization of the impurity with the surrounding bath is lower if the electrons are
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Figure 11: Spectral functions of the (a) metallic and (b) insulating phases of the multi-band
Hubbard model with positive crystal field splitting ∆/t = +0.4. In each figure, the spectral
functions of both the single-band and one of the degenerate double-band are plotted for the
same U and J parameters.
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Figure 12: Phase diagram of the crystal field with positive splitting parameter ∆/t = +0.4.
Showing the different regimes on the J − U−plane, from left to right: metallic-, coexistent-
(hysteresis) and finally the Mott insulator phases. Computed phases are labelled by full-, hollow
circles and crosses respectively.

equally distributed to all three orbitals. This leads to an orbital occupations of n2+3 < 2 and
n1 > 0. As discussed in the theory section, if the interaction U gets stronger, the kinetic hopping
becomes suppressed and thus the system does not strive for a three-orbital electron distribution
any longer. That is, the electrons tend to be on the lower-lying double-band so the occupation
vector becomes ~n = (0, 2)T for strong interactions. The depletion of the single-orbital means
that at this point it is insulating, see Fig. 11 (b) and since there are no electrons in the orbital
the spectral function on the left side vanishes. In the same time the two-fold degenerate bands
are half-filled and with J 6= 0 this separate system’s critical interaction value is relative small
[58]. Since the interaction had to be sufficiently large to achieve this end occupation of (0, 2)T ,
the double-band will also be in its insulating phase. Fig. 11 (b) also shows a spectral function
with similarly shaped Hubbard peaks for the particle and hole excitations (half-filled), but they
are not entirely symmetric due to the Hund’s coupling.
For a stronger CFS 1 < ∆/t < 3 the (0, 2)T occupation is reached for weaker interactions U . If
this interaction is weaker than the critical value U23

c then it is possible that the double-band is
still metallic while the single-band is band-insulating. The ∆ -dependency of Uc is also discussed
at filling N = 4 in [62] (which is relevant for our case too, because N = 2 and N = 4 are connected
via a particle-hole transformation). But for weaker crystal fields, which were investigated in this
dissertation, such a hybrid phase (it is not an OSM-phase because the single-band is a band-
insulator not a Mott insulator) is not possible for positive splitting. Thus in the phase diagram
Fig. 12 the circles and crosses label the phases of both the single-band and double-band in the
same time. Note that it is not reasonable to discuss the phases for J = 0 because the Hund’s
rule coupling term plays a key role as an orbital-decoupler in the crystal fields. Thus results
for CFS with J = 0 have not been investigated. Comparing the phase diagram of the crystal
fields to the phase diagram of the fully degenerate multi-orbital Hubbard model (Fig. 10), the
hysteresis regime is shifted to the right, i.e. the Mott transition occurs for lower interactions if
the orbital-symmetry is broken. This result is also verified by Fig. 1 in [62]. Since by increasing
the interaction U more and more electrons shift to the lower-lying double-bands, the effective
correlation becomes higher too. The effective interaction is responsible for the decrease of the
quasi-particle weight [41], thus the critical interaction Uc where the quasi-particle weight fully
vanishes, becomes smaller. The curved boarders of the hysteresis between J = 1 and J = 2
are once again only a representation of the qualitative observations that the critical value Uc
increases non-linearly as the Hund’s coupling term J is increased.
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3.3.2 Negative Crystal Field Splitting
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Figure 13: Spectral functions of the (a) metallic and (b) insulating phases of the multi-band
Hubbard model with negative crystal field splitting ∆/t = −0.4. In each figure both the single-
band and degenerate double-band spectral functions are plotted for the same U and J parameters.

In this section, let us look at the 2-up, 1-down crystal fields at filling N = 2, with the negative
splitting parameter ∆/t = −0.4. The equal orbital-distribution applies to this crystal field too
because of consequential lower kinetic energy. Hence for a starting metallic phase the orbital
occupations are 2/3 < n1 < 1 and n2+3 > 1. This leads to a larger spectral weight on the left side
for the double-band, see Fig. 13 (a). As the potential energy gets larger and hence the kinetic
energy smaller, the electron occupation shifts to the lower-lying separate orbital. But since it
is a single orbital, if there is already an electron on it then a possible second electron would be
repulsed via the Coulomb interaction of magnitude UH . This inter-orbital interaction makes it
energetically costly to have a filling of two electrons on 1-orbital. Consequently, the occupation
of the electrons shift among 2,3- and 1-orbitals until the occupation vector becomes ~n = (1, 1)T .
Note that at J = 0 (U = UH) nothing would stop the electrons to reach the filling of ~n = (2, 0)T ,
which shows the crucial role of the Hund’s coupling for the crystal fields with negative splitting
parameter ∆ < 0. At filling (1,1) the single-orbital is half-filled while the double-orbital is
quarter-filled. Both can go through a Mott-transition at a certain critical interaction: the first
one at U1

c and the other ones at U23
c . If both the critical interaction values are smaller than the

interaction which was needed to achieve the (1,1)-occupation U1
c , U

23
c < Uoccc then all orbitals

are insulating, see Fig. 13 (b). The symmetric aspect of the single-orbital spectral function is
once again due to the half-filling, but the Hubbard bands are shifted because of the Hund’s
coupling among the orbitals. For the multi-orbital spectral functions, the quarter-filling means
that 1/4 of the total spectral weight is on the left side and the rest is on the right side. On the
other hand, for U1

c < Uoccc < U23
c the Orbital Selective Mott Transition can be observed, see

Fig. 14. Here, the single-orbital is already in its Mott insulating phase while the multi-orbitals
are in their metallic phases. Since it is just a small regime where the OSMT occurs, it is difficult
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Figure 14: Spectral functions of the orbital-selective Mott phase for the crystal field with negative
splitting parameter ∆/t = −0.4, where the single-band is in a Mott insulating phase while the
degenerate double bands are metallic.
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to find a metallic phase for the double-band, for which the quasi-particle weight is larger, i.e. for
which the peak at ω = 0 is wider. Nevertheless the plotted spectral function have converged for
the computations so we can confidently state that Fig. 14. is a legitimate OSMP. Concerning
the phase diagram of the crystal fields with negative splitting parameter, the OSMT is always
at the boarders of the hysteresis, creating a new layer in between the pure metallic and pure
Mott insulating regimes. Out of all computations of this thesis, we needed the most accurate
and also the most time-consuming NRG iterations for the OSM-phases. We realized that finding
converged results for the OSMT could have been easier for a wider shifting of the orbitals. For
instance if ∆/t ≈ −1 the U− interval for which the OSMT can be observed, is larger than for
∆/t = −0.4. Consequently, the areas between the hysteresis and the pure phases are wider.
Thus the OSM-phases are not so close to their critical interaction values and the convergence
can be reached easier and faster. In Fig. 15 we can see how the regimes of the OSMP appear at
the boarder of the hysteresis making two new layers between and the pure metallic and insulating
phases.
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Figure 15: Phase diagram of the crystal field with negative splitting parameter ∆/t = −0.4.
Showing the different regimes on the J−U−plane, from left to right: metallic phases, OSMP for
the insulator-metal transition, coexistent phases where for a metallic seed all bands are metallic
and for an insulating seed all bands are insulating, OSMP for the metal-insulator transition and
finally the Mott insulator phases. Computed phases are labelled with filled circles (metallic),
orange triangles pointing to the left (I-M OSMP), hollow circles (coexistent), blue triangles
pointing to the right (M-I OSMP) and crosses (Mott-insulating).

Each of the found orbital-selective phases (triangles in the figure) are like the ones we discussed
earlier Fig. 14, i.e. phases where the double-bands are metallic and the single-band is Mott-
insulating. This observation verifies our theoretical expectations, i.e. in the investigated crystal
fields, the critical interaction of the double-bands U23

c at quarter-filling is larger than the critical
interaction of the single-band U1

c at half-filling. Let us interpret what happens with a metallic
phase as the Coulomb interaction is increased. In the beginning all bands are metallic until
the interaction reaches the M-I OSMP regime (around U/t = 7). At this point the single-band
becomes Mott insulating because its critical value Uc is smaller than U/t = 7, but the double-
band remains metallic. Increasing the interaction even more, turns the higher-lying double band
also Mott insulating (around U/t = 8.5). An insulating seed goes through the same transitions
but in the other direction and its I-M OSMP region lies at a smaller interaction U . (Note
that the M-I OSMP region is only for the metallic - and the I-M OSMP region is only for
the insulating initial hybridizations.) Contrary to our results, the width of the two OSMP
regimes were expected to be equal, since theoretically they do not depend on the direction of
the Mott transition (I-M or M-I). However if we take into account how difficult it is to reach
convergence for the OSMT, the difference between the widths of the OSMP regimes can sign the
possible deviations. Keeping in mind how large the deviation was for the (simpler) single-orbital
Mott transition, we can estimate it to be around U/t = ±1 for the multi-orbital model. But
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even considering the relatively large error we can see a general shift to the left for the critical
interaction values and thus for the different regimes in comparison to the three-fold degenerate
case Fig. 10. Just like for the positive splitting parameter, this is also verified by [62]. With our
results we can formulate that the critical values Uc decrease for |∆| ≤ 0.4t and this tendency
does not change until |∆| ≈ t [62].
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4 Conclusion and Outlook

In this thesis, we introduced the single-orbital, the fully degenerate and via the crystal field
splitting the semi-degenerate three-orbital Hubbard models for the strongly correlated electronic
systems at T = 0. In each of the models we have investigated the Mott-Hubbard metal-insulator
transitions and then for the multi-orbital cases we have mapped out the phase diagrams as a
function of the Coulomb interaction U and the Hund’s coupling J . In order to tell if the system
went through the metal-insulator transition, we analysed the characteristic spectral functions of
the bands. Since the correlated system depends on many parameters, there are a lot of possible
ways to interpret the Mott transitions. In our context, for the single-band model we had a fixed
half-filling on the atomic sites 〈N〉 = 1, which enforced a particle-hole symmetry and thus the
spectral functions became symmetric. Here, we have varied the strength of the screened Coulomb
repulsion U to see for which critical values Uc does the Mott transition occur. We have found
two different values Uc1 and Uc2 depending on the direction of the transition. Between these
boarders there is a coexistence regime called the hysteresis. For the multi-orbital models we fixed
the total electron occupation to be 〈N〉 = 2, for which the particle excitations are prevailing
in comparison to the hole excitations. Since the electrons follow the Hund’s rule as they fill
up the bands, we implemented the Hund’s coupling term J in the Hamiltonian, to ensure the
incorporation of the filling-rules. J has significant effects on the system: 1) for J = 0 → J = 1
it leads to smaller Uc and 2) for J = 1 → J > 1 to larger critical interaction values Uc at
filling 〈N〉 = 2. The orbital-decoupling role of the Hund’s term is also crucial for the crystal
fields, since it affects the redistribution of the electrons on the site while increasing the Coulomb
interaction. We have examined the simplest version of the three-orbital crystal fields, where
the energy levels of the separate single-band and of the two degenerate bands have been shifted
apart with the fixed splitting parameter ∆/t = +0.4 and ∆/t = −0.4. Depending on the sign of
∆, different outcomes are possible. The negative splitting parameter induced a type of phase,
the orbital-selective Mott phase, which was not present for any of the previous models. In this
phase the single-band was Mott-insulating while the double-band was still metallic. That is, in
this interesting phenomena part of the electrons are localized and thus not conducting while the
other part is fully de-localized and itinerant.
In order to find quantitative results for the characteristic spectral functions of the system, we
treated the Hubbard models in the framework of the Dynamical Mean-Field Theory (DMFT).
This theory maps the (lattice) Hubbard model onto a self-consistent quantum impurity model
and thus it reduces the many-body system to a single-site (impurity) problem with effective and
local parameters. In the limit of infinite dimensions the DMFT calculations lead to exact results
for the hybridization function, which are closely connected to the spectral functions on a Bethe
lattice. From an input hybridization we can determine the eigenenergies of the Hamiltonian and
consequently the local self-energy iteratively. We used a DMFT+NRG code provided by the
group of Jan von Delft. The NRG method due to its logarithmic scaling of the energy spectrum
ensures a high resolution around the Fermi energy, which is undoubtedly the most important
energy regime for the Mott transitions. An important aspect of the NRG method is the possible
truncation of the set of eigenstates (due to the exponential decay of the hopping matrix elements
among the sites) during the iterative diagonalization of the Hamiltonian (Wilson chain). This
procedure keeps a fixed amount of low-energy states after every iteration step, which fixes the
size of the Hilbert space and thus makes the computations numerically tractable. Although
the high-energy states do not influence the physics of the low-energy states significantly, one
has to be careful with discarding too many states because it can still affect the outcome. An
arbitrary artefact in the NRG calculations can increase in each of the DMFT iteration loops
and thus it can lead to a large deviation. Concerning the deviations, our results could have
been more accurate by taking enhanced NRG parameters, but this would have been much more
time-consuming. Nevertheless, we tried to improve the accuracy around the Mott transition
(where the convergence is more difficult to achieve) by increasing the number of kept states and
by making the logarithmic discretization finer (by lowering Λ). Despite these possible sources
of error, we were able to reproduce the MIT for the different Hubbard models and plot their
spectral functions on the real frequency axis. Although our results are more qualitative than
quantitative, we could still get a general idea how the Hubbard interaction, Hund’s coupling and
crystal field splitting affect the strongly correlated systems. Note that there is no universal way
to treat correlated materials. We used the DMFT+NRG method, but there is also the Quantum
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Monte Carlo (QMC) [53] and Many-Body Perturbation Theory [63] methods. Each of them has
their strengths and weaknesses and each of them are relevant even today, discussed in [64].
While investigating the crystal fields, we have realized that different physics could be present
for a stronger ∆/t [62]. Our results with the relatively small splitting parameters could serve
as a basis for the future computations of the crystal fields with |∆/t| & 1. However, this is
just one of the many options we could use the DMFT+NRG method for. A possible extension
to our calculations would be to implement the spin-orbit coupling, i.e. to incorporate the third
Hund’s rule which could lead to new physical effects. Also, we always assumed a diagonal kinetic
matrix, but maybe considering hoppings among the different orbitals on the same site and not
just among the neighbouring sites, would reflect the reality even better. It would be interesting
to see the influence of the non-diagonal hopping together with the crystal field splitting on the
Mott transition. Another possibility for the future would be to examine the effect of finite
temperatures on the spectral functions [24]. This extension would lead to new combinations of
fixed and varied parameters of 〈N〉, U, J,∆, T .
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Appendices

Appendix A Lattice Fermions in Infinite Dimensions

Since it is not trivial to take the limit of infinite dimensions of the Hubbard model with itinerant
quantum-mechanical degrees of freedom, let us explain it in this appendix using the thought
process of [14]. Both the interaction and the chemical potentials are purely local and thus inde-
pendent of the lattice structure and dimensions, i.e. we only need to investigate how the kinetic
term behaves in this limit. Following [4], we will consider a simple d−dimensional hypercubic
lattice with the dispersion

εk = −2t

d∑
i=1

cos ki . (A.1)

where the coordination number Z = 2d and ~, kB := 1. With the dispersion relation we can
write up the density of states as

Nd(ω) =
∑
k

δ(ω − εk) . (A.2)

That is, Nd is the probability density for finding ω = εk for any k = (k1, .., kd). Since the central
limit theorem states that the sum of independent and identically distributed random variables
with finite variances will tend to a normal distribution as the number of variables increases, we
can assume the density of states to have a form of a Gaussian. The next step is to take the
infinite dimensions limit of (A.2) while using the central limit theorem,

Nd(ω)
d→∞−→ 1

2t
√
πd

exp

[
−
(

ω

2t
√
d

)2
]
. (A.3)

As we can see, this Gaussian peak becomes arbitrarily broad for d → ∞ which would lead to
incorrect density of states for the particles in the solid. In order to overcome this problem, one
needs to scale the kinetic term t properly. Only the following hopping amplitude scaling yields
a non-trivial DOS

t→ t∗√
Z
, t∗ = const. ⇒ Nd=∞(ω) =

1√
2πt∗

exp

[
−1

2

( ω
t∗

)2
]
, (A.4)

which leads to the Hamiltonian

H = −µ
∑
iσ

niσ −
t∗√
Z

∑
〈i,j〉σ

c†iσcjσ + U
∑
i

ni↑ni↓ . (A.5)

This Hubbard Hamiltonian has a non-trivial Z → ∞ limit, where the magnitude of the kinetic
and interaction terms remain comparable, therefore the competition between them is still pos-
sible. Thus we showed that with the scaling the physics of the system is still retained. The
purpose of taking the limit of infinite dimensions is to simplify the calculations of the Hubbard
lattice model significantly. The kinetic term can be written as

Ekin =
t∗√
z

∑
〈ij〉

〈c†iσcjσ〉 = lim
t→0+

t∗√
z

∑
〈ij〉

∫ ∞
−∞

dω

2πi
Gij(ω)eiωt . (A.6)

For general i, j the one-particle and time-ordered Green’s function Gijσ(ω) scales as [65]

Gijσ ∼ O(1/d‖Ri−Rj‖/2) , (A.7)

where ‖R‖ =
∑d
n=1 |Rn| is the length of R in the ‘Manhattan metric’. This property leads

to the collapse of all connected, irreducible perturbation theory diagrams in position space [4].

32



A LATTICE FERMIONS IN INFINITE DIMENSIONS

Consequently, the full, irreducible self-energy becomes a purely local quantity

Σijσ(ω)
d→∞

= Σiiσ(ω)δij . (A.8)

The Fourier transform of the self-energy preserves this property as well

Σσ(k, ω)
d→∞≡ Σσ(ω) . (A.9)
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Appendix B Equation of Motion in Quantum Many-Particle
Theory

The following appendices are based on the ones from K. Stadler’s master thesis [18]. Here we
will derive the form of the equation of motion in the quantum many-particle systems, which will
be used in the following appendices to derive the lattice and impurity Green’s function, i.e. the
key DMFT equations. Let us first define the retarded Green’s function as

GAB(t) = 〈〈A;B〉〉t ≡ −iΘ(t)〈{A(t), B(0)}〉T , (B.1)

with the fermionic operators A,B and the subscription of 〈 · 〉T denotes that it is the thermal
average in the grand canonical ensemble, i.e. 〈{A(t), B(0)}〉T = Tr ρ{A,B}. In the Heisenberg
picture the time development of the operators can be written as A(t) = eiHtAe−iHt. Accordingly,
the equation of motion of the operator A in the Heisenberg picture is

d

dt
A(t) =

i

~
[H,A](t) . (B.2)

Using (B.2) for both operators A,B in (B.1), we can derive the equation of motion for the
Green’s function

d

dt
GAB(t) = −iδ(t)〈{A(0), B(0)}〉T − iΘ(t)〈{i[H,A](t), B(0)}〉T

= −iδ(t)〈{A(0), B(0)}〉T − i〈〈[A,H](t);B(0)〉〉t .
(B.3)

A Fourier transformation yields the equation of motion in frequency space,

ω〈〈A;B〉〉ω = 〈{A,B}〉T + 〈〈[A,H];B〉〉ω , (B.4)

with

〈〈A;B〉〉ω =

∫ ∞
−∞

dt 〈〈A;B〉〉t eiωt .

The spectral function is defined in time space as

AAB(t) =
1

2π
〈{A(t), B(0)}〉T ⇒ 〈{A(t), B(0)}〉T = 2πAAB(t) . (B.5)

Let us derive the equivalent definition of the spectral function in frequency space using the
Fourier transformation and a particular notation of the Heaviside step function Θ(t) (*)

GAB(ω)

B.1
B.5
=

∫ ∞
−∞

dt eiωt
(
− iΘ(t)2πAAB(t)

)
=

∫ ∞
−∞

dt eiωt(−iΘ(t))

∫ ∞
−∞

dω′ AAB(ω′)e−iω
′t

(∗)
=

∫ ∞
−∞

dω′
∫ ∞
−∞

dx
AAB(ω′)

x+ i0+
· 1

2π

∫ ∞
−∞

dt e−i(x−(ω−ω′)t)

=

∫ ∞
−∞

dω′
∫ ∞
−∞

dx
AAB(ω′)

x+ i0+
δ
(
x− (ω − ω′)

)
=

∫ ∞
−∞

dω′
AAB(ω′)

ω − ω′ + i0+
,

(B.6)

where the last term is also called as the spectral representation of the (retarded) Green’s function.
Note that i0+ ensures that the Green’s function is analytical in the upper half plane. Using the
Sokhotski-Plemelj theorem (**)

1

ω − ω′ + i0+
= P 1

ω − ω′
− iπδ(ω − ω′) ,
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where P is the Cauchy principle value of the function 1/x. Inserting (**) in (B.6), we can derive
the desired definition of the spectral function in frequency space

AAB(ω) = − 1

π
ImGAB(ω) . (B.7)
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Appendix C Lattice Green’s Function in the Multi-Band
Model

After determining the local self-energy from an input hybridization using NRG, the next step
in the DMFT iteration loop is to calculate the lattice Green’s function. Thus it is necessary
to derive the lattice Green’s function Gνηlatt,k(ω) = 〈〈ckη; c†kν〉〉ω of a system described by the
Hamiltonian

H =
∑
kη̄ν̄

εη̄ν̄k c†kη̄ckν̄ −
∑
kη̄

µη̄c
†
kη̄ckη̄ +

∑
i

H loc
int

= H0 +H loc
int ,

(C.1)

with the non-interacting H0 and the local interaction term H loc
int in the spatial representation.

η = {mσ} and ν = {m′σ′} label the different orbital m = 1, 2, ...,M and spin σ =↑, ↓ indices.
We use the equation of motion (B.3) for the non-interacting lattice Green’s function G0,ην

latt,k =

〈〈ckη; c†kν〉〉0t
i
d

dt
〈〈ckη; c†kν〉〉

0
t = δ(t)〈{ckη, c

†
kν}〉T + 〈〈[H0, ckη]; c†kν〉〉t . (C.2)

Using the anti-commutation relation {ckη, c
†
kν} = δην and commutation relations for

[H0, ckη] =
∑
k̄η̄

[c†
k̄η̄
ck̄η̄, ckη]︸ ︷︷ ︸

−δη̄ηδk̄kck̄η̄

+
∑
k̄η̄ν̄

εη̄ν̄
k̄

[c†
k̄η̄
ckν̄ , ckη]︸ ︷︷ ︸

−δη̄ηδk̄kck̄ν̄

results in

i
d

dt
〈〈ckη; c†kν〉〉

0
t = δ(t)δην − µη〈〈ckη; c†kν〉〉

0
t +

∑
ν̄

εην̄k 〈〈ckν̄ ; c†kν〉〉
0
t . (C.3)

The last term can be written in a more compact way as∑
ν̄

[
(i
d

dt
+ µη)δην̄ − εην̄k

]
〈〈ckν̄ ; c†kν〉〉

0
t = δ(t)δην . (C.4)

The Fourier transformation leads to∑
ν̄

[
(ω + µη)δην̄ − εην̄k

]
〈〈ckν̄ ; c†kν〉〉

0
ω = δην , (C.5)

which written in matrix notations gives[
(ω + µ)1− εk

]
G0
latt,k(ω) = 1 . (C.6)

Accordingly, the inverse of the non-interacting Green’s function reads

G0
latt,k(ω)−1 = (ω + µ)1− εk . (C.7)

The next step is to use the Dyson equation, which connects the non-interacting and interacting
Green’s function of the lattice via the self-energy Σ(ω)

Glatt,k(ω)−1 = G0
latt,k(ω)−1 − Σ(ω) = (ω + µ)1− εk − Σ(ω) . (C.8)

Finally, the lattice Green’s function yields

Gmσ,m
′σ′

latt,k (ω)−1 = 〈〈ckmσ; c†km′σ′〉〉−1
ω = δσσ′

[
(ω + µm)δmm′ − εmm

′

k − Σmm′(ω)
]
. (C.9)

For the single-orbital Hubbard model (with skipped spin and orbital indices) the last expression
reduces to

Glatt,k =
1

ω + µ+−εk − Σ(ω)
. (C.10)
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Appendix D Impurity Green’s Function and Self-Energy

From the lattice Green’s function, we can derive the impurity Green’s function and using the self-
consistency condition we can find an expression for the local self-energy of the Single-Impurity
Anderson Model (SIAM), which will serve as the new input hybridization for the next iteration
step. Accordingly, we use the SIAM Hamiltonian from (2.1.19)

HSIAM = Himp +Hbath +Hhyb , (D.1)

Himp =
∑
η̄

εη̄dd
†
η̄dη̄ +H loc

int , (D.2)

Hbath =
∑

k∈1.BZ

∑
ν̄

εν̄kc
†
kν̄ckν̄ , (D.3)

Hhyb =
∑

k∈1.BZ

∑
η̄ν̄

V η̄ν̄k (d†η̄ckν̄ + c†kν̄dη̄) , (D.4)

but with the general quantum numbers η = {mσ}, ν = {m′σ′}, where m = 1, 2, ...,M is the
orbital and σ =↑, ↓ is the spin index of the quantities. H loc

int denotes an arbitrary local interaction
term on the impurity site, which in the case of a strongly correlated electronic system would
be a Coulomb repulsion. Similar to the lattice Green’s function, the retarded impurity Green’s
function is given by Gην(ω) = 〈〈dη; d†ν〉〉ω and the equation of motion as

ω〈〈dη; d†ν〉〉ω = 〈{dη, d†ν}〉T − 〈〈[H, dη]; d†ν〉〉ω . (D.5)

In order to calculate the RHS of the equation of motion, we need to use the anti-commutation
{dη, d†ν} = δην and the commutation relations for

[HSIAM , dη] =
∑
η̄

εη̄d [d†η̄dη̄, dη]︸ ︷︷ ︸
−δη̄ηdη̄

+[H loc
int, dη] (D.6)

+
∑

k∈1.BZ

∑
ν̄

εν̄k [c†kν̄ckν̄ , dη]︸ ︷︷ ︸
0

(D.7)

+
∑

k∈1.BZ

∑
η̄ν̄

V η̄ν̄k ([d†η̄ckν̄ , dη]︸ ︷︷ ︸
−δη̄ηckν̄

+ [c†kν̄dη̄, dη]︸ ︷︷ ︸
0

) . (D.8)

Inserting it back into the equation of motion gives

ω〈〈dη; d†ν〉〉ω = δην + εηd〈〈dη; d†ν〉〉ω + 〈〈[dη, H loc
int]; d

†
ν〉〉ω +

∑
k∈1.BZ

∑
η̄ν̄

V η̄ν̄k 〈〈ckν̄ ; d†ν〉〉ω , (D.9)

where the last term is not in a desired form, since it has bath fermionic operators ckν̄ . It is
possible to express 〈〈ckν̄ ; d†ν〉〉ω in terms of the impurity correlation 〈〈dη; d†ν〉〉ω via the equation
of motion

ω〈〈ck′ν′ ; d†ν〉〉ω = 〈{ck′ν′ , d†ν}〉T − 〈〈[HSIAM , ck′ν′ ]; d†ν〉〉ω , (D.10)

with

{ck′ν′ , d†ν} = 0 (D.11)

[HSIAM , ck′ν′ ] =
∑
η̄

εη̄d [d†η̄dη̄, ck′ν′ ]︸ ︷︷ ︸
0

+ [H loc
int, ck′ν′ ]︸ ︷︷ ︸

0

(D.12)

+
∑

k∈1.BZ

∑
ν̄

εν̄k [c†kν̄ckν̄ , ck′ν′ ]︸ ︷︷ ︸
−δkk̄δν̄ν′ckν̄

(D.13)

+
∑

k∈1.BZ

∑
η̄ν̄

V η̄ν̄k ([d†η̄ckν̄ , ck′ν′ ]︸ ︷︷ ︸
0

+ [c†kν̄dη̄, ck′ν′ ]︸ ︷︷ ︸
−δkk̄δν̄ν′dη̄

) , (D.14)
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we get

ω〈〈ck′ν′ ; d†ν〉〉ω = εν
′

k′〈〈ck′ν′ ; d†ν〉〉ω +
∑
η̄

V η̄ν
′

k 〈〈dη̄; d†ν〉〉ω (D.15)

and finally

〈〈ck′ν′ ; d†ν〉〉ω =

∑
η̄ V

η̄ν′

k′ 〈〈dη̄; d†ν〉〉ω
ω − εν′

k′
. (D.16)

Consequently, the original equation of motion (D.9) reads

ω〈〈dη; d†ν〉〉ω = δην + εηd〈〈dη; d†ν〉〉ω + 〈〈[dη, H loc
int]; d

†
ν〉〉ω︸ ︷︷ ︸

=:Fην(ω)

+
∑
η̄

∑
kν̄

V ην̄k V η̄ν̄k
ω − εν̄k︸ ︷︷ ︸

=:∆ηη̄(ω)

〈〈dη̄; d†ν〉〉ω , (D.17)

which can be written as∑
η̄

[(ω − εηd)δηη̄ −∆ηη̄(ω)]〈〈dη̄; d†ν〉〉ω − Fην(ω) = δην , (D.18)

and in matrix notation
[(ω − εd)1−∆(ω)]G(ω)− F (ω) = 1 . (D.19)

The impurity Green’s function yields

G(ω)−1 = (ω − εd)1−∆(ω)− Σ(ω) with Σ(ω) = F (ω)G(ω)−1 . (D.20)

For the single band case (with skipped spin and orbital indices) this expression simplifies to

Gimp(ω) = 〈〈d; d†〉〉ω =
1

ω − εd −∆(ω)− Σ(ω)
, with ∆(ω) =

∑
k

V 2
k

ω − εk
. (D.21)

Last but not least, the self-energy trick used in the NRG computations [21] is also derived as

Σ(ω) =
F (ω)

Gimp(ω)
. (D.22)
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