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When a 2D superconductor is subjected to a strong in-plane magnetic field, Zeeman polarization of the Fermi
surface can give rise to inhomogeneous FFLO order with a spatially modulated gap. Further increase of the
magnetic field eventually drives the system into a normal metal state. Here, we perform a renormalization group
analysis of this quantum phase transition, starting from an appropriate low-energy theory recently introduced
in Phys. Rev. B 93, 085112 (2016). We compute one-loop flow equations within the controlled dimensional
regularization scheme with fixed dimension of Fermi surface, expanding in ε = 5/2 − d . We find a new stable
non-Fermi-liquid fixed point and discuss its critical properties. One of the most interesting aspects of the FFLO
non-Fermi-liquid scenario is that the quantum critical point is potentially naked, with the scaling regime observable
down to arbitrary low temperatures. In order to study this possibility, we perform a general analysis of competing
instabilities, which suggests that only charge density wave order is enhanced in the vicinity of the quantum critical
point.
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I. INTRODUCTION

A variety of strongly correlated electron materials show
unusual metallic behavior, which cannot be described within
Landau’s Fermi liquid theory. In many cases, this non-Fermi-
liquid regime seems to be tied to the presence of a quantum
critical point (QCP) between a normal metal and a different
symmetry broken phase [1]. One paradigmatic example are
certain heavy Fermion materials, where the non-Fermi-liquid
regime seems to extend out of a QCP related to the onset of
antiferromagnetic order [2].

Of special interest and practical relevance are quasi-two-
dimensional systems, where the coupling between electrons
and order parameter fluctuations in the vicinity of the QCP is
particularly strong. This leads to a loss of electronic quasipar-
ticle coherence due to an intricate interplay between electronic
degrees of freedom and the order-parameter dynamics [3–8].
The fact that no well-defined quasiparticle excitations exist in
such strongly coupled systems makes the theoretical descrip-
tion of these non-Fermi liquids especially challenging.

Two notable theoretical developments added considerably
to our understanding of such non-Fermi liquids. First, it was
realized that models of fermions coupled to order parameter
fluctuations can be numerically simulated using quantum
Monte Carlo techniques avoiding the infamous sign problem
under certain conditions [9]. Second, it was shown that field-
theoretical approaches can be controlled by increasing the
co-dimension of the Fermi surface, which allows for the
computation of critical exponents in a systematic epsilon
expansion [10,11]. In this work, we will make use of the latter
ideas in particular.

*d.pimenov@physik.lmu.de

So far, most of the theoretical works focused on the
experimentally relevant cases of spin-density wave or Ising-
nematic critical points in metals. Here, we consider a different
problem instead and study the quantum critical point between
a normal metal and an inhomogeneous Fulde-Ferell-Larkin-
Ovchinnikov (FFLO) superconductor [12,13] in two dimen-
sions. This scenario was put forward by Piazza et al. [14],
who showed that, for appreciable in-plane anisotropy of the
Fermi surface, there is a strong coupling between electrons
and FFLO fluctuations in the vicinity of hot spots on the Fermi
surface, potentially giving rise to non-Fermi-liquid behavior in
the quantum critical regime extending from the QCP at finite
temperature, see Fig. 1. A similar treatment of the isotropic
case can be found in Ref. [15].

The stabilization of FFLO phases requires clean super-
conducting materials with suppressed orbital pair breaking
effects plus highly anisotropic Fermi surfaces, such as the ones
shown by layered materials [16]. Several strong indications
of such phases are found in an increasing number of ex-
perimental cases, involving organic superconductors [17–20],
heavy-fermion systems [21,22], iron-based superconductors
[23,24], Al films [25], as well as superconductor-ferromagnet
bilayers [26,27].

While the previous study [14] of FFLO non-Fermi liquid
criticality was based on a perturbative, RPA-type approach,
we will employ the epsilon expansion by Dalidovich and Lee
[11] in this work. This allows us to compute critical exponents
in a systematic expansion around d = 5/2 dimensions, similar
to the Ising-nematic problem.

One intriguing aspect of non-Fermi liquids in the vicinity of
FFLO critical points is that the QCP is potentially “naked” and
not masked by a competing order. Indeed, in the Ising-nematic
as well as the SDW scenarios, the order parameter fluctuations
give rise to an effective attraction between the electrons,
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FIG. 1. Typical temperature-magnetic field phase diagram of a
superconductor susceptible to FFLO pairing. This picture was adapted
from Ref. [14].

burying the QCP deep underneath a superconducting phase
[28–35]. One consequence of this competing superconduc-
tivity is that the scaling regime of the QCP might be hardly
accessible in experiments. By contrast, there is no obvious
superconducting order parameter with a different symmetry
competing with FFLO superconductivity, which could poten-
tially mask the FFLO QCP. It might be possible, however, that
other types of competing orders, such as charge density waves,
are enhanced by fluctuations of the FFLO order parameter. We
will discuss this issue in detail later in this work.

The rest of this paper is outlined as follows. First, we will
give a nontechnical overview of our main results and their
physical consequences in Sec. II. Detailed computations are
presented in the subsequent sections. In Sec. III, the system
under consideration is introduced, studied on mean-field level,
and lifted to higher dimensions. In Sec. IV, we discuss one-loop
quantum corrections, from which the renormalization group
flow and critical properties are derived in Sec. V. Possible
competing instabilities are analyzed in Sec. VII. Finally, a
conclusion is presented in Sec. VIII. Technical details of the
computations are carried out in Appendices.

II. SUMMARY OF RESULTS

An appropriate field-theoretical description of the FFLO-
normal metal quantum phase transition has to include dynam-
ics of a bosonic FFLO order parameter � (a spatially modu-
lated gap) coupled to the relevant “slow” electronic degrees of
freedomψ . As we show in Sec. III, such a description is accom-
plished by a low-energy action which contains three parameters
{m,g,δv}. Here, m is the “boson mass,” respectively, inverse
correlation length, which is proportional to the deviation from
the critical magnetic field hc and allows us to tune through
the phase transition, g is the strength of the electron-boson
coupling (which is proportional to the microscopic electron
attractive interaction), and δv is a parameter, which describes
the relative spin velocities of the electrons perpendicular to the
Fermi surface (which we call the kx direction).

An RG analysis of this low-energy action, which treats
fermions and bosons on equal footing, is the only rigorous
way to gain insight into the critical features of the transition,

TABLE I. Critical exponents at the FFLO fixed point, g = g�.
Here, z is the dynamical critical exponent, ηψ = η� are the anomalous
dimension of fermions and bosons (which coincide in O(ε), and ν is
the correlation length exponent.

Critical Exponent Value in d = 2 at O(ε)

z dyn. crit. exponent 3/2
ηψ = η� anomalous dim. −1/4
ν corr. length. exp. 1

see, e.g., Chap. 18 of Ref. [36] for an introduction. In the RG,
the parameters of the low-energy action will flow as a function
of the energy/length scale. In this work, we study the simplified
flow of the interaction parameter g at the quantum critical point
(m = 0), and also set δv = 0 for technical reasons.

The first goal of the RG analysis is to locate a fixed
point g = g�, which gives access to critical exponents and
correlations. To our knowledge, this was not yet accomplished
in the study of FFLO criticality. Using an epsilon-expansion
method introduced in the context of metallic quantum critical
points [11], we find a stable fixed point corresponding to a
continuous transition at g� ∝ ε3/4, where ε = 5/2 − d = 1/2.

The critical exponents obtained in our analysis of this
new fixed point are presented in Table I. In this table, z is
the dynamical critical exponent, which determines how the
timelike direction scales compared to the spacelike directions.
ηψ,η� are the anomalous dimensions of the fermions and
bosons (which coincide at one-loop level), i.e., the deviation
from the scaling determined by power counting for the free
theory. ν is the correlation length exponent, given by the inverse
RG eigenvalue of the mass term m.

The main value of these critical exponents lies in the fact that
they determine the critical correlations, i.e., the electron and
boson propagators. In accordance with the RPA-type treatment
of Ref. [14] (which is thereby set on solid ground), the scaling
forms of the two-point correlators in 2D agree with

G(ω,kx,ky) = 1

iω − δk −
(ω)
,

δk ∝ kx + k2
y, Im[
(ω)] ∝ g4/3ω2/3 (1)

for electrons. For bosons, one obtains

D(ω,kx,ky)= 1

k2
y −�(ω,ky)

, �(ω,ky) ∝ −g2 |ω|
|ky | , (2)

where � is the inverse pair propagator. The kx dependence
of the boson propagator is irrelevant in the RG sense. The
nonanalytic behavior of the self-energies supports our claim
that the quantum critical point is of non-Fermi liquid type.
Under assumption of ω/T scaling, signatures of these critical
correlations are measurable in the non-Fermi liquid region
indicated in Fig. 1. This region is delimited by the two crossover
lines satisfying kBT ∼ |h− hc|zν with zν = 3/2 according
to our results. Examples for physical observables include the
following.

(1) Magnetic susceptibility χ : a simple computation (see
Appendix F and Refs. [15,37]) shows that the fluctuation
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FIG. 2. Typical Fermi surface of an anisotropic metal susceptible
to FFLO pairing. Fluctuations of the pairing amplitude � strongly
couple left branch fermions with right branch fermions with opposite
spin at the hot spots. This picture was adapted from [14].

contribution to the magnetic susceptibility χ� scales as χ� ∝
ln(h− hc).

(2) Fermionic decay rate  and density of states ρ(ω): from
(1) one immediately sees that the quasiparticle decay rate has a
non-Fermi-liquid-like power law dependence  ∝ ω2/3, while
by integrating the spectral function over momenta [14], one
finds ρ(ω) ∝ ω1/3.

(3) Specific heat capacity: although the determination of
thermodynamic quantities is a somewhat subtle issue (see
Sec. VIII), we expect that C(T ) ∝ T

4
3 − 2

3 θ . Here, θ = θ (δv)
is a hyperscaling violation exponent, which should fulfill
θ (δv = 0) = 1.

Finally, our RG analysis also identifies possible competing
orders which may preempt the FFLO transition and lead to a
“competing order dome” around the FFLO critical point. We
find a charge density wave (CDW) peaked at 2kF to be the most
promising candidate. Since 2kF is much larger than QFFLO, an
experiment sensitive to momentum (e.g., using x-ray scattering
techniques) could serve to distinguish between the FFLO and
CDW orders, although in practice difficulties may arise due to
the required low temperatures and high magnetic fields [38].

III. CRITICAL THEORY

A. Critical theory in 2 + 1 dimensions

When an anisotropic 2D metal at T = 0 is subjected to
a strong in-plane magnetic field h, and orbital effects can
be neglected, the electron Fermi surface is spin-polarized. A
typical sketch is shown in Fig. 2. Let us now assume that the
electrons interact with some generic short-range interaction

Hint = −g
∫
d2r ψ†

↑(r)ψ†
↓(r)ψ↓(r)ψ↑(r), (3)

resulting in Cooper pairing. To derive a low-energy ef-
fective action, which makes this pairing explicit, one can
perform an exact Hubbard-Stratonovich decoupling of the
interaction term (3) in the Cooper channel; thereby, one
introduces bosonic fields �(r) and �̄(r) with a free action∫
dτd2r g|�(r)|2, which couple to the Fermions in Yukawa-

like manner, ∝g�(r)ψ↑(r)ψ↓(r). Due to the spin polarization
and the anisotropy of the Fermion dispersion, the bosonic

fields (which correspond to the pairing amplitude) are peaked
at momenta ±QFFLO �= 0, which is the very definition of the
FFLO state. Due to the electron fluctuations, the bosonic mass
term gets renormalized, g → m ≡ g −�(0,0;h), where � is
the inverse pair propagator at vanishing energy-momentum,
and we explicitly denoted its magnetic field dependence.1 As
h is increased above the Pauli upper critical field h = hc,
the renormalized mass changes from negative to positive
values, and the system crosses from the FFLO phase to the
normal metal phase along the (T = 0) line in the phase
diagram of Fig. 1. Accordingly, m is proportional to the
reduced magnetic field, m ∝ (h− hc)/hc, in precise analogy
to Ginzburg-Landau theory. Further details on the procedure
described above are presented in Appendix A, illustrated by
a mean-field discussion of the phase transition for a specific
microscopic model.

By phase-space considerations, the low-energy fermions at
the four hot spots with vanishing curvature in the ky direction
shown in Fig. 2 are most strongly susceptible to pairing,
with Cooper pair wave vectors ±QFFLO. Following the above
rationale, a zero temperature action which captures the phase
transition between the FFLO and normal metal phases can be
readily derived along the lines of Ref. [14] [see Eq. (4) therein]:

S =
∫
k2+1

∑
i=L,R
α=↑,↓

ψ̄ i
α(k)

( − ik0 + viαkx + k2
y

)
ψi
α(k)

+
∫
k2+1

(
m+ k2

0 + k2
x + k2

y

)|�(k)|2

− g

∫
k2+1,p2+1

[�̄(k)ψL
↓ (p)ψR

↑ (k − p)

+ �̄(k)ψR
↓ (p)ψL

↑ (k − p) + H.c.], (4)

where k0 = ω, and

viα =
{−vα, i = L

+vα, i = R
, vα > 0, and

∫
kd+1 ≡ ∫

dd+1k
(2π)d+1 .

(5)

Here, the fermion fieldsψi
α are expanded around the respective

hot spots (see Fig. 2), while the boson fields � are expanded
around ±QFFLO. For simplicity, we assume that the pairing is of
Larkin-Ovchinnikov type [13], �(r) ∝ cos(QFFLO · r), peaked
around ±QFFLO with equal amplitude.

By the Hubbard-Stratonovich procedure sketched above,
the bosons�originally just have a mass termm ∝ g and no dis-
persion. However, the kinetic terms and the renormalized mass
will be automatically generated during the RG procedure, when
high-energy degrees of freedom are integrated out (or, equiv-
alently, arise from the leading analytical boson self-energy
corrections involving fermions [14]). Since an action which
is appropriate for RG analysis should contain all analytical
RG-relevant terms (nonanalytical terms do not renormalize),
we include these additional boson terms here from the start.
Note that terms (k2

0 + k2
x)|�|2 are actually RG-irrelevant by

1We perform the Hubbard-Stratonovich decoupling in such a way
that � ∝ g2, which is why our bare boson mass is g instead of 1/g.
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(a) δv � 1.3 (b) δv � 1.3 (c) δv � 0.2

kx

ky

FIG. 3. Fermi surfaces in the FFLO phase at mean-field level.
(a) Fermi surface without pairing, i.e., g�0 = 0. (b) Fermi surface
for electron/hole operators (see main text), at δv 	 1.3. Dashed lines:
g�0 = 0. Full lines: g�0 = 0.05. (c) Same as (b), but δv 	 0.2.

tree-level power counting (see below), which is why we do
not need curvature coefficients for them. Alternatively, one
can just view the boson terms as expansion in powers and
gradients of an FFLO pairing order parameter �, as familiar
from other non-Fermi-liquid scenarios like Ising-nematic [7]
or SDW order [8].

B. Mean-field analysis of superconducting phase

As a first step, let us recall the mean-field level treatment
of the action (4) (compare, e.g., Refs. [39–41]) in the super-
conducting phase, which amounts to the replacement �(k) →
�0 δ

(3)(k),|�0| > 0. For clarity, we focus on the fermionic
branches ψR

↑ ,ψ
L
↓ , with dispersions

ξR↑ (k) = v↑kx + k2
y,

(6)
ξL↓ (k) = −v↓kx + k2

y.

A zoom-in on the respective Fermi surfaces (compared to
Fig. 2, momenta are shifted towards a common origin) is shown
in Fig. 3(a). The parameter that determines the Fermi surface
shapes is the velocity detuning δv:

δv ≡ 2(v↑ − v↓)/(v↑ + v↓). (7)

We now introduce Nambu spinors in the standard fashion:

�(k) = (ψR
↑ (k), ψ

L

↓ (−k))T . (8)

This means that we perform a particle-hole transformation
for the spin-down electrons; the Fermi surface of the new
fermionic degrees of freedom without pairing is shown in
Fig. 3(b) (dashed lines). The mean-field pairing Hamiltonian
derived from Eq. (4) is then readily diagonalized by Bogoli-
ubov transformation, with rotated degrees of freedom:

γ+(k) = ukψ
R
↑ (k) − vkψ

L

↓ (−k),
(9)

γ−(k) = vkψ
R
↑ (k) + ukψ

L

↓ (−k).

where uk,vk are some weights. The corresponding dispersions
read

E± = ± 1
2 (ξR↑ (k) − ξL↓ (−k)

±
√

(ξR↑ (k) + ξL↓ (−k))2 + 4g2|�0|2). (10)

Unlike in the BCS problem, gapless fermionic degrees of
freedom remain; the ground state of the system is a condensate

of Cooper pairs with a Fermi sea of γ± on top. A plot of
the corresponding γ+ Fermi surface for δv 	 1.3 is shown in
Fig. 3(b) (full green line); γ− fermions are gapped for δv > 0.

Microscopically, the parameter δv grows monotonously for
increasing magnetic fields. This parameter also controls the
effectiveness of pairing. Indeed, for δv → 0, the full Fermi
surface gaps out; the problem becomes BCS-like. This trend
is demonstrated in Fig. 3(c), which shows the same quantities
as Fig. 3(b), but for a significantly smaller value δv 	 0.2.

As already seen in Fig. 3, the limit δv → 0 is rather peculiar.
Still, taking this limit will be required later on to gain analytical
control over the problem. The implications of this procedure
will be discussed in more detail below [(see Sec. IV and
Appendix D)].

C. Critical theory in d + 1 dimensions

Let us now focus on the phase transition from the FFLO
to the normal metal phase, which can be driven by tuning
the boson mass m in Eq. (4) from negative to positive values.
Going beyond a Landau-Ginzburg type analysis of the phase
transition (as found, e.g., in Refs. [42,43]), we will treat both
bosons and fermions as dynamical degrees of freedom, and
look for the critical RG fixed point of the action (4) in the IR.
However, this fixed point is located at strong coupling; to access
it perturbatively, we must introduce a small parameter ε into the
action which suppresses quantum fluctuations. A convenient
way of doing so is to increase the space dimension d, thereby
successively tuning the Yukawa interaction between bosons
and fermions marginal as d approaches the critical dimension
dc. For d = dc, the interacting critical fixed point then collapses
with the noninteracting Gaussian one, and we can therefore
derive RG flow equations perturbatively in ε = dc − d.

In the presence of a Fermi surface, one may increase
the number of dimensions tangential or perpendicular to it
[44,45]. Some aspects of the scheme with increased tangential
dimensions (or fixed codimension), where dc = 3, are outlined
in Appendix E; in short, this extension is problematic because
it leads to a breakdown of the hot spot theory in the parameter
regime where the computations are analytically tractable.
Let us therefore follow [10,11] and increase the perpendic-
ular dimensions. That is, the Fermi surface is always one-
dimensional, and the fermionic density of states is successively
reduced. This amounts to an expansion around dc = 5/2.

To implement this dimensional extension in practice, we
employ the formalism and techniques introduced in Ref. [11],
where renormalization group equations are computed within
the dimensional regularization (called DIMREG henceforth)
and minimal subtraction schemes (see Refs. [46,47] for an
introduction). We will work at T = 0; thermal fluctuations on a
different, isotropic model for the FFLO transition were recently
studied in Ref. [48] with functional RG methods.

For shorter notation, we define fermionic “spinors” �:

�α(k) =
(
ψR
α (k)

ψ̄L
α (−k)

)
, �̄α(k) = (

ψ̄R
α (k), ψL

α (−k)
) · σy,

(11)
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where σy is a Pauli matrix. The kinetic term for the fermions
can then be generalized to d + 1 dimensions as∑

α=↓,↑

∫
kd+1

�̄α(k)(−i� · K + iσxδα(k))�α(k). (12)

Here, K = (k0,k1, . . . ,kd−2), and the momenta kx,ky are rela-
beled as kx →kd−1,ky →kd . δα is the right branch fermion dis-
persion, δα = vαkd−1 + k2

d . � = (γ0,γ1, . . . ,γd−2) is a vector
of two-dimensional Gamma matrices, which fulfills the Clif-
ford algebra, {γα,γβ} = 2δαβ . In the integer cases of interest:

d = 2 : K = k0, � = σy, (13)

d = 3 : K = (k0,k1), � = (σy,σz). (14)

To uniquely specify the Gamma-matrix structure, in general
dimensions, we choose the continuation

� = (σy,
) = (σy,σz, . . . σz), (15)

where the “vector” 
 has (d − 2) entries.
The introduction of generalized Gamma matrices is a stan-

dard tool in DIMREG of fermionic theories, see, e.g., Ref. [49].
In the condensed matter context, an alternative point of view
is the following: we add one extra dimension perpendicular
to the Fermi surface, extending the action with terms of
triplet-pairing form [11]:

�̄α(k)(−ik1σz)�α(k) = k1

⎛
⎝ ∑
α=↓,↑

ψ̄R
α (k)ψ̄L

α (−k) + H.c.

⎞
⎠.
(16)

These terms gap out the Fermi surface except for the one-
dimensional branches of Fig. 2. In all computations, we then
continuously tune the “weight” of this extra dimension, by
using a radial integral measure

∫
dk1k

d−3
1 /(2π )(d−2). It should

be noted that by introducing these extra terms we have broken
the spin-rotation symmetry in the xy plane of the original
action (4).

The kinetic term for the bosons in the (d + 1)-dimensional
action generalizes to∫

kd+1

(|K |2 + k2
d−1 + k2

d +m
)|�(k)|2. (17)

The terms in the noninteracting parts of the action (12) and
(17) are invariant under the scaling transformations:

K = K ′

b
, kd−1 = k′

d−1

b
, kd = k′

d√
b
,

(18)

�(k) = b
d
2 + 3

4� ′(k′) , �(k) = b
d
2 + 3

4�′(k′).

At tree level, the terms (|K |2 + k2
d−1)|�|2 are irrelevant, and

will stay so in ε expansion as long as ε is small. Let us therefore
erase these terms from the action. Furthermore, as we are
mostly interested in the quantum critical point, we will set the
renormalized massm = 0 in the following. The IR divergences
resulting from these two steps can be regularized by using
dressed boson propagators in all computations [11].

Inserting the spinor definitions (11), the interaction term
is easily rewritten in higher dimensions. In total, the critical

(a)

(b)

(c)

FIG. 4. One-loop diagrams. Dashed wavy lines (a) indicate bare
boson propagators, while straight lines indicate electron propagators.
Full wavy lines [(b) and (c)] represent bosons dressed with the self-
energy of (a). External lines are amputated.

action in d + 1 dimensions then reads

S =
∫
kd+1

�̄α(k)
(−i� · K + iσx

(
vαkd−1 + k2

d

))
�α(k)

+
∫
kd+1

k2
d |�(k)|2 − gμε/2

∫
kd+1,pd+1

[
�̄(k)σαα′

y �̄α(−p)

×M1�α′(k − p) +�(k)σαα′
y �̄α(k − p)M2�α′ (−p)

]
,

(19)

where we introduced matrices acting in spinor space

M1 =
(

1 0
0 0

)
, M2 =

(
0 0
0 1

)
, (20)

and employed a summation convention for spin indices. Note
that the pairing terms of the original action (4) have the form of
a standard density term in the spinor language. We have made
the tree-level scaling dimension of the interaction explicit by
replacing g → gμε/2, where μ is an arbitrary mass scale, and

ε = 5/2 − d. (21)

In the standard logic of ε-expansion, we will work in the
limit ε → 0, where the interaction term becomes marginal,
and determine the critical exponents at the interacting fixed
point to order ε. Extrapolating to the physically relevant value
ε = 1/2, we can then make a controlled qualitative estimate
of critical exponents and the universality class of the problem.

IV. ONE-LOOP DIAGRAMS

To compute the flow equations in DIMREG, one needs to
evaluate the possible one-loop corrections to the action (19),
whose diagrammatic representations are shown in Fig. 4.
Note that tadpole contributions to the fermion self-energy are
disregarded since they can renormalize the chemical potential
only. Higher loop diagrams are multiplied with a higher power
of the coupling g. Below, we will show that g ∝ ε3/4 at the
critical point, thus higher-loop diagrams are suppressed for
ε → 0. In this work, we will disregard them altogether. To
evaluate these diagrams analytically, we need to make one
important approximation: we consider the limit of vanishing
velocity detuning, δv → 0 [cf. Eq. (7)].
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scattering
allowed

(b)

(a) kd

k1, . . . kd−1

q2

scattering
forbidden

(c) q1
q2

q1

FIG. 5. Zoom-in of Fig. 2, showing the two Fermi surface
branches of fermions coupled by pairing fluctuations at +QFFLO,
shifted towards a common origin in momentum space. (a) Case
of nonzero velocity detuning δv �= 0, where only fermions with
momenta close to k = 0 are strongly entangled. (b) Case of vanishing
velocity detuning δv → 0, where the electrons with momenta ±k1

and tangent vector q1 can be scattered to close-by momenta ±k2 with
similar tangent vector q2. (c) Same initial configuration as Fig. 5(b),
but with different final momenta ±k2; now, the final tangent vector
q2 differs strongly from the initial one, and the phase space for the
scattering is negligible.

In a realistic experimental setup, δv = O(0.1) [14] is indeed
small. However, the limit δv → 0, while being computation-
ally convenient, is somewhat singular, as already indicated
in Sec. III B. This can be seen pictorially in Fig. 5: for
nonvanishing velocity detuning [Fig. 5(a)], two Fermi surface
branches interacting with each other have different curvatures.
Thus only electrons with momenta close to the hot spot at
k = 0 (the branches are shifted towards a common origin)
scatter strongly with FFLO fluctuations. For any electron close
to the Fermi surface with large momentum k away from the
hot spot [red dot in Fig. 5(a)], the corresponding electron
with momentum −k (indicated by a dashed line and a blue
dot), which would be most susceptible to FFLO pairing, has
momentum far from the Fermi surface, and thus pairing is
suppressed.

On the other hand, if the two spin velocities are equal
[Figs. 5(b) and 5(c)], an arbitrary electron on the Fermi surface
with momentum k1 can scatter against its counterpart with
momentum −k1, as also demonstrated in Sec. III B. How-
ever, the FFLO fluctuations can only scatter these electrons
efficiently into a pair of electrons with momenta ±k2, such
that k2 	 k1. The tangent vector to the Fermi surface of the
initial pair q1 must almost coincide with the final tangent vector
q2, as shown in Fig. 5(b). If q2 �	 q1, as shown in Fig. 5(c),
the scattering process is energetically suppressed. The fact
that scattering processes are only local in momentum space
prevents the explicit appearance of UV scales and thereby

justifies application of the hot spot theory. Note that this
argument remains true only as long the Fermi surface is strictly
1D; for higher-dimensional Fermi surfaces, which arise in
the RG scheme with fixed codimension, the limit δv → 0
is even more singular and results in UV-IR mixing [44],
eventually leading to a breakdown of the hot spot expansion;
see Appendix E for further details.

Despite its smallness, in a fully fledged RG analysis of the
problem, δv should be treated as a running coupling. We will
leave this involved task for future (numerical) work, and focus
on δv → 0 from now on, which should be qualitatively correct
as long as δv does not exhibit a runaway flow in the full RG
procedure.

Let us now evaluate the boson self-energy � of Fig. 4(a).
This diagram dresses the bare boson Green’s function

D0(k) ≡ 〈�(k)�̄(k)〉0 = 1/k2
d , (22)

where the subscript 0 indicates that averages are taken with
respect to the noninteracting action and reads

�(k) = −g2με

∫
pd+1

∑
α �=α′

Tr[Gα(−p)M1Gα′ (k − p)M2].

(23)

Here, the electron Green’s function is defined by

Gα(k) ≡ 〈�α(k)�̄α(k)〉0 = −i−� · K + σxδk

K 2 + (δk)2
, (24)

where δk = kd−1 + k2
d , i.e., we have scaled out the equal

velocities. Evaluation of (23) is done in Appendix B 1 and
yields

�(k) = χd
g2με

|kd |
(
d k2

0 + |
k|2) (k2
0 + |
k|2) d−3

2 , (25)

with

χd = ((1 − d)/2)

2d+2π (d+1)/2

(d/2)2

(d)
,

χ5/2 	 −0.0178. (26)

In Eq. (25), 
k are the extra dimensions inserted in the DIMREG

scheme, i.e., K = (k0,
k). The fact that we have an anisotropy in
K space is a peculiarity of the original pairing vertex, leading
to a matrix structure in spinor space with matrices M1 and M2

[see Eqs. (19) and (20)], which are not Gamma matrices. This
anisotropy can be easiest understood taking the fermion self-
energy as an example, see below. For d = 2, there are no extra
dimensions, and Eq. (25) simplifies to the 2D result found in
Ref. [14].

Two further comments on the result (25) are in order.
First, to arrive at (25), we had to make a trivial regularization
by subtracting �(0,kd ) (in any dimension). The residual
momentum dependence of this subtraction is an artefact of the
δv → 0 limit; for δv �= 0, at least in the physical case d = 2,
one obtains a finite result for the self-energy by subtracting
�(δv �= 0,k = 0). If we could take δv → 0 in the last step of
the computation, i.e., before dropping momentum cutoffs, this
trivial mass renormalization (which is perfectly legitimate as
we focus on the critical point where the boson is massless)
would always suffice. However, in practice we have to take
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(a) (b)Σone loop
ψ Σtwo loop

ψ

FIG. 6. Anomalous contributions to the fermion self-energy (in
terms of the original fermion fields ψ). At one-loop, such contribu-
tions are impossible (a), but can arise at two loop (b).

the limit δv → 0 first, and subtract �(0,kd ) (which amounts
to a “superconducting logarithm”) in effect. A more detailed
justification of this step is presented in Appendix D. Second,
although at first glance of the Fermi surface of Fig. 2 one could
expect � to have a SDW-type behavior �(k) ∼ |K | [8], our
result (25) is a standard Landau damping term familiar from the
Ising-nematic case [11], apart from the anisotropy discussed
above. This is again a consequence of the pairing structure of
the original vertex.

As in the Ising-nematic case, the boson self-energy is UV
finite as d → 5/2. Still, this contribution is crucial, as the
further loop corrections of Figs. 4(b) and 4(c) are only IR finite
if the boson lines are taken to be dressed, which we will do in
the following, compare Ref. [11].

Let us now evaluate the fermion self-energy of Fig. 4(b).
For a fermion of spin κ , there are two contributions,


κ
1 (k) = g2με

∫
pd+1

D(p)M1Gβ(k + p)M2σ
κβ
y σ βκ

y , (27)


κ
2 (k) = g2με

∫
pd+1
D(−p)M2Gβ(k + p)M1σ

κβ
y σ βκ

y , (28)

representing the two ways to draw the arrow on the boson
line. Evaluating these integrals in leading order in ε (see
Appendix B 2), we obtain


(k) = 
κ
1 (k) +
κ

2 (k)

= ugg
4/3

ε
σy (−ik0) + finite terms,

ug 	 −0.0813. (29)

Thus we find that the fermion self-energy only depends on
the frequency, and not on the extra momenta 
k as for the
Ising-nematic [11]. This is easily understood as follows: as
discussed before, see Eq. (16), insertion of extra dimensions 
k
gives rise to triplet pairing terms already at the noninteracting
level, or, in other words, to anomalous terms in the bare
fermion Green’s function ∝
k, when expressed in terms of the
original fermion fields ψ (see, e.g., Ref. [50]). Therefore, to
obtain a contribution to
(k) ∝ 
k, there must be an anomalous
contribution to the self-energy. However, this is not possible
at one loop. This is seen pictorially in Fig. 6(a), which shows
an impossible diagram (since four fermions are annihilated at
the vertices) in terms of original fermion fields. Note that at
higher loop level such contributions can arise, see Fig. 6(b).

Last, we need to compute the vertex correction of Fig. 4(c).
In d = 2, this diagram is trivially absent, but not in d > 2 (due
to the anomalous terms). However, we still find that there is
no ε-divergent vertex correction; further details are relocated
to Sec. VII, where we discuss general vertex corrections that
reflect possible competing orders.

V. RENORMALIZATION

A. Flow equation

To obtain a UV finite renormalized action, we have to
add the fermion self-energy as a counter-term, employing the
minimal subtraction scheme where the counterterm depends
on g only:

SCT =
∑
α=↓,↑

∫
kd+1

Z1,1(g)

ε
�̄α(k)(−iσy k0)�α(k),

Z1,1(g) = ug g
4/3. (30)

Then, the renormalized action is obtained as Sren = S + SCT.
We define a renormalization constant Z1 = 1 + Z1,1/ε and
introduce unrenormalized (bare) fields and couplings as

kb0 = k0 Z1, 
kb = 
k, kbd−1 = kd−1, kbd = kd,

�b(kb) = Z
−1/2
1 �(k), �b(kb) = Z

−1/2
1 �(k),

gb = Z
−1/2
1 με/2g. (31)

These relations bring the renormalized action back in the form
of the initial bare action (19) except for the dimensionful
coupling gb:

Sren

=
∫

(kb)d+1
�̄b
α(kb)

(−i� · K b + iσx
(
kbd−1 + (

kbd
)2))

�b
α(kb)

+
∫

(kb)d+1

(
kbd
)2 |�b(kb)|2

− gb
∫

(kb)d+1,(pb)d+1

[
�̄b(kb)σαα′

y �̄b
α(−pb)M1�

b
α′ (kb − pb)

+�b(kb)σαα′
y �̄b

α(kb − pb)M2�
b
α′ (−pb)

]
. (32)

Let us determine the flow of the renormalized coupling g at a
fixed UV value of the bare coupling gb as the mass scale μ is
decreased. It is described by the beta function

β = dg

d ln(μ)
, (33)

which fulfills the equation

β
(g

2
Z′

1 − Z1

)
− ε

2
gZ1 = 0. (34)

We may solve it making the standard ansatz β = β0 + εβ1,
where β0,1 depend on g only. Comparing the coefficients of
the parts regular in ε of Eq. (34) yields2

β = −ug

3
g7/3 − ε

2
g. (35)

The beta function has a fixed point at

g� =
(

3ε

−2ug

)3/4

, ug 	 −0.0813. (36)

2Note that the solution (35) violates Eq. (34) at order g11/3/ε. This
is a standard artefact of approximating the renormalization constant
Z1 	 1 + Z1,1/ε at one-loop level, and should be successively im-
proved by higher loop contributions.
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Writing μ = μ0e
−�, the RG eigenvalue of g at g = g� in the

IR (� → ∞) is − 2
3ε, i.e., the fixed point is stable (respectively,

critical, as we have dropped the RG relevant mass term from the
action). This indicates a second-order phase transition between
the FFLO and normal metal phases. A continuous transition
was also found in the mean-field study of our precursor work
[14] and other 2D studies [51,52].

B. Critical properties

Let us discuss critical properties of this new fixed point,
which are intimately linked with experimental observables.
First, we define the dynamical critical exponent z:

z = 1 − d ln(1/Z1)

d ln(μ)
= 1 + 1

Z1
Z′

1β. (37)

At the fixed point, we find

z� = 1 + ε. (38)

From the renormalization of fields in Eq. (31), the anomalous
dimensions of bosons and fermions read

η� = η� = 1

2

d ln(1/Z1)

d ln(μ)
= 1 − z

2
= −ε

2

∣∣∣∣
z=z�

. (39)

z and η feed into the scaling behavior of correlation functions,
which can be determined in the standard way, defining renor-
malized Green’s functions by

〈�(k1) . . . �(km)�̄(km+1) . . . �̄(k2m)�(k2m+1) . . .

�(k2m+n)�̄(k2m+n+1) . . . �̄(k2m+2n)〉
= G(m,m,n,n)({ki}; g,μ)

× δd+1

⎛
⎝ m∑

i=1

ki +
2m+n∑
i=2m+1

ki −
2m∑

j=m+1

kj −
2m+2n∑

j=2m+n+1

kj

⎞
⎠,
(40)

with spin and space-time indices suppressed. These correlators
are related to the bare ones derived from the bare action (32) by
multiplicative renormalization and fulfill the scaling equation{

2m+2n∑
i=1

z ki,0
∂

∂ki,0
+ 
ki∇
ki + ki,d−1

∂

ki,d−1
+ ki,d

2

∂

∂ki,d

−β
∂

∂g
− 2m

(
η� − 4 − ε

2

)
− 2n

(
η� − 4 − ε

2

)

+ (ε − z − 2)

}
G(m,m,n,n)({ki}; g,μ) = 0. (41)

At the fixed point where β = 0, and the RG exponents are
given in Eqs. (38) and (39), Eq. (41) implies a scaling form of
the fermion two-point function:

G(k) ∝ 1

δk
f

(
k

1/(1+ε)
0

δk
,
|
k|
δk

)
, δk = kd−1 + k2

d , (42)

where f is a universal scaling function. In particular, in d = 2
(ε = 1/2), this scaling form is consistent with the fermion self-
energy ∝k2/3

0 obtained in Ref. [14]. We therefore find, for ε >
0, non-Fermi-liquid behavior where the quasiparticle nature of
fermions is destroyed by strong order parameter fluctuations;

exactly at ε = 0, the system is a marginal Fermi liquid. For
bosons, one finds the same scaling form as in Eq. (42) with δk
replaced by k2

d :

D(k) ∝ 1

k2
d

f

(
k

1/(1+ε)
0

k2
d

,
|
k|
k2
d

)
. (43)

Apart from the critical correlations (42), also the scaling
behavior on the normal metal side is of interest, characterized
by the correlation length exponent ν. To find it, we need to
include a mass perturbation m|�|2 in the action, and ν is
given by the inverse RG eigenvalue of m. Then, we need to
compute the boson self-energy �(0)—the mass will acquire
an anomalous dimension if �(0) shows a (logarithmic) 1/ε
divergence. In our evaluation of � in Appendix B 1, such a
logarithmic divergence does not arise, at least at one-loop in
the analytically controlled limit δv → 0. By power counting,
we can thus conclude

ν = 1 + O(ε2). (44)

What is more, our theory is similar to the nematic case, where
the boson self-energy does not diverge up to 3-loop, [11]. So,
we can expect that the estimate (44) holds to higher loop level
as well.

VI. PHYSICAL OBSERVABLES

Equations (42) and (43), obtained in a controlled perturba-
tive procedure, are the major result of this work. Equation (43)
tells us the scaling form of the pair susceptibility D. For
ordinary BCS [53–55] as well as unconventional high-Tc
[56] superconductors, the imaginary part of this quantity is
proportional to the Josephson current in a SIN junction setup
for a small applied bias voltage; it remains to be seen if this idea
can be carried over to FFLO superconductors. Furthermore,
by integration over D2 (see Appendix F), one can obtain the
fluctuation contribution to the spin susceptibility χ� in the
normal state. For d = 2, we find a weakly divergent behavior
as a function of the reduced magnetic field, χ� ∝ ln[(h−
hc)/hc]. This is in agreement with the RPA result of Ref. [15].

The correlator G in Eq. (42) describes the fate of electronic
excitations. In d = 2, they decay in non-Fermi-liquid manner,
with a large rate (k0) ∝ k

2/3
0 . The hot-spot density of states

ρ(k0) of these excitations can be found by integrating the
electronic spectral function over momenta [14], ρ(k0) ∝ k

1/3
0 .

In addition, a constant contribution to ρ(k0) from the cold,
Fermi-liquid-like parts of the Fermi surface will arise.

As long as ω/T scaling is not violated [57–59], these
overdamped excitations will strongly influence the temperature
dependence of observables within the quantum critical region
of Fig. 1. This region is delimited by the two crossover lines
satisfying kBT ∼ |h− hQCP|zν with zν = 3/2 according to our
results. For instance, one can extract the critical contribution to
the specific heat, which scales asC ∝ T (d−θ)/z = T

4
3 − 2

3 θ . Here,
θ is an exponent which describes hyperscaling violation. Usu-
ally, hyperscaling violation occurs in systems with a critical
Fermi surface, where the integral of the singular part of the free
energy along the entire Fermi surface alters the thermodynamic
properties [60]. In the context of the FFLO critical point
discussed here, hyperscaling violation is not expected to occur
for a sizable velocity detuning δv, when the critical degrees
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of freedom live in the vicinity of isolated hot spots. Then,
θ = 0 and therefore C ∝ T 4/3. This is similar to the SDW
hot spots studied in Refs. [61,62]. By contrast, for the case
of vanishing velocity detuning to which our RG computation
was restricted, the entire Fermi surface becomes hot. As a
result, one expects a hyperscaling violation exponent θ = 1
and therefore C ∝ T 2/3. We emphasize again, however, that
the hot spot theory (our field theoretical starting point) remains
applicable in this limit as well: the infinite set of hot spot pairs
decouple in the low energy limit, because electrons can only
scatter with small momentum transfer tangential to the Fermi
surface, similar to the Ising-nematic case. For this reason,
we are confident that our RG computation remains valid for
finite velocity detunings as well, even though thermodynamic
observables may depend strongly on the velocity detuning via
the hyperscaling violation exponent θ .

From the low-energy form of ρ(k0) of the hot quasiparticles,
one can also make a prediction for the temperature dependence
of the NMR relaxation rate, 1/(T T1) ∝ T 2/3 [14]. Note that for
strong velocity detuning, the cold electrons give an additional
constant contribution to 1/(T T1) (Korringa law).

In organic superconductors, measurements of specific heat
[63,64] and NMR rates [19] within the putative quantum-
critical region have been already taken. While one may see
indication for non-Fermi-liquid behavior in the data (see
Ref. [14]), quantitative statements and meaningful estimates
on critical exponents cannot be made yet. A new round of
data taking on a larger temperature interval might provide a
conclusive insight.

VII. COMPETING ORDERS

Non-Fermi liquid fixed points, where the critical corre-
lations take a form similar to Eqs. (42) and (43), arise in
numerous physical contexts. As discussed above, in principle,
the zero-temperature form of the correlations manifests itself
in a quantum-critical region at finite temperatures, see Fig. 1.
However, the critical scaling is often masked by a “dome”
of a competing, mostly superconducting order [31,33,62,65],
at least for conventional critical points associated with the
onset of broken symmetry [32]. The FFLO-normal metal fixed
point is different in this regard: since we deal with a phase
transition towards superconductivity already, one can expect
the fixed point to be “naked.” Other superconducting orders,
e.g., of triplet type, may of course occur, but seem unlikely
given the Fermi surface geometry of Fig. 2, in accordance
with a recent Monte-Carlo study of a Hubbard model with spin
imbalance [66].

Going beyond these naive expectations, one may answer
the question how competing instabilities are modified close
to our new non-Fermi-liquid fixed point systematically in the
DIMREG framework; following the treatment of Ref. [67], we
consider the insertion of a generic fermion bilinear into the
critical action (19). In the spinor language, this term can be of
two types: either

type 1 : λ

∫
kd+1

�̄α(k)A�β(k)Bαβ or (45)

type 2 : λ

∫
kd+1

�T
α (k)A�β(−k)Bαβ + H.c. , (46)

k

kG(p)

G(p)

k − p
A

M1

M2

k

−kG(−p)

GT(p)

k − p
A

M1

M2

(a) (b)

FIG. 7. Generic one-loop vertex correction in spinor space:
(a) type-1 vertex (b) type-2 vertex.

where A and B are 2 × 2 Hermitian matrices: A acts in spinor
space, while B acts in spin space. λ is a real-valued scalar,
which can be viewed as an external source field coupling to
the respective order parameter.

Restricting ourselves to instabilities where the bare vertex
is momentum independent, a general vertex can be written
as sum of such terms. As seen explicitly below, the quantum
corrections do not mix at one-loop level, so it suffices to study
the terms individually. We aim to classify the quantum correc-
tionsV to these operators at one-loop level. The corresponding
diagrams are shown in Fig. 7.

In leading order in ε, these diagrams renormalize λ as
λ → λ(1 + uλg

4/3/ε); for uλ > 0 (< 0), the instabilities are
enhanced (suppressed). In RG formulation, the associated beta
functions fulfill

βλ = dλ

d lnμ
= λ(−1 − ηλ) (47)

with anomalous dimension ηλ. Proceeding as in the previous
section, we find

ηλ = 2

3
uλg

4/3 =
∣∣∣∣
g=g�

− uλ

ug
ε. (48)

To compute one-loop corrections V to the fermion bilinears
of Eqs. (45) and (46), as a basis for the matrices A and B we
choose 1,σx,σy,σz. The calculations are then fairly straight-
forward; technical details are presented in Appendix C. Let
us sketch the results, starting with type-1 competing orders.
For A = 1 or A = σz, the ε-divergent vertex corrections are
proportional to

V ∝
∫
pd+1


 · 
p · f (| 
p|), (49)

where 
 is the vector of Gamma matrices for the extra inserted
dimensions (i.e., this vector has one entry in d = 3), and f is
some function. In d = 2, there are no extra dimensions, and
(49) vanishes trivially. Indeed, type-1 corrections with diagonal
spinor matrices A correspond to superconducting instabilities;
for these, the one-loop vertex correction is trivially absent as
the diagram simply cannot be drawn. In higher dimensions,
Eq. (49) also vanishes by antisymmetry. In particular, the FFLO
boson-fermion vertex correction vanishes as already stated in
Sec. IV. Thus superconducting vertices are not modified at the
critical point at one-loop level. Of course, for pairing vertices,
one should also take into account momentum dependent form
factors, but these should only render the vertex less RG-
relevant.

For A = σx , the corrections V are shown to vanish as
well, similar to the vertex corrections in the Ising-nematic
case [11]. Finally, for A = σy , the corrections vanish for
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TABLE II. Type-1 instabilities, of the form �̄ασy�βBαβ , modified by the FFLO at one loop.

Spin matrix B Terms in action Anomalous dimension ηλ

1 ψ̄R
α ψ

R
α − ψ̄L

α ψ
L
1α 1.00ε, enhanced

σx ψ̄R
↑ ψ

R
↓ + ψ̄R

↓ ψ
R
↑ − ψ̄L

↑ψ
L
↓ − ψ̄L

↓ψ
L
↑ −1.00ε, suppressed

σy i(ψ̄L
↓ψ

L
↑ + ψ̄R

↓ ψ
R
↑ ) − i(ψ̄R

↑ ψ
R
↓ + ψ̄L

↑ψ
L
↓ ) 1.00ε, enhanced

σz ψ̄R
↑ ψ

R
↑ − ψ̄R

↓ ψ
R
↓ − (ψ̄L

↑ψ
L
↑ − ψ̄L

↓ψ
L
↓ ) −1.00ε, suppressed

d = 2 only (by Cauchy’s integral theorem). Near d = 5/2,
there are nonzero contributions; these lead to enhancement
or suppression depending on the spin matrix B. Writing out
the vertex (45) in terms of ordinary fermions ψ , the results are
summarized in Table II.

Thus the type-1 vertices influenced by FFLO fluctuations
correspond to density interactions between fermions with the
same sheet index, with relative phases locked in various ways.
Let us go over to type-2 competing orders, as these are easier
to interpret and quantitatively more important. In particular,
they also pick up sizable corrections for d = 2. For spinor
matrices A = 1,σz, the quantum corrections vanish analo-
gously to Eq. (49). For A = σx,σy , nontrivial corrections can
arise. Evaluating all combinations�T

α (k)A�β(−k)Bαβ is again
straightforward and shown in Appendix C; some combinations
ofA and B vanish trivially due to anticommutation of fermion
fields. The results are summarized in Table III.

As indicated in Table III, competing orders that acquire a
nontrivial one-loop correction from FFLO order correspond to
the spin density-wave (SDW) or charge density-wave (CDW)
channel. Only the latter order, with a wave vector peaked at
2kF,↓ or 2kF,↑, is enhanced. Note that this order, which is
referred to as 2kF scattering in Ref. [11], is suppressed in the
Ising-nematic case; the change in sign can be cross-checked by
integrating out bosons and noting that the resulting effective
four-fermion interaction has an opposite sign when decoupled
in the 2kF channel in the Ising-nematic case compared to
the FFLO case. In summary, our analysis of instabilities
identifies the 2kF CDW as the only serious competitor for
FFLO criticality in d = 2.

Of course, this DIMREG computation can only predict how a
tendency to order is enhanced, but not if there is an instability
in the first place. A first indication that CDW order may
indeed be important here can be obtained by straightforward
evaluation of the corresponding vertex diagram with both
fermions and bosons dressed by FFLO self-energies, which
indeed shows a logarithmic divergence. To unambiguously
answer the question which ordering tendency (FFLO or
CDW) is more important, one would need to perform an RG
analysis of an action, which treats both orders on the same

footing, e.g., similar to Ref. [33]; we leave this task for future
work.

VIII. CONCLUSION AND OUTLOOK

In this work, we have analyzed the quantum critical point
between an FFLO superconductor and a normal metal phase
in an anisotropic 2D system. Computing critical properties
in a controlled expansion in ε = 5/2 − d dimensions, we
have found a non-Fermi-liquid fixed point, characterized by a
dynamical critical exponent z = 1 + ε and a correlation length
exponent ν = 1 + O(ε2) to leading order in ε. We derived the
scaling forms of electronic and order-parameter correlations,
and discussed possible physical manifestations.

One big advantage of the FFLO critical point compared
to other non-Fermi liquid systems is that the scaling regime
of the QCP is potentially accessible down to arbitrary low
temperatures, if the quantum critical point is not masked by a
competing order, such as superconductivity in heavy Fermion
compounds or cuprate superconductors. In order to shed some
light on this question, we also performed a general analysis
of competing instabilities and found that charge density wave
ordering is enhanced in the vicinity of the FFLO critical point.
It is thus possible that the FFLO QCP is masked by a CDW
phase in certain materials, depending on microscopic details.
Extending our RG analysis to a situation where FFLO and
CDW fluctuations are treated on equal footing would be an
interesting problem for future study. In a similar spirit, one
could attempt an RG analysis of disorder [68], which is known
to destroy the FFLO state in organic superconductors [69].

Our analytical derivation relies heavily on the approxima-
tion that the spin-up and spin-down Fermi surface branches
have the same curvature, respectively, vanishing velocity
detuning δv → 0. While this parameter choice is physically
grounded, treating the δv �= 0 case, e.g., numerically would
be very interesting, potentially revealing a modification of the
Fermi surface shape as in the SDW case [8]. In addition, one
could try to start from the opposite limit δv → ∞. A higher
loop analysis of the problem would be desirable as well, but
appears rather involved; alternatively, for δv �= 0, one could

TABLE III. Type-2 instabilities, of the form �̄T
α A�βBαβ + H.c., modified by the FFLO at one loop.

Spinor A Spin B Terms in action Anomalous dimension ηλ

σx σy 2i(ψ̄L
↓ψ

R
↑ − ψ̄L

↑ψ
R
↓ ) + H.c.: SDW in y direction −1.70ε, suppressed

σy 1 2iψ̄L
α ψ

R
α + H.c.: CDW at 2kF,↓ or 2kF,↑ 2.69ε, enhanced

σy σx 2i(ψ̄L
↓ψ

R
↑ + ψ̄L

↑ψ
R
2↓) + Hc.: SDW in x direction −2.69ε, suppressed

σy σz 2i(ψ̄L
↑ψ

R
↑ − ψ̄L

↓ψ
R
↓ ) + H.c.: SDW in z direction −2.69ε, suppressed
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apply the scheme with fixed co-dimension as shortly discussed,
and see if it leads to similar results.
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APPENDIX A: MEAN-FIELD PHASE TRANSITION
OF A MICROSCOPIC MODEL

To illustrate our field theoretic starting point, in this
Appendix we recall the ordinary Ginzburg-Landau picture of
the phase transition. Paraphrasing the treatment of Ref. [14],
we start from a microscopic model appropriate, e.g., for the
Bechgaard salt (TMTSF)2ClO2 [18,70]: we consider spinful
fermions freely moving along chains oriented in x direction,
with a small interchain hopping parameter t . When these
electrons are Zeeman-coupled to a magnetic field h, the free
fermionic Hamiltonian reads

H0 =
∑

α=↑,↓,k
ξα(k)ψ†

α(k)ψα(k),

(A1)
ξα = k2

x/2 − 2t cos(ky) − μ− sαh, {s↑,s↓} = {1,−1},
whereμ is the chemical potential, and we set the fermion mass
and interchain distance to 1. Plotting the Fermi surface with
parameters μ = 3.3, t = 0.5, and h = 1.0 readily reproduces
Fig. 2.

We now assume that the electrons interact with some short-
range attractive interaction hamiltonian Hint (e.g., mediated
by phonons) as in Eq. (3). Then, we introduce a functional
integral representation of H = H0 +Hint, resulting in a quan-
tum action S (see, e.g., Ref. [71]). Decoupling the interaction

term Hint in the pairing channel yields (we consider finite
temperature T for generality)

S[ψα,ψ̄α,�,�̄] = S0[ψα,ψ̄α] + Sint[ψα,ψ̄α,�,�̄],

Sint =
∑
ωn,q

g|�(ωn,q)|2 − g√
βV

∑
k,q
νn,ωn

�̄(ωn,q)

×ψ↓(ωn − νn,q − k)ψ↑(νn,k) + H.c.,

(A2)

where S0 is the bare fermionic action derived from Eq. (A1),
ωn,νn are bosonic and fermionic Matsubara frequencies, re-
spectively, and β is the inverse temperature. The subsequent
mean-field analysis shows that the superconducting suscepti-
bility is peaked at momenta ±QFFLO = (kF,↑ − kF,↓)ex , where
kF,α are the respective Fermi momenta of the two spin
species. Consequently, electrons interact with superconducting
fluctuations � predominantly at so-called hot spots on the
Fermi surface which are connected by QFFLO, found at ky =
0,kx = ±kF,α . For this reason, within a low-energy theory
sufficient for a universal RG analysis, we can expand the
fermion fields as well as the fermion dispersions near these
hot spots. In this manner, we introduce four low-energy fields

ψ
L/R

↑/↓ . Furthermore, expanding � near ±QFFLO readily yields
action (4) in the limit V → ∞,T → 0 apart from different
boson kinetic and mass terms, which automatically arise in the
RG flow as discussed in the main text.

A standard Landau-Ginzburg analysis of Eq. (A2), which
indicates a continuous phase transition, can be performed by
integrating out the fermions.3 This yields an effective bosonic
action

S�[�,�̄] =
∑
ωn,q

g|�(ωn,q)|2 − Tr lnG−1, (A3)

where Tr denotes the trace in spin and energy-momentum
space, and G−1 is a matrix propagator:

G−1(νn,ν
′
n,k,k

′) =
(

βδνn,ν ′
n
δk,k′(iνn − ξ↑(k))

√
β/V g�(νn − ν ′

n,k − k′)√
β/V g�̄(νn − ν ′

n,k − k′) βδνn,ν ′
n
δk,k′ (iνn + ξ↓(−k))

)
. (A4)

To generally treat Eq. (A3) on mean-field level, one would

proceed by solving for the saddle point, δ/(δ�)S�
!= 0, mak-

ing an appropriate mean-field ansatz for the (static) boson.
The Larkin-Ovchinnikov ansatz, around which our dynamical
boson in the main part is expanded, reads

�LO(ωn,q) = �0δωn,0(δq,QFFLO + δq,−QFFLO ), (A5)

where the amplitude�0 can be chosen real. However, a deriva-
tion of a closed-form saddle point equation (=̂ mean-field self-
consistency equation) is difficult since it requires the inversion
of Eq. (A4), which is hindered by the involved momentum
dependence in Eq. (A5). To avoid this difficulty, one can plug

3This is dangerous for 2D fermionic systems, see, e.g., Ch. 18 of
Ref. [72]; a proper analysis requires an RG procedure as presented in
this paper.

in the ansatz (A5) into S� and expand in powers of �0 up to
fourth order. Since the odd terms trivially vanish by symmetry,
one obtains an effective Landau-Ginzburg functional

SLG[�0] = m[h]�2
0 + a4[h]�4

0, (A6)

where we have indicated the magnetic field dependence
explicitly. A strong indication for a continuous transition at
mean-field level is then given if (see, e.g., Ref. [73]) the boson
mass m can be tuned to zero for appropriate h, while a4 > 0.
The second condition was shown to be true in Ref. [14] (see
Appendix A within). Let us focus on the first one here. As
easily shown, the coefficient m is given by

m = 2g2(1/g −�0[h]), (A7)

�0[h] =
∑

k

1 − nF [ξ↑(k)] − nF [ξ↓(QFFLO − k)]

ξ↑(k) + ξ↓(QFFLO − k))
, (A8)
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h

Π0[h]

FIG. 8. �0[h] numerically computed from Eq. (A8), with param-
eters μ = 3.3,t = 0.5. The inset shows the same plot on a log-linear
scale.

where nF is the Fermi distribution, and �0 the static inverse
pair propagator, respectively, the boson self-energy. Evaluating
Eq. (A8) for general external boson momenta, one can easily
check that it is indeed peaked at QFFLO as claimed before. We
limit ourselves to a numerical evaluation of �0[h] in the limit
T → 0; a plot for generic parameters is shown in Fig. 8.

As clearly seen in Fig. 8, �0[h] diverges as h → 0. In fact,
this divergence is logarithmic, as pinpointed in the inset. This is
in accordance with the analytical evaluation for the low-energy
action in Appendix D (where δv ∝ h), and also with Ref. [15].
Therefore, at any arbitrarily small value of the coupling g,
there is a critical magnetic field hc ∝ exp(−1/g) where the
mass term m in Eq. (A7) changes sign, and the mean-field
phase transition between the normal metal and the FFLO
superconductor occurs. Close to hc, the field dependence of
the mass term scales as m ∝ (h− hc)/hc, as claimed in the
main text.

The mean-field treatment presented above is fairly simplis-
tic. First, it does not describe the phase transition between
the FFLO and homogeneous superconductor—to this aim, one
would have to make a homogeneous mean-field ansatz as well,
which we avoid since we are only interested in the QCP shown
in Fig. 1. One could also improve the mean-field ansatz, say,
by allowing for more complicated periodic functions than the
cos(Q · x) LO dependence, as done, e.g., in Ref. [52]. We do
not pursue this further since the mean-field treatment is not the
focus of this work, and the general outcome that a mean-field
transition exists and is continuous in 2D is generally agreed
upon in the literature.

APPENDIX B: COMPUTATION OF SELF-ENERGIES

1. Boson self-energy

Here, we present the evaluation of the boson self-energy,
given by Eq. (23),

�(k) = −g2με

∫
pd+1

∑
α �=α′

Tr[Gα(−p)M1Gα′ (k − p)M2].

(B1)

To evaluate the trace, we use

Tr[σiM1σjM2] =
⎛
⎝
j = x j = y j = z

i = x 1 −i 0
i = y i 1 0
i = z 0 0 0

⎞
⎠. (B2)

In the limit δv → 0 discussed in the main text, this leads to

�(k) = 2g2με

∫
pd+1

(δ−p + ip0) (δk−p + i(k0 − p0))

[P2 + (δ−p)2][(K − P)2 + (δk−p)2]
.

(B3)

Changing to energy variables x = δ−p,y = δk−p, with Jaco-
bian 1/|2kd |, �(k) is rewritten as

�(k) = g2με

|kd |
∫

dp0

2π

d 
p
(2π )d−2

dx

2π

dy

2π

x + ip0

P2 + x2

× y + i(k0 − p0)

(K − P)2 + y2
, P = (p0, 
p). (B4)

Note that the limit δv → 0 is already required at this stage: for
general velocity detuning, the Jacobian of the transformation
to energy variables is more involved, and the integration range
is nontrivial as well, obstructing further evaluation.

Taking the elementary x,y integrals (note that the log-
divergent parts vanish by antisymmetry), results in

�(k) = g2με

4|kd |
∫

dp0

2π

∫
d 
p

(2π )d−2

(k0 − p0)p0

|P ||K − P | . (B5)

To proceed (the remaining steps are similar to Sec. A1 of
Ref. [11]), we introduce a Feynman parameter, using

1√
A1

√
A2

= 1

π

∫ 1

0
dt

1√
t(1 − t)

1

tA1 + (1 − t)A2
. (B6)

Shifting P → P + (1 − t)K , this gives

�(k) = g2με

4π |kd |
∫

dp0

2π

∫
d 
p

(2π )d−2

∫ 1

0
dt

1√
t(1 − t)

× (tk0 − p0)(p0 + (1 − t)k0)

P2 + t(1 − t)K 2 . (B7)

We note that the terms of the numerator linear inp0 give no con-
tribution by antisymmetry. After rescaling P → √

t(1 − t)P ,
we are left with a t integral of the form∫ 1

0
dt(t(1 − t))d/2−1 = 

(
d
2

)2

(d)
. (B8)

Going to polar coordinates, the remaining integrals read

�(k)

= g2με

|kd |

(
d
2

)2

(d)
· 21−d

πd/2
(
d
2 − 1

) ∫ ∞

−∞

dp0

2π

×
∫ ∞

0
d| 
p| | 
p|d−3

(
p2

0 − k2
0

| 
p|2+p2
0+|
k|2+k2

0

− p2
0

| 
p|2+p2
0

)
.

(B9)

Here, we have also subtracted �(0,kd ) for UV regulariza-
tion. As discussed in the main text, the residual momentum
dependence of this subtraction can be seen as an artefact of
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the δv → 0 limit, and is further discussed in Appendix D.
Formally, this subtraction can also be justified by referring
to Veltman’s formula (see, e.g., Ref. [46]).

It is instructive to study the | 
p| integral as d→2. In
this limit, the extra dimensions vanish and the | 
p| integral
should be absent. Indeed, as d→2, the integral becomes
IR logarithm-divergent, and so comes from 
p = 0 only; the
logarithmic divergence is asymptotically canceled by the
prefactor ∼1/(d/2 − 1). The remaining integrations are
straightforward, resulting in Eq. (25) of the main text:

�(k) = χd
g2με

|kd |
(
d k2

0 + |
k|2) (k2
0 + |
k|2) d−3

2 ,

χd = ((1 − d)/2)

2d+2π (d+1)/2

(d/2)2

(d)
,

χ5/2 	 −0.0178. (B10)

2. Fermion self-energy

We continue with evaluation of the fermion self-energy with
external spin index κ , starting from Eq. (27):


κ
1 (k) = g2με

∫
pd+1

D(p)M1Gβ(k + p)M2σ
κβ
y σ βκ

y . (B11)

The sums in spinor space can be performed using

M1σiM2 =
(

0 1
0 0

)⎧⎨
⎩

1 i = x

−i i = y

0 i = z

. (B12)

In the spin-independent limit δv → 0, this leads to


1 =
(

0−i
0 0

)
g2

︸ ︷︷ ︸
≡c1

με

∫
pd+1

(k0 + p0) i + δk+p
(K + P)2 + (δk+p)2

1

p2
d −�(p)

.

(B13)

Inserting the boson self-energy, one can elementarily evaluate
the pd−1,pd integrals, resulting in


1 = ic1μ
ε

3
√

3

∫
dp0

2π

d 
p
(2π )d−2

(k0 + p0)

|K + P |

× 1

με/3χ1/3
(
dc,p2

0 + | 
p|2)1/3 (
p2

0 + | 
p|2) d−3
6

,

χ = −χdg2. (B14)

We apply a Feynman parametrization:

1

A
α1
1 A

α2
2 A

α3
3

= (α1 + α2 + α3)

(α1)(α2)(α3)

∫ 1

0
dt1

∫ 1−t1

0
dt2

× t
α1−1
1 t

α2−1
2 (1 − t1 − t2)α3−1

(t1A1 + t2A2 + (1 − t1 − t2)A3)α1+α2+α3
.

(B15)

With α1 = 1/2,α2 = 1/3,α3 = (d − 3)/6, Eq. (B14) is rewrit-
ten as


1 = c2

∫
dp0

2π

d 
p
(2π )d−2

∫ 1

0
dt1

∫ 1−t1

0
dt2

(k0 + p0) t
− 1

2
1 t

− 2
3

2 (1 − t1 − t2)
d−9

6[
t1(K + P)2 + t2

(
dp2

0 + | 
p|2) + (1 − t1 − t2)
(
p2

0 + | 
p|2)] d+2
6

,

c2 = ic1μ
2/3ε 

(
2+d

6

)
3
√

3χ1/3 
(

1
2

)

(

1
3

)

(
d−3

6

) . (B16)

Strictly speaking, the Feynman parametrization of Eq. (B16) is only well-defined for d > 3, as the t2 integral is otherwise
divergent. We will circumvent this problem by evaluating the t2 integral for general d > 3 below (after the momentum integrals),
and then analytically continue the result to d < 3; the divergence at d = 3 will cancel against the term ((d − 3)/6) contained
in the factor c2. As there certainly is a strip of convergence of the original integral (B14), and we also recover the d = 2 result of
Ref. [14], this procedure should be legitimate. To proceed, in Eq. (B16), we shift

p0 → p0 + −t1
1 + t2(d − 1)

k0, 
p → 
p − t1
k. (B17)

Disregarding the linear terms in p0, which vanish by antisymmetry, we then obtain


1 = c2

∫
dp0

2π

d 
p
(2π )d−2

∫ 1

0
dt1

∫ 1−t1

0
dt2

(
1 + −t1

1+t2(d−1)

)
k0 t

− 1
2

1 t
− 2

3
2 (1 − t1 − t2)

d−9
6(

d1k
2
0 + d2p

2
0 + | 
p|2 + |
k|2t1(1 − t1)

) d+2
6

,

d1 = t1 − t2
1

1 + (d − 1)t2
, d2 = 1 + (d − 1)t2. (B18)

For 2 � d < 5/2, the momentum integrals can be straightforwardly evaluated by going to polar coordinates, yielding


1 = k0
c2 21−d 

(
4
3 − d

3

)

(
ε
3

)
π (d−1)/2 

(
2+d

6

)

(

1
2 + ε

3

) ∫ 1

0
dt1

∫ 1−t1

0
dt2

(
1 − t1

1+(d−1)t2

)
t
− 1

2
1 t

− 2
3

2 (1 − t1 − t2)
d−9

6

√
1 + (d − 1)t2

(
μ2

d1k
2
0 + t1(1 − t1)|
k|2

)ε/3

.

(B19)
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Following the procedure described below Eq. (B16), let us evaluate the t2 integral for d > 3. With an eye for the final limit ε → 0,
we still set the last dimensionless prefactor in Eq. (B19) equal to one, which should be fine as this is a perfectly regular function
in t1 and t2. We have also checked this numerically on a simplified integral. Furthermore, note that in d = 2, we can extract a
factor of |k0|−1/3 from the integral, and obtain a self-energy ∝ |k0|2/3 as found in Ref. [14].

Evaluation of the t2 integral yields, without the other prefactors, the fairly involved expression

F̃ (d) = −
(
d − 3

6

)
× (1 − t1)

d−7
6 

(
1

3

){[(
d
(
t2
1 − 3t1 + 3

) − t1(t1 + 3)
)

2F1

(
1

3
,
1

2
;
d − 1

6
; (d − 1)(t1 − 1)

)

+ (4 − d)t1 2F1

(
−1

2
,
1

3
;
d − 1

6
; (d − 1)(t1 − 1)

)]}/[
3
√
t1(d(t1 − 1) − t1)

(
d − 1

6

)]
, (B20)

where 2F1 is the hypergeometric function. F̃ (d) is divergent for
d↘3 due to the prefactor ((d − 3)/6), but this factor cancels
against the same factor contained in the overall prefactor c2

[cf. (B16)]. The remainder F (d) ≡ F̃ (d)/((d − 3)/6) is a
well-behaved function. Its numerical integration leads to

∫ 1

0
dt1F

(
5

2

)
	 1.166. (B21)

Collecting all prefactors, and expanding the Gamma functions
from Eq. (B19) in ε, one obtains


1 = ugg
4/3

ε

(
0 −i
0 0

)
(−ik0) + finite terms,

ug = −0.0813. (B22)

Evaluation of 
2 given in Eq. (28) proceeds analogously. In
total, one arrives at Eq. (29) of the main text:


(k) = 
1(k) +
2(k) (B23)

= ugg
4/3

ε
σy (−ik0) + finite terms.

APPENDIX C: COMPUTATION OF VERTEX
CORRECTIONS FOR COMPETING INSTABILITIES

In this Appendix, we compute the anomalous dimensions of
possible competing orders, which are summarized in Tables II
and III.

1. Type-1 orders

As in the main text, we start with type-1 orders, computing
one-loop corrections V to the fermion bilinear of Eq. (45).
Fixing the signs with Wick’s theorem, in the limit δv → 0,
where the Green’s functions become spin-independent, they
have the general form

V = λ

∫
kd+1

�̄γ (k)�(k)�δ(k)
(
σβδ
y σ γα

y Bαβ

)
, (C1)

�(k) = �1(k) +�2(k),

�1(k) = g2με

∫
pd+1

M1G(p)AG(p)M2D(k − p),

�2(k) = �1[M1 ↔M2]. (C2)

Let us fix A = 1 and compute �1. The sums in spinor space
are determined from

M1σi1σjM2 =
(

0 1
0 0

) ⎛
⎝
j = x j = y j = z

i = x 0 0 −1
i = y 0 0 i

i = z 1 −i 0

⎞
⎠.
(C3)

SinceG ∝ −� · P + σxδp and we take the Gamma matrices 

in the extra dimensions to be proportional to σz [cf. Eq. (15)],
it immediately follows that �1 is of the form

�1 ∝
∫
pd+1

(
 · 
p) f (| 
p|), (C4)

where f is some function. This expression vanishes as dis-
cussed in the main text below Eq. (49). The same conclusion
holds for A = σz. For A = σx , using

M1σiσxσjM2 =
(

0 1
0 0

) ⎛
⎝
j = x j = y j = z

i = x 1 −i 0
i = y −i −1 0
i = z 0 0 −1

⎞
⎠,
(C5)

we obtain

�1 = −g2με

(
0 1
0 0

)∫
pd+1

−P2 + δ2
p + 2ip0δp(

δ2
p + P2

)2 D(k − p).

(C6)

This expression has the same form as the vertex correction
in the Ising-nematic case [11]. Since the boson propagator D
is independent of pd−1, after shifting pd−1 → δp, Eq. (C6)
vanishes due to the identity∫

dx
x2 − a2

(x2 + a2)2
= 0. (C7)

Last, we consider A = σy . Using

M1σiσyσjM2 =
(

0 −i
0 0

) ⎛
⎝
j = x j = y j = z

i = x −1 i 0
i = y i 1 0
i = z 0 0 −1

⎞
⎠,

(C8)
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we find

�1 = − g2

(
0 −i
0 0

)
︸ ︷︷ ︸

≡c1

με

∫
pd+1

p2
0 − p2 − δ2

p − 2iδpp0(
P2 + δ2

p

)2 D(k − p). (C9)

Performing the pd−1 integral (by shifting pd−1 → δp), we get

� = c1μ
ε

∫
dp0

2π

d 
p
(2π )d−2

dpd

2π

| 
p|2
2|P |3D(k − p). (C10)

Note that for d = 2, Eq. (C9) vanishes by Cauchy’s integral theorem, which can be seen by reducing the fraction; accordingly, the
integrand in Eq. (C10) is proportional to the external momenta | 
p|2. To further evaluate Eq. (C10), we focus on k = (k0,0, . . .),
which is sufficient in leading order in ε. Shifting p0 → p0 + k0 for convenience and performing the pd integral gives

�1 = c1μ
2ε/3

3
√

3χ1/3

∫
dp0

2π

d 
p
(2π )d−2

p2

((p0 + k0)2 + p2)3/2
(
dp2

0 + p2
)1/3 (

p2
0 + p2

)(d−3)/6 , (C11)

with χ 	 0.0178g2. Applying the Feynman parametrization (B15), with α1 = 3/2,α2 = 1/3,α3 = (d − 3)/6, we obtain

�1
αβ = c1

3
√

3χ1/3


(
d+8

6

)

(

3
2

)

(

1
3

)

(
d−3

6

)︸ ︷︷ ︸
≡c2

μ2ε/3
∫

dp0

2π

d 
p
(2π )d−2

∫ 1

0
dt1

∫ 1−t1

0
dt2 t

1/2
1 t

−2/3
2 (1 − t1 − t2)

d−9
6

× p2[
(p0 + k0)2 + p2)t1 + (

dp2
0 + p2

)
t2 + (

p2
0 + p2

)
(1 − t1 − t2)

] d+8
6

, (C12)

where we follow the same logic as in the evaluation of Eq. (B16). Shifting p0 → p0 − t1
(d−1)t2+1k0 and going to polar coordinates

yields

�1 = c2μ
ε23−d

πd/2−1
(
d
2 − 1

)∫ ∞

−∞

dp0

2π

∫ ∞

0
d| 
p|

∫ 1

0
dt1

∫ 1−t1

0
dt2t

1/2
1 t

−2/3
2 (1 − t1 − t2)

d−9
6

| 
p|d−1(
d1k

2
0 + d2p

2
0 + | 
p|2) d+8

6

, (C13)

where d1/2 were defined in Eq. (B18). Performing the
| 
p| and p0 integrals is then straightforward and results in

�1 = c2
(
d
2

)

(
ε
3

)
4
√
π

(
d+8

6

) ∫ 1

0
dt1

∫ 1−t1

0
dt2

× t
1/2
1 t

2/3
2 (1 − t1 − t2)

d−9
6√

d2
(
d−3

6

) (
μ2

d1k
2
0

)ε/3

. (C14)

Approximating the last expression in parentheses in Eq. (C14)
by 1, the t2 integral can be evaluated analytically for d > 3; the
divergence as d → 3 cancels against the factor [(d − 3)/6]
contained in c2, cf. Eq. (C12). Then, the t1 integral can be
computed numerically for d = 5/2, yielding

�1 	
(

0 −i
0 0

)
0.081

g4/3

ε
. (C15)

�2 [cf. Eq. (C1)] is evaluated in the same vein, and in total, we
obtain

� = σy 0.081
g4/3

ε
. (C16)

Now, we need to evaluate the factor involving the spin matrix
B in Eq. (C1), which yields

(
σβδ
y σ γα

y Bαβ

) =
{
Bγδ, B = 1,σy,
−Bγδ, B = σx,σz.

(C17)

Altogether, the quantum correction V therefore reads

V = λ
uλg

4/3

ε

∫
kd+1

�̄γ (k)σy�δ(k)×
{
Bγδ, B = 1,σy
−Bγδ, B = σx,σz

,

uλ = 0.081. (C18)

Using Eq. (48), this readily yields Table II.

2. Type-2 orders

We proceed with type-2 orders, computing corrections V
to the fermion bilinear of Eq. (46). Analogous to the previous
case, they are of the form

V = λ

∫
kd+1

�T
γ (k)�(k)�δ(−k)

(
σβδ
y σ αγ

y Bαβ

) + H.c.,

(C19)

�(k) = �1(k) +�2(k),

�1(k) = g2με

∫
pd+1

M1G
T (p)AG(−p)M2D(k − p),

�2(k) = �1[M1 ↔M2]. (C20)
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For A = 1,σz, �1 vanishes as in the previous case. For A = σx , the required product in spinor space reads

M1σ
T
i σxσjM2 =

(
0 1
0 0

) ⎛
⎝
j = x j = y j = z

i = x 1 −i 0
i = y i 1 0
i = z 0 0 −1

⎞
⎠, (C21)

resulting in

�1 =
(

0 1
0 0

)
g2

︸ ︷︷ ︸
≡c1

με

∫
pd+1

p2
0 − p2 + ip0δ−p + ip0δp − δpδ−p(

P2 + δ2
p

)(
P2 + δ2−p

) D(k − p). (C22)

To evaluate this expression, we restrict ourselves to k = (0, . . . ,kd ). Then, the linear terms in p0 vanish by antisymmetry. Taking
the pd−1 integral results in

�1 = c1μ
ε

2

∫
dp0

2π

d 
p
(2π )(d−2)

dpd

2π

p2
0

|P |(p4
d + P2

) 1

(kd + pd )2 + χμε

|kd+pd |
(
dp2

0 + 
p2
)(
p2

0 + 
p2
) d−3

2

,

(C23)

with χ 	 0.0178g2. To evaluate Eq. (C23), we shift pd → pd − kd . Then, following Ref. [11], we may approximately disregard
the pd dependence of the fermion part in leading order in g (and hence in leading order in ε). We can then perform the pd integral,
yielding

�1 =
(
μ

k2
d

)2/3ε
c1

χ1/33
√

3

∫
dp0

2π

d 
p
(2π )(d−2)

p2
0

(P2)d/6(P2 + 1)
(
dp2

0 + 
p2
)1/3 , (C24)

where we have also rescaled P → P/k2
d . In leading order in ε, the first factor can be approximated by 1. The Feynman

parametrization (B15) with α1 = d/6, α2 = 1, and α3 = 1/3 then leads to

�1 = c1

6
√

3


(

4
3 + d

6

)

(

1
3

)

(
d
6

) ∫ dp0

2π

d 
p
(2π )(d−2)

∫ 1

0
dt1

∫ 1−t1

0
dt2 t

d/6−1
1 (1 − t1 − t2)−2/3

× p2
0(

t1
(
p2

0 + | 
p|2) + t2
(
p2

0 + | 
p|2 + 1
) + (1 − t1 − t2)

(
dp2

0 + | 
p|2))4/3+d/6 . (C25)

Changing to polar coordinates, the integrals over p0, 
p, and t2
are straightforwardly computed. The remaining t1 integral can
be evaluated numerically for d = 5/2. Performing the same
steps for �2 [cf. Eq. (C20)], in total one obtains, in leading
order in ε:

� = �1 +�2 	 σx 0.138
g4/3

ε
. (C26)

Let us now consider A = σy . Using

M1σ
T
i σyσjM2 =

(
0 −i
0 0

) ⎛
⎝
j = x j = y j = z

i = x −1 i 0
i = y −i −1 0
i = z 0 0 −1

⎞
⎠,

(C27)

we obtain

�1 =
(

0 −i
0 0

)
(−g2με)

∫
pd+1

P2 + ip0δ−p + ip0δp − δpδ−p(
P2 + δ2

p

)(
P2 + δ2−p

)
×D(k − p). (C28)

The computations proceed largely analogous to the previous
case of A = σx ; in total, we obtain

� 	 −σy 0.219
g4/3

ε
. (C29)

To proceed, we need to evaluate the factor involving the
spin matrix B in Eq. (C19), which yields(

σβδ
y σ αγ

y Bαβ

) =
{−Bγδ, B = 1,σy
Bγ δ, B = σx,σz

. (C30)

Before denoting which contributions are enhanced and which
are suppressed, we notice that some products under consider-
ation vanish trivially:

�T
α σx�βBαβ = (

ψ̄L
α ψ

R
β − ψ̄L

β ψ
R
α

)
Bαβ = 0 (C31)

for B = 1,σx,σz,

�T
α σy�βσ

αβ
y = i

(
ψ̄L
β ψ

R
α + ψ̄L

α ψ
R
β

)
σαβ
y = 0. (C32)

Altogether, the nonvanishing quantum corrections are, forA =
σx ,

V = λ
uλg

4/3

ε

∫
kd+1

�T
γ (k)σx�δ(−k)σγ δ

y , uλ = −0.138.

(C33)
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For A = σy ,

V = λ
uλg

4/3

ε

∫
kd+1

�T
γ (k)σy�δ(−k)×

{−Bγδ, B = 1
Bγδ, B = σx,σz

,

uλ = −0.219. (C34)

Using Eq. (48), Eqs. (C33) and (C34) readily yield Table III.

APPENDIX D: SUPERCONDUCTING LOGARITHM

To clarify the role of the limit δv → 0 applied in this
paper, it is instructive to reevaluate the boson self-energy of
Eq. (23) for δv �= 0 and d = 2. Equation (23) then reads, up to

constant prefactors,

�(k) ∝
∫
p2+1

∑
α �=α′

1

ip0 − δα−p

1

i(k0 − p0) − δα
′

k−p
,

δαp = vαpx + p2
y. (D1)

Performing the integral over p0 with help of Cauchy’s theorem
gives

�(k) ∝
∫
dpxdpy

1

ik0 − δα−p − δα
′

k−p

× (
θ
(
δα−p

)
θ
(
δα

′
k−p

) − θ
(−δα−p)θ( − δα

′
k−p

))
, (D2)

where α′ �= α. We introduce momentum cutoffs in the two
directions px and py ,�x and�y , with�x 	 �2

y . Then, the px
integral in (D2) gives

�(k)
1

v+

∫
dpy

{
ln
(
ik0 + v+px − p2

y − vα′kx − (ky − py)2)∣∣Mi
−�x

− ln
(
ik0 + v+px − p2

y − vα′kx − (ky − py)2)∣∣�x

Ma

}
, (D3)

v+ = vα + v′
α,

Mi/Ma = min/max

(
p2
y

vα
,kx + (ky − py)2

v′
α

)
. (D4)

Inserting the boundaries ±�x yields terms of the form
2 ln(v+�x) + iπsign(k0) + O[(k,p)/�x]. These constant
terms vanish once we subtract limk0→0 �(k0,0), which is
legitimate when working at the critical point. By noticing
that, if Ma = p2

y/vα in some integration region R1, then
Mi = p2

y/vα in R \ R1, we can recast the remainder in the
following form:

�(k) ∼
∫
dpy

{
ln
(
ik0 + vp2

y − vα′kx − (ky − py)2
)

+ ln
(
ik0 + v−1(ky − py)2 + vαkx − p2

y

)}
, (D5)

where v = vα′/vα , and w.l.o.g. we assume v > 1. The remain-
ing integral can be straightforwardly evaluated; inserting the
boundaries ±�y yields a long expression, which is of the
schematic form

�(k) ∝ 1

v − 1

√
(ik0 − vα′kx)(v − 1) − k2

yv

+ 1

|v−1−1|
√

(ik0+kxvα)(v−1 − 1)−k2
yv

−1 +�div,

�div 	 �y + ln

(
(δv)2 + |ky |

�y

)
. (D6)

The first two terms of Eq. (D6) reproduce the result of Ref. [14].
For these terms, the limit δv → 0, which is equivalent to
v → 1, can be taken, and results in a standard damping term;
see also Appendix E. Let us now consider �div, the divergent
part of Eq. (D6). For the first summand,�y , the limit�y → ∞
corresponds to a pure UV divergence, which effectively arises
from expansion of the fermion dispersion in the low-energy
action (4). If higher order terms in the dispersion are taken
into account, this UV singularity is absent, as numerically
demonstrated in Ref. [14]; we can therefore disregard this

term. The second term is finite for δv �= 0. In a fully realistic
model of the FFLO transition, this condition is always fulfilled;
increasing the magnetic field leads to increasing δv, and the
phase transition takes place when g −�(δv,0) vanishes (on
mean-field level); here, g is the strength of the original four-
fermion interaction. This happens at a small but nonzero value
δv = δvc. Thus, for δv 	 δvc, and ky � �y , i.e., when taking
the limit �y → ∞ first, �div is just a finite mass term, which
can be dropped when performing computations at the critical
point. The remainder is regular in δv, and one can take the limit
δv → 0 to simplify the computation.

On the other hand, in the DIMREG computation we have to
take the limit δv → 0 first, [cf. Eq. (B3)], and are therefore
left with the IR divergent quantity ln(|ky |/�y), a standard
“BSC logarithm.” To correct for this unphysical way of taking
the limits, one must subtract �div(ky), as effectively done in
Eq. (B9).

APPENDIX E: DIMENSIONAL REGULARIZATION
WITH FIXED CO-DIMENSION

In this work, we have performed a DIMREG procedure by
increasing the codimension of the Fermi surface. An alternative
approach, shortly discussed in this Appendix, is to keep the
codimension fixed, following Refs. [44,45,74]. That is, in the
higher-dimensional action, the kinetic term for the fermions is
modified to∫

kd+1
�̄α(k)(−ik0σy + i(vαk1 + K 2)σx)�α(k),

K = (k2, . . . ,kd ), (E1)

with all other terms in the action unchanged. The
leading terms in the action are then scale-invariant
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under

k0 = k′
0

b
, k1 = k′

1

b
, K = K ′

√
b
, (E2)

� = b
d
4 + 5

4� ′(k′), �(k) = b
d
4 + 5

4�′(k′). (E3)

With this scaling, the interaction term becomes marginal in
d = 3, such that one can expand in ε = 3 − d. In this scheme,
evaluation of the Bose self-energy is very similar to the 2D-case
sketched in Appendix D. It can be performed in the general
case δv �= 0 by employing the trivial reshuffling described
above Eq. (D5). Taking all momentum cutoffs to infinity, and
subtracting �(0) for regularization (which works for δv �= 0,
see Appendix D), one arrives at

�(k) =
∑
α �=α′

βd

cos(dπ/2)

⎡
⎢⎣
(
ik0 − k1vα′ − K 2 v

v−1

v − 1

) d−1
2

+
(
ik0 + k1vα − K 2 v−1

v−1−1

v−1 − 1

) d−1
2

⎤
⎥⎦, (E4)

where βd > 0 is a d-dependent factor of order 1. For d → 3,
� is ε divergent due to the term cos(dπ/2). To gain analytical
control, one can again expand in δv, which leads to

lim
δv→0

�(k) = βd

cos(dπ/2)|δv|d−1

[
4 cos

(
(d − 1)π

2

)
|K |d−1

− 4
(d − 1)

2
cos(dπ/2)|k0δv||K |d−3

]
. (E5)

In d = 2, the prefactor of the term ∝|K |d−1 vanishes, and
the remainder is the damping term of Ref. [14], and regular
as δv → 0. However, for 2 < d < 3, the first term does not
vanish, and �(k) is divergent as δv → 0. This can be seen
as an instance of UV/IR mixing [44]. As discussed in the
main text (see Fig. 5), for δv → 0, spin-up and spin-down
Fermi sheets have the same curvature. As a result, any spin-up
electron with momentum k1 on the Fermi surface can scatter
against a spin-down electron with momentum −k1. However,
if the Fermi surface is one-dimensional, the final states of this
scattering event must have momenta ±k2 	 k1; otherwise, the
tangent vectors to the Fermi surface differ strongly, and the
phase space for the scattering is negligible. By contrast, for

a Fermi surface with dimension greater than one, all points
of the Fermi surface share a mutual tangent vector. Therefore
low-energy scattering events entangle the full Fermi surface,
and the hot spot theory breaks down, as signaled by the δv → 0
divergence of Eq. (E5).

APPENDIX F: MAGNETIC SUSCEPTIBILITY

In this Appendix, we shortly present the evaluation of the
magnetic susceptibility close to criticality. We limit ourselves
to evaluation of the functional behavior (up to a constant
prefactor).

If the contribution of the fermions is neglected (or, phrased
differently, they have been integrated out on one-loop level),
the free energy on the normal metal side reads, for d = 2:

F� = − ln[Z�]

= − ln

[∫
D(�,�̄) exp

(
−
∫
d3kD−1(k)|�(k)|2

)]

∝ ln[det(D−1)] =
∫
d3k[ln(D−1(k))]. (F1)

Therefore the fluctuation contribution to the magnetic suscep-
tibility is given by [15,37]

χ� ∝ −∂2F�

∂h2
∝ −∂2F�

∂m2
∝
∫
d3k

−1(
m+ k2

y + α|k0|
|ky |

)2 ,

(F2)

where we reintroduced the mass term (m > 0) into the 2D
boson propagator [see Eqs. (2) and (43)], and used that m is
proportional to the reduced magnetic field, m = m0

h−hc
hc

; m0

and α ∝ g2 are constants. Easy integration yields

χ� ∝ �x ln

(
�2
y

h−hc
hc

m0

)
, (F3)

where �x and �y are UV cutoffs in the x and y directions (of
order of Fermi energies). Normalizing χ� with the Pauli spin
susceptibility in the normal state χP as in Ref. [15], and fixing
the prefactors, on can conclude

χ�

χP
	 �0

EF

ln

(
hc

h− hc

)
, (F4)

where �0 is the BCS gap and EF the Fermi energy.
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