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We present an exact ground state solution of a quantum dimer model introduced by Punk, Allais, and
Sachdev [Quantum dimer model for the pseudogap metal, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015).],
which features ordinary bosonic spin-singlet dimers as well as fermionic dimers that can be viewed as
bound states of spinons and holons in a hole-doped resonating valence bond liquid. Interestingly, this
model captures several essential properties of the metallic pseudogap phase in high-Tc cuprate super-
conductors. We identify a line in parameter space where the exact ground state wave functions can be
constructed at an arbitrary density of fermionic dimers. At this exactly solvable line the ground state has a
huge degeneracy, which can be interpreted as a flat band of fermionic excitations. Perturbing around the
exactly solvable line, this degeneracy is lifted and the ground state is a fractionalized Fermi liquid with a
small pocket Fermi surface in the low doping limit.
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Quantum dimer models have been a very useful tool to
study paramagnetic ground states of quantum antiferromag-
nets. Originally introduced by Rokhsar and Kivelson to
elucidate the physics of Anderson’s resonating valence bond
(RVB) state in the context of high-temperature supercon-
ductors [1–4], these models provide an effective description
of low energy singlet excitations in antiferromagnets and
feature rich phase diagrams, including a variety of different
valence bond solids with broken lattice symmetries, as well
as symmetric spin-liquid phases [5–9]. Subsequently, inter-
esting connections to lattice gauge theories and loop gas
models have been found, raising interest in quantum dimer
models from various perspectives [10–14].
In this work we consider an extension of the Rokhsar-

Kivelson (RK) model on the square lattice introduced by
Punk, Allais and Sachdev [1], which provides an effective
low-energy description of hole-doped antiferromagnets in
two dimensions. The Hilbert space is constructed by hard-
core coverings of the square lattice with two flavors of
dimers: the standard nearest-neighbor bosonic spin-singlets
of the RK model, as well as fermonic dimers carrying
charge þe and spin 1=2. These fermionic dimers can be
viewed as bound states of a spinon and a holon in hole-
doped RVB states [15–21]. It has been argued in
Refs. [1,22] that this model features a so-called fraction-
alized Fermi liquid ground state [23], with a small Fermi
surface enclosing an area proportional to the density of
doped holes away from half filling. This apparent violation
of Luttinger’s theorem, which states that the Fermi surface
should enclose an area proportional to the total number of
holes with respect to the completely filled band in metallic
phases without broken symmetries [24], is possible due to
the presence of topological order [25,26].

One of the most interesting aspects of this model is the
fact that it captures various properties of the metallic
pseudogap phase in underdoped high-Tc cuprate super-
conductors, such as the presence of a small hole-pocket
Fermi surface with a highly anisotropic, electronic quasi-
particle residue, providing a potential explanation for the
observation of Fermi arcs in photoemission experiments.
Moreover, this model exhibits a large pseudogap in the
antinodal region of the Brillouin zone around momenta
k ∼ ð0; πÞ and symmetry related points [27].
While previous studies of this quantum dimer model

were mostly based on numerical approaches, we present an
exact analytical solution for the ground state at an arbitrary
density of fermionic dimers in this work. This solution is
based on a generalization of the original idea by Rokhsar
and Kivelson that the Hamiltonian can be written as a
sum of projectors in certain parameter regimes. While it is
easy to see that the corresponding ground state is a simple
equal weight superposition of all possible dimer coverings
in the RK case, this is no longer true in the presence of
fermionic dimers, because the equal weight superposition is
not antisymmetric under the exchange of two fermions.
Nevertheless, it is still possible to construct the exact
ground state wave function, as we show in detail below.
Interestingly, we find that fermionic excitations are dis-
persionless and form a flat band at this generalized RK line
in parameter space. Perturbing away from the exactly
solvable line we can show that the ground state of this
model is indeed a fractionalized Fermi liquid at low
densities of fermionic dimers.
We start from the dimer model introduced in Ref. [1] and

add an additional potential energy term for configurations
with pairs of parallel fermionic and bosonic dimers within a
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flippable plaquette configuration. The Hamiltonian H ¼
HRK þH1 consists of two parts: the standard Rokhsar-
Kivelson Hamiltonian for bosonic dimers,

HRK ¼
X
i;η

½−JD†
i;ηD

†
iþ ˆ̄η;η

Di;η̄Diþη̂;η̄

þ VD†
i;ηD

†
iþ ˆ̄η;η

Di;ηDiþ ˆ̄η;η�; ð1Þ

as well as similar terms with plaquette resonances and
potential energy terms between a bosonic and a fermionic
dimer

H1 ¼ −t1
X
i

½D†
i;xF

†
iþŷ;xFi;xDiþŷ;x þ 3terms�

þ v1
X
i

½D†
i;xF

†
iþŷ;xFiþŷ;xDi;x þ 3terms�

− t2
X
i

½D†
i;xF

†
iþŷ;xFi;yDiþx̂;y þ 7terms�

− t3
X
i

½D†
i;xF

†
iþ2x̂;yFi;xDiþ2x̂;y þ 15terms�: ð2Þ

Here, Di;η (Fi;η) is an annihilation operator for a bosonic
(fermionic) dimer on the bond emanating from lattice site i
in direction η ∈ fx; yg, while η̂ ∈ fx̂; ŷg denotes basis
vectors in x and y directions (the lattice constant has been
set to unity throughout this Letter). Finally, η̄ denotes the
complement of η, i.e., η̄ ¼ x if η ¼ y and vice versa. The
terms which are not explicitly displayed are related by
lattice symmetry operations and Hermitian conjugation.
Note that in contrast to Ref. [1] we omit a possible spin
index for the fermionic dimers. Nevertheless, all our results
can be generalized to spinful fermions easily. Further terms
involving resonances of two or more fermionic dimers
are possible as well, but are not expected to be important in
the interesting regime of low doping, where the density of
fermionic dimers is small. Moreover, we will focus
exclusively on the topological sector of the Hilbert space
of hard-core coverings with zero winding number through-
out this work [27].
In the next step we identify a line in parameter space

which allows us to rewrite the Hamiltonian H as a sum
of projectors. As the model then takes a form similar to
the original RK Hamiltonian at J ¼ V [4], we shall
speak of an RK line in the following. Setting the
parameters to J ¼ V, t3 ¼ 0 and v1 ¼ t2 ¼ −t1, the full
Hamiltonian can be expressed graphically as a sum of
projectors

ð3Þ

ð4Þ

where empty (full) ellipses represent bosonic (fermionic)
dimers.
As a consequence of the special form of Eq. (3), the

Hamiltonian is positive definite, i.e., hψ jHjψi ≥ 0 for all
wave functions ψ . The ground state can hence be deter-
mined by the condition Hjψ0i ¼ E0jψ0i ¼ 0. We now
construct ground state wave functions jψ0i in an arbitrary
sector of the (conserved) number of fermionic dimers Nf.
In the following calculation we restrict to the case Nf ¼ 2,
the generalization to arbitrary fermion numbers is straight-
forward. We assume the ground state to be a common
eigenstate of HRK and H1. As we already know that the
bosonic part HRK is minimized by an equal weight super-
position of all hard-core coverings with bosonic dimers, we
define the basis states

jði1; η1Þ; ði2; η2Þi

¼ 1ffiffiffiffiffi
Nt

p F†
i1;η1

F†
i2;η2

j0iði1;η1Þ;ði2;η2Þ ⊗
� X

cϵCði1 ;η1Þ;ði2 ;η2Þ

jci
�
;

ð5Þ

where the sum runs over all possible bosonic configurations
jci covering the entire lattice with the exception of the
bonds (i1, η1) and (i2, η2) which are already occupied by
fermionic dimers. Note that HRKjði1; η1Þ; ði2; η2Þi ¼ 0 is a
zero energy eigenstate of HRK by construction. We choose
to normalize jði1; η1Þ; ði2; η2Þi with respect to the number
Nt of all possible classical dimer configurations on
the entire lattice. The norm of such a basis state is hence
given by

kjði1; η1Þ; ði2; η2Þik2 ¼
Nði1;η1Þ;ði2;η2Þ

Nt
¼ Qc½ði1; η1Þ; ði2; η2Þ�;

ð6Þ

where Qc½ði1; η1Þ; ði2; η2Þ� is the classical dimer correlation
function. Nði1;η1Þ;ði2;η2Þ denotes the number of all classical
configurations with two dimers fixed at (i1, η1) and (i2, η2).
With these correlations we implicitly enforce the hard-core
constraint, as any constraint-violating configuration C
yields a vanishing norm Qc½C� ¼ 0.
In order to construct a ground state jψ0i of the full

Hamiltonian H ¼ HRK þH1 we start with a general
expansion

jψ0i ¼
X

i1;η1;i2;η2

Aði1;η1Þ;ði2;η2Þjði1; η1Þ; ði2; η2Þi: ð7Þ

Applying the Hamiltonian we obtain

Hjψ0i¼v1
X
l

X
i1η1;i2;η2

Aði1;η1Þ;ði2;η2ÞPljði1;η1Þ;ði2;η2Þi: ð8Þ
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Note that Pl acts nontrivially only on plaquettes containing
a single fermionic dimer and thus

Pljði1; η1Þ; ði2; η2Þi
¼ ðδl;i1 þ δlþ ˆ̄η1;i1 þ δl;i2 þ δlþ ˆ̄η2;i2ÞPljði1; η1Þ; ði2; η2Þi:

ð9Þ

Furthermore, we find

δl;i1Pljði1; η1Þ; ði2; η2Þi ¼ δl;i1ð−1Þsη1 jϕl; ði2; η2Þi ð10Þ

and similar relations for the remaining three terms of
Eq. (9), where we defined the states

jϕl; ði; ηÞi ¼
1ffiffiffiffiffi
Nt

p F†
i;ηj0iði;ηÞ ⊗ jϕli ⊗

� X
cϵCðl;xÞ;ðlþŷ;xÞ;ði;ηÞ

jci
�
;

ð11Þ

and further sη¼x ¼ 1, sη¼y ¼ 0. Again, normalization
of these states resorts to classical correlations and effec-
tively projects onto the physical space of hard-core
configurations.
Inserting Eq. (10) into Eqs. (9) and (8), and demanding

that all coefficients for the states jϕl; ði2; η2Þi vanish results
in the two conditions

Aðl;xÞ;ði2;η2Þ − Aðl;yÞ;ði2;η2Þ þ Aðlþŷ;xÞ;ði2;η2Þ − Aðlþx̂;yÞ;ði2;η2Þ ¼ 0;

Aði1;η1Þ;ðl;xÞ − Aði1;η1Þ;ðl;yÞ þ Aði1;η1Þ;ðlþŷ;xÞ − Aði1;η1Þ;ðlþx̂;yÞ ¼ 0;

ð12Þ

which can be solved by a simple product ansatz
Aði1;η1Þ;ði2;η2Þ ¼ ai1;η1ai2;η2 , leading to

aim;x − aim;y þ aimþŷ;x − aimþx̂;y ¼ 0 ð13Þ

form ¼ 1, 2. At this point, the generalization to an arbitrary
number of fermionic dimers in the system is straightfor-
ward and can be done by extending Eq. (13) to
m ¼ 1;…; Nf. We introduce the lattice momenta pm and
make the ansatz

aim;ηm ¼ aim;ηmðpmÞ ¼ CηmðpmÞeipm·im; ð14Þ

where the factorsCηðpÞ can be interpreted as weight factors
for the two possible dimer orientations and im denotes the
lattice position of site im. Using this ansatz in Eq. (13) and
choosing the normalization jCxðpÞj2 þ jCyðpÞj2 ¼ 4=N for
later convenience, we obtain

CηðpÞ ¼
2ffiffiffiffi
N

p 1þ eipηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ eipy j2 þ j1þ eipx j2

p ; ð15Þ

where N is the number of lattice sites. One can thus write
exact ground states ofH on the RK line with two fermionic
dimers as

jψ0i¼jp1;p2i¼
X

i1;η1;i2;η2

ai1;η1ðp1Þai2;η2ðp2Þjði1;η1Þ;ði2;η2Þi:

ð16Þ

Note that p1 and p2 take arbitrary values in the first
Brillouin zone and jp1; p2i ¼ −jp2; p1i is antisymmetric
under the exchange of p1 and p2. The ground state
degeneracy corresponds to the NðN − 1Þ=2 possibilities
to choose p1, p2. Interestingly, this result implies that
fermionic dimers have a flat dispersion at the RK line,
which we confirmed independently by an exact diagonal-
ization of the Hamiltonian on the RK line for a finite
system. We also note that the state in Eq. (16) is properly
normalized in the limit N → ∞ [28].
For an arbitrary number Nf of fermionic dimers the

ground states take the form jψ0i ¼ jp1;…; pNf
i and there

are N!=(ðN − NfÞ!Nf!) possibilities to choose the Nf

momenta ðp1;…; pNf
Þ. It is important to emphasize that

the states jp1;…; pNf
i are in general not linearly indepen-

dent, and the number of possible momenta ðp1;…; pNf
Þ

does not correspond to the ground state degeneracy in
sectors with a large density of fermionic dimers. In fact, it is
easy to see that the number of possible choices for the Nf

momenta exceeds the number of basis states at large Nf.
However, in the low doping limit

Nf ¼ const; N → ∞; ð17Þ

the jp1;…; pNf
i become orthonormal and we indeed obtain

the ground state degeneracy via the above relation.
It is instructive to note how the states jpi for Nf ¼ 1 are

related to the usual bosonic RK ground state, if the
fermionic dimer is replaced with a bosonic one. As shown
in the Supplemental Material [28], the purely bosonic
states jpi vanish identically for p ≠ 0, which only leaves
the ordinary RK state with p ¼ 0, i.e., the equal super-
position of all bosonic dimer coverings, as the unique
ground state.
In the following we want to study how perturbations ΔH

of the Hamiltonian away from the RK line change the
ground state structure. We consider perturbations of the
form H þ ΔH ¼ Hðti → ti þ δtiÞ. As expected, the huge
ground-state degeneracy will be lifted and the fermions
will acquire a dispersion. The perturbative ground state in
the vicinity of the RK line is then unique and similar to a
Fermi gas, where the lowest energy momentum states pm
will be filled with Nf fermions. We restrict our discussion
to the limit of Eq. (17), where the degenerate ground states
jp1;…pNf

i are properly normalized. Moreover, we only
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consider terms in ΔH which exchange two dimers, i.e.,
δt1 and δt3 terms. Flip interactions like t2 will be neglected
for simplicity, but can be included as well.
Within first order perturbation theory the eigenstates

remain unchanged, but their energy is given by
ΔE ¼ hp1;…pNf

jΔHjp1;…pNf
i. Evaluating the matrix

elements for the case Nf¼2 we get ΔE¼ εðp1Þ þ εðp2Þ
with

εðpÞ ¼ −4
X
i¼1;3

δtiQc½ð0; xÞ; ðr1;xti ; xþ ηtiÞ�

×
X
η

ð1þ eipηÞð1þ e−ipηþηti Þ
j1þ eipy j2 þ j1þ eipx j2

XSti
s¼1

½e−irs;ηti ·p�; ð18Þ

where rs;ηti and ηti correspond to displacement vector
and relative change in orientation for a given ti process
which annihilates a fermionic dimer with initial orientation
η. The sum over the possible rs;ηti corresponding to a
given ti depends on the orientation index η and runs from
s ¼ 1 to St1 ¼ 2, St3 ¼ 8. The classical probabilities

Qc½ð0; xÞ; ðr1;xti ; xþ ηtiÞ� are 1=8 and 1=ð4πÞ for t1 and
t3, respectively, and can be obtained from the exact solution
of the classical dimer problem [29,30]. Details of the
computation can be found in the Supplemental Material
[28]. We show an example for εðpÞ together with exact
diagonalization results on a 6 × 6 lattice with one fermionic
dimer and twisted boundary conditions in Fig. 1. For
jδtij ≪ jv1j, J we find excellent agreement. Note the
formation of hole pockets around ðπ=2; π=2Þ at a finite
density of fermionic dimers for perturbations in δt3.
The preceeding results demonstrate that the energy of a

state jp1;…; pNf
i is additive in the single particle energies

in the low doping limit, indicating a system with Fermi-
liquid like behavior. Now we show that in the same limit
the ground states jp1;…; pNf

i can be constructed using
creation and annihilation operators that fulfill canonical
fermionic anticommutation relations.
We start by defining the vaccum state of the theory to

be the usual RK ground state, i.e., j0�i ¼ jRKi, which

corresponds to the equal weight superposition of all
possible hard-core coverings of the lattice with bosonic
dimers. We add the star in this notation to emphasize
the difference to the vacuum state j0i used previously. By
defining the operator

f†p ¼
X
i;η

ai;ηðpÞF†
i;ηDi;η; ð19Þ

we can express the possible ground states along the RK
line as

jp1;…; pNf
i ¼

YNf

i¼1

f†pi j0�i: ð20Þ

We aim to show that the corresponding Hamiltonian
H ¼ P

pεðpÞf†pfp describes the model in the vicinity of
the RK line as a system of noninteracting fermionic
excitations. We hence need to show that the canonical
anticommutation relations

ff†p1 ; fp2g ¼ δp1;p2 ð21Þ

are satisfied in the limit of Eq. (17). Note that we require
specification of the Hilbert space on which Eq. (21) is
supposed to hold. In usual fermionic theories the anti-
commutation relations must hold on the Fock space

spanned by the set of states fQNf

i¼1 c
†
ki
j0ig. In direct

analogy we demand that in our model Eq. (21) should
hold on the Hilbert space spanned by the states

fQNf

i¼1 f
†
ki
j0�ig. Thus, even though the operators of

Eq. (19) do not constitute fermionic operators on a
Hilbert space built upon the actual vacuum state j0i,
we still can prove them to be fermionic within our relevant
Hilbert space. The quantity we aim to compute is now
ff†p1 ; fp2gj0�i and we want to show that this expression

yields δp1;p2 j0�i. From the relation ff†p1 ; fp2g ¼P
i;ηai;ηðp1Þa�i;ηðp2ÞN̂i;η, where N̂i;η corresponds to the

total dimer number operator on the link (i, η), we deduce

FIG. 1. Comparison between εðpÞ from Eq. (18) (left) and the dispersion obtained from exact diagonalization (ED) for 6 × 6 lattice
sites with one fermionic dimer and twisted boundary conditions (middle) for J ¼ V ¼ 1, v1 ¼ t2 ¼ −t1 ¼ 1 and δt3 ¼ −0.02. Right:
corresponding line cut through the Brillouin zone [blue line with dots: ED, orange line: Eq. (18)].
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that kff†p1 ; fp2gj0�ik2 is given by the Fourier transformed
classical dimer correlation function (see the Supplemental
Material for details [28]), which reduces to δp1;p2 for
N → ∞ as claimed, with corrections of order
O½logðNÞ=N�. The appearance of the total dimer number
operator N̂i;η then ensures that this result remains valid for
all states in our Hilbert space provided that Eq. (17) be
fulfilled. Beyond this limit, where the Fourier transform
of the classical dimer correlation function reduces to a
delta function, we show in the Supplemental Material that
Eq. (21) is exact for arbitrary system sizes if the momenta
p1 and p2 lie on the Brillouin zone diagonal.
Finally, we can also relate the operator fp to the actual

electron annihilation operator cp. In Ref. [1] it was shown
that the electron annihilation operator in the dimer Hilbert
space takes the form

cp;α ¼
εαβ
2

ffiffiffiffi
N

p
X
j;η

ð1þ e−ipηÞF†
i;η;βDi;ηe−ip·ij ; ð22Þ

i.e., removing an electron on lattice site i corresponds to
replacing a bosonic with a fermionic dimer on all adjacent
bonds. Here we included a spin index α and εαβ is the unit
antisymmetric tensor. Surpressing the electronic spin index
and comparing this expression with the definition of the fp
operator in Eq. (19) it immediately follows that

f†p ¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1þ eipx j2 þ j1þ eipy j2

p c−p: ð23Þ

This relation is particularly useful, because it shows that the
Fermi surface of fermionic dimers directly translates to the
electronic Fermi surface. Moreover, from the fact that
the fp fermions form a free Fermi gas, we can infer that
the electron spectral function in the vicinity of the RK line
takes the form Aeðp;ωÞ ¼ Zpδ½ω − εðpÞ� with a quasipar-
ticle weight Zp ¼ ½cos2ðpx=2Þ þ cos2ðpy=2Þ�=4, which is
distributed anisotropically around the Fermi surface (see
also Refs. [1,27] for a discussion. Similar results have been
obtained in a SU(2) slave-particle approach [32] as well as
in projected wave function studies [33]). Note that the
electron spectral function at the RK line only features a
coherent peak, but no incoherent background. Perturbing
away from the RK line incoherent weight appears, but not
within first order perturbation theory. Numerical results
obtained by ED confirm this result.
In summary, we provided an exact ground-state solution

for the dimer model introduced in Ref. [1] on a particular
line in parameter space, for arbitrary densities of fermionic
dimers. At this line the ground state is massively degenerate
and can be interpreted as a fermionic flat band. Perturbing
away from the exactly solvable line lifts this degeneracy
and we were able to show that the ground state is a
fractionalized Fermi liquid, at least in the limit of small

fermionic dimer densities. In this limit the ground state can
be constructed by applying canonical fermion creation
operators to a suitably chosen vacuum state and the energy
of these fermions is additive. Moreover, these fermionic
operators are directly related to electron creation operators
in the restricted Hilbert space of our model. Even though
we limited the discussion to spinless fermionic dimers,
our construction can be easily generalized to spin-1=2
fermionic dimers. We also note that the very same con-
struction works for other lattice geometries as well, such as
a triangular lattice, where we expect that the fractionalized
Fermi liquid ground state is stable over a wider parameter
regime. Indeed, the Uð1Þ spin liquid in the square lattice
RK model at half filling is unstable towards confining,
symmetry broken states away from the special RK point
J ¼ V. On nonbipartite lattices an extended Z2 spin liquid
phase exists, however [7]. Analogous considerations hold
for hole doped RK models [34,35] as well as the fraction-
alized Fermi liquid phase discussed here [26,36]. Including
diagonal, next-nearest neighbor dimers in our model is
thus an interesting point for future study. In conclusion,
our results provide a rare example of a strongly correlated,
fermionic lattice model in two dimensions, which is exactly
solvable and potentially relevant for the description of the
metallic pseudogap phase in underdoped cuprates.
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