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1.  Introduction

Fermi-edge singularities describe infrared divergences in 
optical spectra arising from the discontinuity of the electronic 
distribution. The advance in the experimental techniques of 
cavity quantum electrodynamics [1–3] has renewed the need 
for a precise understanding of such response functions of 
degenerate Fermi systems to optical excitation. From a theoret-
ical perspective, the study of the x-ray-edge singularity serves 
as a prototypical fermionic problem which exhibits a logarith-
mically divergent perturbation theory [4]. Whereas a solution 
of the (interband) particle-hole susceptibility via parquet equa-
tions  [5, 6] amounts to rather involved computational effort, 
Lange et al [7] have recently suggested to perform this resum-
mation via simple approximations in a functional renormaliza-
tion group (fRG) scheme. Here, we confirm that it is, indeed, 
possible to reproduce the (first-order) parquet result from a 
truncated, one-loop fRG flow without further approximations. 
However, a detailed analysis of the underlying diagrammatic 

structure shows that this conclusion relies on fortuitous partial 
cancellations special to the x-ray-edge singularity.

In more detail, experimentally, x-ray absorption in metals 
has been a topic of interest for a long time. Similar measure-
ments with infrared light can be performed using heavily 
doped semiconductors. Whereas photon absorption in metals 
typically excites a localized deep core electron, effects due to 
the mobility of valence-band electrons in semiconductors can 
significantly alter the absorption spectrum [2]. When a quasi-
two-dimensional layer of such a semiconducting material is 
placed inside an optical cavity, the reversible light-matter cou-
pling leads to the formation of half-light, half-matter excita-
tions, attributed to the so-called polariton [8]. Properties of 
the microcavity system are deduced from the polariton, i.e. 
from the photon dressed by light-matter interaction, bringing 
its self-energy into focus [9–11]. To leading order in the cou-
pling, this self-energy is proportional to the particle-hole 
susceptibility, well-known from the standard literature on 
the Fermi-edge singularity [5, 6, 12–15]. The effect of light-
matter interaction on the photon is thus governed by a correla-
tion function of the fermionic system.
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The basic theoretical formulation of the x-ray-edge singu-
larity involves a localized scattering impurity, corresponding 
to a deep core level of a metal. In this form, the problem is 
exactly solvable in a one-body approach, as performed by 
Nozières and De Dominicis [12]. This approach is, however, 
limited to the special case that the scattering impurity is struc-
tureless. If the problem is tackled in a many-body treatment, 
the solution can be generalized to more complicated situations 
and has relevance for other problems involving logarithmic 
divergences. This includes the Kondo problem [16, 17] as well 
as the generalization to scattering processes involving a finite-
mass valence-band hole, as necessary for the description of 
optical absorption in semiconductors [13, 14].

In a diagrammatic treatment of the Fermi-edge singularity, 
logarithmic divergences appear at all orders, demanding 
resummation procedures. A suitable resummation, containing 
all leading logarithmic (log) diagrams, can be phrased in 
terms of parquet equations. These consist of coupled Bethe–
Salpeter equations  in two-particle channels; here, distin-
guished by antiparallel or parallel conduction-valence-band 
lines [5]. Parquet equations can be used in a variety of theor
etical applications [18], and it is worthwile to explore whether 
results comparable or even equivalent to solving those can be 
obtained by alternative resummation techniques, such as fRG.

The functional renormalization group is a versatile many-
body framework, which has proven to give accurate results for 
low-dimensional fermionic systems [19, 20]. Different reali-
zations and approximations of an exact hierarchy of differen-
tial equations for vertex functions allow for rich resummations 
in the calculation of correlation functions. Inspired by Lange 
et al [7], we study the Fermi-edge singularity and show that, 
for the (zero-dimensional) special case of the x-ray-edge sin-
gularity, it actually is possible to analytically derive the (first-
order) parquet result from a one-loop fRG scheme. However, 
this derivation relies on fortuitous partial cancellations of dia-
grams and cannot be applied to more general situations. We 
further show that various truncated fRG flows (see below) do 
not provide a full summation of parquet diagrams. Though 
this conclusion may seem disappointing, we believe that the 
analysis by which it was arrived at is very instructive and 
motivates the extension of one-loop fRG by multiloop cor-
rections. Indeed, in two follow-up publications [21, 22], we 
present a multiloop fRG flow that does succeed in summing 
all parquet diagrams for generic many-body systems.

The paper is organized as follows. In section 2, we give the 
standard formulation of the Fermi-edge and x-ray-edge singu-
larity. The basics of the parquet solution are briefly reviewed 
in section 3, before, in section 4, we introduce the fRG frame-
work in its one-particle- and two-particle-irreducible form. In 
section 5, we apply the fRG flow to the fermionic four-point 
vertex and construct the particle-hole susceptibility at the end 
of the flow. Furthermore, we briefly consider the potential of 
computing this susceptibility using a Hubbard–Stratonovich 
transformation. In section  6, we rephrase the particle-hole 
susceptibility as a photonic self-energy to obtain a “flowing 
susceptibility”; we compare results from using a dynamic and 
static four-point vertex and use the latter approach to ana-
lytically reproduce the parquet formula. We also relate our 

findings to the work by Lange et al [7] and show how their 
treatment can be simplified. Finally, we present our conclu-
sions in section 7.

2.  Fermi-edge singularity

In this section, we review the standard formulation of the 
Fermi-edge singularity for a two-band electron system. We 
are interested in the (interband) particle-hole susceptibility, 
describing the response to optical excitation. A typical absorp-
tion process, where a photon lifts an electron from the lower 
to the upper band, is shown in figure 1(a). There, we antici-
pate the simplification to the x-ray-edge singularity, ignoring 
kinetic energy in the lower band, thereby considering a static, 
photo-excited scattering impurity.

Before going into detail, let us state more generally the 
Hamiltonian of the Fermi-edge singularity,

H′ =
∑

k

εkc†kck +
∑

k

Ekd†
kdk +

U
V

∑
kpq

c†k+qckd†
p−qdp,� (1)

describing a two-band electron system with interband 
(screened) Coulomb interaction of the contact type 
(Uq = U > 0). The operator ck (dk) annihilates an electron in 
the conduction (valence) band, V  is the volume, and the dis-
persion relations εk, Ek, account for any intraband interaction 
in a Fermi-liquid picture. This is supposed to work well when 
electronic energies close to the Fermi level μ, which we take 
to be on the order of the conduction-band width, dominate. 
Using the effective electron and hole masses, m and mh, one 
has (� = 1)

εk =
k2

2m
, Ek = −EG − k2

2mh
, EG > 0.� (2)

Note that we further ignore Auger-type interactions containing 
three c or d operators, since such transitions are suppressed 
by the size of the band gap EG. This allows us to treat elec-
trons from both bands as different fermion species, each with 
conserved particle number. With the targeted (leading log) 

Figure 1.  Bandstructure illustrations for two-band electron 
systems with chemical potential μ and band gap EG. (a) X-ray 
absorption in metals typically excites a localized, deep core level 
to the conduction band. The flat band acts as a two-level scattering 
impurity for conduction electrons. (b) A similar process occurs with 
infrared light in (direct-gap) heavily doped semiconductors. Only 
in the limit of infinite valence-band (hole) mass, one reverts to the 
situation of (a). Accounting for the mobility of the hole, scattering 
processes of conduction electrons on top of the Fermi surface cost a 
finite amount of energy, the recoil energy ER.
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accuracy (see section  3), including spin degeneracy (while 
keeping the density-density interaction) only results in a dou-
bled density of states ρ [12]. In two space dimensions, the free 
density of states is m/(2π); in other cases, one approximates ρ 
by its value at the Fermi level (see equation (11)).

The particle-hole susceptibility is a two-particle correla-
tion function, given by

iΠ′(q, t) =
1
V

∑
k,p

〈T d†
k(t)ck+q(t)c

†
p+q(0)dp(0)〉,� (3)

with time-ordering operator T . It exhibits an infrared diver-
gence—the Fermi-edge singularity—which is cut by the 
(valence-band) recoil energy [11, 13] at Fermi momentum, 
equal to µ · m/mh (see figure 1(b)).

For the case of a polariton experiment using, e.g. a GaAs 
semiconductor [2], one has a ratio of effective masses 
between the conduction and heavy-hole-valence band [11] 
of m/mh ∼ 0.14. Considering x-ray absorption in metals, 
one usually encounters the excitation of a localized, deep 
core level to the conduction band (see figure 1(a)). This moti-
vates the severe simplification of an infinite valence-band 
(hole) mass, corresponding to a two-level scattering impurity, 
resulting in the Hamiltonian known from the x-ray-edge sin-
gularity, (εd = −EG < 0)

H =
∑

k

εkc†kck + εdd†d +
U
V

∑
kp

c†kcpd†d.� (4)

Momentum dependencies in interband quantities are com-
pletely absorbed by the infinitely heavy hole, and only the 
local conduction-band operators play a role:

iΠ(t) = 〈T d†(t)c(t)c†(0)d(0)〉, c =
1√
V

∑
k

ck.� (5)

Without the intrinsic infrared cutoff of the recoil energy, 
the (infinite-mass) particle-hole susceptibility shows a true 
divergence. In a zero-temperature calculation and for small 
interaction, this takes the form [5, 6, 12]

Π(ω) =
ρ

2u

[
1 −

(ω + ξd + i0+

−ξ0

)−2u]
, u = ρU.� (6)

Here, −ξd = µ− εd = µ+ EG is the threshold frequency and 
ξ0 ∼ µ an intrinsic ultraviolet cutoff of the order of the con-
duction-band width (see equation (11)). Note that, for absorp-
tion processes, one has an initially fully occupied valence 
band (EG � kBT ), such that Π(t) is automatically retarded. 
Analogously, the valence-band propagator iGd(t) = 〈T d(t)d†〉 
is purely advanced. Although our calculations will proceed in 
a finite-temperature formalism, we aim to reproduce the result 
(6). Hence, we numerically consider very low temperatures 
and perform the zero-temperature limit in analytic calcula-
tions. As we attribute the constant Hartree part of a fermionic 
self-energy to the renormalized band gap EG, a diagrammatic 
expansion using Gd(t) ∝ Θ(−t) (with the Heaviside step func-
tion) directly shows that conduction-band propagators are not 
further renormalized by interband interaction.

As already mentioned, the particle-hole susceptibility can 
also be viewed as the leading contribution (in the light-matter 

coupling ρ|M|2, M being the dipole matrix element) to a 
photon self-energy. In the regime under consideration, elec-
tronic processes happen on a timescale 1/µ much shorter 
than typical times of absorption and emission of a photon 
1/(ρ|M|2) [11]. For µ � ρ|M|2, one can thus approximate 
the photon self-energy by an interacting particle-hole bubble, 
given the standard coupling

H′
cpl =

1√
V

∑
pq

(
Mc†p+qdpaq + M∗d†

pcp+qa†q
)
,� (7)

where aq annihilates a photon. For infinite hole mass, the 
momentum dependence of the photon absorption can no 
longer be resolved, and we use the simplified coupling

Hcpl = Mc†da + M∗d†ca†,
∑

q

aq = a.� (8)

Having defined the system under consideration (equation 
(4)) and the quantity of interest (equation (5)), our analysis will 
proceed in an imaginary-time action formalism. We transform 
the Grassmann fields for both bands (c, c̄, d, d̄) to Matsubara 
frequencies according to cω =

∫ β

0 dτ c(τ)eiωτ/
√
β , etc, 

where β = 1/(kBT). For the x-ray-edge singularity, a change 
to the position basis immediately shows that conduction-band 
fields other than the local ones (see equation (5)) can be inte-
grated out, leading to the action

S =−
∫

ω

Gc,−1
0,ω c̄ωcω −

∫

ω

Gd,−1
0,ω d̄ωdω

+ U
∫ ′

ωνω̄

d̄ωdν c̄ω̄+νcω̄+ω .
� (9)

Here, we have introduced a notation where 
∫
ω

 is a sum over 
Matsubara frequencies, bosonic Matsubara frequencies are 
denoted by a bar, and each prime on an integral sign repre-
sents a prefactor of 1/β. The zero-temperature limit is then 
conveniently obtained as

lim
β→∞

∫ ′

ω

fω =

∫
dω
2π

f (ω).� (10)

It is worth noting that the action of the more general Fermi-
edge singularity, defined by the Hamiltonian (1), is perfectly 
analogous to the one of the x-ray-edge singularity (equation 
(9)). One merely has to identify each Matsubara frequency 
with a double index for frequency and momentum (ω, k) and 
Matsubara summations with a double sum over frequencies 
and momenta, the prefactor being 1/(βV) instead of 1/β. 
Hence, all diagrammatic and fRG arguments apply simulta-
neously to the case of finite and infinite hole mass. Only for 
numerical as well as analytic computations, we restrict our-
selves to the (zero-dimensional) special case of the x-ray-edge 
singularity, such that we can readily ignore any momentum 
dependence.

Whereas for finite hole mass, the propagator of valence 
(conduction) electrons is given by 1/(iω + µ− Ek) 
[1/(iω + µ− εk)], for infinite mass, the valence-band propa-
gator simply reads Gd

0,ω = 1/(iω − ξd). As we use a parabolic 
dispersion in the conduction band, we introduce an ultraviolet 
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cutoff εk � µ+ ξ0 in momentum space. The choice of a half-
filled conduction band, i.e. ξ0 = µ, yields the particularly 
simple local propagator

Gc
0,ω =

1
V

∑
k

1
iω − εk + µ

= ρ

∫ ξ0

−ξ0

dξ
1

iω − ξ

= −2iρ arctan(ξ0/ω) ≈ −iπρ sgn(ω)Θ(ξ0 − |ω|).

�

(11)

In the last step, we have ignored any details of the ultraviolet 
cutoff, which are of no physical relevance. Note that different 
leading log diagrams typically contain the energy range of 
occupied (μ) or unoccupied conduction band states (ξ0) in the 
argument of the logarithm. Minor deviations from half-filling, 
still in the regime of |µ− ξ0| � ξ0, have only subleading 
effects.

Including photon fields (a, ā) into the theory, one might 
perform a simple transformation for dimensional reasons of 
the type γ = Ma, γ̄ = M∗ā, resulting in a rescaled coupling 
term

Scpl =
1√
β

∫

ω̄ω

(c̄ω̄+ωdωγω̄ + d̄ωcω̄+ωγ̄ω̄).� (12)

Then, in the limit of M → 0, i.e. Gγ
0 ∝ |M|2 → 0, one obtains 

the leading contribution to the photon self-energy Πγ as pre-
cisely the particle-hole susceptibility

lim
M→0

Πγ
ω̄ = Πω̄ =

∫ ′

ων

〈d̄ωdν c̄ω̄+νcω̄+ω〉.� (13)

Again, the formula is similarly applicable for the more gen-
eral Fermi-edge singularity, where ω̄  denotes frequency and 
momentum (ω̄, q). According to the rules of analytic continu-
ation, iω̄ → ω + i0+, the x-ray-edge singularity written in 
terms of Matsubara frequencies can directly be inferred from 
equation (6):

Πω̄ =
ρ

2u

[
1 −

( iω̄ + ξd

−ξ0

)−2u]
.� (14)

It is our goal to reproduce this result, originating from 
a (first-order) solution of the parquet equations, using an 
fRG scheme. Before getting into the details of fRG, let us 
briefly review the basics of the parquet solution leading to 
equation (14).

3.  First-order parquet solution

We already mentioned that the x-ray-edge singularity has been 
exactly solved in a one-body approach [12] containing the 
parquet result (6) in the weak-coupling limit. For the sake of 
generalizability to actual fermionic many-body problems, one 

is interested in other (approximate) solutions obtained from a 
many-body treatment. Roulet et al [5] have achieved such a 
solution of the x-ray-edge singularity in leading order of the 
logarithmic singularity. This first-order parquet solution sums 
up all perturbative terms of the type un+p lnn+1 |ξ0/(ω + ξd)|, 
where p  =  0. These correspond to the leading log (or parquet) 
diagrams; subleading terms with p  >  0 are neglected. Such an 
approximation is applicable for small interaction, u � 1, and 
frequencies not too close to the threshold −ξd. Yet, a subse-
quent work [6] as well as the exact solution [12] show that, 
for small coupling, the result actually holds for frequencies 
arbitrarily close to the threshold.

The lowest-order diagrams for the particle-hole suscep-
tibility, corresponding to the first terms of an expansion of 
equation  (14) in u, are shown in figure  2. Full lines denote 
conduction-band (c) and dashed lines valence-band (d) prop-
agators. Self-energy corrections, affecting the d propagator, 
can be ignored, as discussed later. A bare vertex, symbolized 
by a solid circle, demands energy(-momentum) conservation 
and multiplication by  −U. Apart from that, there are no com-
binatorial or sign factors attached to diagrams. Free variables 
are to be integrated over with dimension-full integrals (see 
equation (10)).

The first three diagrams in figure 2 are called ladder dia-
grams. It is easy to see that taking into account only ladder 
diagrams leads to the false prediction of a bound state [14]. 
Crossed diagrams, such as the last diagram in figure 2, are cru-
cial for an accurate description and encode screening effects 
(conduction-band holes) of the Fermi sea. Figure 3(a) shows 
how the leading log result is built up in an expansion of equa-
tion  (14), exemplified by the real part. Numerical results in 
sections 5 and 6 aim to reproduce this form. Note that, written 
in terms of Matsubara frequencies, the particle-hole suscep-
tibility (14) is no longer singular. The seemingly quick conv
ergence of the perturbative curves to the full solution at an 
interaction parameter u  =  0.28 in figure 3(a) is also due to a 
rapid decay of the expansion coefficients.

Though, for real frequencies, ξd  acts as a frequency shift, 
it is a property of the analytic continuation that, in imaginary- 
frequency space, different values for ξd  stretch/flatten the 
curve. Since we have incorporated the physical effect of the 
size of the band gap already in the choice of the interaction in 
the Hamiltonian (1), we can choose any value for ξd  in our cal-
culations. In order to have a pronounced peak in the Matsubara 

Figure 2.  Particle-hole susceptibility Π (equation (13)) up to 
second order in the interaction, consisting of the first three ladder 
diagrams [L(0), L(1), L(2)] and the crossed diagram [C(2)]. Full 
(dashed) lines denote propagators of conduction (valence) electrons. 
Dots represent bare vertices with a factor  −U. Figure 3.  (a) Leading log formula in terms of Matsubara 

frequencies (equation (14)) at increasing orders in the coupling u. 
Numerical parameters are u  =  0.28, |ξd/ξ0| = 1/25, and the grid for 
Matsubara frequencies is set by βξ0 = 500. (The same parameters 
are used throughout this work.) Here, we show (connected) lines 
for clarity. (b) The particle-hole susceptibility Π (full circle) can be 
expressed via the bare bubble and the 1PI four-point vertex Γ(4), 
denoted by a full square, according to equation (16).
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curve, we take |ξd/ξ0| = 1/25, implying u ln |ξ0/ξd| ≈ 0.9. 
Note that, as can be seen from the simple computation of the 
particle-hole bubble, zero-temperature calculations are dis-
continuous w.r.t. to ξd  at ξd = 0. Choosing ξd = 0, one loses 
analytic properties and only obtains the real part of the loga-
rithmic factors depending on |ω̄| (see appendix).

The four-point correlation function in the particle-hole 
susceptibility can be rephrased by cutting external legs  
(in general, as dressed propagators Gd, Gc) in the connected 
part according to (see e.g. equation (6.92) of [20])

〈d̄ωdν c̄ω̄+νcω̄+ω〉 = Gd
ωGc

ω̄+ωδω,ν + Gd
ωGd

ν

× Gc
ω̄+ωGc

ω̄+νΓ
d̄cc̄d
ω,ω̄+ω,ω̄+ν,ν/β.

�
(15)

This introduces the one-particle-irreducible (1PI) four-point 
vertex Γd̄cc̄d. Consequently, the particle-hole susceptibility is 
fully determined by Γ(4) = Γd̄cc̄d via

Πω̄ =

∫ ′

ω

Gd
ωGc

ω̄+ω +

∫ ′′

ων

Gd
ωGd

νGc
ω̄+ωGc

ω̄+νΓ
(4)
ω,ω̄+ω,ω̄+ν,ν ,

� (16)
the graphical representation of which is shown in figure 3(b).

The parquet equations are then focused on the four-point 
vertex and use a diagrammatic decomposition in two-particle 
channels. For the Fermi-edge singularity, the leading log 
divergence is determined by the two channels characterized 
by parallel and antiparallel conduction-valence-band lines:

Γ(4) = R + γp + γa, Ip = R + γa, Ia = R + γp,� (17a)

γa; ω,ω̄+ω,ω̄+ν,ν =

∫ ′

ω′
Ia; ω,ω̄+ω,ω̄+ω′,ω′Gd

ω′Gc
ω̄+ω′

× Γ
(4)
ω′,ω̄+ω′,ω̄+ν,ν ,

�
(17b)

γp; ω,ν̄−ν,ν̄−ω,ν =

∫ ′

ω′
Ip; ω,ν̄−ω′,ν̄−ω,ω′Gd

ω′Gc
ν̄−ω′

× Γ
(4)
ω′,ν̄−ν,ν̄−ω′,ν .

�

(17c)

Here, R is the totally (two-particle-) irreducible vertex; γa 
and γp are reducible while Ia and Ip are irreducible vertices in 
the antiparallel and parallel channel, respectively. Note that a 
Γ(4) diagram can be reducible in exclusively one of the two 
channels [5]; diagrams irreducible in both channels belong 
to R. The Bethe–Salpeter equations for γa (17b) and γp (17c), 
which are the crucial components of the parquet equations, are 
illustrated in figure 4.

The parquet equations (17) as such are exact and merely 
represent a classification of diagrams. In the first-order solu-
tion [5] (also referred to as parquet approximation [18]), one 
approximates the totally irreducible vertex by its bare part, i.e. 
R  =  −U. To be consistent with the leading log summation (of 

the x-ray-edge singularity), one further neglects any fermionic 
self-energies [5, 6]. In fact, it is easily shown that the lowest 
(non-constant) contribution to Σd involves the subleading 
term u2 ln |ξ0/(ω + ξd)|. Similarly, higher-order corrections to 
R are subleadingly divergent. From the exact solution [12], it 
is known that extensions of the first-order parquet scheme just 
lead to the replacement of u by more complicated functions 
of u in the characteristic form of the particle-hole suscepti-
bility (equation (6)). For weak coupling, it is thus justified to 
focus on the leading-order result. We will henceforth ignore 
all fermionic self-energies and omit the index 0 on fermionic 
propagators when referring to the x-ray-edge singularity. (It 
should be noted that these arguments do not directly apply to 
any Fermi-edge singularity. In particular, considering a finite-
mass valence-band hole, it was shown that Σd has a crucial 
effect on the particle-hole susceptibility and encodes the influ-
ence of indirect transitions [11, 13].)

From the parquet equations  (17), one can also extract 
the diagrammatic content of the emergent four-point vertex 
Γ(4). All leading log diagrams (parquet graphs) are obtained 
by successively replacing bare vertices (starting from the first-
order, bare vertex) by parallel and antiparallel bubbles (see 
figure 5). Note that such a parquet resummation is the natural 
extension to two channels of what the ladder summation is to 
one channel. Having gained insight into the structure of the 
parquet equations and the leading log diagrams, let us move 
on to the formalism used in the remainder of this paper.

4.  Functional renormalization group

The functional renormalization group (fRG) is a many-body 
framework, which in principle allows one to examine the 
renormalization group flow of all coupling constants in their 
full functional dependence and to obtain diagrammatic resum-
mations of vertex and correlation functions. Its basic idea is to 

Figure 4.  Bethe–Salpeter equations for both two-particle channels, 
where γa and γp are reducible while Ia and Ip are irreducible 
vertices in antiparallel and parallel conduction-valence-band lines, 
respectively. The vertices are further related via equation (17a).

Figure 5.  Parquet graphs for the four-point vertex Γ(4), consisting 
of diagrams reducible in (left) antiparallel lines and (right) parallel 
lines, up to third order in the interaction. Note that all diagrams are 
obtained by successively replacing bare vertices by antiparallel and 
parallel bubbles.
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consider the change of a many-body generating functional upon 
the variation of an artificially introduced scale parameter, which 
can act as an effective infrared cutoff and allows to successively 
integrate out high-energy degrees of freedom. This procedure of 
“zooming out” from microscopic to many-body physics, i.e. the 
evolution of physical quantities upon lowering the scale param-
eter Λ, modulating from a trivial to the full theory (see figure 6), 
is described by an exact functional differential equation.

Most commonly, one incorporates the scale parameter in 
the bare propagator of the theory. Since we are interested in 
interband quantities such as the particle-hole susceptibility, it 
is sufficient to modify the propagator of one band alone. As 
Gd

0,ω follows the typical 1/(iω − ξd) behavior (see section 2), 
it is convenient to choose the lower band. The appropriate 
boundary conditions, to initially (Λi = ∞) extinguish all 
interband diagrams and finally (Λf = 0) revert to the original 
theory, are Gd

0,Λi
= 0, Gd

0,Λf
= Gd

0 .
We will use two alternative realizations with particularly 

useful computational properties, namely the δ regulator,

Gd
0,Λ, ω = Θ(|ω| − Λ)Gd

0, ω =
Θ(|ω| − Λ)

iω − ξd
,

∂ΛGd
0,Λ, ω = −δ(|ω| − Λ)Gd

0, ω =
−δ(|ω| − Λ)

iω − ξd
,

�

(18)

and the Litim [23] regulator,

Gd
0,Λ, ω =

1
i sgn(ω)max(|ω|,Λ)− ξd

,

∂ΛGd
0,Λ, ω =

−i sgn(ω)Θ(Λ− |ω|)
[i sgn(ω)Λ− ξd]2

.
�

(19)

In an exact solution of the flow, all regulators give iden-
tical results since, at the end of the flow (Λf = 0), the original 
theory is restored. However, once approximations are made, 
the outcomes might differ significantly. In particular, this will 
happen once the flow of certain quantities does not form a 
total derivative of diagrams, e.g. due to truncation.

One can consider different functionals paraphrasing 
the many-body problem under the fRG flow. Two common 
choices are the (quantum) effective action and the Luttinger–
Ward functional serving as generating functionals for one-
particle-irreducible (1PI) and two-particle-irreducible (2PI) 
vertices, respectively. Our study is focused on 1PI fRG flows. 
We will only briefly mention the 2PI formulation to show that 
this provides no benefit for our treatment.

4.1.  One-particle-irreducible formulation

The (quantum) effective action Γ is obtained from the (log 
of the) partition function—in the presence of sources cou-
pled directly to the fields (Ssrc =

∫
α

jαϕα)—by a Legendre 
transformation. Its behavior under the flow is given by the 
(so-called) Wetterich equation  [24]. In the notation of [20], 
particularly useful for mixed (fermionic and bosonic) theo-
ries, it is stated as

∂ΛΓΛ[ϕ̄] =− 1
2

STr

{(
∂ΛG−1

0,Λ

)

×

([(
δ2ΓΛ[ϕ̄]

δϕ̄δϕ̄

)T

− G−1
0,Λ

]−1

+ G0,Λ

)}
.

�

(20)

Here, the super trace runs over multi-indices α, which specify 
field as well as conjugation indices and all further quantum 
numbers, and contains a minus sign when summing over fer-
mionic degrees of freedom. If the propagator of all fields is set 
to zero at the beginning of the flow, the initial condition for Γ is 
given by the interacting part of the action [20], ΓΛi = Sint (no 
renormalization of vertices by propagating degrees of freedom 
is possible). Although we choose only the bare valence-band 
propagator to be Λ-dependent, all interband quantities are still 
given by the bare interactions of Sint.

In order to tackle the fundamental and in general unsolv-
able flow equation (20), Γ can be expanded in terms of 1PI 
n-point vertices Γ(n), where we set

Γ(n)
α1...αn

= β
n
2 −1 δnΓ[ϕ̄]

δϕ̄α1 . . . δϕ̄αn

∣∣∣∣
ϕ̄=0

.� (21)

The functional differential equation (20) is transformed into 
a hierarchy of infinitely many coupled ordinary differential 
equations with an interesting structure [20]: ∂ΛΓ(n) depends 
on other vertices only up to Γ(n+2) and, then, always via 
STr{Γ(n+2)S}. Here, S is the (so-called) single-scale propa-
gator S = −G(∂ΛG−1

0 )G, adding self-energy corrections to a 
differentiated bare line. Since, with logarithmic accuracy (see 
section  3), we can neglect fermionic self-energies, we have 
the notable simplification S = ∂ΛG0.

The most common truncation of the still unsolvable hier-
archy of flow equations  is to leave higher-order vertices 
constant (Γn>n0

Λ = Γn>n0
Λi

) yielding a finite set of differential 
equations. This has a weak coupling motivation, as higher-
order vertices typically are of increasing order in the inter-
action. Furthermore, for a four-point interaction as in our 
fermionic theory, the only non-zero initial condition of a 1PI 
interband vertex is Γd̄cc̄d = −U. Note that, when specifying a 
vertex, we usually omit the superscript (n) and, instead, write 
field indices as superscripts and quantum numbers as indices. 
With the photon included in the theory, we have the additional 

non-trivial initial condition Γc̄dγ
Λi, ω,ω−ω̄,ω̄ = 1 = Γd̄cγ̄

Λi, ω−ω̄,ω,ω̄ 

for the mixed three-point vertex.
The flow equations of the individual vertices are obtained 

by performing the vertex expansion (21) on both sides 
of the Wetterich equation  (20). Given a certain trunca-
tion and the above mentioned initial conditions, the set of 

Figure 6.  1PI fRG flow: The flow parameter Λ, introduced in the 
quadratic part of the action, makes the theory evolve from a trivial 
to the original, full one. At the initial scale, the (quantum) effective 
action Γ can directly be read off from the interacting part of the 
action Sint. Finally, the desired generating functional for 1PI vertices 
Γ is obtained.
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differential equations can be solved by standard methods, pos-
sibly requiring further approximations. Solutions for the self-
energy [Γ(2)] or higher-order vertex functions [Γ(n>2)] can be 
used to compute correlation functions, such as the particle-
hole susceptibility (see equation (16)).

For future reference, let us already state the 1PI fRG flow 
equation  for the four-point vertex in the purely fermionic 
theory (in the matrix notation of equation (20), we omit the 
second index for one-particle quantities: Gcc̄

ω,ω = Gc
ω, etc). To 

describe the leading logarithmic divergence of the Fermi-edge 
singularity, we only consider interband combinations of four-
point vertices and obtain

∂ΛΓ
d̄cc̄d
Λ, ω,ω̄+ω,ω̄+ν,ν =

∫ ′

ω′
Sd
Λ, ω′

×
(
Γd̄cc̄d
Λ, ω,ω̄+ω,ω̄+ω′,ω′Gc

ω̄+ω′Γd̄cc̄d
Λ, ω′,ω̄+ω′,ω̄+ν,ν

+ Γd̄cc̄d
Λ, ω,ν̄−ω′,ν̄−ω,ω′Gc

ν̄−ω′Γd̄cc̄d
Λ, ω′,ν̄−ν,ν̄−ω′,ν

+ Γd̄cc̄dd̄d
Λ, ω,ω̄+ω,ω̄+ν,ν,ω′,ω′

)
, ν̄ = ω̄ + ω + ν.

�

(22)

Without fermionic self-energies, the propagators Gc, Gd, 
and Sd are known functions. If the fRG hierarchy is further 

truncated by discarding the six-point vertex, Γ(6)
Λ = Γ

(6)
Λi

= 0, 

the resulting flow equation is closed in itself and can be solved 
as such. Figure 7(a) illustrates this flow equation, where we 
denote a single-scale propagator, i.e. a differentiated d line, 
by a vertical dash next to the arrow. Evidently, the 1PI fRG 
scheme does not yield separate flow equations for four-point 
vertices distinguished in two-particle channels, in contrast to 
the parquet equations  (17). However, one immediately sees 
in figure 7(a) that contributions from the first summand are 
reducible in antiparallel lines, whereas contributions from the 
second one are reducible in parallel lines. Totally irreducible 
diagrams are still present in equation (22) as initial condition 
(the bare vertex) and encoded in Γ(6), but, importantly, con-
tributions from STr{Γ(6)S} are also relevant for higher-order 
parquet diagrams in both channels (see section 5). To explore 
the possibility of treating the two-particle channels separately 
from the outset, let us sketch the applicability of 2PI fRG to 
the Fermi-edge singularity.

4.2. Two-particle-irreducible formulation

The 2PI formulation of fRG is based on the Luttinger–Ward 
functional Φ, obtained by a Legendre transformation from the 
(log of the) partition function with sources coupled to two 
fields (Ssrc =

∫
αα′ ϕαJαα′ϕα′). It can be shown [25] and is 

intuitive from its diagrammatic expansion that, contrary to Γ, 
Φ does not explicitly depend on the bare propagator of the 
theory. The scale dependence is only given by its argument G , 
representing the full propagator. Therefore, one immediately 
derives the flow equations

∂ΛΦ[G] =
1
2

STr
{δΦ

δG
∂ΛG

}
,� (23a)

∂ΛΦ
(2n)
Λ,α1α

′
1...αnα

′
n
=

1
2β

∑
α̃,α̃′

Φ
(2n+2)
Λ,α1α

′
1...αnα

′
nα̃α̃

′∂ΛGα̃α̃′ ,

� (23b)

where G is the physical propagator G|J=0. Equation (23a) has 
a much simpler structure compared to the Wetterich equa-
tion  (20). The 2PI n-particle vertices, as coefficients of Φ 
when expanded around the physical propagator,

Φ
(2n)
α1α

′
1...αnα

′
n
= βn−1 δnΦ

δGα1α′
1
. . . δGαnα′

n

∣∣∣∣
G=G

,� (24)

are primarily suited (to compute correlation functions) for a 
purely fermionic theory, where vertices only connect an even 
number of fields.

Unlike the totally antisymmetric 1PI four-point vertex 
(where particularly Γd̄cc̄d = Γd̄c̄dc), we have Φd̄c̄dc = Ip and 
Φd̄cc̄d = Ia, implying the desired distinction between the 
two-particle channels. (Note that the parquet approximation, 
which considers only the bare vertex as the totally irreducible 
contribution in Ip and Ia has not yet been made.) In contrast to 
the parquet equations, the 2PI flow, however, does not inter-
relate these two-particle vertices; instead, it demands the com-
putation of corresponding three-particle vertices. Moreover, 
since the 2PI vertices Φ(2n) are not necessarily 1PI, their ini-
tial conditions are more complex than those of Γ(n): We have 

Φ
(2n)
Λi

�= 0 for infinitely many n, namely for all Φ(2n) which 

contain diagrams without internal valence-band lines (see 
figure 7(b)). Therefore, truncation schemes need to be devised 
more carefully in the 2PI formulation.

The flow equations  for Ip and Ia, deduced from 
equation (23b),

∂ΛIp; ω1,ω2,ω3,ω4 =

∫ ′

ω

Φd̄c̄dcdd̄
ω1,ω2,ω3,ω4,ω,ω∂ΛGd

ω ,� (25a)

∂ΛIa; ω1,ω2,ω3,ω4 =

∫ ′

ω

Φd̄cc̄ddd̄
ω1,ω2,ω3,ω4,ω,ω∂ΛGd

ω ,� (25b)

require knowledge about six-point vertices, for which an exact 
consideration is numerically out of reach (similar to Γ(6)). The 
lowest-order diagrams of Φd̄c̄dcdd̄ and Φd̄cc̄ddd̄ are depicted in 
figure 7(b). The simplest way of generating a non-perturbative 
flow is to replace bare vertices with interacting four-point ver-
tices, which are then part of the flow. As opposed to previous 
proposals, namely to replace the bare interaction Uα1α2α3α4 by 
Φ

(4)
α1α2α3α4 [26] or by an average over Φ(4) with different index 

permutations [25], we suggest that the diagrammatically 
most sensible choice is the 1PI four-point vertex. Here, this 
amounts to replacing  −U by Γd̄cc̄d = Φd̄c̄dc +Φd̄cc̄d − R (see 
equation (17a)). The 1PI four-point vertex Γd̄cc̄d incorporates 

Figure 7.  (a) Diagrammatic representation of the flow equation (22) 
for Γd̄cc̄d upon neglecting the six-point vertex. The dot denotes the 
differentiated vertex; lines with a vertical dash symbolize the single-
scale propagator. (b) Three-particle vertices Φd̄c̄dcdd̄ and Φd̄cc̄ddd̄, 
responsible for the 2PI fRG flow of Ip and Ia, respectively, at second 
order in U.
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all possible diagrams; since both 2PI vertices contain the 
totally irreducible vertex R, it must be subtracted. Γd̄cc̄d also 
has the full crossing (index-permutation) symmetry as the 
bare interaction. Overcounting does not occur since both ver-
tices are separated by an open d line and connecting ∂ΛG to 
this approximation of Φd̄c̄dcdd̄ and Φd̄cc̄ddd̄ induces diagrams 
reducible in antiparallel and parallel lines, respectively. Since 
no further totally irreducible diagram for the 2PI vertices on 
top of the initial condition will be generated, it is consistent to 
use R  =  −U in the relation for Γd̄cc̄d (equation (17a)).

It is possible to evolve Ip and Ia separately, using the above 
described approximations in equation  (25), and check the 
consistence with the parquet equations (17), interrelating both 
of them, during the flow. However, in the ultimately inter-
esting combination (see equations  (16) and (17)), one has 
the flow ∂ΛΓd̄cc̄d = ∂ΛIp + ∂ΛIa. Combining the diagrams of 
figure 7(b) with full vertices and attaching the scale-derived 
propagator (here, equal to the single-scale propagator), we 
find exactly the same flow equation for the four-point vertex 
as given in the truncated 1PI system (figure 7(a)). The replace-
ment of SΛ by ∂ΛG in the flow of the four-point vertex when 
neglecting the six-point vertex, which is very natural in the 
above prescription, is a well known correction [19] that has 
been found to lead to smaller errors in Ward identities [27]. 
Finally, we conclude that the above simple 2PI fRG flow does 
not enrich the possibilities for an fRG treatment of the Fermi-
edge singularity compared to the 1PI framework.

5.  Correlator from evolved vertices

In this section, we start to present the results of our fRG treat-
ment of the x-ray-edge singularity. First, we perform the fRG 
flow of vertices and construct the particle-hole susceptibility 
at the end of the flow. More precisely, we examine the flow 
equation (22) in more detail and compare the resulting form 
of the particle-hole susceptibility, obtained from the rela-
tion (16), with the leading log result (14). We briefly check 
whether it is useful to perform a (multi-channel) Hubbard–
Stratonovich transformation to generate parquet diagrams in 
the particle-hole susceptibility from combining several 1PI 
vertices, finding that this is not the case.

5.1.  Fermionic four-point vertex

According to equation  (16), the fermionic four-point vertex 
is sufficient to compute the particle-hole susceptibility. In 
equation (22), we have already given its flow equation. Since 
a vertex with more than four arguments (and a meaningful 
resolution in frequency space) is numerically intractable, we 
neglect the six-point vertex by truncation and obtain the sim-
plified flow for Γ(4) illustrated in figure 7(a).

Solving this flow equation numerically with the initial con-

dition Γ(4)
Λi

= −U , the final form of the particle-hole suscep-

tibility (using equation (16)) is shown in figure 8(a). We find 
overall qualitative agreement between both the numerical and 
the analytic curve. Quantitatively, there are disagreements to 
the leading log result depending on the choice of regulator, 
which originate from neglecting Γ(6) in the flow of figure 7(a). 
The reason why the δ regulator yields much better results than 
the Litim regulator has recently been clarified in [21]: The 
former gives less weight to multiloop corrections that are 
neglected in the present approach.

Let us briefly indicate which types of differentiated dia-
grams are missing in the flow equation when neglecting Γ(6): 
One can easily check, by inserting the second-order diagrams 
of Γ(4) (see figure 5) on the l.h.s. and the bare vertex on the 
r.h.s., that the truncated flow equation (figure 7(a)) is satisfied 
at second order in the interaction. Note that (without fermionic 
self-energies) a diagram is simply differentiated by summing 
up all copies of this diagram in which one d line is replaced by 
a single-scale propagator S = ∂ΛG0 at any position (product 
rule). At third order, however, the simplified flow equation is 
no longer fulfilled since the six-point vertex (neglected in 
figure 7(a)) starts contributing. Indeed, the four terms coming 
from STr{Γ(6)S}, depicted in figure  9 (but neglected in the 
present scheme), generate the remaining derivatives of third-
order parquet diagrams (see figure 5).

We emphasize that all (differentiated) diagrams generated 
by the truncated flow (figure 7(a)) are of the parquet type. 
Indeed, totally (two-particle-) irreducible diagrams of Γ(4) 
exceeding the bare vertex (corresponding to higher-order con-
tributions of R in the parquet equations (17)) require proper 
inclusion of the six-point vertex (and intraband four-point ver-
tices). Similar to the recipe given in section 3, the truncated 
flow builds on the bare vertex by incorporating antiparallel and 
parallel bubbles and therefore only generates parquet graphs. 
Within the class of leading log diagrams, the six-point vertex is 
needed to provide all derivatives of diagrams of Γ(4), starting 
at third order in U (see figure 9). In fact, it is easy to see that, in 
the fRG hierarchy, the parquet graphs comprise (1PI as well as 
2PI) n-point vertices of arbitrarily large n: Cutting a valence-
band line (without leaving a single conduction-band line in 

Figure 8.  (a) Particle-hole susceptibility Π computed via Γ(4) 
(equation (16)), which is obtained from a numerical solution of 
the truncated flow (see figure 7(a)). Different results are generated 
using a Litim or δ regulator (see equations (18) and (19)) and 
compared to the leading log formula (14). (b) Π obtained from a 
numerical solution of the flow in the light-matter system (figures 
7(a) and 12). Stronger deviations (for both regulators) from the 
parquet curve compared to (a) occur since the truncated photon flow 
neglects derivatives of parallel bubbles.

Figure 9.  Third-order contributions from the six-point vertex to 
the flow of Γ(4) via STr{Γ(6)S}, neglected by the truncated flow in 
figure 7(a). (S is graphically separated for clarity.)
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the case of a 1PI description) generates a vertex of order two 
higher without leaving the class of parquet graphs. The corre

sponding higher-point vertices are required in the flow via the 

universal contribution STr{Γ(n+2)
Λ SΛ} or STr{Φ(n+2)

Λ ∂ΛGΛ} 
(see equations (20) and (23b)). Simply truncating the (purely 
fermionic) fRG hierarchy of flow equations will thus always 
dismiss contributions to parquet graphs.

The question of how to sum up all parquet diagrams in the 
fermionic four-point vertex via fRG is beyond the scope of the 
present work and is addressed in [21] using a multiloop flow. 
Here, instead, we explore various other ways of computing 
Πω̄ by using one-loop fRG, proceeding with auxiliary bosonic 
fields.

5.2.  Hubbard–Stratonovich fields

Hubbard–Stratonovich (HS) transformations are used in the 
context of several approximation techniques in many-body 
problems. Such an exact transformation reformulates the fer-
mionic two-particle interaction in terms of propagating aux-
iliary particles. For instance, the lowest-order contribution to 
a bosonic self-energy already encodes a ladder summation in 
the corresponding susceptibility. For a parquet resummation, 
it seems therefore sensible to perform a multi-channel HS 
transformation [7]. With bosonic fields for the exchange (χ) 
and pairing (ψ) channels, one has the identification

SHS =

∫

ω̄

U−1
χ χ̄ω̄χω̄ +

1√
β

∫

ω̄ω

(
c̄ω̄+ωdωχω̄ + d̄ωcω̄+ωχ̄ω̄

)

+

∫

ω̄

U−1
ψ ψ̄ω̄ψω̄ +

i√
β

∫

ω̄ω

(
c̄ω̄+ω d̄ωψω̄ − dωcω̄+ωψ̄ω̄

)
,

Sint = U
∫ ′

ωνω̄

d̄ωdν c̄ω̄+νcω̄+ω → SHS, Uχ + Uψ = U.

� (26)
Note that one can also set Uχ or Uψ to zero, such that one HS 
field effectively decouples from the system.

The more general relation between the particle-hole suscep-
tibility and 1PI vertices in the presence of bosonic fields (see 
equation (6.92) of [20]) is illustrated in figure 10. Three-point 
vertices (denoted by triangles) and full bosonic propagators 
(wavy and zig–zag line) contribute to the correlation func-
tion. This proves beneficial in terms of computational effort 
as, next to the bosonic self-energies, the three-point vertices 

Γc̄dχ
ω,ω−ω̄,ω̄ and Γc̄d̄ψ

ω,ω̄−ω,ω̄/i (with initial condition unity) contain 
less arguments compared to the four-point vertex. However, in 
figure 10, we see that the particle-hole susceptibility is still 
directly affected by the fermionic four-point vertex (which is 

one-particle-irreducible in fermionic as well as bosonic lines). 
The second and third summand on the r.h.s. take the role of a 
four-point vertex reducible χ and ψ lines, respectively, and the 
actual four-point vertex still covers all contributions irreduc-
ible in these lines. Although the HS transformation by con-
struction ensures that the four-point vertex does not contribute 
to first order, it does comprise indispensable diagrams starting 
at second order in the interaction.

In figure  11(a), we show the simplest diagrams of Γ(4)
HS  

after the transformation, which now start at second order in 
U. The lowest-order contributions to these diagrams, obtained 
by using bare bosonic propagators, represent the second-

order ladder (with weight U2
ψ = (Gψ

0 )
2) and second-order 

crossed diagram (with weight U2
χ = (Gχ

0 )
2), known from 

figure 2 (see figures 3(b) and 5). The main contributions of 
the exchange (χ) and pairing (ψ) boson in figure 10 are reduc-
ible in the antiparallel and parallel (two-particle) channels, 
respectively. Correspondingly, the lowest-order diagrams of 

Γ
(4)
HS  in figure 11(a) built from χ and ψ lines are reducible in 

the complementary channels, i.e. in parallel and antiparallel 
(fermionic) lines, respectively. However, starting at fourth 
order in the interaction, also four-point-vertex diagrams with 
χ lines reducible in the antiparallel channel exist, as is dem-
onstrated in figure 11(b) and analogously occurs with ψ lines 
in the parallel channel. In fact, the diagrams in figure 11(a) 
can be used as building blocks that replace the bare interac-
tion in the original parquet diagrams (see figure 5) to construct 

diagrams of Γ(4)
HS . Yet, this still covers only a fraction of the 

possible diagrams. We conclude that obtaining the full weight 
for higher-order parquet contributions to Π via the relation in 
figure 10 requires a complicated, parquet-like resummation of 
diagrams containing fermionic and bosonic lines in the four-
point vertex.

The flow equations  for the HS self-energies and three-
point vertices can be deduced from the fundamental flow 
equation  (20). When neglecting four-point and higher ver-
tices, they take a form which has already been given in equa-
tions (44) and (45) of [7]. We repeat them here for the sake of 

Figure 10.  Particle-hole susceptibility after a HS transformation, 

determined by HS three-point vertices and the four-point vertex 

Γ
(4)
HS  (white square). Wavy and zig-zag lines denote dressed bosonic 

propagators. Both three-point vertices Γc̄dχ and Γc̄d̄ψ/i are depicted 
by a triangle and can be distinguished by the attached bosonic line.

Figure 11.  (a) After a HS transformation, Γ(4)
HS  contributes with the 

above diagrams, starting at second order, where white circles denote 
the bare three-point vertices, equal to unity. It is therefore needed to 
produce all parquet graphs in the correlator. (b) Whereas diagrams 
of the four-point vertex in (a) that are built from χ lines are 
irreducible in the (corresponding) antiparallel channel, starting at 
fourth order, diagrams with χ lines that are reducible in antiparallel 
(fermionic) lines occur, too. (c) Particle-hole susceptibility Π 

computed via the relation in figure 10 without Γ(4)
HS , where bosonic 

self-energies and three-point vertices are obtained from the 
truncated fRG flow (27) and (28), and the interaction strength is 
divided equally between both channels, Uχ = U/2 = Uψ.
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completeness and later purposes. The flow of the self-energies 
is given by

∂ΛΠ
χ
Λ, ω̄ =

∫ ′

ω

Sd
Λ, ωGc

ω̄+ω

(
Γc̄dχ
Λ, ω̄+ω,ω,ω̄

)2
,� (27a)

∂ΛΠ
ψ
Λ, ω̄ =

∫ ′

ω

Sd
Λ, ωGc

ω̄−ω

(
Γc̄d̄ψ
Λ, ω̄−ω,ω,ω̄/i

)2
.� (27b)

For the three-point vertices, one obtains

∂ΛΓ
c̄dχ
Λ, ω,ω−ω̄,ω̄ =

∫ ′

ω′
Sd
Λ, ω′Γ

c̄dχ
Λ, ω̄+ω′,ω′,ω̄Gc

ω̄+ω′

× Γc̄d̄ψ
Λ, ω̄+ω′,ω−ω̄,ω+ω′/i Gψ

Λ, ω+ω′Γ
c̄d̄ψ
Λ, ω,ω′,ω+ω′/i,

�
(28a)

∂ΛΓ
c̄d̄ψ
Λ, ω,ω̄−ω,ω̄/i =

∫ ′

ω′
Sd
Λ, ω′Γ

c̄d̄ψ
Λ, ω̄−ω′,ω′,ω̄/i Gc

ω̄−ω′

× Γc̄dχ
Λ, ω̄−ω′,ω̄−ω,ω−ω′Gχ

Λ, ω−ω′Γ
c̄dχ
Λ, ω,ω′,ω−ω′ .

�
(28b)

To gauge the importance of the HS four-point vertex, we 
have numerically solved the fRG flow in the HS-transformed 
system (equations (27) and (28)). The resulting particle-hole 
susceptibility shown in figure 11(c), which is computed using 

the relation of figure 10 without Γ(4)
HS , shows much stronger 

deviations from the leading log result than figure 8(a), which 
was obtained using only Γ(4). This provides additional, 
numerical evidence that a HS transformation does not save us 
from having to calculate the fermionic four-point vertex.

6.  Flowing susceptibility

An alternative approach to calculating the particle-hole sus-
ceptibility from renormalized 1PI vertices is based on the 
identification of Π as a bosonic self-energy. In equation (13), 
we have shown how Π is obtained from the self-energy of 
a rescaled photon field in the limit of its propagator (con-
taining the dipole matrix element) going to zero. Flow equa-
tions  for the photon self-energy without internal photon 
propagation thus describe the flow of the particle-hole sus-
ceptibility. It should be noted that this appears natural given 
the interpretation of polariton physics, but can also be seen 
as a mere computational trick in order to directly include a 
susceptibility in the fRG flow. In this section, we consider 
the flow of the photon self-energy in different levels of trun-
cation and comment on the related publication by Lange 
et al [7].

6.1.  Dynamic four-point vertex—numerical solution

In the extended theory of the light-matter (photon and fer-
mion) system, we derive from the fundamental flow equa-
tion  (20) the flow of the photon self-energy and three-point 
vertex:

∂ΛΠΛ, ω̄ =

∫ ′

ω

Sd
Λ, ω

[
Gc

ω̄+ω

(
Γc̄dγ
Λ, ω̄+ω,ω,ω̄

)2
+ Γγγ̄d̄d

Λ, ω̄,ω̄,ω,ω

]
,

� (29a)

∂ΛΓ
c̄dγ
Λ, ω,ω−ω̄,ω̄ =

∫ ′

ω′
Sd
Λ, ω′

(
Γc̄dγ
Λ, ω̄+ω′,ω′,ω̄Gc

ω̄+ω′

× Γd̄cc̄d
Λ, ω′,ω̄+ω′,ω,ω−ω̄ + Γc̄dγd̄d

Λ, ω,ω−ω̄,ω̄,ω′,ω′

)
.

�
(29b)

The flow of Γd̄cc̄d, relevant for the second differential equa-
tion  (29b), is still given by equation  (22). In general, three-
point vertices connecting bosons and fermions would 
alter the flow of Γd̄cc̄d, but in the limit Gγ

0 → 0 these terms 
drop out. Similarly, in the absence of propagating photons, 
one finds that the (interband) flow of Γγγ̄d̄d is only deter-
mined by five- and six-point vertices. At our level of trun-

cation Γ(n>4)
Λ = Γ

(n>4)
Λi

= 0, it is therefore consistent to set 

Γγγ̄d̄d
Λ = Γγγ̄d̄d

Λi
= 0 alongside Γc̄dγd̄d

Λ = Γc̄dγd̄d
Λi

= 0. The 

resulting simplified flow is illustrated in figure 12.
Note that the diagrammatic expansion of the three-point 

vertex Γc̄dγ is immediately deduced from the Schwinger– 
Dyson equation  (see e.g. figure  11.6(b) of [20]) shown in 
figure 13(a). As a consequence of truncation, the connection 
between Π and Γd̄cc̄d generated by the flow (via Γc̄dγ, see 
figure 12) violates the basic relation between susceptibility and 
four-point vertex that was given in equation (16). This is, how-
ever, intended in order to obtain new resummations, given an 
approximate four-point vertex, from the explicit photon flow.

The numerical solution of the triple set of flow equa-
tions  for Π, Γc̄dγ  (figure 12) and Γd̄cc̄d (figure 7(a)) results 
in the particle-hole susceptibility shown in figure  8(b). The 
agreement between the numerical solution and the parquet 
formula is worse compared to figure  8(a), where only Γ(4) 
was used to compute Π. The reason is that the additional 
flow equations  in figure  12 exclusively contain antiparallel 
Sd-Gc lines. They therefore induce an imbalance between the 
two-particle channels and neglect important contributions of 
diagrams with parallel lines. This begins with the crossed dia-
gram at second order (see figure 2), which is known [15] to 
give a positive contribution to the particle-hole susceptibility 
and thus reduce the infrared divergence.

So far, the more complicated way to generate the particle-
hole susceptibility from the four-point vertex, namely the 
additional photon flow (equation (29), figure  12) instead of 
the direct relation (equation (16), figure 3(b)), has led to worse 
agreement with the leading log formula. It is an underlying 
expectation of (vertex-expanded) fRG that, by incorporating 
more vertices in the flow, one improves the results, coming 
closer to the exact, infinite hierarchy of flow equations  and 
having agreement with higher orders in perturbation theory. By 
contrast, in the next section, we show that if we approximate 

Figure 12.  Truncated flow equations for (a) the photon self-energy 
Π (depicted as circle) and (b) the photon three-point vertex Γc̄dγ  
(depicted as triangle), where the contributions of Γd̄dγγ̄ (equation 
(29a)) and Γc̄dγd̄d (equation (29b)) are neglected. External (rapidly 
oscillating) wavy lines denote amputated photon legs. Note that 
the truncated flow of the four-point vertex Γd̄cc̄d is still given by 
figure 7(a).
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Γd̄cc̄d in the simplest fashion possible—namely by the bare 
vertex—we actually reproduce the precise leading log result.

6.2.  Static four-point vertex—analytic solution

The enormous simplification of using the bare four-point 
vertex throughout the flow has hardly any justification. Yet, 
we will show that, with this simplification, the flow equa-
tions  can be solved analytically to yield the parquet result 
without further approximations. This demonstrates that one 
cannot judge about the content of the diagrammatic resumma-
tion solely based on the final result for a specific quantity. We 
will first present a purely algebraic derivation of the leading 
log formula for the particle-hole susceptibility and then illus-
trate the steps to diagrammatically understand the underlying 
structure.

Let us adopt a harsh but concise truncation of the flow equa-
tions: we keep all 1PI vertices starting from the four-point vertex 
at their initial value. The only (interband) contribution with a 
non-vanishing value at Λi is the fermionic four-point vertex 
Γd̄cc̄d
Λ , which thus remains equal to  −U throughout the flow. The 

simplified flow equations (see equation (29)) then read

∂ΛΠΛ, ω̄ =

∫ ′

ω

Sd
Λ, ωGc

ω̄+ω

(
Γc̄dγ
Λ, ω̄+ω,ω,ω̄

)2
,� (30a)

∂ΛΓ
c̄dγ
Λ, ω,ω−ω̄,ω̄ = −U

∫ ′

ω′
Sd
Λ, ω′Gc

ω̄+ω′Γ
c̄dγ
Λ, ω̄+ω′,ω′,ω̄ .� (30b)

The important observation is that the first derivative (and con-
sequently any higher derivative) of Γc̄dγ

Λ  is independent of ω, 
i.e. completely independent of the first argument. (The second 
argument is fixed by conservation, anyway.) Since also the ini-
tial condition is independent of the first argument, the vertex 
only depends on ω̄ , but not on ω, for all scales. (This is a 
consequence of our truncation as diagrams of Γc̄dγ

Λ  such as 
the one in figure 13(b), corresponding to the crossed diagram 
in the particle-hole susceptibility, do depend on the fermionic 
frequencies.)

Since Γc̄dγ
Λ  is independent of ω, the differential equa-

tion (30) can be dramatically simplified: Using the definition 
gΛ, ω̄ =

(
Γc̄dγ
Λ, ·,·,ω̄

)
2, we get

∂ΛgΛ, ω̄ = −2UgΛ, ω̄

∫ ′

ω

Sd
Λ, ωGc

ω̄+ω ,� (31a)

∂ΛΠΛ, ω̄ = gΛ, ω̄

∫ ′

ω

Sd
Λ, ωGc

ω̄+ω = − 1
2U

∂ΛgΛ, ω̄ .� (31b)

Evidently, gΛ, ω̄ is given by an exponential of an auxiliary 
function fΛ, ω̄,

gΛ, ω̄ = gΛi, ω̄e−2ufΛ, ω̄ , fΛ, ω̄ =

∫ Λ

Λi

dΛ′
∫ ′

ω

Sd
Λ′, ωGc

ω̄+ω/ρ,

� (32)
and the self-energy becomes

ΠΛ, ω̄ = ΠΛi, ω̄ − gΛi, ω̄

2U

[
e−2ufΛ, ω̄ − 1

]
.� (33)

Inserting the boundary conditions ΠΛi = 0 and gΛi = 1, when 
Λ flows from ∞ to 0, we get

Πω̄ =
1

2U

[
1 − e−2ufω̄

]
, fω̄ =

∫ 0

∞
dΛ

∫ ′

ω

Sd
Λ, ωGc

ω̄+ω/ρ.

� (34)
So far, fermionic self-energies have not been neglected, 

yet. However, for the x-ray-edge singularity, we can use 
Sd
Λ = ∂ΛGd

Λ and the Λ-integration becomes trivial. Using the 
bare bubble, computed in appendix, equation (A.3), we arrive 
at the remarkable conclusion that our harsh truncation directly 
yields the leading log result:

fω̄ =

∫ ′

ω

Gd
ωGc

ω̄+ω/ρ = ln
( iω̄ + ξd

−ξ0

)
,� (35a)

Πω̄ =
ρ

2u

[
1 −

( iω̄ + ξd

−ξ0

)−2u
]

.� (35b)

How is this possible? We have argued above that, in the 
combined, truncated system of flow equations  for Γd̄cc̄d and 
photon quantities, a large class of parquet contributions is 
missed by the approximate flow due to a mistreatment of par-
allel bubbles. We will now show diagrammatically why the 
parquet result could nevertheless be obtained and will find that 
this is only possible for the x-ray-edge singularity.

The diagrammatic solution of the simplified flow makes 
extensive use of the property that ladder diagrams factorize 
into a sequence of (particle-hole) bubbles and that, with 
leading log accuracy, we can ignore fermionic self-energies 
and use Sd = ∂ΛGd

0. If we use the bare four-point vertex in 
the flow of the three-point vertex (figure 12(b)), we obtain the 
flow equation shown in figure 14(a), which interrelates contri-
butions to Γc̄dγ  from subsequent orders. Due to factorization, 
the solution to this flow equation can be expressed diagram-
matically as a three-point vertex which, at order n, consists of 
n consecutive particle-hole bubbles multiplied by a prefactor 
1/n! (figure 14(b)). The simple ladder structure is directly 

related to the fact that Γc̄dγ
Λ, ω,ω−ω̄,ω̄ is independent of ω.

Figure 13.  (a) Schwinger–Dyson equation between photon self-
energy and three-point vertex, where the small white circle denotes 
a bare photon three-point vertex, equal to unity. (b) Second-order 
diagram of the three-point vertex, which (according to (a)) is 
responsible for the crossed diagram in the photon self-energy, viz., 
the particle-hole susceptibility (see figure 2).

Figure 14.  (a) Flow equation for an approximate Γc̄dγ  (at order 
n) when Γd̄cc̄d is reduced to its bare part (see figure 12(b)). (b) Its 
solution, given by sequence of bubbles with a prefactor 1/n!, a bare 
photon three-point vertex (equal to unity) and n bare electronic 
interaction vertices.

J. Phys.: Condens. Matter 30 (2018) 195501



F B Kugler and J von Delft﻿

12

Inserting this three-point vertex in the flow equation  of 
the photon self-energy (figure 12(a)), we get, at order n, a 
sequence of n  +  1 bubbles with one single-scale propagator 
(see figure  15). Again using factorization, this is a fraction 
[1/(n + 1)] of the derivative of the whole ladder diagram. 
By computing the sum 

∑n
m=0 1/[m!(n − m)!] = 2n/n! in 

figure  15, one ends up with a proportionality relation (at 
arbitrary order n) between the derivative of the self-energy, 
∂ΛΠ

(n), and the derivative of a ladder-diagram, ∂ΛΠL(n). As 
these quantities also agree at the initial scale (both vanish 
when Gd  =  0), we extract an equality at all scales. Using the 
bare bubble as in equation (35a), we get

Π
(n)
ω̄ =

2n

(n + 1)!
Π

L(n)
ω̄ , Π

L(n)
ω̄ = (−U)n(ρfω̄)n+1.� (36)

It remains to sum all orders Π(n)
ω̄ , i.e. sum all ladder diagrams 

with the appropriate prefactor (see equation (36)). Indeed, we 
precisely reproduce the leading log result

Πω̄ =

∞∑
n=0

Π
(n)
ω̄ = − 1

2U

∞∑
n=0

(−2ufω̄)n+1

(n + 1)!

= − ρ

2u

(
e−2ufω̄ − 1

)
=

ρ

2u

[
1 −

( iω̄ + ξd

−ξ0

)−2u
]

.

�

(37)

We observe that only ladder diagrams are generated by the 
flow while crossed diagrams do not contribute at all. However, 
the ladder diagrams come with prefactors, such as 1/n! in 
figure 14(b) and 2n/(n  +  1)! in equation (36). That the correct 
form of the particle-hole susceptibility is obtained at every 
order is then possible due to proportionality relations present 
in the x-ray-edge singularity, such as ΠL(2) = −3ΠC(2) (see 
figure 2), as already shown by Mahan [15] fifty years ago. Yet, 
these relations only hold with logarithmic accuracy, and in 
the more general Fermi-edge singularity, where the assump-
tion of an infinite hole mass is lifted, they hold only in a very 
narrow parametric regime (namely for m/mh being exponen-
tially small in the coupling u) [11, 13]. For other problems, 
surely such relations will only hold, if at all, subject to further 
assumptions. We therefore conclude that obtaining the exact 
first-order parquet result from a truncated fRG flow with a 
static four-point vertex is only possible due to a fortuitous 
partial cancellation of diagrams, specific to the x-ray-edge 
singularity.

6.3.  Comparison to a work by Lange et al

In a recent publication, Lange, Drukier, Sharma, and Kopietz 
[7] (LDSK) have addressed the question of using fRG to tackle 
the x-ray-edge singularity. In fact, it is their paper which has 
drawn our attention to the problem at hand and deeply inspired 
our approach. LDSK, too, obtain the (first-order) parquet for-
mula for the particle-hole susceptibility (our equation  (14) 
and their equation (54)) and from this draw conclusions about 
the relation between parquet summations and fRG. We hope 
that our analysis has further elucidated the derivation of the 
analytic result and added valuable arguments to the discus-
sion about fRG and parquet graphs. Let us comment on some 
interesting points from LDSK’s treatment in detail.

LDSK extract the particle-hole susceptibility from a bos-
onic self-energy (Πχ) arising from a multi-channel Hubbard–
Stratonovich (HS) transformation in the exchange (χ, Uχ) and 
pairing (ψ, Uψ) channel. They choose (i) equal weights in both 
channels, Uχ = Uψ, while we will argue that only the choice 
Uχ = 0 allows the particle-hole susceptibility to be extracted 
correctly from the χ self-energy. We will (ii) further show 
that, with the choice Uχ = 0, one can avoid one of the approx-
imations made by LDSK, namely to take u ln(ξ0/|ω̄|) � 1. 
We will (iii) comment on the similarity between our approxi-
mate flow in the light-matter system and LDSK’s flow in the 
HS-transformed system and demonstrate numerically that 
including the HS-bosonic self-energies weakens the agree-
ment with the parquet result. Furthermore, LDSK use an 
approximation scheme where all frequency dependencies are 
initially neglected and finally restored by stopping the RG 
flow at a final value of Λf = ω̄. We will (iv) give an argument, 
using the δ regulator, for why this scheme successfully leads 
to the parquet result.

	 (i)	From the actions in equations  (12) and (26), it is clear 
that the HS field in the exchange channel, χ, couples 
similarly to fermions as the photon field γ. However, just 
as for the photon (see equation  (13)), it is crucial that 
the particle-hole susceptibility Π be fully represented 
by only the leading part of the χ self-energy Πχ, i.e. the 
part without internal χ propagation. This is easily seen in 
terms of diagrams (figure 16): Πχ at zeroth order is given 
by a conduction-valence-band particle-hole bubble, rep-
resenting the zeroth-order contribution to Π. At first order 
in the interaction, Πχ is affected solely by ψ propagation, 
for an intermediate χ line would result in a reducible dia-
gram. Hence, for Πχ to fully account for the first-order 
ladder diagram of Π, the bare ψ propagator must have full 
weight, Uψ = U . On the other hand, at second and higher 
orders, Πχ contains irreducible diagrams with internal χ 

Figure 15.  Inserting the approximate Γc̄dγ  from figure 14(b) in 
the simplified flow of Π (figure 12(a)), we obtain a proportionality 
relation between ladder diagrams and the particle-hole susceptibility 
at arbitrary order n, in exact agreement with the leading log result 
(see equation (37)).

Figure 16.  Diagrams for the χ self-energy Πχ, expressed with 
bare three-point vertices (small white circles), equal to unity. At 
zeroth order in U, Πχ is given by a bare particle-hole bubble; the 
only first-order contribution arises from the second diagram using 
Gψ

0 = −Uψ. Starting at second order in the interaction, Πχ contains 
diagrams with internal χ lines, as in the third diagram above.
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lines. If one chose Uχ > 0, one would overcount these 
contributions and not properly generate the second-order 
order contribution to Π. Hence, the exact parquet graphs 
for Π can only be reproduced from Πχ by using Uψ = U  
and Uχ = 0.

	(ii)	Interestingly enough, with the latter choice, the approxi-
mate analytic approach of LDSK can be simplified. 
LDSK use Uχ = Uψ = U  and arrive at an integration 
of the frequency-independent, squared χ three-point 
vertex gl from a logarithmic scale parameter l  =  0 up 
to l∗ = ln(ξ0/|ω̄|). There, they approximate cosh(2ul) 
by unity (their equation (52)), although ul � 1 holds no 
longer when l reaches the upper integration limit, since in 
the first-order parquet regime ul∗ = u ln(ξ0/|ω̄|) � 1. If 
one avoids this approximation and instead uses the actual 
gl = e2ul/ cosh(2ul) for the integral in LDSK’s equa-
tion (52), one obtains

Πχ
ω̄ = −ρ

∫ l∗

0
dl

e2ul

cosh(2ul)
= − ρ

2u
ln

(
e4ul∗ + 1

2

)

= −ρl∗ − ρul∗2 +O(u3).

�

(38)

		 This contains no second-order term and thus deviates 
already at second order in U from the parquet result (14). 
Note that, with ξd = 0 (as chosen by LDSK), one can 
only obtain the real part of the particle-hole susceptibility, 
solely depending on |ω̄| (see appendix). In this case, an 
expansion of equation (14) yields

ReΠω̄

∣∣∣
ξd=0

=
ρ

2u

[
1 −

(
|ω̄|
ξ0

)−2u
]
=

ρ

2u

(
1 − e2ul∗)

= −ρl∗ − ρul∗2 − 2
3
ρu2l∗3 +O(u3).

�

(39)

		 The reason why performing the integral more accu-
rately leads to an incorrect result is that the expression 
gl = e2ul/ cosh(2ul) is inaccurate at second order, since it 
was obtained using Uχ �= 0. (Consequently, Πχ deviates 
from Π starting at second order, consistent with our dia-
grammatic argument above.) If, instead, one uses Uχ = 0 
and Uψ = U , then equation  (49a) of LDSK naturally 
yields gl = e2ul  instead of gl = e2ul/ cosh(2ul), so that 
the integration in their equation (52) reads

Πχ
ω̄ = −ρ

∫ l∗

0
dl e2ul =

ρ

2u

(
1 − e2ul∗)� (40)

		 and precisely reproduces the result of equation (39).
	(iii)	If one sets Uχ = 0 in LDSK’s flow equations  (44) and 

(45) (our equations (27) and (28)), the three-point vertex 
Γc̄d̄ψ/i remains equal to unity, since Gχ = 0 implies 
∂ΛΓ

c̄d̄ψ = 0. If one further omits bosonic self-energy rein-
sertions (as done by LDSK), one has Gψ = −Uψ = −U . 
Hence, the resulting flow equations for Πχ and Γc̄dχ reduce 
to exactly the form of our equation (30) (replacing γ by 
χ). As we have shown, this flow yields the leading log 
result for the particle-hole susceptibility without further 
approximations. Actual effects of the multi-channel HS 
transformation become noticeable only if one actually 

includes bosonic self-energies on the r.h.s. of the HS flow 
(equations (27) and (28)). Figure  17 shows (a) that, in 
the case of Uχ = 0, Uψ = U , this spoils the agreement 
with the leading log result and (b) the strikingly different 
outcome when using Uχ = Uψ = U/2. In the latter case, 
Γc̄d̄ψ contributes non-trivially, and the result is more sim-
ilar to that of the leading log formula with U/2, since the 
effect of using Uχ > 0 enters only at second and higher 
orders (see figure 16). We conclude that a (multi-channel) 
HS transformation has no advantage over the version 
advocated in section 6 of this work, based on a flowing 
susceptibility in the fermionic system.

	(iv)	In their analytic solution of the flow, LDSK use an 
approximation scheme where frequency dependencies 
in all 1PI vertices were omitted initially. Viewing this 
as a low-energy approximation, they let Λ flow from 
ξ0 to ω̄  instead of the expected range ∞ to 0. From 
another perspective, this integration range for Λ can be 
obtained by computing the “single-scale” bubble (equa-
tion (41)) with the δ regulator. As explained above, 
LDSK’s system of flow equations  with Uχ = 0 and 
Gψ = −U can be directly related to our photon flow in 
equation (30). We have shown that the ω̄-dependence  
enters only in the (integrated) single-scale bubble ( fω̄ 
in equation  (34)), which can also be integrated first 
w.r.t. frequency and then w.r.t. Λ. Making use of the δ 
regulator, ξd = 0 (such that |ω̄| � ξ0), and the (simpli-
fied) local c propagator (equation (11)), one readily 
obtains

∫ ′

ω

Sd
Λ, ωGc

ω̄+ω/ρ =

∫ ξ0−ω̄

−ξ0−ω̄

dω sgn(ω̄ + ω)
δ
(
|ω| − Λ

)
2ω

≈
∫ ξ0

−ξ0

dω sgn(ω̄ + ω)
δ
(
|ω| − Λ

)
2ω

= Θ
(
ξ0 − Λ

) ∑
ω=±Λ

sgn(ω̄ + ω)

2ω

=
Θ
(
ξ0 − Λ

)
Θ
(
Λ− |ω̄|

)
Λ

.
�

(41)

		 Using this as a factor in the relevant flow equations, simi-
larly as in equation (31), naturally restricts the integration 
range for Λ precisely in the way chosen by LDSK.

Figure 17.  Self-energy of χ, Πχ, as obtained from the flow in the 
HS-transformed system (neglecting Γ(n>3)) (see equations (27) and 
(28)). The interaction strength is divided according to (a) Uχ = 0, 
Uψ = U  and (b) Uχ = U/2 = Uψ. Since χ propagation affects Πχ 
only starting at second order (see figure 16), the result in (b) is more 
similar to the leading log formula with U/2.
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7.  Conclusions

We have analyzed the x-ray-edge (zero-dimensional Fermi-edge) 
singularity—an instructive fermionic problem with simplified 
diagrammatics focused on two-particle quantities, an analytic 
parquet and exact one-body solution. Our goal was to use the 
functional renormalization group to achieve a partial resumma-
tion of diagrams, to be compared to the (first-order) solution of 
the parquet equations. We compared results for the particle-hole 
susceptibility with the leading log formula in terms of Matsubara 
frequencies and examined the diagrammatic structure of the flow 
equations. We found that different realizations of a truncated, one-
loop fRG flow do not fully generate the leading log diagrams.

Focusing on the flow of the fermionic four-point vertex Γ(4) 
first, we argued that, in the fRG hierarchy, the parquet diagrams 
comprise (1PI and 2PI) vertices of any order, and that these 
higher-order vertices, obtained by cutting appropriate scale-
dependent lines, universally contribute to the flow. Hence, 
simply truncating the fRG hierarchy of flow equations  will 
always miss contributions to parquet graphs. We further showed 
that a (multi-channel) Hubbard–Stratonovich transformation 
does not remedy this problem: Although the transformation 

ensures that Γ(4)
HS does not contribute to the particle-hole sus-

ceptibility Π at first order, it does contribute important, parquet 
diagrams to Π starting at second order in the interaction, which 
are lost when the four-point vertex is neglected.

As a different approach, we included Π in the fRG flow as a 
(leading contribution to a) photon self-energy (i.e. as a flowing 
susceptibility). We showed that the relation between Γ(4) and 
Π generated by truncated flow equations systematically misses 
contributions from parallel bubbles. However, in contrast to the 
underlying philosophy of fRG, we found an improved result for 
Π when treating the four-point vertex less accurately. In fact, 
we analytically reproduced the leading log formula using a 
truncated fRG flow that keeps four-point and higher vertices 
constant. We showed that, in this way, one effectively only sums 
up ladder diagrams, but with a set of prefactors that fortuitously 
turns out to precisely yield the correct form of Π. This is pos-
sible thanks to proportionality relations of ladder and crossed 
diagrams, which, however, only hold with logarithmic accuracy 
and are violated when extending the theory, e.g. to a finite-mass 
valence-band description. Our derivation of the (first-order) 
parquet result from a truncated fRG flow using a static four-
point vertex is thus only possible due to a fortuitous partial can-
cellation of diagrams specific to the x-ray-edge singularity.

In related publications [21, 22], we show how the truncated 
flow equations can actually be extended to capture all parquet 
graphs. This multiloop fRG flow simulates the effect of the 
six-point vertex on parquet contributions and iteratively com-
pletes the derivative of diagrams in the flow equations of both 
four-point vertex and self-energy.
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Appendix.  Particle-hole bubble

In this section, we explicitly compute the bare (interband) par-
ticle-hole bubble, needed in section 6, equation (35). We also 
show that this bubble is discontinous w.r.t. the bandgap −ξd at 
ξd = 0. Thus, we choose ξd  suitably small (see section 3) but 
nonzero in our numerical calculations.

The bare bubble is given by the integral

Π0,ω̄ =

∫ ′

ω

Gc
0(ω̄ + ω)Gd

0(ω)

= −iπρ
∫ ′

ω

sgn(ω̄ + ω)Θ(ξ0 − |ω̄ + ω|)
iω − ξd

= Π∗
0,−ω̄ ,

�

(A.1)

which we divide into three parts: Π0,ω̄ = I1 + I2 + I3. We 
first consider ω̄ > 0, revert to frequency integrals in the 
zero-temperature limit (see equation (10)), and obtain

I1 =
ρ

2i

∫ ξ0−ω̄

ω̄

dω
iω − ξd

=
ρ

2
ln

( iω̄ − ξd

iξ0 − iω̄ − ξd

)
,

�
(A.2a)

I2 =
ρ

2i

∫ ω̄

−ω̄

dω
iω − ξd

=
ρ

2
ln

(−iω̄ − ξd

iω̄ − ξd

)
,� (A.2b)

I2 = iρ
∫ ω̄

0
dω

ξd

(ξd)2 + (ω̄)2 = iρ arctan
( ω̄

ξd

)
,

�
(A.2c)

I3 =
iρ
2

∫ −ω̄

−ξ0−ω̄

dω
iω − ξd

=
ρ

2
ln

( iω̄ + ξd

iξ0 + iω̄ + ξd

)
.

�
(A.2d)

In the form of equation (A.2c), one can directly see that the 
integral I2 is discontinuous w.r.t. ξd  at ξd = 0. Essentially, the 
contribution from I2 is needed to produce the correct phase in 
the susceptibility, when summing I1, I2, and I3. Using the fact 
that, upon analytic continuation to real frequencies, one has 
|iω̄ + ξd| → |ω + ξd + i0+| � ξ0, we obtain the approximate 
form

Π0,ω̄ =
1
2
ln
( iω̄ + ξd

iω̄ + ξd − iξ0

)
+

1
2
ln
( iω̄ + ξd

iω̄ + ξd + iξ0

)

≈ 1
2
ln
( iω̄ + ξd

−iξ0

)
+

1
2
ln
( iω̄ + ξd

iξ0

)

= ln
( iω̄ + ξd

−ξ0

)
,

� (A.3)

which also holds for negative frequencies according to the 
symmetry relation Π0,ω̄ = Π∗

0,−ω̄.
If, instead, one sets ξd = 0 in the first place, one in effect 

omits the contribution from I2 (see equation (A.2c)). With the 
approximation |iω̄| � ξ0 , one then obtains from I1 + I3:
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Π0,ω̄

∣∣∣
ξd=0, ω̄>0

=
1
2
ln
( iω̄

iξ0 − iω̄

)
+

1
2
ln
( iω̄

iξ0 + iω̄

)

≈ ln
( ω̄

ξ0

)
.

� (A.4)
Reverting to positive and negative frequencies via equa-
tion (A.1) again, we finally get

Π0,ω̄

∣∣∣
ξd=0

= ln
( |ω̄|
ξ0

)
.� (A.5)

Having set ξd = 0, one only obtains the real part of the par-
ticle-hole bubble, solely depending on |ω̄|. Moreover, in con-
trast to the real-frequency calculations of Roulet et al [5], who 
focus on the real part and argue that the imaginary part can be 
reconstructed by Kramers–Kronig relations, this is not pos-
sible in the Matsubara framework, where one does not have 
such relations between ReΠ and ImΠ. We conclude that one 
should therefore refrain from setting ξd = 0.
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