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Quantum entanglement between an impurity spin and electrons nearby is a key property of the single-
channel Kondo effects. We show that the entanglement can be detected by measuring electron conductance
through a double quantum dot in an orbital Kondo regime. We derive a relation between the entanglement
and the conductance, when the SU(2) spin symmetry of the regime is weakly broken. The relation reflects
the universal form of many-body states near the Kondo fixed point. Using it, the spatial distribution of
the entanglement—hence, the Kondo cloud—can be detected, with breaking of the symmetry spatially
nonuniformly by electrical means.
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Kondo effects and quantum impurities are central issues
of low-dimensional many-body physics [1,2]. In the effects,
a local interaction at an impurity leads to macroscopic
behavior. An example is the single-channel Kondo effect,
where an impurity spin 1=2 is screened by conduction
electrons nearby. The screening electrons spatially extend
over a distance (possibly of micrometers), forming a Kondo
cloud [3–18]. The screening accompanies entanglement
between the impurity and the cloud [19].
For the single-channel Kondo effect, a key experimental

tool is electron conductance. When a quantum dot is
coupled with conductors by electron tunneling and hosts
an impurity spin with the help of Coulomb repulsion
[20–22], conductance through the dot increases as temper-
ature decreases, reaching the unitary limit [23] or the
Kondo fixed point. Using this behavior, many universal
features of the Kondo effect, such as a scattering phase shift
of π=2 [24–29], have been identified.
However, the cloud, an essential feature of the Kondo

effect, has not been detected, despite efforts [3,6–9,17].
These difficulties are associated partially with the fact that
the screening accompanies the quantum entanglement.
Detecting entanglement in electron systems is a hard task
and has been rarely reported [30], as it typically requires
one to see whether multiparticle correlations are non-
classical by using Bell inequalities [31], multiparticle
interferometry [30,32,33], or quantum state tomography
[34]. Its application to the entanglement in the Kondo effect
will be even more difficult, since the cloud is a macroscopic
object. Here, we will show that the Kondo entanglement
and the cloud can be detected by measuring a single-
particle observable of electron conductance.
In this Letter, we consider a quantum dot hosting an

impurity spin in the single-channel Kondo regime and
analyze the entanglement between the impurity spin and

the electron reservoirs of the dot, using the entanglement
entropy [35]. Using the Fermi-liquid theory [24–26] and a
bosonization method [36], we find that the entanglement
can be determined from electron conductance through the
dot at temperatures much lower than the Kondo temper-
ature TK , which is valid even when the SU(2) spin
and particle-hole symmetries are weakly broken. This
exemption from measuring multipaticle correlations in
determining entanglement comes from the universal form
of many-body states near the fixed point.
This finding is useful for detecting the spatial distribu-

tion of the entanglement, and hence, that of the Kondo
cloud. We propose to use a double quantum dot (see Fig. 1)
in an orbital Kondo regime where its orbital degrees of
freedom support the pseudospins. This approach has the
merit that one can break the SU(2) pseudospin symmetry
spatially nonuniformly by electrical means. This allows one
to detect the spatial distribution of the entanglement by
measuring conductance through the double dot. This is
confirmed by using the numerical renormalization group
(NRG) method [37,38]. The setup is experimentally fea-
sible, as the orbital Kondo effect has been observed [39].

FIG. 1. A double quantum dot in an orbital Kondo regime. Its
degenerate ground states ðnA; nBÞ ¼ ð1; 0Þ and (0,1) act as the
pseudospin states of the Kondo effect. Electron tunneling occurs
between dot λð¼ A; BÞ and its own reservoirs ηλ (dotted lines;
η ¼ L,R), and between reservoirs ηA and ηB (dashed) in the region
outside distance l from the dot. The spatial distribution of the
Kondo entanglement is revealed in the l dependence of conduct-
ance through the double dot. l can be tuned by electrical gates.
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Entanglement and conductance.—We first consider a
single dot hosting an impurity spin S ¼ 1=2 in the single-
channel Kondo regime and show that entanglement
between the spin S⃗ and the two (left and right) reservoirs
of the dot can be determined from conductance through the
dot. The dot is in a Coulomb blockade and has an odd
number of electrons. The effective Hamiltonian is

H ¼ HK − EZSz=ℏ ¼ JS⃗ · s⃗þHres − EZSz=ℏ: ð1Þ
In the Kondo HamiltonianHK , the impurity spin S⃗ couples,
with strength J, to the spin s⃗ of neighboring reservoir
electrons. Hres describes noninteracting electrons in the
reservoirs. EZSz=ℏ is Zeeman splitting of the dot spin by
a magnetic field along the ẑ axis, and it breaks the SU(2)
spin symmetry of HK; it can also describe other sources
(ferromagnetic reservoirs, spin-dependent tunneling
between the dot and the reservoirs, spin flip, etc.) breaking
the symmetry, after certain transformations of H.
At EZ ¼ 0, the ground state ofH is the Kondo singlet. It

has entanglement between the impurity spin-1=2 states
and reservoir electron states with total spin 1=2. Choosing
the z axis, the singlet is written as jΨðEZ ¼ 0Þi ¼
(j↑ijϕ−1=2ðEZ ¼ 0Þi − j↓ijϕ1=2ðEZ ¼ 0Þi)= ffiffiffi

2
p

. j↑ð↓Þi is
the impurity state of Sz ¼ ↑ (↓), and jϕ∓1=2ðEZ ¼ 0Þi is a
reservoir state of spin-z quantum number mz ¼∓ 1=2.
When the SU(2) symmetry is broken by EZ ≪ TK
(Boltzmann constant kB ≡ 1), we find (see Supplemental
Material [40]), using bosonization, that the ground state
deviates from the Kondo singlet,

jΨðEZÞi ¼ αþðEZÞj↑ijϕ−1
2
ðEZÞi − α−ðEZÞj↓ijϕ1

2
ðEZÞi;

ð2Þ

where terms of O½ðE2
Z=T

2
KÞ� are ignored. α�¼ð1= ffiffiffi

2
p Þ½1�

ðEZ=πTKÞ�þO½ðE2
Z=T

2
KÞ�, hϕ1=2ðEZÞjϕ−1=2ðEZÞi ¼ 0,

and the Anderson orthogonality implies hϕ�1=2ðEZÞj
ϕ�1=2ðE0

ZÞi ¼ 0 for EZ ≠ E0
Z. Equation (2) is universal near

the Kondo fixed point. It is a superposition of states of
hSzi þmz ¼ 0, since spins are not flipped by EZSz. jαþj ≠
jα−j means imperfect screening of the impurity spin S⃗.
To quantify the imperfect screening, we study entangle-

ment entropy EE ≡ −Tr½ρD log2 ρD� between the spin S⃗
and the reservoirs, where ρD ≡ TrresjΨðEZÞihΨðEZÞj is the
reduced density matrix of the impurity. We find EE ¼
1 − ðjαþj2 − jα−j2Þ2=ð2 log 2Þ þO(ðjαþj2 − jα−j2Þ3),

EEðEZÞ ¼ 1 −
2

π2 log 2

�
EZ

TK

�
2

þO

�
E4
Z

T4
K

�
: ð3Þ

EE is maximal at EZ ¼ 0, and it exhibits universal power-
law decay with exponent 2 for small EZ.
The imperfect screening affects the scattering phase shift

δσ of reservoir electrons with spin σ by the dot and their

zero-bias conductance Gσ ¼ G0 sin2ðδσÞ through the dot
[26] at zero temperature. G0≡ðe2=hÞð4ΓLΓR=ðΓLþΓRÞ2Þ,
and ΓLðRÞ is the level broadening of the dot state by
electron-tunneling to the left (right) reservoir. According
to the Fermi liquid theory, we find δσ ¼ π½1þ χσðjαþj2−
jα−j2Þ�=2, where χ↑ ¼ 1 and χ↓ ¼ −1. Then the entangle-
ment entropy is related with the total conductance
GTðEZÞ≡G↑ þG↓ ¼ 2G0(1 − E2

Z=T
2
K þOðE4

Z=T
4
KÞ) as

EEðEZÞ ¼ EEðEZ ¼ 0Þ −GTðEZ ¼ 0Þ −GTðEZÞ
π2G0 log 2

þO

�
E4
Z

T4
K

�
: ð4Þ

This result is interesting, as a many-body quantum
correlation (the entanglement) is determined from a
single-particle observable (the conductance). In general,
this can happen when a system is in a pure state of a simple
form: e.g., a complementary relation [41] connects a single-
particle observable and two-particle interference. In our
case, this is a universal property of the Kondo fixed
point, near which the ground state has the simple form
in Eq. (2). Mathematically, the form leads to Eq. (4), since
both the entanglement and the conductance are functions of
only the parameter of jαþj2 − jα−j2. Physically, nonzero
jαþj2 − jα−j2 implies imperfect screening of the impurity
spin, which is quantified by EE and causes the reduction of
GT from its maximum value.
Equation (4) holds also when the potential scattering

occurs or at finite temperature T ≪ TK . When the particle-
hole symmetry of the dot is weakly broken, the resulting
potential scattering causes additional shift δp ≪ π=2 in the
scattering phase, δσ ¼ π½1þ χσðjαþj2 − jα−j2Þ�=2þ δp.
Then, the conductance changes as Gσ=G0¼sin2ðδσÞ¼1−
δ2p−2χσδpEZ=TK−E2

Z=T
2
KþOðE3

Z=T
3
KÞ and GT=ð2G0Þ≈

1 − δ2p − E2
Z=T

2
K , while jαþj2 − jα−j2 ≈ 2EZ=ðπTKÞ and

the entanglement EE does not alter. Hence, Eq. (4) works.
On the other hand, at finite temperature, the entanglement
can be quantified by the entanglement of formation EF [19],
a mixed-state generalization of the entanglement entropy.
The entanglement follows [19] EFðEZ;TÞ¼EFðEZ;T¼0Þ−
cTT2=T2

K (cT > 0 is a constant). The conductance becomes
GTðEZ; TÞ ¼ GTðEZ; T ¼ 0Þ − 2G0ðπT=TKÞ2. EFðEZ; TÞ
and GTðEZ; TÞ obey Eq. (4).
These observations show that the conductance is

useful for detecting the entanglement near the fixed
point, implying that some reported experimental data on
quantum dot Kondo effects in fact have information of
the entanglement.
Even when the impurity has charge fluctuations, the

entanglement between the impurity spin and the reservoirs
satisfies Eq. (4). When the charging energy of the dot is
finite (not much larger than ΓL;R), the ground state has a
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charge fluctuation part, e.g., formed by doubly occupied
and empty states for the Anderson impurity or by jnA ¼
0; nB ¼ 0i and j1; 1i for the double dot studied below, in
addition to the spin part in Eq. (2). In this case, Eq. (3)
describes the entanglement between the impurity and the
reservoirs in the state obtained by projecting out the charge
part [42]. Meanwhile, the charge part is irrelevant to the
dynamics at the Kondo fixed point, including the conduct-
ance. Hence, Eq. (4) still holds.
Entanglement in orbital Kondo effects.—Equation (4) is

useful for detecting the spatial distribution of EE, which is
essential information for the Kondo cloud. For the purpose,
we propose to use a double dot in Fig. 1.
In the orbital Kondo regime, the double dot has two

degenerate ground states, j ⇒i≡ jnA ¼ 1; nB ¼ 0i and
j⇐i≡ jnA ¼ 0; nB ¼ 1i, that act as impurity pseudospin
states [39]. The Hamiltonian is HOK ¼ Hd þP

η¼L;R;λ¼A;BðHηλ
res þHηλ

tunÞ. Here Hd ¼ ϵAnA þ ϵBnB þ
UnAnB describes the double dot. Each dot λ (¼ A, B)
is simplified to have a single orbital d†λ with energy ϵλ < 0

and electron occupation number nλ ¼ d†λdλ. U is the

interdot Coulomb energy. Hηλ
res ¼ −t

P∞
j¼1 c

†
j;ηλcjþ1;ηλ þ

H:c: describes reservoir ηλ (η ¼ L, R). c†j;ηλ creates an
electron in the site j of the reservoir, t is the hopping
energy, and H.c. means the Hermitian conjugate. Hηλ

tun ¼
−tηλd

†
λc1;ηλ þ H:c. describes electron tunneling between

dot λ and its own reservoir ηλ with strength tηλ, leading
to dot-level broadening, Γηλ. We consider the orbital
Kondo regime of U ≫ Γηλ. We focus on the symmetric
case of ϵA ¼ ϵB ¼ −U=2 and tηA ¼ tηB, where the orbital
Kondo effect maximally occurs. We ignore electron
spin, considering a magnetic field destroying spin
Kondo effects.
In addition, we consider electron tunneling between

reservoirs ηA and ηB, with strength tsf , in the region
outside distance l from the dot. Its Hamiltonian is

Hsf ¼
X
η¼L;R

Hη
sf ¼ −

X
η¼L;R

X∞
j¼l

tsfc
†
j;ηAcj;ηB þ H:c: ð5Þ

It breaks the SU(2) pseudospin symmetry of HOK spatially
nonuniformly in the reservoirs. Note that our main results
do not alter when the tunneling tsf turns on only between
LA and LB or between RA and RB as in Fig. 1.
The ground state of the total Hamiltonian, Htot ¼

HOK þHsf , has the form in Eq. (2). To see this, we first
consider the l ¼ 1 case where the inter-reservoir tunneling
occurs uniformly over the whole region. We use even-
odd superpositions of A and B, the dot states of
j⇑i ¼ ðj ⇒i þ j⇐iÞ= ffiffiffi

2
p

, j⇓i ¼ ðj ⇒i − j⇐iÞ= ffiffiffi
2

p
, and

the reservoir operators of c†j;ηE ¼ ðc†j;ηA þ c†j;ηBÞ=
ffiffiffi
2

p
and

c†j;ηO ¼ ðc†j;ηA − c†j;ηBÞ=
ffiffiffi
2

p
. Then, our setup is viewed as an

impurity pseudospin (its Sz states are ⇑ and ⇓) coupled
with a ferromagnetic reservoir [see Fig. 2(a)], where the
even (odd) modes c†j;ηEðOÞ support majority (minority)

pseudospin states, as the reservoir Hamiltonian becomes
HηA

resþHηB
resþHη

sf ¼
P

kðϵk− tsfÞc†k;ηEck;ηEþðϵkþ tsfÞc†k;ηO
ck;ηO after Fourier-transforming cj;ηE (cj;ηO) into ck;ηE
(ck;ηO). ϵk ¼ −2t cos ka, and a is the lattice spacing.
When tsf ≪ TK , the ground state is

jΨOKðtsfÞi ¼ αþj⇑ijφEO
mz¼−1=2i − α−j⇓ijφEO

mz¼1=2i: ð6Þ

α� ¼ ð1= ffiffiffi
2

p Þ½1 � ð2tsf=πTKÞ� þ O½ðt2sf=T2
KÞ and

jφEO
mz

ðtsfÞi is a reservoir state (written by ck;ηE and ck;ηO)
with pseudospin-z quantum number mz. It has the same
form with Eq. (2) except for the replacement EZ → 2tsf (see
Supplemental Material [40]), as our setup is also viewed as
an impurity spin with Zeeman splitting 2tsf coupled with a
nonmagnetic reservoir, described by Eq. (1). Accordingly,
the entanglement between the impurity pseudospin and the
reservoirs satisfies Eq. (3),

EEðtsfÞ ¼ 1 −
2

π2 log 2

�
2tsf
TK

�
2

þO

�
t4sf
T4
K

�
: ð7Þ

Spatial distribution of the entanglement.—We move to
the l > 1 case. The inter-reservoir tunneling now occurs
outside the distance l. We will study the l dependence of
the entanglement EE and the conductance GT through the
double dot from the left reservoirs (Lλ’s) to the right (Rλ’s),
and show that EEðlÞ and GTðlÞ satisfy Eq. (4).
For this purpose, we use the even-odd bases and study

the local densities of states (LDOS) νEðOÞ of even (odd)
reservoir states c†j;ηEðOÞ at the sites adjacent to the double

dot. In the bases, the inter-reservoir tunneling makes the
energy band of the even (odd) states outside the distance l

(a) (b)

FIG. 2. Energy dependence of local densities of states (LDOS)
νðϵÞ at reservoir sites adjacent to the double dot. The LDOS
of even reservoir states c†k;ηE (odd c†k;ηO) is marked by E (O).
Occupied (unoccupied) states are shown by filled (empty)
regions. (a) The case of l ¼ 1, where the inter-reservoir tunneling
occurs uniformly over the whole region. (b) The l > 1 case,
where the tunneling occurs outside the distance l. The LDOS has
resonance or localized-state peaks.
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shift downward (upward) by tsf. Hence, the even (odd)
states in energy window ½D − tsf ; D� (½−D;−Dþ tsf �) are
localized states within l and provide discrete LDOS peaks,
where 2D ¼ 4t is the bandwidth. Those in the other
window are resonance states, resulting in continuous
LDOS with broadened peaks [see Fig. 2(b)]. The contri-
bution of the resonance states to the LDOS is found as (that
of the localized states is not shown)

νE=OðϵÞ ¼
1

πt
sinðqaÞ

1� tsf
t
sinðk½l−1�aÞ sinðklaÞ

sin2ðkaÞ
; ð8Þ

where the energy ϵ, wave vector k inside l, and wave vector
q outside l satisfy ϵ ¼ −2t cosðkaÞ ¼ −2t cosðqaÞ ∓ tsf,
and the upper (lower) sign is for the even (odd) states.
The difference of the LDOS between the even reservoir

states and the odd ones weakens the orbital Kondo
effect. It leads to the difference Δnres ≡ nres;E − nres;O
of their electron occupation number (see Supplemental
Material [40]),

Δnres ¼ ð−1Þlþ1
2tsf
πD

1

l
þO

�
t2sf
l2

�
: ð9Þ

The occupation number of the even (odd) reservoir states is
nres;EðOÞ ≡

R EF
−D νEðOÞðϵÞdϵ, and EF ¼ 0 is the Fermi level.

According to the Fermi liquid theory [26,27], this induces
the difference Δndot ≡ ndot;E − ndot;O of the occupation
between the double-dot states j⇑i and j⇓i as Δndot ¼
4cΔnresD=ðπTKÞ, where the occupation of j⇑i (j⇓i) is
ndot;EðOÞ ≡ R EF

−DAEðOÞðϵÞdϵ, and AEðOÞ is the impurity
spectral function for ⇑ (⇓). c is a constant of Oð1Þ, and
c ¼ 1 when the LDOS is energy independent. On the other
hand, Δndot ¼ jαþj2 − jα−j2, because of the state form
in Eq. (6). Following the steps discussed around Eqs. (3)
and (4), we derive the entanglement entropy between the
impurity pseudospin and the reservoirs, and the conduct-
ance through the double dot as

EEðtsf ; lÞ¼ 1−
2c2

π2 log2

�
4tsf
πD

�
2
�
ξK
la

�
2

þO

��
tsfξK
Dla

�
4
�
;

GTðtsf ; lÞ
2G0

¼ 1−c2
�
4tsf
πD

�
2
�
ξK
la

�
2

þO

��
tsfξK
Dla

�
4
�
: ð10Þ

ξK≡ℏvF=TK is the Kondo cloud length, vF¼2ta¼Da
is the Fermi velocity, and G0≡ðe2=hÞð4ΓLAΓRA=
ðΓLAþΓRAÞ2Þ¼ðe2=hÞð4ΓLBΓRB=ðΓLBþΓRBÞ2Þ.
To confirm Eq. (10), we perform NRG calculations

(see Supplemental Material [40]) for various values of tsf ,
choosingU=D ¼ 3.6 and tηλ=D ¼ 0.34. The result in Fig. 3
shows 1 − EE ∝ ðtsfξK=lÞ2 and 1 − GT=ð2G0Þ ∝ ðtsfξK=lÞ2,
in good agreement [43]with Eq. (10) for sufficiently small tsf
and large l.

There are interesting implications of Eq. (10). First, the
entanglement shows the power-law decay with exponent
−2 as a function of the distance l. It means that the Kondo
cloud has a long tail of algebraic decay. Note that the
exponent is different from the exponent −1 of the distance
dependence of the entanglement obtained [19] by tracing
out the reservoir outside the distance (instead of the
pseudospin flip by the inter-reservoir tunneling in this
study). Second, the entanglement and the conductance in
Eq. (10) satisfy Eq. (4). Hence, the power-law decay of the
entanglement can be detected by measuring the l depend-
ence of the conductance. Third, when the inter-reservoir
tunneling is large as in tsf ≃D=2, GT=ð2G0Þ ≃ 0.9 at
la ¼ 2ξK . By using this, one can estimate the Kondo
cloud length in experiments. Fourth, EE in Eq. (10) is
applicable to the core region la≲ ξK of the Kondo cloud,
provided tsf < D=2. The suppression of the cloud due to
the l-dependent SU(2) symmetry breaking follows the
same power law of exponent −2, reflecting the Fermi
liquid, both in the core and in the tail of the cloud.
Discussion.—We have found that the entanglement

between a Kondo impurity spin and electron reservoirs
can be determined by electron conductance through a
quantum dot in the single-channel Kondo regime. The
power law in Eq. (3) is valid for perturbations breaking the
SU(2) symmetry. Similar behavior is expected for other
observables (such as spin susceptibility, heat capacitance,
and local density of states [12,44–46]), for other entangle-
ment measures (such as Rényi entropies and entanglement
negativity), and for other setups. Equation (4) is a simple
relation but has been unnoticed before. Although it is
applicable only to the regime near the Kondo fixed
point, Eq. (4) will be useful for detecting many-body

(a) (b)

FIG. 3. NRG results (symbols) of (a) the entanglement
entropy EE and (b) the conductance GT through the double
dot as a function of la=ξK for tsf=D ¼ 0.03, 0.12, 0.21.
The results agree with the curves representing EE ¼
1 − ð2=π2 log 2Þðð4tsfÞ2=ðπDÞ2Þðξ2K=l2a2Þ and ðGT=2G0Þ ¼
1 − ðð4tsfÞ2=ðπDÞ2Þðξ2K=l2a2Þ for small ξKtsf=ðlaDÞ. The insets
are the log-log plots of the dependence of ð1 − EEÞ=t2sf and
(1 − GT=ð2G0Þ)=t2sf on la=ξK . The results follow the linear
curve (green lines) of slope −2, meaning that ð1 − EEÞ=t2sf and
(1 − GT=ð2G0Þ)=t2sf are proportional to ðla=ξKÞ−2.
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entanglement in various systems that can be mapped onto
the Kondo model in Eq. (1).
Our strategy for detecting a Kondo cloud based on

Eqs. (4) and (10) is within experimental reach. For
example, the orbital Kondo effect was measured in a
double dot [39] that has two reservoirs separated by a
barrier formed by an electrical gate. The reservoirs corre-
spond to those (ηA and ηB) of our setup. By replacing the
gate with key-board-type gates, the l-dependent inter-
reservoir tunneling can be tuned. In this case, it is required
that the length scale δl, over which tsf changes from 0 to a
constant value, is shorter than the Fermi wavelength λF, not
to wash out the resonances near EF. This can be achieved in
semiconductor two-dimensional electron systems of long
λF (as in Ref. [39]) or when the band bottom of a subband
channel of the reservoirs lies slightly below EF. Our
strategy works at finite temperature T ≪ TK or when
potential scattering exists, as discussed before. It also
works when the symmetry between A and B is broken,
provided that the resulting pseudospin Zeeman splitting is
smaller than TK . Our strategy is distinct from the existing
proposals for detecting a Kondo cloud [3,6–9,17], as its
purpose is to detect the nonclassical nature (entanglement)
of the cloud, not to extract the Kondo cloud length from
the temperature dependence of an observable based on
ξK ¼ ℏvF=TK .
It is remarkable that a many-body entanglement in

electron systems can be detected by a single-particle
observable. It will be valuable to generalize our study to
other quantum impurity problems. Note that the entangle-
ment studied in this work is different from the impurity
entanglement entropy [11,16]. It will be interesting to
find a relation between the impurity entropy and certain
observables.
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